

Remedial Investigation Report

AOI 6 Girard Point Refinery 3144 Passyunk Avenue Philadelphia Energy Solutions Complex Philadelphia, Pennsylvania

PADEP PF ID: 769099 EPA ID: PAD 049791098

Colleen Costello, PG. Pennsylvania Licensed Geologist No. PG-003736-G

GHD | 1140 Welsh Road Suite 120 North Wales Pennsylvania 19454 11109613 | 10 | Report No 2 | November 21, 2017

Table of Contents

1.	Intro	duction		1
	1.1	Facility De	escription	1
	1.2	Facility Op	perational History and Current Use	1
	1.3	Regulator	y History/Overview	3
	1.4	Selection	of Constituents of Concern	5
	1.5	Selection	of Applicable Standards and Screening Levels	6
		1.5.1 1.5.2 1.5.3	Soil Groundwater Potential Vapor Intrusion into Indoor Air	6 7 7
2.	Envii	ronmental S	etting	7
	2.1	Hydrology and Topography		8
		2.1.1 2.1.2	Historical Topography and Natural Depositional Environments Post-Industrialization	8 9
	2.2	Regional (Geology and Hydrogeologic Conditions	9
		2.2.1 2.2.1.2 2.2.1.2.1 2.2.1.2.2 2.2.1.3 2.2.1.3.1 2.2.1.3.2 2.2.1.3.3 2.2.1.3.4 2.2.1.3.5 2.2.1.3.6 2.2.2	Coastal Plain Deposits Anthropogenic Fill Quaternary Deposits Recent (Holocene) Alluvium Pleistocene Alluvium ("Trenton Gravel") Cretaceous Deposits Upper Clay Unit Upper Sand Unit Middle Clay Unit Lower Clay Unit Lower Clay Unit Bedrock.	9 9 10 11 12 13 13 13 14 14 15 16
3.	Soil I	Investigatior	٠	16
	3.1	Summary	of Previous Soil Analytical Results	17
	3.2	Historic Pr	roduct Handling/Storage Areas	18
	3.3	Open Stor	rage Tank Incidents	18
		3.3.1 3.3.2 3.3.3	GP T81 (Former PADEP Tank 121A, Incident 45692) GP 676 (Former Tank GPU 676, PADEP Tank 130A, Incident 4844) GP 797 (Former PADEP Tank 097A, Incident 29122)	19 19 19
	3.4	Historic R	eleases	20
		3.4.1 3.4.2 3.4.3 3.4.4 3.4.5	'Area West of' GP 676, or '2000 Surface Release' 1733 Unit Transfer Line Located Northeast of No. 4 Boiler House 1332 Line Main Office	20 21 21 21 21 21

Table of Contents

	3.5	Delineatio	on of Direct Contact MSC/SSS Exceedances	22		
	3.6	Site Characterization in the 0-2 ft. bgs interval, 2-15 ft bgs Interval and Beneath LNAPL22				
4.	Grou	Groundwater Investigation				
	4.1	Historic G	Groundwater Investigations	23		
	4.2	Well Insta	allation Activities	23		
	4.3	Groundw	ater Sampling Events	24		
	4.4	Well Gauging Activities		25		
5.	Site-	Site-Specific Hydrogeologic Conditions				
	5.1	5.1 Geologic Formations and Units Observed				
		5.1.1 5.1.2 5.1.3 5.1.4 5.1.5 5.1.6	Anthropogenic Fill Recent (Holocene) Alluvium Trenton "Gravel" Upper Clay Unit/Upper Sand Unit/Middle Clay/Middle Sand/Lower Clay Lower Sand Unit Crystalline Bedrock	26 26 26 26 27 27		
	5.2	Aquifer H	lydraulic Properties	27		
		5.2.1 5.2.2 5.2.2.1 5.2.3	Methodology for Evaluation of Hydraulic Data Unconfined (Water-Table) Aquifer Hydraulic Heads and Groundwater Flow Semi-confined (Lower) Aquifer	27 27 28 28		
6.	LNAF	PL Investig	ation	29		
	6.1	LNAPL C	haracterization Sampling	29		
	6.2	LNAPL D	istribution	30		
7.	Vapo	apor Investigation				
	7.1	Indoor Ai	r Sampling	30		
	7.2	Air Samp	ling over LNAPL Plumes	32		
8.	Qual	Quality Assurance/Quality Control				
	8.1	Equipme	nt Decontamination	33		
	8.2	Equipme	nt Calibration	33		
	8.3	Sample F	Preservation	33		
	8.4	Documentation				
9.	Conc	Conceptual Site Model				
	9.1	Description and Site Use		33		
	9.2	Geology and Hydrogeology				
		9.2.1 9.2.2 9.2.3	Geologic Framework Unconfined (Water-Table) Aquifer Lower Aquifer (Semi-Confined)	34 34 35		

Table of Contents

	9.3	Compounds of Concerns		35		
		9.3.1 9.3.2 9.3.3	Soil Groundwater Indoor/Ambient Air	35 35 36		
	9.4	LNAPL D	istribution and Mobility	36		
	9.5	Qualitativ	e Fate and Transport of Selected Compounds	36		
	9.6	Potential	Migration Pathways and Site Receptors	37		
10.	Quali	Qualitative Fate and Transport Assessment				
	10.1	Geologic	Framework	38		
	10.2	Hydrogeo	logy	38		
		10.2.1 10.2.2	Unconfined (Water-Table) Aquifer Lower Aquifer (Semi-Confined)	38 38		
	10.3	Hydrogeo	logy and Topography	39		
	10.4	Anthropog	genic Features	39		
		10.4.1 10.4.2	Historic Fill Former Remediation Systems	39 40		
	10.5	Groundwa	ater Constituents of Concern	40		
		10.5.1 10.5.2	Unconfined (Water Table) Aquifer Lower Aquifer	40 40		
	10.6	Potential	Onsite and Offsite Receptors	40		
	10.7	Plans for	Quantitative Fate and Transport Analysis	41		
11.	Ecolo	gical Asse	ssment	41		
12.	Comr	nunity Relations Activities		42		
13.	Conc	Conclusions and Recommendations				
	13.1	Soil		42		
	13.2	Groundwa	ater	43		
		13.2.1 13.2.2	Unconfined (Water-Table) Aquifer Lower Aquifer	43 43		
	13.3	Vapor Inti	rusion	43		
	13.4	LNAPL		43		
14.	Refer	ences		43		

Figure Index

- Figure 1 Site Location Map
- Figure 2 AOI 6 Site Plan
- Figure 3 Historic Stream and Marsh Locations (Circa 1898)
- Figure 4 Geographic Setting
- Figure 5 High Resolution Land Cover Dataset (2008) City of Philadelphia
- Figure 6 Generalized Bedrock Geologic Map
- Figure 7 Stratigraphic Profile Location Map
- Figure 8 Stratigraphic Profile
- Figure 9 Summary of Available Aquifer Testing Data for the Unconfined Aquifer
- Figure 10 Summary of Published Aquifer Testing Data for the Unconfined and Lower Aquifers
- Figure 11 Bedrock Structure Contour Map Top of Bedrock
- Figure 12a Surface Soil Sample Results
- Figure 12b Sub-surface Soil Sample Results
- Figure 13 Stantec Water Table Aquifer Groundwater Elevation Map May 2016
- Figure 14 Water Table Groundwater Elevations May 2016
- Figure 15 Stantec Deep Groundwater Elevation Map, May 2016
- Figure 16 LNAPL Occurrence and Remedial Systems, May 2016
- Figure 17 LNAPL Occurrence, September 2016
- Figure 18 Indoor Air and Ambient Air Sampling Locations, AOI 6
- Figure 19 Water Table Groundwater Results
- Figure 20 Deep Groundwater Results

Table Index

Table 1 Constituents of Concern, Evergreen Petroleum Short List Table 2 Characterization Activities Table 3a Surface Soil Analytical Results Summary (0-2 feet), Statewide Health Standards Table 3b Subsurface Soil Analytical Results Summary (>2 feet), Statewide Health Standards Table 4a Historical Soil Analytical Results Summary AOI 6 (0-2 feet) Table 4b Historical Soil Analytical Results Summary AOI 6 (>2 feet) Table 5 Summary of PADEP Open Storage Tank Incidents AOI 6 Table 6 Existing Well Summary Table 7a Groundwater Analytical Results Summary, Shallow Aquifer Table 7b Groundwater Analytical Results Summary, Semi-Confined (Lower) Aquifer

Table Index

- Table 8 Historical Groundwater Analytical Results Summary AOI 6 2013 to present
- Table 9 2016 Gauging Data for AOI 6
- Table 10
 Generalized Stratigraphic Section and Interpreted Hydrostratigraphic Units
- Table 11 Summary of LNAPL Characterization Results
- Table 12
 Vapor Intrusion Screening Building Information
- Table 13 Summary of Indoor and Outdoor Air from the Vapor Intrusion Sampling
- Table 14 Summary of Outdoor Air Sampling Over LNAPL

Appendix Index

Appendix A	Notice of Intent to Remediate, Report Notifications, and Proofs
Appendix B	Quality Assurance/Quality Control Plan and Field Procedures Manual (on CD)
Appendix C	Soil Boring and Monitoring Well Logs
Appendix D	Laboratory Analytical Reports (on CD)
Appendix E	PADEP Correspondence
Appendix F	LNAPL Conceptual Site Model
Appendix G	Remediation Systems Summary
Appendix H	Data Usability Assessment
Appendix I	Ecological Assessment Documentation
Appendix J	Copies of Referenced Consultant Reports (on CD)
Appendix K	Historical Data
Appendix L	Indoor Air Sampling Information

Appendix M Potable Well Search

1. Introduction

This Remedial Investigation (RI) Report (RIR) has been prepared for Area of Interest (AOI) 6, also known as Girard Point Chemicals Processing Area, at the Philadelphia Energy Solutions Refining and Marketing LLC (PES) Philadelphia Refining Complex (facility). Sunoco Inc. (R&M) (Sunoco) transferred the facility to PES on September 8, 2012. Sunoco retained the remediation liability prior to this date. The remediation liability was transferred to Philadelphia Refinery Operations, a series of Evergreen Resources Group, LLC (Evergreen) on December 30, 2013. The remediation program is currently being performed under a Buyer Seller Agreement signed by Sunoco, PES, and the Pennsylvania Department of Environmental Protection (PADEP) in September 2012.

Site remediation at the facility is ongoing as part of previously-established programs and the 2012 Buyer Seller Agreement. The facility has operated, and is planning to continue operating, as an oil refinery, marketing terminal, and petrochemical complex.

1.1 Facility Description

The facility is located along the banks of the Schuylkill River in the City of Philadelphia, Philadelphia County, Pennsylvania. Portions of the facility occupy both the eastern and western Schuylkill River banks. The facility, which is located on industrial property, covers approximately 1,300 acres of land with access restricted by fencing and security measures. The area surrounding the property is characterized by a mixture of residential, commercial, and industrial properties. Current operations at the facility consist of the production of basic petrochemicals for the chemical industry.

AOI 6, also known as the Girard Point Chemicals Processing Area, encompasses approximately 100 acres and is located on the east side of the Schuylkill River. AOI 6 is a wedge-shaped property bordered by Lanier Avenue/AOI 3 to the east, Penrose Avenue (Route 291)/Platt Memorial Bridge/AOI 5 to the south and Pennypacker Avenue/AOI 7 to the north (Figures 1 and 2). The entire western boundary of AOI 6 along the Schuylkill River is bound by a sheet pile wall. The extent of the sheet pile wall ("bulkhead") is shown on Figure 2.

1.2 Facility Operational History and Current Use

The facility has a long history of petroleum transportation, storage, and processing. The oldest portion of the facility started petroleum related activities in the 1860s, when the Atlantic Refining Company was established as an oil distribution center. In the 1900s, crude oil processing began and full-scale gasoline production was initiated during World War II. In addition to refining crude oil, various chemicals, such as acids and ammonia, were also produced at the facility for a time. The facility has operated continuously as a refining, product distribution, and storage facility. Use of the facility has remained similar following the transfer of ownership to PES.

Historically, AOI 6 consisted of numerous above ground storage tanks (ASTs) containing benzene, toluene, naphtha and other fuel stocks. A sulfuric acid plant was located along the northern boundary of the AOI. A gasoline treating unit, two reformer units, a BDDA (soap) unit, and a thermal hydro-dealkylation unit were also located in this area.

Currently, AOI 6 consists of Udex and cumene units, reformer with associated naphtha hydrotreater, diesel hydrotreater, tankage, boiler house and associated feed water treatment, maintenance buildings, lay-down yards, control rooms, office buildings, the # 2 oil-water separator, remote Laboratory and new Scale House. On October 13, 2017, an updated building survey for AOI 6 was completed. During this survey 16 structures were identified as routinely occupied or potentially occupied. These buildings included: Building 6636, 24 Gate Building 295, Lab/Bottle Washing Building 163, Girard Point Training Building 651, Girard Point Main Office Building 650, Capital Projects Tank Group Trailers, Control Room 739, Trade Shops 178, Carpenter Shop 726, North Tank Field Blockhouse 475, WTP Control Room 745, Control Room 6627, Control Room south of Boiler House #3, Former Locker House associated with former Boiler House #2, and Office near Separator. The characteristics of several of these buildings, refinery lab/bottle washing, Capital project tank group trailers, control room south of Boiler House #2 and former Locker House near former Boiler House #2/Process Building were such that vapor intrusion is not considered a complete pathway as is further discussed in Section 7.1. The building-specific conditions are as follows:

- Refinery Lab/Bottle Washing Building 163 broken windows visible throughout that allows outdoor air flow
- Capital Projects Tank Group Trailers elevated trailers with perforated soffit-style skirt that allows outdoor air flow
- Control Room south of Boiler House #3 elevated without a skirt
- Former Locker House near former Boiler House #2/Process Building locked and inaccessible, not occupied
- Office near Separator blast resistant building sitting on ground and fork truck holes at the surface (to facilitate relocation)
- Paint Shop Building 701 accessible but unoccupied
- Insulation Building 265 unoccupied building used for storage

There are two leaded tank bottom SWMUs (SWMU Nos. 92 and 95) located in AOI 6 (Figure 2) that were addressed in several previous Resource Conservation and Recovery Act (RCRA) investigations as part of the United States Environmental Protection Agency (USEPA) Corrective Action process and during the Act 2 site characterization activities.

The 27 Pump House Total Fluids Recovery System was installed in November 2001, the system included 12 total fluid recovery wells in the vicinity of the former 27 Pump House. The 27 Pump House Total Fluids Recovery system was turned off September 20, 2010 due to absence of recoverable LNAPL. Passive remediation began on October 10, 2010 with the installation of absorbent socks in wells B-124, B-132, B-137, B-139, B-142, B-143, and B-147. Based on limited recoverable LNAPL in the proximal wells, passive remediation was discontinued on January 26, 2015. Groundwater gauging of select monitoring wells in AOI 6 occurs on an annual basis during the second quarter of each year by Stantec Consulting Corporation (Stantec). Annual gauging activities and results are reported to the PADEP and EPA in Quarterly Reports prepared by Evergreen.

1.3 Regulatory History/Overview

Sunoco and the PADEP entered into a Consent Order & Agreement (CO&A) in December 2003 with respect to the facility. Sunoco's Phase I Remedial Plan (Phase I Plan), dated November 2003, was included as an attachment to the CO&A. In accordance with the CO&A and Phase I Plan, a Current Conditions Report and Comprehensive Remedial Plan (CCR) was prepared by Sunoco in June 2004. The Phase I Plan and the CCR divided the facility into 11 AOIs, and presented a prioritization of the AOIs based on specific risk factors. The CCR also presented the Phase II remedial approach and schedule to characterize each of the 11 AOIs, and to conduct Phase I and II corrective action activities in accordance with the 2003 CO&A and the Phase I Plan. Since 2003, Sunoco has performed site characterization activities at all 11 AOIs in accordance with the 2003 CO&A. Sunoco has prepared and submitted a corresponding Site Characterization Report (SCR) for each AOI in accordance with the Revised Phase II Corrective Action Activities schedule that was included in the CCR.

In October 2006, Sunoco submitted a notice of intent to remediate (NIR) to the PADEP for the facility, entering the facility into the Act 2 program. This NIR was later updated and submitted to the PADEP in November 2014 in order to revise the ownership identity to PES and the remediator identity to Evergreen. In November 2011, the facility was formally entered into the PA One Cleanup Program with the USEPA Region III and PADEP. In November 2011, Sunoco submitted a revised Work Plan for Sitewide Approach under the One Cleanup Program (Work Plan for Sitewide Approach). As previously discussed, characterization and remediation work at the facility is currently being performed under the September 2012 Buyer Seller Agreement signed by Sunoco, PES, and the PADEP.

The following provides a timeline of major events and submissions for the facility and AOI 6:

2004

- The PADEP and USEPA signed an agreement entitled "One Cleanup Program Memorandum of Agreement (MOA or One-Cleanup Program)," which clarifies how sites remediated under Pennsylvania's Voluntary Cleanup Program may satisfy RCRA corrective action requirements through characterization and attainment of remediation standards established under the Pennsylvania Land Recycling and Environmental Remediation Standards Act (Act 2).
- Langan prepared the CCR for the Philadelphia Refinery and the Sunoco Logistics Belmont Terminal.

2005

• PADEP, USEPA, and Sunoco agreed that the One Cleanup Program would benefit the project by merging the remediation obligations under the various programs into one streamlined approach which would be conducted under the existing 2003 CO&A.

2006

• Sunoco submitted an NIR to the PADEP for the Philadelphia Refinery thereby entering the facility into the Act 2 program.

- A Site Characterization Work Plan (Work Plan) for AOI 6 was submitted in February 2006 to the PADEP and the Environmental Protection Agency (EPA). This Work Plan summarized proposed activities to be completed to characterize AOI 6 in accordance with the objectives of the 2004 CCR.
- The Work Plan was implemented between March and June 2006 and the results were summarized in the Site Characterization Report that was submitted to PADEP and EPA in September 2006.

2011

- On November 8, 2011, the USEPA provided an acknowledgment letter to Sunoco formally accepting the Sunoco Facility into the One Cleanup Program.
- Sunoco submitted the Work Plan for Site Wide Approach to document the site-wide remedial approach extending beyond the requirements of the 2003 CO&A. The PADEP and USEPA reviewed and provided input to this report. Sunoco submitted a letter of commitment stating the facility would be remediated according to the Work Plan for Site Wide Approach.

2012

- Sunoco transferred the facility to PES.
- Sunoco, PES, and PADEP signed the Buyer-Seller Agreement that established the environmental remediation and management obligations of Sunoco and PES following the sale of the facility.

2013

- The legacy remediation liability for environmental impacts existing prior to the conveyance of the facility to PES was transferred from Sunoco to Evergreen.
- Sunoco prepared and submitted a SCR/RIR in September 2013 to formerly satisfy the requirements Act 2. This SCR/RIR describe site characterization work included in the 2006 AOI 6 SCR, as well site characterization work completed in 2012 to supplement the 2006 work.
- The PADEP provided Evergreen comments on the 2013 SCR/RIR.

2014

• Evergreen submitted an updated NIR to the PADEP for the facility.

2015

- Langan, on behalf of Evergreen, submitted a Human Health Risk Assessment (HHRA) Report to establish a site-specific standard (SSS) for lead in soil at the facility, the Sunoco Logistics Belmont Terminal, and the Sunoco Partners Marcus Hook Industrial Complex (Langan, 2015).
- The HHRA was approved by the PADEP in a letter dated May 6, 2015 establishing a SSS of 2,240 milligrams per kilogram (mg/kg) for lead in soil.

On February 19, 2016 the PADEP, Evergreen, Aquaterra and GHD met to discuss the Work Plan. The PADEP provided comments to the Work Plan via email on February 25, 2016. In accordance with the Work Plan for Site Wide Approach, Evergreen is submitting this RIR for AOI 6 to formally

satisfy the requirements of Act 2 as specified in 25 PA Code §250.408. This RIR describes site characterization work conducted following the last submittal (2013 SCR/RIR). Activities that have been performed in order to complete characterization as required by an RIR under Act 2 include:

- Additional characterization of surface soil (0 to 2 feet below ground surface [ft. bgs] interval) and subsurface soil (2 to 15 ft. bgs) including targeted soil investigations in potential contaminant source areas, such as historic product handling and storage locations, open storage tank incident areas, and known product releases.
- Horizontal and vertical delineation of impacts in soils.
- Additional soil sampling in areas with light non-aqueous phase liquid (LNAPL).
- Additional groundwater sampling from monitoring wells not containing light non-aqueous phase liquid LNAPL.
- Collection of groundwater samples beneath LNAPL samples.
- Delineation of LNAPL.
- Evaluation of LNAPL mobility.
- Investigation of the potential vapor intrusion to indoor air pathway at occupied buildings.
- Collection of air samples above LNAPL plumes.
- Qualitative evaluation of contaminant fate and transport.

As discussed with the PADEP, Stantec, and Evergreen during a meeting conducted in September 2015, Evergreen is in the process of developing a site-wide MODFLOW model to perform quantitative fate and transport modeling. Evergreen also intends to submit a site-wide human health risk assessment report. Following the approval of these site-wide reports and other RIRs, Evergreen intends to submit a site-wide Cleanup Plan, pursuant to 25 PA Code §250.410, which will present remedies chosen to allow attainment of the selected remediation standards in soil and groundwater.

In accordance with Act 2, the required public and municipal notices for this report have been prepared and issued. Appendix A includes a copy of the original facility NIR, the updated facility NIR, as well as the report notices and their proof of receipt/publication.

1.4 Selection of Constituents of Concern

A list of the constituents of concern (COCs) in soil and groundwater for AOI 6 is included as Table 1. This list is an updated listing of the compounds identified in the Work Plan as the COCs for the facility under Pennsylvania One Cleanup Program and will be referred to as the petroleum short list. This list includes all current constituents from the Pennsylvania Corrective Action Process (CAP) Regulation Amendments effective December 1, 2001; provided in Chapter VI, Section E of PADEP's Closure Requirements for Underground Storage Tank Systems, with the exception of the waste oil parameters. In May 2009, two additional COCs, 1,2,4- trimethylbenzene (1,2,4-TMB) and 1,3,5-trimethylbenzene (1,3,5-TMB), were added to the list of COCs based on the PADEP's revisions to the petroleum short list of compounds and at the request of the PADEP. The COC listing for groundwater was also revised in 2012 to follow the soil COC listing. The additional

compounds added to the groundwater COC list included anthracene, benzo(a)anthracene, benzo(g,h,i)perylene, benzo(a)pyrene, and benzo(b)fluoranthene.

No additional compounds were added to Evergreen short list during the 2016 sampling events, but pH was added to the analyses for samples collected in the vicinity of a former tank (Tank 81).

1.5 Selection of Applicable Standards and Screening Levels

The media of concern for AOI 6 include soil and groundwater. The potential vapor intrusion into indoor air exposure pathway was also evaluated through the collection of the indoor air samples. The approach for attaining Act 2 remediation standards for the media of concern is described below by media. As the current and anticipated future use of the facility is industrial, standards for non-residential properties were selected for comparison.

1.5.1 Soil

All soil results were screened using a multi-step process, as described in this section. Soil results were first screened against the PADEP non-residential, used aquifer (total dissolved solids [TDS] <2,500 micrograms per liter [μ g/L]) medium specific concentrations (MSCs) developed by the PADEP to implement the Statewide Health Standard (SHS). The following process was used to select the soil SHS for each COC:

- The highest value of either 100 times the groundwater MSC or the generic value MSC was selected to represent the soil to groundwater numeric value.
- The selected used aquifer, non-residential soil to groundwater (NRSGW) numeric value was then compared with the non-residential direct contact value (NRDC) (0 to 2 feet or 2 to 15 ft. bgs, as applicable).
- The more stringent of the soil to groundwater value and the direct contact value was selected as the soil MSC, otherwise referred to as the SHS, for initial comparison of soil sample results.

The SHS value is usually driven by the soil-to-groundwater MSC, and the soil-to-groundwater pathway will be addressed in the groundwater investigation presented in this report. In order to further evaluate the risk posed by the concentrations of COCs which were detected above their respective SHS, the next step is to compare all of the soil analytical results to the non-residential direct contact MSCs. Soil sample locations that will require further pathway evaluation or require a remedial measure in order to attain a standard under Act 2 were identified through comparison to the non-residential direct contact MSCs.

An exception to this soil screening process exists for lead. On February 24, 2015, Evergreen submitted a Human Health Risk Assessment Report to PADEP which presented the development of a risk-based site-specific standard (SSS) for lead in soil. In a letter dated May 6, 2015, PADEP approved the report, and a non-residential direct contact site-specific numerical standard for lead of 2,240 mg/kg was established. This SSS is used in place of the default 0 to 2 ft. bgs direct contact standard for lead.

1.5.2 Groundwater

Groundwater sample analytical results were screened against the PADEP MSCs for non-residential properties overlying used aquifers with TDS less than or equal to 2,500 μ g/L (SHS). Where constituent concentrations are above the SHS, Evergreen evaluated application of the site-specific remediation standard using the pathway elimination option.

1.5.3 Potential Vapor Intrusion into Indoor Air

Indoor and ambient air sample results collected in AOI 6 were screened against the USEPA Region 3 Regional Screening Levels (RSLs) for Industrial Air Target Risk (TR)=1E-6, Target Hazard Quotient (HQ)=0.1 (updated November 2015); the PADEP Indoor Air Statewide Health Standard Vapor Intrusion Screening Values, Non-Residential (November 2016); and the Occupational Safety and Health Association (OSHA) Permissible Exposure Limits (PELs). The National Institute for Occupational Safety and Health (NIOSH) Recommended Exposure Limits (RELs) and the American Conference of Governmental Industrial Hygienists (ACGIH) Threshold Limit Value (TLVs) were used for compounds without established OSHA PELs. In accordance with the PADEP Vapor Guidance, since indoor air is the only potential exposure pathway, the results were also screened against the USEPA Region 3 Regional Screening Levels (RSLs) for Industrial Air based on the lower of the Target Risk (TR)=1E-5 and HQ = 0.1 and the PADEP SHS Indoor Air values divided by a factor of 10. These values were used as the threshold to indicate whether additional controls will be necessary to address vapor intrusion. Any such controls will be presented in the Cleanup Plan.

2. Environmental Setting

This section summarizes the geologic framework and general hydrogeologic properties of sedimentary deposits and bedrock underlying the south Philadelphia area, with emphasis near the facility. A brief discussion of historical and present-day topography and hydrology is also included. This section provides a regional context from which sedimentary deposits observed beneath AOI 6 are classified and characterized for the purposes of this RIR. Much of the information presented in this section was summarized during conceptualization of a site geologic model that is being used in the development of a numerical groundwater flow model by Stantec as presented in the AOI 1 RIR (Stantec, 2016).

In general, the groundwater resources and stratigraphic framework of the facility area have been well-documented through a variety of data sources, including previous groundwater resource investigations dating back to the early 1900s, state and federal geologic mapping projects, groundwater modeling studies, and consultant site characterization and remedial investigation reports. Those data sources are summarized herein. In large part, available well and test boring logs from previous on-site and local subsurface investigations were the most valuable resource in evaluating the local subsurface stratigraphy. As such, subsurface information from approximately 750 well and test boring logs was considered in the evaluation of regional conditions. A database of stratigraphic "picks" on interpreted vertical lithologic unit boundaries (and, where possible, geologic formations) was also developed and includes all identified records of boreholes completed to bedrock at and near the facility. The purpose of the "picks" database was to archive interpretation of

individual borehole lithologies to bedrock, so that stratigraphic profiles could be developed for this RIR and the Schreffler lithologic model (Schreffler, 2001) could be refined and updated for site-specific use at the facility (Stantec, 2016). One stratigraphic profile was developed for use in this RIR and is presented herein to support evaluation of the lithologic character, geographic extent, and thickness of each geologic unit identified. A structure contour map of the bedrock surface was also developed and used to support the discussion presented below.

2.1 Hydrology and Topography

The facility occupies a large area adjacent to the Schuylkill River near its confluence with the Delaware River. This region has a long history of human influence and disturbance, dating back to the early 17th Century when European settlers first arrived. The following sections present a brief discussion of the significant land surface morphologic changes that are apparent when comparing modern environments and topography to that shown on historical maps.

2.1.1 Historical Topography and Natural Depositional Environments

The City of Philadelphia Archives and several online archival resources have catalogued and provide free access to copies of many historical maps of Philadelphia. Based on a review of many of those maps, much of the land area occupied by the present-day Philadelphia Refinery was formerly tidal marsh and lowlands that once fringed the Schuylkill River. Figure 3 presents a geo-referenced United States Geological Survey (USGS) topographic map from 1898 (20-foot contour interval). The map indicates that several small tributary streams, digitized on-screen and shown as blue lines, formerly dissected that marshland and presumably would have exchanged water with the tidal Schuylkill River on a semi-diurnal basis. Several islands were also present throughout the lowlands, most notably League Island, which are interpreted as erosional remnants of uplands that formed sometime after deposition of the Trenton "gravel" sediments (discussed in detail below).

At that time, relatively higher topography was apparent north and west of the Schuylkill River, near Gibson's Point. South and east of that general area, the Schuylkill River coursed through a distinctive meander around Point Breeze, and appeared to have formed an erosive cut bank along present-day AOI 2 where higher elevations were present (and favoring point bar deposition north of AOI 10). A southwest/northeast trending ridge of higher elevation was also present south of Point Breeze near AOI 4 (see 20-foot contour on Figure 3), and between those two areas of higher elevation a stream was mapped to have been present. That stream appears to have originated in southern AOI 1 and flowed southwest through AOIs 3 and 7, towards its confluence with the Schuylkill River. Numerous other small streams and ditches draining the lowlands surrounding Hollander Creek were also noted. Additional historic maps indicate that by 1900, an earthen dike had been constructed along the banks of the lower Schuylkill River, and sluices were present at each stream/ditch confluence. Other maps show wooden pilings in places along the Schuylkill River. In general, the construction of containment dikes, sluices, and shoreline hardening would have altered the natural tidal exchange between the Schuylkill River and these historic creeks, thereby limiting the natural accretion of sediment in the marshes that once fringed the river. Moreover, the modifications indicated on these maps would have altered the pre-existing tidal regime and dynamic equilibrium of the Schuylkill River.

2.1.2 Post-Industrialization

Figure 3 indicates that by 1898, storage of petroleum near Point Breeze and Gibson Point had already begun. According to archived records, much of the remaining tidal marsh and lowland environments nearby were reclaimed and routinely dewatered for farming practices around this same time period (mostly on the west side of the Schuylkill River). Industrialization warranted further land filling activity and shoreline hardening, including bulk-heading and filling of the tributary streams that modified and generally raised the antecedent topography into its present-day configuration. Farms were displaced in favor of industrial and commercial land uses. Although some clusters of residential property and open space exist or have existed near the facility, most land in south Philadelphia is presently and has been used for industrial and commercial purposes for over 100 years (IST, 1998).

Light Detection and Ranging (LiDAR) data obtained from the USGS (USGS, 2010) and topographic contours published in 2007 by the City of Philadelphia indicate that present-day topography is relatively flat in the study area, and land surface elevations generally range from a few feet below sea-level near Mingo Creek to approximately 30 feet above sea level near the eastern boundary of the Philadelphia Refinery in AOIs 1 and 8 (referenced to the North American Vertical Datum of 1988 [NAVD 88]) (Figure 4). Although subtle, the high-resolution LiDAR model displays topographically low areas that based on location, likely correlate to the locations of former stream valleys (e.g., Franklin Delano Roosevelt Park). In addition to raising the land surface, much of the filled areas were either paved and/or rendered relatively impervious (Figure 5), which decreased rates of recharge to the water table and necessitated the construction of numerous sewers to convey stormwater runoff (and also sewage) to the Schuylkill and Delaware Rivers.

2.2 Regional Geology and Hydrogeologic Conditions

The facility occurs within the up-dip limits of the Atlantic Coastal Plain, generally within 2 miles of the "Fall Line," where crystalline bedrock of the Appalachian foothills intersects the ground surface (outcrops) (Figure 6). The Atlantic Coastal Plain is a physiographic province that is defined as having relatively flat topography and as being underlain by a characteristic wedge of unconsolidated sediments that thicken in a southeasterly direction, away from sediment source areas in the Appalachian Mountains. These sediments were deposited atop a sloping bedrock surface in complex fluvial, estuarine, and marginal marine environments along the passive Atlantic margin. Overall, subsidence of the Piedmont land surface in conjunction with cyclical sea-level fluctuations have been the primary controlling mechanisms driving periods of deposition, non-deposition and erosion in the Atlantic Coastal Plain (Trapp, 1992). In general, the resulting sedimentary record in the vicinity of the Philadelphia Refinery is complex, largely incomplete, and under-represented by only Cretaceous and Quaternary deposits, separated by a regional disconformity (Stantec, 2012). A summary of those deposits is presented below.

2.2.1 Coastal Plain Deposits

2.2.1.1 Anthropogenic Fill

For reasons discussed, much of the facility and surrounding area is underlain by historical fill material, which was placed for the purpose of reclaiming lowlands along the banks of the tidal

Delaware and Schuylkill Rivers during industrialization. These fill materials are heterogeneous in nature and have been described on borehole logs by others as a mixture of compacted soil and anthropogenic debris, including sand, clay, silt, gravel, cinders, concrete, asphalt, crushed stone, ash, glass, brick fragments, and wood. Apparent fill thickness ranges from a veneer where antecedent topography was highest to greater than 50 feet where it was used as railroad ballast just east of the Philadelphia Refinery. Within the locations of former stream valleys and marshes (Figure 3), the historical fill material is generally 20 feet or greater in thickness.

The fill materials may contain isolated lenses of groundwater (perched groundwater) where coarse or granular materials are separated from the underlying water table by low permeability sediments. The fill may also be saturated and/or in hydraulic connection with the water table along the axes of former stream channels, where the water-table appears to intersect the fill, or where the fill was placed on marshland. However, at most locations across the Philadelphia Refinery, the fill layer occurs above the regional water-table under average head conditions.

2.2.1.2 Quaternary Deposits

Quaternary sedimentary deposits are present beneath the Philadelphia Refinery and are generally representative of geologically-recent cycles of deposition and erosion that occurred within the last 200,000 years. These cycles of sedimentation were the result of a series of glacial and interglacial periods, namely the Illinoian and Wisconsin glaciations, separated by an intervening interglacial period and followed by the present interglacial period through the Holocene (Sevon et al., 1999). Depositional environments through this Period were primarily controlled by sea-level and the successive down-cutting and infilling of ancestral river valleys, primarily that of the Schuylkill and Delaware Rivers (Owens and Minard, 1979). Details of the Quaternary deposits present at the Philadelphia Refinery are described below.

2.2.1.2.1 Recent (Holocene) Alluvium

Predominantly gray, muddy deposits with occasional sandy, gravelly, and organic-rich lenses comprise the most-recent alluvium present at the Philadelphia Refinery. These sediments were deposited in dynamic floodplain, channel, and marsh environments through the Holocene. As noted, the upper surface of alluvium, in most places covered by fill, defines the antecedent topography that pre-dated development of the Philadelphia Refinery area. This geologic unit is generally present below an elevation of approximately 20 feet NAVD 88. The alluvium ranges in thickness from a few feet at higher elevations, away from the present Schuylkill and Delaware River estuaries, to approximately 15 feet within the former floodplains of buried tributary streams. However, adjacent to and fringing these major river estuaries, apparent marsh deposits accreted in freshwater environments to as much as 60 feet thick (to elevations as low as approximately -60 feet NAVD 88) as sea-level transgressed and flooded the incised river valleys through the Holocene. Figure 3 provides some estimation of how extensive the tidal marshes once were prior to development, generally along the Schuylkill River south of and surrounding Point Breeze. A stratigraphic profile location map is presented on Figure 7. Stratigraphic profile E-E' supports this interpretation and distribution of the most recent alluvial deposits across the Philadelphia Refinery (Figure 8).

Similar to the fill described above, most recent alluvium at the facility has limited water-bearing capacity due to its fine-grained texture. However, heterogeneities within the alluvium may allow for

the presence of localized seasonal perched groundwater resulting from the percolation of recharge water. Within former marsh areas along the Schuylkill and Delaware River estuaries, the regional water-table occurs within the Holocene alluvium. At locations distal to the rivers and where the Schuylkill River appears to have eroded older alluvial deposits (e.g., along the western periphery of AOI 2), the Holocene alluvium occurs above the regional water-table and is unsaturated.

2.2.1.2.2 Pleistocene Alluvium ("Trenton Gravel")

Geologically-recent glacial outwash deposits, commonly referred to informally as the Trenton "gravel", have long been recognized in the vicinity of southeastern Pennsylvania along the Delaware River valley. Sevon and Braun (2000) provide a comprehensive map of glacial deposits in Pennsylvania, including the presence of sand and gravel outwash, interpreted as stratified drift, along the present Delaware River. Owens and Minard (1979) published a comprehensive summary of previous research into these deposits and subdivided the "Trenton gravel" into two distinct deposits (the Spring Lake and Van Sciver Lake beds) based on topographical position and lithology at those type sections. Low et al. (2002) indicate that in most places the Trenton gravel rests directly atop Cretaceous sediments and is overlain by younger alluvium of Holocene age near the Schuylkill River.

Based on literature review presented in the AOI 1 RIR (Stantec, 2016), the Trenton gravel was interpreted as a heterogeneous, stratified alluvial deposit of primarily sand and gravel, with occasional beds of clay and silt (the Van Sciver Lake beds), that resulted from glacial outwash through the Delaware River valley sometime after the Illinoian glacier receded. At the Philadelphia Refinery, the Trenton gravel is commonly described on boring logs as a brown, reddish-brown or, where stained, black, fine to coarse sand with lenses of gravel. The gravel fraction is often multicolored and comprised of a mixture of sub-angular to sub-rounded, sedimentary and metamorphic rocks derived from the Appalachian Piedmont. The Trenton gravel generally ranges in thickness from a few feet up to approximately 30 feet near the Philadelphia Refinery. It appears to be laterally continuous and its thickness depends on the antecedent Cretaceous topography that it filled and on the degree of erosion from above (Stantec, 2016). Along the Schuylkill River at the George C. Platt and Penrose Avenue bridges, and in places beneath the Delaware River, Greenman et al. (1961) mapped the Trenton gravel to be present beneath thick sections of Holocene alluvium to elevations near -60 feet NAVD 88, and those interpretations are shown on Figure 8.

The regional water-table at the Philadelphia Refinery most often occurs within the Trenton gravel, and, as a result of its stratigraphic position, this geologic unit forms the bulk of the unconfined aquifer (along with localized areas of saturated alluvium and fill). Published well records indicate that the Trenton gravel can be a prolific aquifer (Paulachok, 1991). Nevertheless, due to lateral changes in Trenton gravel thickness and to its heterogeneous character, hydraulic properties and groundwater yields can vary widely. Stantec reviewed published data and available on-site aquifer testing data regarding the hydraulic properties of the Trenton gravel and presented those data in the AOI 1 RIR (Stantec, 2016) which are included on Figures 9 and 10 in this report.

A nearly 7-day groundwater extraction test was conducted at recovery well RW-2 at the Philadelphia Refinery (IST, 1998). During testing, RW-2 was pumped at a constant rate of 225 gallons per minute (gpm). Distance-drawdown data analyzed along transects of observation

wells suggested that the area of influence extended approximately 1,680 feet from the pumping well under relatively isotropic conditions. The hydraulic conductivity (k) was estimated to be greater than 400 feet per day (ft/d). More recently, a 24-hour pumping test was conducted at the former DSCP property at monitoring well DSCP-MW-65, a well that appears to be screened across the Trenton gravel and underlying sandy Cretaceous deposits (ARCADIS, 2013). Analysis of that data provided in the referenced report supports comparable aquifer properties at that site. However, it is noted that during the test, the Trenton gravel was dewatered and individual aquifer k values could not be calculated/resolved. Other, in-situ, single well instantaneous displacement tests and short-duration pumping tests for remedial system design suggest a much lower k for the Trenton gravel, on average, but test results vary widely, from less than 1 ft/d to over 600 ft/d. The observed wide range in k values over relatively short distances is consistent with this geologic unit's lithologic heterogeneity.

2.2.1.3 Cretaceous Deposits

Many studies of the Atlantic Coastal Plain near the Philadelphia Refinery have identified the presence of Cretaceous age sediments in the subsurface. These are the oldest sedimentary deposits in the area and are configured in a southeasterly-thickening wedge, overlain by the much younger Quaternary deposits described above and underlain by Piedmont crystalline bedrock. Greenman et al. (1961) detailed the age, character, configuration, and hydraulic properties of these deposits in southeastern Pennsylvania. At the time of that publication, the Cretaceous deposits were assigned primarily to the Raritan Formation and noted to represent three distinct, fining-upward cycles of non-marine sedimentation. Similarities to lithologic sequences identified on borehole logs were correlated to previously-identified strata at their type locality in New Jersey, where the deposits are much thicker and more easily distinguished. Other similar, near time-equivalent geologic formations of Cretaceous age were elsewhere identified in Maryland and Delaware (Jordan, 1962), and more recently authors began wholly referring to the Cretaceous deposits in south Philadelphia as the Potomac-Raritan-Magothy (PRM) aquifer system.

In south Philadelphia, the PRM aquifer system is subdivided into six geologic units in order of increasing age:

- The upper clay unit
- Upper sand unit
- Middle clay unit
- Middle sand unit
- Lower clay unit
- Lower sand unit (Schreffler, 2001)

Near the Philadelphia Refinery, it is generally true that these units thin, intercalate, and exhibit gradual facies changes that make separation of individual units difficult. Total thickness of PRM deposits at the facility ranges from 0 feet, where Quaternary deposits are present atop bedrock, to more than 100 feet within paleochannels incised into bedrock. A structure contour map of the top of the bedrock surface is included on Figure 11. Details of the individual units based on boring log

records and published descriptions as presented in the AOI 1 RIR (Stantec, 20016) are presented below.

2.2.1.3.1 Upper Clay Unit

The upper clay unit is a variegated clay/silt that is sometimes discernible from older clay units of the PRM where sandy and gravelly. In general, it is thin when compared to the other PRM clay units in south Philadelphia, and in places distal to the Delaware River the upper clay may be entirely absent (Greenman et al., 1961). On the basis of geophysical log signature, others have mapped the upper clay to be at least 0.5 feet thick and up to 30 feet thick at the Philadelphia Refinery, exhibiting its greatest thickness in northern portions of the study area while pinching out to the south (IST, 1998). At the Philadelphia Refinery, Stantec assigned the upper clay to first occurrences of light brown, tan, mauve, yellow, gray, and less-commonly, red sandy, silty clay beneath the Quaternary alluvium. However, overall stratigraphic correlation of the PRM across the facility supports the upper clay unit pinching out or being truncated by younger deposits throughout most of the AOIs (Figure 8).

The upper clay unit by nature acts as a confining or leaky confining bed. Where present, it creates hydraulic separation between the upper sand unit and water-table aquifer.

2.2.1.3.2 Upper Sand Unit

The upper sand unit is a varicolored but predominantly brown to gray sand with varying amounts of gravel, clay, and silt (Greenman et al., 1961). Nearer the Philadelphia Refinery, it has been described as mostly silty and/or clayey fine to medium sand (IST, 1998). Where the upper clay is absent, the upper sand occurs directly beneath, and is typically discernable, from the coarser and more heterogeneous Trenton gravel above. Stantec used color and lithologic changes, in addition to subtle changes in drilling conditions including Standard Penetration Test (SPT) blow counts, to make "picks" on upper sand occurrences (Stantec, 2016) to create the current geologic interpretation for the facility. In general, the upper sand appears restricted to northern portions of the refinery (AOIs 1, 2, 4, and 8) where it subcrops the Trenton gravel. The upper sand unit, where present, rarely exceeds 10 to 20 feet in total thickness.

The upper sand unit is an excellent aquifer where its thickness and extent are sufficient (Greenman et al., 1961). Aquifer testing of the upper sand unit in New Jersey has indicated that the aquifer has similar hydraulic properties to the middle and lower sand units where discrete (Navoy and Carleton, 1995). At the Philadelphia Refinery, Stantec did not identify any existing testing data for wells discretely screened across the upper sand unit from which to infer sole hydraulic properties (Stantec, 2016). The upper sand generally occurs in pockets beneath the Philadelphia Refinery and comprises a portion of the unconfined aquifer. Most wells that fully penetrate the unconfined aquifer in northern areas of the refinery may intersect and be influenced by the hydraulic properties of the upper sand.

2.2.1.3.3 Middle Clay Unit

Whereas other clay units of the PRM are described as being sandy and gravelly in places, the middle clay unit is generally regarded as being a laterally extensive and uniformly massive confining

bed of thick, red and white clay with very little sand (Greenman et al., 1961). Near the Philadelphia Refinery, others have found the middle clay to be nearly continuous in the subsurface (IST, 1998). Thicknesses of the middle clay unit generally range from approximately 20 feet, near the Belmont Terminal area, to just over 1 foot in southeastern AOI 1. While the middle clay appears to be everywhere present, at least on the eastern side of the Schuylkill River, its characteristically muddy texture can vary and become finely-laminated/bedded and intercalated with muddy sand. West of the Schuylkill River and particularly under areas north of Point Breeze, the middle clay unit (in addition to most if not all of the PRM) appears to have been incised and completely removed by erosion. Downgradient, nearer AOI 9 and the George C. Platt Bridge, some pockets or thin lenses of middle and/or lower clay may be present under a thick section of Quaternary alluvium. At other locations beneath the Philadelphia Refinery, the middle and lower clay units appear to be in direct contact with each other, where the middle sand is absent (Stantec, 2016).

The middle clay unit, in places resting directly on and combining with the lower clay unit, acts as a significant confining bed at the Philadelphia Refinery. In a regional context, it creates hydraulic separation between the unconfined aquifer and deeper, confined to semi-confined aquifer(s) of the middle and/or lower sand units.

2.2.1.3.4 Middle Sand Unit

The middle sand unit is a light-colored, stratified, fine to coarse sand with occasional gravel and clay that was generally deposited in lenticular masses along the axes of troughs carved into the lower clay unit (Greenman et al., 1961). As such, it is by nature discontinuous in the subsurface. Stantec has mapped the presence of middle sand at the Philadelphia Refinery based on stratigraphic position and where present, is commonly described on boring logs as brown or orange sand and gravel. In some areas where the lower clay was entirely removed, it may be indistinguishable from and rest unconformably atop the lower sand unit. At those locations, Stantec used subtle changes in sample descriptions, including color and/or texture, of the sequences of sand below the middle clay to infer the contact between those units. The middle sand unit, where discernable from the lower sand, has been observed at thicknesses up to approximately 15 feet beneath the Philadelphia Refinery and is generally thickest in lenticular or tabular bodies.

Much like the other sand units of the PRM, the middle sand unit can be a prolific aquifer where it is laterally continuous and of sufficient thickness. Aquifer testing of the middle sand in New Jersey has indicated that the aquifer has similar hydraulic properties to the lower sand unit (Navoy and Carleton, 1995). At the Philadelphia Refinery, Stantec did not identify any wells discretely screened across the middle sand unit from which to infer sole hydraulic properties (Stantec, 2016). Most deep refinery wells are screened in the lower sand, or potentially across the lower and middle sand units, where hydraulically connected.

2.2.1.3.5 Lower Clay Unit

Published descriptions of the lower clay unit indicate that it appears very similar to, and is sometimes inseparable from, the middle clay unit where the middle sand is absent. The lower clay is generally tough, red clay but is known from drilling records to contain softer zones of gray clay stratified with fine sand. The lower clay tends to exhibit its greatest thickness along the lateral margins of paleochannels in underlying bedrock, and can be thin to absent along the axes of

paleochannels where eroded prior to deposition of the middle sand unit (Greenman et al., 1961). Of the PRM clay units, Stantec has interpreted the lower clay unit to be the least significant at the Philadelphia Refinery in terms of both its lateral extent and vertical thickness. (Stantec, 2016) This is based on stratigraphic correlation and likely the result of erosion prior to deposition of the middle sand. Generally gray and red, commonly sandy clay and muddy sand zones were assigned to the lower clay if observed below and distinguishable from the middle clay. Where present, the lower clay was observed at thicknesses ranging from less than 1 foot to no greater than 10 feet. The lower clay appears to thicken and become more continuous to the south and east of the Philadelphia Refinery.

Where physically connected, the lower and middle clay units combine to form a significant confining bed at the Philadelphia Refinery. In a regional context, they create hydraulic separation between the unconfined aquifer and deeper, confined to semi-confined aquifer of the lower sand unit. The lower clay can also create localized areas of hydraulic separation between the lower and middle sands, where discretely present.

2.2.1.3.6 Lower Sand Unit

The lower sand unit is a varicolored but predominantly white to yellow sand with gravel, usually fining upward to a cap of fine to medium sand with occasional yellow and gray clay lenses. As further described below, the lower sand unit is the oldest of the PRM deposits and rests unconformably atop bedrock. The lower sand is generally thickest (up to 87 feet thick) along the axial troughs of paleochannels carved into bedrock by discharge through former positions of the Schuylkill and Delaware Rivers (Greenman et al., 1961). At the Philadelphia Refinery, the lower sand unit is present as a nearly continuous deposit, with the exception of some areas west of the Schuylkill River where it appears that the river entirely removed the PRM. Where present, the lower sand unit is observed to range in thickness from approximately 20 feet to a maximum of just over 50 feet, where it fills a bedrock paleochannel beneath a portion of AOI 1. Philadelphia Refinery borehole logs indicate that the lower sand unit is commonly yellow, white, and pale gray in color and predominantly medium to coarse sand with gravel, or gravel with sand. The lower sand's gravelly texture beneath the refinery has been well documented on drilling logs.

Of the PRM aquifer system, it can be argued that the lower sand unit was historically the most important groundwater resource in south Philadelphia. Figure 10 summarizes hydraulic information available for the lower sand unit, based on published aquifer testing results. Proximal to the Philadelphia Refinery at the Philadelphia Naval Shipyard (PNSY), a wealth of historical testing data is available for the lower sand unit and indicates an average k value of approximately 134 ft/d. Across the Delaware River in New Jersey, k values seem to be slightly higher. At the Philadelphia Refinery, there are several wells that appear to be discretely screened within the lower sand unit. However, Stantec did not identify any aquifer testing data derived from testing of onsite lower sand wells (Stantec, 2016). It is noted that Stantec recently installed two new AOI 4 monitoring wells screened within the lower sand unit aquifer. Those wells will be utilized for the collection of slug test data and for two short-duration, constant-rate pumping tests to estimate lower sand hydraulic properties at the Philadelphia Refinery. The data from this testing will be submitted in future Act 2 submittals.

