

November 8, 2011

Mr. David Burke Mr. Ayman Ghobrial Environmental Cleanup Pennsylvania Department of Environmental Protection 2 East Main Street Norristown, Pennsylvania 19401

RE: Response Letter/Addendum to Agency Comments Site Characterization/Remedial Investigation Report AOI 10 Sunoco, Inc. Philadelphia Refinery Philadelphia, Pennsylvania

David T. Gockel, P.E., P.P. George P. Kelley, P.E. George E. Derrick, P.E. Michael A. Semeraro, Jr., P.E. Nicholas De Rose, P.G. Andrew J. Ciancia, P.E. George E. Leventis, P.E. Rudolph P. Frizzi, P.E., G.E. Ronald A. Fuerst, C.L.A. Colleen Costello, P.G. Cristina M. González, P.E. Gerald J. Zambrella, C.E.M. Gregory M. Elko, P.E. Steven Ueland, P.E.

Caryn L. Barnes Gerard M. Coscia, P.E. Jason S. Engelhardt, P.E. Edward H. Geibert, M.S. Christopher M. Hager, P.E. John J. McElroy, Jr., Ph.D., P.E. Michael D. Szura, C.L.A., A.S.L.A. Stewart H. Abrams, P.E. Brian M. Conlon, P.E. Jeffrey A. Smith, P.G.

Dear Mr. Burke and Mr. Ghobrial:

The purpose of this letter is to provide responses to comments received by the Pennsylvania Department of Environmental Protection (PADEP) regarding the Site Characterization Report/Remedial Investigation Report (SCR/RIR) for AOI 10, dated June 29, 2011, prepared by Langan Engineering and Environmental Services, Inc. (Langan) on behalf of Sunoco Inc. (R&M) (Sunoco). Comments from the PADEP were received in a correspondence dated August 18, 2011. This response letter along with the attachments is meant to serve as an Addendum to the AOI 10 SCR/RIR.

Each comment provided by PADEP is noted below along with a response. Additional information for certain responses is included in the attachments to this letter.

PADEP Comments/Conditions

1. Following the requirements of Pennsylvania's Land Recycling Program/Technical Guidance Manual, the SWLOAD model must be utilized for all contaminants of concern to evaluate the mass loading of contaminants to surface water and ultimately to determine compliance with surface water quality criteria using PENTOXSD. Results from evaluating the migration of contaminants from groundwater to Lands Creek must be submitted as an addendum to the RIR and reviewed by the Department (DEP) prior to approving the report.

Response

As described in the SCR/RIR, fate and transport calculations were completed for groundwater in AOI 10 to evaluate potential migration pathways/potential impacts to receptors. Eight monitoring wells (W-1, W-12, W-23, W-28, W-31, W-32, W-33, and W-34) in AOI 10 exhibited concentrations of groundwater constituents of concern (COCs) above their respective PADEP non-residential, used-aquifer (TDS<2,500) statewide health groundwater medium-specific concentrations (MSCs). The results from these monitoring wells were modeled using the PADEP's Quick Domenico (QD) model to determine whether COC concentrations could potentially reach the AOI 10 boundary. The modeling results indicate concentrations above the non-residential groundwater MSCs in monitoring wells W-1, W-12, W-23, W-28, W-31, W-32, and W-34 are not predicted to migrate beyond the AOI 10 boundary, with the exception of one well, W-33, which contains a concentration of benzene that has the potential to reach Lands Creek above the non-residential groundwater MSC. The QD-predicted benzene concentration at the Lands Creek boundary of 53 micrograms per liter (ug/L) is below the 25 Pa. Code Chapter 93 fish and aquatic life surface water quality criteria for benzene; however, to further assess the potential groundwater to surface water impact from benzene in well W-33, the PADEP's SWLOAD model was run for benzene. The input parameters for SWLOAD were the same as the input parameters used in the QD model. The edge criterion in SWLOAD is 5 ug/L which is the non-residential groundwater MSC for benzene. The distance between well W-33 and Lands Creek is 90 feet.

The SWLOAD model for W-33 predicted a benzene concentration of 51 ug/L along the centerline of the plume at the point of discharge to Lands Creek. This concentration is consistent with the QD-predicted concentration at this point. The SWLOAD model predicted the mass loading from benzene to Lands Creek to be 267 milligrams per day (mg/day). Because the predicted benzene concentration at the discharge point is above the edge criterion, the SWLOAD model suggests PENTOXSD is needed. PENTOXSD modeling was not completed because Lands Creek is an inland channel connected to the Schuylkill River and does not exhibit flow. An earthen berm is located between Lands Creek and the Schuylkill River further preventing any flow in the creek. Based on the ecological screening evaluation completed at AOI 10 and the sediment analytical results, an ecological risk assessment will be completed for Lands Creek. A copy of the revised fate and transport appendix for the SCR/RIR is included as Attachment A to this addendum.

2. Information regarding the API Model that was used to evaluate the distribution and the volume of the LNAPL was not included with the report.

Response

As part of the Current Conditions Report and Comprehensive Remedial Plan (CCR) dated June 30, 2004 prepared for the Sunoco Philadelphia Refinery, light non-aqueous phase liquid (LNAPL) modeling was performed using the American Petroleum Institute (API) Model. A copy of the revised LNAPL Appendix from the AOI 10 SCR/RIR and the LNAPL modeling procedures, input parameters, and results are included as Attachment B to this addendum. During groundwater gauging activities for the CCR, LNAPL was identified in W-8 with a thickness of 0.01 feet and in W-14 with a thickness of 0.01 feet. A LNAPL sample was collected from W-8 and submitted to Torkelson Laboratories (Torkelson) of Tulsa, Oklahoma as part of the CCR site characterization activities. Torkelson identified the LNAPL in W-8 as a weathered residual oil. Based on the API modeling performed for the CCR, it was determined that the residual oil in W-8 was stable and immobile with a specific volume of 4.88e⁻¹⁰ feet and a seepage velocity of 2.45e⁻¹⁶ centimeters per second (cm/sec).

As discussed in the AOI 10 SCR/RIR, LNAPL was identified in W-8 (0.51 feet), W-14 (0.11 feet), and W-18 (0.01 feet). LNAPL samples were collected from all three monitoring wells and submitted to Torkelson for LNAPL typing analysis as part of the site characterization activities for the AOI 10 SCR/RIR. A summary of the LNAPL typing analysis is included in Attachment B. The quantity of sample submitted for W-18 was not sufficient for Torkelson to run LNAPL analysis but it appeared to be similar to the other LNAPL samples collected at W-14 and W-18. Based on the LNAPL characterization performed by Torkelson, the LNAPL types present in monitoring wells W-8 and W-14 consisted mainly of weathered residual oil, and is assumed to weathered residual oil in W-18. As part of this response letter, the API Model was updated to include the new LNAPL thickness value for W-8, W-14, and W-18. The input and output parameters of the updated API Model and seepage velocity calculations is presented in Attachment B as Tables B-1 through B-3, respectively of this response letter. In summary the updated LNAPL modeling outputs for W-8, W-14, and W-18 are as follows:

Well ID	API Model Calculated LNAPL	Calculated LNAPL Seepage
	Specific Volumes (feet)	Velocity (cm/sec)
W-8	4.41e ⁻⁴	7.03e ⁻¹⁰
W-14	3.13e ⁻⁶	4.84e ⁻¹²
W-18	2.13e ⁻⁹	2.87e ⁻¹⁵

Revised figures depicting the results of the LNAPL modeling are included in Attachment B as Figure B-1 - LNAPL Specific Volume and Figure B-2 - LNAPL Mobility Value.

Based on the LNAPL type (weathered residual oil) and the updated API Model output results, the weathered residual oil found in monitoring wells W-8, W-14, and W-18 is stable and immobile. Attachment B includes all of the information used to evaluate the distribution and volume of LNAPL in AOI 10.

3. The 1994 CCR indicates that site characterization activities were proposed in a "Corrective Measures Study Work Plan," dated April 1999. This document is not referenced in the SCR/RIR, so it is not clear whether the proposals in the 1999 document have been followed up. It would be useful if this were clarified.

<u>Response</u>

As summarized in the AOI 10 Work Plan submitted to the PADEP and EPA on February 14, 2011, a number of RCRA corrective action investigations/reports were completed for AOI 10 between 1986 and 1997. The Corrective Measures Study (CMS) Work Plan was prepared in April 1997 by ENSR Consulting and Engineering on behalf of Sunoco, not in April of 1999 which was an incorrect reference in the CCR. In preparation of the AOI 10 Work Plan, theses RCRA investigations, reports, and correspondence, including the 1997 CMS Work Plan, were reviewed to develop the site characterization activities carried out in AOI 10.

The 1997 CMS Work Plan stated that, based on the RFI data, there were no further data gaps to initiate CMS activities at the CAMU. However, the 1997 CMS Work Plan laid out objectives for the CAMU to assure that there is no unacceptable exposure to waste on the ground surface and that potential exposures to subsurface materials are controlled or eliminated. The 1997 CMS Work Plan included potential alternative corrective measures such as institutional controls or covering, that could be implemented as result of the CMS.

Between 1997 and 1999, correspondence was exchanged between Sunoco and EPA regarding proposed revisions to the 1997 CMS Work Plan. In February of 1999, as a final response to the EPA's comments to the 1997 CMS Work Plan, Sunoco recommended that all soil data (surface and subsurface) be screened against PA Act 2 non-residential soil MSCs and any constituent above its respective soil MSC be considered a constituent of potential concern (COPC). Subsequent correspondence between Sunoco and EPA concluded that areas with COPC concentrations above the PA Act 2 non-residential soil MSCs would be further investigated. To

develop the scope of work in the 2011 AOI 10 Work Plan for Site Characterization, the historic RFI data from both inside and outside of the CAMU were screened against current PA Act 2 MSCs. Results of this screening process were used to develop the COC list and sampling locations for characterization activities at the CAMU. Any area that had historic soil concentrations above the current PA Act 2 non-residential soil MSCs was further investigated during the AOI 10 site characterization activities though soil borings and sampling. In addition, the extent of the waste materials in the CAMU was delineated through borings.

Based on the recent site characterization activities and results, limited shallow soil samples were identified above their respective non-residential soil MSCs. The plan for these areas will include delineation and remediation to be addressed in the combined Ecological Risk Assessment and Cleanup Plan for AOI 10 as further described in the response to Comment 4 below.

4. The total cumulative risk for exposure to carcinogens is 3.65E-04, greater than the acceptable risk of 1.0E-04. The RIR proposes that the cumulative risk for exposure to carcinogens will be re-evaluated after addressing the areas with lead and benzo (a) pyrene that show concentrations above the calculated site-specific values. Additional remediation may be requested should the total cumulative risk not meet the Risk Target of 1.0E-04.

Response

Sunoco acknowledges that remediation of locations with lead and benzo(a)pyrene above the calculated site specific values may not be enough to reduce the total cumulative risk of exposure to carcinogens below the acceptable risk level of $1.0e^{-04}$. Therefore, additional locations with higher detections of these compounds may also be selected for remediation with the goal to reduce the total cumulative risk to below $1.0e^{-4}$. These areas will be addressed by Sunoco through implementation of a remedy that will be presented in a combined Ecological Risk Assessment and Cleanup Plan for AOI 10.

5. Based on the ecological screening performed, and due to the presence of contaminated sediments along Lands Creek, the RIR proposes additional ecological evaluation. Results will be documented in the Cleanup Plan.

Response

Sunoco and Langan will complete an ecological evaluation of Lands Creek in accordance with Act 2. The results of the ecological evaluation will be presented in a combined Ecological Risk Assessment and Cleanup Plan for AOI 10.

6. It is noted that the Pennsylvania Natural Heritage Inventory has indicated the possible presence of threatened or endangered species. Lands Creek is a tidal waterway, and probably has associated wetlands (although the presence of wetlands is not documented in the SC/RIR). It is possible that Exceptional Value Wetlands are present. (Exceptional Value Wetlands are defined in PA Code Title 25, Chapter 105, Section 105-17.)

<u>Response</u>

A natural resources figure is presented in Attachment C of this response letter. The floodway and flood hazard areas depicted on the map were derived from the Digital Flood Insurance Rate Map Database (DFIRM) for Pennsylvania, by the federal Emergency Management Agency (FEMA) 2005. The wetlands depicted, which are all located off-site of AOI 10, were obtained from the National Wetlands Inventory (NWI) for Pennsylvania by the U.S. Fish and Wildlife Service (USFWS) published in September 25, 2009. Based on the current FEMA and NWI mapping databases, as shown on the figure presented in Attachment C, there are no known mapped wetlands within AOI 10. Therefore, the presence of exceptional value wetlands is highly unlikely, however as part of the ecological risk assessment (as described in Response No. 5 above), AOI 10 will be further evaluated for the presence of such wetlands.

7. Because of the likelihood of future development activity nearby, natural resources such as Lands Creek take on a particular significance as potential loci for targeted restoration, or creation of wetlands. Wetland creation opportunities may be sought by developers of projects who have mitigation obligations pursuant to the regulations that protect wetlands from destruction. Although Sunoco has no obligation to offer their property to others for the purpose of mitigation, DEP wishes to make sure that Sunoco is aware of this factor, which could play a role

in Sunoco's decision-making regarding the future disposition of the property at AOI-10.

Response

Sunoco is aware and appreciates the PADEP's mention of this opportunity.

We hope this response letter and report addendum adequately addresses the department's comments. Should you have any questions regarding these items, or have further comments, please contact Jim Oppenheim of Sunoco at 610.833.3444.

Sincerely, Langan Engineering and Environmental Services, Inc.

Dennis Webst

Dennis Webster Project Manager

Jason Hahna Senior Project Manager

Colleen Costello, P.G. Senior Principal

Attachments:

- A Revised Appendix G from AOI 10 SCR/RIR Fate and Transport Analysis
- B Revised Appendix F from AOI 10 SCR/RIR LNAPL Modeling Procedures & Results
- C AOI 10 Existing Natural Resources Plan

cc: Steve O'Neil, PADEP Hon Lee, US EPA James Oppenheim, Sunoco, Inc Tiffani Doerr, Aquaterra Jennifer Menges, Stantec

\\langan.com\data\DT\data6\2574601\Office Data\Reports\Site Characterization Reports\AOI 10\PADEP Response Letter\AOI 10 PADEP Comment Response Letter_110411.doc

ATTACHMENT A

Revised Appendix G from AOI 10 SCR/RIR -

Fate and Transport Analysis

ATTACHMENT A REVISED APPENDIX G FROM THE JUNE 29, 2011 AOI 10 SCR/RIR FATE AND TRANSPORT MODELING PROCEDURES AOI 10: SUNOCO PHILADELPHIA REFINERY PHILADELPHIA, PENNSYLVNIA

QUICK DOMENICO MODELING

A.1 INTRODUCTION

Fate and transport calculations were completed for groundwater in Area of Interest (AOI) 10 to evaluate potential migration pathways/potential impacts to receptors. Eight wells (W-1, W-12, W-23, W-28, W-31, W-32, W-33, and W-34) in AOI 10 exhibited concentrations of groundwater compounds of concern (COCs) above their respective MSCs. The COCs above the MSCs include benzene, chrysene, naphthalene and lead. The COCs that were above the MSCs in these wells were modeled using the analytical results from the April 2011 groundwater sampling event, and the Quick Domenico Version 2 (QD) spreadsheet model developed by Pennsylvania Department of Environmental Protection (PADEP). Site-specific data was used to complete the fate and transport calculations, when available.

A.2 MODEL OVERVIEW

The QD Model is a Microsoft Excel spreadsheet application based on the analytical contaminant transport equation developed by P.A. Domenico in *"An Analytical Model For Multidimensional Transport of a Decaying Contaminant Species,"* Journal of Hydrology, 91 (1987), pp. 49-58. The QD model calculates contaminant concentrations at any down-gradient location after a specified interval of time. The model incorporates the processes of advection, first order decay, retardation, and dispersion to describe fate and transport of compounds. In addition, the QD model displays the results as a two dimensional chart to facilitate interpretation of the results.

A.3 MODEL LIMITATIONS

Limitations of the QD model include:

- Groundwater flow is assumed to be steady state, and one-dimensional;
- Aquifer properties are assumed to be reasonably uniform;
- Applicable only to unconsolidated aquifers;
- Intended for use primarily with dissolved organic compounds;

- Does not account for the transformation of parent compounds into daughter products as the result of biodegradation;
- Compounds are considered individually, and are assumed to not react with each other; and
- The contaminant source is limited to a single and continuous source concentration.

A.4 MODEL INPUT PARAMTERS

In preparation of the June 2011 SCR/RIR, input values for the QD model were compiled from available site-specific data. When no site-specific data was available, estimated input values from the PADEP spreadsheet "Number Please! 2011" which is based on PA Code, Chapter 250, Appendix A, Table 5, or other acceptable literature sources, were utilized. The input parameters are discussed in detail in the following sections and are summarized in the input/output tables for each model (Tables A.1 through A.8). An Excel spreadsheet interface was used to construct the QD simulations. This interface allowed the simulation of all relevant compounds at each well location to be constructed and saved in a single electronic file.

A.4.1 Source Concentration

Results of the April 2011 groundwater sampling indicated that three organic compounds (benzene, chrysene and naphthalene) and one metal (lead) were detected above their respective groundwater MSCs in shallow wells (W-1, W-12, W-23, W-28, W-31, W-32, W-33, and W-34). The potential for these compounds to migrate offsite (beyond property boundary or discharge to the Schuylkill River) was evaluated through the use of the QD model.

A.4.2 Distance to Location of Concern (x)

Distance to the Location of Concern (distance) for the current simulations is the distance required for each COCs concentration to fall below its respective MSC under steady-state plume conditions. The distance is iteratively entered using the Excel "Solver" Addon in the QD model until the location where the COC concentration falls below the MSC is identified. This step is performed using a large simulation time of 1×10^{99} days to ensure that the plume has reached steady-state.

A.4.3 Dispersivity

Dispersivity is the tendency of a dissolved plume to "spread out" as it moves downgradient.

- Longitudinal dispersivity (A_x) occurs in the direction parallel to groundwater flow;
- Transverse dispersivity (A_Y) occurs in the same plane as longitudinal dispersivity but perpendicular to the direction of groundwater flow; and
- Vertical dispersivity (A_z) occurs in the upward direction, normal to the plane in which longitudinal and transverse dispersivity occur (Vertical dispersivity is usually negligible and is typically omitted from most QD analyses).

Dispersivity estimates are difficult to quantify and are commonly estimated from the following relationships:

- 1. $A_X = X/10$ (where, X is the distance a contaminant has traveled by advective transport)
- 2. $A_{\rm Y} = A_{\rm X}/10$
- 3. $A_z = A_x/20$ to $A_x/100$ (generally, it is recommended that A_z be a very small number (0.001) unless vertical monitoring can reliably justify a larger number. Additionally, a value of 0.0001 is suggested for uncalibrated or conceptual applications).

As stated above the value for A_Y was estimated to be 10 percent of A_X . A value of 0.001 was used as a value for A_Z . A longitudinal dispersivity of 200 feet was assumed which is also the longitudianal dispersivity used in the CCR.