2.2.2 Bedrock

Bedrock beneath the Coastal Plain near south Philadelphia has been inferred from surface outcroppings above the "Fall Line," and has been described in the subsurface where penetrated by past drilling activities. Bosbyshell (2008) has mapped schist of the Wissahickon Formation to occur in Philadelphia along the "Fall Line" (Figure 6). Relatively small bodies of granitic gneiss, resulting from igneous intrusions into the country rock during metamorphism, can also be present. Most boring log records of deep holes drilled at the Philadelphia Refinery indicate that schist is present beneath the Coastal Plain, in agreement with published maps.

Available data pertaining to the bedrock surface beneath the Philadelphia Refinery suggests that the surface generally dips to the southeast but contains local complexity. Greenman et al. (1961) recognized the presence of four paleochannels incised into bedrock and attributed those features to previous positions of the Schuylkill River. Two of those channels, referred to as the Schuylkill River and League Island Troughs by those authors, occur beneath parts of the Philadelphia Refinery and influence the total thickness of the Coastal Plain sedimentary sequence above them (Figure 11). Through boring log review, Stantec has identified additional detail in the bedrock surface beneath the Philadelphia Refinery, including a small bedrock paleochannel beneath the southern portion of AOI 1 that appears to be an extension of the League Island Trough, and a few localized bedrock surface highs (pinnacles) (Stantec, 2016).

In general, bedrock can store and transmit groundwater primarily through secondary porosity structures (e.g., fractures, joints). Bosbyshell (2008) indicates that the Wissahickon Formation can yield up to 20 gpm to wells in the mapped area above the "Fall Line." Balmer and Davis (1996) indicate that in Delaware County, Pennsylvania, the Wissahickon Formation is the most productive of the consolidated rock aquifers present in that county and can yield anywhere from 0 gpm to 300 gpm to wells (data from 127 wells). However, the wells included in their report were generally located above the "Fall Line" and were not screened below significant accumulations of Coastal Plain sediments. In general, when compared to the permeability and thickness of the Coastal Plain Refinery are considered de minimis.

3. Soil Investigation

The following sections summarize the soil investigation activities performed as part of the remedial investigation activities in AOI 6. The site characterization activities conducted for the RIR in 2016/2017 were completed by Stantec, GHD and Aquaterra, on behalf of Evergreen. The goal of the 2016/2017 activities was to characterize soil in potential source areas, such as historic product handling and storage locations, open storage tank incident areas, and known product releases. Investigations before 2016-2017 are summarized in Section 3.1.

All characterization fieldwork was performed in accordance with Evergreen's *Quality Assurance/Quality Control Plan and Field Procedures Manual* (Appendix B). Soil borings were advanced using a variety of methods including hand auger, backhoe, split spoons in conjunction with hollow stem augers, and split spoons driven using direct push methods. The general strategy for the investigation was to characterize soil in the 0 to 2 ft. bgs and greater than 2 ft. bgs intervals

(unsaturated soil). Generally, subsurface soil samples were collected at the depth exhibiting the highest photoionization detector (PID) response and/or above the water table. Delineation was performed to the highest of the Act 2 non-residential SHS, the non-residential direct contact MSC, and the numeric SSS (for lead). Soil samples from BH-16-014 through BH-16-16 and from well installations B-172 through 175 were initially sampled for volatile organic analyses (VOCs) and then were re-sampled for semi-VOCs (SVOCs). The soil sample from BH-16-041 was only analyzed for pH in accordance with Table 2.

Table 2 summarizes the soil boring rational and soil boring logs are included in Appendix C. All soil analytical results are summarized in Tables 3a and 3b, which compares the results to the 1) non-residential SHS (as previously defined in this report, the more stringent of the soil to groundwater MSC and the direct contact MSC), 2) the non-residential direct contact MSC, and 3) the numeric SSS (for lead) (Soil Screening Levels). Samples were analyzed for the COCs on Table 1. Analysis of soil samples was conducted by Lancaster Laboratories. All laboratory analytical reports from this investigation work are included in Appendix D.

3.1 Summary of Previous Soil Analytical Results

Soil data collected during previous soil investigations are summarized in Tables 4a and 4b and the locations are shown on Figures 12a and 12b. The soil data summarized on Tables 4a and 4b were collected from 2002 to 2016 during RCRA, Act 2 and Tank investigation activities. The majority of the previous data collection activities were completed in support of the 2006 SCR/RIR and the 2013 SCR/RIR. A total of 57 soil borings and 20 monitoring wells were installed during the 2006 and 2013 site characterization activities. Information from these investigations is presented in the 2006 SCR (Langan, 2006) and the 2013 SCR/RIR (Langan, 2013).

Soil sampling was completed from 20 borings within SWMU 92 and from six borings in SWMU 95 between 2006 and 2012. No leaded tank bottom materials were observed in SWMU 92 (Storage Tank Areas: Buried Lead Sludge Area 6). Therefore, Sunoco requested a Final Agency Determination for SWMU 92 in AOI 6 from USEPA in 2013. Potential leaded tank bottom materials were observed in four soil samples from SWMU 95 (Storage Tank Areas: Buried Lead Sludge Area 9). The lead results were below the SSS for all samples and the TCLP results collected for three samples were below the USEPA maximum concentration of lead for toxicity concentration of 5 mg/L. Therefore, Sunoco requested a Final Agency Determination for SWMU 95 in AOI 6 from USEPA in 2013. A SWMU closure request letter will also accompany the copy of this report to the USEPA.

A total of 31 soil borings with soil sampling were advanced outside of the SWMU areas. Soil sampling also occurred during the installation of 14 monitoring wells in 2006 and six monitoring wells in 2012. The soil borings locations are shown on Figures 12a and 12b, as historic soil borings, the soil data from these investigations is summarized in Tables 4a and 4b. The 2006 and 2013 SCR/RIRs are included in Appendix J.

AOI 6 includes ASTs and many soil samples have been collected for tank characterization and closure under 25 PA Code Chapter 245, in addition to the sampling completed as part of the Act 2/One Cleanup Plan activities. Although the rationale and results of all of these soil sampling projects are not discussed in detail in this RIR, as they have been submitted to PADEP under 25 PA

Code Chapter 245 reporting, they are relevant to the characterization of AOI 6 under Act 2. The analytical results for these tank-related assessments are included in Tables 4a and 4b, and the soil sample locations are shown on Figure 2 as historic sample locations. The investigation of select tank incidents was performed as part of the field effort for this RIR, and those results are discussed in the following sections.

3.2 Historic Product Handling/Storage Areas

In order to investigate areas of historic product handling and storage, soil borings were advanced within the area of former Tank 237, former Tank 238 and Tank 251 during the 2016 site characterization activities. These borings included boring BH-16-039 in the vicinity of Tank 237 and BH-16-010 and SB-16-011 in the vicinity of Tank 238. None of the soil results from these borings exceeded the SHS.

3.3 Open Storage Tank Incidents

Evergreen intends to address all open AOI 6 storage tank incidents for which it is responsible through the 25 PA Code Chapter 245 CAP Program under separate cover. In 2014, the PADEP provided Evergreen with a list of the open Evergreen tank incidents in the PADEP database for AOI 6. One of the tank releases, PADEP Release Incident Number 37546 for Tank 250, was originally listed as on open incident by the PADEP in their 2014 summary of open incidents but was changed to closed in accordance with Mr. David Brown's Technical Review Memo dated August 29, 2017 which is included in Appendix E. PADEP release incident 46762 was assigned to a tank containing Nalco which is a filming agent (cyclohexylamine) used as an additive for boiler feedwater. Discussions with Sunoco personnel confirmed that this material was held in small temporary plastic tanks and therefore their location can not be shown on the figures. Cyclohexylamine is very biodegradable (Handbook of Environmental Fate and Exposure Data for Organic Chemicals, 1990) and is not expected to have lasted in the environment. Based on these conditions, no impacts are expected for the incident and therefore no further investigation was completed for incident 46762. The remaining open tank incidents are summarized in Table 5.

Soil characterization activities were conducted to further investigate the open storage tank incidents within AOI 6. For borings associated with storage tank incidents that involve releases within tank berms, soil analytical results are presented in this RIR for informational purposes only, as they relate to overall AOI 6 soil characterization. These data will be used in separately prepared SCRs for the identified open storage tank incidents, which will be submitted under separate cover to the PADEP in order to satisfy the requirements of 25 PA Code Chapter 245. The following summarizes the incidents that the PADEP provided to Evergreen, available information for these tanks, completed investigation activities during the 2016 site characterization activities and whether this tank will have a separate SCRs submitted to fulfill the requirements of 25 PA Code Chapter 245.

This section also includes groundwater data from the 2016 site characterization activities, if applicable to the discussion of the Tank Incident. The groundwater results are further discussed in Section 4.

3.3.1 GP T81 (Former PADEP Tank 121A, Incident 45692)

On September 11, 1993, a split in a line caused the release of approximately 100 gallons of liquid caustic onto the ground. The release was reported to PADEP on September 12, 1993 and Incident No. 45692 was assigned by the PADEP. A confirmation letter was sent to PADEP on October 4, 1993. The letter stated the liquid caustic was vacuumed up and the contaminated soil was removed for treatment. During the 2016 site characterization activities, three borings, BH-16-040, BH-16-041, BH-16-043 were completed in the vicinity of Tank 81. Sampling during the AOI 6 RI was conducted to characterize this release incident by analyzing for pH. The results indicate a pH range of 7.86 to 9.15 standard units (s.u.). The calculated median is 8.12. A SHS does not exist for pH. The pH results indicate the soil is slightly alkaline; however, these levels do not create hazardous condition. The pH results in groundwater in B-39 during the groundwater sampling in 2016 ranged from 7.3 to 7.5.

Although not related to the release, samples from BH-16-040, BH-16-041, and BH-16-043 had exceedances of the SHS for benzene, naphthalene, 1,2,4 TMB, none of these sample results exceeded the NRDC. The soil samples in BH-16-041 collected from 0.75 to 1.25 feet exceeded the SSS for lead, but it was vertically delineated by the soil sample collected from BH-16-041 from 1.75 to 2.25 feet. This SSS exceedance was horizontally delineated by four additional borings which were completed in 2017, BH-17-003 to 005 and BH-17-009.

3.3.2 GP 676 (Former Tank GPU 676, PADEP Tank 130A, Incident 4844)

Tank 676 was used to store No. 6 fuel oil. On July 19, 1998, 60 barrels of No. 6 fuel oil were released into the tank dike. Sunoco immediately took corrective action and recovered 59.5 barrels of fuel from the tank dike area. Sunoco notified the PADEP of the incident on July 20, 1998 and submitted a Notification of Reportable Release on August 10, 1998. Incident No. 4844 was assigned to this release by the PADEP. Boring BH-12-104, completed during the 2012 site characterization activities, is located in the area of former Tank 676 and had no exceedances of the SHS. During the 2016 site characterization activities, one boring BH-16-006 was completed in the tank dike of former Tank 676 and none of the soil samples collected from this boring exceeded the SHS.

Stantec conducted closure sampling within the tank berm of Tank 676 for PES in December 2016. Nine samples were collected as part of this investigation, GP676-1 though GP676-9. No obvious contamination was observed during the soil sampling. None of the samples had exceedances of the SHS. Groundwater well B-95, located in area of Tank 676, had one slight exceedance of the SHS for an estimated concentration of benzo(a)pyrene. Stantec's AST Closure Report Form for Tank 676, dated December 16, 2016 is included in Appendix J.

3.3.3 GP 797 (Former PADEP Tank 097A, Incident 29122)

GP 797 was an above ground storage tank (AST) which contained process water that contained light-end hydrocarbons (e.g., benzene and cumene) that was closed-in-place. The in-place closure of tank GP 797 was completed on April 30, 2002, by Sunoco. As part of the closure activities, four hand augers borings (HA-1, HA-2, HA-3, and HA-4) were completed and shallow soil samples were collected at each location, with two samples collected at HA-3. Benzene was detected at

concentrations above the NRDC in two samples. The SHS was exceeded for benzene, ethyl benzene and toluene. Based on these results Sunoco notified the PADEP of a release on June 10, 2002. PADEP issued a Notice of Violation (NOV) dated July 29, 2002 and Incident No. 29122 was assigned. In the NOV, PADEP requested a characterization of the extent of soil contamination and impact submitted in an SCR.

Sunoco submitted a closure assessment report to the PADEP for AST 797 dated July 10, 2002. Sunoco subsequently submitted a SCR for AST 797 to the PADEP dated December 12, 2002, to further characterize the release from this tank. The SCR documented the collection of three soil samples from three locations, MW-1, MW-2, and MW-3 completed outside of the containment dike. Benzene (in MW-1, MW-2, and MW-3) and toluene (in MW-3) exceeded the SHS during this sampling. Benzene also exceeded the NRDC in the soil sample collected from MW-3. Wells MW-1 through MW-3 were renamed B-149 through B-150 respectively.

During the 2012 site characterization activities, five additional soil borings with the collection of six soil samples were completed to further characterize Tank 797. Four of the borings were installed in the locations of HA-1 through HA-4 to characterize soil greater than two feet below grade. Benzene and toluene exceeded the NRDC in four of the five soil samples. The surface soil sample from boring BH-12-125 had no exceedances of the SHS. PADEP requested delineation to the northwest, north, and northeast of tank GP 797 in SCR comments dated November 22, 2013. Nine soil borings (BH-16-030 through BH-16-038) were completed during the 2016 site characterization activities to delineate conditions near the tank area within the limits of the tank berm. These samples had exceedances of the SHS for benzene, isopropyl benzene and toluene. In addition, the sample from BH-16-037 also exceeded the NRDC for benzene.

Groundwater from well B-155 located downgradient of tank 797 had exceedances of the groundwater SHS for benzene and benzo(a)pyrene during the 2016 site characterization activities as summarized in Table 7a.

3.4 Historic Releases

The following section discusses known historic releases that were investigated as part of the AOI 6 characterization activities. As part of the remedial investigation under Act 2, historic releases that may have created sources for COCs in soil were identified based on the available information. In order to identify areas that would require further investigation, a review of internal facility files was completed by Evergreen. PADEP also reviewed its records and provided information on historic incidents. Specific release locations were determined based on document descriptions and interviews with refinery personnel. Based on information obtained, targeted soil investigations were performed as described in the following subsections. This section also includes groundwater data from the 2016 site characterization activities, if applicable. The groundwater results are also further discussed in Section 4.

3.4.1 'Area West of' GP 676, or '2000 Surface Release'

On September 29, 2000, approximately 15,000 gallons of No. 6 fuel oil from No. 3 Boiler House was released from a product line outside of the tank berm for Tank 676. Approximately 7,500 gallons of product was recovered by vacuum trucks, a boom was set up due to the proximity to the bulkhead

and the contaminated soil was excavated and sent for off-site disposal. Since the release occurred outside of a tank dike, this is considered a historic release even though the PADEP assigned incident number 6133 to this event. During the 2016 site characterization activities, five borings (BH-16-002 through BH-16-006) were completed to characterize conditions between the outside of the dike for Tank 676 and the bulkhead to characterize this area. None of the soil samples collected from BH-16-002 to BH-16-006 exceeded the SHS or the SSS for lead. Groundwater downgradient of these borings in monitoring wells B-170, B-153, B-168, and B-169 had no exceedances of the SHS with the exception of lead in B-169.

3.4.2 1733 Unit

Approximately 840 gallons of benzene were released at the 1733 unit (Bell Hood CUE 4B) on November 27, 1995 based on a review of Sunoco's records. Three borings were completed in this area during the 2016 site characterization activities (BH-16-007 through BH-16-009). None of the soil results from these borings exceeded the SHS.

3.4.3 Transfer Line Located Northeast of No. 4 Boiler House

Approximately 1,300 gallons of No. 2 fuel oil were released from a transfer line located north east of the No. 4 Boiler House and east of Tank 238 on September 3, 1993. Two borings were completed during the 2016 site characterization activities (BH-2016 -16-012 through BH-2016-16-013). None of the soil results from these borings exceeded the SHS.

3.4.4 1332 Line

Approximately 4,400 gallons of naphtha were released from the 8-inch line outside of the tank dike for GP-251 that lead to unit 1332 on February 2, 1994. Chevron personnel applied foam and then completed vacuum removal of the release. Three borings were completed in this area during the 2016 site characterization activities (BH-16-17, BH-16-018 and BH-16-023). None of the soil results from these borings exceeded the SHS. An additional three borings (BH-16-14 to BH-16-16) were completed inside the dike of Tank 251 during the 2016 field activities based on comments from former Sunoco employees. None of the soil results from these borings exceeded the SHS.

3.4.5 Main Office

Approximately 4,000 gallons of jet fuel were released from an underground line near the main office in September 1992. Three borings were completed during the 2016 site characterization activities (BH-16-019 to BH-16-022). None of the soil results from these borings exceeded the SHS, with exception of BH-16-019 which exceeded the SSS for lead. The lead detection in BH-16-019 was delineated by BH-17-001 and BH-17-002.

3.5 Delineation of Direct Contact MSC/SSS Exceedances

In order to complete horizontal and vertical characterization in soil, areas exhibiting exceedances of the non-residential direct contact MSC (and the SSS for lead) were delineated. These areas and associated investigations are described below:

- A historic soil sample (BH-30-09) from 0 to 2 ft. bgs had a lead detection above the SSS for lead and historic soil sample (BH-29-06) from 0 to 2 ft. bgs had a lead detection above the numeric SSS for lead and a BaP detection above the NRDC. Soil samples collected from B0152, BH-12-108, BH-32-09, BH-27-09, BH-28-09, BH-29-09, BH-31-09, and BH-27-06 delineate these NRDC.
- Historic soil samples GP-797-HA-1, GP-797-B-150, and GP-797-HA-3 in the GP-797 area from 0 to 2 ft. bgs had an exceedance of the NRDC for benzene. The soil samples from BH-16-029, BH-12-122, BH-12-119, B-149, BH-16-033, BH-16-32, BH-16-031, GP-797-HA-4, and BH-12-130 delineated these NRDC exceedances for benzene.
- Historic sample BH-12-128 had an exceedance of the NRDC for benzene. The soil samples from BH-16-032, BH-12-125, BH-16-031, and BH-16-033 delineated the NRDC for benzene.
- Historic soil samples BH-12-149, BH-12-129, BH-12-128, and BH-12-124 in the GP-797 area from >2 ft. bgs had an exceedance of the NRDC for benzene. The soil samples from BH-16-032, BH-16-033, BH-12-129, BH-16-036, BH-16-035, and BH-16-008 generally delineate this exceedance for benzene.
- Soil sample BH-16-037 from 0 to 2 ft. bgs exceeded the NRDC for benzene during the 2016 site characterization activities. This sample was delineated by BH-16-025, BH-16-026, BH-16-036, BH-16-038, and by BH-12-149.
- Soil sample BH-16-019 from 0 to 2 ft. bgs exceeded the SSS for lead during the 2016 site characterization activities. This sample was delineated by BH-16-021, BH-16-020, BH-17-002, and BH-17-001.
- Soil samples BH-16-041 and BH-17-004 from 0 to 2 ft. bgs exceeded the SSS for lead during the 2016/2017 site characterization activities. These samples were delineated by BH-17-003, BH-17-009, BH-17-005, BH-16-043, and BH-16-040.
- Soil samples BH-16-025 and BH-16-037 from greater than 2 ft. bgs exceeded the NRDC for benzene during the 2016 site characterization activities. These sample were delineated by BH-16-036, BH-16-034, BH-16-030, and BH-16-008. Additional sampling may be completed for BH-16-025 during risk assessment or remedial design activities.

3.6 Site Characterization in the 0-2 ft. bgs interval, 2-15 ft bgs Interval and Beneath LNAPL

In response to PADEP comments to previous site characterization activities and the February 19, 2016 meeting, additional soil sampling was completed to complete characterization in the 0-2 ft. bgs

interval, 2-15 ft. bgs. interval and beneath LNAPL. These results associated with the 2016/2017 site characterization activities are described below:

- As shown on Figure 12a, the following surface samples (0-2 ft. bgs) exceeded the NRDC (or numeric SSS for lead): BH-16-019 (lead), BH-16-041 (lead), BH-16-037 (benzene), BH-17-004 (lead) and BH-16-019 (lead) during the 2016/2017 site characterization activities.
- As summarized in Table 3a, Surface samples (0-2 ft. bgs) exceeded the soil to groundwater MSCs for benzene (BH-16-026, BH-16-029, BH-16-030, BH-16-031, BH-16-034, BH-16-036, BH-16-037, BH-16-038, BH-16-040, BH-16-043, and B-175), ethylbenzene (BH-16-037), isopropylbenzene (BH-16-037), toluene (BH-16-037) and lead (BH-16-003, BH-13-004, BH-16-007, BH-16-010, BH-16-011, BH-16-15, BH-17-003, BH-17-005) during the 2016/2017 site characterization activities.
- As shown on Figure 12b, the following subsurface samples (>2 ft. bgs) exceeded the NRDC for benzene: BH-16-025 and BH-16-037 during the 2016/2017 site characterization activities.
- As summarized in Table 3b subsurface samples (>2 ft. bgs) exceeded the soil to groundwater MSCs for benzene (BH-16-027, BH-16-029, BH-16-030, BH-16-031, BH-16-032, BH-16-034, BH-16-036, and BH-16-043), 1,2,4-trimethylbenzene (BH-16-025), isopropylbenzene (BH-16-037), naphthalene (BH-16-040) and toluene (BH-16-025 and BH-16-037) during the 2016/2017 site characterization activities.
- Soil samples from BH-17-003 and BH-16-040 were selected to be collected in the vicinity of well B-39 which has identified LNAPL to address the PADEP request for soil samples in LNAPL areas. None of the results from BH-17-003 exceeded the SHS. The soil results from BH-16-040 had an exceedance of the SHS for benzene, but none of the results exceeded the NRDC. In addition, soils from historical sampling events collected in LNAPL areas from 0-2 ft collected from BH-21-06, B-161, B-148, B-149, B-150, B-175 and BH-25-06 had no exceedances for the SHS with the exception of benzene (B-148, B-149, B-150, B-175 and BH-25-06) and toluene (B-150). The soil sample collected from 2-15 feet from B-175 did not exceed the SHS.

4. Groundwater Investigation

4.1 Historic Groundwater Investigations

Available well construction details are summarized in Table 6. Previous consulting reports in Appendix L describe the various historic groundwater sampling events that have been conducted within AOI 6. All of the available analytical data for wells located in AOI 6 from 2013 to present are presented in Table 8 and all available historic groundwater data are presented in Appendix K.

4.2 Well Installation Activities

This section describes well installation activities that were performed as part of the 2016 remedial investigation. Activities are discussed by purpose in order to clarify characterization goals. All fieldwork was performed in accordance with *Evergreen Field Procedures* (Appendix B). Monitoring well locations are shown on Figure 2. Well logs, including both lithologic information and well construction details, are included in Appendix C. Well construction details are also summarized in

Table 6. The following sections discuss the well installation strategy/rationale; however, a summary is also available in Table 2.

In order to better delineate LNAPL and dissolved benzene plumes interior to AOI 6, additional water-table monitoring wells B-172 through B-175 (WP9-1 replacement) were installed during the 2016 remedial investigation activities. An additional location, B-171 was attempted; however, the well was not installed due to the presence of a concrete floor in this area. Several attempts were made to install B-171, but the concrete flooring was encountered at each location. Prior to the installation of the monitoring wells, well locations were cleared for subsurface utilities to 8 ft. bgs using a vacuum truck. Monitoring well installation activities were performed using hollow stem auger methods by US Environmental of Mullica, New Jersey under the oversight of GHD in April 2016. During borehole advancement, surface and subsurface soil samples were collected for laboratory analysis of the COCs in Table 1. Continuous soil sampling using a split spoon sampler was performed. A GHD geologist screened soil with a PID and logged sample lithologies. LNAPL was not observed in B-172, B-173, B-174, or B-175.

4.3 Groundwater Sampling Events

A comprehensive characterization groundwater sampling event, consisting of 37 monitoring wells was conducted in May 2016. A second, more focused groundwater sampling event was conducted in August 2016 for B-39, B-43, B-116, B-117, B-125, B-126, B-132, B-133, B-145, B-150, B-158, B-164, B-169, U-4, URS-1, URS-2, URS-3, URS-4, URS-5, and the newly installed wells (B-172 to B-175). All fieldwork was performed in accordance with *Evergreen Field Procedures* (Appendix B). Monitoring well locations are shown on Figure 2. All samples were analyzed for the COCs (Table 1) by Lancaster Laboratories, located in Lancaster, Pennsylvania.

Analytical results for groundwater samples collected in 2016 and all historic results for AOI 6, are summarized in Tables 7a and b and in Appendix K, respectively. Concentrations of the following COCs were detected above the non-residential MSC during the 2016 groundwater sampling events: benzene, isopropyl benzene, 1,2-dibromoethane (EDB), toluene, 1,2,4-TMB, benzo(a)anthracene, benzo(a)pyrene, benzo(g,h,i)pyrene , benzo(b)fluoranthene, chrysene, naphthalene, and lead. The following observations can be made concerning the groundwater exceedances:

- The benzo(a)pyrene groundwater MSC exceedances in B-162 and B-117 are delineated by B-116 and B-115.
- As shown on Figure 19, there are several wells with exceedances of the groundwater MSC for benzene. As shown on Figure 19, these wells are delineated in the downgradient direction with the exception of benzene in URS-5, which intermittently has detections of LNAPL, and is located adjacent to the bulkhead.
- One additional well with a benzene exceedance of the MSCs is B-152. This well is delineated by wells B-43 and B-168.
- Wells B-145, U-4, B-175, B-125, URS-3, B-173, and B-126 had SHS exceedances of benzene, SVOCs or lead which were delineated by B-174, URS-1, URS-4, and B-164.
- Wells B-156 and B-172 had SHS exceedances of benzene and SVOCs generally delineated by B-170.

- Groundwater samples from B-39, B-132, B-134, B-144, and B-150 were collected beneath LNAPL. As shown on Figure 19 and in Tables 7a and 7b, all of these samples had at least one detection above the groundwater MSCs as discussed below:
 - B-39 had low level exceedances of the MSCs for ethyl dibromide, benzo(a)pyrene, benzo(b)fluoranthene, benzo(b)fluoranthene, benzo(g, h, i)perylene, chrysene and lead.
 - B-132 had low level exceedances of the MSCs for benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(g,h,i)perylene, chrysene which is delineated by URS-5 except for benzo(a)pyrene.
 - B-134 had low level exceedances of the MSCs of benzo(a)pyrene which is delineated by B-126 and URS-5.
 - B-144 had low level exceedances of 1,2,4-trimethylbenzene, benzene, benzo(a)anthracene, benzo(b)fluoranthene, benzo(g,h,i)perylene and chrysene which is delineated by B-126.
 - B-150 had elevated exceedances of the MSCs 1,2,4-trimethylbenzene, benzene, isopropyl benzene, and toluene and low levels of benzo(a)pyrene which is delineated by B-156 with the exception of benzo(a)pyrene which is delineated by URS-5.
- The remaining wells with groundwater MSC exceedances, B-43 and B-169, are located in close proximity to the bulkhead and will be evaluated through the site-wide fate and transport report.
- None of the monitoring wells screened in the lower aquifer had exceedances of the non-residential groundwater MSCs, as presented on Figure 20.

4.4 Well Gauging Activities

Stantec presently conducts annual groundwater and LNAPL gauging of all existing wells at the Philadelphia Refinery. The site-wide annual well gauging event, which is typically conducted during the second quarter of each year, is used to identify the presence of LNAPL and determine groundwater flow patterns. Liquid level measurements, groundwater contour figures, and product thickness figures are submitted to PADEP with the Philadelphia Refinery Remediation Program Groundwater Remediation Status Reports during the first half of each year. Groundwater elevation contours from the May 2016 annual gauging event is included on Figure 13. In addition to the annual events, the wells included in the September 2016 groundwater gauging event were gauged are shown on Figure 14.

5. Site-Specific Hydrogeologic Conditions

In Section 2 above, details regarding the methodology and interpretation of regional geologic conditions were presented. The purpose of this discussion of site-specific conditions is to refine the regional hydrogeologic framework to summarize conditions observed beneath AOI 6, with an emphasis on groundwater occurrence, groundwater flow, and hydraulic head potentials. It is understood that although this RIR is designed to address subsurface conditions beneath AOI 6, PADEP has previously requested that investigations of individual AOIs look beyond the boundary of the AOI being investigated. As such, GHD has utilized well gauging from AOIs 5, 6, and 7.

Groundwater contouring and evaluation of head conditions in the study area are included on Figures 13 and 14.

5.1 Geologic Formations and Units Observed

On the basis of available lithologic data from boring logs, the principle of stratigraphic position, results of past investigations, review of historical maps, attempted correlation of observed lithologies across the study area to a published geologic framework (e.g., Quaternary deposits and the PRM aquifer system) documented in the AOI 1 RIR (Stantec, 2016), GHD has interpreted the following stratigraphy in the subsurface beneath AOI 6. A generalized stratigraphic column is included as Table 10 and the cross section through the facility, including AOI 6, is shown on Figure 8.

5.1.1 Anthropogenic Fill

Apparent fill is present everywhere beneath the existing land surface in AOI 6 and has been identified averaging approximately 10 feet. Stratigraphic Profile E-E' (Figure 8) presents the interpreted fill thickness in AOI 6.

5.1.2 Recent (Holocene) Alluvium

Recent alluvial deposits that post-date the Trenton gravel are present beneath filled areas within AOI 6. In general, recent alluvium defines the antecedent topography that preceded industrialization at the Philadelphia Refinery. In large part, recent alluvium within the facility is fine-grained, brown to brownish gray silt/clay with occasional lenses of sand and gravel that commonly grades with depth to include some sand. In places, decomposing organic material has also been indicated. The thickness of the recent alluvium within AOI 6 has been observed to range from approximately 20 to 35 feet. The recent alluvium is the most significant units to occur beneath AOI 6, as shown on Figure 8.

5.1.3 Trenton "Gravel"

The Trenton "gravel" does not occur uniformly throughout AOI 6. The Trenton "gravel" ranges in thickness from approximately 10 feet to pinching out along the eastern boundary of AOI 6. Its predominant lithology appears to be silty, clayey, poorly-sorted sand with gravel, but includes secondary sandy gravel and clay/silt lithologies in lenses. As described site-wide, the Trenton gravel is a heterogeneous unit that is reflective of its depositional environment.

5.1.4 Upper Clay Unit/Upper Sand Unit/Middle Clay/Middle Sand/Lower Clay

The PRM upper clay/upper sand/middle clay/middle sand and lower clay units are not interpreted to be present beneath AOI 6. It appears that these units were truncated by erosion prior to or contemporaneous with deposition of the Trenton "gravel". The Trenton "gravel" or alluvium (where the Trenton "gravel" is absent) rests unconformably above the Lower Sand unit as shown on Figure 8.

5.1.5 Lower Sand Unit

In general, the lower sand coarsens with depth, from a dense fine to medium pale gray, pale yellow and white quartz sand to white and varicolored sandy gravel and gravelly sand. An area of sandy gravel has been mapped beneath AOI 6 in the Lower Sand Unit. The thickness of the lower sand in AOI 6 is approximately 20 feet.

5.1.6 Crystalline Bedrock

Bedrock where encountered, has been described as moderately to highly-weathered mica schist. As shown on Figure 6, bedrock elevations beneath AOI 6 range from a maximum of approximately -60 feet NAVD 88, near the AOI 7/AOI 3 boundary, to a minimum of approximately -80 feet NAVD 88 in the northwest portion of AOI 6.

5.2 Aquifer Hydraulic Properties

Two aquifers have been identified beneath AOI 6. In general, these are the water-table (unconfined) and lower (semi-confined) aquifers. Stantec identified and evaluated properties of those aquifers at the facility through review of approximately 300 well records as documented in the AOI 1 RIR (Stantec, 2016). Records reviewed included well gauging data and where available, lithologic logs, physical properties, and well/aquifer testing data. Hydrostratigraphic units were assigned by Stantec to wells where possible using the stratigraphic profiles and nearby and deep boreholes as control points. Overall, approximately 90 percent of existing monitoring wells used at the facility are screened across the unconfined aquifer and are designed to intersect the water table. Of the remaining 10 percent screened in the lower aquifer, approximately 9 percent partially penetrate the lower sand and 1 percent are screened in either the middle sand, or across the middle clay.

It is noted that intervening PRM upper sand and middle sand aquifers do not appear to be present beneath AOI 6. It is also noted that hydraulic head potentials between the unconfined and lower aquifers are downward across AOI 6. These site-specific hydrogeologic conditions are discussed further below and are supported by Figures 13 and 15 which show groundwater elevation contours for both aquifers for 2016.

5.2.1 Methodology for Evaluation of Hydraulic Data

For the purposes of evaluating hydraulic head, flow direction(s) and magnitudes of groundwater flow for the aquifers identified in this RIR, GHD reviewed 2015 and 2016 water levels from annual, site-wide gauging data within the facility. For wells gauged by GHD, depth-to-water measurements were collected with an optical interface probe and reported to the nearest hundredth of a foot. Water-table elevations were calculated using surveyed well top-of-casing elevations and, where necessary due to LNAPL accumulations, corrected using LNAPL density data from the nearest available LNAPL sample data (see Table 9) for density assignments and for gauging data)

5.2.2 Unconfined (Water-Table) Aquifer

Beneath AOI 6, the unconfined aquifer is primarily composed of saturated portions of the fill and alluvium and the Trenton "gravel." On average, the saturated thickness of the unconfined aquifer beneath AOI 6 is approximately 20 to 30 feet. As a part of the AOI 1 RIR, Stantec (Stantec, 2016)

mined existing data and has identified estimations of horizontal hydraulic conductivity (k_h) for the unconfined aquifer from 15 in-situ aquifer (slug) tests and two, short-duration pumping tests (see Figure 9). None of these tests were identified in AOI 6. From those tests, estimated values of unconfined aquifer k_h vary two orders of magnitude across the facility. The wide range of estimated values of k_h is reflective of the heterogeneous nature of the Trenton gravel. Anomalously low values of k_h may also be the result of poor well-aquifer hydraulic communication related to inadequate well development, or fouling of the well screen. Stantec is presently evaluating potential values of reported unconfined aquifer k_h as a part of site-wide numerical model calibration and sensitivity analysis.

5.2.2.1 Hydraulic Heads and Groundwater Flow

As shown on Figure 14, water-table mounds are apparent in AOI 6. These mounds are found immediately adjacent to the bulkhead and one is in the southeastern portion of the site. The mounding along the bulkhead is due to the lower hydraulic conductivity of the bulkhead as compared to site soils. There are also two areas of groundwater depression in the eastern and central portion of AOI 6. Review of historic groundwater contours show that these contours are consistent with previous groundwater contours. Evaluation of groundwater mounding/depression is an important component of understanding horizontal hydraulic gradients since they strongly influence contaminant fate and transport in an analytical or numerical model.

Groundwater flows to the south west towards the river. The gradient towards the southwest is 0.0019 ft/ft. This pattern is consistent with the historical contours and supports that flow in AOI 6 is towards the river.

5.2.3 Semi-confined (Lower) Aquifer

Groundwater flow within the lower aquifer beneath AOI 6 has been contoured utilizing data from AOI 5, 6, and 7 wells, and the resultant potentiometric surfaces are shown on Figure 15 for synoptic well gauging events conducted in May 2016. The groundwater flow direction is to the southwest under a hydraulic gradient of approximately 0.002 ft/ft.

GHD evaluated the vertical hydraulic head gradients for May and August 2016 between the unconfined and lower aquifer throughout AOI 6. There is a downward gradient between the unconfined and lower aquifers. These gradients are consistent with previous data collected in AOI 6 (2013 RIR).

Beneath the study area, the lower aquifer is primarily composed of saturated portions of the lower sand unit. On average, the saturated thickness of the lower aquifer beneath AOI 6 is approximately 25 feet. There is no available aquifer testing data for the lower aquifer at the facility. Evergreen is planning on conducting slug and hydraulic tests on the lower aquifer in AOI 4 in support off the facility wide fate and transport modeling. At the time of this RIR however, the best available k_h data for the lower aquifer is estimated from historical testing performed at the Philadelphia Naval Shipyard and has been summarized on Figure 10. From those tests, values of lower sand k_h are estimated to vary from approximately 123 ft/d to 151 ft/d.

6. LNAPL Investigation

6.1 LNAPL Characterization Sampling

Various petroleum products have been stored and distributed within AOI 6. Historic testing has been completed to characterize the LNAPL at the Site. The results of the tests are summarized in Appendix F and are discussed below. Stantec has gone back through the historic LNAPL sampling and has reclassified some of the LNAPL types as summarized in Table 11, these re-classifications are also included below.

2004

In 2004, LNAPL samples from wells B-129, B-130, B-144, B-39, B-43, and WP 9-2 were collected and submitted to Torkelson Geochemistry, Inc. (Torkelson) for analysis. Torkelson completed gas chromatograph analysis of the samples. LNAPL characterization data included product type, density, proportions of product, weathering, and similarities to other samples.

- Well B-129 is located near the eastern border of AOI 6. Torkelson characterized the sample from B-129 as being severe-extremely weathered middle distillate with heavier material and gasoline (Langan, 2004).
- Well B-130 is located near the western border of AOI 6 along the bulkhead. Torkelson characterized the sample from B-130 as being severely-extremely weathered middle distillate and residual oil (Langan, 2004).
- Well B-144 is located near 2nd Street. Torkelson characterized the sample from B-144 as being severely weathered gasoline and residual oil (Langan, 2004).
- Well B-39 is located in the southwestern corner of AOI 6. Torkelson characterized the sample from B-39 as being severely weathered middle distillate and gasoline (Langan, 2004).
- Well B-43 is located along the bulkhead in the northwestern area of AOI 6. Torkelson characterized the sample from B-43 as being extremely weathered middle distillate (Langan, 2004).
- WP 9-2 is located along 2nd street in the southwestern corner of AOI 6. Torkelson characterized the sample from WP 9-2 as being severely weathered aviation gasoline and middle distillate (Langan, 2004).

2006

In 2006, LNAPL samples from wells B-47 and B-150 were collected and submitted to Torkelson Geochemistry, Inc. (Torkelson) for analysis. LNAPL characterization data included product type, density, proportions of product, weathering, and similarities to other samples.

- Well B-47 is located near the center of AOI 6. Torkelson characterized the sample from B-47 as being extremely weathered residual oil with a trace of unknown aromatics (Langan, 2006).
- Well B-150 is located west central of AOI 6. Torkelson characterized the sample from B-150 as being unknown aromatics with unknown weathering (Langan, 2006).

2013

 During the January 2013 groundwater sampling event, 19 monitoring wells had measureable (>0.01 feet) LNAPL.

6.2 LNAPL Distribution

Numerous monitoring wells across AOI 6 have been gauged for LNAPL over the course of implementing the investigation and remediation programs. Stantec completed LNAPL and groundwater elevation gauging events in May 2016. During this event, 76 wells were gauged in the unconfined and semi-confined zones. LNAPL was detected in 21 wells with a maximum thickness of 4.27 feet at well B-116 during the May 2016 gauging. Figure 16 presents the May 2 2016 apparent LNAPL thicknesses from a limited groundwater gauging event and Figure 17 presents the LNAPL thickness from the May 11 2017 annual gauging.

A shown on Figure 16, during the May 2016 event there was three main areas with LNAPL detections:

- LNAPL in wells B161, B-124, B-175 delineated by B-173 and B-125.
- LNAPL in wells B-143, B-142, Sump-1, B-138 and B-147 delineated by B-126, B-138, B-141, B-134 and B-133.
- LNAPL in wells B-150, B-149 and B-148 delineated by B-155, B-156, B-163and B-154.

LNAPL was also detected in isolated wells B-130, URS-3, B-152, RW-9, U-3, and B-129 delineated by adjacent wells.

Based on evaluation of multiple lines of evidence, as presented in Appendix F (LNAPL Evaluation), LNAPL is largely present as hydraulically immobile and unrecoverable residual that is stable in overall extent. The fact that the 27 Pump House Total Fluids Recovery System has been off since September 20, 2010 and passive remediation was discontinued on January 26, 2015, with no perceived rebound in LNAPL thicknesses, also lends support to this assertion.

7. Vapor Investigation

The vapor intrusion pathway in AOI 6 was evaluated for potential receptors of vapors originating from subsurface soil or groundwater, in accordance with the PADEP, Land Recycling Program; Technical Guidance Manual for Vapor Intrusion into Buildings from Groundwater and Soil under Act 2, January 2017 (VI Guidance).

7.1 Indoor Air Sampling

Evergreen and PES identified structures that could be occupied in AOI 6 during the initial building survey and the October 2017 building survey review, as shown in Table 12 and on Figure 18. During this survey 16 structures were identified as routinely occupied or potentially occupied. These buildings included: Building 6636, 24 Gate Building 295, Lab/Bottle Washing Building 163, Girard Point Training Building 651, Girard Point Main Office Building 650, Capital Projects Tank Group

Trailers, Control Room 739, Trade Shops 178, Carpenter Shop 726, North Tank Field Blockhouse 475, WTP Control Room 745, Control Room 6627, Control Room south of Boiler House #3, Former Locker House associated with former Boiler House #2, and Office near Separator. The characteristics of several of these buildings were such that vapor intrusion is not considered a complete pathway. The building-specific conditions are as follows:

- Refinery Lab/Bottle Washing Building 163 broken windows visible throughout that allows outdoor air flow
- Capital Projects Tank Group Trailers elevated trailers with perforated soffit-style skirt that allows outdoor air flow
- Control Room south of Boiler House #3 elevated without a skirt
- Former Locker House near former Boiler House #2/Process Building locked and inaccessible, not occupied
- Office near Separator blast resistant building sitting on ground and fork truck holes at the surface (to facilitate relocation)
- Paint Shop Building 701 accessible but unoccupied
- Insulation Building 265 unoccupied building used for storage

Indoor air and outdoor ambient (background) air samples were collected in March 2016 and March 2017 from the occupied buildings where the vapor intrusion pathway is potentially complete. The numbers of samples collected for each building was based on a combined approach from Appendix Z of the PADEP VI Guidance and professional judgement. The data from these sampling events are summarized in Table 13 and the locations sampled are shown on Figure 18.

A building survey and inspection was conducted to identify any potential indoor air sources of volatile organic compounds (VOCs) possibly already present within the building (e.g., smoking, cleaning products, building products, manufacturing chemicals, etc.), the number and frequency of occupants within the various buildings, and potential preferential migration pathways through the building slab (e.g., utility conduits, slab cracking, etc.). At each building GHD completed an Indoor Air Sampling Field Sheet, which is included in Appendix K.

Indoor and ambient air samples were collected using 6-liter capacity Summa[™] canisters in a suitable location(s) in each building at a representative breathing zone height (i.e., 3 to 5 feet above grade). Canisters were laboratory-certified clean in accordance with Appendix Z of the PADEP draft VI guidance. The canisters were fitted with a laboratory-calibrated critical orifice flow-regulation device sized to limit the indoor air sample collection flow rate to allow for 8-hour sample collection. Canisters maintained a minimum residual negative pressure of approximately 1 to 5 inches of mercury following sample collection. Written documentation of all field activities, conditions, and sampling processes, including names of field personnel, dates and times, etc. were recorded. Documentation included building designation, building use, occupant information, and weather conditions at the time of sampling (temperature, barometric pressure, wind direction and speed, and humidity).

Outdoor air sampling locations were selected for collection of an ambient air sample in AOI 6. The outdoor locations were set at the same general elevation of the samples in the buildings and were in a position that is generally upwind of the buildings being assessed.

Table 13 summarizes the indoor air and outdoor data and compares the detected concentrations to the generic screening criteria. As shown in Table 13, all detected concentrations of constituents in indoor air were below the Pennsylvania generic non-residential SHS for indoor air, except IA-AOI6-6627 (Building 6627 Control Room), which exceeded for benzene. As shown on Table 13, the benzene concentration at this locations also exceeded 1/10th of the SHS. The location of indoor and outdoor air samples is shown on Figure 18.

One additional round will be conducted and reported in a future submittal. If concentrations continue to be detected above the indoor air screening level in IA-AOI6-6627 (Building 6627 Control Room) or other locations, then it will be addressed through risk assessment or remedial activities as presented in the site-wide Risk Assessment report or site-wide Cleanup Plan.

7.2 Air Sampling over LNAPL Plumes

In March 2016, two air samples (two locations) were collected to evaluate outdoor air quality in locations over NAPL plumes within AOI 6, at the request of the PADEP. The locations of these samples are shown on Figure 18 and the results are summarized in Table 14. These samples were collected from the breathing zone (3 to 5 feet above ground level) using Summa© canisters with laboratory-provided regulators set to collect air over one continuous 8-hour period. The samples were packaged by field personnel and transported by FedEx to Lancaster Laboratories under Chain-of-Custody documentation for analysis of volatile organic compounds (VOCs) on the Act 2/One Cleanup program petroleum short list by EPA Method TO-15.

Table 14 summarizes the outdoor air data collected over NAPL plumes and compares the detected concentrations to background concentrations. PADEP operates a network of air toxics monitoring stations that analyze for VOCs. Regional ambient air quality in the Philadelphia area where the refinery is located is best represented by data from the Marcus Hook monitoring station (latitude 39.8178, longitude -75.4142). USEPA's background residential indoor air values are also included in Table 14 to determine whether detected concentrations are within background levels. As shown in Table 14, the results for the ambient air samples collected from over LNAPL in AOI 6 are within the background levels for this area. The location of indoor and outdoor air samples is shown on Figure 18. No additional sampling is proposed for the air quality over the LNAPL areas.

8. Quality Assurance/Quality Control

All fieldwork conducted as part of the site characterization activities was performed in accordance with the methods outlined in Appendix B, Evergreen Field Procedures. Methods established by Evergreen to examine data quality are outlined in the Evergreen Data Usability Standard Operating Procedure (SOP). An assessment of analytical data collected as part of this investigation under the SOP is also included in Appendix H in the data usability assessment. The following sections describe specific aspects of quality assurance/quality control procedures that pertain to the activities outlined in this report.

8.1 Equipment Decontamination

All sampling equipment was either dedicated or decontaminated in accordance with the field sampling procedures to prevent cross-contamination. Prior to sampling, the equipment was decontaminated with successive rinses of detergent, potable water, and distilled water.

8.2 Equipment Calibration

Air quality monitors used for both air monitoring and soil screening were calibrated prior to use. Both a zero calibration and a span calibration using gases of known concentration as recommended by the manufacturer (i.e., 100 parts per million by volume (ppm_v) isobutylene for the photoionization sensor) were performed.

8.3 Sample Preservation

Samples were placed directly into chemically preserved and/or non-preserved glassware provided by the analytical laboratory, as appropriate. All samples were preserved and shipped at a temperature of approximately 4°Celsius (C) or less by application of ice prior to shipment to the analytical laboratory. This temperature was maintained during shipment by placing ice in zip-top bags above, around, and below the sample containers.

8.4 **Documentation**

Chain-of-custody forms were maintained throughout the sampling program to document sample acquisition, possession, and analysis. Chain-of-custody documentation accompanied all samples from the field to the laboratory. Each sample was assigned a unique identifier that was recorded in the field notes as well as on the chain-of-custody document.

9. Conceptual Site Model

GHD's conceptual understanding of the present conditions identified at AOI 6 and nearby proximity is summarized as follows.

9.1 Description and Site Use

- The Philadelphia Refinery is located along the banks of the Schuylkill River in the City of Philadelphia, Philadelphia County, Pennsylvania. The facility, which is located on industrial property, covers approximately 1,300 acres of land with access restricted by fencing and security measures. Current operations at the facility consist of the production of fuels and basic petrochemicals for the chemical industry.
- The area surrounding the facility is characterized by a mixture of residential, commercial, and industrial properties.
- AOI 6, also known as the Girard Point Chemicals Processing Area, encompasses approximately 100 acres and is located on the east side of the Schuylkill River. AOI 6 is a wedge-shaped property bordered by Lanier Avenue/AOI 3 to the east, Penrose Avenue

(Route 291)/Platt Memorial Bridge/AOI 5 to the south and Pennypacker Avenue/AOI 7 to the north (Figures 1 and 2).

- The entire western boundary of AOI 6 along the Schuylkill River is bound by a sheet pile wall.
- AOI 6 formerly contained numerous above ground storage tanks (ASTs) containing benzene, toluene, naphtha and other fuel stocks. A sulfuric acid plant was located along the northern boundary of the AOI. A gasoline treating unit, two reformer units, a BDDA (soap) unit, and a thermal hydro-dealkylation unit were also located in this area.
- AOI 6 currently consists of Udex and cumene units, reformer and associated naphtha hydrotreater, a diesel hydrotreater, tankage, boiler-houses and associated feed water treatment, maintenance buildings, lay-down yards, office buildings, the # 2 oil-water separator and remote Laboratory.
- There are two leaded tank bottom SWMUs (SWMU Nos. 92 and 95) located in AOI 6 that were addressed in several previous RCRA investigations as part of the EPA Corrective Action Process (CAP).

9.2 Geology and Hydrogeology

9.2.1 Geologic Framework

- The Philadelphia Refinery occurs within the up-dip limits of the Atlantic Coastal Plain, generally within 2 miles of the "Fall Line".
- Beneath AOI 6, the following Coastal Plain deposits may be present, in order of increasing depth/age: apparent fill, Quaternary alluvium [including Holocene and Pleistocene (Trenton "gravel") deposits], and the Cretaceous Potomac-Raritan-Magothy (PRM) aquifer system lower sand unit.
- The PRM upper clay, upper sand, middle sand, and lower clay are interpreted to have been cut or laterally "pinch" out in AOI 6.

9.2.2 Unconfined (Water-Table) Aquifer

- Beneath AOI 6, the unconfined aquifer is primarily composed of saturated portions of unconsolidated materials primarily in the fill and alluvium, with lesser amount in the discontinuous Trenton "gravel".
- On average, the saturated thickness of the unconfined aquifer beneath AOI 6 is approximately 20 to 30 feet.
- No aquifer testing was identified in AOI 6. Evergreen is planning additional aquifer testing in AOI 4 as part of the facility wide fate and transport numerical model.
- Water-table mounds are apparent in AOI 6. These mounds are found immediately adjacent to the bulkhead portion of the site. The mounding along the bulkhead is due to the lower hydraulic conductivity of the bulkhead as compared to site soils. There is also an area of groundwater depression in the eastern and central portions of AOI 6. Review of historic groundwater contours show that these contours are consistent with previous groundwater contours.

• Groundwater flows to the southwest towards the river. The gradient towards the southwest is 0.002 ft/ft. This pattern is consistent with the historical contours and supports that flow in AOI 6 is towards the river.

9.2.3 Lower Aquifer (Semi-Confined)

- Beneath AOI 6, the lower aquifer is primarily composed of saturated portions of the lower sand geologic unit.
- On average, the saturated thickness of the lower aquifer beneath AOI 6 is approximately 25 feet.
- Groundwater flow within the lower aquifer beneath AOI 6 has been contoured utilizing data from AOI 5, 6, and 7 wells, and the resultant potentiometric surfaces for synoptic well gauging events conducted in May 2016. The groundwater flow direction is to the southwest under a hydraulic gradient of approximately 0.0019 ft/ft.
- GHD evaluated the vertical hydraulic head gradients for the 2016 gauging events between the unconfined and lower aquifer throughout AOI 6. There is a downward gradient between the unconfined and lower aquifers. These gradients are consistent with previous data collected in AOI 6 (2010 RIR and 2012 RIR).
- There is no available aquifer testing data for the lower aquifer at the facility. Evergreen is
 planning on conducting slug and hydraulic tests on the lower aquifer in AOI 4 in support off the
 facility wide fate and transport modeling. At the time of this RIR however, the best available kh
 data for the lower aquifer is estimated from historical testing performed at the Philadelphia
 Naval Shipyard From those tests, values of lower sand kh are estimated to vary from
 approximately 123 ft/d to 151 ft/d.

9.3 Compounds of Concerns

9.3.1 Soil

- Soil delineations were performed to the non-residential direct contact MSC for COCs on Table 1 and the numeric SSS (for lead), except along the bulkhead in AOI 6.
- Several soil samples collected during the 2016 site characterization activities exceeded the non-residential direct contact MSCs for lead and benzene and one sample for benzo(a)pyrene.

9.3.2 Groundwater

- Two rounds of characterization groundwater sampling were completed in 2016 in addition to other sampling in 2006 and 2012 as a part of this RIR and groundwater samples were analyzed for the COCs on Table 1.
- Concentrations of the following COCs were detected above the non-residential MSC in the water table aquifer during the 2016 groundwater sampling events: benzene, isopropyl benzene, toluene, 1,2,4-TMB, benzo(a)anthracene, beno(a)pyrene, beno(g,h,i)pyrene, benzo(b)fluoranthene, chrysene, naphthalene, and lead.

• None of the monitoring wells screened in the lower, semi-confined aquifer had exceedances of the non-residential groundwater MSCs.

9.3.3 Indoor/Ambient Air

- An indoor and outdoor air sampling events were conducted in March 2016 and March 2017 to represent ambient air and indoor air conditions during two heating seasons when levels of VOCs inside buildings are expected to be higher than during warmer months.
- Only one COC, benzene (in 6627 Building Control Room), was detected in an indoor samples above the PADEP VI screening criteria and the USEPA RSLs.

9.4 LNAPL Distribution and Mobility

- Numerous monitoring wells across AOI 6 have been gauged for LNAPL over the course of implementing the investigation and remediation programs. Stantec completed LNAPL and groundwater elevation gauging events in May 2016. During this event, 76 wells were gauged in the unconfined and semi-confined zones. LNAPL was detected in 21 wells with a maximum thickness of 4.27 feet at well B-116 during the May 2016 gauging.
- Based on evaluation of multiple lines of evidence, as presented in Appendix F (LNAPL Evaluation), LNAPL is largely present as hydraulically immobile and unrecoverable residual that is stable in overall extent. The fact that the 27 Pump House Total Fluids Recovery System has been off since September 20, 2010 and passive remediation was discontinued on January 26, 2015, with no perceived rebound in LNAPL thicknesses, also lends support to this assertion.
- A shown on Figure 16, during the May 2016 event there was three main areas with LNAPL detections:
 - LNAPL in wells B161, B-124, B-175 delineated by B-173 and B-125.
 - LNAPL in wells B-143, B-142, Sump-1, B-138 and B-147 delineated by B-126, B-138, B-141, B-134 and B-133.
 - LNAPL in wells B-150, B-149 and B-148 delineated by B-155, B-156, B-163and B-154.

LNAPL was also detected in isolated wells B-130, URS-3, B-152, RW-9, U-3, and B-129 delineated by adjacent wells.

9.5 Qualitative Fate and Transport of Selected Compounds

- A soil to groundwater model to evaluate the soil to groundwater pathway was not developed for the qualitative fate and transport assessment presented in this RIR. Rather, a qualitative-level assessment of groundwater data was warranted at this stage of the investigation.
- Of the COCs identified to be present in groundwater exceeding the non-residential MSC beneath AOI 6, the majority of the exceedances are for benzene as shown on Figure 19 which are associated, generally, with the occurrence of LNAPL which is immobile as discussed in Appendix F.

9.6 Potential Migration Pathways and Site Receptors

- AOI 6 encompasses approximately 100 acres and is located on the east side of the Schuylkill River and access is restricted by fencing and security measures.
- PES is responsible for overall facility security and oversight of contractor safety, and PES implements PPE and work plan/permitting protocols that mitigate the potential for worker exposure to impacted soil, groundwater, and/or LNAPL through the direct contact pathway.
- AOI 6 areas with identified soil exceedances of the direct-contact MSC for BaP and benzene, with the exception of BH-16-025, and SSS for lead have been delineated and remedies will be addressed in future Act 2 submissions, including a Facility-Wide Cleanup Plan. Additional delineation of benzene in BH-16-025 may be completed to support risk assessment or remedial activities.
- Concentrations of COCs identified through indoor and ambient air sampling met the PADEP indoor air criteria and the USEPA RSLs 1e-5 or HI of 0.1.
- Free-phase and residual LNAPL present beneath portions of AOI 6 appear to be contained within the property boundary and where present, of limited mobility.
- COCs are present in unconfined aquifer groundwater at concentrations above their respective SHS within AOI 6 and adjacent to the river.
- None of the COCs exceeded the groundwater MSCs in the lower aquifer.
- The Schuylkill River is adjacent to, AOI 6 but the bulkhead separates the water table aquifer and the river. The unconfined aquifer is not utilized for municipal or nearby communal, potable water supply in south Philadelphia. Results of the potable well search are presented in Appendix M.

10. Qualitative Fate and Transport Assessment

On September 28, 2015, Evergreen's team of consultants met jointly with the PADEP to discuss the groundwater fate and transport modeling approach under Act 2 at the Philadelphia Refining Complex. At that time, it was collaboratively decided that individual AOI RIR submissions would include qualitative assessments of contaminant fate and transport, including an evaluation of plume stability, COC trends, and potential impacts to surface water. Findings and conclusions of the AOI-specific, qualitative assessments of fate and transport will ultimately be used in a calibrated, steady-state MODFLOW model to perform quantitative fate and transport, including predictive simulations that will address cumulative mass loading to potential receptors.

The following discussion qualitatively summarizes factors that may influence contaminant fate and transport at AOI of the facility.

10.1 Geologic Framework

As discussed in detail in Sections 2 and 5 of this report, the geologic framework present beneath and in close proximity to AOI 1 can be summarized as follows:

- The Philadelphia Refinery occurs within the up-dip limits of the Atlantic Coastal Plain, generally within 2 miles of the "Fall Line".
- Beneath AOI 6, the following Coastal Plain deposits may be present, in order of increasing depth/age: apparent fill, Quaternary alluvium [including Holocene and Pleistocene (Trenton "gravel") deposits], and the Cretaceous Potomac-Raritan-Magothy (PRM) aquifer system lower sand unit.
- The PRM upper clay, upper sand, middle sand, and lower clay are interpreted to have been cut or laterally "pinch" out in AOI 6.

10.2 Hydrogeology

As summarized above and discussed in detail in Section 5 of this report, the geologic framework present beneath and in close proximity to AOI 6 supports the following hydrogeologic conditions:

• Two aquifers have been identified beneath the Philadelphia Refinery. In general, these are the water-table (unconfined) and a lower aquifer. Their properties are as follows.

10.2.1 Unconfined (Water-Table) Aquifer

- Beneath AOI 6, the unconfined aquifer is primarily composed of saturated portions of unconsolidated materials primarily in the fill and alluvium, with lesser amount in the discontinuous Trenton "gravel".
- On average, the saturated thickness of the unconfined aquifer beneath AOI 6 is approximately 20 to 30 feet.
- No aquifer testing was identified in AOI 6. Evergreen is planning additional aquifer testing in AOI 4 as part of the facility-wide fate and transport numerical model.
- Water-table mounds are apparent in AOI 6. These mounds are found immediately adjacent to the bulkhead. Groundwater depressions are found in the eastern and central portion of AOI 6.
- Groundwater flows southwest towards the river with a gradient of 0.002 ft/ft. This pattern is consistent with the historical contours and supports that flow in AOI 6 is towards the river.

10.2.2 Lower Aquifer (Semi-Confined)

- Beneath AOI 6, the lower aquifer is primarily composed of saturated portions of the lower sand geologic unit.
- On average, the saturated thickness of the lower aquifer beneath AOI 6 is approximately 25 feet.
- Groundwater flow within the lower aquifer beneath AOI 6 has been contoured utilizing data from AOI 5, 6, and 7 wells, and the resultant potentiometric surfaces are shown on Figure 15 for

synoptic well gauging events conducted in May 2016. The groundwater flow direction is to the southwest under a hydraulic gradient of approximately 0.002 ft/ft.

- GHD evaluated the vertical hydraulic head gradients for May and August 2016 between the unconfined and lower aquifer throughout AOI 6. There is a downward gradient between the unconfined and lower aquifers. These gradients are consistent with previous data collected in AOI 6 (2006 SCR and 2012 RIR).
- There is no available aquifer testing data for the lower aquifer at the facility. Evergreen is
 planning on conducting slug and hydraulic tests on the lower aquifer in AOI 4 in support off the
 facility wide fate and transport modeling. At the time of this RIR however, the best available kh
 data for the lower aquifer is estimated from historical testing performed at the Philadelphia
 Naval Shipyard From those tests, values of lower sand kh are estimated to vary from
 approximately 123 ft/d to 151 ft/d.

10.3 Hydrogeology and Topography

- LiDAR data collected in 2010 indicates that present-day topography is relatively flat within AOI 6 and proximity, where land surface elevations generally range from approximately 60 feet to just over 75 feet NAVD 88.
- Within AOI 6, much of the surface area present is impervious or assumed to be of limited permeability.
- The Schuylkill River is directly adjacent to AOI 6.
- National Weather Service Online Weather Data (NOWData) for Philadelphia, Pennsylvania, indicates that since 1872, mean annual precipitation is approximately 42 inches (ranging from approximately 29 to 64 inches).
- Stormwater runoff within AOI 6 is managed by an onsite storm sewer system that is sent to the facility's Girard Point Wastewater Treatment Plant.
- Natural recharge of the unconfined aquifer beneath AOI 6 and proximity is assumed to be spatially variable but limited in overall capacity as a result of: the high percentage of impervious surface coverage present; and, the fine-grained nature and extent of recent alluvial deposits above the water table.

10.4 Anthropogenic Features

10.4.1 Historic Fill

Apparent fill is present beneath the existing land surface at most locations in AOI 6 and has been identified to be approximately 10 feet. The fill is generally heterogeneous in nature and is composed of an admixture of sand and gravel, mud, and anthropogenic debris included cinders, ash, bricks, cinder block, and metal.

10.4.2 Former Remediation Systems

The 27 Pump House Total Fluids Recovery System was turned off September 20, 2010 due to absence of recoverable product. Passive remediation began on October 10, 2010 with the installation of absorbent socks in wells B-124, B-132, B-137, B-139, B-142, B-143, and B-147. These wells were gauged on a quarterly basis and any detected LNAPL was passively recovered and transferred to the system holding tank. Based on limited recoverable LNAPL in the proximal wells, passive remediation was discontinued on January 26, 2015. A summary of the remediation systems is presented in Appendix G.

10.5 Groundwater Constituents of Concern

10.5.1 Unconfined (Water Table) Aquifer

Concentrations of the following COCs were detected above the groundwater MSCs in unconfined aquifer groundwater during the 2016 characterization sampling events; benzene, isopropyl benzene, 1,2-dibromoethane (EDB), toluene, 1,2,4-TMB, benzo(a)anthracene, beno(a)pyrene, beno(g,h,i)pyrene, benzo(b)fluoranthene, chrysene, naphthalene, and lead. These results are consistent with historic sampling for COCs that have been previously analyzed in AOI 6.

The areas that are not proposed to be evaluated for remedial action in the Cleanup Plan have very low levels of semi-volatile compounds and are delineated by other monitoring wells or the bulkhead. These compounds will be evaluated by the site-wide Fate and Transport modeling.

10.5.2 Lower Aquifer

No concentrations of COCs were detected above the groundwater MSCs in lower aquifer groundwater during 2016 characterization sampling events. This is consistent with the results from previous sampling events.

10.6 Potential Onsite and Offsite Receptors

Based on the identified impacts to groundwater at AOI 6, GHD has evaluated the following as potential receptors:

- Vapor intrusion effecting potential occupants of buildings in AOI 6 was evaluated. The results did not exceed the PADEP VI screening levels with the exception of one detection of benzene.
- The Schuylkill River could receive AOI 6 groundwater discharging to the river. Although the bulkhead will limit migration of the groundwater from AOI 6 to the river.
- Potable consumption of impacted groundwater could affect human health. No known potable supply wells exist at or in proximity to AOI 6. Results of the potable well search are presented in Appendix M.
- The PRM aquifer system is heavily utilized for water supply in New Jersey. The aquifers of that system, chiefly the lower sand unit, receive recharge via vertical leakage through confining units and direct recharge from younger deposits along their subcrop area in south Philadelphia. None of the COCs were above the groundwater MSCs in the lower Aquifer in AOI 6.

10.7 Plans for Quantitative Fate and Transport Analysis

Stantec is presently developing a site-wide groundwater flow model using the USGS MODFLOW2000 computer code and Groundwater Vistas Version 6 software. The MT3DMS contaminant transport module will be utilized to simulate predictive scenarios of the fate and transport of selected COCs in groundwater. The modeling is being performed to meet and demonstrate compliance with the PADEP Site-Specific Standard for remediation of pre-existing contamination under Act 2, Pennsylvania's Land Recycling Program. Under Act 2 and in consideration of the One Cleanup Program, an analysis of the fate and transport of petroleum-related constituents is needed, in general, to assess risk to potential receptors, assess plume stability, and estimate time to project closure.

The site-wide flow model will focus on groundwater movement within the Coastal Plain of south Philadelphia, Pennsylvania, near the Philadelphia Refinery. The model domain was adopted from an earlier USGS model developed by Schreffler (2001), later updated by Sloto (2012), and has been updated by Stantec to more-closely simulate site-specific groundwater flow conditions beneath the facility. Updates to the Schreffler (2001) model have included model layer refinement, grid discretization, updates to the model layer hydraulic properties using site-specific testing data, and the inclusion of drains to simulate losses to the sewers and/or localized pumping centers (e.g., Mingo Creek Pump Station). It is anticipated that Stantec will present the site-wide flow model to PADEP for comment prior to utilization of the model in any fate and transport analyses at the refinery in support of a facility-wide Cleanup Plan, or a site-wide RIR to address cumulative loading of COCs to receptors.

11. Ecological Assessment

The majority of AOI 6 is covered with soil, gravel, and impervious surfaces. The soil and gravel-covered portions of AOI 6 are not likely to serve as a breeding area, migratory stopover, or primary habitat for wildlife. On September 23, 2016, a survey of endangered, threatened, and special concern wildlife and habitat was conducted by submitting a search request through the Pennsylvania Natural Diversity Inventory (PNDI) Environmental Review Tool. The results of the PNDI search identified no known impacts by the PA Game Commission, the PA Department of Conservation and Natural Resources, and the U.S. Fish and Wildlife Service.

The PNDI search identified potential endangered and threatened species impacts that required further review by the PA Fish and Boat Commission. A no effect letter request was submitted to the PFBC on October 22, 2016. A response was received from the PFBC on November 3, 2016 indicating that no impact is anticipated to the species of special concern. Evergreen intends on completing a habitat assessment to document habitat types present and adjoining AOI 6 and the suitability of these habitats to support species of concern based on the results of the PNDI search even though a no effect letter was received from the PFBC. Evergreen will complete these assessments in accordance with PA Chapter 250.311 and the Pennsylvania Technical Guidance Manual (TGM) by a qualified biologist. The results of this assessment will be included in a future submittal. All ecological assessment documentation is included in Appendix I.

12. Community Relations Activities

A Community Relation Plan (CRP) that includes public involvement with local residents to inform them of the anticipated investigations and remediation activities was completed as part of the original NIR submittal in 2006. A revised NIR was submitted in 2014. The purpose of the CRP is to provide a mechanism for the community, government officials, and other interested or affected citizens to be informed of on-site activities related to the investigation activities at the Site. This plan incorporates aspects of public involvement under both PADEP's Act 2 program and USEPA's RCRA Corrective Action program. This report and future Act 2 reports will include the appropriate municipal and public notices in accordance with the provisions of Act 2. Notices will be published in the Pennsylvania Bulletin and a summary of the notice will appear in a local newspaper. As part of the CRP, Evergreen has held an initial public meeting in the City of Philadelphia to present the strategy and give status updates of the project at the CRP meeting on an as requested basis. A copy of the original NIR, the 2014 NIR and the Act 2 report notifications for this RIR are included in Appendix A.

13. Conclusions and Recommendations

GHD has prepared this RIR for AOI 6 of the Philadelphia Refinery Complex to satisfy the requirements of Act 2, as specified under 25 PA Code §250.408. The documented investigation activities were performed in general accordance with a 2011 revised Work Plan for Site-wide Approach Under the One Cleanup Program, and were conducted in support of Evergreen's commitment to remediate legacy environmental impacts that existed at the facility prior to its conveyance to PES in 2012 (Buyer-Seller Agreement). In support of those stated objectives, this report has described a comprehensive evaluation of available historical data pertaining to AOI 6, and has documented a remedial investigation strategy that included the collection of a significant amount of additional subsurface information in the time since previous AOI 6 Act 2 deliverables were submitted to PADEP (2013 SCR/RIR). Investigations performed as a part of this report also considered and where relevant, sought to address PADEP comments directed towards previous RIR submissions for the facility.

The following summarizes the conclusions and recommendations regarding AOI 6.

13.1 Soil

Some historical samples had exceedances of the direct-contact MSC for, BaP, lead and benzene. These historical samples have been delineated.

Limited soil samples collected in 2016 exceeded the numeric SSS for lead, the NRDC for benzene and BaP. Additional sampling may be completed to support site-wide Risk Assessment or site-wide Cleanup Plan Reports to delineate benzene in the vicinity of AOI 6-16-025.

13.2 Groundwater

13.2.1 Unconfined (Water-Table) Aquifer

Benzene, isopropyl benzene, 1,2-dibromoethane (EDB), toluene, 1,2,4-TMB, benzo(a)anthracene, beno(a)pyrene, beno(g,h,i)pyrene, benzo(b)fluoranthene, chrysene, naphthalene, and lead exceeded the current non-residential MSCs in the unconfined aquifer.

The concentrations of COCs exceeding the MSCs in the unconfined aquifer have generally been delineated. The following wells have groundwater MSC exceedances but are not explicitly delineated by other wells with concentrations below MSCs: B-39, B-43, B-169, U-4, and URS-5. These wells are located near the bulkhead and do not have any wells that can delineate these concentrations.

13.2.2 Lower Aquifer

None of the samples in the lower aquifer exceeded the non-residential MSCs, which is consistent with historic data in AOI 6 therefore no further assessment was completed for the Lower Aquifer in this RIR. As indicated above for the unconfined aquifer, a MODFLOW model will be utilized during quantitative fate and transport analyses to evaluate the Lower Aquifer for the facility.

13.3 Vapor Intrusion

Concentrations of COCs in indoor and outdoor ambient air were evaluated in the ten occupied buildings in AOI 6 where the vapor intrusion pathway is potentially complete. There were no exceedances of the PADEP VI criteria except IA-AOI6-6627 (Building 6627 Control Room), which exceeded for benzene. Evergreen is intending to complete an addition round of indoor air sampling within AOI 6. Results of the additional sampling event will be reported to PADEP in a future Act 2 deliverable. Indoor air concentrations in exceedance of the indoor air screening criteria will be addressed in a site-wide risk assessment or remedial activities as presented in the site-wide Risk Assessment report or site-wide Cleanup Plan.

13.4 LNAPL

LNAPL within AOI 6 has been delineated, except in areas along the bulkhead where delineation is not possible. The majority of LNAPL sampled was categorized as a light to middle distillates. LNAPL recovery has been suspended due to poor recovery and immobility of the LNAPL.

14. References

- ARCADIS (2013). Second Quarter 2013 Report for the Former Defense Supply Center Philadelphia Facility, Philadelphia, PA.
- Balmer, W.T., and Davis, D.K. (1996). Ground-Water Resources of Delaware County, Pennsylvania, Pennsylvania Geological Survey, 4th Series, Water Resources Report 66: 67p.

- Bosbyshell, H. (2008). Bedrock Geologic Map of a Portion of the Philadelphia Quadrangle, Montgomery and Philadelphia Counties, Pennsylvania, Pennsylvania Department of Conservation and Natural Resources, Bureau of Topographic and Geologic Survey OFBM 08-05.0.
- Greenman, D.W., Rima, D.R., Lockwood, W.N., and Meisler, H. (1961). Groundwater Resources of the Coastal Plain Area of Southeastern Pennsylvania, Pennsylvania Geological Survey Bulletin W13.
- Integrated Science & Technology (IST), Inc. (1998). Non-Aqueous Phase Liquid (NAPL) Source Study at Defense Supply Center Philadelphia, Philadelphia, PA.
- Langan (2004) Current Conditions Report, Sunoco Philadelphia Refinery, Philadelphia, PA.
- Langan (2006) Site Characterization Report AOI 6, Sunoco Philadelphia Refinery, Philadelphia, PA.
- Langan (2013) SCR/RIR, Sunoco Philadelphia Refinery, Philadelphia, PA.
- Langan (2015) Human Health Risk Assessment Report, PES, Belmont Terminal and MHIC, Philadelphia, PA.
- Low, D.J., Hippe, D.J., and Yannacci, D. (2002). Geohydrology of Southeastern Pennsylvania, U.S. Geological Survey Water-Resources Investigations Report 00-4166: 347p.
- Navoy, A.S. and Carleton, G.B. (1995). Ground-Water Flow and Future Conditions in the Potomac-Raritan-Magothy Aquifer System, Camden Area, New Jersey, New Jersey Geological Survey Report 38: 184p.
- Owens, J.P., and Minard, J.P. (1979). Upper Cenozoic Sediments of the Lower Delaware Valley and Northern Delmarva Peninsula, New Jersey, Pennsylvania, Delaware and Maryland, U.S. Geological Survey Professional Paper 1067-D: 47p.
- Pennsylvania Department of Environmental Protection, Bureau of Waste Management (2002). Pennsylvania Code, Title 25. Environmental Protection, Chapter 245. Administration of the Storage Tank and Spill Prevention Program. Commonwealth of Pennsylvania, p. 48-66.2.
- Pennsylvania Department of Environmental Protection, Bureau of Land Recycling and Waste Management (2002). Pennsylvania Code, Title 25. Environmental Protection, Chapter 250. Administration of Land Recycling Program. Commonwealth of Pennsylvania.
- Pennsylvania Department of Environmental Protection, Land Recycling Program (2013). Statewide Health Standards, Table 1 – Medium Specific Concentrations (MSCs) for Organic Regulated Substances in Groundwater.

http://www.portal.state.pa.us/portal/server.pt/community/land_recycling_program/20541/state wide_health_standards/1034862.

Pennsylvania Department of Environmental Protection, Land Recycling Program (2013). Statewide Health Standards, Table 2 – Medium Specific Concentrations (MSCs) for Inorganic Regulated Substances in Groundwater.

http://www.portal.state.pa.us/portal/server.pt/community/land_recycling_program/20541/state wide_health_standards/1034862.

- Pennsylvania Department of Environmental Protection, Land Recycling Program (2013). Statewide Health Standards, Table 3a – Medium-Specific Concentrations (MSCs) For Organic Regulated Substances In Soil: Direct Contact Numeric Values. http://www.portal.state.pa.us/portal/server.pt/community/land_recycling_program/20541/state wide_health_standards/1034862.
- Pennsylvania Department of Environmental Protection, Land Recycling Program (2013). Statewide Health Standards, Table 3b – Medium-Specific Concentrations (MSCs) For Organic Regulated Substances In Soil: Soil To Groundwater Numeric Values. http://www.portal.state.pa.us/portal/server.pt/community/land_recycling_program/20541/state wide_health_standards/1034862.
- Pennsylvania Department of Environmental Protection, Land Recycling Program (2013). Statewide Health Standards, Table 4a – Medium-Specific Concentrations (MSCs) for Inorganic Regulated Substances in Soil: Direct Contact Numeric Values. http://www.portal.state.pa.us/portal/server.pt/community/land_recycling_program/20541/state wide_health_standards/1034862.
- Pennsylvania Department of Environmental Protection, Land Recycling Program (2013). Statewide Health Standards, Table 4b – Medium-Specific Concentrations (MSCs) for Inorganic Regulated Substances in Soil: Soil to Groundwater Numeric Values. http://www.portal.state.pa.us/portal/server.pt/community/land_recycling_program/20541/state wide_health_standards/1034862.
- Pennsylvania Department of Environmental Protection (2015). Land Recycling Program Technical Guidance Manual for Vapor Intrusion into Buildings from Soil and Groundwater under Act 2 (Draft).
- Paulachok, G.N. (1991). Geohydrology and Ground-Water Resources of Philadelphia, Pennsylvania, U.S. Geological Survey Water-Supply Paper 2346: 79p.
- Schreffler, C.L. (2001). Simulation of Ground-Water Flow in the Potomac-Raritan-Magothy Aquifer System Near the Defense Supply Center Philadelphia, and the Point Breeze Refinery, Southern Philadelphia County, Pennsylvania, U.S. Geological Survey Water-Resources Investigations Report 01-4218: 48p.
- Sevon, W.D. and Braun, D.D. (2000). Glacial Deposits of Pennsylvania, Pennsylvania Department of Conservation and Natural Resources, Bureau of Topographic and Geologic Survey Map Series No. 59 (2200-MP-DCNR3027).
- Sevon, W.D., Fleeger, G.M., and Shepps, V.C. (1999). Pennsylvania and the Ice Age (2nd Edition), Pennsylvania Geological Survey, 4th Series, Educational Series 6: 30p.
- Sunoco (2006). Work Plan for Site Characterization Area of Interest 6, Sunoco Philadelphia Refinery, Philadelphia, PA.
- Trapp, H. (1992). Hydrogeologic Framework of the Northern Atlantic Coastal Plain in Parts of North Carolina, Virginia, Maryland, Delaware, New Jersey, and New York, Regional Aquifer-System Analysis – Northern Atlantic Coastal Plain, U.S. Geological Survey Professional Paper 1404-G: 59p.
- USGS (2010). National Elevation Dataset, 1/9 Arc Second Raster Elevation Data, The National Map (download platform).

EVERGREEN RE

11109613-01 Dec 1, 2016

EVERGREEN RESOURCES MANAGEMENT OPERATIONS LLC PHILADELPHIA REFINERY - 3144 PASSYUNK AVENUE, PHILADELPHIA, PA REMEDIAL INVESTIGATION REPORT

SITE LOCATION MAP

FIGURE 1

CAD File: P:\drawings\11109000s\11109613\11109613-reports\11109613-01(002)\11109613-01(002)GN\11109613-01(002)GN\4001.DWG

EVERGREEN RESOURCES MANAGEMENT OPERATIONS LLC PHILADELPHIA REFINERY - 3144 PASSYUNK AVENUE, PHILADELPHIA, PA REMEDIAL INVESTIGATION REPORT HISTORIC STREAM AND MARSH LOCATIONS (CIRCA 1898) FIGURE 3

CAD File: P:\drawings\11109000s\11109613\11109613-reports\11109613-01(002)\11109613-01(002)GN\11109613-01(002)GN\4002.DWG

GHD

EVERGREEN RESOURCES MANAGEMENT OPERATIONS LLC PHILADELPHIA REFINERY - 3144 PASSYUNK AVENUE, PHILADELPHIA, PA REMEDIAL INVESTIGATION REPORT

11109613-01 Dec 20, 2016

GEOGRAPHIC SETTING

FIGURE 4

CAD File: P:\drawings\11109000s\11109613\11109613-reports\11109613-01(002)\11109613-01(002)GN\1109613-01(002)GN\11000GN\11000

EVERGREEN RESOURCES MANAGEMENT OPERATIONS LLC PHILADELPHIA REFINERY - 3144 PASSYUNK AVENUE, PHILADELPHIA, PA REMEDIAL INVESTIGATION REPORT HIGH RESOLUTION LAND COVER DATASET (2008) - CITY OF PHILADELPHIA **FIGURE 5**

11109613-01 Dec 20, 2016

CAD File: P:\drawings\11109000s\11109613\11109613-reports\11109613-01(002)\11109613-01(002)GN\11109613-01(002)GN\11109613-01(002)GN-WA004.DWG

GHD

EVERGREEN RESOURCES MANAGEMENT OPERATIONS LLC PHILADELPHIA REFINERY - 3144 PASSYUNK AVENUE, PHILADELPHIA, PA REMEDIAL INVESTIGATION REPORT

11109613-01 Dec 20, 2016

GENERALIZED BEDROCK GEOLOGIC MAP

FIGURE 6

CAD File: P:\drawings\11109000s\11109613\11109613-reports\11109613-01(002)\11109613-01(002)GN\11109613-01(002)GN

Notes 1. Land surl evation model available from the United States Geological Survey (USGS Lithologic logs for borings PH-55, PH-41, B-11, B-7, B-4, B-1 and PH-30 of 14 of Greenman et al., 1981. Geographic locations for those bistoric bo s (Chart 12313), Me logs into 8 cat and, where applicable, geologic units is based on inditions between boreholes may vary from what the straight-line method. Actual co is shown on this profile. Contacts 7. Vertical Exaggeration ~ 45 X

EVERGREEN RESOURCES MANAGEMENT OPERATIONS LLC PHILADELPHIA REFINERY - 3144 PASSYUNK AVENUE, PHILADELPHIA, PA REMEDIAL INVESTIGATION REPORT

STRATIGRAPHIC PROFILE

CAD File: P:\drawings\11109000s\11109613\11109613-reports\11109613-01(002)\11109613-01(002)GN\1109613-01(002)GN\1109613-01(002)GN\1109613-01(002)GN\110000GN\110000GN\110000GN\110000GN\110000GN\110

FIGURE 8

11109613-01 Dec 1, 2016

EVERGREEN RESOURCES MANAGEMENT OPERATIONS LLC PHILADELPHIA REFINERY - 3144 PASSYUNK AVENUE, PHILADELPHIA, PA REMEDIAL INVESTIGATION REPORT SUMMARY OF AVAILABLE AQUIFER TESTING DATA FOR THE UNCONFINED AQUIFER FIGURE 9

CAD File: P:\drawings\11109000s\11109613\1109613-reports\11109613-01(002)\11109613-01(002)GN\11109613-01(002)GN\1109613-01(002)GN-WA006.DWG

EVERGREEN RESOURCES MANAGEMENT OPERATIONS LLC PHILADELPHIA REFINERY - 3144 PASSYUNK AVENUE, PHILADELPHIA, PA REMEDIAL INVESTIGATION REPORT SUMMARY OF PUBLISHED AQUIFER TESTING DATA FOR FIGURE 10 THE UNCONFINED AND LOWER AQUIFERS

Jan 19, 2017

CAD File: P:\drawings\11109000s\11109613\11109613-reports\11109613-01(002)\11109613-01(002)GN\11109613-01(002)GN\11109613-01(002)GN\1109613-01(002)GN\1109613-01(002)GN\1109613-01(002)GN\1109613-01(002)GN\1109613-01(002)GN\1109613-01(002)GN\1109613-01(002)GN\1109613-01(002)GN\1109613-01(002)GN\1109613-01(002)GN\1109613-01(002)GN\1109613-01(002)GN\1109613-01(002)GN\1109613-01(002)GN\1000GN\100GN\100GN\1000GN\100G

GHD

EVERGREEN RESOURCES MANAGEMENT OPERATIONS LLC PHILADELPHIA REFINERY - 3144 PASSYUNK AVENUE, PHILADELPHIA, PA REMEDIAL INVESTIGATION REPORT BEDROCK STRUCTURE CONTOUR MAP -TOP OF BEDROCK FIG

FIGURE 11

CAD File: P:\drawings\11109000s\11109613\11109613-reports\11109613-01(002)\11109613-01(002)GN\11000GN

SOURCE: PHILADELPHIA REFINERY REMEDIATION PROGRAM GROUNDWATER REMEDIATION STATUS REPORT, FIRST HALF 2016, STANTEC, 2016.

11109613-01

Dec 1, 2016

FIGURE 13

CAD File: P:\drawings\11109000s\11109613\11109613-reports\11109613-01(002)\11109613-01(002)GN\11109613-01(002)GN\11109613-01(002)GN-WA009.DWG

Source: Microsoft Product Screen Shot(s) Reprinted with permission from Microsoft Corporation, Acquisition Date June 2014, Accessed: 2017

EVERGREEN RESOURCES MANAGEMENT OPERATIONS LLC PHILADELPHIA REFINERY - 3144 PASSYUNK AVENUE, PHILADELPHIA, PA REMEDIAL INVESTIGATION REPORT WATER TABLE CONTOURS MAY 2, 2016 11109613-01 Nov 11, 2017

CAD File: P:\drawings\11109000s\11109613\11109613-reports\11109613-01(002)\11109613-01(002)GN\1109613-01(002)GN\11000GN\110

Source: Microsoft Product Screen Shot(s) Reprinted with permission from Microsoft Corporation, Acquisition Date June 2014, Accessed: 2017

EVERGREEN RESOURCES MANAGEMENT OPERATIONS LLC PHILADELPHIA REFINERY - 3144 PASSYUNK AVENUE, PHILADELPHIA, PA REMEDIAL INVESTIGATION REPORT LNAPL APPARENT THICKNESS MAY 2, 2016

11109613-01 Nov 11, 2017

FIGURE 16

Source: Microsoft Product Screen Shot(s) Reprinted with permission from Microsoft Corporation, Acquisition Date June 2014, Accessed: 2017

EVERGREEN RESOURCES MANAGEMENT OPERATIONS LLC PHILADELPHIA REFINERY - 3144 PASSYUNK AVENUE, PHILADELPHIA, PA REMEDIAL INVESTIGATION REPORT LNAPL APPARENT THICKNESS MAY 11, 2017 11109613-01 Nov 11, 2017

Source: Microsoft Product Screen Shot(s) Reprinted with permission from Microsoft Corporation, Acquisition Date June 2014, Accessed: 2017

EVERGREEN RESOURCES MANAGEMENT OPERATIONS LLC PHILADELPHIA REFINERY - 3144 PASSYUNK AVENUE, PHILADELPHIA, PA REMEDIAL INVESTIGATION REPORT MAY 2016

DISSOLVED BENZENE GROUNDWATER CONCENTRATIONS

11109613-01 Nov 10, 2017

FIGURE 19

Table 1

Constituents of Concern Evergreen Act 2/One Cleanup Program Petroleum Short List AOI 6 Remedial Investigation Report Philadelphia Refinery Operations, a series of Evergreen Resources Group, LLC

Volatile Organic Compounds	CAS No.
Benzene	71-43-2
Cumene	98-82-8
Dichloroethane, 1,2-	107-06-2
Ethylbenzene	100-41-4
Ethylene Dibromide	106-93-4
Methyl tert butyl ether	1634-04-4
Toluene	108-88-3
Trimethylbenzene, 1,2,4-	95-63-6
Trimethylbenzene, 1,3,5-	108-67-8
Xylenes	1330-20-7
Semi Volatile Organic Compounds	CAS No.
Anthracene	120-12-7
Benzo(a)anthracene	56-55-3
Benzo(a)pyrene	50-32-8
Benzo(b)fluoranthene	205-99-2
Benzo(g,h,i)perylene	191-24-2
Chrysene	218-01-9
Fluorene	86-73-7
Naphthalene	91-20-3
Phenanthrene	85-01-8
Pyrene	129-00-0
Metals	CAS No.
Lead	7439-92-1

Constituents are from Pennsylvania Corrective Action Process (CAP) Regulation Amendments effective December 1, 2001; provided in Chapter VI, Section E (pgs. 29-30) of PADEP Document, Closure Requirements for Underground Storage Tank Systems, effective April 1, 1998 and the March 18, 2008 revised PADEP Petroleum Short List. In May 2009, two additional COCs, 1,2,4-trimethylbenze (1,2,4-TMB) and 1,3,5-trimethylbenzene (1,3,5-TMB), were added to the list of COCs by Evergreen based on the PADEP's revisions to the petroleum short list of compounds and at the request of the PADEP. The COC listing for groundwater was also revised in 2012 to follow the soil COC listing.

Table 2

Characterization Activities AOI 6 Remedial Investigation Report Philadelphia Refinery Operations, A Series of Evergreen Resources Group, LLC

Location ID	Location Rationale	Media	Surface Soil Sample Collected (0-2 ft bgs)	Subsurface Soil Sample Collected (>2 ft bgs)	Groundwater Sample Collection	Analyte List
B-171	Investigate groundwater quality to characterize groundwater; characterize soil	GW/Soil	X	X	х	Evergreen COCs, Table 1
B-172	Investigate groundwater quality to characterize groundwater; characterize soil	GW/Soil	х	х	х	Evergreen COCs, Table 1
B-173	Investigate groundwater quality to characterize groundwater; characterize soil	GW/Soil	Х	Х	Х	Evergreen COCs, Table 1
B-174	Investigate groundwater quality to characterize groundwater; characterize soil	GW/Soil	Х	х	х	Evergreen COCs, Table 1
B-175	Investigate groundwater quality in vicinity of LNAPL plume	GW/Soil	Х	х	Х	Evergreen COCs, Table 1
B-115	Characterize groundwater conditions in vicinity of B-129 and along NE boundary	GW			х	Evergreen COCs, Table 1
B-116	Characterize groundwater conditions along NE boundary	GW			х	Evergreen COCs, Table 1
B-117	Characterize conditions downgradient of #4 Boilerhouse and Tank Farm	GW			х	Evergreen COCs, Table 1
B-125	Characterize/delineate groundwater	GW			х	Evergreen COCs, Table 1
B-126	Characterize/delineate groundwater	GW			х	Evergreen COCs, Table 1
B-131	Characterize/delineate groundwater	GW			х	Evergreen COCs, Table 1
B-132	Characterize/delineate groundwater	GW			х	Evergreen COCs, Table 1
B-132D	Monitor Deep (AOI-11) groundwater	GW			х	Evergreen COCs, Table 1
B-133	Characterize/delineate groundwater	GW			х	Evergreen COCs, Table 1
B-133D	Monitor Deep (AOI-11) groundwater	GW			х	Evergreen COCs, Table 1
B-134	Characterize groundwater conditions under NAPL	GW			х	Evergreen COCs, Table 1
B-134D	Monitor Deep (AOI-11) groundwater	GW			х	Evergreen COCs, Table 1
B-144	Characterize groundwater conditions under NAPL	GW			х	Evergreen COCs, Table 1
B-145	Characterize/delineate groundwater	GW			х	Evergreen COCs, Table 1
B-150	Characterize/delineate groundwater	GW			Х	Evergreen COCs, Table 1
B-152	Characterize/delineate groundwater	GW			Х	Evergreen COCs, Table 1
B-153	Characterize/delineate groundwater	GW			Х	Evergreen COCs, Table 1
B-154	Characterize/delineate groundwater	GW			Х	Evergreen COCs, Table 1
B-155	Characterize/delineate groundwater	GW			Х	Evergreen COCs, Table 1
B-156	Characterize/delineate groundwater	GW			Х	Evergreen COCs, Table 1
B-158	Characterize/delineate groundwater	GW			Х	Evergreen COCs, Table 1
B-162	Characterize groundwater downgradient of historical release unit 1332	GW			Х	Evergreen COCs, Table 1
B-163	Characterize/delineate groundwater	GW			х	Evergreen COCs, Table 1
B-164	Characterize conditions along downgradient boundary	GW			х	Evergreen COCs, Table 1
B-165	Characterize conditions along downgradient boundary	GW			х	Evergreen COCs, Table 1
B-168	Characterize conditions along downgradient boundary	GW			х	Evergreen COCs, Table 1
B-169	Characterize conditions along downgradient boundary	GW			х	Evergreen COCs, Table 1
B-170	Characterize conditions along downgradient boundary	GW			х	Evergreen COCs, Table 1
B-39	Characterize groundwater conditions under NAPL	GW			х	Evergreen COCs, Table 1
B-43	Characterize conditions along downgradient boundary	GW			х	Evergreen COCs, Table 1
B-45	Characterize/delineate groundwater	GW			х	Evergreen COCs, Table 1
B-48D	Monitor Deep (AOI-11) groundwater	GW			Х	Evergreen COCs, Table 1
U-4	Characterize/delineate groundwater	GW			Х	Evergreen COCs, Table 1
URS-1	Characterize conditions along downgradient boundary	GW			Х	Evergreen COCs, Table 1
URS-3	Characterize/delineate groundwater	GW			Х	Evergreen COCs, Table 1
URS-4	Characterize conditions along downgradient boundary	GW			Х	Evergreen COCs, Table 1
URS-5	Characterize conditions along downgradient boundary	GW			Х	Evergreen COCs, Table 1
AOI6-BH-16-001	Delineate/characterize by historic release at #3 Boiler House	Soil	Х	Х		Evergreen COCs, Table 1
AOI6-BH-16-002	Delineate/characterize by historic release at #3 Boiler House	Soil	Х	Х	1	Evergreen COCs, Table 1
AOI6-BH-16-003	Delineate/characterize by historic release at #3 Boiler House	Soil	Х	Х	1	Evergreen COCs, Table 1
AOI6-BH-16-004	Delineate/characterize by historic release at #3 Boiler House	Soil	Х	Х	1	Evergreen COCs, Table 1
AOI6-BH-16-005	Delineate/characterize by historic release at #3 Boiler House	Soil	Х	Х	1	Evergreen COCs, Table 1

Table 2

Characterization Activities AOI 6 Remedial Investigation Report Philadelphia Refinery Operations, A Series of Evergreen Resources Group, LLC

Location ID	Location Rationale	Media	Surface Soil Sample Collected (0-2 ft bgs)	Subsurface Soil Sample Collected (>2 ft bgs)	Groundwater Sample Collection	Analyte List
AOI6-BH-16-006	Delineate/characterize by historic tank incident	Soil	X	X		Evergreen COCs, Table 1
AOI6-BH-16-007	Delineate/characterize by historic release 1733 Unit	Soil	Х	х		Evergreen COCs, Table 1
AOI6-BH-16-008	Delineate/characterize by historic release 1733 Unit	Soil	Х	х		Evergreen COCs, Table 1
AOI6-BH-16-009	Delineate/characterize by historic release 1733 Unit	Soil	Х	х		Evergreen COCs, Table 1
AOI6-BH-16-010	Investigate former Tank 238	Soil	Х	х		Evergreen COCs, Table 1
AOI6-BH-16-011	Investigate former Tank 238	Soil	Х	х		Evergreen COCs, Table 1
AOI6-BH-16-012	Investigate/characterize/delineate historic release behind former Boiler House 4	Soil	Х	х		Evergreen COCs, Table 1
AOI6-BH-16-013	Investigate/characterize/delineate historic release behind former Boiler House 4	Soil	Х	х		Evergreen COCs, Table 1
AOI6-BH-16-014	Delineate/characterize historic release unit 1332 line	Soil	Х	х		Evergreen COCs, Table 1
AOI6-BH-16-015	Delineate/characterize historic release unit 1332 line	Soil	Х	х		Evergreen COCs, Table 1
AOI6-BH-16-016	Delineate/characterize historic release unit 1332 line	Soil	х	х		Evergreen COCs, Table 1
AOI6-BH-16-017	Delineate/characterize historic release unit 1332 line	Soil	Х	Х		Evergreen COCs, Table 1
AOI6-BH-16-018	Delineate/characterize historic release unit 1332 line	Soil	х	х		Evergreen COCs, Table 1
AOI6-BH-16-019	Delineate/characterize historic release by main office building	Soil	Х	х		Evergreen COCs, Table 1
AOI6-BH-16-020	Delineate/characterize historic release by main office building	Soil	Х	х		Evergreen COCs, Table 1
AOI6-BH-16-021	Delineate/characterize historic release by main office building	Soil	х	х		Evergreen COCs, Table 1
AOI6-BH-16-022	Delineate/characterize historic release by main office building	Soil	Х	х		Evergreen COCs, Table 1
AOI6-BH-16-023	Delineate/characterize historic release unit 1332 line	Soil	Х	х		Evergreen COCs, Table 1
AOI6-BH-16-024	Delineate benzene around Tank GP-797 area	Soil	Х	х		Evergreen COCs, Table 1
AOI6-BH-16-025	Delineate benzene around Tank GP-797 area	Soil	х	х		Evergreen COCs, Table 1
AOI6-BH-16-026	Delineate benzene around Tank GP-797 area	Soil	Х	х		Evergreen COCs, Table 1
AOI6-BH-16-027	Delineate benzene around Tank GP-797 area	Soil	Х	х		Evergreen COCs, Table 1
AOI6-BH-16-028	Delineate benzene around Tank GP-797 area	Soil	Х	х		Evergreen COCs, Table 1
AOI6-BH-16-029	Delineate benzene around Tank GP-797 area	Soil	Х	х		Evergreen COCs, Table 1
AOI6-BH-16-030	Delineate/characterize on northwest side of Tank GP-797 (outside HA-1)	Soil	Х	х		Evergreen COCs, Table 1
AOI6-BH-16-031	Delineate/characterize on southeast side of Tank GP-797 (outside HA-3)	Soil	Х	х		Evergreen COCs, Table 1
AOI6-BH-16-032	Delineate/characterize on southwest side of Tank GP-797 (outside AOI6-BH-12-128)	Soil	Х	х		Evergreen COCs, Table 1
AOI6-BH-16-033	Delineate/characterize in southwest corner of GP-797 tank group dike	Soil	Х	х		Evergreen COCs, Table 1
AOI6-BH-16-034	Delineate/characterize on west side of GP-797 tank group dike	Soil	Х	х		Evergreen COCs, Table 1
AOI6-BH-16-035	Delineate/characterize in northwest corner of GP-797 tank group dike	Soil	Х	х		Evergreen COCs, Table 1
AOI6-BH-16-036	Delineate/characterize in northeast corner of GP-797 tank group dike	Soil	Х	х		Evergreen COCs, Table 1
AOI6-BH-16-037	Delineate/characterize on the east side of GP-797 tank group dike	Soil	Х	х		Evergreen COCs, Table 1
AOI6-BH-16-038	Characterize in central GP-797 tank group dike (between GP-792, 793, 794 and 795)	Soil	Х	х		Evergreen COCs, Table 1
AOI6-BH-16-039	Investigate former Tank 238	Soil	Х	х		Evergreen COCs, Table 1
AOI6-BH-16-040	Investigate/characterize/delineate release of caustic material from Tank T-81	Soil	Х	х		pH and Evergreen COCs, Table 1
AOI6-BH-16-041	Investigate/characterize/delineate release of caustic material from Tank T-81	Soil	Х	х		pH and Evergreen COCs, Table 1
AOI6-BH-16-043	Investigate/characterize/delineate release of caustic material from Tank T-81	Soil	Х	х		pH and Evergreen COCs, Table 1
AOI 6 -BH-17-01	Delienate lead exceedance in BH-16-19	Soil	Х	х		lead
AOI 6 -BH-17-02	Delienate lead exceedance in BH-16-19	Soil	Х	х		lead
AOI 6 -BH-17-03	Delineate lead exceedance in BH-16-041	Soil	Х			lead
AOI 6 -BH-17-04	Delineate lead exceedance in BH-16-041	Soil	Х			lead
AOI 6 -BH-17-05	Delineate lead exceedance in BH-16-041	Soil	Х			lead
AOI 6 -BH-17-06	Delineate lead exceedance in BH-16-041	Soil	Х			lead
AOI 6 -BH-17-07	Delineate lead exceedance in BH-16-041	Soil	Х			lead
AOI 6 -BH-17-08	Delineate lead exceedance in BH-16-041	Soil	Х			lead
AOI 6 -BH-17-09	Delineate lead exceedance in BH-16-041	Soil	Х			lead
AOI6-AA16-001	Investigate outdoor air quality in location over NAPL plume - gasoline plume	Outdoor Air				TO-15

Page 3 of 3

Table 2

Characterization Activities AOI 6 Remedial Investigation Report Philadelphia Refinery Operations, A Series of Evergreen Resources Group, LLC

Location ID	Location Rationale	Media	Surface Soil Sample Collected (0-2 ft bgs)	Subsurface Soil Sample Collected (>2 ft bgs)	Groundwater Sample Collection	Analyte List
AOI6-AA16-002	Investigate outdoor air quality in location over NAPL plume - residual oil plume	Outdoor Air				TO-15
AOI6-AA16-003	Investigate outdoor air quality in location over NAPL plume - other NAPL plume	Outdoor Air				TO-15
AOI6-AA16-004	duplicate sample	Outdoor Air				TO-15

Note:

Indoor Air Sampling Summary is in Table 12.