A.4.4 Lambda

Lambda is the first order decay constant. It is determined by dividing 0.693 by the halflife of the compound. The value can typically be estimated for shrinking plumes by evaluating at concentrations versus time or distance. Lambda can also sometimes be estimated for stable plumes by evaluating concentration versus time using the methodology outlined in Buscheck and Alcantar (1995). Important considerations to estimating Lambda from site data include:

- 1. Are the measured concentrations along the centerline of the plume?
- 2. Are the measured concentrations the result of the single source area?
- 3. Are there no remedial systems and/or activities that effected the migration of the plume during the time interval of evaluation?

If the answer is yes to these questions, then the methodologies outlined in Buscheck and Alcantar may be utilized to estimate a site-specific lambda from site data.

Based on review of the available site data, the criteria necessary to calculate a sitespecific lambda could not be met; therefore, a default value for lambda (when appropriate and available) was obtained from the PADEP spreadsheet "Number Please! 2011" which is based on PA Code, Chapter 250, Appendix A, Table 5. For the lead simulation, the lambda value was set to zero.

A.4.5 Source Dimensions

Source width is the maximum width of the area measured perpendicular to the direction of groundwater flow. Source thickness is the thickness of the contaminated soils below the water table that contribute contamination to groundwater. In addition to the saturated zone, fluctuation in groundwater elevation may create a smear zone in the unsaturated portion of an aquifer. As an estimate of the thickness of the smear zone, average fluctuation can be used. An assumed source width of 100 ft was used for wells in AOI 10. An assumed source thickness of 60 feet (ft) was used for wells in AOI 10. This thickness is the average saturated thickness of the upper unconfined aquifer based on cross sections DD-DD' and EE-EE.'

A.4.6 Hydraulic Conductivity (K)

The hydraulic conductivity of a geologic material is a measure of its ability to transmit water. A hydraulic conductivity of 4.64 ft/d was used in the AOI 10 QD simulations. This value was the average hydraulic conductivity of the fill/alluvium at the site, obtained from the CCR. The wells that were modeled are screened in the fill/alluvium.

A.4.7 Hydraulic Gradient

Hydraulic gradient is the change in hydraulic head relative to the distance between head measurement locations. The hydraulic gradient is measured parallel to the direction of ground water flow assuming horizontal flow and a uniform gradient. Using the groundwater elevations collected in April 2011, the hydraulic gradient value was estimated between W-31 and W-16 and is 0.0046. This hydraulic gradient was used as a conservatively high estimation for all eight QD simulations.

A.4.8 Porosity (n)

Porosity is measured as the ratio of the volume of void space in a geologic material to the total volume of material. A porosity of 0.35 was used in the fate and transport modeling and is based on historical geotechnical analysis of site alluvial sediments.

A.4.9 Soil Bulk Density (p_b)

Soil bulk density is the dry weight of a sample divided by the total volume of the sample in an undisturbed state. Soil bulk density can either be determined by a laboratory or by the equation

$$p_b = 2.65 * (1- n).$$

Soil bulk density value used in the fate and transport modeling was 1.72 gm/cm³ which is based on historical geotechnical analysis.

A.4.10 Organic Carbon Partition Coefficient (KOC)

The organic carbon partition coefficient is chemical specific and was taken from the PADEP EP spreadsheet "Number Please! 2011" which is based on PA Code, Chapter 250, Appendix A, Table 5. Koc is chemical specific and can be found in the QD model input-out tables.

A.4.11 Fraction Organic Carbon (foc)

The fraction of organic carbon is the organic carbon content of a soil. A laboratory using ASTM methods can determine this value. Samples for organic carbon are taken from the same soil horizon in which the contaminant occurs, but outside of the impacted area. Since no site specific fraction of organic carbon data was available for the site, the fate and transport modeling used the model-recommended default concentration of 0.005, which is a conservative value based on the description of site soils.

A.4.12 Time (t)

'Time zero' is the point at which contamination was introduced into the aquifer. Time since 'time zero' is measured in days. The final simulation time of 1×10^{99} days was used to ensure that a steady-state plume was simulated.

A.5 QD OUTPUT DATA AND RESULTS

A spreadsheet for each well, for which a QD simulation was performed, is included in this appendix. The inputs for each model are summarized in Tables A.1 through A.8 and the model spreadsheets are provided for each well. Table A.9 is a summary of the QD modeling results. This table summarizes the QD-model predicted distance for each COC to reach its Act 2 non-residential groundwater MSC. The table also compares this predicted distance to the downgradient point of compliance distance.

The modeling results indicate concentrations above the groundwater MSCs in shallow wells W-1, W-12, W-23, W-28, W-31, W-32, and W-34 are not predicted to migrate beyond the AOI 10 boundary, with the exception of one well, W-33, which contains a concentration of benzene that has the potential to reach Lands Creek. The QD-predicted benzene concentration at the Lands Creek boundary (53 ug/L) is below the 25 Pa. Code Chapter 93 fish and aquatic life surface water quality criteria for benzene; however, to further assess the potential groundwater to surface water impact from benzene in well W-33, the PADEP's SWLOAD model was run for benzene. This model is discussed in the following section.

SWLOAD MODELING

A.6 INTRODUCTION

Based on the results of the QD modeling described above, a SWLOAD model was prepared for benzene in well W-33.

A.7 SW LOAD MODEL OVERVIEW

The SWLOAD model is Microsoft Excel spreadsheet applications based on the analytical contaminant transport equation developed by P.A. Domenico in *"An Analytical Model For Multidimensional Transport of a Decaying Contaminant Species,"* Journal of Hydrology, 91 (1987), pp. 49-58. The SWLOAD model calculates groundwater contaminant concentrations just before discharge to surface water and the volume of groundwater discharged to surface water. SWLOAD incorporates the processes of advection, first order decay, retardation, and dispersion to describe fate and transport of compounds.

A.8 MODEL LIMITATIONS

Limitations of the SWLOAD models include:

- Groundwater flow is assumed to be steady state, and one-dimensional;
- Aquifer properties are assumed to be reasonably uniform;
- Applicable only to unconsolidated aquifers;
- Intended for use primarily with dissolved organic compounds;
- Does not account for the transformation of parent compounds into daughter products as the result of biodegradation;
- Compounds are considered individually, and are assumed to not react with each other; and
- The contaminant source is limited to a single and continuous source concentration.

A.9 MODEL INPUT PARAMTERS

The input parameters of the SWLOAD model for W-33 are the same parameters used in the QD model described above.

A.9.1 Edge Criterion

The maximum predicted groundwater concentration adjacent to a surface water body is compared to the edge criterion. For benzene, the edge criterion entered into the SWLOAD model is 5 ug/L, benzene's Act 2 non-residential groundwater MSC. If the maximum predicted plume concentration exceeds the edge criterion, then the model suggests whether additional evaluation using PENTOXSD is necessary.

A.9.2 Distance to Stream

The distance between well W-33 and Lands Creek is 90 feet.

A.10 SWLOAD RESULTS

A copy of the SWLOAD model spreadsheet for well W-33 is included at the end of this appendix. The SWLOAD model for W-33 predicted a benzene concentration of 51 ug/L along the centerline of the plume at the point of discharge to Lands Creek. This concentration is consistent with the QD-predicted concentration at this point. The SWLOAD model predicted the mass loading from benzene to Lands Creek to be 267 mg/day. Because the predicted benzene concentration at the discharge point is above the edge criterion, the SWLOAD model suggests PENTOXSD is needed. PENTOXSD modeling was not completed because Lands Creek is an inland channel connected to the Schuylkill River and does not exhibit flow. An earthen berm is located between Lands Creek and the Schuylkill River further preventing any flow in the creek. Sunoco plans to conduct additional ecological assessment activities at Lands Creek.

QD SIMULATIONS

Table A.1 Quick Domenico Fate and Transport Model Input and Output AOI 10 Sunoco Philadelphia Refinery Philadelphia, Pennsylvania

Project Prepared by Date Prepared	2574601 - Sunoco Ph Terrance Stanley 11/1/2011	niladelphia Refinery		
	Generic Input Param	eters		Data Source
Source Identification (or Well ID)			W-01	
Sample Date			4/27/2011	
Source Width		ft	100	Delineated LNAPL (100' default if no plume is present)
Source Thickness		ft	60	Estimated from cross-sections DD-DD' & EE-EE'
Longitudinal Dispersivity	A _x	ft	200	From CCR QD Simulations
Transverse Dispersivity	Ay	ft	20.0	Quick Domenico User's Manual
Vertical Dispersivity	Az	ft	0.0001	Quick Domenico User's Manual
Hydraulic Conductivty	k	ft/day	4.64	Alluvium
Hydraulic Gradient		ft/ft	0.0046	W-31/W-16 April 2011
Porosity		decimal fraction	0.35	Site soil analyses
Soil Bulk Density	pb	g/cm3	1.7225	ACT 2 TGM Default
Fraction of Organic Carbon	f _{oc}	decimal fraction	0.005	ACT 2 TGM Default
Time		days	1.00E+99	Steady-State Conditions
(Chemical Specific Input P	arameters		Data Source
Sim 1				
Contaminant			benzene	
Source Concentration (mg/L)		mg/L	0.0200	4/27/2011
Lambda (per day)		day ⁻¹	0.001	PADEP Number Please! 2011
КОС			58	PADEP Number Please! 2011
Output (Distance from Source W	here Concentrat	ion Equals Respective Gr	ound Water MSC)
Contaminant	Starting Concentration (mg/L)	GW MSC ¹ Non-Residential (mg/L)	Predicted Concentration (mg/L)	Predicted Distance to Meet Non-Residential GW MSC (Rounded Upward to the Nearest foot)

0.005

0.005

80

ACT 2 TGM, Appendix A, Table 1 MSC for a Non-residential Used Aquifer with Total Dissolved Solids less than or equal to 2500.

0.0200

Sim 1 - benzene

ADVECTIVE TI			ENSIONAL DISPE		ORDER DECA	Y and RETARDA	TION - WITH	CALIBR	ATION TOO	L		
Project:			lelphia Refiner									
Date:	11/1/2011	Prepared by:	Terrance Star	nley								Γ
		Contaminant:	benzene	1		T				NEW QUICK	_DOMENICO.	XLS
SOURCE	Ax	Ау	Az	LAMBDA	SOURCE	SOURCE	Time (day	/s)		SPREADSHEE	TAPPLICATIO	
CONC	(ft)	(ft)	(ft)		WIDTH	THICKNESS	(days)	,-,			ICAL MODEL	
(MG/L)	(1)	(,	>=.001	day-1	(ft)	(ft)	(44)0)			LTIDIMENSIO		
0	2.00E+02	2.00E+01	1.00E-04	0.0009589			-	1E+99	DE	CAYING CON	-	PECIES"
											menico (1987) nclude Retarda	tion
Hydraulic	Hydraulic		Soil Bulk		Frac.	Retard-	V			Mounica to n		
Cond	Gradient	Porosity	Density	кос	Org. Carb.	ation	(=K*i/n*R)					F
(ft/day)	(ft/ft)	(dec. frac.)	(g/cm ³⁾			(R)	(ft/day)					F
4.64E+00	0.0046	0.35	1.7225	58	5.00E-03	2.427214286	0.0251	24628				
				L			L					
Point Conce	ontration			-	Centerline P	Plot (linear)			Ce	enterline Plot	(log)	
x(ft)		z(ft)		-			H				.~9)	
~(11)	y('')	2(11)		_ 0.01 -			- Model	1.000				 Model
79.52845346	0	0		_ 0.01 -			Output	0.100				Output
75.52045540	0	Ŭ		0.01 -			- Field	0.100				-Field
	x(ft)	y(ft)	z(ft)	0.01 - 2 0.01 -			Data	0.010				Data
Conc. At	79.52845346		` <i>`</i>	9 0.01 - 9 0.00 - 9 0.00 -			H		• • ·			
at		days =	0	0.00 -	•		H	0.001		•		_
		aajo -	0.005	- 0.00 -			H	0.000		• •		
			mg/l	0.00 -			Н	0.000			•	
	AREAL	CALCULATION		0.00 -		****	H	0.000			•	
	MODEL	DOMAIN		- (200	400 600	H		Ó	200	400	600
	Length (ft)	500		<u>†1</u>	dist	ance	H		-	distance		200
	Width (ft)	100		†¹			H					
	50		150	200	250	300		350	400	450	500	
100	0.001	0.001	0.001	0.000	0.000	0.000		0.000	0.000	0.000	0.000	
50				0.001	0.000			0.000	0.000	0.000	0.000	
0	0.008	0.004	0.002	0.001	0.000	0.000		0.000	0.000	0.000	0.000	
-50	0.005	0.003	0.001	0.001	0.000	0.000		0.000	0.000	0.000	0.000	
-100	0.001	0.001	0.001	0.000	0.000	0.000		0.000	0.000	0.000	0.000	
Field Data:	Centerline C	Concentratio	n									
	Distance fro	m Source										
		1	1									

Table A.2 Quick Domenico Fate and Transport Model Input and Output AOI 10 Sunoco Philadelphia Refinery Philadelphia, Pennsylvania

Project Prepared by Date Prepared	2574601 - Sunoco Ph Terrance Stanley 11/1/2011	niladelphia Refinery		
	Generic Input Param	eters		Data Source
Source Identification (or Well ID)			W-12	
Sample Date			4/26/2011	
Source Width		ft	100	Delineated LNAPL (100' default if no plume is present)
Source Thickness		ft	60	Estimated from cross-sections DD-DD' & EE-EE'
Longitudinal Dispersivity	A _x	ft	200	From CCR QD Simulations
Transverse Dispersivity	Ay	ft	20.0	Quick Domenico User's Manual
Vertical Dispersivity	Az	ft	0.0001	Quick Domenico User's Manual
Hydraulic Conductivty	k	ft/day	4.64	Alluvium
Hydraulic Gradient		ft/ft	0.0046	W-31/W-16 April 2011
Porosity		decimal fraction	0.35	Site soil analyses
Soil Bulk Density	pb	g/cm3	1.7225	ACT 2 TGM Default
Fraction of Organic Carbon	f _{oc}	decimal fraction	0.005	ACT 2 TGM Default
Time		days	1.00E+99	Steady-State Conditions
(Chemical Specific Input P	arameters		Data Source
Sim 1				
Contaminant			benzene	
Source Concentration (mg/L)		mg/L	0.0080	4/26/2011
Lambda (per day)		day ⁻¹	0.001	PADEP Number Please! 2011
KOC			58	PADEP Number Please! 2011
Output (Distance from Source W	here Concentrat	ion Equals Respective Gr	ound Water MSC)
Contaminant	Starting Concentration (mg/L)	GW MSC ¹ Non-Residential (mg/L)	Predicted Concentration (mg/L)	Predicted Distance to Meet Non-Residential GW MSC (Rounded Upward to the Nearest foot)

0.005

0.005

28

ACT 2 TGM, Appendix A, Table 1 MSC for a Non-residential Used Aquifer with Total Dissolved Solids less than or equal to 2500.