Surface Soil Analytical Results Summary Statewide Health Standards AOI 6 Remedial Investigation Report Philadelphia Refinery Operations, a series of Evergreen Resources Group, LLC

Sample Location: Sample ID: Sample Date: Sample Depth: Parameters	Units	Act 2 Non-Residential Used Aquifer Direct Contact MSC a	Act 2 Non-Residential Used Aquifer MSC b	AOI6-BH-16-001 AOI6-BH-16-001-0-2-SOIL 04/12/2016 1.0-1.5 ft	AOI6-BH-16-002 AOI6-BH-16-002-0-2-SOIL 04/12/2016 1.0-1.5 ft	AOI6-BH-16-003 AOI6-BH-16-003-0-2-SOIL 04/12/2016 0.0-0.5 ft	AOI6-BH-16-004 AOI6-BH-16-004-0-2-SOIL 04/21/2016 0.8-1.8 ft	AOI6-BH-16-004 AOI6-BH16-DUP-SOIL-002 04/21/2016 0.8-1.8 ft Duplicate	AOI6-BH-16-005 AOI6-BH-16-005-0-2-SOIL 04/12/2016 0.0-0.5 ft	AOI6-BH-16-006 AOI6-BH-16-006-0-2-SOIL 04/22/2016 1.0-1.5 ft
Volatile Organic Compounds		500	25				0.0000 1	0.000 1		
1,2,4-1 rimetnyibenzene	mg/kg	560	35	ND(0.006)	ND(0.005)	ND(0.005)	0.0009 J	0.002 J	ND(0.004)	ND(0.28)
1,2-Dibromoethane (Ethylene dibromide)	mg/kg	3.7	0.005	ND(0.006) ^b	ND(0.005)	ND(0.005)	ND(0.005)	ND(0.005)	ND(0.004)	ND(0.28) ^b
1,2-Dichloroethane	mg/kg	86	0.5	ND(0.006)	ND(0.005)	ND(0.005)	ND(0.005)	ND(0.005)	ND(0.004)	ND(0.28)
1,3,5-Trimethylbenzene	mg/kg	10000	210	ND(0.006)	ND(0.005)	ND(0.005)	ND(0.005)	ND(0.005)	ND(0.004)	ND(0.28)
Benzene	mg/kg	290	0.5	0.002 J	0.001 J	ND(0.005)	0.001 J	0.002 J	0.0004 J	ND(0.28)
Ethylbenzene	mg/kg	890	70	ND(0.006)	ND(0.005)	ND(0.005)	ND(0.005)	0.001 J	ND(0.004)	ND(0.28)
Isopropyl benzene	mg/kg	10000	2500	ND(0.006)	ND(0.005)	ND(0.005)	ND(0.005)	ND(0.005)	ND(0.004)	ND(0.28)
Methyl tert butyl ether (MTBE)	mg/kg	8600	2.0	ND(0.006)	ND(0.005)	ND(0.005)	ND(0.005)	ND(0.005)	ND(0.004)	ND(0.28)
Naphthalene	mg/kg	760	25	-	-	-	-	-	-	-
Toluene	mg/kg	10000	100	0.003 J	0.001 J	ND(0.005)	0.003 J	0.003 J	ND(0.004)	0.088 J
Xylenes (total)	mg/kg	8000	1000	0.001 J	ND(0.005)	ND(0.005)	0.004 J	0.005 J	ND(0.004)	0.063 J
Semi-Volatile Organic Compounds										
Anthracene	mg/kg	190000	350	0.73	0.34	0.41	0.43	0.6	0.016 J	0.7
Benzo(a)anthracene	mg/kg	130	130	0.95	1.7	1.9	1.1	1.7	0.11	1.2
Benzo(a)pyrene	mg/kg	12	12	1.1	1.7	1.9	1.1	1.5	0.13	1.2
Benzo(b)fluoranthene	mg/kg	76	76	1.5	2.2	2.6	1.3	1.9	0.18	1.3
Benzo(g,h,i)perylene	mg/kg	190000	180	1.3	0.85	1.5	0.7	0.94	0.15	0.76
Chrysene	mg/kg	760	230	1.1	1.7	1.9	1.1	1.7	0.12	1.3
Fluorene	mg/kg	130000	3800	0.32	0.079 J	0.11	0.16	0.19	0.005 J	0.36
Naphthalene	mg/kg	760	25	6.9	0.63	0.51	1.2	1.3	0.025	1.6
Phenanthrene	mg/kg	190000	10000	2.0	0.87	1./	1.1	1.7	0.053	1.5
Pyrene	mg/kg	96000	2200	1.6	2.0	2.8	1.3	2.3	0.15	2.0
Metals - Total										
Lead	mg/kg	1000 ^a	450 ^b , 2240 ^c	288	180	549 ^b	399	529 ^b	68.7	142
General Chemistry										
Percent moisture	%	-	-	14.6	24.8	12.2	13.2	12.5	4.9	14.5
pH, lab	s.u.	-	-	-	-	-	-	-	-	-

Notes:

а	PADEP Act 2 Medium-Specific Concentration (MSCs) for Organic/Inorganic
	Regulated Substances in Soil, Direct Contact, Non-Residential, Surface Soil
	(0-2 feet), August 27, 2016.
b	PADEP Act 2 Medium-Specific Concentration (MSCs) for Organic/Inorganic
	Regulated Substances in Soil, Minimum of Direct Contact and Soil to Groundwater
	Max(Generic vs x100), Used Aquifers TDS <= 2500, Non-residential,
С	Site Specific Standard for Lead (SSS)
	August 27, 2016.
ND	Not detected at the associated reporting limit.
J	Estimated concentration.
ND(10) ^b	Indicates reporting limit was above the applicable standard.
6.5 ^A	Concentration exceeds the indicated standard.

ft Feet.

Surface Soil Analytical Results Summary Statewide Health Standards AOI 6 Remedial Investigation Report Philadelphia Refinery Operations, a series of Evergreen Resources Group, LLC

Sample Location: Sample ID: Sample Date: Sample Depth: Parameters	Units	Act 2 Non-Residential Used Aquifer Direct Contact MSC	Act 2 Non-Residential Used Aquifer MSC	AOI6-BH-16-007 AOI6-BH-16-007-0-2-SOIL 04/08/2016 1.0-2.0 ft	AOI6-BH-16-008 AOI6-BH-16-008-0-2-SOIL 04/08/2016 1.0-2.0 ft	AOI6-BH-16-009 AOI6-BH-16-009-0-2-SOIL 04/08/2016 1.5-1.8 ft	AOI6-BH-16-010 AOI6-BH-16-010-0-2-SOIL 04/11/2016 0.5-0.9 ft	AOI6-BH-16-011 AOI6-BH-16-011-0-2-SOIL 04/11/2016 0.5-0.8 ft	AOI6-BH-16-012 AOI6-BH16-012-0-2-SOIL-B 04/11/2016 0.5-1.0 ft	AOI6-BH-16-012 AOI6-BH-16-012-0-2-SOIL 04/11/2016 1.0-1.1 ft
	onito	ŭ	5							
Volatile Organic Compounds										
1,2,4-Trimethylbenzene	mg/kg	560	35	ND(0.006)	ND(0.005)	ND(0.006)	ND(0.005)	ND(0.27)	ND(0.25)	ND(0.23)
1,2-Dibromoethane (Ethylene dibromide)	mg/kg	3.7	0.005	ND(0.006) ^b	ND(0.005)	ND(0.006) ^b	ND(0.005)	ND(0.27) ^b	ND(0.25) ^b	ND(0.23) ^b
1,2-Dichloroethane	mg/kg	86	0.5	ND(0.006)	ND(0.005)	ND(0.006)	ND(0.005)	ND(0.27)	ND(0.25)	ND(0.23)
1,3,5-Trimethylbenzene	mg/kg	10000	210	ND(0.006)	ND(0.005)	ND(0.006)	ND(0.005)	ND(0.27)	ND(0.25)	ND(0.23)
Benzene	mg/kg	290	0.5	0.003 J	0.001 J	0.005 J	0.011	ND(0.27)	ND(0.25)	ND(0.23)
Ethylbenzene	mg/kg	890	70	ND(0.006)	ND(0.005)	ND(0.006)	ND(0.005)	ND(0.27)	ND(0.25)	ND(0.23)
Isopropyl benzene	mg/kg	10000	2500	ND(0.006)	ND(0.005)	ND(0.006)	ND(0.005)	ND(0.27)	2.0	0.25
Methyl tert butyl ether (MTBE)	mg/kg	8600	2.0	ND(0.006)	ND(0.005)	ND(0.006)	ND(0.005)	ND(0.27)	ND(0.25)	ND(0.23)
Naphthalene	mg/kg	760	25	_	-	_ /	<u> </u>	-	-	-
Toluene	mg/kg	10000	100	0.001 J	ND(0.005)	ND(0.006)	0.004 J	ND(0.27)	ND(0.25)	ND(0.23)
Xylenes (total)	mg/kg	8000	1000	ND(0.006)	ND(0.005)	ND(0.006)	ND(0.005)	ND(0.27)	0.061 J	0.047 J
Semi-Volatile Organic Compounds										
Anthracene	mg/kg	190000	350	0.2	2.3	4.3	0.079	1.7	1.3	0.69
Benzo(a)anthracene	mg/kg	130	130	0.72	5.5	5.2	0.21	0.99	0.94	1.9
Benzo(a)pyrene	mg/kg	12	12	0.67	4.8	3.3	0.26	0.99	0.89	1.8
Benzo(b)fluoranthene	mg/kg	76	76	0.95	6.3	4	0.41	1.3	1.6	2.3
Benzo(g,h,i)perylene	mg/kg	190000	180	0.51	3.3	1.9	0.23	0.69	0.74	1.4
Chrysene	mg/kg	760	230	0.85	5.6	5.1	0.28	1.0	2.7	1.8
Fluorene	mg/kg	130000	3800	0.07	1./	1.4	0.012 J	8.5	66	0.33
Naphthalene	mg/kg	760	25	0.63	2.9	1.9	0.22	ND(0.22)	1.3	0.44
Phenanthrene	mg/kg	190000	10000	0.72	10	14	0.23	10	20	2.0
Pyrene	тід/кд	96000	2200	1.2	10	13	0.43	1.9	1.0	3.3
Metals - Total								1		
Lead	mg/kg	1000 ^a	450 ^b , 2240 ^c	803 ^b	298	149	1460 ^b	734 ^b	141	194
General Chemistry										
Percent moisture	%	-	-	14.7	13.6	11.5	19.7	22.8	20.0	8.2
pH, lab	S.U.	-	-	-	-	-	-	-	-	-

Notes:

а	PADEP Act 2 Medium-Specific Concentration (MSCs) for Organic/Inorganic
	Regulated Substances in Soil, Direct Contact, Non-Residential, Surface Soil
	(0-2 feet), August 27, 2016.
b	PADEP Act 2 Medium-Specific Concentration (MSCs) for Organic/Inorganic
	Regulated Substances in Soil, Minimum of Direct Contact and Soil to Groundwater
	Max(Generic vs x100), Used Aquifers TDS <= 2500,Non-residential,
С	Site Specific Standard for Lead (SSS)
	August 27, 2016.
ND	Not detected at the associated reporting limit.
J	Estimated concentration.
ND(10) ^b	Indicates reporting limit was above the applicable standard.
6.5 ^A	Concentration exceeds the indicated standard.

ft Feet.

Surface Soil Analytical Results Summary Statewide Health Standards AOI 6 Remedial Investigation Report Philadelphia Refinery Operations, a series of Evergreen Resources Group, LLC

Sample Location: Sample ID: Sample Date: Sample Depth: Parameters	Units	Act 2 Non-Residential Used Aquifer Direct Contact MSC	Act 2 Non-Residential Used Aquifer MSC	AOI6-BH-16-013 AOI6-BH-16-013-0-2-SOIL 04/11/2016 0.5-1.0 ft	AOI6-BH-16-014 AOI6-BH-16-014-0-2-SOIL 04/05/2016 1.0-1.5 ft	AOI6-BH-16-014 AOI6-BH-16-014-0-2-071116 07/11/2016 1.3-1.8 ft	AOI6-BH-16-015 AOI6-BH-16-015-0-2-SOIL 04/05/2016 1.5-2.0 ft	AOI6-BH-16-015 AOI6-BH-16-015-0-2-071116 07/11/2016 1.0-1.4 ft	AOI6-BH-16-016 AOI6-BH-16-016-0-2-SOIL 04/04/2016 1.0-1.5 ft	AOI6-BH-16-016 AOI6-BH-16-016-0-2-071116 07/11/2016 1.5-2.0 ft
l'arameters	Onits	a	D							
Volatile Organic Compounds										
1,2,4-Trimethylbenzene	mg/kg	560	35	ND(0.23)	0.11 J	-	0.11 J	-	ND(0.006)	-
1,2-Dibromoethane (Ethylene dibromide)	mg/kg	3.7	0.005	ND(0.23) ^b	ND(0.33) ^b	-	ND(0.33) ^b	-	ND(0.006) ^b	-
1,2-Dichloroethane	mg/kg	86	0.5	ND(0.23)	ND(0.33)	-	ND(0.33)	-	ND(0.006)	-
1,3,5-Trimethylbenzene	mg/kg	10000	210	ND(0.23)	ND(0.33)	-	ND(0.33)	-	ND(0.006)	-
Benzene	mg/kg	290	0.5	ND(0.23)	0.24 J	-	0.053 J	-	0.004 J	-
Ethylbenzene	mg/kg	890	70	ND(0.23)	0.095 J	-	ND(0.33)	-	ND(0.006)	-
Isopropyl benzene	mg/kg	10000	2500	ND(0.23)	ND(0.33)	_	0.77	_	ND(0.006)	-
Methyl tert butyl ether (MTBE)	ma/ka	8600	2.0	ND(0.23)	ND(0.33)	-	ND(0.33)	-	ND(0.006)	-
Naphthalene	ma/ka	760	25	-	-	-	-	-	-	-
Toluene	ma/ka	10000	100	ND(0.23)	0.260 J	-	0.130 J	-	0.003 J	_
Xylenes (total)	ma/ka	8000	1000	ND(0.23)	0.280 J	-	0.470	-	ND(0.006)	-
Semi-Volatile Organic Compounds										
Anthracene	mg/kg	190000	350	0.40	-	6.2	-	5.4	-	1.9
Benzo(a)anthracene	mg/kg	130	130	0.46	-	7.8	-	2.0 J	-	1.7
Benzo(a)pyrene	mg/kg	12	12	0.28	-	8.3	-	<u>1.6 J</u>	-	1./
Benzo(b)fluorantnene	mg/kg	76	/6	0.34	-	8.2	-	2.9	-	2.3
Benzo(g,n,i)peryiene	mg/kg	190000	180	0.21	-	6.3	-	2.2	-	1.6
Eluoropo	mg/kg	120000	230	2.5	-	0.9	-	5.0	-	5.0
Nanhthalene	mg/kg	760	25	ND(0.20)		21		2.8		0.1
Phenanthrene	mg/kg	190000	10000	0.96		21		16		9.6
Pyrene	mg/kg	96000	2200	0.50	-	12		84		2.4
Metals - Total	iiig/itg					12		0.4		2.7
Lead	mg/kg	1000 ^a	450 ^b , 2240 ^c	32.0	344	-	671 ^b	-	313	-
General Chemistry										
Percent moisture	%	-	-	14.8	33.7	34.4	26.7	19.9	12.5	29.2
pH, lab	s.u.	-	-	-	-	-	-	-	-	-

Notes:

а	PADEP Act 2 Medium-Specific Concentration (MSCs) for Organic/Inorganic
	Regulated Substances in Soil, Direct Contact, Non-Residential, Surface Soil
	(0-2 feet), August 27, 2016.
b	PADEP Act 2 Medium-Specific Concentration (MSCs) for Organic/Inorganic
	Regulated Substances in Soil, Minimum of Direct Contact and Soil to Groundwater
	Max(Generic vs x100), Used Aquifers TDS <= 2500,Non-residential,
С	Site Specific Standard for Lead (SSS)
	August 27, 2016.
ND	Not detected at the associated reporting limit.
J	Estimated concentration.
ND(10) ^b	Indicates reporting limit was above the applicable standard.
6.5 ^A	Concentration exceeds the indicated standard.

ft Feet.

Surface Soil Analytical Results Summary Statewide Health Standards AOI 6 Remedial Investigation Report Philadelphia Refinery Operations, a series of Evergreen Resources Group, LLC

Sample Location: Sample ID: Sample Date: Sample Depth: Parameters	Units	Act 2 Non-Residential Used Aquifer Direct Contact MSC a	Act 2 Non-Residential Used Aquifer MSC b	AOI6-BH-16-017 AOI6-BH-16-017-0-2-SOIL 04/11/2016 0.5-1.0 ft	AOI6-BH-16-018 AOI6-BH-16-018-0-2-SOIL 04/11/2016 0.8-1.0 ft	AOI6-BH-16-019 AOI6-BH-16-019-0-2-SOIL 04/21/2016 0.8-1.8 ft	AOI6-BH-16-019 AOI6-BH16-DUP-SOIL-001 04/21/2016 0.8-1.8 ft Duplicate	AOI6-BH-16-020 AOI6-BH-16-020-0-2-SOIL 04/21/2016 0.0-1.1 ft	AOI6-BH-16-021 AOI6-BH-16-021-0-2-SOIL 04/21/2016 0.0-0.5 ft	AOI6-BH-16-022 AOI6-BH-16-022-0-2-SOIL 04/06/2016 0.5-1.0 ft
Volatile Organic Compounds		500	05		0.001				0.44	
1,2,4- I rimetnyibenzene	mg/kg	560	35	ND(0.004)	0.001 J	ND(0.006)	ND(0.005)	ND(0.30)	0.11 J	ND(0.24)
1,2-Dibromoethane (Ethylene dibromide)	mg/kg	3.7	0.005	ND(0.004)	ND(0.004)	ND(0.006) ^b	ND(0.005)	ND(0.30) ⁶	ND(0.24) ⁶	ND(0.24) ⁶
1,2-Dichloroethane	mg/kg	86	0.5	ND(0.004)	ND(0.004)	ND(0.006)	ND(0.005)	ND(0.30)	ND(0.24)	ND(0.24)
1,3,5-Trimethylbenzene	mg/kg	10000	210	ND(0.004)	ND(0.004)	ND(0.006)	ND(0.005)	ND(0.30)	0.082 J	ND(0.24)
Benzene	mg/kg	290	0.5	0.001 J	0.071	ND(0.006)	ND(0.005)	0.039 J	0.062 J	0.089 J
Ethylbenzene	mg/kg	890	70	ND(0.004)	0.001 J	ND(0.006)	ND(0.005)	ND(0.30)	ND(0.24)	0.052 J
Isopropyl benzene	mg/kg	10000	2500	ND(0.004)	0.001 J	ND(0.006)	ND(0.005)	0.420	ND(0.24)	ND(0.24)
Methyl tert butyl ether (MTBE)	mg/kg	8600	2.0	ND(0.004)	ND(0.004)	ND(0.006)	ND(0.005)	ND(0.30)	ND(0.24)	ND(0.24)
Naphthalene	mg/kg	760	25	-	-	-	-	-	-	-
Toluene	mg/kg	10000	100	ND(0.004)	0.005	ND(0.006)	ND(0.005)	ND(0.30)	0.10 J	0.15 J
Xylenes (total)	mg/kg	8000	1000	ND(0.004)	0.002 J	ND(0.006)	ND(0.005)	0.072 J	0.10 J	0.18 J
Semi-Volatile Organic Compounds										
Anthracene	mg/kg	190000	350	0.35	0.67	1.4	1.4	3.7	1.0	2.1
Benzo(a)anthracene	mg/kg	130	130	3.3	1.4	1.2	1.3	7.4	2.4	3.4
Benzo(a)pyrene	mg/kg	12	12	4.2	1.9	1.3	1.4	7.8	2.2	4.1
Benzo(b)fluoranthene	mg/kg	76	76	6.7	2.3	1.5	1.7	9.8	3.0	5.3
Benzo(g,h,i)perylene	mg/kg	190000	180	4.8	1.5	1.4	1.5	5.1	1.4	3.3
Chrysene	mg/kg	760	230	4.9	1.9	1.3	1.4	7.7	2.3	4.9
Fluorene	mg/kg	130000	3800	0.081	0.48	0.59	0.61	2.2	0.53	1.6
Naphthalene	mg/kg	760	25	0.12	2.1	7.7	8.3	3.3	1.1	3.5
Phenanthrene	mg/kg	190000	10000	2.4	1.6	3.3	3.2	13	3.2	5.4
Pyrene	mg/kg	96000	2200	8.1	2.4	1.6	1.6	13	3.9	7.9
Metals - Total										
Lead	mg/kg	1000 ^a	450 ^b , 2240 ^c	180	138	2920 ^{ab}	6690 ^{ab}	199	223	236
General Chemistry										
Percent moisture	%	-	-	9.4	8.6	22.8	20.3	12.6	9.6	12.5
pH, lab	s.u.	-	-	-	-	-	-	-	-	-

Notes:

а	PADEP Act 2 Medium-Specific Concentration (MSCs) for Organic/Inorganic
	Regulated Substances in Soil, Direct Contact, Non-Residential, Surface Soil
	(0-2 feet), August 27, 2016.
b	PADEP Act 2 Medium-Specific Concentration (MSCs) for Organic/Inorganic
	Regulated Substances in Soil, Minimum of Direct Contact and Soil to Groundwater
	Max(Generic vs x100), Used Aquifers TDS <= 2500, Non-residential,
с	Site Specific Standard for Lead (SSS)
	August 27, 2016.
ND	Not detected at the associated reporting limit.
J	Estimated concentration.
ND(10) ^b	Indicates reporting limit was above the applicable standard.
6.5 ^A	Concentration exceeds the indicated standard.

6.5⁴ ft Feet.

Surface Soil Analytical Results Summary Statewide Health Standards AOI 6 Remedial Investigation Report Philadelphia Refinery Operations, a series of Evergreen Resources Group, LLC

Sample Location: Sample ID: Sample Date: Sample Depth:		Act 2 Non-Residential Used Aquifer Direct Contact MSC	Act 2 Non-Residential Used Aquifer MSC	AOI6-BH-16-023 AOI6-BH-16-023-0-2-SOIL 04/21/2016 1.5-1.9 ft	AOI6-BH-16-025 AOI6-BH-16-025-0-2-SOIL 04/22/2016 1.5-1.9 ft	AOI6-BH-16-025 AOI6-BH16-DUP-04-22-16-003 04/22/2016 1.5-1.9 ft Duplicate	AOI6-BH-16-026 AOI6-BH-16-026-0-2-SOIL 04/22/2016 0.4-1.3 ft	AOI6-BH-16-027 AOI6-BH-16-027-0-2-SOIL 04/13/2016 1.8-2.0 ft	AOI6-BH-16-028 AOI6-BH-16-028-0-2-SOIL 04/13/2016 0.3-0.5 ft	AOI6-BH-16-029 AOI6-BH-16-029-0-2-SOIL 04/13/2016 1.8-2.0 ft
Parameters	Units	а	b							
Volatile Organic Compounds										
1,2,4-Trimethylbenzene	mg/kg	560	35	0.12 J	0.095 J	0.096 J	ND(0.22)	ND(0.005)	0.057 J	0.25 J
1,2-Dibromoethane (Ethylene dibromide)	mg/kg	3.7	0.005	ND(0.47) ^b	ND(0.22) ^b	ND(0.21) ^b	ND(0.22) ^b	ND(0.005)	ND(0.26) ^b	ND(0.25) ^b
1,2-Dichloroethane	mg/kg	86	0.5	ND(0.47)	ND(0.22)	ND(0.21)	ND(0.22)	ND(0.005)	ND(0.26)	ND(0.25)
1,3,5-Trimethylbenzene	mg/kg	10000	210	ND(0.47)	0.045 J	ND(0.21)	ND(0.22)	ND(0.005)	ND(0.26)	0.095 J
Benzene	mg/kg	290	0.5	0.13 J	2.7 ^b	2.6 ^b	7.6 ^b	ND(0.005)	0.46	0.990 ^b
Ethylbenzene	mg/kg	890	70	0.10 J	0.12 J	0.110 J	0.082 J	ND(0.005)	0.10 J	0.30
Isopropyl benzene	mg/kg	10000	2500	0.34 J	2.9	2.6	1.8	ND(0.005)	0.22 J	1.7
Methyl tert butyl ether (MTBE)	mg/kg	8600	2.0	ND(0.47)	ND(0.22)	ND(0.21)	ND(0.22)	ND(0.005)	ND(0.26)	ND(0.25)
Naphthalene	mg/kg	760	25	-	-	-	-	-	-	-
Toluene	mg/kg	10000	100	0.20 J	0.9	0.75	ND(0.22)	ND(0.005)	0.45	0.37
Xylenes (total)	mg/kg	8000	1000	0.21 J	0.53	0.48	0.092 J	ND(0.005)	0.34	0.6
Semi-Volatile Organic Compounds										
Anthracene	mg/kg	190000	350	2.1	4.4	4.9	0.71	0.007 J	0.39	2.9
Benzo(a)anthracene	mg/kg	130	130	1.3	3.2	3.8	1.3	0.011 J	0.91	6.1
Benzo(a)pyrene	mg/kg	12	12	1.7	2.3	2.7	1.3	0.010 J	1.2	6.2
Benzo(b)fluoranthene	mg/kg	76	76	1.8	2.8	3.2	0.89	0.016 J	1.6	8.7
Benzo(g,h,i)perylene	mg/kg	190000	180	1.8	0.93	1.0	0.72	0.009 J	1.1	4.5
Chrysene	mg/kg	760	230	1.5	2.8	3.2	2.2	0.021 J	1.0	6.1
Fluorene	mg/kg	130000	3800	1.9	4.2	4.4	0.51	0.009 J	0.16	3.2
Naphthalene	mg/kg	760	25	12	0.46	0.48	1.1	0.010 J	1.2	3.1
Phenanithene	mg/kg	190000	10000	4.0	13	14	1.9	0.02 J	1.1	11
Fylene	nig/kg	90000	2200	2.4	5.6	0.0	2.1	0.032	1.2	11
Metals - Total										
Lead	mg/kg	1000 ^a	450 ^b , 2240 ^c	393	10.3	10.2	61.8	20.0	159	138
General Chemistry										
Percent moisture	%	-	-	34.9	8.7	9.1	8.8	24.8	8.7	12.0
pH, lab	s.u.	-	-	-	-	-	-	-	-	-

Notes:

а	PADEP Act 2 Medium-Specific Concentration (MSCs) for Organic/Inorganic
	Regulated Substances in Soil, Direct Contact, Non-Residential, Surface Soil
	(0-2 feet), August 27, 2016.
b	PADEP Act 2 Medium-Specific Concentration (MSCs) for Organic/Inorganic
	Regulated Substances in Soil, Minimum of Direct Contact and Soil to Groundwater
	Max(Generic vs x100), Used Aquifers TDS <= 2500, Non-residential,
С	Site Specific Standard for Lead (SSS)
	August 27, 2016.
ND	Not detected at the associated reporting limit.
J	Estimated concentration.
ND(10) ^b	Indicates reporting limit was above the applicable standard.
0 FÅ	Concentration eveneds the indicated standard

6.5^A ft Concentration exceeds the indicated standard.

Feet.

Surface Soil Analytical Results Summary Statewide Health Standards AOI 6 Remedial Investigation Report Philadelphia Refinery Operations, a series of Evergreen Resources Group, LLC

Sample Location: Sample ID: Sample Date: Sample Depth:		Act 2 Non-Residential Used Aquifer Direct Contact MSC	Act 2 Non-Residential Used Aquifer MSC	AOI6-BH-16-030 AOI6-BH-16-030-0-2-SOIL 04/14/2016 1.5-2.0 ft	AOI6-BH-16-031 AOI6-BH-16-031-0-2-SOIL 04/14/2016 1.0-2.0 ft	AOI6-BH-16-032 AOI6-BH-16-032-0-2-SOIL 04/13/2016 1.0-2.0 ft	AOI6-BH-16-033 AOI6-BH-16-033-0-2-SOIL 04/13/2016 1.5-2.0 ft	AOI6-BH-16-034 AOI6-BH-16-034-0-2-SOIL 04/13/2016 1.5-1.8 ft	AOI6-BH-16-035 AOI6-BH-16-035-0-2-SOIL 04/13/2016 1.5-2.0 ft	AOI6-BH-16-036 AOI6-BH-16-036-0-2-SOIL 04/14/2016 1.3-1.8 ft
Parameters	Units	а	b							
Volatile Organic Compounds										
1,2,4-Trimethylbenzene	mg/kg	560	35	ND(4.4)	ND(0.22)	ND(0.22)	ND(0.004)	ND(5.0)	ND(0.004)	ND(4.5)
1,2-Dibromoethane (Ethylene dibromide)	mg/kg	3.7	0.005	ND(4.4) ^b	ND(0.22) ^b	ND(0.22) ^b	ND(0.004)	ND(5.0) ^b	ND(0.004)	ND(4.5) ^b
1,2-Dichloroethane	mg/kg	86	0.5	ND(4.4) ^b	ND(0.22)	ND(0.22)	ND(0.004)	ND(5.0) ^b	ND(0.004)	ND(4.5) ^b
1,3,5-Trimethylbenzene	mg/kg	10000	210	ND(4.4)	ND(0.22)	ND(0.22)	ND(0.004)	ND(5.0)	ND(0.004)	ND(4.5)
Benzene	mg/kg	290	0.5	9.4 ^b	0.630 ^b	0.12 J	0.003 J	44 ^b	0.001 J	0.55 J ^b
Ethylbenzene	mg/kg	890	70	ND(4.4)	0.053 J	0.051 J	ND(0.004)	ND(5.0)	ND(0.004)	ND(4.5)
Isopropyl benzene	mg/kg	10000	2500	18	4	1.7	0.019	230	0.021	59
Methyl tert butyl ether (MTBE)	mg/kg	8600	2.0	ND(4.4) ^b	ND(0.22)	ND(0.22)	ND(0.004)	ND(5.0) ^b	ND(0.004)	ND(4.5) ^b
Naphthalene	mg/kg	760	25		-	_	-		-	-
Toluene	mg/kg	10000	100	ND(4.4)	ND(0.22)	0.091 J	ND(0.004)	38	ND(0.004)	ND(4.5)
Xylenes (total)	mg/kg	8000	1000	ND(4.4)	0.083 J	0.13 J	ND(0.004)	2.1 J	ND(0.004)	ND(4.5)
Semi-Volatile Organic Compounds										
Anthracene	mg/kg	190000	350	0.037 J	ND(0.019)	0.008 J	0.030 J	0.027	ND(0.019)	0.064 J
Benzo(a)anthracene	mg/kg	130	130	0.094 J	0.004 J	0.032	0.12	0.09	0.008 J	0.35
Benzo(a)pyrene	mg/kg	12	12	0.12	0.006 J	0.036	0.13	0.092	0.009 J	0.30
Benzo(b)fluoranthene	mg/kg	76	76	0.18	0.007 J	0.049	0.18	0.13	0.014 J	0.57
Benzo(g,h,i)perylene	mg/kg	190000	180	0.13	0.005 J	0.032	0.13	0.083	0.010 J	0.27
Chrysene	mg/kg	760	230	0.098	0.005 J	0.038	0.14	0.11	0.010 J	0.41
Fluorene	mg/kg	130000	3800	ND(0.095)	ND(0.019)	ND(0.018)	ND(0.092)	0.017 J	ND(0.019)	0.035 J
Naphthalene	mg/kg	760	25	0.024 J	ND(0.019)	ND(0.018)	ND(0.092)	0.07	ND(0.019)	0.099
Pyropo	mg/kg	190000	2200	0.034 J	0.004 J	0.023	0.038 J	0.007	0.010 J	0.20
Гутепе	iiig/kg	90000	2200	0.13	0.007 5	0.037	0.19	0.10	0.013 3	0.51
Metals - Total										
Lead	mg/kg	1000 ^a	450 ^b , 2240 ^c	66.0	5.63	10.3	12.8	14.0	10.0	60.8
General Chemistry										
Percent moisture	%	-	-	11.4	10.4	8.1	8.4	13.2	10.7	10.5
pH, lab	s.u.	-	-	-	-	-	-	-	-	-

Notes:

а	PADEP Act 2 Medium-Specific Concentration (MSCs) for Organic/Inorganic
	Regulated Substances in Soil, Direct Contact, Non-Residential, Surface Soil
	(0-2 feet), August 27, 2016.
b	PADEP Act 2 Medium-Specific Concentration (MSCs) for Organic/Inorganic
	Regulated Substances in Soil, Minimum of Direct Contact and Soil to Groundwater
	Max(Generic vs x100), Used Aquifers TDS <= 2500, Non-residential,
С	Site Specific Standard for Lead (SSS)
	August 27, 2016.
ND	Not detected at the associated reporting limit.
J	Estimated concentration.
ND(10) ^b	Indicates reporting limit was above the applicable standard.

- Indicates reporting limit was above the applicate Concentration exceeds the indicated standard. 6.5^A ft
- Feet.

Surface Soil Analytical Results Summary Statewide Health Standards AOI 6 Remedial Investigation Report Philadelphia Refinery Operations, a series of Evergreen Resources Group, LLC

Value Value <th< th=""><th>Sample Location: Sample ID: Sample Date: Sample Depth: Parameters</th><th>Units</th><th>Act 2 Non-Residential Used Aquifer Direct Contact MSC a</th><th>Act 2 Non-Residential Used Aquifer MSC b</th><th>AOI6-BH-16-037 AOI6-BH-16-037-0-2-SOIL 04/14/2016 1.0-1.8 ft</th><th>AOI6-BH-16-038 AOI6-BH-16-038-0-2-SOIL 04/14/2016 1.5-1.8 ft</th><th>AOI6-BH-16-039 AOI6-BH-16-039-0-2-SOIL 04/11/2016 0.5-0.6 ft</th><th>AOI6-BH-16-040 AOI6-BH-16-040-0-2-SOIL 04/07/2016 0.5-0.8 ft</th><th>AOI6-BH-16-041 AOI6-BH-16-041-0-2-SOIL 04/07/2016 0.8-1.3 ft</th><th>AOI6-BH-16-043 AOI6-BH-16-43-0-2-SOIL 04/07/2016 0.5-1.0 ft</th><th>B-171 AOI6-B-171-0-2-SOIL 04/06/2016 1.0-2.0 ft</th><th>B-172 AOI6-B-172-0-2-SOIL 04/06/2016 0.5-1.0 ft</th></th<>	Sample Location: Sample ID: Sample Date: Sample Depth: Parameters	Units	Act 2 Non-Residential Used Aquifer Direct Contact MSC a	Act 2 Non-Residential Used Aquifer MSC b	AOI6-BH-16-037 AOI6-BH-16-037-0-2-SOIL 04/14/2016 1.0-1.8 ft	AOI6-BH-16-038 AOI6-BH-16-038-0-2-SOIL 04/14/2016 1.5-1.8 ft	AOI6-BH-16-039 AOI6-BH-16-039-0-2-SOIL 04/11/2016 0.5-0.6 ft	AOI6-BH-16-040 AOI6-BH-16-040-0-2-SOIL 04/07/2016 0.5-0.8 ft	AOI6-BH-16-041 AOI6-BH-16-041-0-2-SOIL 04/07/2016 0.8-1.3 ft	AOI6-BH-16-043 AOI6-BH-16-43-0-2-SOIL 04/07/2016 0.5-1.0 ft	B-171 AOI6-B-171-0-2-SOIL 04/06/2016 1.0-2.0 ft	B-172 AOI6-B-172-0-2-SOIL 04/06/2016 0.5-1.0 ft
Volatio Corporatis Volatio Corporatis Volation V		enne	ŭ	5								
12.4-Timetrybenzene mgkg 660 35 ND(6,4) ^a ND(6,4) ^a ND(6,05) 0.33 J - 0.045 J ND(0.04) 0.010 J 1.2.Detrocedmane (Ethylen altornice) mgkg 86 0.5 ND(6,4) ^a ND(6,4) ^a ND(0.05) ND(1,1) ^a - ND(0.22) ND(0.04) ND(0.38) 1.2.Detrocedmane (Ethylen altornice) mgkg 86 0.5 ND(4,4) ^a ND(0.05) ND(1,1) ^a - ND(0.24) ND(0.38) 1.2.Detrocedmane (Ethylen altornice) mgkg 860 2.0 ND(4,4) ^a ND(0.05) ND(1,1) ^a - ND(0.04) ND(0.38) Ethylenzane mgkg 860 2.0 ND(4,4) ^a ND(0.05) ND(1,1) ^a - ND(0.24) ND(0.38) Matrix net Low mgkg 10000 2.00 6.50 ^b 14 ND(0.05) ND(1,1) - ND(0.24) ND(0.38) Matrix net Low mgkg 760 2.5 - - - - - - - - - - - - - - - -	Volatile Organic Compounds				F			-				
1.2-Dicknowethare (Ethylene ditornide) mg/kg 3.7 0.005 ND(6.4) ^b ND(6.4) ^b ND(6.4) ^b ND(6.4) ^b ND(6.3) ^b 1.2-Dicknowethare mg/kg 86 0.5 ND(4.4) ^b ND(6.4) ^b ND(6.4) ^b ND(6.3) ^b - ND(6.4) ² ND(0.04) ND(0.38) 1.3.5 Timethylbenzene mg/kg 200 0.5 71 ^{cb} 8.8 ^b ND(0.055) 0.38 J - 0.046 J ND(0.04) ND(0.38) Entylanzane mg/kg 800 70 ND(4.4) ^b ND(0.055) 1.1 J ^b - 0.046 J ND(0.04) ND(0.38) Entylanzane mg/kg 800 70 ND(4.8) ND(0.055) 1.1 J ^b - 0.064 J ND(0.04) ND(0.38) Merbylane mg/kg 800 2.0 ND(4.8) ND(0.055) ND(1.1) - 0.055 J ND(0.04)	1,2,4-Trimethylbenzene	mg/kg	560	35	ND(94) ^b	ND(4.8)	ND(0.005)	0.33 J	-	0.045 J	ND(0.004)	0.110 J
1,2-Dichlorachane mg/kg 86 0.5 ND(4.6) ^k ND(0.65) ND(1.1) ^k - ND(0.22) ND(0.004) ND(0.38) 1,2-Dirnderibylozcene mg/kg 1200 0.5 710 ^k 8.8 ^k ND(0.055) 0.33 J - 0.64 ^k J ND(0.064 J ND(0.055) 0.75 J - 0.64 ^k J ND(0.004) ND(0.38) Benzene mg/kg 1000 2500 6500 ^k ND(4.6) ^k ND(0.055) 0.75 J - 0.64 ^k J ND(0.004) ND(0.38) Isoprospiblenzene mg/kg 1000 2500 6500 ^k 14 ND(0.055) 12 - 0.065 J ND(0.09) ND(0.053) Naphtalene mg/kg 16000 100 840 ^k ND(0.055) ND(1.1) - 0.100 J 2.5 -	1,2-Dibromoethane (Ethylene dibromide)	mg/kg	3.7	0.005	ND(94) ^b	ND(4.8) ^b	ND(0.005)	ND(1.1) ^b	-	ND(0.22) ^b	ND(0.004)	ND(0.38) ^b
1.3.5-Timethylbenzene mg/kg 2000 210 ND(4.6) ND(4.6) ND(0.05) 0.3.6 J - 0.4.6 J ND(0.04) ND(0.36) Benzene mg/kg 890 70 ND(4.6) ND(0.05) 0.7.6 J - 0.6.610 ⁶ 0.001 J 0.21 J Ethylbenzene mg/kg 1000 2500 6500 ⁶ 14 ND(0.05) 0.7.6 J - 0.065 J ND(0.04) ND(0.38) Methyl eth uhyl ether (MTBE) mg/kg 8600 2.0 ND(4.8) ⁶ ND(0.05) ND(1.1) - ND(0.04) ND(0.38) Maphtalene mg/kg 10000 100 840⁶ ND(4.8) ND(0.05) ND(1.1) - 0.190 J ND(0.04) 0.58 Semi-Voisite Organic Compounds -	1,2-Dichloroethane	mg/kg	86	0.5	ND(94) ^b	ND(4.8) ^b	ND(0.005)	ND(1.1) ^b	-	ND(0.22)	ND(0.004)	ND(0.38)
Banzene mg/kg 290 0.5 710 ^a 8.8 ^b ND(0.005) 11.1 v ^b - 0.064 J ND(0.04) 0.01 J 0.21 J Embylenzene mg/kg 10000 2500 6500 ^b 14 ND(0.005) 0.76 J - 0.064 J ND(0.04) ND(0.03) Naphtalene mg/kg 760 2.0 ND(4.8 ^b) ND(0.05) ND(1.1) - ND(0.22) ND(0.04) ND(0.39) Naphtalene mg/kg 760 2.5 - <t< td=""><td>1,3,5-Trimethylbenzene</td><td>mg/kg</td><td>10000</td><td>210</td><td>ND(94)</td><td>ND(4.8)</td><td>ND(0.005)</td><td>0.38 J</td><td>-</td><td>0.046 J</td><td>ND(0.004)</td><td>ND(0.38)</td></t<>	1,3,5-Trimethylbenzene	mg/kg	10000	210	ND(94)	ND(4.8)	ND(0.005)	0.38 J	-	0.046 J	ND(0.004)	ND(0.38)
Ehylopenen mg/kg 890 70 Np(4,4)* Np(0,05) 0.76 J - 0.064 J Np(0,04) Np(0,03) Methy leth Luiy lether (MTE) mg/kg 8600 2.0 Np(4,8)* Np(0,05) 1.2 - 0.055 J Np(0,04) Np(0,03) Methy leth Luiy lether (MTE) mg/kg 8600 2.0 Np(4,8)* Np(0,05) Np(1,1) - 0.055 J Np(0,04) Np(0,03) Maphtylene mg/kg 1000 100 2.6 -	Benzene	mg/kg	290	0.5	710 ^{ab}	8.8 ^b	ND(0.005)	1.1 J ^b	-	0.810 ^b	0.001 J	0.21 J
Isopropy benzene mg/kg 10000 2500 650 ^h 14 ND(0.005) 1.2 - ND(0.04) ND(0.38) Nephty late (MTBE) mg/kg 760 25 - - - - - ND(0.48) ND(0.48) ND(0.05) ND(1.1) - ND(0.22) ND(0.04) ND(0.38) Naphtalene mg/kg 1000 1000 40 ^h ND(4.8) ND(0.05) ND(1.1) - 0.033 ND(0.04) 0.58 Tokene mg/kg 8000 1000 26.4 ND(4.8) ND(0.05) 0.88.J - 0.33 ND(0.04) 0.58 Semicolajanthizacene mg/kg 19000 350 0.66.J 0.073 J 0.005 J 1.7 6.2 0.26 0.1 -	Ethylbenzene	mg/kg	890	70	ND(94) ^b	ND(4.8)	ND(0.005)	0.76 J	-	0.064 J	ND(0.004)	0.10 J
Methyl ether (MTBE) mg/kg 8600 2.0 ND(g/g/s) ^b ND(d, g/s) ^b ND(0.005) ND(1.1) - ND(0.202) ND(0.004) ND(0.036) Maphhalene mg/kg 10000 100 25 -	Isopropyl benzene	mg/kg	10000	2500	6500 ⁶	14	ND(0.005)	1.2	-	0.055 J	ND(0.004)	ND(0.38)
Naphtalene mg/kg 760 25 1	Methyl tert butyl ether (MTBE)	mg/kg	8600	2.0	ND(94) ^b	ND(4.8) ^b	ND(0.005)	ND(1.1)	-	ND(0.22)	ND(0.004)	ND(0.38)
	Naphthalene	mg/kg	760	25			-	-	-	-	-	-
Xylenes (total) mg/kg 8000 1000 26 J ND(4.8) ND(0.005) 0.88 J - 0.33 ND(0.004) 0.51 Semi-Volatile Organic Compounds	Toluene	mg/kg	10000	100	840 ^b	ND(4.8)	ND(0.005)	ND(1.1)	-	0.190 J	ND(0.004)	0.58
Semi-Volatie Organic Compounds Anthracene mg/kg 190000 350 0.068 J 0.073 J 0.005 J 1.7 6.2 0.26 0.12 - Benzodajanthracene mg/kg 130 130 0.11 0.19 0.019 J 3.1 12 0.71 0.44 - Benzodajvprene mg/kg 12 12 0.16 0.22 0.019 J 2.2 8.0 1.1 0.46 - Benzodajvprene mg/kg 76 76 0.24 0.33 0.033 3.2 14 1.5 0.54 - Benzolgh/prevene mg/kg 760 230 0.14 0.22 0.025 2.9 12 0.78 0.42 - Fluorene mg/kg 760 25 1.3 0.093 J 0.006 J 3.2 22 0.27 0.23 - Naphthalene mg/kg 760 25 1.3 0.093 J 0.006 J 3.2 22 0.27 <td>Xylenes (total)</td> <td>mg/kg</td> <td>8000</td> <td>1000</td> <td>26 J</td> <td>ND(4.8)</td> <td>ND(0.005)</td> <td>0.88 J</td> <td>-</td> <td>0.33</td> <td>ND(0.004)</td> <td>0.51</td>	Xylenes (total)	mg/kg	8000	1000	26 J	ND(4.8)	ND(0.005)	0.88 J	-	0.33	ND(0.004)	0.51
Anthracene mg/kg 190000 350 0.068 J 0.073 J 0.005 J 1.7 6.2 0.26 0.12 $-$ Benzo(a)putne mg/kg 130 0.11 0.19 0.019 J 3.1 12 0.71 0.44 $-$ Benzo(a)putne mg/kg 76 76 0.24 0.33 0.033 3.2 14 1.5 0.54 $-$ Benzo(a)putne mg/kg 76 76 0.24 0.33 0.033 3.2 14 1.5 0.54 $-$ Benzo(b)fluoranthene mg/kg 16000 180 0.19 0.20 0.015 J 1.2 51 1.3 0.29 $-$ Chrysene mg/kg 760 230 0.14 0.22 0.025 2.9 12 0.78 0.42 $-$ Naphthalene mg/kg 760 25 1.3 0.003 J 0.006 J 3.2 22 0.27 0.23 $-$ Neghthalene mg/kg 760	Semi-Volatile Organic Compounds											
Benzo(a)anthracene mg/kg 130 0.11 0.19 0.019 J 3.1 12 0.71 0.44 - Benzo(a)pyrene mg/kg 12 12 0.16 0.22 0.019 J 2.2 8.0 1.1 0.46 - Benzo(a)pyrene mg/kg 76 76 0.24 0.33 0.033 3.2 14 1.5 0.46 - Benzo(a)pyrene mg/kg 190000 180 0.19 0.20 0.015 J 1.2 5.1 1.3 0.29 - Chrysene mg/kg 130000 3800 0.049 J 0.036 J ND(0.023) 1.6 6.8 0.050 J 0.044 J - Phenanthrene mg/kg 1000 0.18 0.18 0.016 J 6.7 25 0.42 0.22 - Pyrene mg/kg 96000 200 0.22 0.28 0.033 6.4 21 0.86 0.50 - Pyrene mg/kg	Anthracene	ma/ka	190000	350	0.068 J	0.073 J	0.005 J	1.7	6.2	0.26	0.12	-
Benzo(a)pyrene mg/kg 12 0.16 0.22 0.019 J 2.2 8.0 1.1 0.45 - Benzo(a)pyrene mg/kg 76 76 0.24 0.33 0.033 3.2 14 1.5 0.54 - Benzo(a),i)perylene mg/kg 760 2.0 0.015 J 1.2 5.1 1.3 0.29 - Chrysene mg/kg 760 2.30 0.14 0.22 0.025 2.9 12 0.76 0.044 J - Fluorene mg/kg 760 2.5 1.3 0.093 J 0.006 J 3.2 22 0.27 0.23 - Naphhalene mg/kg 760 2.5 1.3 0.093 J 0.006 J 3.2 22 0.27 0.23 - Phenanthrene mg/kg 96000 10000 0.18 0.18 0.16J 6.7 25 0.42 0.22 - Pyrene mg/kg 96000 2200 </td <td>Benzo(a)anthracene</td> <td>ma/ka</td> <td>130</td> <td>130</td> <td>0.11</td> <td>0.19</td> <td>0.019 J</td> <td>3.1</td> <td>12</td> <td>0.71</td> <td>0.44</td> <td>-</td>	Benzo(a)anthracene	ma/ka	130	130	0.11	0.19	0.019 J	3.1	12	0.71	0.44	-
Benzo(b)fluoranthene mg/kg 76 76 0.24 0.33 0.033 3.2 14 1.5 0.54 - Benzo(b)fluoranthene mg/kg 190000 180 0.19 0.20 0.015 J 1.2 5.1 1.3 0.29 - Chrysene mg/kg 760 230 0.14 0.22 0.025 2.9 12 0.78 0.42 - Fluorene mg/kg 130000 3800 0.049 J 0.036 J ND(0.023) 1.6 6.8 0.027 0.023 - Naphthalene mg/kg 190000 10000 0.18 0.18 0.016 J 6.7 25 0.42 0.22 - Pyrene mg/kg 96000 2200 0.22 0.28 0.033 6.4 21 0.86 0.50 - Berzot String mg/kg 1000 ^a 450 ^b , 2240 ^c 10.2 7.22 249 3820 ^{ab} 331 45.7 168 <	Benzo(a)pyrene	mg/kg	12	12	0.16	0.22	0.019 J	2.2	8.0	1.1	0.45	-
Benzo(g,h,i)perviene mg/kg 19000 180 0.19 0.20 0.015 J 1.2 5.1 1.3 0.29 - Chrysene mg/kg 760 230 0.14 0.22 0.025 2.9 12 0.78 0.42 - Fluorene mg/kg 130000 3800 0.049 J 0.036 J ND(0.023) 1.6 6.8 0.050 J 0.42 - Naphthalene mg/kg 760 25 1.3 0.093 J 0.006 J 3.2 22 0.27 0.23 - Phenanthrene mg/kg 10000 1.08 0.18 0.13 6.7 25 0.42 0.20 - Pyrene mg/kg 96000 200 0.22 0.28 0.033 6.4 21 0.86 0.50 - Lead mg/kg 1000 ^a 33.1 7.22 249 3820^{ab} 331 45.7 168 General Chemistry - -	Benzo(b)fluoranthene	mg/kg	76	76	0.24	0.33	0.033	3.2	14	1.5	0.54	-
Chrysene mg/kg 760 230 0.14 0.22 0.025 2.9 12 0.78 0.42 - Fluorene mg/kg 130000 3800 0.049 J 0.036 J ND(0.023) 1.6 6.8 0.050 J 0.044 J - Naphthalene mg/kg 760 25 1.3 0.093 J 0.006 J 3.2 22 0.27 0.23 - Phenanthrene mg/kg 96000 2000 0.18 0.16 J 6.7 25 0.42 0.22 - Pyrene mg/kg 96000 2200 0.22 0.28 0.033 6.4 21 0.86 0.50 - Lead mg/kg 1000 ^a 450 ^b , 2240 ^c 100 33.1 7.22 249 3820 ^{ab} 331 45.7 168 General Chemistry Pication instrue - - - - 5.0 6.2 14.6 pH, lab s.u.	Benzo(g,h,i)perylene	mg/kg	190000	180	0.19	0.20	0.015 J	1.2	5.1	1.3	0.29	-
Flueneemg/kg1300003800 0.049 J 0.036 JND(0.023) 1.6 6.8 0.050 J 0.044 J $-$ Naphthalenemg/kg76025 1.3 0.093 J 0.06 J 3.2 22 0.27 0.23 $-$ Phenanthrenemg/kg9000010000 0.18 0.18 0.016 J 6.7 25 0.42 0.22 $-$ Pyrenemg/kg960002200 0.22 0.28 0.033 6.4 21 0.86 0.50 $-$ Metais - Total Lead	Chrysene	mg/kg	760	230	0.14	0.22	0.025	2.9	12	0.78	0.42	-
Naphthalene mg/kg 760 25 1.3 0.093 J 0.006 J 3.2 22 0.27 0.23 - Phenanthrene mg/kg 190000 10000 0.18 0.18 0.016 J 6.7 25 0.42 0.22 - Pyrene mg/kg 96000 2200 0.22 0.28 0.033 6.4 21 0.86 0.50 - Metals - Total Lead mg/kg 100 ^a 450 ^b , 2240 ^c 100 33.1 7.22 249 3820 ^{ab} 331 45.7 168 Ceneral Chemistry Percent moisture V V 10.1 24.7 10.6 16.5 8.0 6.2 14.6 pH, lab s.u. - - - - 8.15 7.89 9.15 - - -	Fluorene	mg/kg	130000	3800	0.049 J	0.036 J	ND(0.023)	1.6	6.8	0.050 J	0.044 J	-
Phenanthrenemg/kg190000100000.180.180.016 J6.7250.420.22 $.2$ Pyrenemg/kg9600022000.220.280.0336.4210.860.50 $.$ Metals - Total-Leadmg/kg 100^a 450^b , 2240^c 100 33.1 7.22 249 3820^{ab} 331 45.7 168General ChemistryPercent moisture $\%$ $ 15.1$ 10.1 24.7 10.616.5 8.0 6.2 14.6pH, lab $s.u.$ $ -$	Naphthalene	mg/kg	760	25	1.3	0.093 J	0.006 J	3.2	22	0.27	0.23	
Pyrenemg/kg9600022000.220.280.0336.4210.860.50-Metals - TotalLeadmg/kg 100^a 450^b , 2240^c10033.17.22249 3820 ab33145.7168General ChemistryPercent moisture $\%$ 15.110.124.710.616.58.06.214.6pH, labs.u8.157.899.15	Phenanthrene	mg/kg	190000	10000	0.18	0.18	0.016 J	6.7	25	0.42	0.22	-
Metals - TotalLead mg/kg 100^a 450^b , 2240^c 100 33.1 7.2 249 3820^{ab} 331 45.7 168 General ChemistryPercent moisture $\%$ 15.110.1 24.7 10.616.5 8.0 6.2 14.6pH, lab $s.u.$ 8.15 7.89 9.15	Pyrene	mg/kg	96000	2200	0.22	0.28	0.033	6.4	21	0.86	0.50	-
Lead mg/kg 100 ^a 450 ^b , 2240 ^c 100 33.1 7.2 249 3820 ^{ab} 331 45.7 168 General Chemistry -	Metals - Total											
General Chemistry Percent moisture % - 15.1 10.1 24.7 10.6 16.5 8.0 6.2 14.6 pH, lab s.u. - - - - 8.15 7.89 9.15 -	Lead	mg/kg	1000 ^a	450 ^b , 2240 ^c	100	33.1	7.22	249	3820 ^{ab}	331	45.7	168
Percent moisture % - 15.1 10.1 24.7 10.6 16.5 8.0 6.2 14.6 pH, lab s.u. - - - 8.15 7.89 9.15 -	General Chemistry											
pH, lab s.u 8.15 7.89 9.15	Percent moisture	%	-	-	15.1	10.1	24.7	10.6	16.5	8.0	6.2	14.6
	pH, lab	S.U.	-	-	-	-	-	8.15	7.89	9.15	-	-

Notes:

а	PADEP Act 2 Medium-Specific Concentration (MSCs) for Organic/Inorganic
	Regulated Substances in Soil, Direct Contact, Non-Residential, Surface Soil
	(0-2 feet), August 27, 2016.
b	PADEP Act 2 Medium-Specific Concentration (MSCs) for Organic/Inorganic
	Regulated Substances in Soil, Minimum of Direct Contact and Soil to Groundwater
	Max(Generic vs x100), Used Aquifers TDS <= 2500, Non-residential,
С	Site Specific Standard for Lead (SSS)
	August 27, 2016.
ND	Not detected at the associated reporting limit.
J	Estimated concentration.
ND(10) ^b	Indicates reporting limit was above the applicable standard.