0.0080

Sim 1 - benzene

11/1/2011 x 2.00E+02 ydraulic radient 1 //ft) 0 0.0046	Prepared by: Contaminant: Ay (ft) 2.00E+01 Porosity (dec. frac.) 0.35 z(ft) 0	(ft) >=.001 1.00E-04 Soil Bulk Density (g/cm ³⁾ 1.7225	ley LAMBDA day-1 0.0009589	Frac. Org. Carb.	Retard- ation (R) 2.427214286	V (=K*i/n*R) (ft/day) 0.025124(- MUL - DE	SPREADSHEE "AN ANALYT LTIDIMENSION CAYING CON P.A. Dor	ICAL MODEL I VAL TRANSPO TAMINANT SF nenico (1987) Include Retarda	DN OF FOR DRT OF A PECIES"
x 2.00E+02 ydraulic radient 1 //ft) 0 tration (ft) 2 0	Contaminant: Ay (ft) 2.00E+01 Porosity (dec. frac.) 0.35 z(ft) 0	benzene Az (ft) >=.001 1.00E-04 Soil Bulk Density (g/cm ³⁾ 1.7225	LAMBDA day-1 0.0009589 KOC 58	WIDTH (ft) Frac. Org. Carb. 5.00E-03	THICKNESS (ft) 60 Retard- ation (R) 2.427214286	(days) 1E- V (=K*i/n*R) (ft/day) 0.0251246 Model Output	.000	- MUL - DE	SPREADSHEE "AN ANALYT LTIDIMENSION ECAYING CON P.A. Dor Modified to Ir	T APPLICATIC ICAL MODEL I VAL TRANSPO TAMINANT SF menico (1987) Include Retarda	ON OF FOR DRT OF A PECIES" Ition
x 2.00E+02 ydraulic radient 1 //ft) 0.0046 tration (ft) 2 0	Ay (ft) 2.00E+01 Porosity (dec. frac.) 0.35 z(ft) 0	Az (ft) >=.001 1.00E-04 Soil Bulk Density (g/cm ³⁾ 1.7225	day-1 0.0009589 KOC 58 0.00 - 0.00 -	WIDTH (ft) Frac. Org. Carb. 5.00E-03	THICKNESS (ft) 60 Retard- ation (R) 2.427214286	(days) 1E- V (=K*i/n*R) (ft/day) 0.0251246 Model Output	.000	- MUL - DE	SPREADSHEE "AN ANALYT LTIDIMENSION ECAYING CON P.A. Dor Modified to Ir	T APPLICATIC ICAL MODEL I VAL TRANSPO TAMINANT SF menico (1987) Include Retarda	ON OF FOR DRT OF A PECIES" Ition
2.00E+02 ydraulic radient 1 //ft) 0.0046 tration (ft) 2 0	(ft) 2.00E+01 Porosity (dec. frac.) 0.35 Z(ft) 0	(ft) >=.001 1.00E-04 Soil Bulk Density (g/cm ³⁾ 1.7225	day-1 0.0009589 KOC 58 0.00 - 0.00 -	WIDTH (ft) Frac. Org. Carb. 5.00E-03	THICKNESS (ft) 60 Retard- ation (R) 2.427214286	(days) 1E- V (=K*i/n*R) (ft/day) 0.0251246 Model Output	.000	- MUL - DE	"AN ANALYT LTIDIMENSION CAYING CON P.A. Dor Modified to Ir	ICAL MODEL I VAL TRANSPO TAMINANT SF nenico (1987) Include Retarda	FOR DRT OF A PECIES" Ition
2.00E+02 ydraulic radient 1 //ft) 0.0046 tration (ft) 2 0	(ft) 2.00E+01 Porosity (dec. frac.) 0.35 Z(ft) 0	(ft) >=.001 1.00E-04 Soil Bulk Density (g/cm ³⁾ 1.7225	day-1 0.0009589 KOC 58 0.00 - 0.00 -	WIDTH (ft) Frac. Org. Carb. 5.00E-03	THICKNESS (ft) 60 Retard- ation (R) 2.427214286	(days) 1E- V (=K*i/n*R) (ft/day) 0.0251246 Model Output	.000	- DE	LTIDIMENSION ECAYING CON P.A. Dor Modified to Ir	VAL TRANSPO TAMINANT SF nenico (1987) nclude Retarda	• Model
2.00E+02 ydraulic radient i/ft) 0.0046 tration (ft) 0	2.00E+01 Porosity (dec. frac.) 0.35 z(ft) 0	>=.001 1.00E-04 Soil Bulk Density (g/cm ³⁾ 1.7225	0.0009589 KOC 58 0.00 0.00 0.00	100 Frac. Org. Carb. 5.00E-03	60 Retard- ation (R) 2.427214286	V (=K*i/n*R) (ft/day) 0.025124(.000	- DE	ECAYING CON P.A. Dor Modified to Ir	TAMINANT SF nenico (1987) nclude Retarda	• Model
ydraulic radient (/ft) 0.0046 tration (ft) 0	Porosity (dec. frac.) 0.35 z(ft) 0	1.00E-04 Soil Bulk Density (g/cm ³⁾ 1.7225	0.0009589 KOC 58 0.00 0.00 0.00	100 Frac. Org. Carb. 5.00E-03	60 Retard- ation (R) 2.427214286	V (=K*i/n*R) (ft/day) 0.025124(.000		P.A. Dor Modified to Ir	nenico (1987) nclude Retarda	• Model
radient (/ft) (0.0046 0.0046 tration (ft) 2 0	Porosity (dec. frac.) 0.35 2(ft) 0	Soil Bulk Density (g/cm ³⁾ 1.7225	KOC 58 0.00 - 0.00 -	Org. Carb. 5.00E-03	ation (R) 2.427214286	(ft/day) 0.025124(.000	Ce	Modified to Ir	nclude Retarda	Model
radient (/ft) (0.0046 0.0046 tration (ft) 2 0	Porosity (dec. frac.) 0.35 2(ft) 0	Density (g/cm ³⁾ 1.7225	KOC 58 0.00 - 0.00 -	Org. Carb. 5.00E-03	ation (R) 2.427214286	(ft/day) 0.025124(.000	Ce			Model
/ft) 0.0046 0.0046 tration (ft) 2 0	(dec. frac.) 0.35 z(ft) 0	(g/cm ³⁾ 1.7225	58 0.00 - 0.00 -	5.00E-03	(R) 2.427214286	(ft/day) 0.025124(.000	Ce	enterline Plot ((log)	
0.0046 tration (ft) 2	0.35 z(ft) 0	1.7225	0.00		2.427214286	Model Output	.000	Ce	enterline Plot ((log)	
tration (ft) 0	z(ft) 0		0.00			- Model Output	.000	Ce	enterline Plot ((log)	
(ft) :	0		- 0.00 -	Centerline P	Plot (linear)			Ce	enterline Plot ((log)	
(ft) :	0		- 0.00 -	Centerline P	Plot (linear)			Ce	enterline Plot ((log)	
(ft) :	0		- 0.00 -	•	· · ·						
0	0		- 0.00 -	•							
-	-					· (.100				Output
-	-		0.00 -				1100 +				
x(ft)						Field					-Field
	y(ft)	z(ft)	ပ 0.00			Data	0.010				Data
28.18057593	y (it)	2(11)	4 2 1			- e	•				
	•	0				conc	0.001 +	•			
	uu yo –	0.005	- 0.00 -			H			· • •		
			- 0.00 -				0.000				
REAL	CALCULATION		0.00		****	H (• • •	
			- C	200	400 600	H '	0		200	400	600
ength (ft)	500		-1	dist	ance	Н	č		distance		200
/idth (ft)	100		-	1		,Н					
50	100	150	200	250	300	3	50	400	450	500	
0.001	0.001	0.000	0.000	0.000	0.000	0.0	00	0.000	0.000	0.000	
0.002	0.001	0.001	0.000					0.000	0.000	0.000	
0.003	0.001	0.001	0.000	0.000	0.000	0.0	00	0.000	0.000	0.000	
0.002	0.001	0.001	0.000	0.000	0.000	0.0	00	0.000	0.000	0.000	
0.001	0.001	0.000	0.000	0.000	0.000	0.0	00	0.000	0.000	0.000	
enterline C	Concentratio	n									
oi er /ic	EAL DEL ogth (ft) dth (ft) 50 0.001 0.002 0.003 0.002 0.001 nterline C	DEL DOMAIN ngth (ft) 500 dth (ft) 100 50 100 0.001 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.001 0.001	O.005 mg/l EAL CALCULATION DEL DOMAIN ngth (ft) 500 dth (ft) 100 50 100 0.001 0.001 0.002 0.001 0.003 0.001 0.002 0.001 0.001 0.001 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001	1E+99 days = 0.005 mg/l 0.00 EAL CALCULATION DEL DOMAIN ngth (ft) 500 50 100 50 100 0.001 0.001 0.002 0.001 0.003 0.001 0.001 0.001 0.002 0.001 0.001 0.001 0.002 0.001 0.001 0.001 0.002 0.001 0.001 0.001 0.001 0.001	1E+99 days = 0.005 mg/l mg/l EAL CALCULATION DEL DOMAIN ngth (ft) 500 50 100 50 100 0.001 0.001 0.002 0.001 0.003 0.001 0.001 0.001 0.001 0.000 0.002 0.001 0.001 0.001 0.002 0.001 0.001 0.001 0.002 0.001 0.001 0.001 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000	1E+99 days = 0.005 mg/l EAL CALCULATION DEL DOMAIN ngth (ft) 500 50 100 50 100 0.001 0.001 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.001 0.001 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.000 0.000 0	1E+99 days = 0.005 mg/l AL CALCULATION DEL DOMAIN ngth (ft) 500 50 100 50 100 0.001 0.000 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.000 0.000 0.	1E+99 days = 0.005 mg/l AL CALCULATION DEL DOMAIN ngth (ft) 500 50 100 50 100 0.001 0.000 0.002 0.001 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.002 0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.001 0.000 0.002 0.001 0.001 0.000 0.002 0.001 0.001 0.000 0.000 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.000 0.000 0.	1E+99 days = 0.005 mg/l mg/l 0.00 0 AL CALCULATION DEL DOMAIN ngth (ft) 500 50 100 50 100 50 100 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.002 0.001 0.001 0.001 0.002 0.001 0.001 0.001 0.002 0.001 0.001 0.001 0.002 0.001 0.001 0.000 0.002 0.001 0.001 0.000 0.002 0.001 0.001 0.000 0.002 0.001 0.001 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.001 0.000 0.000 </td <td>1E+99 days = 0.005 0.00 0.00 0.000</td> <td>1E+99 days = 0.005 mg/l 0.00 AL CALCULATION Del. DOMAIN ngth (ft) 500 50 100 50 100 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.002 0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.001 0.000 0.002 0.001 0.001 0.000 0.002 0.001 0.001 0.000 0.002 0.001 0.001 0.000 0.002 0.001 0.001 0.000 0.002 0.001 0.001 0.000 0.000 0.000 0.001 0.000 0.000</td>	1E+99 days = 0.005 0.00 0.00 0.000	1E+99 days = 0.005 mg/l 0.00 AL CALCULATION Del. DOMAIN ngth (ft) 500 50 100 50 100 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.002 0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.001 0.000 0.002 0.001 0.001 0.000 0.002 0.001 0.001 0.000 0.002 0.001 0.001 0.000 0.002 0.001 0.001 0.000 0.002 0.001 0.001 0.000 0.000 0.000 0.001 0.000 0.000

Table A.3 Quick Domenico Fate and Transport Model Input and Output AOI 10 Sunoco Philadelphia Refinery Philadelphia, Pennsylvania

Project Prepared by Date Prepared	2574601 - Sunoco Ph Terrance Stanley 11/1/2011	hiladelphia Refinery		
	Generic Input Param	neters		Data Source
Source Identification (or Well ID)			W-23	
Sample Date			4/27/2011	
Source Width		ft	100	Delineated LNAPL (100' default if no plume is present)
Source Thickness		ft	60	Estimated from cross-sections DD-DD' & EE-EE'
Longitudinal Dispersivity	A _x	ft	200	From CCR QD Simulations
Transverse Dispersivity	A _y	ft	20.0	Quick Domenico User's Manual
Vertical Dispersivity	Az	ft	0.0001	Quick Domenico User's Manual
Hydraulic Conductivty	k	ft/day	4.64	Alluvium
Hydraulic Gradient		ft/ft	0.0046	W-31/W-16 April 2011
Porosity		decimal fraction	0.35	Site soil analyses
Soil Bulk Density	pb	g/cm3	1.7225	ACT 2 TGM Default
Fraction of Organic Carbon	f _{oc}	decimal fraction	0.005	ACT 2 TGM Default
Time		days	1.00E+99	Steady-State Conditions
(Chemical Specific Input P	arameters		Data Source
Sim 1				
Contaminant			benzene	
Source Concentration (mg/L)		mg/L	0.0120	4/27/2011
Lambda (per day)		day ⁻¹	0.001	PADEP Number Please! 2011
КОС			58	PADEP Number Please! 2011
Output (Distance from Source W	here Concentrat	ion Equals Respective Gr	ound Water MSC)
Contaminant	Starting Concentration (mg/L)	GW MSC ¹ Non-Residential (mg/L)	Predicted Concentration (mg/L)	Predicted Distance to Meet Non-Residential GW MSC (Rounded Upward to the Nearest foot)

0.005

0.005

50

ACT 2 TGM, Appendix A, Table 1 MSC for a Non-residential Used Aquifer with Total Dissolved Solids less than or equal to 2500.

0.0120

Sim 1 - benzene

ADVECTIVE TI			ENSIONAL DISPE		ORDER DECA	Y and RETARDA	TION - WITH CA	IBRATION TO	OL		
Project:			lelphia Refiner								
Date:	11/1/2011	Prepared by:	Terrance Star	nley							
		Contaminant:	benzene		1	Ī			NEW QUICH	_DOMENICO.	XLS
SOURCE	Ax	Ау	Az	LAMBDA	SOURCE	SOURCE	Time (days)		SPREADSHEE	-	
CONC	(ft)	(ft)	(ft)		WIDTH	THICKNESS	(days)	_		ICAL MODEL	
(MG/L)	. ,	()	>=.001	day-1	(ft)	(ft)	(ULTIDIMENSIO		
0	2.00E+02	2.00E+01	1.00E-04	0.0009589			1E+9	99 ^I		HAMINANT SI menico (1987)	PECIES"
										nclude Retarda	ation
Hydraulic	Hydraulic		Soil Bulk		Frac.	Retard-	V				Γ
Cond	Gradient	Porosity	Density	KOC	Org. Carb.		(=K*i/n*R)				Γ
(ft/day)	(ft/ft)	(dec. frac.)	(g/cm ³⁾				(ft/day)				Γ
4.64E+00	0.0046	0.35	1.7225	58	5.00E-03	2.427214286	0.0251246	28			
				P			<u> </u>				
Point Conce	entration			-	Centerline P	Plot (linear)			Centerline Plot	(log)	
x(ft)	y(ft)	z(ft)		0.01 -			L 1	000		[Model
				0.01 -			Model Output				Output
49.70922802	0	0		_			Field 0	100			
			-///	0.00 -	<u> </u>		Data	010			Data
	x(ft)	y(ft)	z(ft)	- 0.00 -				010			
Conc. At	49.70922802		0	- 8			- 0	001	•		
at	1E+99	days =	0.005	0.00 -			- 0 -		· · · · · · · ·		
			mg/l	- 0.00 -			L 0	000	· · · · · · · · · · · · · · · · · · ·	•	_
	AREAL	CALCULATION	0	0.00 -	~	••••	H	000		• • •	
	MODEL	DOMAIN			200	400 600	HU	000	200	400	600
	Length (ft)	500		H	dist	ance	Н	0	distance		000
	Width (ft)	100		<u>⊦</u> 1	1		μΗ			1	
	50		150	200	250	300	35	50 40	0 450	500	
100		0.001	0.000	0.000	0.000		0.0				
50				0.000			0.0				
0	0.005	0.002	0.001	0.001	0.000	0.000	0.0	0.00	0.000	0.000	
-50	0.003	0.002	0.001	0.000	0.000	0.000	0.0	0.00	0.000	0.000	
-100	0.001	0.001	0.000	0.000	0.000	0.000	0.0	0.00	0.000	0.000	
Field Data:	Centerline C	Concentratio	n								
	Distance fro	om Source									

Table A.4 Quick Domenico Fate and Transport Model Input and Output AOI 10 Sunoco Philadelphia Refinery Philadelphia, Pennsylvania

Contaminant	Starting Concentration (mg/L)	GW MSC ¹ Non-Residential (mg/L)	Predicted Concentration (mg/L)	Predicted Distance to Meet Non-Residential GW MSC (Rounded Upward to the Nearest foot)
Output (D	istance from Source W	here Concentrat	ion Equals Respective Gro	ound Water MSC)
KOC			490000	PADEP Number Please! 2011
Lambda (per day)		day ⁻¹	0.000	PADEP Number Please! 2011
Source Concentration (mg/L)		mg/L	0.0020	4/27/2011
Contaminant			chrysene	
Sim 1				
	nemical Specific Input P	arameters		Data Source
Time		days	1.00E+99	Steady-State Conditions
Fraction of Organic Carbon	f _{oc}	decimal fraction	0.005	ACT 2 TGM Default
Soil Bulk Density	pb	g/cm3	1.7225	ACT 2 TGM Default
Porosity		decimal fraction	0.35	Site soil analyses
Hydraulic Gradient		ft/ft	0.0046	W-31/W-16 April 2011
Hydraulic Conductivty	k	ft/day	4.64	Alluvium
Vertical Dispersivity	Az	ft	0.0001	Quick Domenico User's Manual
Transverse Dispersivity	Ay	ft	20.0	Quick Domenico User's Manual
Longitudinal Dispersivity	A _x	ft	200	From CCR QD Simulations
Source Thickness		ft	60	Estimated from cross-sections DD-DD' & EE-EE'
Source Width		ft	100	Delineated LNAPL (100' default if no plume is present)
Sample Date			4/27/2011	
Source Identification (or Well ID)			W-28	
	Generic Input Param	eters		Data Source
Project Prepared by Date Prepared	2574601 - Sunoco Ph Terrance Stanley 11/1/2011	niladelphia Refinery		

Sim 1 - chrysene 0.0020 0.002 0.002

ACT 2 TGM, Appendix A, Table 1 MSC for a Non-residential Used Aquifer with Total Dissolved Solids less than or equal to 2500.

<1

ADVECTIVE T					ORDER DECA	Y and RETARDA	TION - WITH CALI	BRATION TOC	DL		
Project:			lelphia Refiner								
Date:	11/1/2011	Prepared by:	Terrance Star	nley							Γ
		Contaminant:	chrysene	1		Ĩ			NEW QUICK	_DOMENICO.	XLS
SOURCE	Ax	Ау	Az	LAMBDA	SOURCE	SOURCE	Time (days)		SPREADSHEE	TAPPLICATI	ON OF
CONC	(ft)	(ft)	(ft)		WIDTH	THICKNESS	(days)			ICAL MODEL	
(MG/L)	(,	()	>=.001	day-1	(ft)	(ft)	(uuje)	-	LTIDIMENSIO	-	
0	2.00E+02	2.00E+01		0.00035616		60	1E+99		ECAYING CON	-	PECIES" -
										menico (1987) nclude Retarda	tion
Hydraulic	Hydraulic		Soil Bulk		Frac.	Retard-	V		would to h		
Cond	Gradient	Porosity	Density	кос	Org. Carb.	ation	(=K*i/n*R)				F
(ft/day)	(ft/ft)	(dec. frac.)	(g/cm ³⁾			(R)	(ft/day)				F
4.64E+00	0.0046	0.35	1.7225	490000	5.00E-03		5.05725E-06				
				-							
Point Conce	ontration			-	Centerline P	lot (linear)	H	C	enterline Plot	(log)	
x(ft)		z(ft)		-			H			(
x(iii)	y(i')	2(11)		0.00 _			Model 0.0	00			 Model
<1	0	0		- 0.00 -	••••	••••	Output				Output
				0.00 -			- Field				Field Data
	x(ft)	y(ft)	z(ft)				Data			l	Data
Conc. At	<1	y (14)	· · · /	- 0.00 -			- conc				
at	1E+99	days =		- 0			- 3				
			#VALUE!	- 0.00			E E				
			mg/l	0.00 -			П				
	AREAL	CALCULATION		0.00 -	1		0.0	00 + • • •	• • • • •		
	MODEL	DOMAIN				400 600		0	200	400	600
	Length (ft)	500			dista	ance	Π		distance		
	Width (ft)	100		□			<u>г </u>				
	50		150	200	250	300	350	400	450	500	
100							0.000			0.000	
50							0.000			0.000	
0				0.000		0.000	0.000			0.000	
-50	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
-100	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
Field Data:	Centerline C	Concentratio	n								
Field Data:	Centerline C Distance fro		n								

Table A.5 Quick Domenico Fate and Transport Model Input and Output AOI 10 Sunoco Philadelphia Refinery Philadelphia, Pennsylvania

	Generic Input Para	neters	Data Source	
Source Identification (or Well ID)			W-31	
Sample Date			4/26/2011	
Source Width		ft	100	Delineated LNAPL (100' default if no plume is
Source Thickness		ft	60	present) Estimated from cross-sections DD-DD' & EE-E
ongitudinal Dispersivity	A _x	ft	200	From CCR QD Simulations
Fransverse Dispersivity	A _v	ft	20.0	Quick Domenico User's Manual
/ertical Dispersivity	Az	ft	0.0001	Quick Domenico User's Manual
Hydraulic Conductivty	k	ft/day	4.64	Alluvium based on site-wide slug testing
Hydraulic Gradient		ft/ft	0.0046	W-31/W-16 April 2011
Porosity		decimal	0.35	Site soil analyses
Soil Bulk Density	pb	fraction g/cm3	1.7225	ACT 2 TGM Default
Fraction of Organic Carbon	f _{oc}	decimal	0.005	ACT 2 TGM Default
Time		fraction days	1.00E+99	Steady-State Conditions
				,
C	hemical Specific Input	Parameters		Data Source
Sim 1				
Contaminant			benzene	
Source Concentration (mg/L)		mg/L	0.0100	4/26/2011
_ambda (per day)		day ⁻¹	0.001	PADEP Number Please! 2011
KOC			58	PADEP Number Please! 2011
Sim 2				
Contaminant			chrysene	
Source Concentration (mg/L)		mg/L	0.0040	4/26/2011
_ambda (per day)		day ⁻¹	0.000	PADEP Number Please! 2011
KOC		1 1	490000	PADEP Number Please! 2011
Sim 3	•	· ·		
Contaminant			lead	
Source Concentration (mg/L)		mg/L	0.0060	4/26/2011
		day ⁻¹	0.000	PADEP Number Please! 2011
.ambda (per day)		,		

Output (Distan	ce from Source W	here Concentrat	tion Equals Respective Gro	ound Water MSC)
Contaminant	Starting Concentration (mg/L)	GW MSC ¹ Non-Residential (mg/L)	Predicted Concentration (mg/L)	Predicted Distance to Meet Non-Residential GW MSC (Rounded Upward to the Nearest foot)
Sim 1 - benzene	0.0100	0.005	0.005	40
Sim 2 - chrysene	0.0040	0.002	0.002	1
Sim 3 - lead	0.0060	0.005	0.005	32

¹ ACT 2 TGM, Appendix A, Table 1 MSC for a Non-residential Used Aquifer with Total Dissolved Solids less than or equal to 2500.

ADVECTIVE TR			ENSIONAL DISPE		ORDER DECA	Y and RETARDA	TION - WITH CAL	IBRATION TO	CL		
Project:	2574601 - 5	Sunoco Philac	lelphia Refiner	y							
Date:	11/1/2011	Prepared by:	Terrance Star	ley							Γ
		Contaminant:	benzene	I	1				NEW QUICK	_DOMENICO.	XLS
SOURCE	Ax	Ау	Az	LAMBDA	SOURCE	SOURCE	Time (days)		SPREADSHEE	-	
CONC	(ft)	(ft)	(ft)		WIDTH	THICKNESS	(days)			ICAL MODEL	
(MG/L)	(-7	()	>=.001	day-1	(ft)	(ft)	(ILTIDIMENSIO		
0	2.00E+02	2.00E+01	1.00E-04	0.0009589		60	1E+9	9 D	ECAYING CON	-	PECIES"
		1								menico (1987) nclude Retarda	tion
Hydraulic	Hydraulic		Soil Bulk		Frac.	Retard-	V		Modified to 1		
Cond	Gradient	Porosity	Density	KOC	Org. Carb.	ation	(=K*i/n*R)				F
(ft/day)	(ft/ft)	(dec. frac.)	(g/cm ³⁾				(ft/day)				F
4.64E+00	0.0046	0.35	1.7225	58	5.00E-03	2.427214286	0.02512462	8			
				-			L				
Point Conce	ontration			_	Centerline P	lot (linear)	H	C	enterline Plot	(loa)	
		z(ft)		-						(3)	
~(14)	y(''')	2(11)		0.00				000			 Model
39.81038943	0	0		_ 0.00 -			Output	100			Output
33.01030343	0	Ū		0.00 -			- Field	100			
	x(ft)	y(ft)	z(ft)	0.00 - 2 0.00 -			Data 0.	010			Data
Conc. At	39.81038943		``	0.00 - 0.00 - 0.00 -			- 2	•			
at		days =	0	- 3 0.00 - 0.00 -	•		– 20 0.	001	•		
u		aayo -	0.005	0.00 -			H		• • •		
			mg/l	0.00 -			Η 0.	000	•	•	
	AREAL	CALCULATION		0.00 -			Ho	000		· · · ·	
	MODEL	DOMAIN		- 0	200	400 600	Η 0.	0000	200	400	600
	Length (ft)	500		H	dist	ance	H	C C	distance		
	Width (ft)	100		┝┨	1		<u></u> ⊢L				
	50		150	200	250	300	35	0 400	450	500	
100	0.001	0.001	0.000	0.000	0.000	0.000	0.00	0.000	0.000	0.000	
50	0.003		0.001	0.000			0.00				
0	0.004	0.002	0.001	0.000	0.000	0.000	0.00	0.000	0.000	0.000	
-50	0.003	0.001	0.001	0.000	0.000	0.000	0.00	0.000	0.000	0.000	
-100	0.001	0.001	0.000	0.000	0.000	0.000	0.00	0.000	0.000	0.000	
Field Data:	Centerline C	Concentratio	n								
	Distance fro	m Source									
											μ

ADVECTIVE T	RANSPORT WI	TH THREE DIMI	ENSIONAL DISPE	ERSION,1ST (ORDER DECA	Y and RETARDA	TION - WITH CALIE	BRATION TOC	DL		
Project:			lelphia Refiner								
Date:	11/1/2011	Prepared by:	Terrance Star	nley							Γ
		Contaminant:	chrysene	1	1				NEW QUICK	_DOMENICO.	XLS
SOURCE	Ax	Ау	Az	LAMBDA	SOURCE	SOURCE	Time (days)		SPREADSHEE	-	
CONC	(ft)	(ft)	(ft)		WIDTH	THICKNESS	(days)			ICAL MODEL	
(MG/L)	()	()	>=.001	day-1	(ft)	(ft)	(-	LTIDIMENSIO		-
0	2.00E+02	2.00E+01	1.00E-04			60	1E+99			-	PECIES"
		1								menico (1987) nclude Retarda	tion
Hydraulic	Hydraulic		Soil Bulk		Frac.	Retard-	V		Moumed to h		
Cond	Gradient	Porosity	Density	кос	Org. Carb.	ation	(=K*i/n*R)				F
(ft/day)	(ft/ft)	(dec. frac.)	(g/cm ³⁾			(R)	(ft/day)				
4.64E+00	0.0046	0.35	1.7225	490000	5.00E-03	12058.5	5.05725E-06				
				-							
Point Conce	ontration			-	Centerline P	lot (linear)	_	C	enterline Plot	(loa)	
x(ft)		z(ft)		_				-			
~(10)	3(14)	-()		- ^{0.00} T		-	0.000				Model
1.180890581	0	0		0.00 -	****	• • • • •	Output				Output
				0.00 -			Field Data				Field Data
	x(ft)	y(ft)	z(ft)							L	Data
Conc. At	1.180890581	0	` <i>`</i>	- 00.0 -			conc				
at	1E+99	days =		0.00			- 3				
			0.002	0.00 -							
			mg/l								
	AREAL	CALCULATION		0.00 -			0.000				
	MODEL	DOMAIN		0	200	400 600		0 100	200 300 distance	400 500	600
	Length (ft)	500		L	dist	ance			aistance		
	Width (ft)	100		L							
	50		150	200	250	300	350	400	450	500	
100	0.000						0.000			0.000	
50							0.000			0.000	
0				0.000		0.000	0.000			0.000	
-50	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
-100				0.000	0.000	0.000	0.000	0.000	0.000	0.000	
Field Data:	Centerline C	Concentratio	n								
		•									
	Distance fro	m Source									

ADVECTIVE T	RANSPORT WI	TH THREE DIM	ENSIONAL DISPE	RSION,1ST	ORDER DECA	Y and RETARDA	TION - WITH	CALIB	RATION TOO	L		
Project:			lelphia Refiner									
Date:	11/1/2011	Prepared by:	Terrance Star	nley								
		Contaminant:	lead							NEW QUICK	_DOMENICO.	XLS _
	-	-	-							SPREADSHEE		
SOURCE	Ax	Ау	Az	LAMBDA	SOURCE	SOURCE	Time (day	/S)			ICAL MODEL	
CONC	(ft)	(ft)	(ft)		WIDTH	THICKNESS	(days)		MUI			
(MG/L)			>=.001		(ft)	(ft)				CAYING CON		
0	2.00E+02	2.00E+01	1.00E-04	0.00001	100	60	1	IE+99			menico (1987)	
					-					Modified to I	nclude Retarda	ation
Hydraulic	Hydraulic		Soil Bulk		Frac.	Retard-	V					
Cond	Gradient	Porosity	Density	KOC	Org. Carb.		(=K*i/n*R)					
(ft/day)	(ft/ft)	(dec. frac.)	(g/cm ³⁾				(ft/day)					
4.64E+00	0.0046	0.35	1.7225	0.00001	5.00E-03	1.00000246	0.06098	82842				
					O surfaulius D							
Point Conce				-	Centerline P	lot (linear)			Ce	enterline Plot	(log)	
x(ft)	y(ft)	z(ft)		0.01 -			1 <u>1</u>	.000 -				
				- 0.01	•		Model Output					 Model Output
32.06690731	0	0		0.00 -	`		·					
					k k		Field Data 0	.100 +				Field Data
	x(ft)	y(ft)	z(ft)	ຼ ຂ ^{0.00} †			□ `				l	
Conc. At	32.06690731	0	0	2 0.00 - 0.00	*							
at	1E+99	days =	0.005	- 0.00			_ d	. 010 +				
			0.005	0.00 -					•			
			mg/l						• •	* * * *		
	AREAL	CALCULATION		0.00	200	400 600	<u> </u>	0.001 +		1		
	MODEL	DOMAIN		0				0		distance	400	600
	Length (ft)	500		Ц	dist	ance	Ц			uistance		
	Width (ft)	100										
	50		150	200	250	300		350	400	450	500	
100		0.001	0.001	0.001	0.001	0.001		0.001	0.001	0.001	0.001	
50			0.002	0.002		0.002		0.002	0.002	0.002	0.001	
0				0.002	0.002	0.002		0.002	0.002	0.002	0.002	
-50	0.003		0.002	0.002	0.002	0.002		0.002	0.002	0.002	0.001	
-100		0.001	0.001	0.001	0.001	0.001		0.001	0.001	0.001	0.001	
Field Data:		Concentratio	n									
	Distance fro	m Source										

Table A.6 Quick Domenico Fate and Transport Model Input and Output AOI 10 Sunoco Philadelphia Refinery Philadelphia, Pennsylvania

Project Prepared by Date Prepared	2574601 - Sunoco Pl Terrance Stanley 11/1/2011	niladelphia Refinery		
	Generic Input Param	eters		Data Source
Source Identification (or Well ID)			W-32	
Sample Date			4/27/2011	
Source Width		ft	100	Delineated LNAPL (100' default if no plume is present)
Source Thickness		ft	60	Estimated from cross-sections DD-DD' & EE-EE
ongitudinal Dispersivity	A _x	ft	200	From CCR QD Simulations
Fransverse Dispersivity	Ay	ft	20.0	Quick Domenico User's Manual
/ertical Dispersivity	Az	ft	0.0001	Quick Domenico User's Manual
Hydraulic Conductivty	k	ft/day	4.64	Alluvium
Hydraulic Gradient		ft/ft	0.0046	W-31/W-16 April 2011
Porosity		decimal fraction	0.35	Site soil analyses
Soil Bulk Density	pb	g/cm3	1.7225	ACT 2 TGM Default
raction of Organic Carbon	f _{oc}	decimal fraction	0.005	ACT 2 TGM Default
Time		days	1.00E+99	Steady-State Conditions
Chen	nical Specific Input P	arameters		Data Source
Sim 1				
Contaminant			benzene	
Source Concentration (mg/L)		mg/L	0.0560	4/27/2011
ambda (per day)		day ⁻¹	0.001	PADEP Number Please! 2011
KOC			58	PADEP Number Please! 2011
Sim 2			·	
Contaminant			chrysene	
Source Concentration (mg/L)		mg/L	0.0040	4/27/2011
ambda (per day)		day ⁻¹	0.000	PADEP Number Please! 2011
00C			490000	PADEP Number Please! 2011
Output (Dista	ance from Source W	here Concentra	tion Equals Respective Gr	ound Water MSC)
- · · P • · · (- · · · ·	Starting	GW MSC ¹		

Starting GW MSC ¹ Concentration (mg/L) (mg/L)		Predicted Concentration (mg/L)	Predicted Distance to Meet Non-Residential GW MSC (Rounded Upward to the Nearest foot)									
0.0560	0.005	0.005	147									
0.0040	0.002	0.002	1									
	Concentration (mg/L) 0.0560 0.0040	Concentration (mg/L) Non-Residential (mg/L) 0.0560 0.005	Concentration (mg/L) Non-Residential (mg/L) Predicted Concentration (mg/L) 0.0560 0.005 0.005 0.0040 0.002 0.002									

ACT 2 TGM, Appendix A, Table 1 MSC for a Non-residential Used Aquifer with Total Dissolved Solids less than or equal to 2500.

			ENSIONAL DISPE		ORDER DECA	Y and RETARDA	TION - WITH	H CALIBR	ATION TOO)L		
Project:			lelphia Refiner									
Date:	11/1/2011	Prepared by:	Terrance Star	nley								
		Contaminant:	benzene		I				NEW QUICK	_DOMENICO.	XLS	
SOURCE	Ax	Ау	Az	LAMBDA	SOURCE	SOURCE	Time (da	ivs)		SPREADSHEE	-	
CONC	(ft)	(ft)	(ft)		WIDTH	THICKNESS	(days)	- j -j			ICAL MODEL	
(MG/L)	(,	()	>=.001	day-1	(ft)	(ft)	(LTIDIMENSIO		
(2.00E+02	2.00E+01	1.00E-04	0.0009589				1E+99	DE	CAYING CON	-	PECIES" -
-											menico (1987) nclude Retarda	tion
Hydraulic	Hydraulic		Soil Bulk		Frac.	Retard-	V			Woullieu to II		
Cond	Gradient	Porosity	Density	кос	Org. Carb.	ation	(=K*i/n*R)					F
(ft/day)	(ft/ft)	(dec. frac.)	(g/cm ³⁾				(ft/day)					F
4.64E+00	0.0046	0.35	1.7225	58	5.00E-03		0.025	124628				F
				H								
Point Conc	entration			-	Centerline P	Plot (linear)	-		Ce	enterline Plot	(log)	
x(ft)	y(ft)	z(ft)		0.03 -			H	1.000				
. ,		. ,		0.03	•	-•	- Model Output	1.000				 Model Output
146.9739737	0	0		0.02 -			· 10	0.100				·
							- Field Data		•			Field Data
	x(ft)	y(ft)	z(ft)	^{_ 0.02} ي				0.010	· · •			
Conc. At	146.9739737	0	0	- 20 0.02 - - 20 0.01 -				b 0.001		•		
at	1E+99	days =		0.01				ତ୍ର 0.001		•		
			0.005	0.01 -	\			0.000			•	
			mg/l			•		0.000			•	
	AREAL	CALCULATION		0.00 -				0.000		T	T	
	MODEL	DOMAIN			200	400 600			0	200	400	600
	Length (ft)	500			dist	ance				distance		
	Width (ft)	100										
	50		150	200	250			350	400	450	500	
100		0.004		0.001	0.001	0.000		0.000	0.000		0.000	
50		0.008		0.002		0.001		0.000	0.000	0.000	0.000	
0		0.010		0.002	0.001	0.001		0.000	0.000	0.000	0.000	
-50		0.008	0.004	0.002	0.001	0.001		0.000	0.000	0.000	0.000	
-100		0.004	0.002	0.001	0.001	0.000		0.000	0.000	0.000	0.000	
Field Data:	Centerline C	Concentratio	n									
	Distance fro	m Source										

ADVECTIVE T	RANSPORT WI	TH THREE DIMI	ENSIONAL DISPE	RSION,1ST	ORDER DECA	Y and RETARDA	TION - WITH CALII	BRATION TOC	DL		
Project:			lelphia Refiner								
Date:	11/1/2011	Prepared by:	Terrance Star	nley							
		Contaminant:	chrysene		1				NEW QUICK	_DOMENICO.	XLS
SOURCE	Ax	Ау	Az	LAMBDA	SOURCE	SOURCE	Time (days)		SPREADSHEE	-	
CONC	(ft)	(ft)	(ft)		WIDTH	THICKNESS	(days)			ICAL MODEL	
(MG/L)	()	()	>=.001	day-1	(ft)	(ft)	(-	LTIDIMENSIO		
(2.00E+02	2.00E+01		0.00035616		60	1E+99	DE		-	PECIES"
										menico (1987) nclude Retarda	
Hydraulic	Hydraulic		Soil Bulk		Frac.	Retard-	V		Moumed to h		
Cond	Gradient	Porosity	Density	KOC	Org. Carb.	ation	(=K*i/n*R)				F
(ft/day)	(ft/ft)	(dec. frac.)	(g/cm ³⁾			(R)	(ft/day)				
4.64E+00	0.0046	0.35	1.7225	490000	5.00E-03	12058.5	5.05725E-06				
				F1							
Point Conc	entration			-	Centerline P	lot (linear)	4	Ce	enterline Plot	(log)	
x(ft)	y(ft)	z(ft)					H			ſ	
A(1 -)	,,,,	-()		0.00			0.000				Model
1.1822598	si 0	0		0.00 -	****	• • • • •	Output				Output
		-		0.00 -			Field Data				Field Data
	x(ft)	y(ft)	z(ft)							l	Duta
Conc. At	1.1822598		``	0.00 -			conc				
at	1E+99	days =		0.00 +			- 3				
			0.002	0.00 -			Π				
			mg/l								
	AREAL	CALCULATION		0.00		400 00	0.000		• • • • •	• • • •	
	MODEL	DOMAIN		0	200	400 600		0 100	200 300 distance	400 500	600
	Length (ft)	500		Ц	dist	ance	Ц		uistance		
	Width (ft)	100							-	_	
	50		150	200	250	300	350	400	450	500	
100							0.000			0.000	
50				0.000		0.000 0.000	0.000 0.000	0.000		0.000	
-											
-50			0.000	0.000	0.000	0.000	0.000	0.000		0.000	
-100			0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
Field Data:	••••••••••••••••••••••••••••••••••••••	Concentratio	n								
	Distance fro	m Source									

Table A.7 Quick Domenico Fate and Transport Model Input and Output AOI 10 Sunoco Philadelphia Refinery Philadelphia, Pennsylvania

2574601 - Sunoco Philadelphia Refinery Terrance Stanley

	Generic Input Parar	neters		Data Source
Source Identification (or Well ID)			W-33	
Sample Date			4/27/2011	
Source Width		ft	100	Delineated LNAPL (100' default if no plume is present)
Source Thickness		ft	60	Estimated from cross-sections DD-DD' & EE-El
ongitudinal Dispersivity	A _x	ft	200	From CCR QD Simulations
Fransverse Dispersivity	Ay	ft	20.0	Quick Domenico User's Manual
/ertical Dispersivity	Az	ft	0.0001	Quick Domenico User's Manual
Hydraulic Conductivty	k	ft/day	4.64	Alluvium
Hydraulic Gradient		ft/ft	0.0046	W-31/W-16 April 2011
Porosity		decimal fraction	0.35	Site soil analyses
Soil Bulk Density	Pb	g/cm3	1.7225	ACT 2 TGM Default
Fraction of Organic Carbon	f _{oc}	decimal	0.005	ACT 2 TGM Default
Time		fraction days	1.00E+99	Steady-State Conditions
		I		
	mical Specific Input	Parameters		Data Source
Sim 1				
Contaminant			benzene	
Source Concentration (mg/L)		mg/L	0.2500	4/24/2011
_ambda (per day)		day ⁻¹	0.001	PADEP Number Please! 2011
KOC			58	PADEP Number Please! 2011
Sim 2				
Contaminant			chrysene	
Source Concentration (mg/L)		mg/L	0.0060	40657.0000
_ambda (per day)		day ⁻¹	0.000	PADEP Number Please! 2011
KOC			490000	PADEP Number Please! 2011
Sim 3		L		
Contaminant			naphthalene	
Source Concentration (mg/L)		mg/L	0.3300	40657.0000
.ambda (per day)		day ⁻¹	0.003	PADEP Number Please! 2011
<oc< td=""><td></td><td></td><td>950</td><td>PADEP Number Please! 2011</td></oc<>			950	PADEP Number Please! 2011

Output (Distanc	Output (Distance from Source Where Concentration Equals Respective Ground Water MSC)											
Contaminant	Starting Concentration (mg/L)	GW MSC ¹ Non-Residential (mg/L)	Predicted Concentration (mg/L)	Predicted Distance to Meet Non-Residential GW MSC (Rounded Upward to the Nearest foot)								
Sim 1 - benzene	0.2500	0.005	0.005	255								
Sim 2 - chrysene	0.0060	0.002	0.002	2								
Sim 3 - naphthalene	0.3300	0.100	0.100	16								

¹ ACT 2 TGM, Appendix A, Table 1 MSC for a Non-residential Used Aquifer with Total Dissolved Solids less than or equal to 2500.