6.5^A ft Concentration exceeds the indicated standard.

Feet.

Surface Soil Analytical Results Summary Statewide Health Standards **AOI 6 Remedial Investigation Report** Philadelphia Refinery Operations, a series of Evergreen Resources Group, LLC

Sample Location: Sample ID: Sample Date: Sample Depth:	Unite	Act 2 Non-Residential Used Aquifer Direct Contact MSC	Act 2 Non-Residential Used Aquifer MSC	B-172 AOI6-B-172-0-2-071216 07/12/2016 0.5-1.0 ft	B-173 AOI6-B-173-0-2-SOIL 04/05/2016 1.0-1.5 ft	B-173 AOI6-B-173-0-2-071216 07/12/2016 1.0-1.5 ft	B-174 AOI6-B-174-0-2-SOIL 04/04/2016 1.0-1.5 ft	B-174 AOI6-B-174-0-2-071316 07/13/2016 1.0-1.5 ft	B-175 AOI6-B-175-0-2-SOIL 04/05/2016 1.5-2.0 ft	B-175 AOI6-B-175-0-2-071316 07/13/2016 1.5-2.0 ft	AOI6-BH-17-001 AOI6-BH-17-001-0-2-SOIL 01/06/2017 0.5-0.75 ft
Faiameters	Units	d	D								
Volatile Organic Compounds											
1,2,4-Trimethylbenzene	mg/kg	560	35	-	0.31	-	ND(0.004)	-	0.29 J	-	-
1,2-Dibromoethane (Ethylene dibromide)	mg/kg	3.7	0.005	-	ND(0.31) ^b	-	ND(0.004)	-	ND(0.32) ^b	-	-
1,2-Dichloroethane	mg/kg	86	0.5	-	ND(0.31)	-	ND(0.004)	-	ND(0.32)	-	-
1,3,5-Trimethylbenzene	mg/kg	10000	210	-	0.130 J	-	ND(0.004)	-	0.26 J	-	-
Benzene	mg/kg	290	0.5	-	0.300 J	-	ND(0.004)	-	1.1 ^b	-	-
Ethylbenzene	mg/kg	890	70	-	ND(0.31)	-	ND(0.004)	-	0.35	-	-
Isopropyl benzene	mg/kg	10000	2500	-	0.36	-	ND(0.004)	-	0.27 J	-	-
Methyl tert butyl ether (MTBE)	ma/ka	8600	2.0	_	ND(0.31)	_	ND(0.004)	_	ND(0.32)	-	_
Naphthalene	mg/kg	760	25	-	-	-	_	_	-	-	-
Toluene	mg/kg	10000	100	-	0.13 J	-	ND(0.004)	-	1.3	-	-
Xylenes (total)	mg/kg	8000	1000	-	0.66	-	ND(0.004)	-	1.6	-	-
Semi-Volatile Organic Compounds											
Anthracene	mg/kg	190000	350	0.80	-	0.089 J	-	0.110 J	-	2.4	-
Benzo(a)anthracene	mg/kg	130	130	2.4	-	0.30	-	0.60	-	1.9	-
Benzo(a)pyrene	mg/kg	12	12	1.4	-	0.33	-	0.54	-	1.4	-
Benzo(b)fluoranthene	mg/kg	76	76	2.6	-	0.44	-	0.71	-	1.9	
Benzo(g,h,i)perylene	mg/kg	190000	180	0.95		0.39	-	0.39	-	1./	
Chrysene	mg/kg	760	230	2.3		0.42	-	0.63	=	2.0	
Naphthalana	mg/kg	130000	3800	0.079 J	-	0.049 J	-	ND(0.21)	-	3.0	
Phenanthrene	mg/kg	190000	10000	0.93	-	0.27		0.183	-	9.3	
Pyrene	mg/kg	96000	2200	3.0		0.34		0.40		28	
	mg/kg	30000	2200	5.0		0.40		0.00		2.0	
Metals - Total											
Lead	mg/kg	1000 ^a	450 ^b , 2240 ^c	-	170	-	6.22	-	207	-	211
General Chemistry											
Percent moisture	%	-	-	26.2	17.5	9.1	4.8	21.2	30.1	40.2	-
pH, lab	s.u.	-	-	-	-	-	-	-	-	-	-

Notes:

а	PADEP Act 2 Medium-Specific Concentration (MSCs) for Organic/Inorganic
	Regulated Substances in Soil, Direct Contact, Non-Residential, Surface Soil
	(0-2 feet), August 27, 2016.
b	PADEP Act 2 Medium-Specific Concentration (MSCs) for Organic/Inorganic
	Regulated Substances in Soil, Minimum of Direct Contact and Soil to Groundwater
	Max(Generic vs x100), Used Aquifers TDS <= 2500, Non-residential,
С	Site Specific Standard for Lead (SSS)
	August 27, 2016.
ND	Not detected at the associated reporting limit.
J	Estimated concentration.
ND(10) ^b	Indicates reporting limit was above the applicable standard.
6.5 ^A	Concentration exceeds the indicated standard.
ft	Feet.

6.5^ ft

Surface Soil Analytical Results Summary Statewide Health Standards AOI 6 Remedial Investigation Report Philadelphia Refinery Operations, a series of Evergreen Resources Group, LLC

Sample Location: Sample ID: Sample Date: Sample Depth:		Act 2 Non-Residential Used Aquifer Direct Contact MSC	Act 2 Non-Residential Used Aquifer MSC	AOI6-BH-17-002 AOI6-BH-17-002-0-2-SOIL 01/06/2017 0.8-1.1 ft	AOI6-BH-17-003 AOI6-BH-17-003-0-2-SOIL 01/06/2017 1.2-1.5 ft	AOI6-BH-17-004 AOI6-BH-17-004-0-2-SOIL 01/06/2017 1.2-1.6 ft	AOI6-BH-17-005 AOI6-BH-17-005-0-2-SOIL 01/06/2017 1.0-1.25 ft	AOI6-BH-17-009 AOI6-BH-17-009-0-2-SOIL 01/06/2017 1.0-1.3 ft
Parameters	Units	а	b					
Volatile Organic Compounds								
1,2,4-Trimethylbenzene	mg/kg	560	35	-	-	-	-	-
1,2-Dibromoethane (Ethylene dibromide)	mg/kg	3.7	0.005	-	-	-	-	-
1,2-Dichloroethane	mg/kg	86	0.5	-	-	-	-	-
1,3,5-Trimethylbenzene	mg/kg	10000	210	-	-	-	-	-
Benzene	mg/kg	290	0.5	-	-	-	-	-
Ethylbenzene	mg/kg	890	70	-	-	-	-	-
Isopropyl benzene	mg/kg	10000	2500	-	-	-	-	-
Methyl tert butyl ether (MTBE)	mg/kg	8600	2.0	-	_	-	-	-
Naphthalene	mg/kg	760	25	-	-	-	-	-
Toluene	mg/kg	10000	100	-	-	-	-	-
Xylenes (total)	mg/kg	8000	1000	-	-	-	-	-
Semi-Volatile Organic Compounds								
Anthracene	mg/kg	190000	350	-	-	-	-	-
Benzo(a)anthracene	mg/kg	130	130	-	-	-	-	-
Benzo(a)pyrene	mg/kg	12	12	-	-	-	-	-
Benzo(b)fluoranthene	mg/kg	76	76	-	-	-	-	-
Benzo(g,h,i)perylene	mg/kg	190000	180	-		-		-
Chrysene	mg/kg	120000	230	-	-	-	-	-
Nonhtholono	mg/kg	760	3600	-	-	-	-	-
Phenanthrene	mg/kg	190000	10000		-		-	-
Pyrene	mg/kg	96000	2200					
Metals - Total	iiig/kg							
Lead	mg/kg	1000 ^a	450 ^b , 2240 ^c	234	899 ^b	7490 ^{ab}	770 ^b	34.3
General Chemistry								
Percent moisture	%	-	-	-	-	-	-	-
pH, lab	S.U.	-	-	-	-	-	-	-

Notes:

а	PADEP Act 2 Medium-Specific Concentration (MSCs) for Organic/Inorganic Regulated Substances in Soil, Direct Contact, Non-Residential, Surface Soil
	(0-2 feet), August 27, 2016.
b	PADEP Act 2 Medium-Specific Concentration (MSCs) for Organic/Inorganic
	Regulated Substances in Soil, Minimum of Direct Contact and Soil to Groundwater
	Max(Generic vs x100), Used Aquifers TDS <= 2500,Non-residential,
с	Site Specific Standard for Lead (SSS)
	August 27, 2016.
ND	Not detected at the associated reporting limit.
J	Estimated concentration.
ND(10) ^b	Indicates reporting limit was above the applicable standard.

- 6.5^A Concentration exceeds the indicated standard.
- Feet. ft

Sub-Surface Soil Analytical Results Summary Statewide Health Standards AOI 6 Remedial Investigation Report Philadelphia Refinery Operations, a series of Evergreen Resources Group, LLC

Sample Location: Sample ID: Sample Date: Sample Depth:		Act 2 Non-Residential Used Aquifer Direct Contact MSC	Act 2 Non-Residential Used Aquifer MSC	AOI6-BH-16-004 AOI6-BH-16-004-2-4-SOIL 04/21/2016 1.8-2.3 ft	AOI6-BH-16-006 AOI6-BH-16-006-2-4-SOIL 04/22/2016 1.5-2.3 ft	AOI6-BH-16-007 AOI6-BH-16-007-2-4-SOIL 04/08/2016 2.0-2.3 ft	AOI6-BH-16-008 AOI6-BH-16-008-2-4-SOIL 04/08/2016 2.0-2.5 ft	AOI6-BH-16-014 AOI6-BH-16-014-2-4-SOIL 04/05/2016 2.0-2.5 ft	AOI6-BH-16-014 AOI6-BH-16-014-2-4-071116 07/11/2016 2.0-2.3 ft	AOI6-BH-16-015 AOI6-BH-16-015-2-4-SOIL 04/05/2016 2.0-2.1 ft
Parameters	Units	a	b							
Volatile Organic Compounds										
1,2,4-Trimethylbenzene	mg/kg	640	35	ND(0.005)	ND(0.22)	ND(0.005)	ND(0.004)	ND(0.44)	-	ND(0.27)
1,2-Dibromoethane (Ethylene dibromide)	mg/kg	4.3	0.005	ND(0.005)	ND(0.22) ^b	ND(0.005)	ND(0.004)	ND(0.44) ^b	-	ND(0.27) ^b
1,2-Dichloroethane	mg/kg	98	0.5	ND(0.005)	ND(0.22)	ND(0.005)	ND(0.004)	ND(0.44)	-	ND(0.27)
1,3,5-Trimethylbenzene	mg/kg	10000	210	ND(0.005)	ND(0.22)	ND(0.005)	ND(0.004)	ND(0.44)	-	ND(0.27)
2-Phenylbutane (sec-Butylbenzene)	mg/kg	10000	2800	-	-	-	-	=	-	=
Benzene	mg/kg	330	0.5	0.001 J	0.023 J	0.004 J	0.001 J	ND(0.44)	-	ND(0.27)
Cyclohexane	mg/kg	10000	6900	-	-	-	-	-	-	-
Ethylbenzene	mg/kg	1000	70	ND(0.005)	ND(0.22)	ND(0.005)	ND(0.004)	ND(0.44)	-	ND(0.27)
Hexane	mg/kg	10000	5600	-	-	-	-	-	-	-
Isopropyl benzene	mg/kg	10000	2500	ND(0.005)	ND(0.22)	ND(0.005)	ND(0.004)	ND(0.44)	-	0.23 J
Methyl tert butyl ether (MTBE)	mg/kg	9900	2	ND(0.005)	ND(0.22)	ND(0.005)	ND(0.004)	ND(0.44)	-	ND(0.27)
Naphthalene	ma/ka	190000	25		-		_		-	_
tert-Butylbenzene	mg/kg	10000	2200	-	-	-	-	-	-	-
Toluene	mg/kg	10000	100	0.002 J	0.073 J	ND(0.005)	ND(0.004)	0.29 J	-	ND(0.27)
Xylenes (total)	mg/kg	9100	1000	0.001 J	0.065 J	ND(0.005)	ND(0.004)	0.10 J	-	0.092 J
Semi-Volatile Organic Compounds						<u> </u>	, , , , , , , , , , , , , , , , , , ,			
2,4-Dimethylphenol	mg/kg	10000	230	-	-	-	-	-	-	-
2,4-Dinitrophenol	mg/kg	190000	23	-	-	-	-	-	-	-
2-Methylnaphthalene	mg/kg	190000	1900	-	-	-	-	-	-	-
2-Methylphenol	mg/kg	190000	580	-	-	-	-	-	-	-
4-Methylphenol	mg/kg	190000	58	-	-	-	-	-	-	-
4-Nitrophenol	mg/kg	190000	6	-	-	-	-	-	-	-
Acenaphthene	mg/kg	190000	4700		-		-	-	-	-
Anthracene	mg/kg	190000	350	0.55	0.43	0.84	1.8	-	12	-
Benzo(a)anthracene	mg/kg	190000	430	1.6	0.75	2.2	3.7	-	25	-
Benzo(a)pyrene	mg/kg	190000	46	1.5	0.74	1.8	2.9	-	26	-
Benzo(b)riuorantnene	mg/kg	190000	170	1.7	1.0	2.3	4.0	-	26	-
Benzo(b)pyriaine (Quinoine)	mg/kg	10000	0.37	-	-	-	-	=	-	=
Benzo(k)fluoranthene	mg/kg	190000	610	0.04	0.52	1.2	2.0	-	- 10	-
Binhenyl (1 1-Binhenyl)	ma/ka	190000	190							
bis(2-Ethylbexyl)phthalate (DEHP)	ma/ka	10000	130					_		<u> </u>
Chrysene	ma/ka	190000	230	1.5	0.82	2.1	3.7	-	30	-
Dibenz(a,h)anthracene	ma/ka	190000	270	-	-	-	-	-	-	-
Diethyl phthalate	ma/ka	10000	9300	-	-	-	-	_	-	_
Di-n-butylphthalate (DBP)	mg/kg	10000	4900	-	-	-	-	-	-	-
Fluoranthene	mg/kg	190000	3200	-	-	-	-	-	-	-
Fluorene	mg/kg	190000	3800	0.20	0.27	0.31	1.7	-	12	-
Indeno(1,2,3-cd)pyrene	mg/kg	190000	22000	-	-	-	-	-	-	-
Naphthalene	mg/kg	190000	25	1.1	1.6	0.71	1.5	-	24	-
Phenanthrene	mg/kg	190000	10000	1.2	1.1	2.6	8.8	-	37	-
Phenol	mg/kg	18000	200	-	-	-	-		-	
Pyrene	mg/kg	190000	2200	1.9	1.2	3.4	7.3	-	39	-
Pyridine	mg/kg	10000	12	-	-	-	-	-	-	-

Sub-Surface Soil Analytical Results Summary Statewide Health Standards AOI 6 Remedial Investigation Report Philadelphia Refinery Operations, a series of Evergreen Resources Group, LLC

Sample Location: Sample ID: Sample Date: Sample Depth:		Act 2 Non-Residential Used Aquifer Direct Contact MSC	Act 2 Non-Residential Used Aquifer MSC	AOI6-BH-16-004 AOI6-BH-16-004-2-4-SOIL 04/21/2016 1.8-2.3 ft	AOI6-BH-16-006 AOI6-BH-16-006-2-4-SOIL 04/22/2016 1.5-2.3 ft	AOI6-BH-16-007 AOI6-BH-16-007-2-4-SOIL 04/08/2016 2.0-2.3 ft	AOI6-BH-16-008 AOI6-BH-16-008-2-4-SOIL 04/08/2016 2.0-2.5 ft	AOI6-BH-16-014 AOI6-BH-16-014-2-4-SOIL 04/05/2016 2.0-2.5 ft	AOI6-BH-16-014 AOI6-BH-16-014-2-4-071116 07/11/2016 2.0-2.3 ft	AOI6-BH-16-015 AOI6-BH-16-015-2-4-SOIL 04/05/2016 2.0-2.1 ft
Parameters	Units	а	b							
Metals - Total										
Cobalt	mg/kg	190000	160	-	-	-	-	-	-	-
Lead	mg/kg	190000	450	189	225	243	267	352	-	134
Nickel	mg/kg	190000	650	-	-	-	-	-	-	-
Vanadium	mg/kg	190000	820	-	-	-	-	-	-	-
Zinc	mg/kg	190000	12000	-	-	-	=	=	-	=
General Chemistry										
Percent moisture	%	-	-	11	11.8	17.6	14.8	44.3	34.8	21.6
pH, lab	s.u.	-	-	-	-	-	-	-	-	-

Notes:

а	PADEP Act 2 Medium-Specific Concentration (MSCs) for Organic/Inorganic
	Regulated Substances in Soil, Direct Contact, Non-Residential, Subsurface Soil
	(2-15 feet), August 27, 2016.
b	PADEP Act 2 Medium-Specific Concentration (MSCs) for Organic/Inorganic
	Regulated Substances in Soil, Minimum of Direct Contact and Soil to Groundwater
	Max(Generic vs x100), Used Aquifers TDS <= 2500, Non-residential, August 27, 2016.
ND	Not detected at the associated reporting limit.
J	Estimated concentration.
ND(10) ^b	Indicates reporting limit was above the applicable standard.
6.5 ^A	Concentration exceeds the indicated standard.
SS	Lead value is the site specific standard for lead accepted by the PADEP.

ft feet

Sub-Surface Soil Analytical Results Summary Statewide Health Standards AOI 6 Remedial Investigation Report Philadelphia Refinery Operations, a series of Evergreen Resources Group, LLC

Sample Location: Sample ID: Sample Date: Sample Depth: Parameters	Unite	Act 2 Non-Residential Used Aquifer Direct Contact MSC	Act 2 Non-Residential Used Aquifer MSC	AOI6-BH-16-015 AOI6-BH-16-015-2-4-071116 07/11/2016 2.0-2.2 ft	AOI6-BH-16-016 AOI6-BH-16-016-2-4-SOIL 04/04/2016 2.0-2.5 ft	AOI6-BH-16-016 AOI6-BH-16-016-2-4-071116 07/11/2016 2.0-2.3 ft	AOI6-BH-16-019 AOI6-BH-16-019-2-4-SOIL 04/21/2016 1.8-3.0 ft	AOI6-BH-16-022 AOI6-BH-16-022-2-4-SOIL 04/06/2016 2.3-2.5 ft	AOI6-BH-16-025 AOI6-BH-16-025-2-4-SOIL 04/22/2016 1.9-2.2 ft
i didileters	Units	a	b						
Volatile Organic Compounds									
1,2,4-Trimethylbenzene	mg/kg	640	35	_	0.14 J	-	ND(0.006)	ND(0.005)	50 J ^b
1,2-Dibromoethane (Ethylene dibromide)	mg/kg	4.3	0.005	-	ND(0.34) ^b	-	ND(0.006) ^b	ND(0.005)	ND(24) ^b
1,2-Dichloroethane	mg/kg	98	0.5	-	ND(0.34)	-	ND(0.006)	ND(0.005)	ND(24) ^b
1,3,5-Trimethylbenzene	mg/kg	10000	210	_	ND(0.34)	-	ND(0.006)	ND(0.005)	18 J
2-Phenylbutane (sec-Butylbenzene)	mg/kg	10000	2800	-	-	-	-	-	-
Benzene	mg/kg	330	0.5	-	ND(0.34)	-	0.002 J	ND(0.005)	1400 J ^{ab}
Cyclohexane	mg/kg	10000	6900		-	-	-	-	<u>-</u>
Ethylbenzene	mg/kg	1000	70	-	ND(0.34)	-	ND(0.006)	ND(0.005)	61 J
Hexane	mg/kg	10000	5600	-	-	-	-	-	-
Isopropyl benzene	mg/kg	10000	2500	-	0.44	-	0.002 J	ND(0.005)	2200 J
Methyl tert butyl ether (MTBE)	mg/kg	9900	2		ND(0.34)	-	ND(0.006)	ND(0.005)	ND(24) ^b
Naphthalene	mg/kg	190000	25	-	-	-	-	-	-
tert-Butylbenzene	mg/kg	10000	2200	-	-	-	-	-	-
Toluene	mg/kg	10000	100	-	0.19 J	=	0.002 J	ND(0.005)	640 J ^b
Xylenes (total)	mg/kg	9100	1000	=	0.16 J	-	ND(0.006)	ND(0.005)	340 J
Comi Voletilo Organio Compoundo									
Semi-volatile Organic Compounds	ma/ka	10000	220						
2.4-Dimetryphenol	mg/kg	10000	230	-	-	-	-	-	-
2 Mothylpaphthalono	mg/kg	190000	1000	-	-	-	-	-	-
2-Methylphenol	mg/kg	190000	580						
4-Methylphenol	mg/kg	190000	58		-	-		-	-
4-Nitrophenol	mg/kg	190000	6	-	-	-	-	-	-
Acenaphthene	mg/kg	190000	4700	-	-	-	-	-	<u>-</u>
Anthracene	mg/kg	190000	350	2.3	-	3.4	0.39	0.05	1.2
Benzo(a)anthracene	mg/kg	190000	430	1.2	-	3.3	1.4	0.13	1.1
Benzo(a)pyrene	mg/kg	190000	46	1.2	-	3.3	1.4	0.14	0.69
Benzo(b)fluoranthene	mg/kg	190000	170	1.2	-	3.6	1.7	0.2	1.0
Benzo(b)pyridine (Quinoline)	mg/kg	10000	0.37		-	-	-	-	-
Benzo(g,h,i)perylene	mg/kg	190000	180	1.6	-	3.5	0.88	0.11	0.33
Benzo(k)fluoranthene	mg/kg	190000	610	-	-	-	-	-	-
Biphenyl (1,1-Biphenyl)	mg/kg	190000	190	-	-	-	-	-	-
Dis(2-Ethylnexyl)phthalate (DEHP)	mg/kg	10000	130	-	=	-	-	- 0.14	-
Dibonz(a b)anthracana	mg/kg	190000	230	2.4	-	3.7	1.4	0.14	0.97
Diethyl phthalate	mg/kg	10000	9300	<u>_</u>					
Di-n-butylphthalate (DBP)	mg/kg	10000	4900	_	-	_	_	-	<u>-</u>
Fluoranthene	mg/kg	190000	3200	-	-	-	-	-	-
Fluorene	mg/ka	190000	3800	2.6	-	6.3	0.20	0.019 J	0.85
Indeno(1,2,3-cd)pyrene	mg/kg	190000	22000	-	-	-	-	-	-
Naphthalene	mg/kg	190000	25	6.3	-	18	1.5	0.045	2.0
Phenanthrene	mg/kg	190000	10000	7.2	-	17	1.1	0.16	4.1
Phenol	mg/kg	18000	200	-					
Pyrene	mg/kg	190000	2200	3.2	-	4.2	1.4	0.21	2.1
Pyridine	mg/kg	10000	12	-	-	-	-	-	-

AOI6-BH-16-022 AOI6-BH-16-022-2-4-SOIL 04/06/2016 2.3-2.5 ft	AOI6-BH-16-025 AOI6-BH-16-025-2-4-SOIL 04/22/2016 1.9-2.2 ft
ND(0.005)	50 J ^b
ND(0.005)	ND(24) ^b
ND(0.005)	ND(24) ^b
ND(0.005)	18 J

Sub-Surface Soil Analytical Results Summary Statewide Health Standards AOI 6 Remedial Investigation Report Philadelphia Refinery Operations, a series of Evergreen Resources Group, LLC

Sample Location: Sample ID: Sample Date: Sample Depth:		Act 2 Non-Residential Used Aquifer Direct Contact MSC	Act 2 Non-Residential Used Aquifer MSC	AOI6-BH-16-015 AOI6-BH-16-015-2-4-071116 07/11/2016 2.0-2.2 ft	AOI6-BH-16-016 AOI6-BH-16-016-2-4-SOIL 04/04/2016 2.0-2.5 ft	AOI6-BH-16-016 AOI6-BH-16-016-2-4-071116 07/11/2016 2.0-2.3 ft	AOI6-BH-16-019 AOI6-BH-16-019-2-4-SOIL 04/21/2016 1.8-3.0 ft	AOI6-BH-16-022 AOI6-BH-16-022-2-4-SOIL 04/06/2016 2.3-2.5 ft	AOI6-BH-16-025 AOI6-BH-16-025-2-4-SOIL 04/22/2016 1.9-2.2 ft
Parameters	Units	а	b						
Metals - Total									
Cobalt	mg/kg	190000	160	-	-	-	-	-	-
Lead	mg/kg	190000	450	-	256	-	1370 ^b	101	64.3
Nickel	mg/kg	190000	650	-	-	-	-	-	-
Vanadium	mg/kg	190000	820	-	-	-	-	-	-
Zinc	mg/kg	190000	12000	-	-	-	-	-	-
General Chemistry									
Percent moisture	%	-	-	30.5	32.5	32.3	24.9	10.9	9.1
pH, lab	s.u.	-	-	-	-			-	-

Notes:

а	PADEP Act 2 Medium-Specific Concentration (MSCs) for Organic/Inorganic
	Regulated Substances in Soil, Direct Contact, Non-Residential, Subsurface Soil
	(2-15 feet), August 27, 2016.
b	PADEP Act 2 Medium-Specific Concentration (MSCs) for Organic/Inorganic
	Regulated Substances in Soil, Minimum of Direct Contact and Soil to Groundwater
	Max(Generic vs x100), Used Aquifers TDS <= 2500, Non-residential, August 27, 2016.
ND	Not detected at the associated reporting limit.
J	Estimated concentration.
ND(10) ^b	Indicates reporting limit was above the applicable standard.

6.5^A SS Concentration exceeds the indicated standard.

Lead value is the site specific standard for lead accepted by the PADEP.

ft feet

Sub-Surface Soil Analytical Results Summary Statewide Health Standards AOI 6 Remedial Investigation Report Philadelphia Refinery Operations, a series of Evergreen Resources Group, LLC

Sample Location: Sample ID: Sample Date: Sample Depth:		Act 2 Non-Residential Used Aquifer Direct Contact MSC	Act 2 Non-Residential Used Aquifer MSC	AOI6-BH-16-027 AOI6-BH-16-027-2-4-SOIL 04/13/2016 2.5-2.8 ft	AOI6-BH-16-029 AOI6-BH-16-029-2-4-SOIL 04/13/2016 2.3-2.5 ft	AOI6-BH-16-030 AOI6-BH-16-030-2-4-SOIL 04/14/2016 2.5-2.8 ft	AOI6-BH-16-031 AOI6-BH-16-031-2-4-SOIL 04/14/2016 2.0-2.5 ft	AOI6-BH-16-032 AOI6-BH-16-032-2-4-SOIL 04/13/2016 2.0-2.5 ft	AOI6-BH-16-033 AOI6-BH-16-033-2-4-SOIL 04/13/2016 2.0-2.3 ft	AOI6-BH-16-034 AOI6-BH-16-034-2-4-SOIL 04/13/2016 2.0-2.3 ft
Parameters	Units	а	b							
Volatile Organic Compounds										
1,2,4-Trimethylbenzene	mg/kg	640	35	10	1.0	ND(4.3)	0.960 J	0.70J	ND(0.21)	ND(4.7)
1,2-Dibromoethane (Ethylene dibromide)	mg/kg	4.3	0.005	ND(5.3) ^b	ND(0.28) ^b	ND(4.3) ^b	ND(2) ^b	ND(0.77) ^b	ND(0.21) ^b	ND(4,7) ^b
1.2-Dichloroethane	ma/ka	98	0.5	ND(5.3) ^b	ND(0.28)	ND(4.3) ^b	ND(2) ^b	ND(0.77) ^b	ND(0.21)	ND(4.7) ^b
1.3.5-Trimethylbenzene	ma/ka	10000	210	9.3	0.48	ND(4.3)	0.440 J	0.37 J	ND(0.21)	ND(4,7)
2-Phenylbutane (sec-Butylbenzene)	ma/ka	10000	2800	-	-	-	-	-		-
Benzene	ma/ka	330	0.5	2.500 J ^b	4.5 ^b	130 ^b	27 ^b	3.7 ^b	ND(0.21)	96 ^b
Cvclohexane	ma/ka	10000	6900	-	-	-		-	-	-
Ethylbenzene	ma/ka	1000	70	ND(5.3)	0.81	ND(4.3)	2.9	3.6	ND(0.21)	1.2 J
Hexane	ma/ka	10000	5600	-	-	-		-	-	-
Isopropyl benzene	ma/ka	10000	2500	360	10	710	180	110	0.130 J	360
Methyl tert butyl ether (MTBF)	ma/ka	9900	2	ND(5 3) ^b	ND(0.28)	ND(4.3) ^b	ND(2)	ND(0.77)	ND(0.21)	ND(4 7) ^b
Naphthalene	ma/ka	190000	25							
tert-Butylbenzene	ma/ka	10000	2200	- -	-	-	-	-	-	_
Toluene	ma/ka	10000	100	3.9.1	1.2	20	22	45	ND(0.21)	81
Xylenes (total)	ma/ka	9100	1000	3.3.1	1.5	2.900 J	12	17	ND(0.21)	3.8.1
		0.00				2.0000	· -			
Semi-Volatile Organic Compounds										
2,4-Dimethylphenol	mg/kg	10000	230	-	-	-	-	-	-	-
2,4-Dinitrophenol	mg/kg	190000	23	-	-	-	-	-	-	-
2-Methylnaphthalene	mg/kg	190000	1900	-	-	-	-	-	-	-
2-Methylphenol	mg/kg	190000	580	-	-	-	-	-	-	-
4-Methylphenol	mg/kg	190000	58	-	-	<u>-</u>	-	-	-	-
4-Nitrophenol	mg/kg	190000	6	-	-	-	-	-	-	-
Acenaphthene	mg/kg	190000	4700	-	-	-	-	-	-	-
Anthracene	mg/kg	190000	350	3.4	2.2	0.16	0.014 J	0.004 J	0.006 J	ND(0.092)
Benzo(a)anthracene	mg/kg	190000	430	2.3	2.8	0.079	0.014 J	0.014 J	0.026	0.050 J
Benzo(a)pyrene	mg/kg	190000	46	1./	2.6	0.079	0.012 J	0.013 J	0.028	0.039 J
Benzo(b)fluoranthene	mg/kg	190000	170	1.7	3.5	0.18	0.019	0.021	0.032	0.084 J
	mg/kg	10000	0.37	- 1.0	- 17	-	-	0.016	<u> </u>	-
Benzo(g,n,i)perylene Benzo(k)fluerenthene	mg/kg	190000	<u> </u>	1.0	1.7	0.073	0.008 J	0.016 J	0.029	0.042 J
Binhenyl (1 1-Binhenyl)	mg/kg	190000	100						-	-
his(2-Ethylbexyl)phthalate (DEHP)	ma/ka	10000	130	<u>-</u>	-	-	-	-	-	
Chrysene	ma/ka	190000	230	4 0	33	0 094	0.02	0.018.1	0.032	0.095
Dibenz(a,h)anthracene	ma/ka	190000	270		-	-	-	-	-	-
Diethyl phthalate	ma/ka	10000	9300		-	-	-	-	-	
Di-n-butylphthalate (DBP)	ma/ka	10000	4900	_	-	-	-	-	-	_
Fluoranthene	ma/ka	190000	3200	-	_	-	-	_	-	-
Fluorene	mg/kg	190000	3800	6.3	8.4	0.034	0.047	0.008 J	ND(0.018)	0.033 J
Indeno(1,2,3-cd)pyrene	mg/kg	190000	22000	-	-	-	-	-	-	-
Naphthalene	mg/kg	190000	25	7.8	4.8	2.4	0.062	0.029	0.014 J	0.16
Phenanthrene	mg/kg	190000	10000	13	10	3.3	0.059	0.013 J	0.011 J	0.12
Phenol	mg/kg	18000	200	-	-	-	-	-	-	-
Pyrene	mg/kg	190000	2200	6.2	5.8	0.14	0.033	0.025	0.042	0.12
Pyridine	mg/kg	10000	12	-	-	-	-	-	-	-

Sub-Surface Soil Analytical Results Summary Statewide Health Standards AOI 6 Remedial Investigation Report Philadelphia Refinery Operations, a series of Evergreen Resources Group, LLC

Sample Location: Sample ID: Sample Date: Sample Depth:		Act 2 Non-Residential Used Aquifer Direct Contact MSC	Act 2 Non-Residential Used Aquifer MSC	AOI6-BH-16-027 AOI6-BH-16-027-2-4-SOIL 04/13/2016 2.5-2.8 ft	AOI6-BH-16-029 AOI6-BH-16-029-2-4-SOIL 04/13/2016 2.3-2.5 ft	AOI6-BH-16-030 AOI6-BH-16-030-2-4-SOIL 04/14/2016 2.5-2.8 ft	AOI6-BH-16-031 AOI6-BH-16-031-2-4-SOIL 04/14/2016 2.0-2.5 ft	AOI6-BH-16-032 AOI6-BH-16-032-2-4-SOIL 04/13/2016 2.0-2.5 ft	AOI6-BH-16-033 AOI6-BH-16-033-2-4-SOIL 04/13/2016 2.0-2.3 ft	AOI6-BH-16-034 AOI6-BH-16-034-2-4-SOIL 04/13/2016 2.0-2.3 ft
Parameters	Units	а	b							
Metals - Total										
Cobalt	mg/kg	190000	160	-	-	-	-	-	-	-
Lead	mg/kg	190000	450	90.6	137	34.3	6.19	10.6	9.85	15.3
Nickel	mg/kg	190000	650	-	-	-	-	-	-	-
Vanadium	mg/kg	190000	820	-	-	-	-	-	-	-
Zinc	mg/kg	190000	12000	-	-	-	-	-	-	-
General Chemistry										
Percent moisture	%	-	-	15	10.5	11.6	8.6	9.0	5.7	8.9
pH, lab	S.U.	-	-	_	-	-	-	-	-	-

а	PADEP Act 2 Medium-Specific Concentration (MSCs) for Organic/Inorganic Regulated Substances in Soil, Direct Contact, Non-Residential, Subsurface Soil
b	(2-15 feet), August 27, 2016. PADEP Act 2 Medium-Specific Concentration (MSCs) for Organic/Inorganic Regulated Substances in Soil, Minimum of Direct Contact and Soil to Groundwater
ND J ND(10)^b 6.5 ^A ss ft	Max(Generic vs x100), Used Aquifers TDS <= 2500,Non-residential, August 27, 2016. Not detected at the associated reporting limit. Estimated concentration. Indicates reporting limit was above the applicable standard. Concentration exceeds the indicated standard. Lead value is the site specific standard for lead accepted by the PADEP. feet

Sub-Surface Soil Analytical Results Summary Statewide Health Standards AOI 6 Remedial Investigation Report Philadelphia Refinery Operations, a series of Evergreen Resources Group, LLC

Sample Location: Sample ID: Sample Date: Sample Depth: Parameters	Units	Act 2 Non-Residential Used Aquifer Direct Contact MSC a	Act 2 Non-Residential Used Aquifer MSC b	AOI6-BH-16-035 AOI6-BH-16-035-2-4-SOIL 04/13/2016 2.0-2.3 ft	AOI6-BH-16-036 AOI6-BH-16-036-2-4-SOIL 04/14/2016 2.0-2.3 ft	AOI6-BH-16-037 AOI6-BH-16-037-2-4-SOIL 04/14/2016 1.8-2.3 ft	AOI6-BH-16-040 AOI6-BH-16-040-2-4-SOIL 04/07/2016 1.8-2.0 ft	AOI6-BH-16-041 AOI6-BH-16-041-2-4-SOIL 04/07/2016 1.8-2.3 ft	AOI6-BH-16-043 AOI6-BH-16-043-2-4-SOIL 04/07/2016 2.0-2.5 ft	B-172 AOI6-B-172-2-4-SOIL 04/06/2016 2.5-3.0 ft
Volatile Organic Compounds										
1,2,4-Trimethylbenzene	mg/kg	640	35	ND(0.004)	ND(4.2)	ND(97) ^b	8.1	47 ^b	0.088 J	ND(0.41)
1,2-Dibromoethane (Ethylene dibromide)	mg/kg	4.3	0.005	ND(0.004)	ND(4.2) ^b	ND(97) ^b	ND(4.9) ^b	ND(3.2) ^b	ND(0.24) ^b	ND(0.41) ^b
1,2-Dichloroethane	mg/kg	98	0.5	ND(0.004)	ND(4.2) ^b	ND(97) ^b	ND(4.9) ^b	ND(3.2) ^b	ND(0.24)	ND(0.41)
1,3,5-Trimethylbenzene	mg/kg	10000	210	ND(0.004)	ND(4.2)	ND(97)	5.8	22	0.081 J	ND(0.41)
2-Phenylbutane (sec-Butylbenzene)	mg/kg	10000	2800	-	-	-	-	-	-	-
Benzene	mg/kg	330	0.5	0.002 J	0.700 J ^b	850 ^{ab}	1.4 J ^b	4.3 ^b	1.3 ^b	ND(0.41)
Cyclohexane	mg/kg	10000	6900	-	-	-	-	-	-	-
Ethylbenzene	mg/kg	1000	70	ND(0.004)	ND(4.2)	ND(97) ^b	13	17	0.13 J	ND(0.41)
Hexane	mg/kg	10000	5600	-	-	-	-	-	-	-
Isopropyl benzene	mg/kg	10000	2500	0.083	180	8500 ^b	6.4	6.4	0.23 J	ND(0.41)
Methyl tert butyl ether (MTBE)	mg/kg	9900	2	ND(0.004)	ND(4.2) ^b	ND(97) ^b	ND(4.9) ^b	ND(3.2) ^b	ND(0.24)	ND(0.41)
Naphthalene	mg/kg	190000	25	_				<u>-</u>	_	-
tert-Butylbenzene	mg/kg	10000	2200	-	-	-	-	-	-	-
Toluene	mg/kg	10000	100	ND(0.004)	ND(4.2)	1200 ^b	ND(4.9)	2.5 J	0.32	0.41
Xylenes (total)	mg/kg	9100	1000	ND(0.004)	ND(4.2)	27 J	2.7 J	39	0.56	0.091 J
					, <i>L</i>					
Semi-Volatile Organic Compounds										
2,4-Dimethylphenol	mg/kg	10000	230	-	-	-	-	-	-	-
2,4-Dinitrophenol	mg/kg	190000	23	-	-	-	-	-	-	-
2-Methylnaphthalene	mg/kg	190000	1900						<u> </u>	
2-Methylphenol	mg/kg	190000	580	-	-	-	-	-	-	-
4-Methylphenol	mg/kg	190000	58	-	-	-	-	-	-	-
4-Nitrophenol	mg/kg	190000	6	-	-	-	-	-	-	-
Acenaphthene	mg/kg	190000	4700	-	-	-	-	-	-	-
Anthracene	mg/kg	190000	350	0.004 J	0.036	0.11	5.9	2.7	0.29	
Benzo(a)anthracene	mg/kg	190000	430	0.015 J	0.086	0.05	5.0	5.8	0.9	
Benzo(a)pyrene	mg/kg	190000	40	0.02	0.088	0.074	4.9	5.3	1.5	-
Benzo(b)nuoranmene	mg/kg	190000	170	0.022	0.12	0.11	6.3	7.8	1.9	
Benzo(d h i)pondono	mg/kg	10000	190	0.024	-	-	-	-	- 1 /	-
Benzo(k)fluoranthene	mg/kg	190000	610	0.024	0.085	0.07	3.1	3.9	1.4	-
Binhenyl (1 1-Binhenyl)	ma/ka	190000	100		-	-	-	-	-	
bis(2-Ethylbexyl)phthalate (DEHP)	mg/kg	10000	130			-	-	-	-	
Chrysene	mg/kg	190000	230	0.02	0.10	0.053	5 1	5.6	1 1	-
Dibenz(a,h)anthracene	ma/ka	190000	270		-	-	-	-	-	-
Diethyl phthalate	ma/ka	10000	9300		-	-	-	-	-	-
Di-n-butylphthalate (DBP)	ma/ka	10000	4900	-	-	-	-	-	-	-
Fluoranthene	mg/kg	190000	3200		-	-	-	-	-	-
Fluorene	mg/kg	190000	3800	ND(0.019)	0.010 J	0.033	6.4	2.8	0.090 J	-
Indeno(1,2,3-cd)pyrene	mg/kg	190000	22000	-	-	-	-	-	-	-
Naphthalene	mg/kg	190000	25	ND(0.019)	0.018 J	1.4	36 ^b	12	0.42	-
Phenanthrene	mg/kg	190000	10000	0.014 J	0.077	3.2	21	13	0.58	-
Phenol	mg/kg	18000	200	-	-	-	-	-	-	-
Pyrene	mg/kg	190000	2200	0.026	0.16	0.084	9.7	11	0.9	
Pyridine	mg/kg	10000	12	-	-	-	-	-	-	-

Sub-Surface Soil Analytical Results Summary Statewide Health Standards AOI 6 Remedial Investigation Report Philadelphia Refinery Operations, a series of Evergreen Resources Group, LLC

Sample Location: Sample ID: Sample Date: Sample Depth:		Act 2 Non-Residential Used Aquifer Direct Contact MSC	Act 2 Non-Residential Used Aquifer MSC	AOI6-BH-16-035 AOI6-BH-16-035-2-4-SOIL 04/13/2016 2.0-2.3 ft	AOI6-BH-16-036 AOI6-BH-16-036-2-4-SOIL 04/14/2016 2.0-2.3 ft	AOI6-BH-16-037 AOI6-BH-16-037-2-4-SOIL 04/14/2016 1.8-2.3 ft	AOI6-BH-16-040 AOI6-BH-16-040-2-4-SOIL 04/07/2016 1.8-2.0 ft	AOI6-BH-16-041 AOI6-BH-16-041-2-4-SOIL 04/07/2016 1.8-2.3 ft	AOI6-BH-16-043 AOI6-BH-16-043-2-4-SOIL 04/07/2016 2.0-2.5 ft	B-172 AOI6-B-172-2-4-SOIL 04/06/2016 2.5-3.0 ft
Parameters	Units	а	b							
Metals - Total										
Cobalt	mg/kg	190000	160	-	-	-	-	-	-	-
Lead	mg/kg	190000	450	10.9	18.9	105	142	196	1720 ^b	208
Nickel	mg/kg	190000	650	-	-	-	-	-	-	-
Vanadium	mg/kg	190000	820	-	-	-	-	-	-	-
Zinc	mg/kg	190000	12000	-	-	-	-	-	-	-
General Chemistry										
Percent moisture	%	-	-	9.4	8	14.4	8.4	17.9	9.3	42.4
pH, lab	s.u.	-	-	-	-	-	8.09	7.86	8.84	-

а	PADEP Act 2 Medium-Specific Concentration (MSCs) for Organic/Inorganic Regulated Substances in Soil, Direct Contact, Non-Residential, Subsurface Soil
b	PADEP Act 2 Medium-Specific Concentration (MSCs) for Organic/Inorganic Regulated Substances in Soil, Minimum of Direct Contact and Soil to Groundwater Max(Generic vs x100) Used Aquifers TDS <= 2500 Non-residential, August 27, 2016.
ND J ND(10)^b 6.5 ^A SS ft	Not detected at the associated reporting limit. Estimated concentration. Indicates reporting limit was above the applicable standard. Concentration exceeds the indicated standard. Lead value is the site specific standard for lead accepted by the PADEP. feet

Sub-Surface Soil Analytical Results Summary Statewide Health Standards AOI 6 Remedial Investigation Report Philadelphia Refinery Operations, a series of Evergreen Resources Group, LLC

Sample Location: Sample ID: Sample Date: Sample Depth:		Act 2 Non-Residential Used Aquifer Direct Contact MSC	Act 2 Non-Residential Used Aquifer MSC	B-172 AOI6-B-172-2-4-071216 07/12/2016 2.5-3.0 ft	B-173 AOI6-B-173-2-4-SOIL 04/05/2016 3.5-4.0 ft	B-173 AOI6-B-173-2-4-071316 07/13/2016 3.5-4.0 ft	B-174 AOI6-B-174-2-4-SOIL 04/04/2016 3.5-4.0 ft	B-174 AOI6-B-174-2-4-071316 07/13/2016 3.5-4.0 ft	B-175 AOI6-B-175-2-4-SOIL 04/05/2016 2.7-3.0 ft	B-175 AOI6-B-175-2-4-071316 07/13/2016 2.7-3.0 ft
Parameters	Units	а	b							
Volatile Organic Compounds										
1,2,4-Trimethylbenzene	mg/kg	640	35	-	ND(0.33)	-	ND(0.005)	-	0.88	-
1,2-Dibromoethane (Ethylene dibromide)	mg/kg	4.3	0.005	-	ND(0.33) ^b	-	ND(0.005)	-	ND(0.34) ^b	-
1,2-Dichloroethane	mg/kg	98	0.5	_	ND(0.33)	_	ND(0.005)	_	ND(0.34)	
1,3,5-Trimethylbenzene	mg/kg	10000	210	-	ND(0.33)	-	ND(0.005)	-	1.5	-
2-Phenylbutane (sec-Butylbenzene)	mg/kg	10000	2800	-	-	-	-	-	-	-
Benzene	mg/kg	330	0.5	-	0.054 J	-	0.005	-	0.21 J	-
Cyclohexane	mg/kg	10000	6900	-	-	-	-	-	-	-
Ethylbenzene	mg/kg	1000	70	-	ND(0.33)	-	ND(0.005)	-	0.23 J	-
Hexane	mg/kg	10000	5600	-	-	-		-	-	-
Isopropyl benzene	mg/kg	10000	2500	-	ND(0.33)	-	ND(0.005)	-	0.58	-
Methyl tert butyl ether (MTBE)	mg/kg	9900	2	-	ND(0.33)	-	ND(0.005)	-	ND(0.34)	-
Naphthalene	mg/kg	190000	25	-	-	-	-	-	-	-
tert-Butylbenzene	mg/kg	10000	2200	-	-	-	-	-	-	-
Toluene	mg/kg	10000	100	-	0.38	-	0.001 J	-	0.5	-
Xylenes (total)	mg/kg	9100	1000	-	0.074 J	-	ND(0.005)	-	2.2	-
Semi-Volatile Organic Compounds										
2,4-Dimethylphenol	mg/kg	10000	230	-	-	-	-	-	-	
2,4-Dinitrophenol	mg/kg	190000	23	-	-	-	-	-	-	
2-Methylnaphthalene	mg/kg	190000	1900	-	-	-	-	-	-	
	mg/kg	190000	500	-	-	-	-	-	-	-
	mg/kg	190000	50	_	-	-	-	-	-	
Acenaphthene	ma/ka	190000	4700						-	
Anthracene	mg/kg	190000	350	0.27	_	0.19.1		0.14.1	-	4.3
Benzo(a)anthracene	ma/ka	190000	430	0.48	_	0.45	_	0.63	-	5.6
Benzo(a)pyrene	mg/kg	190000	46	0.36	-	0.45	-	0.52	-	4.4
Benzo(b)fluoranthene	mg/kg	190000	170	0.50	-	0.63	-	0.65	-	7.7
Benzo(b)pyridine (Quinoline)	mg/kg	10000	0.37	-	-	-	-	-	-	-
Benzo(g,h,i)perylene	mg/kg	190000	180	0.23	-	0.47	-	0.40	-	3.3
Benzo(k)fluoranthene	mg/kg	190000	610	_	-	-	_	-	-	
Biphenyl (1,1-Biphenyl)	mg/kg	190000	190		-	-	-	-	-	-
bis(2-Ethylhexyl)phthalate (DEHP)	mg/kg	10000	130	-	-		-		-	-
Chrysene	mg/kg	190000	230	0.51	-	0.65	-	0.67	-	5.6
Dibenz(a,h)anthracene	mg/kg	190000	270		-		-		-	
Dietnyl phthalate	mg/kg	10000	9300	-	-	-	-	-	-	-
	mg/kg	10000	4900		-	=	-	-	-	=
Fluorene	ma/ka	190000	3200		-	0.16.1	-	0.041 1		8 /
Indeno(1.2.3-cd)pyrene	ma/ka	190000	22000		-	-	-	-		
Naphthalene	ma/ka	190000	22000	0.12	-	12	_	0.14.1	-	3.9
Phenanthrene	ma/ka	190000	10000	0.79		0.88		0.53		22
Phenol	ma/ka	18000	200	-	-	-	-	-	-	<u></u>
Pyrene	ma/ka	190000	2200	0.78	-	0.81	-	1.0	-	6.3
Pyridine	mg/kg	10000	12			-		-	-	

Sub-Surface Soil Analytical Results Summary Statewide Health Standards AOI 6 Remedial Investigation Report Philadelphia Refinery Operations, a series of Evergreen Resources Group, LLC

Sample Location: Sample ID: Sample Date: Sample Depth:		Act 2 Non-Residential Used Aquifer Direct Contact MSC	Act 2 Non-Residential Used Aquifer MSC	B-172 AOI6-B-172-2-4-071216 07/12/2016 2.5-3.0 ft	B-173 AOI6-B-173-2-4-SOIL 04/05/2016 3.5-4.0 ft	B-173 AOI6-B-173-2-4-071316 07/13/2016 3.5-4.0 ft	B-174 AOI6-B-174-2-4-SOIL 04/04/2016 3.5-4.0 ft	B-174 AOI6-B-174-2-4-071316 07/13/2016 3.5-4.0 ft	B-175 AOI6-B-175-2-4-SOIL 04/05/2016 2.7-3.0 ft	B-175 AOI6-B-175-2-4-071316 07/13/2016 2.7-3.0 ft
Parameters	Units	а	b							
Metals - Total										
Cobalt	mg/kg	190000	160	-	-	-	-	-	-	-
Lead	mg/kg	190000	450	-	315	-	1360 ^b	-	255	-
Nickel	mg/kg	190000	650	-	-	-	-	-	-	-
Vanadium	mg/kg	190000	820	-	-	-	-	-	-	-
Zinc	mg/kg	190000	12000	-	-	-	-	-	-	-
General Chemistry										
Percent moisture	%	-	-	16.7	34.3	14.4	24.2	15.1	37.5	29.6
pH, lab	s.u.	-	-	-	-	-	-	-	-	-

Notes:

- PADEP Act 2 Medium-Specific Concentration (MSCs) for Organic/Inorganic Regulated Substances in Soil, Direct Contact, Non-Residential, Subsurface Soil а (2-15 feet), August 27, 2016.
- PADEP Act 2 Medium-Specific Concentration (MSCs) for Organic/Inorganic Regulated Substances in Soil, Minimum of Direct Contact and Soil to Groundwater b Max(Generic vs x100), Used Aquifers TDS <= 2500, Non-residential, August 27, 2016.
- ND Not detected at the associated reporting limit.
- Estimated concentration. J

ND(10)^b Indicates reporting limit was above the applicable standard.