Project Prepared by

ADVECTIVE TR			ENSIONAL DISPE		ORDER DECA	Y and RETARDA	TION - WIT	H CALIB	RATION TOO	L		
Project:			lelphia Refiner									
Date:	11/1/2011	Prepared by:	Terrance Star	nley								
		Contaminant:	benzene					NEW QUICK	_DOMENICO.	XLS		
SOURCE	Ax	Ау	Az	LAMBDA	SOURCE	SOURCE	Time (d	avs)		SPREADSHEE	TAPPLICATIO	ON OF
CONC	(ft)	(ft)	(ft)		WIDTH	THICKNESS	(days)				ICAL MODEL	
(MG/L)	()	()		day-1	(ft)	(ft)	(-	LTIDIMENSIO		-
0	2.00E+02	2.00E+01	1.00E-04	0.0009589	100			1E+99	DE		TAMINANT SI menico (1987)	PECIES"
											nclude Retarda	ition
Hydraulic	Hydraulic		Soil Bulk		Frac.		V			Modified to fi		
Cond	Gradient		Density	КОС	Org. Carb.	ation	(=K*i/n*R)					
(ft/day)	(ft/ft)	(dec. frac.)	(g/cm ³⁾				(ft/day)					
4.64E+00	0.0046	0.35	1.7225	58	5.00E-03	2.427214286	0.02	5124628				
				H			L					
Point Conce	entration			-	Centerline P	lot (linear)	-		Ce	enterline Plot	(log)	
	y(ft)	z(ft)		0.12 -			H	1.000	`		; ſ	
()		. ,				-	- Model Output	1.000	,			 Model Output
255.2108561	0	0		- 0.10 -	-		. 10	0.100				
				0.08 -			- Field Data	0.100				Field Data
	x(ft)	y(ft)	z(ft)					()			l	
Conc. At	255.2108561	0	0	- 0 .06 -			Π	20 000) +	••		
at	1E+99	days =		0.04 -	•			ö		•		
			0.005	0.02 -				0.001	I		•	
			mg/l								••	
	AREAL	CALCULATION		0.00 -	200	400 600		0.000)			
	MODEL	DOMAIN					Ц		0	200 distance	400	600
	Length (ft)	500		H	dist	ance	Ц			uistance		
	Width (ft)	100	4=0		0.5.5	0.000		050	100	150		
100	50		150	200	250	300		350	400	450	500	
100 50	0.018			0.006	0.003			0.001	0.001	0.000	0.000	
<u> </u>			0.018	0.009	0.005			0.001	0.001	0.000	0.000	
-50	0.068		0.021	0.009	0.005	0.003		0.001	0.001	0.000	0.000	
-50	0.068		0.018	0.009	0.005	0.003		0.001	0.001	0.000	0.000	
Field Data:		Concentratio		0.006	0.003	0.002		0.001	0.001	0.000	0.000	
Helu Dald.												
	Distance fro	om Source										

ADVECTIVE T	RANSPORT WI	TH THREE DIMI	ENSIONAL DISPE	RSION,1ST	ORDER DECA	Y and RETARDA	TION - WITH CALIE	BRATION TOC	DL		
Project:			lelphia Refiner								
Date:	11/1/2011	Prepared by:	Terrance Star	nley							
		Contaminant:	chrysene		1				NEW QUICK	_DOMENICO.	XLS
SOURCE	Ax	Ау	Az	LAMBDA	SOURCE	SOURCE	Time (days)		SPREADSHEE	-	
CONC	(ft)	(ft)	(ft)		WIDTH	THICKNESS	(days)			ICAL MODEL	
(MG/L)	()	()	>=.001	day-1	(ft)	(ft)	(-	LTIDIMENSIO		-
(2.00E+02	2.00E+01	1.00E-04			60	1E+99			-	PECIES"
										menico (1987) nclude Retarda	tion
Hydraulic	Hydraulic		Soil Bulk		Frac.	Retard-	V		Moumed to h		
Cond	Gradient	Porosity	Density	КОС	Org. Carb.	ation	(=K*i/n*R)				F
(ft/day)	(ft/ft)	(dec. frac.)	(g/cm ³⁾		_	(R)	(ft/day)				F
4.64E+00	0.0046	0.35	1.7225	490000	5.00E-03	12058.5	5.05725E-06				
Point Conc	entration			-	Centerline P	lot (linear)	_	Ce	enterline Plot	(loa)	
x(ft)	y(ft)	z(ft)		-				_		. · . ,	
~(11)	y(iii)	2(11)		0.00		-	0.000				Model
1.868027573	0	0		0.00 -	****	• • • • •	Output				Output
	-			0.00 -			Field Data				Field Data
	x(ft)	y(ft)	z(ft)							L	Data
Conc. At	1.868027573		` <i>`</i>	0.00 -			conc				
at	1E+99	days =		0.00 –			- 3				
			0.002	0.00 -							
			mg/l								
	AREAL	CALCULATION		0.00 -	1		0.000				
	MODEL	DOMAIN		0	200	400 600		0 100	200 300 distance	400 500	600
	Length (ft)	500		Ц	dist	ance			aistance		
	Width (ft)	100		L							
	50		150	200	250	300	350	400	450	500	
100							0.000			0.000	
50							0.000			0.000	
0				0.000		0.000	0.000			0.000	
-50			0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
-100				0.000	0.000	0.000	0.000	0.000	0.000	0.000	
Field Data:	Centerline C	Concentratio	n								
	Distance fro	om Source									

ADVECTIVE TH					ORDER DECA	Y and RETARDA	TION - WITH CALII	BRATION TOO)L		
Project:			lelphia Refiner								
Date:	11/1/2011	Prepared by:	Terrance Star	nley							
		Contaminant:	naphthalene	1	1				NEW QUICK	_DOMENICO.	XLS
SOURCE	Ax	Ау	Az	LAMBDA	SOURCE	SOURCE	Time (days)		SPREADSHEE	-	
CONC	(ft)	(ft)	(ft)		WIDTH	THICKNESS	(days)			ICAL MODEL	
(MG/L)	()		>=.001	day-1	(ft)	(ft)	(-	LTIDIMENSIO		-
0	2.00E+02	2.00E+01	1.00E-04	0.00268493	100		1E+99	DE	ECAYING CON P.A. Do	menico (1987)	PECIES
										nclude Retarda	ation
Hydraulic	Hydraulic		Soil Bulk		Frac.	Retard-	V				
Cond	Gradient		Density	KOC	Org. Carb.		(=K*i/n*R)				
(ft/day)	(ft/ft)		(g/cm ³⁾			(R)	(ft/day)				
4.64E+00	0.0046	0.35	1.7225	950	5.00E-03	24.37678571	0.002501678				
				-	Centerline P	let (lineer)					
Point Conce					Centernine P	Tot (intear)		Ce	enterline Plot	(log)	
k(ft)	y(ft)	z(ft)		0.01 -			1.000				A Madal
				0.01	•		Model 1.000				 Model Output
16.1517264	0	0		0.01			0.100				- Cold
				0.01			Field Data				Field Data
	x(ft)	y(ft)	z(ft)	0.00			0.010	•			
Conc. At	16.1517264		0	i i 0.00			- 0 001				
at	1E+99	days =					8001				
			0.100	0.00 -			0.000	•			
			mg/l	0.00							
	AREAL	CALCULATION		0.00 -	****	****	0.000	•	• • • •	• • • •	
	MODEL	DOMAIN		0	200	400 600		0	200	400	600
	Length (ft)	500			dist	ance			distance		
	Width (ft)	100									
	50		150	200	250	300	350	400	450	500	
100		0.000	0.000				0.000		0.000	0.000	
50		0.000					0.000		0.000	0.000	
0	0.007	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
-50	0.005	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
-100	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
Field Data:	Centerline C	Concentratio	n								
	Distance fro	m Source									

Table A.8 Quick Domenico Fate and Transport Model Input and Output AOI 10 Sunoco Philadelphia Refinery Philadelphia, Pennsylvania

Project Prepared by Date Prepared	2574601 - Sunoco Ph Terrance Stanley 11/1/2011	hiladelphia Refinery		
	Generic Input Param	neters		Data Source
Source Identification (or Well ID)			W-34	
Sample Date			4/27/2011	
Source Width		ft	100	Delineated LNAPL (100' default if no plume is present)
Source Thickness		ft	60	Estimated from cross-sections DD-DD' & EE-EE'
Longitudinal Dispersivity	A _x	ft	200	From CCR QD Simulations
Transverse Dispersivity	A _y	ft	20.0	Quick Domenico User's Manual
Vertical Dispersivity	Az	ft	0.0001	Quick Domenico User's Manual
Hydraulic Conductivty	k	ft/day	4.64	Alluvium
Hydraulic Gradient		ft/ft	0.0046	W-31/W-16 April 2011
Porosity		decimal fraction	0.35	Site soil analyses
Soil Bulk Density	pb	g/cm3	1.7225	ACT 2 TGM Default
Fraction of Organic Carbon	f _{oc}	decimal fraction	0.005	ACT 2 TGM Default
Time		days	1.00E+99	Steady-State Conditions
(Chemical Specific Input P	arameters		Data Source
Sim 1				
Contaminant			benzene	
Source Concentration (mg/L)		mg/L	0.0120	4/27/2011
Lambda (per day)		day ⁻¹	0.001	PADEP Number Please! 2011
КОС			58	PADEP Number Please! 2011
Output (Distance from Source W	here Concentrat	ion Equals Respective Gr	ound Water MSC)
Contaminant	Starting Concentration (mg/L)	GW MSC ¹ Non-Residential (mg/L)	Predicted Concentration (mg/L)	Predicted Distance to Meet Non-Residential GW MSC (Rounded Upward to the Nearest foot)

0.005

0.005

50

ACT 2 TGM, Appendix A, Table 1 MSC for a Non-residential Used Aquifer with Total Dissolved Solids less than or equal to 2500.

0.0120

Sim 1 - benzene

ADVECTIVE T					ORDER DECA	Y and RETARDA	TION - WITH CALI	BRATION TOO	DL		
Project:			lelphia Refiner								
Date:	11/1/2011	Prepared by:	Terrance Star	nley							
		Contaminant:	benzene	1	1				NEW QUICK	_DOMENICO.	XLS
SOURCE	Ax	Ау	Az	LAMBDA	SOURCE	SOURCE	Time (days)		SPREADSHEE	-	
CONC	(ft)	(ft)	(ft)		WIDTH	THICKNESS	(days)			ICAL MODEL	
(MG/L)	()	()	>=.001	day-1	(ft)	(ft)	(LTIDIMENSIO		
0	2.00E+02	2.00E+01	1.00E-04	0.0009589		60	1E+99			menico (1987)	PECIES"
										nclude Retarda	
Hydraulic	Hydraulic		Soil Bulk		Frac.	Retard-	V		woulded to h		
Cond	Gradient	Porosity	Density	кос	Org. Carb.	ation	(=K*i/n*R)				F
(ft/day)	(ft/ft)	(dec. frac.)	(g/cm ³⁾				(ft/day)				F
4.64E+00	0.0046	0.35	1.7225	58	5.00E-03	2.427214286	0.025124628	3			F
Point Conce	ntration			-	Centerline P	lot (linear)	L L	C	enterline Plot	(log)	
		-/#4)		-			_			(log)	
x(ft)	y(ft)	z(ft)		0.01			Model 1.0	00			Model
49.70922802	0			0.01 -			Output				Output
49.70922802	U	0		_			0.1	00			
	v/f+)	y(ft)	z(ft)	0.00 -			Data 0.0	10			Data
Como At	x(ft) 49.70922802		`	- 0.00 -	\		2 0.0				
Conc. At at		days =	0	_ ອິ 0.00 -			- 20 0.0	01	•		
dl	12+99	uays =	0.005	-			-		• •		
			mg/l	0.00 -			0.0	00	•		
	AREAL	CALCULATION		0.00 -	•••		H			• • •	
	MODEL	DOMAIN			200	400 600	0.0	00 +	200	400	600
	Length (ft)	500		H		ance	H	U	distance	+00	000
	Width (ft)	100		₩	1	1	┍─────┝┨─────		T	[
	50		150	200	250	300	350	400	450	500	
100		0.001	0.000				0.000			0.000	
50				0.000			0.000			0.000	
0				0.001	0.000	0.000	0.000			0.000	
-50	0.003	0.002	0.001	0.000	0.000	0.000	0.000	0.000		0.000	
-100	0.001	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
Field Data:	Centerline C	Concentratio	n								
	Distance from Source										
		m Source									

QD SUMMARY TABLE

Table A.9 Fate and Transport Model Input and Output AOI 10 Sunoco Philadelphia Refinery Philadelphia, Pennsylvania

Well ID	Compound	Starting Concentration	Final Concentration (Screening Value)	Predicted Distance to Achieve Screening Value	Estimated Distance to AOI 10 Boundary
		ug/l	ug/l	ft	ft
W-1	benzene	20	5	80	90
W-12	benzene	8	5	28	105
W-23	benzene	12	5	50	98
W-28	chrysene	2	1.9	<1	180
	benzene	10	5	40	
W-31	chrysene	4	1.9	1	270
	lead	6	5	32	
W-32	benzene	56	5	147	170
VV-32	chrysene	4	1.9	1	170
	benzene	250	5	255	
W-33	chrysene	6	1.9	2	90
	napthalene	330	100	16	
W-34	benzene	12	5	50	130

Note:

= indicates predicted distance is greater than distance to property boundary

SWLOAD SIMULATION

METHOD FO	R ESTIMATNG FL	OW, AVERA	GE CONC	ENTRATIO	N AND MAS	S LOADING	TO SURFAC	CE WATER F	ROM GROU	NDWATER					
Project:	SWLOAD5B	`													
Date:	9/21/2011									_	PA DEP	PARTMENT			
Contaminant:	Benzene			Prepared b	y:	DH				OFE	-	NTAL PROT	ECTION		
SOURCE										_	SWLOAD5B.XLS				
CONC	Ax	Ay	Az	LAMBDA	SOURCE	SOURCE						OR ESTIMA			
(units)	(ft)	(ft)	(ft)		WIDTH	THICKNES	Time			COMITA		DADING TO ATER	SURFACE		
mg/l	>.0001	>.0001	>=.0001	day-1	(ft)	(ft)	(days)					sed on			
0.25	200	20	1.00E-04	0.001	100	60	1.00E+99				P.A. Domenico (1987)				
										м		clude Retard			
Hydraulic	Hydraulic		Soil Bulk		Frac.	Retard-	V								
Cond	Gradient	Porosity	Density	KOC	Org. Carb.	ation	(=K*i/n*R)								
(ft/day)	(ft/ft)	(dec. frac.)	(g/cm ^{ຈາ}			(R)	(ft/day)								
4.64E+00	0.0046	0.35	1.7225	58	5.00E-03	2.427214	0.0251246								
				-144	-115.2	-86.4	-57.6	-28.8	0	28.8	57.6	86.4	115.2	144	
Edge Criterio		0.005	0	0.005	0.0116968	0.022466	0.0356263	0.0468713	0.0513379	0.0468713	0.0356263	0.0224664	0.011697	0.005	
Higest mo	deled conc.	0.05134	-6	0.005	0.0116968	0.022466	0.0356263	0.0468713	0.0513379	0.0468713	0.0356263	0.0224664	0.011697	0.005	
			-12	0.005	0.0116968	0.022466	0.0356263	0.0468713	0.0513379	0.0468713	0.0356263	0.0224664	0.011697	0.005	
SURFACE W	ATER LOADING (-18	0.005	0.0116968	0.022466	0.0356263	0.0468713	0.0513379	0.0468713	0.0356263	0.0224664	0.011697	0.005	
Distance to S	Stream (ft)	90	-24	0.005	0.0116968	0.022466	0.0356263	0.0468713	0.0513379	0.0468713	0.0356263	0.0224664	0.011697	0.005	
Plume View V	Nidth (ft)	288	-30	0.005	0.0116968	0.022466	0.0356263	0.0468713	0.0513379	0.0468713	0.0356263	0.0224664	0.011697	0.005	
Plume View I	Depth (ft)	60	-36	0.005	0.0116968	0.022466	0.0356263	0.0468713	0.0513379	0.0468713	0.0356263	0.0224664	0.011697	0.005	
			-42	0.005	0.0116968	0.022466	0.0356263	0.0468713	0.0513379	0.0468713	0.0356263	0.0224664	0.011697	0.005	
			-48	0.005	0.0116968	0.022466	0.0356263	0.0468713	0.0513379	0.0468713	0.0356263	0.0224664	0.011697	0.005	
PENTOX N	IEEDED		-54		0.0116968			0.0468713			0.0356263		0.011697	0.005	
			-60	0.0025	0.0058484	0.011233	0.0178131	0.0234356	0.025669	0.0234356	0.0178131	0.0112332	0.005848	0.0025	
				Average	Groundwat	ter Concei	ntration	0.02557	mg/l						
				Plume F	low			0.00426	cfs	0.00275	MGD				
				Massio	ading to S	Stroom		267.00	mg/day						
				111233 LU	aung to s	Jucani		207.08	iliy/uay						

ATTACHMENT B

Revised Appendix F from AOI 10 SCR/RIR -

LNAPL Modeling Procedures and Results

ATTACHMENT B REVISED APPENDIX F FROM THE JUNE 29, 2011 AOI 10 SCR/RIR LNAPL MODELING PROCEDURES AOI 10: SUNOCO PHILADELPHIA REFINERY PHILADELPHIA, PENNSYLVANIA

B.1 INTRODUCTION AND OVERVIEW

Models which assess volume, mobility, and recoverability of light non-aqueous phase liquid (LNAPL) contamination have progressed beyond simply extrapolating LNAPL monitoring well thicknesses into the surrounding geologic materials. Instead, these models incorporate the physical properties of groundwater, LNAPL, and soil, in conjunction with an improved understanding of how fluids interact with each other and the surrounding geologic materials, and provide better estimates of LNAPL volume, mobility, and recoverability. These scientific improvements have allowed more realistic endpoints to be set during the remediation process.

For the LNAPL modeling at the Sunoco Refinery in Philadelphia, PA (the Facility), Langan utilized the American Petroleum Institute (API) Publication Number 4682, "Free-Product Recovery of Petroleum Hydrocarbon Liquids," dated June 1999, as a guide for assessing LNAPL volume, mobility, and recoverability. The parameters discussed in subsequent sections are presented in API Publication 4682 as the significant variables and parameters needed to evaluate the nature and extent of free LNAPL. An updated version of the API model found in the API publication "API Interactive LNAPL Guide," version 2.0.4, dated July 2004, was used. These parameters, the RETC model, and the API model were utilized to estimate the specific volume and mobility of LNAPL at the Facility.

B.2 INPUT PARAMETERS

Where applicable, input parameters for the RETC and the API models were derived from the analyses of site-specific media. Representative values obtained from the API's LNAPL and Environmental Canada's Reference Database were used for the remaining input parameters. Table B-1 of this attachment summarizes the LNAPL modeling input parameters used for this phase of the project. The individual input parameters used for the LNAPL models are described in detail below.

B.3 FLUID PROPERTIES

The fluids of concern in LNAPL modeling are LNAPL, groundwater, and air. Key physical properties of these fluids are density (ρ), interfacial tension (σ) and viscosity (μ). Chromatographic and mass spectroscopic hydrocarbon LNAPL characterization analyses were conducted on collected LNAPL samples in an attempt to identify and categorize LNAPLs on site.

B.3.1 Fluid Density and Specific Gravity

Fluid density, ρ_r , is the mass of fluid per unit volume. Specific gravity, ρ_r , is the relative density of LNAPL with respect to the density of water. The density of LNAPL is related to its specific gravity through the following relationship:

$$\rho_{\rm r} = \rho_{\rm o} / \rho_{\rm w} \tag{F.1}$$

where ρ_o and ρ_w are the LNAPL and water densities, respectively.

Density estimates for LNAPL samples collected from wells within the Facility were determined from LNAPL and groundwater density data. If a density value was not available for the LNAPL in a particular monitoring well, a value was assigned based on the physical characteristics of the LNAPL observed in neighboring wells.

B.3.2 LNAPL Viscosity

Viscosity is the measure of friction between molecules within a given fluid. The dynamic (or absolute) viscosity, μ , is defined as the ratio of the shear stress to the strain rate for a Newtonian fluid (Newtonian fluids have constant viscosity and flow immediately on the application of a force). The kinematic viscosity (v) is the ratio of the dynamic viscosity to the density of a fluid.

If a kinematic viscosity value was not available for the LNAPL within a monitoring well, a value was assigned based on the physical characteristics of the LNAPL in relation to neighboring monitor wells, or a representative viscocity value was selected from the

API or Environmental Canada Database chosen based upon other LNAPL physical characteristics.

B.4 FORMATION PHYSICAL PROPERTIES

Where available, site-specific geologic and hydrogeologic data were obtained from site soil boring investigations, monitoring and recovery wells installation and sampling activities, and aquifer characteristic testing. All remaining physical property input values were obtained from reference literature.

Variations in soil type were noted from boring log descriptions. For the purpose of determining modeling parameters, generalizations of the geologic characteristics were made based on the occurrence and distribution of soil types within the LNAPL wetted screen interval of monitoring wells. Consistent with the API guidance publication, the geologic parameters of interest include: soil texture, porosity, bulk density, fluid saturation, capillary pressure relationships, and total organic carbon (TOC). These parameters are discussed in detail below.

B.4.1 Formation Texture

One of the most important parameters in determining the properties of porous media is the size range of particles in a soil, which is referred to as soil texture. Grain size is closely related to soil texture, and a grain size distribution gives the relative percentage of grain sizes within a formation.

Where available, historic site-specific grain size distribution data were used to describe the relative percentage of grain size within the various geologic units at the Facility. Regions with similar grain size distributions were grouped together, and representative values were selected. Soil within the historic maximum LNAPL wetted interval was used for this selection. Note, however, that in any given boring log, the soil type spanning the LNAPL wetted interval may actually include a range of soil types. In addition to the grain size analyses, the soil Atterberg Limits were referenced for select soil types. The Atterberg limits were used to correlate and characterize the fine-grained soil (i.e., silt and clay) in conjunction with the grain size distribution analyses.

B.4.2 Porosity

The ratio of the volume of void space in a soil to the total volume is defined as the porosity (n), which is usually written as a fraction or a percent of void space. Generally, wider variations in particle sizes result in smaller porosity values, as the void space between the larger particles are filled by smaller particles. The effective porosity (or kinematic porosity) refers to the volume of interconnected pore spaces through which fluids can flow.

B.4.3 Bulk Density

Bulk density is a measure of the weight of the soil per unit volume, usually given on an oven-dry (110° C) basis. Variation in bulk density is attributable to the relative proportion and specific gravity of solid organic and inorganic particles and to the porosity of the soil. Most mineral soils have bulk densities between 1.0 and 2.0.

B.4.4 Fluid Saturation

According to the API guidance documents, the void space of a natural porous medium affected by an LNAPL release is filled with water, air and LNAPL. The fraction of the pore space of a representative volume of material that is occupied by a particular fluid is called the fluid saturation. The fluid saturation of each phase can range from 0 to 1, and the sum of the three phases must equal 1.

B.4.5 Capillary Pressure Relationships

According to the API guidance document, molecules located near the interface between two fluids (i.e. water and LNAPL) in one void space have a greater energy than molecules of the same fluid located within the bulk volume due to cohesive forces between the molecules. The excess energy associated with a fluid interface results in interfacial tension between the fluids, and surface tension between the liquid and vapor.

These relationships are incorporated into the API model for determining formation specific volume under vertical equilibrium.

B.5 LNAPL EFFECTIVE PERMEABILITY

Water, air, and LNAPL are in competition for the interstitial spaces within the formation. Relative permeability describes the ability of one fluid to flow in the presence of other fluids, compared to the ability of the fluid to flow if it were the only fluid present. Typically, these differences in permeability between water and LNAPL are observed as LNAPL reaches the water table in sufficient quantities, pools, and spreads laterally as a floating layer.

The API modeling approach is to predict the LNAPL saturation and relative permeability distributions under vertical equilibrium conditions. The effective saturation and relative permeability values depend on the LNAPL thicknesses within the formation, for which the apparent monitoring well LNAPL thicknesses serve as a useful measure. The modeling objective is to replace the layer with varying saturation and relative permeability with an equivalent layer with vertically uniform characteristics.

For each well with reported apparent LNAPL thickness, the API model was run to determine the effective relative permeability of LNAPL within that well. As a first approximation, the residual saturation of LNAPL (the portion of LNAPL that is adhered to soil and not recoverable) was considered to be zero for the calculation of effective relative permeability. The residual saturation of LNAPL will be determined based on the soil grain size, fluid saturation and capillary curves for the recoverability analysis.

B.6 SOIL INTRINSIC PERMEABILITY

The intrinsic permeability of the soil was estimated using the following equation:

$$k_{soil} = \frac{K_W \mu_W}{\rho_W g} \tag{F.2}$$

where,

 k_{soil} = permeability of soil

 K_w = hydraulic conductivity of groundwater for fill horizon

 $\mu_{\rm w}$ = dynamic viscosity of water

 p_w = density of water

g = gravity

The estimates of the ground water density and viscosity were used to determine the intrinsic soil permeability. The gravity constant was assumed to be 32.2 feet/s² (9.81 m/s²).

B.7 LNAPL HYDRAULIC CONDUCTIVITY AT SATURATION

To estimate the seepage velocity of the free-phase LNAPL, the hydraulic conductivity of the formation with respect to LNAPL must be known. The hydraulic conductivity of LNAPL is first calculated at 100% saturation at the LNAPL phase. Then it is corrected from the effective LNAPL relative permeability. This corrected hydraulic conductivity of LNAPL is the hydraulic conductivity of LNAPL in the formation at the estimated saturation of LNAPL. This can be estimated based on the following equation:

$$K_{oil} = k_{ro} \frac{k_{soil} \rho_{oil} g}{\mu_{oil}}$$
(F.3)

where,

 K_{oil} = hydraulic conductivity of LNAPL in the soil at saturation k_{ro} = effective LNAPL relative permeability k_{soil} = permeability of soil relative to groundwater (Equation D.2) μ_{oil} = dynamic viscosity of LNAPL p_{oil} = density of LNAPL g = gravity

B.8 LNAPL SPECIFIC DISCHARGE

The result of the corrected hydraulic conductivity for LNAPL saturation (Equation F.3) was used to calculate the specific velocity of the LNAPL based on hydraulic gradient of the groundwater using the following equation:

$$q_{oil} = K_{oil} \times i_W \tag{F.4}$$

where,

 $\label{eq:q_oil} \begin{aligned} q_{oil} &= \text{LNAPL specific velocity of LNAPL discharge} \\ K_{oil} &= \text{hydraulic conductivity of LNAPL in the soil at the corrected saturation} \\ i_w &= \text{water table gradient} \end{aligned}$

The water table gradient was assumed to be similar to the LNAPL table gradient. Based on the groundwater monitoring data collected to date, average water table gradients were selected.

The seepage velocity or mobility of the LNAPL was calculated based on the specific velocity calculated in Equation F.4, and correcting it for the effective porosity of the formation as follows:

$$v_{oil} = \frac{q_{oil}}{\phi_{eff}} \tag{F.5}$$

where,

 $v_{oil} = LNAPL$ seepage velocity $q_{oil} = LNAPL$ specific velocity of LNAPL discharge $\phi_{eff} = effective porosity$

The specific velocity of the LNAPL discharge from the previous calculation was divided by the effective porosity to determine the seepage velocity of LNAPL for all wells. For this calculation, total porosity values associated with each soil type were reduced for use as an effective porosity for LNAPL mobility.

Located in Tables B-2 and B-3 are the output results of the LNAPL modeling. Also included on these tables are the previous LNAPL modeling results from the CCR. Located in Table B-4 of this attachment is the LNAPL characterization data provided by Torkelson Laboratories.

\u00ed \u

Table B-2 Seepage Velocity Calculations Sunoco Philadelphia Refinery AOI 10 Philadelphia, Pennsylvania

AOI	Well ID	Sample	Porosity	API Database USCS Soil Type	LNAPL Density		API Model Calculated Relative LNAPL Permeabilty	Effective Porosity	Groundwater Density @ 60F (kg/m ³)	Groundwater Dynamic Viscosity (N·s/m ²)	Soil Permeabililty (m ²)	Kro (%)	Groundwater Gradient	Dynamic Viscosity of SPL (N·s/m2)	SPL Density (kg/m3)	NAPL K @ 100% Saturation (m/day)	Corrected NAPL K (m/day)	NAPL Specific Discharge (m/day)	NAPL Seepage Velocity (m/year)	NAPL Seepage Velocity (cm/sec)
	Date Equivalent	(gm/cc)	Location	API Model (unitless)	API Database	Literature Value	API Database	API Database	API Model (unitless)	Site Contour Maps/SWLOAD	API/Env. Canada Databases	Torkelson Geochemistry Inc.	Calculated	Calculated	Calculated	Calculated	Calculated			
	W-8	11/02/03	0.426	SW-SM	0.912	Res Oil	1.340E-10	0.39	999.19	1.124E-03	6.15E-12	0.00%	3.000E-03	2.300E-02	912.10	2.07E-01	2.77E-11	8.31E-14	7.78E-11	2.45E-16
AOI 10	W-8	04/27/11	0.426	SW-SM	0.9515	Res Oil	2.390E-04	0.388	999.19	1.124E-03	6.15E-12	0.02%	4.600E-03	2.300E-02	951.50	2.16E-01	5.15E-05	2.37E-07	2.23E-04	7.03E-10
AOLIO	W-14	04/27/11	0.426	SW-SM	0.9478	Res Oil	1.650E-06	0.388	999.19	1.124E-03	6.15E-12	0.00%	4.600E-03	2.300E-02	947.80	2.15E-01	3.54E-07	1.63E-09	1.53E-06	4.84E-12
	W-18	04/27/11	0.426	SW-SM	0.9478	Res Oil	9.790E-10	0.388	999.19	1.124E-03	6.15E-12	0.00%	4.600E-03	2.300E-02	947.80	2.15E-01	2.10E-10	9.67E-13	9.10E-10	2.87E-15

NOTES: The physical characteristics of LNAPL at W-18 are assumed to be similar to LNAPL at W-14

Table B-3 LNAPL Model And Seepage Velocity Output Summary AOI 10 Sunoco Philadelphia Refinery Philadelphia, Pennsylvania

AOI	Well ID	Date Apparent Thickness Gauged	Apparent LNAPL Thickness (ft)	API Model Calculated LNAPL Specific Volume (feet)	Calculated LNAPL Seepage Velocity (cm/sec)
	W-8	11/02/03	0.010	4.880E-10	2.45E-16
AOI10		04/27/11	0.590	4.410E-04	7.03E-10
AUTU	W-14	04/27/11	0.11	3.130E-06	4.84E-12
	W-18	04/27/11	0.01	2.130E-09	2.87E-15

Table B-4 LNAPL Characterization Summary Table AOI 10 Sunoco Philadelphia Refinery Philadelphia, Pennsylvania

	Interpretation of Product Types, Proportions, and Weathering											
Cha	Characterization Results Compiled for CCR (TGI Job No. 04046 - Analyzed in February 2004)											
Well ID	Density g/cc (60°F)	LNAPL Type(s)	Torkelson LNAPL Type(s)	Weathering								
W-8	0.9121	Residual Oil	Residual Oil	Extreme								
Characterization F	esults Compiled for AOI 10	Site Characterization Ad	ctivities (TGI Job No. 11047 - Aı	nalyzed in May 2011)								
W-8	0.9515	Residual Oil	Residual Oil	Extreme								
W-14	0.9478	Residual Oil	Residual Oil	Extreme								
W-18	QNS	Residual Oil	Residual Oil	Extreme								

Notes:

The physical characteristics of LNAPL at W-18 are assumed to be similar to LNAPL at W-14

Heavier material could either be crude oil or residual oil

g/cc - Grams per cubic centimeter

TGI - Torkelson Geochemistry, Inc.

NA - Not Applicable

? - Tentative identification

CCR - 2004 Sunoco Current Conditions Report

LNAPL - Light Non Aqueous Phase Liquid

All LNAPL results reported were analyzed by TGI

Product interpretations were provided by TGI

ONS - Quantity of sample not sufficient for analysis

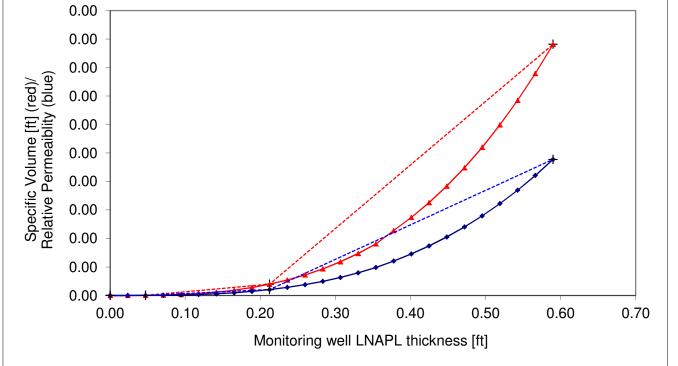
van Genuchten-Mualem Model of LNAPL Distribution and Relative Permeability

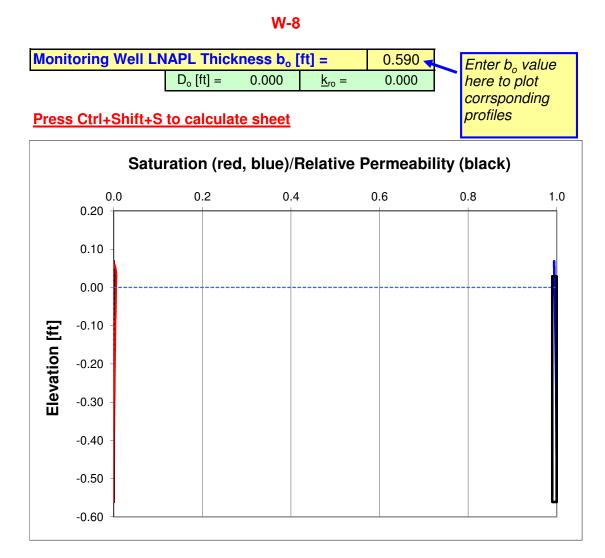
Enter Data in Yellow Region

Maximum Monitoring Well							
LNAPL Thickness [feet]							
b _o = 0.590							
$D_0 = 0.590$							

F

Soil Characteri	stic	
n =	0.388	porosity
N =	2.040	van Genuchten "N"
α =	1.990	van Genuchten "α" [ft ⁻¹]
S _{wr} =	0.253	irreducible water saturation
S _{orv} =	0.000	residual LNAPL saturation (vadose)
S _{ors} =	0.000	residual LNAPL saturation (saturated)


ristics:	
0.952	LNAPL density [gm/cc]
65.000	air/water surface tension [dyne/cm]
32.100	air/LNAPL surface tension [dyne/cm]
30.200	LNAPL/water surface tension [dyne/cm]
	0.952 65.000 32.100


		-
Calculated P	arameters	
M =	0.510	van Genuchten "M"
$\alpha_{ao} =$	3.834	air/LNAPL "α" [ft⁻¹]
$\alpha_{ow} =$	0.208	LNAPL/water "a" [ft ⁻¹]
z _{ao} =	0.029	elevation of air-LNAPL interface [ft]
Z _{ow} =	-0.561	elevation of LNAPL-water interface [ft]
z _{max} =	0.069	maximum free-product elevation [ft]
$\lambda =$	0.773	pore-size distribution index
$\Psi_{b} =$	0.313	B-C displacement pressure head [ft]

<u>Set Tools > Option > Calculations</u> tab to "Manual." <u>Press Ctrl+Shift+S to calculate sheet</u>

(c) 2003 American Petroleum Institute. Duplication or retransmission of this workbook without the express authoirzation of the Institute is prohibited.