6.5^A SS Concentration exceeds the indicated standard.

Lead value is the site specific standard for lead accepted by the PADEP. feet

ft

Historical Soil Analytical Results Summary - AOI 6 (0-2 feet) Philadelphia Refinery Operations, a Series of Evergreen Resources Group, LLC

Sample Location				AOI6 BH-12-104	AOI6 BH-12-106	AOI6 BH-12-107	AOI6 BH-12-108	AOI6 BI	H-12-111	AOI6 BH-12-112	AOI6 BH-12-114	AOI6 BH-12-115	AOI6 BH-12-119	AOI6 BH-12-120	AOI6 BH-12-122
Sample Date				4-Dec-12	3-Dec-12	3-Dec-12	3-Dec-12	3-Dec-12	3-Dec-12	3-Dec-12	3-Dec-12	3-Dec-12	4-Dec-12	4-Dec-12	3-Dec-12
Sample ID				BH-12-104_0.5-1'	BH-12-106_1-1.5'	BH-12-107_1-1.5'	BH-12-108_1'	BH-12-111_0.5-1'	BH-12-111_1-1.5'	BH-12-112_0.5-1'	BH-12-114_1-1.5'	BH-12-115_1-2'	BH-12-119_0.5-1'	BH-12-120_0-1'	BH-12-122_1-1.5'
Sample Depth Sampling Company Laboratory Laboratory Work Order Laboratory Sample ID	Units	A MSC-PA	B SHS-PA	0.5 - 1 ft UNKNOWN ACCUTEST JB22962 JB22962-14	1 - 1.5 ft UNKNOWN ACCUTEST JB22822 JB22822-8	1 - 1.5 ft UNKNOWN ACCUTEST JB22822 JB22822-2	0.5 - 1 ft UNKNOWN ACCUTEST JB22822 JB22822-6	0.5 - 1 ft UNKNOWN ACCUTEST JB22822 JB22822-10	1 - 1.5 ft UNKNOWN ACCUTEST JB22822 JB22822-11	0.5 - 1 ft UNKNOWN ACCUTEST JB22822 JB22822-1	1 - 1.5 ft UNKNOWN ACCUTEST JB22822 JB22822-15	1 - 2 ft UNKNOWN ACCUTEST JB22822 JB22822-12	0.5 - 1 ft UNKNOWN ACCUTEST JB22962 JB22962-11	0 - 1 ft UNKNOWN ACCUTEST JB22962 JB22962-13	1 - 1.5 ft UNKNOWN ACCUTEST JB22822 JB22822-18
Volatile Organic Compounds					1	11		1		1	1	1	1	•	1
Benzene	mg/kg	290 ^A	0.5 ^B	ND (0.063) (0.0075)	88.2^B (0.076)	0.0124 (0.00011)	23.6^B (0.030)	0.207 J (0.030)	0.404 (0.027)	0.0016 (0.00011)	ND (0.00094) (0.00011	0.0013 (0.00011)	0.00056 J (0.00012)	ND (0.0013) (0.00015	0.0034 (0.00011)
1,2-Dibromoethane (EDB)	mg/kg	3.7 ^A	0.005 ^B	ND (0.063) (0.0080)	ND (0.064) (0.0081)	ND (0.00092) (0.00012)	ND (0.25) (0.032)	ND (0.25) (0.032)	ND (0.23) (0.029)	ND (0.00095) (0.00012	ND (0.00094) (0.00012	ND (0.00094) (0.00012	ND (0.0010) (0.00013)	ND (0.0013) (0.00016	ND (0.00088) (0.00011)
1,2-Dichloroethane (EDC)	mg/kg	86 ^A	0.5 ^B	ND (0.063) (0.0085)	ND (0.064) (0.0086)	ND (0.00092) (0.00012)	ND (0.25) (0.034)	ND (0.25) (0.033)	ND (0.23) (0.031)	ND (0.00095) (0.00013	ND (0.00094) (0.00013	ND (0.00094) (0.00013	ND (0.0010) (0.00014)	ND (0.0013) (0.00017)	ND (0.00088) (0.00012)
Ethylbenzene	mg/kg	890 ^A	70 ^B	ND (0.063) (0.017)	0.452 (0.017)	0.00039 J (0.00024)	57.1 (1.3)	0.0992 J (0.065)	0.116 J (0.061)	0.00044 J (0.00025)	ND (0.00094) (0.00025	ND (0.00094) (0.00025	ND (0.0010) (0.00027)	ND (0.0013) (0.00033	0.0021 (0.00023)
Isopropylbenzene (Cumene)	mg/kg	10000 ^A	2500 ^B	0.0351 J (0.0047)	31.2 (0.048)	0.00026 J (0.000069)	25.2 (0.019)	0.295 J (0.018)	0.200 J (0.017)	ND (0.0048) (0.000071	ND (0.0047) (0.000070	ND (0.0047) (0.000070	0.00026 J (0.000076)	ND (0.0063) (0.000093	3) 0.0082 (0.000066)
m, p-Xylenes	mg/kg	n/v	n/v	-	-	-	-	-	-	-	-	-	-	-	-
Methyl Tertiary Butyl Ether	mg/kg	8600 ^A	2 ^B	ND (0.063) (0.015)	ND (0.064) (0.015)	ND (0.00092) (0.00022)	ND (0.25) (0.059)	ND (0.25) (0.058)	ND (0.23) (0.054)	ND (0.00095) (0.00022	ND (0.00094) (0.00022	ND (0.00094) (0.00022	ND (0.0010) (0.00024)	ND (0.0013) (0.00029)	ND (0.00088) (0.00021)
Naphthalene	mg/kg	760 ^A	25 ^B	ND (0.32) (0.0077)	0.994 (0.0078)	ND (0.0046) (0.00011)	25.9 ^B (0.031)	0.282 J (0.030)	0.285 J (0.028)	ND (0.0048) (0.00012)	ND (0.0047) (0.00011)	ND (0.0047) (0.00011)	ND (0.0051) (0.00012)	ND (0.0063) (0.00015	0.0051 (0.00011)
o-Xylene (1,2-Dimethylbenzene)	mg/kg	n/v	n/v	-	-	-	-	-		-	-	-	-	-	-
Toluene	mg/kg	10000 ^A	100 ^B	0.0154 J (0.0066)	5.34 (0.0067)	0.0017 (0.000097)	10.3 (0.026)	0.172 J (0.026)	0.217 J (0.024)	0.0022 (0.00010)	ND (0.00094) (0.000099	0.00045 J (0.000099)	ND (0.0010) (0.00011)	ND (0.0013) (0.00013)	0.0033 (0.000093)
1,2,4-Trimethylbenzene	mg/kg	560 ^A	35 ^B	ND (0.32) (0.013)	0.717 (0.013)	ND (0.0046) (0.00019)	<u>306 ^B</u> (1.0)	0.301 J (0.052)	0.277 J (0.048)	ND (0.0048) (0.00020)	0.00055 J (0.00020)	ND (0.0047) (0.00020)	ND (0.0051) (0.00021)	ND (0.0063) (0.00026)	0.0079 (0.00018)
1,3,5-Trimethylbenzene	mg/kg	10000 ^A	210 ^B	ND (0.32) (0.010)	0.272 J (0.010)	ND (0.0046) (0.00015)	119 (0.80)	0.624 J (0.040)	0.0943 J (0.037)	ND (0.0048) (0.00015)	ND (0.0047) (0.00015)	ND (0.0047) (0.00015)	ND (0.0051) (0.00016)	ND (0.0063) (0.00020)	0.0049 (0.00014)
Xylenes, Total (Dimethylbenzene)	mg/kg	8000 ^A	1000 ^B	ND (0.063) (0.0088)	1.14 (0.0089)	0.00094 (0.00013)	314 (0.70)	0.638 (0.034)	0.652 (0.032)	0.00062 J (0.00013)	0.00044 J (0.00013)	0.00052 J (0.00013)	0.00037 J (0.00014)	ND (0.0013) (0.00017)	0.0080 (0.00012)
Semi-Volatile Organic Compounds															
Anthracene	mg/kg	190000 ^A	350 ^B	ND (0.038) (0.013)	1.24 (0.060)	0.715 (0.024)	1.70 (0.011)	0.472 (0.061)	0.0920 J (0.057)	0.151 (0.012)	0.0343 J (0.012)	0.224 (0.013)	0.219 (0.026)	0.185 (0.015)	0.210 (0.011)
Benzo(a)Anthracene	mg/kg	130 ^A	130 ^B	0.0863 (0.012)	3.68 (0.056)	2.32 (0.022)	4.55 (0.21)	1.10 (0.057)	0.171 (0.053)	0.411 (0.011)	0.0569 (0.011)	0.499 (0.012)	0.266 (0.024)	0.127 (0.014)	0.589 (0.010)
Benzo(a)Pyrene	mg/kg	12 ^A	12 ^B	0.0630 (0.012)	4.06 (0.052)	2.61 (0.021)	4.83 (0.20)	1.43 (0.053)	0.142 J (0.050)	0.484 (0.010)	0.0748 (0.011)	0.783 (0.011)	0.320 (0.023)	0.118 (0.013)	0.816 (0.0097)
Benzo(b)Fluoranthene	mg/kg	76 ^A	76 ^B	0.103 (0.013)	4.41 (0.057)	2.32 (0.023)	2.89 (0.011)	0.924 (0.058)	0.119 J (0.055)	0.626 (0.011)	0.0956 (0.012)	0.333 (0.012)	0.395 (0.025)	0.198 (0.014)	0.874 (0.011)
Benzo(g,h,i)Perylene	mg/kg	190000 ^A	180 ^B	0.0866 (0.014)	2.17 (0.064)	1.81 (0.026)	3.54 (0.24)	1.44 (0.065)	0.127 J (0.061)	0.335 (0.013)	0.100 (0.013)	0.766 (0.013)	0.587 (0.027)	0.555 (0.016)	0.915 (0.012)
Chrysene	mg/kg	760 ^A	230 ^B	0.0989 (0.013)	3.49 (0.058)	2.37 (0.023)	5.36 (0.22)	2.93 (0.059)	0.258 (0.055)	0.557 (0.012)	0.0876 (0.012)	1.03 (0.012)	0.295 (0.025)	0.236 (0.015)	0.730 (0.011)
Fluorene	mg/kg	130000 ^A	3800 ^B	ND (0.038) (0.013)	1.02 (0.056)	0.439 (0.022)	15.2 (0.21)	1.23 (0.057)	0.641 (0.054)	0.206 (0.011)	0.0227 J (0.012)	0.0803 (0.012)	0.0540 J (0.024)	0.0220 J (0.014)	0.0605 (0.010)
Naphthalene	mg/kg	760 ^A	25 ^B	-	-	-	-	-	-	-	-	-	-	-	-
Phenanthrene	mg/kg	190000 ^A	10000 ^B	0.0288 J (0.017)	5.80 (0.078)	3.02 (0.031)	14.9 (0.29)	1.74 (0.079)	0.680 (0.074)	0.510 (0.016)	0.0550 (0.016)	0.200 (0.016)	0.170 (0.034)	0.243 (0.020)	0.456 (0.015)
Pyrene	mg/kg	96000 ^A	2200 ^B	0.0825 (0.015)	6.80 (0.066)	5.05 (0.026)	7.95 (0.25)	3.64 (0.067)	0.588 (0.063)	0.718 (0.013)	0.103 (0.013)	1.57 (0.014)	0.301 (0.028)	0.300 (0.017)	0.937 (0.012)
Metals															
Lead	µg/L	n/v	n/v	-	-	-	-	-	-	-	-	-	-	-	-
Lead	mg/kg	2240 ^A	450 ^B	161 (0.14)	897^B (0.13)	221 (0.12)	380 (0.13)	163 (0.13)	34.6 (0.11)	427 (0.26)	49.1 (0.24)	126 (0.28)	237 (0.14)	309 (0.15)	75.2 (0.12)
General Chemistry		•					x /		/		,	· · · ·		· · · · ·	
Moisture, Percent	%	n/v	n/v	-	-	-	-	-	-	-	-	-	-	-	-
pH, Laboratory Measured	S.U.	n/v	n/v	-	-	-	-	-	-	-	-	-	-	-	-
Solids, Percent	%	n/v	n/v	82.3 ()	83.0 ()	87.3 ()	87.2 ()	89.4 ()	93.9 ()	83.5 ()	88.5 ()	81.9 ()	81.9 ()	73.8 ()	91.2 ()

Notes:

MSC-PA	Pennsylvania Department of Environmental Protection - 2016 Medium-Specific
A	Concentrations (MSCs) for Organic/Inorganic Regulated Substances in Soil -
	Direct Contact - Non-Residential
	Surface Soil (0-2 ft). Lead value is the site-specific standard.
SHS-PA	Pennsylvania Department of Environmental Protection - Statewide Health Standards - 2016
В	PADEP Non-Residential Statewide Health Standards (0-2 ft bgs) (Unsaturated Soil)
6.5 ^A	Concentration exceeds the indicated standard.
15.2	Measured concentration did not exceed the indicated standard.
ND (0.50)	Laboratory reporting limit was greater than the applicable standard.
ND (2.4) (1.2)	Analyte was not detected at a concentration greater than the laboratory reporting limit
	The first value in parenthesis is the reporting limit. The method detection limit
	is shown in the second set of parenthesis.
n/v	No standard/guideline value in database - 2016 values have been populated for
	Evergreen Comprehensive List only. Criteria for other analytes may be available but
	may not be represented here.
-	Parameter not analyzed / not available.
D	Indicates an identified compound in an analysis that has been diluted. This flag
	alerts the data user to any differences between the concentrations reported in the
	two analyses.
J	Indicates an estimated value.
mg/kg	Minigrams per kilogram
lhð/r	Micrograms per mer.
5.U. #	Standard Units.
11	Feel Eurofins Lancaster Laboratories Environmental
DID	Pace Analytical Services Inc
	Method detection limit is shown in second set of parentheses
	notified detection mint to shown in second set of parentneses.

Historical Soil Analytical Results Summary - AOI 6 (0-2 feet) Philadelphia Refinery Operations, a Series of Evergreen Resources Group, LLC

Sample Location Sample Date				AOI6 BH-12-123 4-Dec-12	AOI6 BH-12-129 4-Dec-12	AOI6 BH-12-130 4-Dec-12	AOI6 BH-12-131 4-Dec-12	AOI6 BH-12-135 5-Dec-12	AOI6 BH-12-136 5-Dec-12	AOI6 BH-12-137 5-Dec-12	AOI6 BH-12-138 5-Dec-12	AOI6 BH-12-139 5-Dec-12	AOI6 BH-12-140 5-Dec-12	AOI6 BH-12-144 5-Dec-12	AOI6 BH-12-146 5-Dec-12
Sample ID				BH-12-123_1-1.5'	BH-12-129_1.5-2'	BH-12-130_1-2'	BH-12-131_1-2'	BH-12-135_1-1.5'	BH-12-136_1-1.5'	BH-12-137_0-1'	BH-12-138_0-1'	BH-12-139_1-1.5'	BH-12-140_0-0.5'	BH-12-144_0-0.5'	BH-12-146_0-1'
Sample Depth Sampling Company Laboratory Laboratory Work Order Laboratory Sample ID	Units	A MSC-PA	B SHS-PA	1 - 1.5 ft UNKNOWN ACCUTEST JB22962 JB22962-1	1.5 - 2 ft UNKNOWN ACCUTEST JB22962 JB22962-6	1 - 2 ft UNKNOWN ACCUTEST JB22962 JB22962-15	1 - 2 ft UNKNOWN ACCUTEST JB22962 JB22962-16	1 - 1.5 ft UNKNOWN ACCUTEST JB23100 JB23100-11	1 - 1.5 ft UNKNOWN ACCUTEST JB23100 JB23100-9	0 - 1 ft UNKNOWN ACCUTEST JB23100 JB23100-10	0 - 1 ft UNKNOWN ACCUTEST JB23100 JB23100-6	1 - 1.5 ft UNKNOWN ACCUTEST JB23100 JB23100-8	0 - 0.5 ft UNKNOWN ACCUTEST JB23100 JB23100-3	0 - 0.5 ft UNKNOWN ACCUTEST JB23100 JB23100-5	0 - 1 ft UNKNOWN ACCUTEST JB23100 JB23100-4
Volatile Organic Compounds															
Benzene	ma/ka	290 ^A	0.5 ^B	ND (0.0010) (0.00012)	91 6^B (0 57)	0.337 J (0.060)	0.110 (0.0068)	ND (0.00091) (0.00011	ND (0.00084) (0.00009	9ND (0.00091) (0.00011)	ND (0.0015) (0.00018)	ND (0.00097) (0.00012	ND (0.0012) (0.00014)	ND (0.00083) (0.000098	ND (0.00098) (0.00012)
1.2-Dibromoethane (EDB)	ma/ka	3.7 ^A	0.005 ^B	ND (0.0010) (0.00013)	ND (0.048) (0.0061)	ND (0.50) (0.064)	ND (0.057) (0.0072)	ND (0.00091) (0.00012	ND (0.00084) (0.00011	ND (0.00091) (0.00012)	ND (0.0015) (0.00019)	ND (0.00097) (0.00012	ND (0.0012) (0.00015)	ND (0.00083) (0.00010)	ND (0.00098) (0.00012)
1.2-Dichloroethane (EDC)	ma/ka	86 ^A	0.5 ^B	ND (0.0010) (0.00014)	ND (0.048) (0.0064)	ND (0.50) (0.068)	ND (0.057) (0.0077)	ND (0.00091) (0.00012	ND (0.00084) (0.00011	ND (0.00091) (0.00012)	ND (0.0015) (0.00020)	ND (0.00097) (0.00013	ND (0.0012) (0.00016)	ND (0.00083) (0.00011)	ND (0.00098) (0.00013)
Ethylbenzene	mg/kg	890 ^A	70 ^B	ND (0.0010) (0.00027)	0.837 (0.013)	ND (0.50) (0.13)	0.136 (0.015)	ND (0.00091) (0.00024	ND (0.00084) (0.00022	ND (0.00091) (0.00024)	ND (0.0015) (0.00039)	ND (0.00097) (0.00025	ND (0.0012) (0.00031)	ND (0.00083) (0.00022)	ND (0.00098) (0.00026)
Isopropylbenzene (Cumene)	mg/kg	10000 ^A	2500 ^B	0.00034 J (0.000077)	311 (0.35)	32.9 (0.037)	0.245 J (0.0042)	ND (0.0045) (0.000068	ND (0.0042) (0.000062	ND (0.0046) (0.000068)	ND (0.0074) (0.00011)	ND (0.0048) (0.000072	ND (0.0059) (0.000087	ND (0.0041) (0.000061)	ND (0.0049) (0.000073)
m, p-Xylenes	mg/kg	n/v	n/v	- (-	-	-	-	-	-	-	-	-	-	-
Methyl Tertiary Butyl Ether	mg/kg	8600 ^A	2 ^B	ND (0.0010) (0.00024)	ND (0.048) (0.011)	ND (0.50) (0.12)	ND (0.057) (0.013)	ND (0.00091) (0.00021	ND (0.00084) (0.00020	ND (0.00091) (0.00021)	ND (0.0015) (0.00035)	ND (0.00097) (0.00023	ND (0.0012) (0.00028)	ND (0.00083) (0.00019)	ND (0.00098) (0.00023)
Naphthalene	mg/kg	760 ^A	25 ^B	ND (0.0052) (0.00013)	0.0543 J (0.0058)	ND (2.5) (0.061)	0.360 (0.0069)	-	-	-	-	-	-	-	-
o-Xylene (1,2-Dimethylbenzene)	mg/kg	n/v	n/v	-	-	-	-	-	-	-	-	-	-	-	-
Toluene	mg/kg	10000 ^A	100 ^B	ND (0.0010) (0.00011)	116 ^B (0.50)	0.175 J (0.053)	0.211 (0.0060)	ND (0.00091) (0.00009	5ND (0.00084) (0.00008	8ND (0.00091) (0.000096	ND (0.0015) (0.00016)	ND (0.00097) (0.00010	ND (0.0012) (0.00012)	ND (0.00083) (0.000087	ND (0.00098) (0.00010)
1,2,4-Trimethylbenzene	mg/kg	560 ^A	35 ^B	ND (0.0052) (0.00022)	0.705 (0.010)	ND (2.5) (0.11)	0.0814 J (0.012)	ND (0.0045) (0.00019)	ND (0.0042) (0.00017)) ND (0.0046) (0.00019)	ND (0.0074) (0.00031)	ND (0.0048) (0.00020)	ND (0.0059) (0.00025)	ND (0.0041) (0.00017)	ND (0.0049) (0.00020)
1,3,5-Trimethylbenzene	mg/kg	10000 ^A	210 ^B	ND (0.0052) (0.00017)	0.257 (0.0076)	ND (2.5) (0.081)	0.0211 J (0.0091)	ND (0.0045) (0.00015)	ND (0.0042) (0.00013)) ND (0.0046) (0.00015)	ND (0.0074) (0.00024)	ND (0.0048) (0.00015)	ND (0.0059) (0.00019)	ND (0.0041) (0.00013)	ND (0.0049) (0.00016)
Xylenes, Total (Dimethylbenzene)	mg/kg	8000 ^A	1000 ^B	ND (0.0010) (0.00014)	3.69 (0.0066)	ND (0.50) (0.070)	0.216 (0.0079)	ND (0.00091) (0.00013	ND (0.00084) (0.00012	2ND (0.00091) (0.00013)	ND (0.0015) (0.00021)	ND (0.00097) (0.00013	ND (0.0012) (0.00016)	ND (0.00083) (0.00011)	ND (0.00098) (0.00014)
Semi-Volatile Organic Compounds															
Anthracene	mg/kg	190000 ^A	350 ^B	0.597 (0.014)	ND (0.033) (0.012)	3.58 (0.25)	0.0602 (0.012)	ND (0.037) (0.013)	0.0941 (0.012)	0.142 (0.013)	0.118 (0.014)	0.0718 (0.013)	0.290 (0.012)	ND (0.033) (0.012)	0.0787 (0.013)
Benzo(a)Anthracene	mg/kg	130 ^A	130 ^B	1.79 (0.013)	0.0699 (0.011)	3.52 (0.012)	0.0983 (0.012)	0.0614 (0.012)	0.267 (0.011)	0.374 (0.012)	0.145 (0.013)	0.214 (0.012)	0.0701 (0.012)	0.0373 (0.011)	0.603 (0.012)
Benzo(a)Pyrene	mg/kg	12 ^A	12 ^B	2.11 (0.012)	0.0627 (0.010)	6.52 (0.22)	0.116 (0.011)	0.0757 (0.011)	0.234 (0.011)	0.296 (0.011)	0.168 (0.013)	0.221 (0.011)	0.0915 (0.011)	0.0397 (0.010)	1.02 (0.012)
Benzo(b)Fluoranthene	mg/kg	76 ^A	76 ^B	2.15 (0.013)	0.0687 (0.011)	11.3 (0.24)	0.0976 (0.012)	0.0894 (0.012)	0.265 (0.012)	0.307 (0.012)	0.215 (0.014)	0.240 (0.012)	0.103 (0.012)	0.0560 (0.011)	1.36 (0.013)
Benzo(g,h,i)Perylene	mg/kg	190000 ^A	180 ^B	1.59 (0.014)	0.0498 (0.012)	4.33 (0.27)	0.178 (0.013)	0.0597 (0.014)	0.122 (0.013)	0.141 (0.013)	0.169 (0.015)	0.144 (0.013)	0.0844 (0.013)	0.0289 J (0.012)	0.982 (0.014)
Chrysene	mg/kg	760 ^A	230 ^B	1.87 (0.013)	0.0711 (0.011)	9.88 (0.25)	0.136 (0.012)	0.0655 (0.012)	0.237 (0.012)	0.332 (0.012)	0.148 (0.014)	0.219 (0.012)	0.0825 (0.012)	0.0422 (0.011)	0.818 (0.013)
Fluorene	mg/kg	130000 ^A	3800 ^B	0.307 (0.013)	ND (0.033) (0.011)	34.6 (0.24)	0.122 (0.012)	ND (0.037) (0.012)	0.0334 J (0.012)	0.0342 J (0.012)	ND (0.041) (0.014)	ND (0.036) (0.012)	ND (0.036) (0.012)	ND (0.033) (0.011)	0.0195 J (0.012)
Naphthalene	mg/kg	760 ^A	25 ^B	-	-	-	-	ND (0.037) (0.010)	ND (0.035) (0.0096)	ND (0.036) (0.0098)	0.0191 J (0.011)	0.0204 J (0.0098)	ND (0.036) (0.0097)	ND (0.033) (0.0090)	0.0158 J (0.010)
Phenanthrene	mg/kg	190000 ^A	10000 ^B	1.49 (0.018)	0.0395 (0.015)	10.0 (0.33)	0.174 (0.016)	0.0353 J (0.017)	0.373 (0.016)	0.556 (0.016)	0.138 (0.019)	0.260 (0.016)	0.0474 (0.016)	0.0219 J (0.015)	0.329 (0.017)
Pyrene	mg/kg	96000 ^A	2200 ^B	2.51 (0.015)	0.121 (0.013)	12.1 (0.28)	0.140 (0.014)	0.0708 (0.014)	0.415 (0.014)	0.594 (0.014)	0.202 (0.016)	0.340 (0.014)	0.108 (0.014)	0.0613 (0.013)	1.36 (0.015)
Metals															
Lead	µg/L	n/v	n/v	-	-	-	-	-	-	-	-	-	-	-	-
Lead	mg/kg	2240 ^A	450 ^B	224 (0.14)	48.0 (0.12)	84.4 (0.13)	111 (0.13)	106 (0.12)	853 ^B (0.25)	137 (0.28)	483 ^B (0.13)	1120^B (0.13)	766 ^B (0.44)	17.1 (0.12)	184 (0.13)
General Chemistry															
Moisture, Percent	%	n/v	n/v	-	-	-	-	-	-	-	-	-	-	-	-
pH, Laboratory Measured	S.U.	n/v	n/v	-	-	-	-	-	-	-	-	-	-	-	-
	0/	nhi	n/v	84.4.()	90.0.()	87.0.()	85.1.()	87.3 ()	88.0.()	85.5 ()	80.0.()	84.8 ()	7870	91.8 ()	86.5 ()

Notes:

MSC-PA	Pennsylvania Department of Environmental Protection - 2016 Medium-Specific
A	Concentrations (MSCs) for Organic/Inorganic Regulated Substances in Soil -
	Direct Contact - Non-Residential
	Surface Soil (0-2 ft). Lead value is the site-specific standard.
SHS-PA	Pennsylvania Department of Environmental Protection - Statewide Health
	Standards - 2016
В	PADEP Non-Residential Statewide Health Standards (0-2 ft bgs) (Unsaturated Soil)
<u>6.5</u> ^A	Concentration exceeds the indicated standard.
15.2	Measured concentration did not exceed the indicated standard.
ND (0.50)	Laboratory reporting limit was greater than the applicable standard.
ND (2.4) (1.2)	Analyte was not detected at a concentration greater than the laboratory reporting limit.
	The first value in parenthesis is the reporting limit. The method detection limit
	is shown in the second set of parenthesis.
n/v	No standard/guideline value in database - 2016 values have been populated for
	Evergreen Comprehensive List only. Criteria for other analytes may be available but
	may not be represented here.
-	Parameter not analyzed / not available.
D	Indicates an identified compound in an analysis that has been diluted. This flag
	alerts the data user to any differences between the concentrations reported in the
	two analyses.
J	Indicates an estimated value.
mg/kg	milligrams per kilogram
µg/L	Micrograms per liter.
S.U.	Standard Units.
ft	Feet
LL	Eurofins Lancaster Laboratories Environmental
PIP	Pace Analytical Services, Inc.
	Method detection limit is shown in second set of parentheses.

Historical Soil Analytical Results Summary - AOI 6 (0-2 feet) Philadelphia Refinery Operations, a Series of Evergreen Resources Group, LLC

Sample Location			1	AOI6 BH-12-147	AOI6 BH-12-148	AOI6 BH-12-149	AOI6-BH-16-001	AOI6-BH-16-002	AOI6-BH-16-003		AOI6-BH-16-004		AOI6-BH-16-005	AOI6-B	H-16-006
Sample Date				5-Dec-12	5-Dec-12	4-Dec-12	12-Apr-16	12-Apr-16	12-Apr-16	21-Apr-16	21-Apr-16	21-Apr-16	12-Apr-16	22-Apr-16	22-Apr-16
Sample ID				BH-12-147_1-1.5'	BH-12-148_0-1'	BH-12-149_1-1.5'	AOI6-BH-16-001-0-2- SOIL	AOI6-BH-16-002-0-2- SOIL	AOI6-BH-16-003-0-2- SOIL	AOI6-BH16-DUP- SOIL-002	AOI6-BH-16-004-0-2- SOIL	AOI6-BH-16-004-2-4- SOIL	AOI6-BH-16-005-0-2- SOIL	AOI6-BH-16-006-0-2- SOIL	AOI6-BH-16-006-2-4- SOIL
Sample Depth				1 - 1.5 ft	0 - 1 ft	1 - 1.5 ft	1 - 1.5 ft	1 - 1.5 ft	0 - 0.5 ft		0.75 - 1.75 ft	1.75 - 2.3 ft	0 - 0.5 ft	1 - 1.5 ft	1.5 - 2.25 ft
Sampling Company				UNKNOWN	UNKNOWN	UNKNOWN	GHD	GHD	GHD	GHD	GHD	GHD	GHD	GHD	GHD
Laboratory				ACCUTEST	ACCUTEST	ACCUTEST	LL	LL	LL	LL	LL	LL	LL	LL	LL
Laboratory Work Order		Α	в	JB23100	JB23100	JB22962	1651423	1651423	1651423	1653975	1653975	1653975	1651423	1653975	1653975
Laboratory Sample ID	Units	MSC-PA	SHS-PA	JB23100-2	JB23100-1	JB22962-4	8336826	8336823	8336825	8349806	8349805	8349807	8336824	8349808	8349809
Volatile Organic Compounds															
Benzene	mg/kg	290 ^A	0.5 ^B	ND (0.00089) (0.00011	ND (0.0011) (0.00013)	0.0506 J (0.0083)	0.002 J (0.0005)	0.001 J (0.0005)	ND (0.005) (0.0005)	0.002 J (0.0005)	0.001 J (0.0005)	0.001 J (0.0005)	0.0004 J (0.0005)	ND (0.280) (0.028)	0.023 J (0.022)
1,2-Dibromoethane (EDB)	mg/kg	3.7 ^A	0.005 ^B	ND (0.00089) (0.00011	ND (0.0011) (0.00014)	ND (0.070) (0.0088)	ND (0.006) (0.001)	ND (0.005) (0.001)	ND (0.005) (0.001)	ND (0.005) (0.001)	ND (0.005) (0.0009)	ND (0.005) (0.0009)	ND (0.004) (0.001)	ND (0.280) (0.055)	ND (0.220) (0.044)
1,2-Dichloroethane (EDC)	mg/kg	86 ^A	0.5 ^B	ND (0.00089) (0.00012	ND (0.0011) (0.00014)	ND (0.070) (0.0094)	ND (0.006) (0.001)	ND (0.005) (0.001)	ND (0.005) (0.001)	ND (0.005) (0.001)	ND (0.005) (0.0009)	ND (0.005) (0.0009)	ND (0.004) (0.001)	ND (0.280) (0.055)	ND (0.220) (0.044)
Ethylbenzene	mg/kg	890 ^A	70 ^B	ND (0.00089) (0.00023	ND (0.0011) (0.00028)	ND (0.070) (0.018)	ND (0.006) (0.001)	ND (0.005) (0.001)	ND (0.005) (0.001)	0.001 J (0.001)	ND (0.005) (0.0009)	ND (0.005) (0.0009)	ND (0.004) (0.001)	ND (0.280) (0.055)	ND (0.220) (0.044)
Isopropylbenzene (Cumene)	mg/kg	10000 ^A	2500 ^B	ND (0.0044) (0.000066	ND (0.0053) (0.000079)	0.147 J (0.0052)	ND (0.006) (0.001)	ND (0.005) (0.001)	ND (0.005) (0.001)	ND (0.005) (0.001)	ND (0.005) (0.0009)	ND (0.005) (0.0009)	ND (0.004) (0.001)	ND (0.280) (0.055)	ND (0.220) (0.044)
m, p-Xylenes	mg/kg	n/v	n/v	-	-	-	-	-	-	-		-	-	-	
Methyl Tertiary Butyl Ether	mg/kg	8600 ^A	2 ^B	ND (0.00089) (0.00021	ND (0.0011) (0.00025)	ND (0.070) (0.016)	ND (0.006) (0.0005)	ND (0.005) (0.0005)	ND (0.005) (0.0005)	ND (0.005) (0.0005)	ND (0.005) (0.0005)	ND (0.005) (0.0005)	ND (0.004) (0.0005)	ND (0.280) (0.028)	ND (0.220) (0.022)
Naphthalene	mg/kg	760 ^A	25 ^B	-	-	ND (0.35) (0.0085)	-	-	-	-	-	-	-	-	-
o-Xylene (1,2-Dimethylbenzene)	mg/kg	n/v	n/v	-	-	-	-	-	-	-	-	-	-	-	-
Toluene	mg/kg	10000 ^A	100 ^B	ND (0.00089) (0.000093	ND (0.0011) (0.00011)	0.0223 J (0.0073)	0.003 J (0.001)	0.001 J (0.001)	ND (0.005) (0.001)	0.003 J (0.001)	0.003 J (0.0009)	0.002 J (0.0009)	ND (0.004) (0.001)	0.088 J (0.055)	0.073 J (0.044)
1,2,4-Trimethylbenzene	mg/kg	560 ^A	35 ^B	ND (0.0044) (0.00019)	ND (0.0053) (0.00022)	ND (0.35) (0.015)	ND (0.006) (0.001)	ND (0.005) (0.001)	ND (0.005) (0.001)	0.002 J (0.001)	0.0009 J (0.0009)	ND (0.005) (0.0009)	ND (0.004) (0.001)	ND (0.280) (0.055)	ND (0.220) (0.044)
1,3,5-Trimethylbenzene	mg/kg	10000 ^A	210 ^B	ND (0.0044) (0.00014)	ND (0.0053) (0.00017)	ND (0.35) (0.011)	ND (0.006) (0.001)	ND (0.005) (0.001)	ND (0.005) (0.001)	ND (0.005) (0.001)	ND (0.005) (0.0009)	ND (0.005) (0.0009)	ND (0.004) (0.001)	ND (0.280) (0.055)	ND (0.220) (0.044)
Xylenes, Total (Dimethylbenzene)	mg/kg	8000 ^A	1000 ^B	ND (0.00089) (0.00012	ND (0.0011) (0.00015)	ND (0.070) (0.0097)	0.001 J (0.001)	ND (0.005) (0.001)	ND (0.005) (0.001)	0.005 J (0.001)	0.004 J (0.0009)	0.001 J (0.0009)	ND (0.004) (0.001)	0.063 J (0.055)	0.065 J (0.044)
Semi-Volatile Organic Compounds					•		•								
Anthracene	mg/kg	190000 ^A	350 ^B	0.0166 J (0.012)	0.155 (0.014)	ND (0.037) (0.013)	0.730 (0.003)	0.340 (0.003)	0.410 (0.003)	0.600 (0.008)	0.430 (0.008)	0.550 (0.007)	0.016 J (0.003)	0.700 (0.008)	0.430 (0.007)
Benzo(a)Anthracene	mg/kg	130 ^A	130 ^B	0.0519 (0.011)	0.328 (0.013)	0.0518 (0.012)	0.950 (0.003)	1.700 (0.003)	1.900 (0.003)	1.700 (0.008)	1.100 (0.008)	1.600 (0.007)	0.110 (0.003)	1.200 (0.008)	0.750 (0.007)
Benzo(a)Pyrene	mg/kg	12 ^A	12 ^B	0.0650 (0.010)	0.327 (0.013)	0.0576 (0.011)	1.100 (0.003)	1.700 (0.003)	1.900 (0.003)	1.500 (0.008)	1.100 (0.008)	1.500 (0.007)	0.130 (0.003)	1.200 (0.008)	0.740 (0.007)
Benzo(b)Fluoranthene	mg/kg	76 ^A	76 ^B	0.0787 (0.011)	0.334 (0.014)	0.0670 (0.012)	1.500 (0.003)	2.200 (0.003)	2.600 (0.003)	1.900 (0.008)	1.300 (0.008)	1.700 (0.007)	0.180 (0.003)	1.300 (0.008)	1.000 (0.007)
Benzo(g,h,i)Perylene	mg/kg	190000 ^A	180 ⁸	0.0542 (0.013)	0.205 (0.015)	0.0459 (0.014)	1.300 (0.003)	0.850 (0.003)	1.500 (0.003)	0.940 (0.008)	0.700 (0.008)	0.840 (0.007)	0.150 (0.003)	0.760 (0.008)	0.520 (0.007)
Chrysene	mg/kg	760 ^A	230 ^B	0.0608 (0.012)	0.307 (0.014)	0.0640 (0.013)	1.100 (0.003)	1.700 (0.003)	1.900 (0.003)	1.700 (0.008)	1.100 (0.008)	1.500 (0.007)	0.120 (0.003)	1.300 (0.008)	0.820 (0.007)
Fluorene	mg/kg	130000 ^A	3800 ^B	ND (0.034) (0.011)	0.0308 J (0.014)	ND (0.037) (0.012)	0.320 (0.003)	0.079 J (0.003)	0.110 (0.003)	0.190 (0.008)	0.160 (0.008)	0.200 (0.007)	0.005 J (0.003)	0.360 (0.008)	0.270 (0.007)
Naphthalene	mg/kg	760 ^A	25 ⁸	ND (0.034) (0.0093)	ND (0.041) (0.011)	-	6.900 (0.003)	0.630 (0.003)	0.510 (0.003)	1.300 (0.008)	1.200 (0.008)	1.100 (0.007)	0.025 (0.003)	1.600 (0.008)	1.600 (0.007)
Phenanthrene	mg/kg	190000 ^A	10000 ^B	0.0321 J (0.016)	0.425 (0.019)	0.0283 J (0.017)	2.000 (0.003)	0.870 (0.003)	1.700 (0.003)	1.700 (0.008)	1.100 (0.008)	1.200 (0.007)	0.053 (0.003)	1.500 (0.008)	1.100 (0.007)
Pyrene	mg/kg	96000 ^A	2200 ^B	0.0774 (0.013)	0.469 (0.016)	0.0804 (0.014)	1.600 (0.003)	2.000 (0.003)	2.800 (0.003)	2.300 (0.008)	1.300 (0.008)	1.900 (0.007)	0.150 (0.003)	2.000 (0.008)	1.200 (0.007)
Metals															
Lead	µg/L	n/v	n/v	-	-	-	-	-	-	-	-	-	-	-	-
Lead	mg/kg	2240 ^A	450 ^B	286 (0.13)	745 ^B (0.13)	27.9 (0.14)	288 (0.510)	180 (0.510)	549 ^B (0.510)	529^B (0.452)	399 (0.411)	189 (0.398)	68.7 (0.510)	142 (0.510)	225 (0.435)
General Chemistry															
Moisture, Percent	%	n/v	n/v	-	-	-	14.6 (0.50)	24.8 (0.50)	12.2 (0.50)	12.5 (0.50)	13.2 (0.50)	11.0 (0.50)	4.9 (0.50)	14.5 (0.50)	11.8 (0.50)
pH, Laboratory Measured	S.U.	n/v	n/v	-	-	-	-	-	-	-	-	-	-	-	-
Solids, Percent	%	n/v	n/v	90.9 ()	80.7 ()	81.3 ()	-	-	-	-	-	-	-	-	-

Notes:

MSC-PA	Pennsylvania Department of Environmental Protection - 2016 Medium-Specific
A	Concentrations (MSCs) for Organic/Inorganic Regulated Substances in Soil -
	Direct Contact - Non-Residential
	Surface Soil (0-2 ft). Lead value is the site-specific standard.
SHS-PA	Pennsylvania Department of Environmental Protection - Statewide Health
	Standards - 2016
в	PADEP Non-Residential Statewide Health Standards (0-2 ft bgs) (Unsaturated Soil)
<u>6.5</u> ^A	Concentration exceeds the indicated standard.
15.2	Measured concentration did not exceed the indicated standard.
ND (0.50)	Laboratory reporting limit was greater than the applicable standard.
ND (2.4) (1.2)	Analyte was not detected at a concentration greater than the laboratory reporting limit.
	The first value in parenthesis is the reporting limit. The method detection limit
	is shown in the second set of parenthesis.
n/v	No standard/guideline value in database - 2016 values have been populated for
	Evergreen Comprehensive List only. Criteria for other analytes may be available but
	may not be represented here.
-	Parameter not analyzed / not available.
D	Indicates an identified compound in an analysis that has been diluted. This flag
	alerts the data user to any differences between the concentrations reported in the
	two analyses.
J	Indicates an estimated value.
mg/kg	milligrams per kilogram
µg/L	Micrograms per liter.
S.U.	Standard Units.
ft	Feet
LL	Eurofins Lancaster Laboratories Environmental
PIP	Pace Analytical Services, Inc.
	Method detection limit is shown in second set of parentheses.

Historical Soil Analytical Results Summary - AOI 6 (0-2 feet) Philadelphia Refinery Operations, a Series of Evergreen Resources Group, LLC

Sample Location				AOI6-BH-16-007	AOI6-BH-16-008	AOI6-BH-16-009	AOI6-BH-16-010	AOI6-BH-16-011	AOI6-B	H-16-012	AOI6-BH-16-013	AOI6-BI	H-16-014	AOI6-B	H-16-015
Sample Date				8-Apr-16	8-Apr-16	8-Apr-16	11-Apr-16	11-Apr-16	11-Apr-16	11-Apr-16	11-Apr-16	5-Apr-16	11-Jul-16	5-Apr-16	11-Jul-16
Sample ID				AOI6-BH-16-007-0-2-	AOI6-BH-16-008-0-2-	AOI6-BH-16-009-0-2-	AOI6-BH-16-010-0-2-	AOI6-BH-16-011-0-2-	AOI6-BH16-012-0-2-	AOI6-BH-16-012-0-2-	AOI6-BH-16-013-0-2-	AOI6-BH-16-014-0-2-	AOI6-BH-16-014-0-2-	AOI6-BH-16-015-0-2-	AOI6-BH-16-015-0-2-
Sample Depth				1 - 2 ft	1 - 2 ft	1.5 - 1.75 ft	0.5 - 0.9 ft	0.5 - 0.83 ft	0.5 - 1 ft	1 - 1.1 ft	0.5 - 1 ft	1 - 1.5 ft	1.25 - 1.83 ft	1.5 - 2 ft	1 - 1.41 ft
Sampling Company				GHD	GHD	GHD	GHD	GHD	GHD	GHD	GHD	GHD	GHD	GHD	GHD
Laboratory				LL	LL	LL	LL	LL	LL	LL	LL	LL	LL	LL	LL
Laboratory Work Order		Α	в	1649742	1649742	1649742	1649742	1649742	1649742	1649742	1649742	1647893	1682991	1647893	1682991
Laboratory Sample ID	Units	MSC-PA	SHS-PA	8329537	8329540	8329542	8329545	8329546	8329549	8329548	8329550	8321192	8475490	8321190	8475488
Volatile Organic Compounds															
Benzene	mg/kg	290 ^A	0.5 ^B	0.003 J (0.0005)	0.001 J (0.0005)	0.005 J (0.0005)	0.011 (0.0005)	ND (0.270) (0.0005)	ND (0.250) (0.0005)	ND (0.230) (0.0005)	ND (0.230) (0.0005)	0.240 J (0.0005)	-	0.053 J (0.0005)	-
1,2-Dibromoethane (EDB)	mg/kg	3.7 ^A	0.005 ^B	ND (0.006) (0.001)	ND (0.005) (0.001)	ND (0.006) (0.001)	ND (0.005) (0.001)	ND (0.270) (0.001)	ND (0.250) (0.001)	ND (0.230) (0.001)	ND (0.230) (0.001)	ND (0.330) (0.001)	-	ND (0.330) (0.001)	-
1,2-Dichloroethane (EDC)	mg/kg	86 ^A	0.5 ^B	ND (0.006) (0.001)	ND (0.005) (0.001)	ND (0.006) (0.001)	ND (0.005) (0.001)	ND (0.270) (0.001)	ND (0.250) (0.001)	ND (0.230) (0.001)	ND (0.230) (0.001)	ND (0.330) (0.001)	-	ND (0.330) (0.001)	-
Ethylbenzene	mg/kg	890 ^A	70 ^B	ND (0.006) (0.001)	ND (0.005) (0.001)	ND (0.006) (0.001)	ND (0.005) (0.001)	ND (0.270) (0.001)	ND (0.250) (0.001)	ND (0.230) (0.001)	ND (0.230) (0.001)	0.095 J (0.001)	-	ND (0.330) (0.001)	-
Isopropylbenzene (Cumene)	mg/kg	10000 ^A	2500 ^B	ND (0.006) (0.001)	ND (0.005) (0.001)	ND (0.006) (0.001)	ND (0.005) (0.001)	ND (0.270) (0.001)	2.000 (0.001)	0.250 (0.001)	ND (0.230) (0.001)	ND (0.330) (0.001)	-	0.770 (0.001)	-
m, p-Xylenes	mg/kg	n/v	n/v	-	-	-	-	-	-	-	-	-	-	-	-
Methyl Tertiary Butyl Ether	mg/kg	8600 ^A	2 ^B	ND (0.006) (0.0005)	ND (0.005) (0.0005)	ND (0.006) (0.0005)	ND (0.005) (0.0005)	ND (0.270) (0.0005)	ND (0.250) (0.0005)	ND (0.230) (0.0005)	ND (0.230) (0.0005)	ND (0.330) (0.0005)	-	ND (0.330) (0.0005)	-
Naphthalene	mg/kg	760 ^A	25 ^B	-	-	-	-	-	-	-	-	-	-	-	-
o-Xylene (1,2-Dimethylbenzene)	mg/kg	n/v	n/v	-	-	-	-	-	-	-	-	-	-	-	-
Toluene	mg/kg	10000 ^A	100 ^B	0.001 J (0.001)	ND (0.005) (0.001)	ND (0.006) (0.001)	0.004 J (0.001)	ND (0.270) (0.001)	ND (0.250) (0.001)	ND (0.230) (0.001)	ND (0.230) (0.001)	0.260 J (0.001)	-	0.130 J (0.001)	
1,2,4-Trimethylbenzene	mg/kg	560 ^A	35 ^B	ND (0.006) (0.001)	ND (0.005) (0.001)	ND (0.006) (0.001)	ND (0.005) (0.001)	ND (0.270) (0.001)	ND (0.250) (0.001)	ND (0.230) (0.001)	ND (0.230) (0.001)	0.110 J (0.001)	-	0.110 J (0.001)	-
1,3,5-Trimethylbenzene	mg/kg	10000 ^A	210 ^B	ND (0.006) (0.001)	ND (0.005) (0.001)	ND (0.006) (0.001)	ND (0.005) (0.001)	ND (0.270) (0.001)	ND (0.250) (0.001)	ND (0.230) (0.001)	ND (0.230) (0.001)	ND (0.330) (0.001)	-	ND (0.330) (0.001)	
Xylenes, Total (Dimethylbenzene)	mg/kg	8000 ^A	1000 ^b	ND (0.006) (0.001)	ND (0.005) (0.001)	ND (0.006) (0.001)	ND (0.005) (0.001)	ND (0.270) (0.001)	0.061 J (0.001)	0.047 J (0.001)	ND (0.230) (0.001)	0.280 J (0.001)	-	0.470 (0.001)	-
Semi-volatile Organic Compounds	-		5	1	1	1	1	1	1				1		
Anthracene	mg/kg	190000 ^A	350 ^B	0.200 (0.003)	2.300 (0.003)	4.300 (0.003)	0.079 (0.003)	1.700 (0.003)	1.300 (0.003)	0.690 (0.003)	0.400 (0.003)	-	6.200 (0.003)	-	5.400 (0.003)
Benzo(a)Anthracene	mg/kg	130 ^A	130 ^B	0.720 (0.003)	5.500 (0.003)	5.200 (0.003)	0.210 (0.003)	0.990 (0.003)	0.940 (0.003)	1.900 (0.003)	0.460 (0.003)	-	7.800 (0.003)	-	2.000 J (0.003)
Benzo(a)Pyrene	mg/kg	12	12 ^B	0.670 (0.003)	4.800 (0.003)	3.300 (0.003)	0.260 (0.003)	0.990 (0.003)	0.890 (0.003)	1.800 (0.003)	0.280 (0.003)	-	8.300 (0.003)	-	1.600 J (0.003)
Benzo(b)Fluoranthene	mg/kg	76^	76 ^b	0.950 (0.003)	6.300 (0.003)	4.000 (0.003)	0.410 (0.003)	1.300 (0.003)	1.600 (0.003)	2.300 (0.003)	0.340 (0.003)	-	8.200 (0.003)	-	2.900 (0.003)
Benzo(g,h,i)Perylene	mg/kg	190000	180 [°]	0.510 (0.003)	3.300 (0.003)	1.900 (0.003)	0.230 (0.003)	0.690 (0.003)	0.740 (0.003)	1.400 (0.003)	0.210 (0.003)	-	6.300 (0.003)	-	2.200 (0.003)
Chrysene	mg/kg	760^	230 ⁰	0.850 (0.003)	5.600 (0.003)	5.100 (0.003)	0.280 (0.003)	1.000 (0.003)	2.700 (0.003)	1.800 (0.003)	1.600 (0.003)	-	8.900 (0.003)	-	5.800 (0.003)
Fluorene	mg/kg	130000	3800 ⁵	0.070 (0.003)	1.700 (0.003)	1.400 (0.003)	0.012 J (0.003)	8.500 (0.003)	66.000 (0.003)	0.330 (0.003)	2.500 (0.003)	-	9.300 (0.003)	-	7.400 (0.003)
Department	mg/kg	760 100000Å	25	0.030 (0.003)	2.900 (0.003)	14 000 (0.003)	0.220 (0.003)		1.300 (0.003)	0.440 (0.003)	ND (0.200) (0.003)	-	21.000 (0.003)	-	2.000 (0.003)
Pyrene	mg/kg	190000 ^A	10000 2200 ^B	1 200 (0.003)	10.000 (0.003)	13,000 (0.003)	0.230 (0.003)	1 900 (0.003)	1 800 (0.003)	3 300 (0.003)	0.900 (0.003)	-	12 000 (0.003)	-	8 400 (0.003)
Metals	iiig/kg	90000	2200	1.200 (0.003)	10.000 (0.003)	13.000 (0.003)	0.430 (0.003)	1.300 (0.003)	1.000 (0.003)	3.300 (0.003)	0.010 (0.003)		12.000 (0.003)		0.400 (0.003)
Lead	ug/l	n/v	n/v	-	-	-	-	-	-		_		_	_	-
Lead	ma/ka	2240 ^A	450 ^B	803 ^B (0.510)	298 (0.510)	149 (0.510)	1460 ^B (0.510)	734 ^B (0.510)	141 (0.510)	194 (0.510)	32.0 (0.510)	344 (0.510)	-	671 ^B (0.510)	-
General Chemistry		22.10	100	000 (0.010)		1 ((0.010)		((0.010)	
Moisture Percent	0/_	n/v	n/v	14.7 (0.50)	13.6 (0.50)	11.5 (0.50)	19.7 (0.50)	22.8 (0.50)	20.0 (0.50)	8 2 (0 50)	14.8 (0.50)	33.7 (0.50)	34.4 (0.50)	26.7 (0.50)	19.9 (0.50)
nH Laboratory Measured	5U	n/v	n/v	-	10.0 (0.00)	-	13.7 (0.50)	22.0 (0.30)	20.0 (0.30)	0.2 (0.00)	-	-	-	20.7 (0.00)	10.0 (0.00)
Solids, Percent	%	n/v	n/v	-	-	-	-	-	-	-	-	-	-	_	-
MSC-PA Pennsylvania Department of Environmental	Protection - 2016	Medium-Specifi	ic												
 Concentrations (MSCs) for Organic/Inorganic 	c Regulated Subs	stances in Soil -													
Direct Contact - Non-Residential	a standard														
Surface Soil (0-2 ft). Lead value is the site-s	pecific standard.														
Standards - 2016	FIDIECTION - STATE														
B PADEP Non-Residential Statewide Health Statewide Hea	tandards (0-2 ft br	as) (Unsaturated	d Soil)												
6.5 ^A Concentration exceeds the indicated standar	rd.	5-7 (2.154(4)4(6)	,												
15.2 Measured concentration did not exceed the i	indicated standard	d.													
ND (0.50) Laboratory reporting limit was greater than the	ne applicable stan	idard.													
ND (2.4) (1.2) Analyte was not detected at a concentration	greater than the la	aboratory report	ting limit.												
The first value in parenthesis is the repo	rting limit. The m	nethod detection	on limit												
is shown in the second set of parenthesi	S.														

- No standard/guideline value in database 2016 values have been populated for Evergreen Comprehensive List only. Criteria for other analytes may be available but may not be represented here. n/v
- Parameter not analyzed / not available. -
- Indicates an identified compound in an analysis that has been diluted. This flag alerts the data user to any differences between the concentrations reported in the D two analyses. J Indicates an estimated value.
- mg/kg µg/L S.U. milligrams per kilogram
- Micrograms per liter. Standard Units.
- ft LL Feet Eurofins Lancaster Laboratories Environmental
- PIP
- Pace Analytical Services, Inc. Method detection limit is shown in second set of parentheses.

Historical Soil Analytical Results Summary - AOI 6 (0-2 feet) Philadelphia Refinery Operations, a Series of Evergreen Resources Group, LLC

Sample Location	1	ĺ		AOI6-Bł	H-16-016	AOI6-BH-16-017	AOI6-BH-16-018		AOI6-BH-16-019		AOI6-BH-16-020	AOI6-BH-16-021	AOI6-BH-16-022	AOI6-BH-16-023
Sample Date				4-Apr-16	11-Jul-16	11-Apr-16	11-Apr-16	21-Apr-16	21-Apr-16	21-Apr-16	21-Apr-16	21-Apr-16	6-Apr-16	21-Apr-16
Sample ID				AOI6-BH-16-016-0-2-	AOI6-BH-16-016-0-2-	AOI6-BH-16-017-0-2-	AOI6-BH-16-018-0-2-	AOI6-BH16-DUP-	AOI6-BH-16-019-0-2-	AOI6-BH-16-019-2-4-	AOI6-BH-16-020-0-2-	AOI6-BH-16-021-0-2-	AOI6-BH-16-022-0-2-	AOI6-BH-16-023-0-2-
Sample Denth				1-15#	15-2#	05-1#	0.75 - 1.ft	301L-001	08-18#	18-3#	0-11#	0-05#	05-1#	15-19#
Sampling Company				CHD	6HD	CHD	GHD	GHD	CHD	GHD	GHD	GHD	GHD	GHD
L aboratory										11				
Laboratory Work Order		۵	в	1647893	1682991	1649742	1649742	1653975	1653975	1653975	1653975	1653975	1648963	1653975
Laboratory Sample ID	Units	MSC-PA	SHS-PA	8321184	8475486	8329544	8329543	8349803	8349802	8349804	8349801	8349800	8325910	8349798
	••••••		••		0.110.000									
Volatile Organic Compounds	ł		•				•					•	•	•
Benzene	mg/kg	290 ^A	0.5 ^B	0.004 J (0.0005)	-	0.001 J (0.0005)	0.071 (0.0005)	ND (0.005) (0.0005)	ND (0.006) (0.0006)	0.002 J (0.0006)	0.039 J (0.030)	0.062 J (0.024)	0.089 J (0.0005)	0.130 J (0.047)
1,2-Dibromoethane (EDB)	mg/kg	3.7 ^A	0.005 ^B	ND (0.006) (0.001)	-	ND (0.004) (0.001)	ND (0.004) (0.001)	ND (0.005) (0.001)	ND (0.006) (0.001)	ND (0.006) (0.001)	ND (0.300) (0.061)	ND (0.240) (0.048)	ND (0.240) (0.001)	ND (0.470) (0.094)
1,2-Dichloroethane (EDC)	mg/kg	86 ^A	0.5 ^B	ND (0.006) (0.001)	-	ND (0.004) (0.001)	ND (0.004) (0.001)	ND (0.005) (0.001)	ND (0.006) (0.001)	ND (0.006) (0.001)	ND (0.300) (0.061)	ND (0.240) (0.048)	ND (0.240) (0.001)	ND (0.470) (0.094)
Ethylbenzene	mg/kg	890 ^A	70 ^B	ND (0.006) (0.001)	-	ND (0.004) (0.001)	0.001 J (0.001)	ND (0.005) (0.001)	ND (0.006) (0.001)	ND (0.006) (0.001)	ND (0.300) (0.061)	ND (0.240) (0.048)	0.052 J (0.001)	0.100 J (0.094)
Isopropylbenzene (Cumene)	mg/kg	10000 ^A	2500 ^B	ND (0.006) (0.001)	-	ND (0.004) (0.001)	0.001 J (0.001)	ND (0.005) (0.001)	ND (0.006) (0.001)	0.002 J (0.001)	0.420 (0.061)	ND (0.240) (0.048)	ND (0.240) (0.001)	0.340 J (0.094)
m, p-Xylenes	mg/kg	n/v	n/v	-	-	-	-	-	-	-	-	-	-	-
Methyl Tertiary Butyl Ether	mg/kg	8600 ^A	2 ^B	ND (0.006) (0.0005)	-	ND (0.004) (0.0005)	ND (0.004) (0.0005)	ND (0.005) (0.0005)	ND (0.006) (0.0006)	ND (0.006) (0.0006)	ND (0.300) (0.030)	ND (0.240) (0.024)	ND (0.240) (0.0005)	ND (0.470) (0.047)
Naphthalene	mg/kg	760 ^A	25 ^B	-	-	-	-	-	-	-	-	-	-	-
o-Xylene (1,2-Dimethylbenzene)	mg/kg	n/v	n/v	-	-	-	-	-	-	-	-	-	-	-
Toluene	mg/kg	10000 ^A	100 ^B	0.003 J (0.001)	-	ND (0.004) (0.001)	0.005 (0.001)	ND (0.005) (0.001)	ND (0.006) (0.001)	0.002 J (0.001)	ND (0.300) (0.061)	0.100 J (0.048)	0.150 J (0.001)	0.200 J (0.094)
1,2,4-Trimethylbenzene	mg/kg	560 ^A	35 ^B	ND (0.006) (0.001)	-	ND (0.004) (0.001)	0.001 J (0.001)	ND (0.005) (0.001)	ND (0.006) (0.001)	ND (0.006) (0.001)	ND (0.300) (0.061)	0.110 J (0.048)	ND (0.240) (0.001)	0.120 J (0.094)
1,3,5-Trimethylbenzene	mg/kg	10000 ^A	210 ^B	ND (0.006) (0.001)	-	ND (0.004) (0.001)	ND (0.004) (0.001)	ND (0.005) (0.001)	ND (0.006) (0.001)	ND (0.006) (0.001)	ND (0.300) (0.061)	0.082 J (0.048)	ND (0.240) (0.001)	ND (0.470) (0.094)
Xylenes, Total (Dimethylbenzene)	mg/kg	8000 ^A	1000 ^B	ND (0.006) (0.001)	-	ND (0.004) (0.001)	0.002 J (0.001)	ND (0.005) (0.001)	ND (0.006) (0.001)	ND (0.006) (0.001)	0.072 J (0.061)	0.100 J (0.048)	0.180 J (0.001)	0.210 J (0.094)
Semi-Volatile Organic Compounds			-	1		1	1							
Anthracene	mg/kg	190000 ^A	350 ^B	-	1.900 (0.003)	0.350 (0.003)	0.670 (0.003)	1.400 (0.008)	1.400 (0.009)	0.390 (0.009)	3.700 (0.019)	1.000 (0.007)	2.100 (0.003)	2.100 (0.010)
Benzo(a)Anthracene	mg/kg	130 ^A	130 ^B	-	1.700 (0.003)	3.300 (0.003)	1.400 (0.003)	1.300 (0.008)	1.200 (0.009)	1.400 (0.009)	7.400 (0.019)	2.400 (0.007)	3.400 (0.003)	1.300 (0.010)
Benzo(a)Pyrene	mg/kg	12 ^A	12 ⁸	-	1.700 (0.003)	4.200 (0.003)	1.900 (0.003)	1.400 (0.008)	1.300 (0.009)	1.400 (0.009)	7.800 (0.019)	2.200 (0.007)	4.100 (0.003)	1.700 (0.010)
Benzo(b)Fluoranthene	mg/kg	76 ^A	76 ⁸	-	2.300 (0.003)	6.700 (0.003)	2.300 (0.003)	1.700 (0.008)	1.500 (0.009)	1.700 (0.009)	9.800 (0.019)	3.000 (0.007)	5.300 (0.003)	1.800 (0.010)
Benzo(g,h,i)Perylene	mg/kg	190000 ^A	180 ⁸	-	1.600 (0.003)	4.800 (0.003)	1.500 (0.003)	1.500 (0.008)	1.400 (0.009)	0.880 (0.009)	5.100 (0.019)	1.400 (0.007)	3.300 (0.003)	1.800 (0.010)
Chrysene	mg/kg	760 ^A	230 ^B	-	2.000 (0.003)	4.900 (0.003)	1.900 (0.003)	1.400 (0.008)	1.300 (0.009)	1.400 (0.009)	7.700 (0.019)	2.300 (0.007)	4.900 (0.003)	1.500 (0.010)
Fluorene	mg/kg	130000 ^A	3800 ^B	-	5.100 (0.003)	0.081 (0.003)	0.480 (0.003)	0.610 (0.008)	0.590 (0.009)	0.200 (0.009)	2.200 (0.019)	0.530 (0.007)	1.600 (0.003)	1.900 (0.010)
Naphthalene	mg/kg	760 ^A	25 ⁸	-	9.300 (0.003)	0.120 (0.003)	2.100 (0.003)	8.300 (0.008)	7.700 (0.009)	1.500 (0.009)	3.300 (0.019)	1.100 (0.007)	3.500 (0.003)	12.000 (0.010)
Phenanthrene	mg/kg	190000 ^A	10000 ^B	-	9.600 (0.003)	2.400 (0.003)	1.600 (0.003)	3.200 (0.008)	3.300 (0.009)	1.100 (0.009)	13.000 (0.019)	3.200 (0.007)	5.400 (0.003)	4.800 (0.010)
Pyrene	mg/kg	96000 ^A	2200 ^B	-	2.400 (0.003)	8.100 (0.003)	2.400 (0.003)	1.600 (0.008)	1.600 (0.009)	1.400 (0.009)	13.000 (0.019)	3.900 (0.007)	7.900 (0.003)	2.400 (0.010)
Metals														
Lead	µg/L	n/v	n/v	-	-	-	-	-	-	-	-	-	-	-
Lead	mg/kg	2240 ^A	450 ^B	313 (0.510)	-	180 (0.510)	138 (0.510)	6690 ^{AB} (2.34)	2920 ^{AB} (2.34)	1370 ^B (2.81)	199 (0.503)	223 (2.43)	236 (0.510)	393 (0.593)
General Chemistry														
Moisture, Percent	%	n/v	n/v	12.5 (0.50)	29.2 (0.50)	9.4 (0.50)	8.6 (0.50)	20.3 (0.50)	22.8 (0.50)	24.9 (0.50)	12.6 (0.50)	9.6 (0.50)	12.5 (0.50)	34.9 (0.50)
pH, Laboratory Measured	S.U.	n/v	n/v	-	-	-	-	-	-	-	-	-	-	-
Solids, Percent	%	n/v	n/v	-	-	-	-	-	-	-	-	-	-	-
	,,,			1		1	1	1		1	1	1	1	1

MSC-PA	Pennsylvania Department of Environmental Protection - 2016 Medium-Specific
А	Concentrations (MSCs) for Organic/Inorganic Regulated Substances in Soil -
	Direct Contact - Non-Residential
	Surface Soil (0-2 ft). Lead value is the site-specific standard.
SHS-PA	Pennsylvania Department of Environmental Protection - Statewide Health
	Standards - 2016
В	PADEP Non-Residential Statewide Health Standards (0-2 ft bgs) (Unsaturated Soil)
<u>6.5</u> ^A	Concentration exceeds the indicated standard.
15.2	Measured concentration did not exceed the indicated standard.
ND (0.50)	Laboratory reporting limit was greater than the applicable standard.
ND (2.4) (1.2)	Analyte was not detected at a concentration greater than the laboratory reporting limit.
	The first value in parenthesis is the reporting limit. The method detection limit
	is shown in the second set of parenthesis.
n/v	No standard/guideline value in database - 2016 values have been populated for
	Evergreen Comprehensive List only. Criteria for other analytes may be available but
	may not be represented here.
-	Parameter not analyzed / not available.
D	Indicates an identified compound in an analysis that has been diluted. This flag
	alerts the data user to any differences between the concentrations reported in the
	two analyses.
J	Indicates an estimated value.
mg/кg	Minigrams per kilogram
Ind/r	Nicrograms per liter.
S.U.	Standard Units.
н 11	Feel Eurofine Lancastor Laboratorios Environmental
	Pace Applytical Songices Inc.
FIF	Face Analytical Services, inc. Mathod detection limit is shown in second set of parentheses
	method detection milit is shown in second set of parentineses.

Historical Soil Analytical Results Summary - AOI 6 (0-2 feet) Philadelphia Refinery Operations, a Series of Evergreen Resources Group, LLC

Sample Location		1	1		AOI6-BH-16-025		AOI6-BH-16-026	AOI6-BH-16-027	AOI6-BH-16-028	AOI6-BH-16-029	AOI6-BH-16-030	AOI6-BH-16-031	AOI6-BH-16-032	AOI6-BH-16-033	AOI6-BH-16-034
Sample Date				22-Apr-16	22-Apr-16	22-Apr-16	22-Apr-16	13-Apr-16	13-Apr-16	13-Apr-16	14-Apr-16	14-Apr-16	13-Apr-16	13-Apr-16	13-Apr-16
Sample ID				22-16-003	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
Sample Depth					1.5 - 1.9 ft	1.9 - 2.2 ft	0.4 - 1.3 ft	1.75 - 2 ft	0.25 - 0.5 ft	1.75 - 2 ft	1.5 - 2 ft	1 - 2 ft	1 - 2 ft	1.5 - 2 ft	1.5 - 1.75 ft
Sampling Company				GHD	GHD	GHD	GHD	GHD	GHD	GHD	GHD	GHD	GHD	GHD	GHD
Laboratory				LL	LL	LL	LL	LL	LL	LL	LL	LL	LL	LL	LL
Laboratory Work Order		А	в	1653975	1653975	1653975	1653975	1651423	1651423	1651423	1651423	1651423	1651423	1651423	1651423
Laboratory Sample ID	Units	MSC-PA	SHS-PA	8349812	8349810	8349811	8349813	8336830	8336829	8336827	8336847	8336849	8336838	8336836	8336834
Volatile Organic Compounds															
Benzene	mg/kg	290 ^A	0.5 ^B	2.600^B (0.021)	2.700^B (0.022)	1400.000 J^{AB} (2,400)	7.600 ^B (0.022)	ND (0.005) (0.0005)	0.460 (0.0005)	0.990 ^B (0.0005)	9.400 ^B (0.0005)	0.630 ^B (0.0005)	0.120 J (0.0005)	0.003 J (0.0005)	44.000 ^B (0.0005)
1.2-Dibromoethane (EDB)	ma/ka	3.7 ^A	0.005 ^B	ND (0.210) (0.043)	ND (0.220) (0.045)	ND (24.000) (4.800)	ND (0.220) (0.044)	ND (0.005) (0.001)	ND (0.260) (0.001)	ND (0.250) (0.001)	ND (4.400) (0.001)	ND (0.220) (0.001)	ND (0.220) (0.001)	ND (0.004) (0.001)	ND (5.000) (0.001)
1.2-Dichloroethane (EDC)	ma/ka	86 ^A	0.5 ^B	ND (0.210) (0.043)	ND (0.220) (0.045)	ND (24,000) (4,800)	ND (0.220) (0.044)	ND (0.005) (0.001)	ND (0.260) (0.001)	ND (0.250) (0.001)	ND (4.400) (0.001)	ND (0.220) (0.001)	ND (0.220) (0.001)	ND (0.004) (0.001)	ND (5.000) (0.001)
Ethylbenzene	ma/ka	890 ^A	70 ^B	0.110 J (0.043)	0.120 J (0.045)	61.000 J (4.800)	0.082 J (0.044)	ND (0.005) (0.001)	0.100 J (0.001)	0.300 (0.001)	ND (4.400) (0.001)	0.053 J (0.001)	0.051 J (0.001)	ND (0.004) (0.001)	ND (5.000) (0.001)
Isopropylbenzene (Cumene)	mg/kg	10000 ^A	2500 ^B	2.600 (0.043)	2.900 (0.045)	2200.000 J (48.000)	1.800 (0.044)	ND (0.005) (0.001)	0.220 J (0.001)	1.700 (0.001)	18.000 (0.001)	4.000 (0.001)	1.700 (0.001)	0.019 (0.001)	230.000 (0.001)
m, p-Xylenes	mg/kg	n/v	n/v	-	-	-	-	-	-	-	-	-	-	-	-
Methyl Tertiary Butyl Ether	mg/kg	8600 ^A	2 ^B	ND (0.210) (0.021)	ND (0.220) (0.022)	ND (24.000) (2.400)	ND (0.220) (0.022)	ND (0.005) (0.0005)	ND (0.260) (0.0005)	ND (0.250) (0.0005)	ND (4.400) (0.0005)	ND (0.220) (0.0005)	ND (0.220) (0.0005)	ND (0.004) (0.0005)	ND (5.000) (0.0005)
Naphthalene	mg/kg	760 ^A	25 ^B	-	-	-	-	-	-	-	-	-	-	-	-
o-Xylene (1,2-Dimethylbenzene)	mg/kg	n/v	n/v	-	-	-	-	-	-	-	-	-	-	-	-
Toluene	mg/kg	10000 ^A	100 ^B	0.750 (0.043)	0.900 (0.045)	640.000 J^B (4.800)	ND (0.220) (0.044)	ND (0.005) (0.001)	0.450 (0.001)	0.370 (0.001)	ND (4.400) (0.001)	ND (0.220) (0.001)	0.091 J (0.001)	ND (0.004) (0.001)	38.000 (0.001)
1,2,4-Trimethylbenzene	mg/kg	560 ^A	35 ^B	0.096 J (0.043)	0.095 J (0.045)	50.000 J^B (4.800)	ND (0.220) (0.044)	ND (0.005) (0.001)	0.057 J (0.001)	0.250 J (0.001)	ND (4.400) (0.001)	ND (0.220) (0.001)	ND (0.220) (0.001)	ND (0.004) (0.001)	ND (5.000) (0.001)
1,3,5-Trimethylbenzene	mg/kg	10000 ^A	210 ^B	ND (0.210) (0.043)	0.045 J (0.045)	18.000 J (4.800)	ND (0.220) (0.044)	ND (0.005) (0.001)	ND (0.260) (0.001)	0.095 J (0.001)	ND (4.400) (0.001)	ND (0.220) (0.001)	ND (0.220) (0.001)	ND (0.004) (0.001)	ND (5.000) (0.001)
Xylenes, Total (Dimethylbenzene)	mg/kg	8000 ^A	1000 ^B	0.480 (0.043)	0.530 (0.045)	340.000 J (4.800)	0.092 J (0.044)	ND (0.005) (0.001)	0.340 (0.001)	0.600 (0.001)	ND (4.400) (0.001)	0.083 J (0.001)	0.130 J (0.001)	ND (0.004) (0.001)	2.100 J (0.001)
Semi-Volatile Organic Compounds													•		
Anthracene	mg/kg	190000 ^A	350 ^B	4.900 (0.018)	4.400 (0.018)	1.200 (0.004)	0.710 (0.015)	0.007 J (0.003)	0.390 (0.003)	2.900 (0.003)	0.037 J (0.003)	ND (0.019) (0.003)	0.008 J (0.003)	0.030 J (0.003)	0.027 (0.003)
Benzo(a)Anthracene	mg/kg	130 ^A	130 ^B	3.800 (0.018)	3.200 (0.018)	1.100 (0.004)	1.300 (0.015)	0.011 J (0.003)	0.910 (0.003)	6.100 (0.003)	0.094 J (0.003)	0.004 J (0.003)	0.032 (0.003)	0.120 (0.003)	0.090 (0.003)
Benzo(a)Pyrene	mg/kg	12 ^A	12 ^B	2.700 (0.018)	2.300 (0.018)	0.690 (0.004)	1.300 (0.015)	0.010 J (0.003)	1.200 (0.003)	6.200 (0.003)	0.120 (0.003)	0.006 J (0.003)	0.036 (0.003)	0.130 (0.003)	0.092 (0.003)
Benzo(b)Fluoranthene	mg/kg	76 ^A	76 ^B	3.200 (0.018)	2.800 (0.018)	1.000 (0.004)	0.890 (0.015)	0.016 J (0.003)	1.600 (0.003)	8.700 (0.003)	0.180 (0.003)	0.007 J (0.003)	0.049 (0.003)	0.180 (0.003)	0.130 (0.003)
Benzo(g,h,i)Perylene	mg/kg	190000 ^A	180 ^B	1.000 (0.018)	0.930 (0.018)	0.330 (0.004)	0.720 (0.015)	0.009 J (0.003)	1.100 (0.003)	4.500 (0.003)	0.130 (0.003)	0.005 J (0.003)	0.032 (0.003)	0.130 (0.003)	0.083 (0.003)
Chrysene	mg/kg	760 ^A	230 ^B	3.200 (0.018)	2.800 (0.018)	0.970 (0.004)	2.200 (0.015)	0.021 J (0.003)	1.000 (0.003)	6.100 (0.003)	0.098 (0.003)	0.005 J (0.003)	0.038 (0.003)	0.140 (0.003)	0.110 (0.003)
Fluorene	mg/kg	130000 ^A	3800 ^B	4.400 (0.018)	4.200 (0.018)	0.850 (0.004)	0.510 (0.015)	0.009 J (0.003)	0.160 (0.003)	3.200 (0.003)	ND (0.095) (0.003)	ND (0.019) (0.003)	ND (0.018) (0.003)	ND (0.092) (0.003)	0.017 J (0.003)
Naphthalene	mg/kg	760 ^A	25 ^B	0.480 (0.018)	0.460 (0.018)	2.000 (0.004)	1.100 (0.015)	0.010 J (0.003)	1.200 (0.003)	3.100 (0.003)	0.024 J (0.003)	ND (0.019) (0.003)	ND (0.018) (0.003)	ND (0.092) (0.003)	0.070 (0.003)
Phenanthrene	mg/kg	190000 ^A	10000 ^B	14.000 (0.018)	13.000 (0.018)	4.100 (0.004)	1.900 (0.015)	0.02 J (0.003)	1.100 (0.003)	11.000 (0.003)	0.054 J (0.003)	0.004 J (0.003)	0.025 (0.003)	0.058 J (0.003)	0.087 (0.003)
Pyrene	mg/kg	96000 ^A	2200 ^B	6.600 (0.018)	5.600 (0.018)	2.100 (0.004)	2.100 (0.015)	0.032 (0.003)	1.200 (0.003)	11.000 (0.003)	0.130 (0.003)	0.007 J (0.003)	0.057 (0.003)	0.190 (0.003)	0.160 (0.003)
Metals															
Lead	μg/L	n/v	n/v	-	-	-	-	-	-	-	-	-	-	-	-
Lead	mg/kg	2240 ^A	450 ^B	10.2 (0.480)	10.3 (0.465)	64.3 (0.382)	61.8 (0.405)	20.0 (0.510)	159 (0.510)	138 (0.510)	66.0 (0.510)	5.63 (0.510)	10.3 (0.510)	12.8 (0.510)	14.0 (0.510)
General Chemistry															
Moisture, Percent	%	n/v	n/v	9.1 (0.50)	8.7 (0.50)	9.1 (0.50)	8.8 (0.50)	24.8 (0.50)	8.7 (0.50)	12.0 (0.50)	11.4 (0.50)	10.4 (0.50)	8.1 (0.50)	8.4 (0.50)	13.2 (0.50)
pH, Laboratory Measured	S.U.	n/v	n/v	-	-	-	-	-	-	-	-	-	-	-	-
Solids, Percent	%	n/v	n/v	-	-	-	-	-	-	-	-	-	-	-	-

MSC-PA	Pennsylvania Department of Environmental Protection - 2016 Medium-Specific
A	Concentrations (MSCs) for Organic/Inorganic Regulated Substances in Soil -
	Direct Contact - Non-Residential
	Surface Soil (0-2 ft). Lead value is the site-specific standard.
SHS-PA	Pennsylvania Department of Environmental Protection - Statewide Health
	Standards - 2016
В	PADEP Non-Residential Statewide Health Standards (0-2 ft bgs) (Unsaturated Soil)
6.5 ^A	Concentration exceeds the indicated standard.
15.2	Measured concentration did not exceed the indicated standard.
ND (0.50)	Laboratory reporting limit was greater than the applicable standard.
ND (2.4) (1.2)	Analyte was not detected at a concentration greater than the laboratory reporting limit.
	The first value in parenthesis is the reporting limit. The method detection limit
	is shown in the second set of parenthesis.
n/v	No standard/guideline value in database - 2016 values have been populated for
	Evergreen Comprehensive List only. Criteria for other analytes may be available but
	may not be represented here.
-	Parameter not analyzed / not available.
D	Indicates an identified compound in an analysis that has been diluted. This flag
	alerts the data user to any differences between the concentrations reported in the
	two analyses.
J	Indicates an estimated value.
mg/kg	milligrams per kilogram
µg/L	Micrograms per liter.
S.U.	Standard Units.
ft	Feet
LL	Eurofins Lancaster Laboratories Environmental
PIP	Pace Analytical Services, Inc.
	Method detection limit is shown in second set of parentheses.

Historical Soil Analytical Results Summary - AOI 6 (0-2 feet) Philadelphia Refinery Operations, a Series of Evergreen Resources Group, LLC

Sample Location				AOI6-BH-16-035	AOI6-BH-16-036	AOI6-BI	H-16-037	AOI6-BH-16-038	AOI6-BH-16-039	AOI6-BI	H-16-040	AOI6-B	H-16-041	AOI6-BH-16-043
Sample Date				13-Apr-16	14-Apr-16	14-Apr-16	14-Apr-16	14-Apr-16	11-Apr-16	7-Apr-16	7-Apr-16	7-Apr-16	7-Apr-16	7-Apr-16
Sample ID				AOI6-BH-16-035-0-2-	AOI6-BH-16-036-0-2-	AOI6-BH-16-037-0-2-	AOI6-BH-16-037-2-4-	AOI6-BH-16-038-0-2-	AOI6-BH-16-039-0-2-	AOI6-BH-16-040-0-2-	AOI6-BH-16-040-2-4-	AOI6-BH-16-041-0-2-	AOI6-BH-16-041-2-4-	AOI6-BH-16-43-0-2-
Sample ID				SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
Sample Depth				1.5 - 2 ft	1.25 - 1.75 ft	1 - 1.75 ft	1.75 - 2.25 ft	1.5 - 1.75 ft	0.5 - 0.6 ft	0.5 - 0.75 ft	1.75 - 2 ft	0.75 - 1.25 ft	1.75 - 2.25 ft	0.5 - 1 ft
Sampling Company				GHD	GHD	GHD	GHD	GHD	GHD	GHD	GHD	GHD	GHD	GHD
Laboratory				LL	LL	LL	LL	LL	LL	LL	LL	LL	LL	LL
Laboratory Work Order		Α	В	1651423	1651423	1651423	1651423	1651423	1649742	1648963	1648963	1648963	1648963	1648963
Laboratory Sample ID	Units	MSC-PA	SHS-PA	8336832	8336841	8336843	8336844	8336845	8329547	8325909	8325914	8325916	8325912	8325911
Volatile Organic Compounds														
Benzene	mg/kg	290 ^A	0.5 ^B	0.001 J (0.0005)	0.550 J^B (0.0005)	710.000 AB (0.0005)	850.000 AB (0.0005)	8.800^B (0.0005)	ND (0.005) (0.0005)	1.100 J^B (0.0005)	1.400 J^B (0.0005)	-	4.300 ^B (0.0005)	0.810^B (0.0005)
1,2-Dibromoethane (EDB)	mg/kg	3.7 ^A	0.005 ^B	ND (0.004) (0.001)	ND (4.500) (0.001)	ND (94.000) (0.001)	ND (97.000) (0.001)	ND (4.800) (0.001)	ND (0.005) (0.001)	ND (1.100) (0.001)	ND (4.900) (0.001)	-	ND (3.200) (0.001)	ND (0.220) (0.001)
1,2-Dichloroethane (EDC)	mg/kg	86 ^A	0.5 ^B	ND (0.004) (0.001)	ND (4.500) (0.001)	ND (94.000) (0.001)	ND (97.000) (0.001)	ND (4.800) (0.001)	ND (0.005) (0.001)	ND (1.100) (0.001)	ND (4.900) (0.001)	-	ND (3.200) (0.001)	ND (0.220) (0.001)
Ethylbenzene	mg/kg	890 ^A	70 ^B	ND (0.004) (0.001)	ND (4.500) (0.001)	ND (94.000) (0.001)	ND (97.000) (0.001)	ND (4.800) (0.001)	ND (0.005) (0.001)	0.760 J (0.001)	13.000 (0.001)	-	17.000 (0.001)	0.064 J (0.001)
Isopropylbenzene (Cumene)	mg/kg	10000 ^A	2500 ^B	0.021 (0.001)	59.000 (0.001)	6500.000 ^B (0.001)	8500.000 ^B (0.001)	14.000 (0.001)	ND (0.005) (0.001)	1.200 (0.001)	6.400 (0.001)	-	6.400 (0.001)	0.055 J (0.001)
m, p-Xylenes	mg/kg	n/v	n/v	-	-	-	-	-	-	-	-	-	-	-
Methyl Tertiary Butyl Ether	mg/kg	8600 ^A	2 ^B	ND (0.004) (0.0005)	ND (4.500) (0.0005)	ND (94.000) (0.0005)	ND (97.000) (0.0005)	ND (4.800) (0.0005)	ND (0.005) (0.0005)	ND (1.100) (0.0005)	ND (4.900) (0.0005)	-	ND (3.200) (0.0005)	ND (0.220) (0.0005)
Naphthalene	mg/kg	760 ^A	25 ^B	-	-	-	-	-	-	-	-	-	-	-
o-Xylene (1,2-Dimethylbenzene)	mg/kg	n/v	n/v	-	-	-	-	-	-	-	-	-	-	-
Toluene	mg/kg	10000 ^A	100 ^B	ND (0.004) (0.001)	ND (4.500) (0.001)	<u>840.000 ^B</u> (0.001)	<u>1200.000 ^B</u> (0.001)	ND (4.800) (0.001)	ND (0.005) (0.001)	ND (1.100) (0.001)	ND (4.900) (0.001)	-	2.500 J (0.001)	0.190 J (0.001)
1,2,4-Trimethylbenzene	mg/kg	560 ^A	35 ^B	ND (0.004) (0.001)	ND (4.500) (0.001)	ND (94.000) (0.001)	ND (97.000) (0.001)	ND (4.800) (0.001)	ND (0.005) (0.001)	0.330 J (0.001)	8.100 (0.001)	-	<u>47.000 ^В</u> (0.001)	0.045 J (0.001)
1,3,5-Trimethylbenzene	mg/kg	10000 ^A	210 ^B	ND (0.004) (0.001)	ND (4.500) (0.001)	ND (94.000) (0.001)	ND (97.000) (0.001)	ND (4.800) (0.001)	ND (0.005) (0.001)	0.380 J (0.001)	5.800 (0.001)	-	22.000 (0.001)	0.046 J (0.001)
Xylenes, Total (Dimethylbenzene)	mg/kg	8000 ^A	1000 ^B	ND (0.004) (0.001)	ND (4.500) (0.001)	26.000 J (0.001)	27.000 J (0.001)	ND (4.800) (0.001)	ND (0.005) (0.001)	0.880 J (0.001)	2.700 J (0.001)	-	39.000 (0.001)	0.330 (0.001)
Semi-Volatile Organic Compounds									•					•
Anthracene	mg/kg	190000 ^A	350 ^B	ND (0.019) (0.003)	0.064 J (0.003)	0.068 J (0.003)	0.110 (0.003)	0.073 J (0.003)	0.005 J (0.003)	1.700 (0.003)	5.900 (0.003)	6.200 (0.003)	2.700 (0.003)	0.260 (0.003)
Benzo(a)Anthracene	mg/kg	130 ^A	130 ^B	0.008 J (0.003)	0.350 (0.003)	0.110 (0.003)	0.050 (0.003)	0.190 (0.003)	0.019 J (0.003)	3.100 (0.003)	5.000 (0.003)	12.000 (0.003)	5.800 (0.003)	0.710 (0.003)
Benzo(a)Pyrene	mg/kg	12 ^A	12 ^B	0.009 J (0.003)	0.300 (0.003)	0.160 (0.003)	0.074 (0.003)	0.220 (0.003)	0.019 J (0.003)	2.200 (0.003)	4.900 (0.003)	8.000 (0.003)	5.300 (0.003)	1.100 (0.003)
Benzo(b)Fluoranthene	mg/kg	76 ^A	76 ⁸	0.014 J (0.003)	0.570 (0.003)	0.240 (0.003)	0.110 (0.003)	0.330 (0.003)	0.033 (0.003)	3.200 (0.003)	6.300 (0.003)	14.000 (0.003)	7.800 (0.003)	1.500 (0.003)
Benzo(g,h,i)Perylene	mg/kg	190000 ^A	180 ⁸	0.010 J (0.003)	0.270 (0.003)	0.190 (0.003)	0.070 (0.003)	0.200 (0.003)	0.015 J (0.003)	1.200 (0.003)	3.100 (0.003)	5.100 (0.003)	3.900 (0.003)	1.300 (0.003)
Chrysene	mg/kg	760 ^A	230 ^B	0.010 J (0.003)	0.410 (0.003)	0.140 (0.003)	0.053 (0.003)	0.220 (0.003)	0.025 (0.003)	2.900 (0.003)	5.100 (0.003)	12.000 (0.003)	5.600 (0.003)	0.780 (0.003)
Fluorene	mg/kg	130000 ^A	3800 ^B	ND (0.019) (0.003)	0.035 J (0.003)	0.049 J (0.003)	0.033 (0.003)	0.036 J (0.003)	ND (0.023) (0.003)	1.600 (0.003)	6.400 (0.003)	6.800 (0.003)	2.800 (0.003)	0.050 J (0.003)
Naphthalene	mg/kg	760 ^A	25 ^B	ND (0.019) (0.003)	0.099 (0.003)	1.300 (0.003)	1.400 (0.003)	0.093 J (0.003)	0.006 J (0.003)	3.200 (0.003)	<u>36.000 ^B (0.003)</u>	22.000 (0.003)	12.000 (0.003)	0.270 (0.003)
Phenanthrene	mg/kg	190000 ^A	10000 ^B	0.010 J (0.003)	0.260 (0.003)	0.180 (0.003)	3.200 (0.003)	0.180 (0.003)	0.016 J (0.003)	6.700 (0.003)	21.000 (0.003)	25.000 (0.003)	13.000 (0.003)	0.420 (0.003)
Pyrene	mg/kg	96000 ^A	2200 ^B	0.015 J (0.003)	0.510 (0.003)	0.220 (0.003)	0.084 (0.003)	0.280 (0.003)	0.033 (0.003)	6.400 (0.003)	9.700 (0.003)	21.000 (0.003)	11.000 (0.003)	0.860 (0.003)
Metals														
Lead	μg/L	n/v	n/v	-	-	-	-	-	-	-	-	-	-	-
Lead	mg/kg	2240 ^A	450 ^B	10.0 (0.510)	60.8 (0.510)	100 (0.510)	105 (0.510)	33.1 (0.510)	7.22 (0.510)	249 (0.510)	142 (0.510)	3820 ^{AB} (0.510)	196 (0.510)	331 (0.510)
General Chemistry														
Moisture, Percent	%	n/v	n/v	10.7 (0.50)	10.5 (0.50)	15.1 (0.50)	14.4 (0.50)	10.1 (0.50)	24.7 (0.50)	10.6 (0.50)	8.4 (0.50)	16.5 (0.50)	17.9 (0.50)	8.0 (0.50)
pH, Laboratory Measured	S.U.	n/v	n/v	-	-	-	-	-	-	8.15 (0.0100)	8.09 (0.0100)	7.89 (0.0100)	7.86 (0.0100)	9.15 (0.0100)
Solids, Percent	%	n/v	n/v	-	-	-	-	-	-	-	-	-	-	· · ·

MSC-PA	Pennsylvania Department of Environmental Protection - 2016 Medium-Specific
A	Concentrations (MSCs) for Organic/Inorganic Regulated Substances in Soil -
	Direct Contact - Non-Residential
	Surface Soil (0-2 ft). Lead value is the site-specific standard.
SHS-PA	Pennsylvania Department of Environmental Protection - Statewide Health
	Standards - 2016
В	PADEP Non-Residential Statewide Health Standards (0-2 ft bgs) (Unsaturated Soil)
<u>6.5</u> ^A	Concentration exceeds the indicated standard.
15.2	Measured concentration did not exceed the indicated standard.
ND (0.50)	Laboratory reporting limit was greater than the applicable standard.
ND (2.4) (1.2)	Analyte was not detected at a concentration greater than the laboratory reporting limit.
	The first value in parenthesis is the reporting limit. The method detection limit
	is shown in the second set of parenthesis.
n/v	No standard/guideline value in database - 2016 values have been populated for
	Evergreen Comprehensive List only. Criteria for other analytes may be available but
	may not be represented here.
-	Parameter not analyzed / not available.
D	Indicates an identified compound in an analysis that has been diluted. This flag
	alerts the data user to any differences between the concentrations reported in the
	two analyses.
J	
mg/kg	milligrams per kilogram
Iµg/∟	Micrograms per liter.
S.U.	Standard Units.
π	Feet
PIP	Pace Analytical Services, Inc.
	method detection limit is shown in second set of parentneses.

Historical Soil Analytical Results Summary - AOI 6 (0-2 feet) Philadelphia Refinery Operations, a Series of Evergreen Resources Group, LLC

Sample Location		1	1 1	AST-25	50-SS-1	AST-25	50-SS-2	AST-2	i0-SS-3	AST-25	0-SS-4	AST-25	0-SS-5	AST-2	50-SS-6
Sample Date				15-May-07											
Sample ID				AST-250-SS-1	AST-250-SS-1	AST-250-SS-2	AST-250-SS-2	AST-250-SS-3	AST-250-SS-3	AST-250-SS-4	AST-250-SS-4	AST-250-SS-5	AST-250-SS-5	AST-250-SS-6	AST-250-SS-6
Sample Depth Sampling Company Laboratory				0 - 0.5 ft UNKNOWN PIP											
Laboratory Work Order		A	В	073770	075326	073770	075326	073770	075326	073770	075326	073770	075326	073770	075326
Laboratory Sample ID	Units	MSC-PA	SHS-PA	0705-2798	0707-0961	0705-2799	0707-0962	0705-2800	0707-0963	0705-2802	0707-0964	0705-2801	0707-0965	0705-2803	0707-0966
Volatile Organic Compounds														I	
Benzene	mg/kg	290 ^A	0.5 ^B	ND (0.081) D ()	-	ND (0.097) D ()	-	ND (0.088) D ()	-	ND (0.100) D ()	-	ND (0.110) D ()	-	ND (0.069) D ()	-
1,2-Dibromoethane (EDB)	mg/kg	3.7 ^A	0.005 ^B	ND (0.081) D ()	-	ND (0.097) D ()	-	ND (0.088) D ()	-	ND (0.100) D ()	-	ND (0.110) D ()	-	ND (0.069) D ()	-
1,2-Dichloroethane (EDC)	mg/kg	86 ^A	0.5 ^B	ND (0.081) D ()	-	ND (0.097) D ()	-	ND (0.088) D ()	-	ND (0.100) D ()	-	ND (0.110) D ()	-	ND (0.069) D ()	-
Ethylbenzene	mg/kg	890 ^A	70 ^B	ND (0.081) D ()	-	ND (0.097) D ()	-	ND (0.088) D ()	-	ND (0.100) D ()	-	ND (0.110) D ()	-	ND (0.069) D ()	-
Isopropylbenzene (Cumene)	mg/kg	10000 ^A	2500 ^B	ND (0.081) D ()	-	ND (0.097) D ()	-	ND (0.088) D ()	-	0.120 D ()	-	ND (0.110) D ()	-	ND (0.069) D ()	-
m, p-Xylenes	mg/kg	n/v	n/v	-	-	-	-	-	-	-	-	-	-	-	-
Methyl Tertiary Butyl Ether	mg/kg	8600 ^A	2 ^B	-	-	-	-	-	-	-	-	-	-	-	-
Naphthalene	mg/kg	760 ^A	25 ^B	0.052 J D ()	-	0.067 J D ()	-	0.310 D ()	-	4.2 D ()	-	0.081 J D ()	-	0.065 J D ()	-
o-Xylene (1,2-Dimethylbenzene)	mg/kg	n/v	n/v	-	-	-	-	-	-	-	-	-	-	-	-
Toluene	mg/kg	10000 ^A	100 ^B	ND (0.081) D ()	-	ND (0.097) D ()	-	ND (0.088) D ()	-	ND (0.100) D ()	-	ND (0.110) D ()	-	ND (0.069) D ()	-
1,2,4-Trimethylbenzene	mg/kg	560 ^A	35 ^B	-	-	-	-	-	-	-	-	-	-	-	-
1,3,5-Trimethylbenzene	mg/kg	10000 ^A	210 ^B	-	-	-	-	-	-	-	-	-	-	-	-
Xylenes, Total (Dimethylbenzene)	mg/kg	8000 ^A	1000 ^B	ND (0.081) D ()	-	ND (0.097) D ()	-	0.098 D ()	-	0.870 D ()	-	ND (0.110) D ()	-	ND (0.069) D ()	-
Semi-Volatile Organic Compounds															
Anthracene	mg/kg	190000 ^A	350 ^B	-	-	-	-	-	-	-	-	-	-	-	-
Benzo(a)Anthracene	mg/kg	130 ^A	130 ^B	-	-	-	-	-	-	-	-	-	-	-	-
Benzo(a)Pyrene	mg/kg	12 ^A	12 ^B	-	-	-	-	-	-	-	-	-	-	-	-
Benzo(b)Fluoranthene	mg/kg	76 ^A	76 ^B	-	-	-	-	-	-	-	-	-	-	-	-
Benzo(g,h,i)Perylene	mg/kg	190000 ^A	180 ^B	-	-	-	-	-	-	-	-	-	-	-	-
Chrysene	mg/kg	760 ^A	230 ^B	-	-	-	-	-	-	-	-	-	-	-	-
Fluorene	mg/kg	130000 ^A	3800 ^B	ND (0.350) ()	ND (0.350) ()	ND (0.350) ()	ND (0.350) ()	ND (0.370) ()	ND (0.350) ()	ND (0.350) ()	0.620 ()	ND (0.360) ()	ND (0.370) ()	ND (0.350) ()	ND (0.380) ()
Naphthalene	mg/kg	760 ^A	25 ^B	-	-	-	-	-	-	-	-	-	-	-	-
Phenanthrene	mg/kg	190000 ^A	10000 ^B	-	-	-	-	-	-	-	-	-	-	-	-
Pyrene	mg/kg	96000 ^A	2200 ^B	-	-	-	-	-	-	-	-	-	-	-	-
Metals								·						·	
Lead	μg/L	n/v	n/v	-	-	-	-	-	-	-	-	-	-	-	-
Lead	mg/kg	2240 ^A	450 ^B	-	940 ^B ()	-	30 ()	-	100 ()	-	2.8 ()	-	190 ()	-	1500^B ()
General Chemistry															
Moisture, Percent	%	n/v	n/v	-	-	-	-	-	-	-	-	-	-	-	-
pH, Laboratory Measured	S.U.	n/v	n/v	-	-	-	-	-	-	-	-	-	-	-	-
Solids, Percent	%	n/v	n/v		-	-	-	-		-	-	-	- <u>-</u>	-	-

Notes:

MSC-PA	Pennsylvania Department of Environmental Protection - 2016 Medium-Specific
A	Concentrations (MSCs) for Organic/Inorganic Regulated Substances in Soil -
	Direct Contact - Non-Residential
	Surface Soil (0-2 ft). Lead value is the site-specific standard.
SHS-PA	Pennsylvania Department of Environmental Protection - Statewide Health Standards - 2016
В	PADEP Non-Residential Statewide Health Standards (0-2 ft bgs) (Unsaturated Soil)
6.5 ^A	Concentration exceeds the indicated standard.
15.2	Measured concentration did not exceed the indicated standard.
ND (0.50)	Laboratory reporting limit was greater than the applicable standard.
ND (2.4) (1.2)	Analyte was not detected at a concentration greater than the laboratory reporting limit.
	The first value in parenthesis is the reporting limit. The method detection limit
	is shown in the second set of parenthesis.
n/v	No standard/guideline value in database - 2016 values have been populated for
	Evergreen Comprehensive List only. Criteria for other analytes may be available but
	may not be represented here.
-	Parameter not analyzed / not available.
D	Indicates an identified compound in an analysis that has been diluted. This flag
	alerts the data user to any differences between the concentrations reported in the
	two analyses.
J	Indicates an estimated value.
mg/kg	milligrams per kilogram
µg/L	Micrograms per liter.
S.U.	Standard Units.
ft	Feet
LL	Eurofins Lancaster Laboratories Environmental
PIP	Pace Analytical Services, Inc.
	Method detection limit is shown in second set of parentheses.