			VV-O						
Data for cu	urve-fitting se	egments		Press Ctrl+Shift+S to calculate sheet					
b _o [ft]	D _o [ft]	<u>k</u> ro	χ [ft]	β	ξ [ft]	η			
0.000	0.000	0.000							
0.047	0.000	0.000	0.0000	0.000004	0.0000	0.000002			
0.212	0.000	0.000	0.0455	0.000118	0.0456	0.000061	0.0001	Eps-Do	
0.590	0.000	0.000	0.1947	0.001115	0.1956	0.000605	0.0001	Eps-kro	
	0 00								

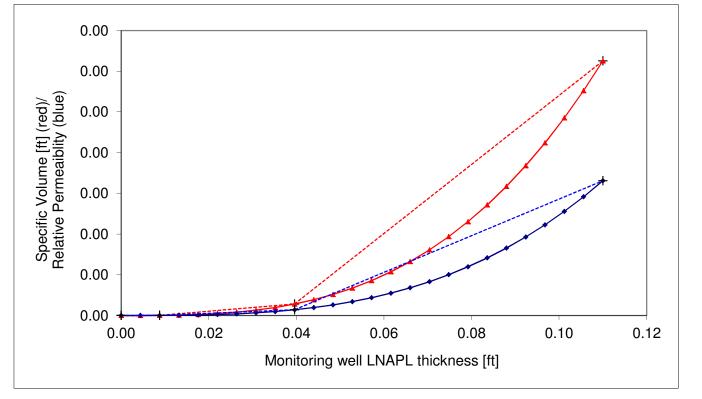
van Genuchten-Mualem Model of LNAPL Distribution and Relative Permeability

Enter Data in Yellow Region

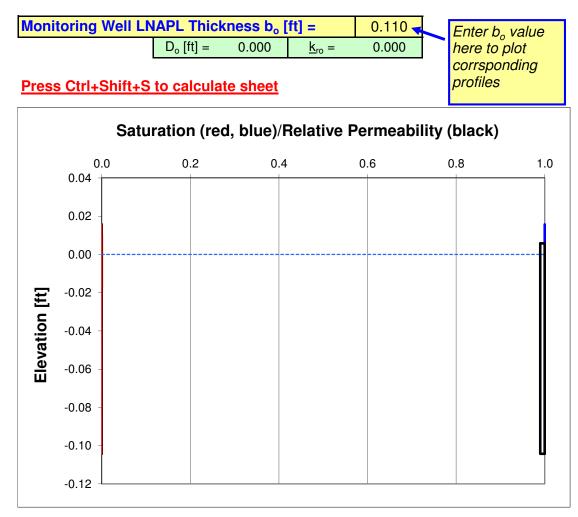
Maximum Mon	itoring Well		
LNAPL Thickness [feet]			
b _o =	0.110		

Soil Characteri	stic	
n =	0.388	porosity
N =	2.040	van Genuchten "N"
α =	1.990	van Genuchten " α " [ft ⁻¹]
S _{wr} =	0.253	irreducible water saturation
S _{orv} =	0.000	residual LNAPL saturation (vadose)
S _{ors} =	0.000	residual LNAPL saturation (saturated)

Fluid Characte	ristics:	
$\rho_{o} =$	0.948	LNAPL density [gm/cc]
$\sigma_{aw} =$	65.000	air/water surface tension [dyne/cm]
$\sigma_{ao} =$	32.100	air/LNAPL surface tension [dyne/cm]
σ_{ow} =	30.200	LNAPL/water surface tension [dyne/cm]


Calculated P	arameters	
M =	0.510	van Genuchten "M"
$\alpha_{ao} =$	3.820	air/LNAPL "α" [ft ⁻¹]
$\alpha_{ow} =$	0.223	LNAPL/water "a" [ft ⁻¹]
z _{ao} =	0.006	elevation of air-LNAPL interface [ft]
$Z_{ow} =$	-0.104	elevation of LNAPL-water interface [ft]
z _{max} =	0.016	maximum free-product elevation [ft]
$\lambda =$	0.773	pore-size distribution index
$\Psi_{b} =$	0.313	B-C displacement pressure head [ft]

<u>Set Tools > Option > Calculations</u> tab to "Manual." <u>Press Ctrl+Shift+S to calculate sheet</u>


(c) 2003 American Petroleum Institute. Duplication or retransmission of this workbook without the express authoirzation of the Institute is prohibited.

|--|

Data for cu	urve-fitting se	egments		Press Ctrl+	<u>Shift+S to c</u>	calculate s	<u>heet</u>	
b _o [ft]	D _o [ft]	<u>k</u> ro	χ [ft]	β	ξ [ft]	η		
0.000	0.000	0.000						
0.009	0.000	0.000	0.0000	0.000000	0.0000	0.000000		
0.040	0.000	0.000	0.0085	0.000005	0.0085	0.000002	0.0001	Eps-Do
0.110	0.000	0.000	0.0363	0.000042	0.0365	0.000023	0.0001	Eps-kro

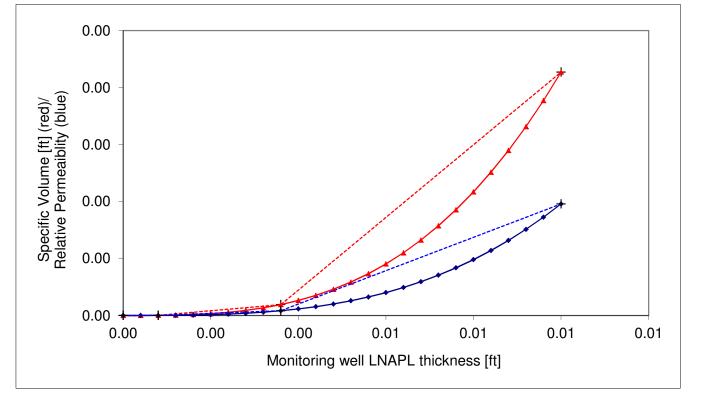
van Genuchten-Mualem Model of LNAPL Distribution and Relative Permeability

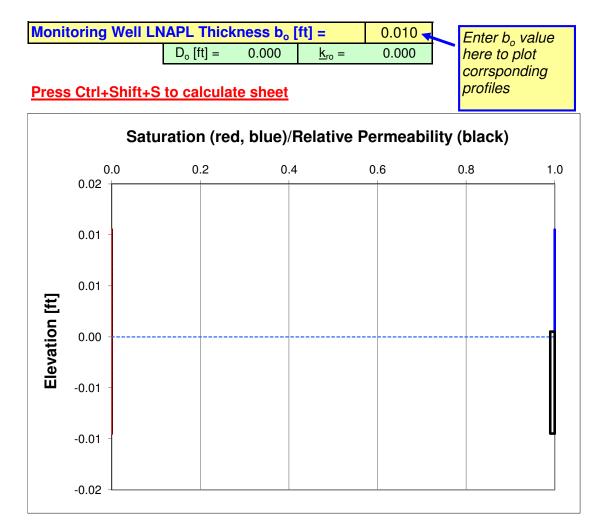
Enter Data in Yellow Region

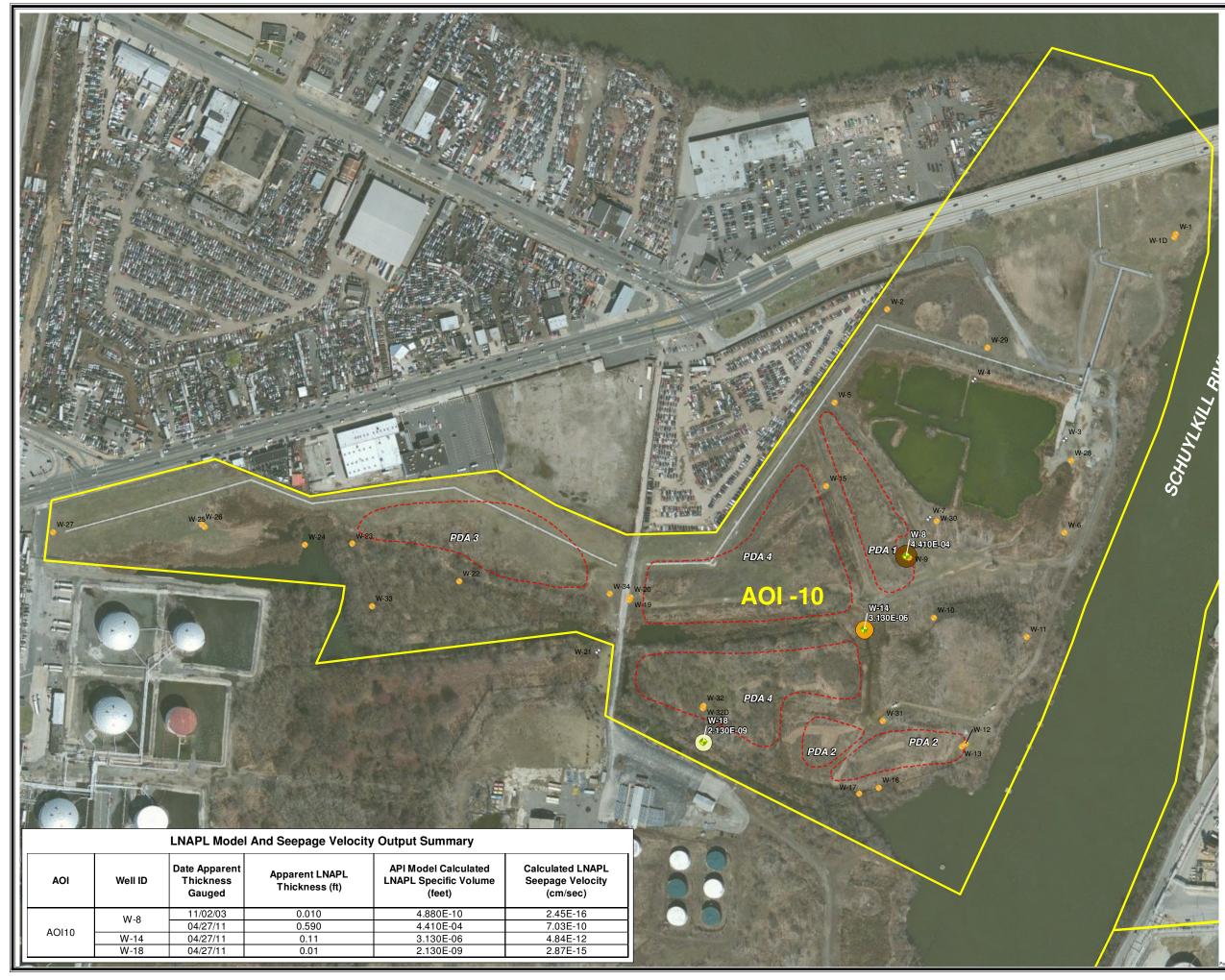
LNAPL Thickness [feet]	Maximum Mor	nitoring Well		
	LNAPL Thickness [feet]			
b _o = 0.010	b _o =	0.010		

Soil Characteri	stic	
n =	0.388	porosity
N =	2.040	van Genuchten "N"
α =	1.990	van Genuchten " α " [ft ⁻¹]
S _{wr} =	0.253	irreducible water saturation
S _{orv} =	0.000	residual LNAPL saturation (vadose)
S _{ors} =	0.000	residual LNAPL saturation (saturated)

Fluid Characte	ristics:	
$\rho_{o} =$	0.948	LNAPL density [gm/cc]
$\sigma_{aw} =$	65.000	air/water surface tension [dyne/cm]
$\sigma_{ao} =$	32.100	air/LNAPL surface tension [dyne/cm]
$\sigma_{ow} =$	30.200	LNAPL/water surface tension [dyne/cm]

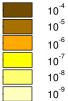

Calculated Pa	arameters	
M =	0.510	van Genuchten "M"
$\alpha_{ao} =$	3.820	air/LNAPL "α" [ft ⁻¹]
$\alpha_{ow} =$	0.223	LNAPL/water "a" [ft ⁻¹]
Z _{ao} =	0.001	elevation of air-LNAPL interface [ft]
Z _{ow} =	-0.009	elevation of LNAPL-water interface [ft]
z _{max} =	0.011	maximum free-product elevation [ft]
$\lambda =$	0.773	pore-size distribution index
$\Psi_{b} =$	0.313	B-C displacement pressure head [ft]


<u>Set Tools > Option > Calculations</u> tab to "Manual." <u>Press Ctrl+Shift+S to calculate sheet</u>


(c) 2003 American Petroleum Institute. Duplication or retransmission of this workbook without the express authoirzation of the Institute is prohibited.

۰.				I 0	
	V	V	- 1		

Data for c	urve-fitting se	egments		Press Ctrl+	<u>Shift+S to c</u>	calculate s	heet	
b _o [ft]	D _o [ft]	<u>k</u> ro	χ [ft]	β	ξ [ft]	η		
0.000	0.000	0.000						
0.001	0.000	0.000	0.0000	0.000000	0.0000	0.000000		
0.004	0.000	0.000	0.0008	0.000000	0.0008	0.000000	0.0001	Eps-Do
0.010	0.000	0.000	0.0033	0.000000	0.0033	0.000000	0.0001	Eps-kro



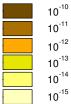
Legend

	Wells with Measureable LNAPL and Calculated LNAPL Specific Volumes (ft.) ⁴
W-24	Wells with No Measureable LNAPL (<0.01ft.) (April 2011)
W-21	Abandoned/Unable to Locate
62)	Past Disposal Area (PDA) - Corrective Action Management Unit (CAMU)
	Area of Interest Boundary (AOI)

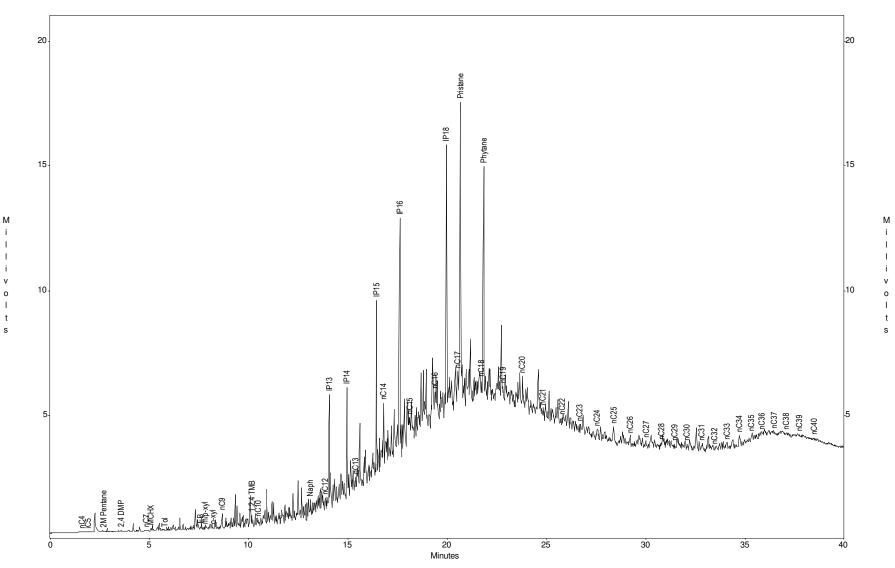
LNAPL Type and Specific LNAPL Volume (ft.)

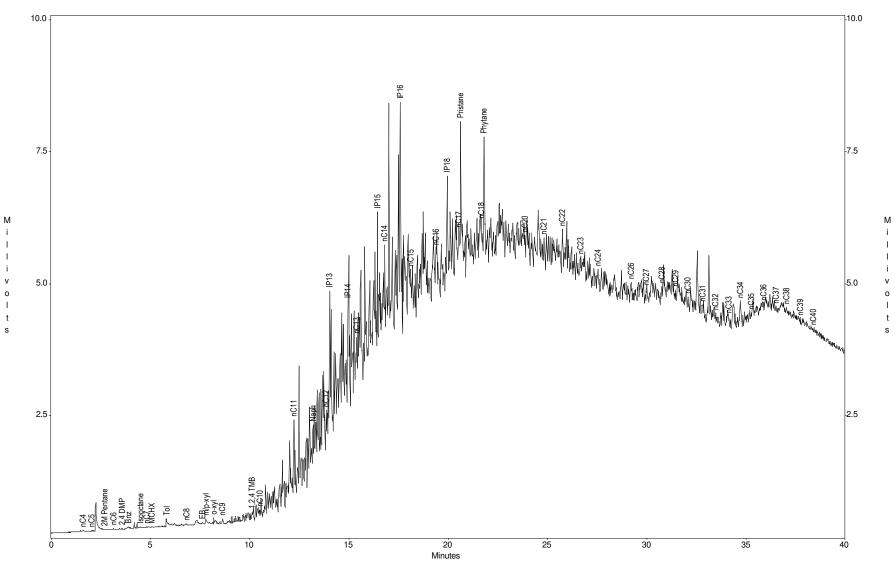
Residual Oil

- Notes:
 1. Bings Maps aerial imagery provided by © 2010 Microsoft Corporation and its data suppliers and obtained under the licensing agreement with ESRI.
 2. Past disposal area digitzed from ENSR Figure 9 Deep Aquifer Piezometric Map dated April 17, 1992. PDA boundaries updated based on 2011 delineation borings.
 3. All LNAPL thicknesses are in feet.
 4. LNAPL thincknesses and mobility calculations based on the American Petroleum Institute's van Genuchten-Mualem Model of LNAPL Distribution and Relative Permeability.
 5. LNAPL Type was based on density, distillation curve, etc. and are intended to qualify LNAPL mobility and recoverability, not to identify historic source.


Figure B-1 - Estimated LNAPL Specific Volumes AOI-10 Site Characterization Report/ Remedial Investigation Report Sunoco Philadelphia Refinery Philadelphia, Pennsylvania

SUN			٨.
0	150	300	SCALE: 1" = 300" DATE: October 31, 2011 DRN. BY: MH
		Feet	CKD. BY: DW JOB#: 2574601


	V L
W-24	V (/
W-21	۵



TG	Torkelso 2528 S. Columbi Tuisa, OK 74114	ia Place	:hemi	istry, Phone: Fax: 91	918-	749-8			Ð	-mai	1: BT	orke	elson	@tori	kels	ongeo	ocher	nistry	CHAIN-OF	-CUSTO	DY R	ECORD	of1_	-
Project:	Philadelphia Refinery - AQI-10			_	Rep	ort/Bill					ra Te	chno	logies	i, inc					Additional Instru	ctions				
Location:	Philadlephia, Pa			-	Add	iress: w	est Ch	PO Bo									_		Please include a brief		of product	type consistant w	ith	
				-												<u> </u>			other samples from t	ne retinery				
Proj. No.: P.O.:				-	Pho Fax:			<u>610-4</u> 610-4			c. 109)					_							
Sampled By:	Shaun Sykes			-	e-m			td@a			a-tec	ch.c	om		_				Requested Turn-Arou	ind Time:		normal		
					1				_								_		· · ·					
птем NO. 1 2 3 4 5 6 7 8	SAMPLE DESCRIPTION W-S W-14 W-18	DATE 1/27/11 4/27/11 4/27/11		LAB NO.						x X		Water Surface Tension	NAPL Surface Tersion							F	REMARKS			
9 10	·····	1			\square		+		╁╌					+			+	+						
		•			H		ا م م اس			REI	NOL	JISH	ED B	Y				1	ACCEPTE	-D BY		DATE	ТІМЕ	
								(4				-			<u>v</u> .		5/5/11	1700	
					E					<u></u> 7								ħ	unter	uho		5-10-11	091	

c:\ezchrom\chrom\11076\w-8 -- Channel A

c:\ezchrom\chrom\11076\w-14 -- Channel A

Philadelphia Refinery - AOI-10, Philadelphia, PASample ID: W-18Acquired: May 11, 201114:41:20

М

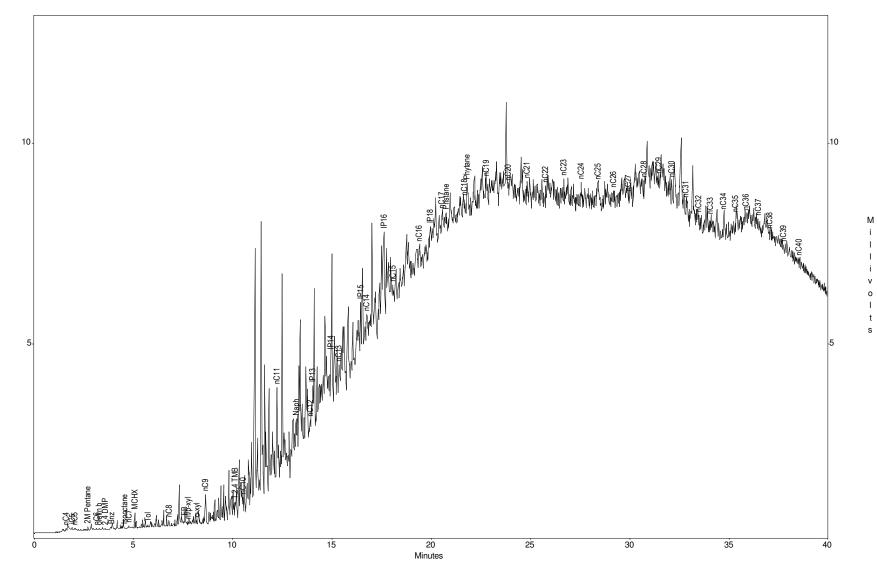
i

Т

Т

i

v


0

T

t

s

c:\ezchrom\chrom\11076\w-18 -- Channel A

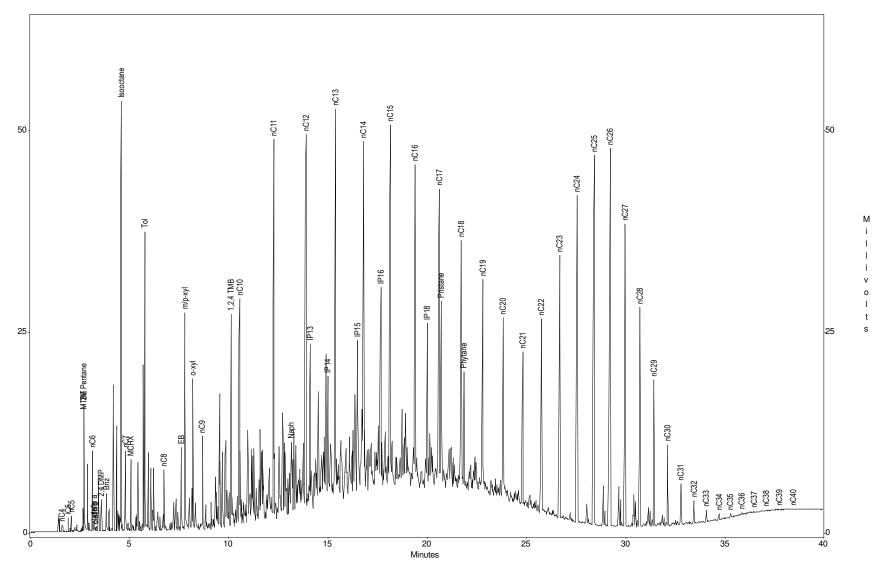
М

i

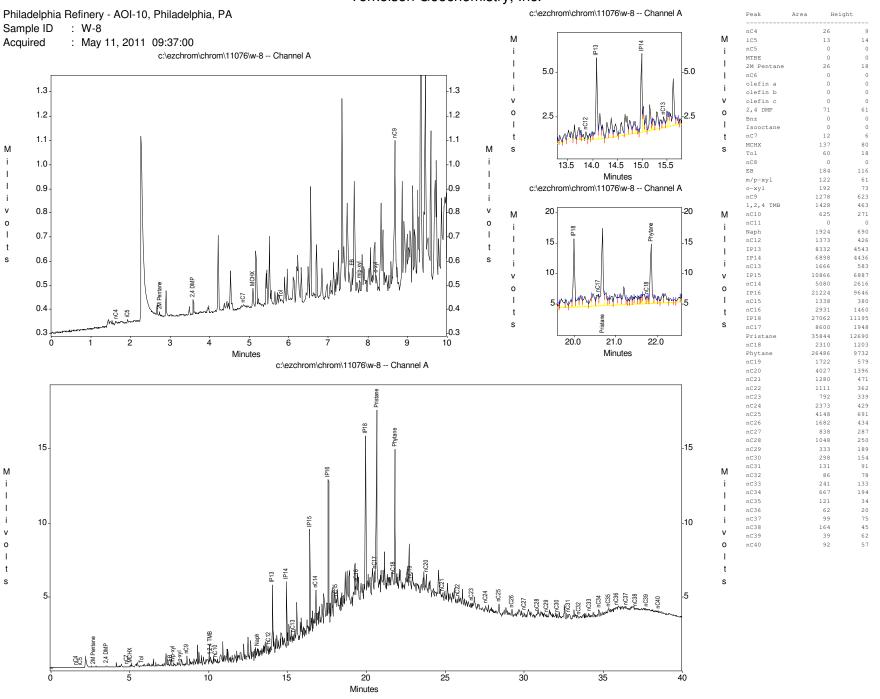
Т

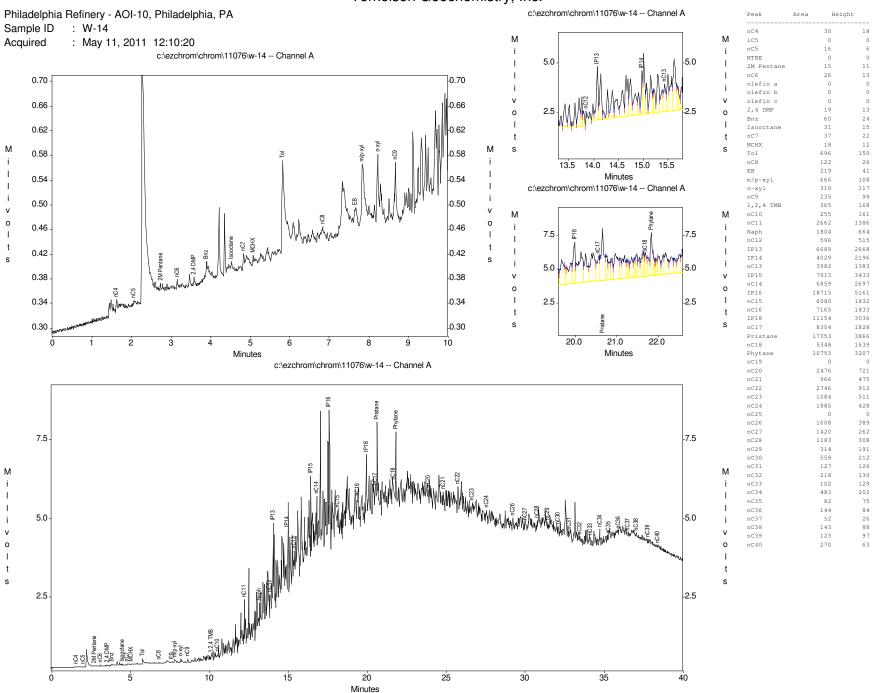
Т

i


v

0


T


t

s

c:\ezchrom\chrom\11076\gadiwax2 -- Channel A

Philadelphia Refinery - AOI-10, Philadelphia, PASample ID: W-18Acquired: May 11, 201114:41:20

М

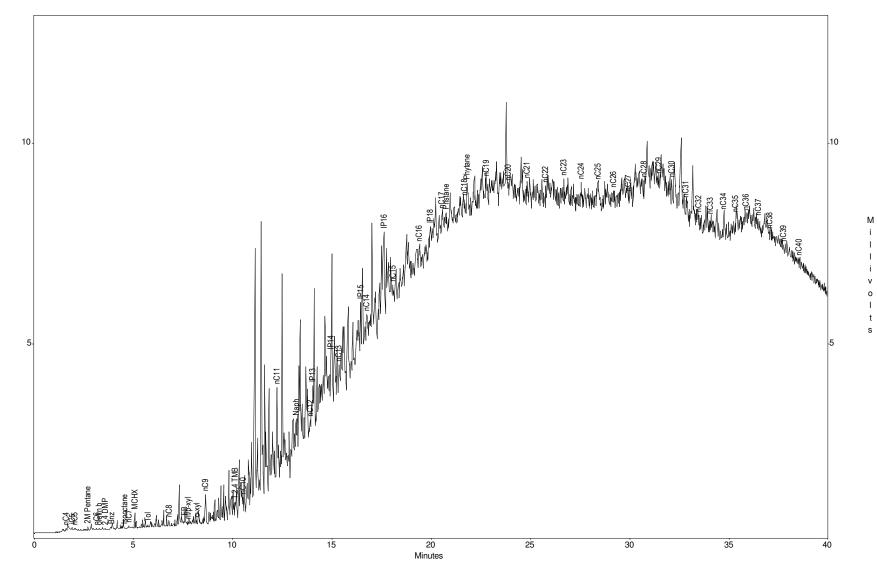
i

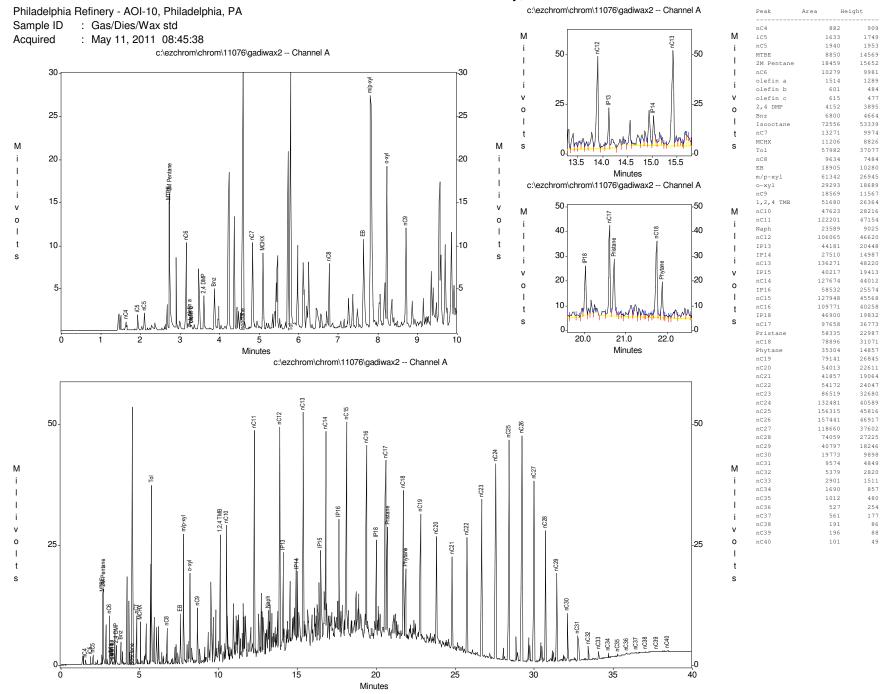
Т

Т

i

v


0


T

t

s

c:\ezchrom\chrom\11076\w-18 -- Channel A

	Torkelson Geochemistry, Inc.								
			Physical P	roperties Mea	surements				
Sample	TGI Job Number	Density of NAPL (gm/ml)	Viscosity of NAPL (centipoise)	Surface Tension Air/Water (dynes/cm)		Surface Tension Air/NAPL (dynes/cm)	Temperature of Measurements		
W-8	11047	0.9515	NA	NA	NA	NA	60F		
W-14	11047	0.9478	NA	NA	NA	NA	60F		
W-18	11047	QNS	NA	NA	NA	NA	60F		

QNS = Quantity of sample Not Sufficient for analysis NA = Not Analyzed

6825 East 38th Street Tulsa, Oklahoma 74145-1105 www.greencountrytesting.com

 Telephone
 918.828.9977

 Telephone
 800.324.5757

 Facsimile
 918.828.7750

10

Bruce Torkelson Torkelson Geochemistry 2528 South Columbia Place Tulsa, OK 74114 TEL: (918) 749-8441 FAX (918) 749-6005

RE: Samples

Dear Bruce Torkelson:

Green Country Testing, Inc. received 2 samples on 5/20/2011 for the analyses presented in the following report.

In accordance with your instructions, Green Country Testing conducted the analysis shown on the following pages on samples submitted by your company. The results related only to the items tested. Unless otherwise noted, all analysis was conducted using EPA approved methodologies. Test reports meet all the NELAC requirements. All relevant sampling information is on the attached chain-of-custody form. The initials SUB as the analyst designate any testing sub-contracted by Green Country Testing.

Certifications/Accreditation: OK - 7604

AR - ADEQ KS - E-10232 LA - 4002

A scope of Certified/Accredited parameters is available upon request. If you have any questions regarding these tests results, please feel free to call.

Sincerely,

Approved By: Brian Duzan, Director Epwironmental Services

May 27, 2011 Order No.: T11050348 6825 East 38th Street Tulsa, Oklahoma 74145-1105 www.greencountrytesting.com

CLIENT: Lab Order: Project:	Torkelse T11050 Samples		у			ved: 5/20 ted: 27-N		
Lab ID: T1105	50348-01	Collection D	ate: 4/27/2011	Samj	ole ID: V	V-8 11076		·
Matrix: OIL <u>Analyses</u>			<u>Result</u>	Detection <u>Limit</u>	Qual	<u>Units</u>	Date <u>Analyzed</u>	Analyst
METALS IN SO Lead	IL OR SLU	DGE BY ICP	SW6010B < 0.500	0.500		mg/Kg	5/26/2011	KR
Lab ID: T1105	50348-02	Collection D	ate: 4/27/2011	Samj	ole ID: V	V-14 1107	6	
Matrix: OIL				Detection			Date	
<u>Analyses</u>			<u>Result</u>	<u>Limit</u>	Qual	<u>Units</u>	Analyzed	<u>Analyst</u>
METALS IN SO Lead	IL OR SLU	DGE BY ICP	SW6010B 1.89	0.500		mg/Kg	5/26/2011	KR

Qualifiers:	ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds MCL or Permit Limitation

S - Spike Recovery outside accepted recovery limits R - RPD outside accepted recovery limits MI+ - Matrix Interference H - Exceeds Holding Time

Page 1 of 1

This document shall not be reproduced, except in full, without the written approval of Green Country Testing, Inc.

- 3

ŧ,

٢

D

ĩ,

2

٤.,

CLIENT: Work Order Project:	Torkelson Geochemistry T11050348 Samples				QC	SUMMA	ARY REI	PORT
TestCode	Analyte	BatchID	QCType	Result	PQL	Units	%Rec	%RPD
MET_S_ICP	Lead	5654	MBLK	< 0.12	0.125	mg/Kg		
	Lead	5654	LCS	48	0.125	mg/Kg	96.2	
	Lead	5654	LCS	47.36	0.125	mg/Kg	94.9	1.34
	Lead	5654	MS	191.1	0.5	mg/Kg	97.1	
	Lead	5654	MSD	191.7	0.5	mg/Kg	97.4	0.303

ŕ,

7

 Σ

٢

ţ

e.;

×3

2

SU2218	Page of	Turn Time	Standard	Day Day Other		(Kush turn titles with incur a surcharge and must be pre- approved by lab.)											 	Field Notes:		Received on ice? Tres	36,	mitting the samples.
Laboratory Number:	Project Name/Number:		Sampler's Signature		Shipping Method:	UPS / FedEx / Airborne DHI / GCT / Hand V Mail	4	Requested Tests										Field	E/20/11 1535	Recei	Temp	All samples submitted to Green Country Testing for analysis are accepted on a custodial basis only. Ownership of the material remains with the client submitting the samples.
rd	PO Number:	Quote Number:		Required QC Level	Bill Monthly	Tes Tes			"OS	H C		'IOH	T NONE V	1				C Keceived by	[Thyge ald			on a custodial basis only. Ownership of the mater
Chain of Custody Record	Billing Information.				Ext:			SO = Soil Container	U = Ou SL = Sludge	۸	anti t	SOLI = SOLID Grab / Matrix Qua Price	1	- 0				 Dates IV MI.	MM SESTHALS			ig for analysis are accepted on a cu
GreenCountry . Cha	Client Intornations	· Torkskan			SYY/ Ext:				Dinking Water AQ = Aqueous			LU = Lique Date Time		11-12-h			 	Relinquished by	ter.			ubmitted to Green Country Testin
	Client Inf Company Name: Try k.e/	Contact Name:	Address:	City, State, Zip:	Phone Number 749-844	Fax Number: Emuit Addamer:	Email Address:	egulations .	CRCKA CUDINKING Water DPOTW Distribution			Sample ID/Description	10.1 - 8 110.76						Survey the			All samples st

-

··· -----

....

Green Country Testing reserves the right to return unused sample protions. Green Country Testing 6825 East 38th Street • Thisa, OK 74145 918-828-9977 • Fax (918) 828-7756 Part 1 - Laboratory Copy Part 2 - Report Copy Part 3 - Client's Temporary Copy

y Q

•.5

ę

 Torkelson Geochemistry, Inc.

 2528 S. Columbia Place
 Phone: 918-749-8441
 e-mail: BTorkelson@aol.com

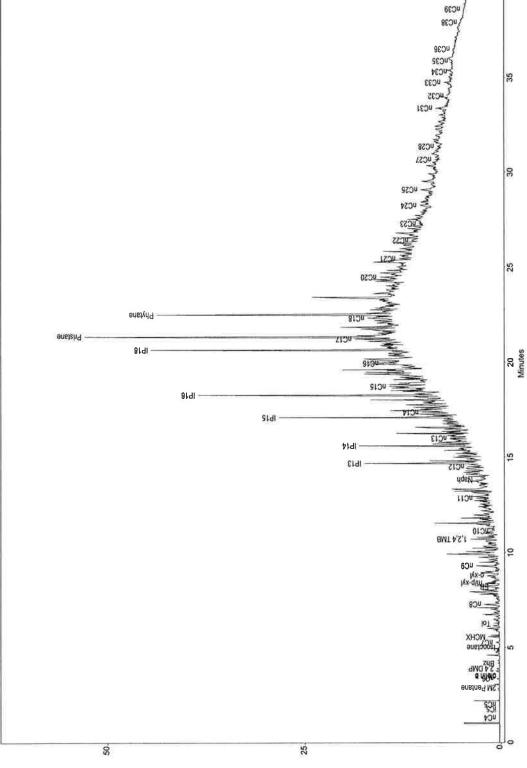
 Tulsa, OK 74114-3233
 Fax: 918-749-6005

CHAIN-OF-CUSTODY RECORD

																						TIME		1705	
																						DATE	31,104	3-2-04 1	
Additional Instructions					Requested Tum-Around Time:		T				REMARKS									Sorbert the Samole		ACCEPTED BY	FED EX	well habelon	
	e 1500	8				s requested	_																1	Å	
Colleen Costell0	30 South 17th St, Suite 1500	Philadelphia, PA 19103	215.864.0640	215.864.0671		ES ANALYSES		 notte	_	hternech භව off	_	×	XX		XX	XA			2×X		XX	RELINQUISHED BY	ed Q U	K	₽
Report/Bill To:	Address:		Phone: 215.86	1	e-mail:	PRESERVATIVES			ទាន់	* OF /		X	XII							I X I	IN		M. Bre		
1			Ĩ			┝					MATRIX LAB NO.								-	-	٨				
VO.					eik						DATE	2/27/04 Product									*				
Sun- Philadelphia Refinery COA	Philadelphia, PA				Sampled By: M. Brad Spancake & Tim Deik						SAMPLE DESCRIPTION	(1)e<+ Yord WR	A - 13	A-144	C-1010	A-172		R-U2	02-A	0-120	C-107				
Project: S	l		Proj. No.:	P.O.:	Sampled By:						ITEM NO.	-	· ·		, -	r u	р (ц	0	- α	σ	10				

Sun - Philadelphia Refinery COA Sample ID : West Yard W8 Acquired : Mar 07, 2004 08:54:39

c:lezchrom/chrom/04046/wyw8 - Channel A



9 9

0¢Ou

5

20

Z

ATTACHMENT C

AOI 10 Existing Natural Resources Plan

Legend

Floodway
0.2% Annual Chance of Flood
AE - 100 Year Flood
X - Areas Determined to be Outside the 0.2% Annual Chance Floodplain
PSS1 - Palustrine Scrub Shrub Wetland
U - Upland
Past Disposal Area (PDA)
Area of Interest Boundary (AOI)

Δt

Notes: 1. Bings Maps aerial imagery provided by © 2010 Microsoft Corporation and its data suppliers and obtained under the licensing agreement with ESRI.

- Floodway and flood hazard areas derived from the Digital Flood Insurance Rate Map Database (DFIRM) for Pennsylvania, by the Federal Emergency Management Agency (FEMA) 2005.
- 3. Wetlands from the National Wetlands Inventory for Pennsylvania, by the U.S. Fish and Wildlife Service, published September 25, 2009.

achment C -	Natural Reso Sunoco Phila Philadelphia,	adelp	hia Refinery
	0		

Sunoco, Inc. (R&M) Philadelphia Refinery 3144 Passyunk Avenue Philadelphia, PA. 19145 300

SLALE: 1" = 300 DATE: October 27, 2011 DRN. BY: MH CKD. BY: DW JOB#: 2574601 E Feet