Historical Soil Analytical Results Summary - AOI 6 (0-2 feet) Philadelphia Refinery Operations, a Series of Evergreen Resources Group, LLC

Sample Location		1	1	AST-25	0-SS-7	AST-25	0-SS-8	B-148	B-149	B-150	B-151	B-152	B-153	B-154
Sample Date				15-May-07	15-May-07	15-May-07	15-May-07	17-Sep-02	17-Sep-02	16-Sep-02	1-Mar-06	1-Mar-06	1-Mar-06	1-Mar-06
Sample ID				AST-250-SS-7	AST-250-SS-7	AST-250-SS-8	AST-250-SS-8	MW-1(1-1.5)	MW-2(1-1.5)	MW-3(1-1.5)	BH-B151-030106-0.5-1	BH-B152-030106-1.5-2	BH-B153-030106-1.5-2	BH-B154-030106-1-1.5
Sample Depth Sampling Company Laboratory				0 - 0.5 ft UNKNOWN PIP	1 - 1.5 ft UNKNOWN LL	1 - 1.5 ft UNKNOWN LL	1 - 1.5 ft UNKNOWN LL	0.5 - 1 ft UNKNOWN LL	1.5 - 2 ft UNKNOWN LL	1.5 - 2 ft UNKNOWN LL	1 - 1.5 ft UNKNOWN LL			
Laboratory Work Order		Α	в	073770	075326	073770	075326	823334	823334	823334	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN
Laboratory Sample ID	Units	MSC-PA	SHS-PA	0705-2804	0707-0967	0705-2805	0707-0968	3901264	3901265	3901266	4720664	4720663	4720662	4720665
Volatile Organic Compounds														
Benzene	mg/kg	290 ^A	0.5 ^B	ND (0.078) D ()	-	ND (0.092) D ()	-	2.6 ^B (0.001)	6.5 ^B (0.001)	610 ^{AB} (0.001)	ND (0.200) (0.018)	0.460 (0.017)	ND (0.420) (0.025)	3.6 ^B (0.013)
1,2-Dibromoethane (EDB)	mg/kg	3.7 ^A	0.005 ^B	ND (0.078) D ()	-	ND (0.092) D ()	-	-	-	-	ND (0.200) (0.036)	ND (0.200) (0.033)	ND (0.420) (0.05)	ND (0.160) (0.027)
1,2-Dichloroethane (EDC)	mg/kg	86 ^A	0.5 ^B	ND (0.078) D ()	-	ND (0.092) D ()	-	-	-	-	ND (0.200) (0.036)	ND (0.200) (0.033)	ND (0.420) (0.05)	ND (0.160) (0.027)
Ethylbenzene	mg/kg	890 ^A	70 ^B	ND (0.078) D ()	-	ND (0.092) D ()	-	3.7 (0.001)	0.520 (0.001)	14 (0.001)	ND (0.200) (0.036)	0.240 (0.033)	ND (0.420) (0.05)	1.8 (0.027)
Isopropylbenzene (Cumene)	mg/kg	10000 ^A	2500 ^B	ND (0.078) D ()	-	ND (0.092) D ()	-	60 (0.001)	190 (0.001)	270 (0.001)	ND (0.200) (0.036)	20 (0.33)	ND (0.420) (0.05)	1.8 (0.027)
m, p-Xylenes	mg/kg	n/v	n/v	-	-	-	-	-	-	-	-	-	-	-
Methyl Tertiary Butyl Ether	mg/kg	8600 ^A	2 ^B	-	-	-	-	ND (0.310) (0.001)	ND (0.330) (0.001)	ND (1.1) (0.001)	ND (0.200) (0.018)	ND (0.200) (0.017)	ND (0.420) (0.025)	ND (0.160) (0.013)
Naphthalene	mg/kg	760 ^A	25 ^B	0.055 J D ()	-	0.075 J D ()	-	1.8 (0.001)	1.9 (0.001)	4.8 (0.001)	-	-	-	-
o-Xylene (1,2-Dimethylbenzene)	mg/kg	n/v	n/v	-	-	-	-	-	-	-	-	-	-	-
Toluene	mg/kg	10000 ^A	100 ^B	ND (0.078) D ()	-	ND (0.092) D ()	-	1.6 (0.001)	ND (0.330) (0.001)	300 ^B (0.001)	ND (0.200) (0.036)	ND (0.200) (0.033)	ND (0.420) (0.05)	0.240 (0.027)
1,2,4-Trimethylbenzene	mg/kg	560 ^A	35 ^B	-	-	-	-	-	-	-	-	-	-	-
1,3,5-Trimethylbenzene	mg/kg	10000 ^A	210 ^B	-	-	-	-	-	-	-	-	-	-	-
Xylenes, Total (Dimethylbenzene)	mg/kg	8000 ^A	1000 ^B	ND (0.078) D ()	-	ND (0.092) D ()	-	3.5 (0.001)	0.860 (0.001)	67 (0.001)	ND (0.200) (0.036)	ND (0.200) (0.033)	ND (0.420) (0.05)	1.2 (0.027)
Semi-Volatile Organic Compounds	<u>.</u>										•	·		•
Anthracene	mg/kg	190000 ^A	350 ^B	-	-	-	-	-	-	-	ND (0.920) (0.17)	ND (3.0) (0.5)	ND (0.280) (0.033)	6.2 (1)
Benzo(a)Anthracene	mg/kg	130 ^A	130 ^B	-	-	-	-	-	-	-	2.0 (0.17)	ND (3.0) (0.5)	ND (0.280) (0.033)	5.9 (1)
Benzo(a)Pyrene	mg/kg	12 ^A	12 ^B	-	-	-	-	-	-	-	1.7 (0.17)	ND (3.0) (0.5)	ND (0.280) (0.033)	ND (5.8) (1)
Benzo(b)Fluoranthene	mg/kg	76 ^A	76 ^B	-	-	-	-	-	-	-	1.6 (0.17)	ND (3.0) (0.5)	ND (0.280) (0.033)	ND (5.8) (1)
Benzo(g,h,i)Perylene	mg/kg	190000 ^A	180 ^B	-	-	-	-	-	-	-	ND (0.920) (0.17)	ND (3.0) (0.5)	ND (0.280) (0.033)	ND (5.8) (1)
Chrysene	mg/kg	760 ^A	230 ^B	-	-	-	-	-	-	-	2.4 (0.17)	ND (3.0) (0.5)	ND (0.280) (0.033)	7.8 (1)
Fluorene	mg/kg	130000 ^A	3800 ^B	ND (0.350) ()	ND (0.390) ()	ND (0.360) ()	ND (0.350) ()	-	-	-	1.1 (0.17)	ND (3.0) (0.5)	4.2 (0.033)	7.8 (1)
Naphthalene	mg/kg	760 ^A	25 ^B	-	-	-	-	-	-	-	8.6 (0.17)	ND (3.0) (0.5)	ND (0.280) (0.033)	6.8 (1)
Phenanthrene	mg/kg	190000 ^A	10000 ^B	-	-	-	-	-	-	-	2.9 (0.17)	ND (3.0) (0.5)	ND (0.280) (0.033)	31 (1)
Pyrene	mg/kg	96000 ^A	2200 ^B	-	-	-	-	-	-	-	5.3 (0.17)	ND (3.0) (0.5)	ND (0.280) (0.033)	15 (1)
Metals														
Lead	µg/L	n/v	n/v	-	-	-	-	-	-	-	-	-	-	-
Lead	mg/kg	2240 ^A	450 ^B	-	140 ()	-	13 ()	-	-	-	198 (3.75)	27 (0.765)	66.3 (0.78)	410 (0.772)
General Chemistry														
Moisture, Percent	%	n/v	n/v	-	-	-	-	22.7 (0.50)	27.4 (0.50)	14.2 (0.50)	9.4 (0.5)	15.6 (0.5)	40.8 (0.5)	13.5 (0.5)
pH, Laboratory Measured	S.U.	n/v	n/v	-	-	-	-	-	-	-	-	-	-	-
Solids, Percent	%	n/v	n/v	-	-	-	-	-	-	-	-	-	-	-

Notes:

MSC-PA	Pennsylvania Department of Environmental Protection - 2016 Medium-Specific
А	Concentrations (MSCs) for Organic/Inorganic Regulated Substances in Soil -
	Direct Contact - Non-Residential
	Surface Soil (0-2 ft). Lead value is the site-specific standard.
SHS-PA	Pennsylvania Department of Environmental Protection - Statewide Health
	Standards - 2016
В	PADEP Non-Residential Statewide Health Standards (0-2 ft bgs) (Unsaturated Soil)
6.5 ^A	Concentration exceeds the indicated standard.
15.2	Measured concentration did not exceed the indicated standard.
ND (0.50)	Laboratory reporting limit was greater than the applicable standard.
ND (2.4) (1.2)	Analyte was not detected at a concentration greater than the laboratory reporting limit.
	The first value in parenthesis is the reporting limit. The method detection limit
	is shown in the second set of parenthesis.
n/v	No standard/guideline value in database - 2016 values have been populated for
	Evergreen Comprehensive List only. Criteria for other analytes may be available but
	may not be represented here.
-	Parameter not analyzed / not available.
D	Indicates an identified compound in an analysis that has been diluted. This flag
	alerts the data user to any differences between the concentrations reported in the
	two analyses.
J	Indicates an estimated value.
mg/kg	milligrams per kilogram
µg/L	Micrograms per liter.
S.U.	Standard Units.
ft	Feet
LL	Eurofins Lancaster Laboratories Environmental
PIP	Pace Analytical Services, Inc.

Method detection limit is shown in second set of parentheses.

Historical Soil Analytical Results Summary - AOI 6 (0-2 feet) Philadelphia Refinery Operations, a Series of Evergreen Resources Group, LLC

Sample Location				B-155	B-156	B-157	B-160	B-161	B-162	B-164	B-166	B-167	B-170	B-171
Sample Date				20-Mar-06	20-Mar-06	1-Mar-06	1-Mar-06	1-Mar-06	1-Mar-06	1-Mar-06	13-Dec-12	13-Dec-12	13-Dec-12	6-Apr-16
Sample ID				BH-B155-032006-1.5-2	BH-B156-032006-1-1.5	BH-B157-030106-1-1.5	BH-B160-030106-1-1.5	BH-B161-030106-1.5-2	BH-B162-030106-1-1.5	BH-B164-030106-1.5-2	B-166_2'	B-167_2'	B-170_2'	AOI6-B-171-0-2-SOIL
Sample Depth				1.5 - 2 ft	1 - 1.5 ft	1 - 1.5 ft	1 - 1.5 ft	1.5 - 2 ft	1 - 1.5 ft	1.5 - 2 ft	1.5 - 2 ft	1.5 - 2 ft	1.5 - 2 ft	1 - 2 ft
Sampling Company				UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	GHD
Laboratory				LL	LL	LL	LL	LL	LL	LL	ACCUTEST	ACCUTEST	ACCUTEST	LL
Laboratory Work Order		Α	в	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	JB23816	JB23816	JB23816	1648963
Laboratory Sample ID	Units	MSC-PA	SHS-PA	4734388	4734387	4720661	4720658	4720659	4720657	4720660	JB23816-3	JB23816-1	JB23816-5	8325908
Volatile Organic Compounds														
Benzene	mg/kg	290 ^A	0.5 ^B	ND (0.220) (0.016)	0.009 (0.0004)	ND (0.240) (0.019)	ND (0.005) (0.0004)	ND (0.440) (0.034)	ND (0.005) (0.0005)	ND (0.370) (0.03)	ND (0.0015) (0.00018)	0.0638 (0.0058)	ND (0.0010) (0.00012)	0.001 J (0.0005)
1,2-Dibromoethane (EDB)	mg/kg	3.7 ^A	0.005 ^B	ND (0.220) (0.032)	ND (0.005) (0.0007)	ND (0.240) (0.038)	ND (0.005) (0.0007)	ND (0.440) (0.069)	ND (0.005) (0.001)	ND (0.370) (0.06)	ND (0.0015) (0.00019)	ND (0.048) (0.0061)	ND (0.0010) (0.00013)	ND (0.004) (0.001)
1,2-Dichloroethane (EDC)	mg/kg	86 ^A	0.5 ^B	ND (0.220) (0.032)	ND (0.005) (0.0007)	ND (0.240) (0.038)	ND (0.005) (0.0007)	ND (0.440) (0.069)	ND (0.005) (0.001)	ND (0.370) (0.06)	ND (0.0015) (0.00020)	ND (0.048) (0.0065)	ND (0.0010) (0.00014)	ND (0.004) (0.001)
Ethylbenzene	mg/kg	890 ^A	70 ^B	ND (0.220) (0.032)	ND (0.005) (0.0007)	ND (0.240) (0.038)	ND (0.005) (0.0007)	ND (0.440) (0.069)	ND (0.005) (0.001)	ND (0.370) (0.06)	ND (0.0015) (0.00039)	0.395 (0.013)	ND (0.0010) (0.00027)	ND (0.004) (0.001)
Isopropylbenzene (Cumene)	mg/kg	10000 ^A	2500 ^B	ND (0.220) (0.032)	0.007 (0.0007)	ND (0.240) (0.038)	ND (0.005) (0.0007)	2.2 (0.069)	ND (0.005) (0.001)	2.2 (0.06)	ND (0.0074) (0.00011)	3.15 (0.0036)	0.0030 J (0.000077)	ND (0.004) (0.001)
m, p-Xylenes	mg/kg	n/v	n/v	-	-	-	-	-	-	-	-	-	-	-
Methyl Tertiary Butyl Ether	mg/kg	8600 ^A	2 ^B	ND (0.220) (0.016)	ND (0.005) (0.0004)	ND (0.240) (0.019)	ND (0.005) (0.0004)	ND (0.440) (0.034)	ND (0.005) (0.0005)	ND (0.370) (0.03)	ND (0.0015) (0.00035)	ND (0.048) (0.011)	0.00054 J (0.00024)	ND (0.004) (0.0005)
Naphthalene	mg/kg	760 ^A	25 ^B	-	-	-	-	-	-	-	-	-	-	-
o-Xylene (1,2-Dimethylbenzene)	mg/kg	n/v	n/v	-	-	-	-	-	-	-	-	-	-	-
Toluene	mg/kg	10000 ^A	100 ^B	ND (0.220) (0.032)	0.006 (0.0007)	ND (0.240) (0.038)	ND (0.005) (0.0007)	ND (0.440) (0.069)	ND (0.005) (0.001)	ND (0.370) (0.06)	ND (0.0015) (0.00016)	0.0932 (0.0051)	0.00040 J (0.00011)	ND (0.004) (0.001)
1,2,4-Trimethylbenzene	mg/kg	560 ^A	35 ^B	-	-	-	-	-	-	-	ND (0.0074) (0.00031)	0.229 J (0.010)	ND (0.0052) (0.00022)	ND (0.004) (0.001)
1,3,5-Trimethylbenzene	mg/kg	10000 ^A	210 ^B	-	-	-	-	-	-	-	ND (0.0074) (0.00024)	0.101 J (0.0077)	ND (0.0052) (0.00017)	ND (0.004) (0.001)
Xylenes, Total (Dimethylbenzene)	mg/kg	8000 ^A	1000 ^B	ND (0.220) (0.032)	0.007 (0.0007)	0.270 (0.038)	ND (0.005) (0.0007)	5.1 (0.069)	ND (0.005) (0.001)	ND (0.370) (0.06)	ND (0.0015) (0.00021)	0.806 (0.0067)	ND (0.0010) (0.00014)	ND (0.004) (0.001)
Semi-Volatile Organic Compounds														
Anthracene	mg/kg	190000 ^A	350 ^B	0.750 (0.033)	0.860 (0.033)	ND (1.1) (0.17)	ND (0.220) (0.033)	0.360 (0.033)	ND (0.180) (0.033)	ND (0.200) (0.033)	0.0812 (0.015)	0.0325 J (0.012)	0.257 (0.013)	0.120 (0.003)
Benzo(a)Anthracene	mg/kg	130 ^A	130 ^B	0.840 (0.033)	0.830 (0.033)	1.4 (0.17)	ND (0.220) (0.033)	1.8 (0.033)	0.200 (0.033)	0.350 (0.033)	0.318 (0.014)	0.113 (0.011)	0.578 (0.012)	0.440 (0.003)
Benzo(a)Pyrene	mg/kg	12 ^A	12 ^B	0.780 (0.033)	0.820 (0.033)	1.5 (0.17)	ND (0.220) (0.033)	2.2 (0.033)	0.220 (0.033)	0.410 (0.033)	0.330 (0.013)	0.130 (0.010)	0.659 (0.011)	0.450 (0.003)
Benzo(b)Fluoranthene	mg/kg	76 ^A	76 ^B	1.1 (0.033)	1.1 (0.033)	2.1 (0.17)	ND (0.220) (0.033)	2.7 (0.033)	0.290 (0.033)	0.680 (0.033)	0.293 (0.014)	0.150 (0.011)	0.617 (0.012)	0.540 (0.003)
Benzo(g,h,i)Perylene	mg/kg	190000 ^A	180 ⁸	0.310 (0.033)	0.420 (0.033)	ND (1.1) (0.17)	ND (0.220) (0.033)	1.3 (0.033)	ND (0.180) (0.033)	0.270 (0.033)	0.228 (0.016)	0.121 (0.013)	0.466 (0.014)	0.290 (0.003)
Chrysene	mg/kg	760 ^A	230 ^B	0.820 (0.033)	0.920 (0.033)	1.4 (0.17)	ND (0.220) (0.033)	2.1 (0.033)	0.250 (0.033)	0.360 (0.033)	0.334 (0.014)	0.137 (0.011)	0.589 (0.012)	0.420 (0.003)
Fluorene	mg/kg	130000 ^A	3800 ^B	1.1 (0.033)	1.9 (0.033)	ND (1.1) (0.17)	ND (0.220) (0.033)	ND (0.210) (0.033)	ND (0.180) (0.033)	ND (0.200) (0.033)	0.0259 J (0.014)	0.0176 J (0.011)	0.229 (0.012)	0.044 J (0.003)
Naphthalene	mg/kg	760 ^A	25 ⁸	0.700 (0.033)	0.370 (0.033)	ND (1.1) (0.17)	ND (0.220) (0.033)	0.340 (0.033)	ND (0.180) (0.033)	ND (0.200) (0.033)	0.0370 J (0.011)	0.0352 (0.0092)	0.114 (0.010)	0.230 (0.003)
Phenanthrene	mg/kg	190000 ^A	10000 ^B	3.0 (0.033)	4.3 (0.033)	ND (1.1) (0.17)	ND (0.220) (0.033)	0.410 (0.033)	ND (0.180) (0.033)	0.400 (0.033)	0.285 (0.019)	0.108 (0.015)	0.379 (0.017)	0.220 (0.003)
Pyrene	mg/kg	96000 ^A	2200 ^B	2.3 (0.033)	2.5 (0.033)	1.4 (0.17)	ND (0.220) (0.033)	2.1 (0.033)	0.320 (0.033)	0.500 (0.033)	0.536 (0.016)	0.275 (0.013)	1.16 (0.014)	0.500 (0.003)
Metals														
Lead	μg/L	n/v	n/v	-	-	-	-	-	-	-	-	-	-	-
Lead	mg/kg	2240 ^A	450 ^B	618 ^B (0.765)	1070^B (0.78)	178 (0.78)	30.8 (0.765)	70.1 (0.757)	584 ^B (0.757)	18.5 (0.772)	744 ^B (0.15)	253 (0.12)	66.9 (0.13)	45.7 (0.510)
General Chemistry														
Moisture, Percent	%	n/v	n/v	27.3 (0.5)	22 (0.5)	21.7 (0.5)	22.9 (0.5)	21.6 (0.5)	6.9 (0.5)	17.9 (0.5)	-	-	-	6.2 (0.50)
pH, Laboratory Measured	S.U.	n/v	n/v	-	-	-	-	-	-	-	-	-	-	-
Solids Percent	%	n/v	n/v	-	-	-	-	-	-	-	75.0.()	88.8 ()	8310	-

MSC-PA Pennsylvania Department of Environmental Protection - 2016 Medium-Specific Concentrations (MSCs) for Organic/Inorganic Regulated Substances in Soil -Direct Contact - Non-Residential Surface Soil (0-2 ft). Lead value is the site-specific standard. SHS-PA Pennsylvania Department of Environmental Protection - Statewide Health Standards - 2016 PADEP Non-Residential Statewide Health Standards (0-2 ft bgs) (Unsaturated Soil) <mark>6.5</mark> ^ 15.2 Concentration exceeds the indicated standard. Measured concentration did not exceed the indicated standard. ND (0.50) Laboratory reporting limit was greater than the applicable standard. ND (2.4) (1.2) Analyte was not detected at a concentration greater than the laboratory reporting limit. The first value in parenthesis is the reporting limit. The method detection limit is shown in the second set of parenthesis. n/v No standard/guideline value in database - 2016 values have been populated for Evergreen Comprehensive List only. Criteria for other analytes may be available but may not be represented here. Parameter not analyzed / not available. D Indicates an identified compound in an analysis that has been diluted. This flag alerts the data user to any differences between the concentrations reported in the two analyses. J Indicates an estimated value. mg/kg µg/L S.U. milligrams per kilogram Micrograms per liter. Standard Units. ft Feet LL Eurofins Lancaster Laboratories Environmental PIP Pace Analytical Services, Inc. Method detection limit is shown in second set of parentheses.

Historical Soil Analytical Results Summary - AOI 6 (0-2 feet) Philadelphia Refinery Operations, a Series of Evergreen Resources Group, LLC

Sample Location			I	B-1	72	B-1	73	B-1	74	B-1	75	ВН-	02-06
Sample Date				6-Apr-16	12-Jul-16	5-Apr-16	12-Jul-16	4-Apr-16	13-Jul-16	5-Apr-16	13-Jul-16	22-Mar-06	22-Mar-06
Sample ID				AOI6-B-172-0-2-SOIL	AOI6-B-172-0-2- 071216	AOI6-B-173-0-2-SOIL	AOI6-B-173-0-2- 071216	AOI6-B-174-0-2-SOIL	AOI6-B-174-0-2- 071316	AOI6-B-175-0-2-SOIL	AOI6-B-175-0-2- 071316	BH-02-06-032206-1.5-2	BH-02-06-032206-1.5-2
Sample Depth				0.5 - 1 ft	0.5 - 1 ft	1 - 1.5 ft	1 - 1.5 ft	1 - 1.5 ft	1 - 1.5 ft	1.5 - 2 ft	1.5 - 2 ft	1.5 - 2 ft	1.5 - 2 ft
Sampling Company				GHD	GHD	GHD	GHD	GHD	GHD	GHD	GHD	UNKNOWN	UNKNOWN
Laboratory				LL	LL	LL	LL	LL	LL	LL	LL	LL	LL
Laboratory Work Order		Α	В	1647893	1682991	1647893	1682991	1647893	1682991	1647893	1682991	UNKNOWN	UNKNOWN
Laboratory Sample ID	Units	MSC-PA	SHS-PA	8321194	8475492	8321186	8475494	8321182	8475496	8321188	8475498	4736395	4739181
Volatile Organic Compounds													
Benzene	mg/kg	290 ^A	0.5 ^B	0.210 J (0.0005)	-	0.300 J (0.0005)	-	ND (0.004) (0.0005)	-	1.100^B (0.0005)	-	-	-
1,2-Dibromoethane (EDB)	mg/kg	3.7 ^A	0.005 ^B	ND (0.380) (0.001)	-	ND (0.310) (0.001)	-	ND (0.004) (0.001)	-	ND (0.320) (0.001)	-	-	-
1,2-Dichloroethane (EDC)	mg/kg	86 ^A	0.5 ^B	ND (0.380) (0.001)	-	ND (0.310) (0.001)	-	ND (0.004) (0.001)	-	ND (0.320) (0.001)	-	-	-
Ethylbenzene	mg/kg	890 ^A	70 ^B	0.100 J (0.001)	-	ND (0.310) (0.001)	-	ND (0.004) (0.001)	-	0.350 (0.001)	-	-	-
Isopropylbenzene (Cumene)	mg/kg	10000 ^A	2500 ^B	ND (0.380) (0.001)	-	0.360 (0.001)	-	ND (0.004) (0.001)	-	0.270 J (0.001)	-	-	-
m, p-Xylenes	mg/kg	n/v	n/v	-	-	-	-	-	-	-	-	-	-
Methyl Tertiary Butyl Ether	mg/kg	8600 ^A	2 ^B	ND (0.380) (0.0005)	-	ND (0.310) (0.0005)	-	ND (0.004) (0.0005)	-	ND (0.320) (0.0005)	-	-	-
Naphthalene	mg/kg	760 ^A	25 ^B	-	-	-	-	-	-	-	-	-	-
o-Xylene (1,2-Dimethylbenzene)	mg/kg	n/v	n/v	-	-	-	-	-	-	-	-	-	-
Toluene	mg/kg	10000 ^A	100 ^B	0.580 (0.001)	-	0.130 J (0.001)	-	ND (0.004) (0.001)	-	1.300 (0.001)	-	-	-
1,2,4-Trimethylbenzene	mg/kg	560 ^A	35 ^B	0.110 J (0.001)	-	0.310 (0.001)	-	ND (0.004) (0.001)	-	0.290 J (0.001)	-	-	-
1,3,5-Trimethylbenzene	mg/kg	10000 ^A	210 ^B	ND (0.380) (0.001)	-	0.130 J (0.001)	-	ND (0.004) (0.001)	-	0.260 J (0.001)	-	-	-
Xylenes, Total (Dimethylbenzene)	mg/kg	8000 ^A	1000 ^B	0.510 (0.001)	-	0.660 (0.001)	-	ND (0.004) (0.001)	-	1.600 (0.001)	-	-	-
Semi-Volatile Organic Compounds													
Anthracene	mg/kg	190000 ^A	350 ^B	-	0.800 (0.003)	-	0.089 J (0.003)	-	0.110 J (0.003)	-	2.400 (0.003)	-	-
Benzo(a)Anthracene	mg/kg	130 ^A	130 ^B	-	2.400 (0.003)	-	0.300 (0.003)	-	0.600 (0.003)	-	1.900 (0.003)	-	-
Benzo(a)Pyrene	mg/kg	12 ^A	12 ^B	-	1.400 (0.003)	-	0.330 (0.003)	-	0.540 (0.003)	-	1.400 (0.003)	-	-
Benzo(b)Fluoranthene	mg/kg	76 ^A	76 ^B	-	2.600 (0.003)	-	0.440 (0.003)	-	0.710 (0.003)	-	1.900 (0.003)	-	-
Benzo(g,h,i)Perylene	mg/kg	190000 ^A	180 ^B	-	0.950 (0.003)	-	0.390 (0.003)	-	0.390 (0.003)	-	1.700 (0.003)	-	-
Chrysene	mg/kg	760 ^A	230 ^B	-	2.300 (0.003)	-	0.420 (0.003)	-	0.630 (0.003)	-	2.000 (0.003)	-	-
Fluorene	mg/kg	130000 ^A	3800 ^B	-	0.079 J (0.003)	-	0.049 J (0.003)	-	ND (0.210) (0.003)	-	3.600 (0.003)	-	-
Naphthalene	mg/kg	760 ^A	25 ^B	-	1.200 (0.003)	-	0.270 (0.003)	-	0.180 J (0.003)	-	9.300 (0.003)	-	-
Phenanthrene	mg/kg	190000 ^A	10000 ^B	-	0.930 (0.003)	-	0.340 (0.003)	-	0.400 (0.003)	-	10.000 (0.003)	-	-
Pyrene	mg/kg	96000 ^A	2200 ^B	-	3.000 (0.003)	-	0.490 (0.003)	-	0.890 (0.003)	-	2.800 (0.003)	-	-
Metals													
Lead	µg/L	n/v	n/v	-	-	-	-	-	-	-	-	-	240 (8.4)
Lead	mg/kg	2240 ^A	450 ^B	168 (0.510)	-	170 (0.510)	-	6.22 (0.510)	-	207 (0.510)	-	1260 ^B (0.75)	-
General Chemistry	~ ~							, ,					
Moisture, Percent	%	n/v	n/v	14.6 (0.50)	26.2 (0.50)	17.5 (0.50)	9.1 (0.50)	4.8 (0.50)	21.2 (0.50)	30.1 (0.50)	40.2 (0.50)	43.5 (0.5)	-
pH, Laboratory Measured	S.U.	n/v	n/v	- /	-		-	-	-	-	-	-	-
Solids, Percent	%	n/v	n/v	-	-		-	-	-	-	-	-	

Notes:

MSC-PA	Pennsylvania Department of Environmental Protection - 2016 Medium-Specific
A	Concentrations (MSCs) for Organic/Inorganic Regulated Substances in Soil -
	Direct Contact - Non-Residential
	Surface Soil (0-2 ft). Lead value is the site-specific standard.
SHS-PA	Pennsylvania Department of Environmental Protection - Statewide Health
	Standards - 2016
В	PADEP Non-Residential Statewide Health Standards (0-2 ft bgs) (Unsaturated Soil)
<u>6.5</u> ^A	Concentration exceeds the indicated standard.
15.2	Measured concentration did not exceed the indicated standard.
ND (0.50)	Laboratory reporting limit was greater than the applicable standard.
ND (2.4) (1.2)	Analyte was not detected at a concentration greater than the laboratory reporting limit.
	The first value in parenthesis is the reporting limit. The method detection limit
	is shown in the second set of parenthesis.
n/v	No standard/guideline value in database - 2016 values have been populated for
	Evergreen Comprehensive List only. Criteria for other analytes may be available but
	may not be represented here.
-	Parameter not analyzed / not available.
D	Indicates an identified compound in an analysis that has been diluted. This flag
	alerts the data user to any differences between the concentrations reported in the
	two analyses.
J	
mg/kg	Minigrams per kilogram
lhð/r	Standard Linita
3.U. #	Standard Offits.
11	Furnfins Lancaster Laboratories Environmental
DID	Pare Analytical Services Inc

Pace Analytical Services, Inc. Method detection limit is shown in second set of parentheses.

Historical Soil Analytical Results Summary - AOI 6 (0-2 feet) Philadelphia Refinery Operations, a Series of Evergreen Resources Group, LLC

Sample Location	1			BH-	03-06	BH-13-06	BH-	14-06	BH-20-06	BH-21-06	BH-22-06	BH-23-06	BH-24-06
Sample Date				22-Mar-06	22-Mar-06	22-Mar-06	23-Mar-06	23-Mar-06	20-Mar-06	20-Mar-06	21-Mar-06	21-Mar-06	21-Mar-06
Sample ID				BH-03-06-032206-1.5-2	BH-03-06-032206-1.5-2	BH-13-06-032206-1-1.5	BH-14-06-032306-0.5-1	BH-14-06-032306-0.5-1	BH-20-06-032006-1-1.5	BH-21-06-032006-1.5-2	BH-22-06-032106-1.5-2	BH-23-06-032106-1-1.5	BH-24-06-032106-1-1.5
Sample Depth Sampling Company Laboratory Laboratory Work Order		Α	в	1.5 - 2 ft UNKNOWN LL UNKNOWN	1.5 - 2 ft UNKNOWN LL UNKNOWN	1 - 1.5 ft UNKNOWN LL UNKNOWN	0.5 - 1 ft UNKNOWN LL UNKNOWN	0.5 - 1 ft UNKNOWN LL UNKNOWN	1 - 1.5 ft UNKNOWN LL UNKNOWN	1.5 - 2 ft UNKNOWN LL UNKNOWN	1.5 - 2 ft UNKNOWN LL UNKNOWN	1 - 1.5 ft UNKNOWN LL UNKNOWN	1 - 1.5 ft UNKNOWN LL UNKNOWN
Laboratory Sample ID	Units	MSC-PA	SHS-PA	4736394	4739180	4736396	4736397	4739182	4734389	4734390	4734394	4734391	4734392
Volatile Organic Compounds													
Benzene	mg/kg	290 ^A	0.5 ^B	-	-	-	-	-	0.290 (0.016)	0.340 (0.017)	ND (0.004) (0.0003)	ND (0.210) (0.017)	ND (0.170) (0.015)
1,2-Dibromoethane (EDB)	mg/kg	3.7 ^A	0.005 ^B	-	-	-	-	-	ND (0.200) (0.031)	ND (0.190) (0.035)	ND (0.004) (0.0006)	ND (0.210) (0.033)	ND (0.170) (0.03)
1,2-Dichloroethane (EDC)	mg/kg	86 ^A	0.5 ^B	-	-	-	-	-	ND (0.200) (0.031)	ND (0.190) (0.035)	ND (0.004) (0.0006)	ND (0.210) (0.033)	ND (0.170) (0.03)
Ethylbenzene	mg/kg	890 ^A	70 ^B	-	-	-	-	-	0.460 (0.031)	0.810 (0.035)	ND (0.004) (0.0006)	ND (0.210) (0.033)	ND (0.170) (0.03)
Isopropylbenzene (Cumene)	mg/kg	10000 ^A	2500 ^B	-	-	-	-	-	9.7 (0.31)	32 (0.35)	ND (0.004) (0.0006)	0.810 (0.033)	9.9 (0.03)
m, p-Xylenes	mg/kg	n/v	n/v	-	-	-	-	-	-	-	-	-	-
Methyl Tertiary Butyl Ether	mg/kg	8600 ^A	2 ^B	-	-	-	-	-	ND (0.200) (0.016)	ND (0.190) (0.017)	ND (0.004) (0.0003)	ND (0.210) (0.017)	ND (0.170) (0.015)
Naphthalene	mg/kg	760 ^A	25 ^B	-	-	-	-	-	-	-	-	-	-
o-Xylene (1,2-Dimethylbenzene)	mg/kg	n/v	n/v	-	-	-	-	-	-	-	-	-	-
Toluene	mg/kg	10000 ^A	100 ^B	-	-	-	-	-	0.410 (0.031)	ND (0.190) (0.035)	ND (0.004) (0.0006)	ND (0.210) (0.033)	0.200 (0.03)
1,2,4-Trimethylbenzene	mg/kg	560 ^A	35 ^B	-	-	-	-	-	-	-	-	-	-
1,3,5-Trimethylbenzene	mg/kg	10000 ^A	210 ^B	-	-	-	-	-	-	-	-	-	-
Xylenes, Total (Dimethylbenzene)	mg/kg	8000 ^A	1000 ^B	-	-	-	-	-	1.0 (0.031)	0.830 (0.035)	ND (0.004) (0.0006)	0.370 (0.033)	0.560 (0.03)
Semi-Volatile Organic Compounds	-								•				
Anthracene	mg/kg	190000 ^A	350 ^B	-	-	-	-	-	2.5 (0.33)	ND (1.8) (0.33)	ND (0.190) (0.033)	1.3 (0.1)	3.9 (0.33)
Benzo(a)Anthracene	mg/kg	130 ^A	130 ^B	-	-	-	-	-	3.8 (0.33)	ND (1.8) (0.33)	ND (0.190) (0.033)	0.790 (0.1)	ND (1.9) (0.33)
Benzo(a)Pyrene	mg/kg	12 ^A	12 ^B	-	-	-	-	-	4.9 (0.33)	ND (1.8) (0.33)	0.350 (0.033)	1.1 (0.1)	ND (1.9) (0.33)
Benzo(b)Fluoranthene	mg/kg	76 ^A	76 ^B	-	-	-	-	-	6.3 (0.33)	ND (1.8) (0.33)	0.400 (0.033)	1.2 (0.1)	ND (1.9) (0.33)
Benzo(g,h,i)Perylene	mg/kg	190000 ^A	180 ^B	-	-	-	-	-	2.9 (0.33)	ND (1.8) (0.33)	0.290 (0.033)	0.890 (0.1)	ND (1.9) (0.33)
Chrysene	mg/kg	760 ^A	230 ^B	-	-	-	-	-	4.2 (0.33)	ND (1.8) (0.33)	ND (0.190) (0.033)	1.3 (0.1)	2.0 (0.33)
Fluorene	mg/kg	130000 ^A	3800 ^B	-	-	-	-	-	71 (0.67)	ND (1.8) (0.33)	ND (0.190) (0.033)	3.5 (0.1)	63 (0.67)
Naphthalene	mg/kg	760 ^A	25 ^B	-	-	-	-	-	ND (2.1) (0.33)	ND (1.8) (0.33)	ND (0.190) (0.033)	0.980 (0.1)	ND (1.9) (0.33)
Phenanthrene	mg/kg	190000 ^A	10000 ^B	-	-	-	-	-	37 (0.33)	ND (1.8) (0.33)	ND (0.190) (0.033)	7.4 (0.1)	46 (0.33)
Pyrene	mg/kg	96000 ^A	2200 ^B	-	-	-	-	-	6.9 (0.33)	ND (1.8) (0.33)	0.220 (0.033)	1.6 (0.1)	5.8 (0.33)
Metals													
Lead	µg/L	n/v	n/v	-	90.1 (8.4)	-	-	1120 (8.4)	-	-	-	-	-
Lead	mg/kg	2240 ^A	450 ^B	1650 ^B (0,757)	-	283 (0.757)	1040 ^B (0.75)	-	145 (0.757)	286 (0.757)	165 (0.757)	417 (0.772)	233 (0.772)
General Chemistry						,							
Moisture, Percent	%	n/v	n/v	33.5 (0.5)	-	38.3 (0.5)	33.1 (0.5)	-	20.4 (0.5)	9.7 (0.5)	10 (0.5)	20.2 (0.5)	14.4 (0.5)
pH, Laboratory Measured	S.U.	n/v	n/v	-	-	-	-	-	-	-	-	-	-
Solids, Percent	%	n/v	n/v	-	-	-	-	-	-	-	-	-	-

MSC-PA	Pennsylvania Department of Environmental Protection - 2016 Medium-Specific
А	Concentrations (MSCs) for Organic/Inorganic Regulated Substances in Soil -
	Direct Contact - Non-Residential
	Surface Soil (0-2 ft). Lead value is the site-specific standard.
SHS-PA	Pennsylvania Department of Environmental Protection - Statewide Health
	Standards - 2016
В	PADEP Non-Residential Statewide Health Standards (0-2 ft bgs) (Unsaturated Soil)
<u>6.5</u> ^A	Concentration exceeds the indicated standard.
15.2	Measured concentration did not exceed the indicated standard.
ND (0.50)	Laboratory reporting limit was greater than the applicable standard.
ND (2.4) (1.2)	Analyte was not detected at a concentration greater than the laboratory reporting limit.
	The first value in parenthesis is the reporting limit. The method detection limit
	is shown in the second set of parenthesis.
n/v	No standard/guideline value in database - 2016 values have been populated for
	Evergreen Comprehensive List only. Criteria for other analytes may be available but
	may not be represented here.
-	Parameter not analyzed / not available.
D	Indicates an identified compound in an analysis that has been diluted. This flag
	alerts the data user to any differences between the concentrations reported in the
	two analyses.
J	Indicates an estimated value.
mg/kg	milligrams per kilogram
µg/L	Micrograms per liter.
S.U.	Standard Units.
ft	Feet
LL	Eurofins Lancaster Laboratories Environmental
PIP	Pace Analytical Services, Inc.
	Method detection limit is shown in second set of parentheses.

Historical Soil Analytical Results Summary - AOI 6 (0-2 feet) Philadelphia Refinery Operations, a Series of Evergreen Resources Group, LLC

Sample Location Sample Date				BH-25-06 21-Mar-06	BH-26-06 24-Mar-06	BH-27-06 23-Mar-06	BH-27-09 8-Apr-09	BH-28-06 23-Mar-06	BH-28-09 8-Apr-09	BH-29-06 21-Mar-06	BH-29-09 8-Apr-09	BH-30-09 8-Apr-09	BH-31-09 13-Jul-09	BH-32-09 13-Jul-09
Sample ID				BH-25-06-032106-1-1.5	BH-26-06-032406-0.5-1	BH-27-06-032306-1-1.5	BH-27-09	BH-28-06-032306-1-1.5	BH-28-09	BH-29-06-032106-1.5-2	BH-29-09	BH-30-09	BH-31-09	BH-32-09
Sample Depth Sampling Company Laboratory Laboratory Work Order Laboratory Sample ID	Units	A MSC-PA	B SHS-PA	1 - 1.5 ft UNKNOWN LL UNKNOWN 4734393	0.5 - 1 ft UNKNOWN LL UNKNOWN 4738884	1 - 1.5 ft UNKNOWN LL UNKNOWN 4736392	0 - 2 ft UNKNOWN LL UNKNOWN 5643349	1 - 1.5 ft UNKNOWN LL UNKNOWN 4736393	0 - 2 ft UNKNOWN LL UNKNOWN 5643346	1.5 - 2 ft UNKNOWN LL UNKNOWN 4734395	0 - 2 ft UNKNOWN LL UNKNOWN 5643347	0 - 2 ft UNKNOWN LL UNKNOWN 5643348	0 - 2 ft UNKNOWN LL UNKNOWN 5722433	0 - 2 ft UNKNOWN LL UNKNOWN 5722432
Volatile Organic Compounds														<u> </u>
Benzene	ma/ka	200 ^A	0.5 ^B	2 2^B (0.018)	180 ^B (1.6)	2 2^B (0.016)	_	1 3^B (0.033)		0.410 (0.018)	-	-	-	
1 2-Dibromoethane (EDB)	mg/kg	230 3.7 ^A	0.005 ^B	ND (0 220) (0 035)	ND (0.180) (0.033)	ND(0.180)(0.031)	-	ND (0.380) (0.066)		ND (0 230) (0 037)	-		-	· ·
1 2-Dichloroethane (EDC)	mg/kg	86 ^A	0.003	ND (0.220) (0.035)	ND (0.180) (0.033)	ND (0.180) (0.031)	-	ND (0.380) (0.066)	-	ND (0.230) (0.037)	-	-	-	· ·
Ethylbenzene	ma/ka	890 ^A	70 ^B	0.300 (0.035)	2.7 (0.033)	1.6 (0.031)	-	0.670 (0.066)	-	ND (0.230) (0.037)	-	-	-	
Isopropylbenzene (Cumene)	ma/ka	10000 ^A	2500 ^B	2.7 (0.035)	800 (3.3)	9.1 (0.031)	-	6.4 (0.066)	-	0.990 (0.037)	-	-	-	-
m. p-Xylenes	ma/ka	n/v	n/v	-	-	-	-	-	-	-	-	-	-	-
Methyl Tertiary Butyl Ether	ma/ka	8600 ^A	2 ^B	ND (0.220) (0.018)	ND (0.180) (0.016)	ND (0.180) (0.016)	-	ND (0.380) (0.033)	-	ND (0.230) (0.018)	-	-	-	· -
Naphthalene	ma/ka	760 ^A	25 ^B	-	-	-	-	-	-	-	-	-	-	-
o-Xylene (1,2-Dimethylbenzene)	mg/kg	n/v	n/v	-	-	-	-	-	-	-	-	-	-	-
Toluene	mg/kg	10000 ^A	100 ^B	1.7 (0.035)	260 ^B (3,3)	ND (0.180) (0.031)	-	0.590 (0.066)	-	ND (0.230) (0.037)	-	-	-	-
1,2,4-Trimethylbenzene	mg/kg	560 ^A	35 ^B	-	-	-	-	-	-	-	-	-	-	-
1,3,5-Trimethylbenzene	mg/kg	10000 ^A	210 ^B	-	-	-	-	-	-	-	-	-	-	-
Xylenes, Total (Dimethylbenzene)	mg/kg	8000 ^A	1000 ^B	1.1 (0.035)	9.3 (0.033)	0.770 (0.031)	-	0.580 (0.066)	-	0.560 (0.037)	-	-	-	-
Semi-Volatile Organic Compounds							•		•					
Anthracene	mg/kg	190000 ^A	350 ^B	10 (0.33)	ND (0.180) (0.033)	3.3 (0.33)	-	2.5 (0.033)	-	27 (0.33)	-	-	-	-
Benzo(a)Anthracene	mg/kg	130 ^A	130 ^B	5.3 (0.33)	ND (0.180) (0.033)	ND (1.9) (0.33)	-	4.0 (0.033)	-	70 (1.7)	-	-	-	-
Benzo(a)Pyrene	mg/kg	12 ^A	12 ^B	6.0 (0.33)	ND (0.180) (0.033)	ND (1.9) (0.33)	-	4.2 (0.17)	-	59 ^{AB} (1.7)	-	-	-	-
Benzo(b)Fluoranthene	mg/kg	76 ^A	76 ^B	8.1 (0.33)	ND (0.180) (0.033)	ND (1.9) (0.33)	-	6.0 (0.17)	-	75 (1.7)	-	-	-	-
Benzo(g,h,i)Perylene	mg/kg	190000 ^A	180 ^B	3.6 (0.33)	ND (0.180) (0.033)	ND (1.9) (0.33)	-	1.9 (0.033)	-	29 (0.33)	-	-	-	-
Chrysene	mg/kg	760 ^A	230 ^B	4.8 (0.33)	ND (0.180) (0.033)	ND (1.9) (0.33)	-	4.3 (0.033)	-	73 (1.7)	-	-	-	-
Fluorene	mg/kg	130000 ^A	3800 ^B	120 (1.7)	ND (0.180) (0.033)	16 (0.33)	-	12 (0.17)	-	14 (0.33)	-	-	-	-
Naphthalene	mg/kg	760 ^A	25 ^B	2.4 (0.33)	ND (0.180) (0.033)	12 (0.33)	-	1.0 (0.033)	-	2.4 (0.33)	-	-	-	-
Phenanthrene	mg/kg	190000 ^A	10000 ^B	120 (1.7)	0.210 (0.033)	36 (0.33)	-	16 (0.17)	-	91 (1.7)	-	-	-	-
Pyrene	mg/kg	96000 ^A	2200 ^B	11 (0.33)	0.300 (0.033)	2.0 (0.33)	-	8.9 (0.17)	-	110 (1.7)	-	-	-	-
Metals					·				·	· ·				-
Lead	µg/L	n/v	n/v	-	-	-	-	-	-	-	-	-	-	-
Lead	mg/kg	2240 ^A	450 ^B	231 (0.772)	32.6 (0.765)	167 (0.772)	463 ^B (0.015)	200 (0.757)	993 ^B (0.015)	2520 ^{AB} (0.772)	409 (0.015)	2310 ^{AB} (0.015)	501^B (0.02)	186 (0.02)
General Chemistry														
Moisture, Percent	%	n/v	n/v	19.4 (0.5)	9 (0.5)	12.4 (0.5)	14.6 (0.5)	12.8 (0.5)	23 (0.5)	20.2 (0.5)	10.1 (0.5)	15.1 (0.5)	7.5 (0.5)	9.7 (0.5)
pH, Laboratory Measured	S.U.	n/v	n/v	-	-	-	-	-	-	-	-	-	-	-
Solids, Percent	%	n/v	n/v		-	-	-	-	-			-	-	-

MSC-PA	Pennsylvania Department of Environmental Protection - 2016 Medium-Specific
A	Concentrations (MSCs) for Organic/Inorganic Regulated Substances in Soil -
	Direct Contact - Non-Residential
	Surface Soil (0-2 ft). Lead value is the site-specific standard.
SHS-PA	Pennsylvania Department of Environmental Protection - Statewide Health
	Standards - 2016
В	PADEP Non-Residential Statewide Health Standards (0-2 ft bgs) (Unsaturated Soil)
<u>6.5</u> ^A	Concentration exceeds the indicated standard.
15.2	Measured concentration did not exceed the indicated standard.
ND (0.50)	Laboratory reporting limit was greater than the applicable standard.
ND (2.4) (1.2)	Analyte was not detected at a concentration greater than the laboratory reporting limit.
	The first value in parenthesis is the reporting limit. The method detection limit
	is shown in the second set of parenthesis.
n/v	No standard/guideline value in database - 2016 values have been populated for
	Evergreen Comprehensive List only. Criteria for other analytes may be available but
	may not be represented here.
-	Parameter not analyzed / not available.
D	Indicates an identified compound in an analysis that has been diluted. This flag
	alerts the data user to any differences between the concentrations reported in the
	two analyses.
J	Indicates an estimated value.
mg/kg	milligrams per kilogram
µg/L	Micrograms per liter.
S.U.	Standard Units.
ft	Feet
LL	Eurofins Lancaster Laboratories Environmental
PIP	Pace Analytical Services, Inc.
	Method detection limit is shown in second set of parentheses.
Historical Soil Analytical Results Summary - AOI 6 (0-2 feet) Philadelphia Refinery Operations, a Series of Evergreen Resources Group, LLC

Sample Location				GP U 677-1	GP U 677-2	GP U 677-3	GP U 677-4	GP U 677-5	GP 797-HA-1	GP 797-HA-2	GP 797	7-HA-3	GP 797-HA-4	GP-1088-SS-1	GP-1088-SS-2
Sample Date				8-Jun-11	8-Jun-11	8-Jun-11	8-Jun-11	8-Jun-11	29-Aug-02	24-May-02	24-May-02	24-May-02	24-May-02	26-Mar-08	26-Mar-08
Sample ID				GP U 677-1(1.5-2.0)	GP U 677-2(0.8-1.3)	GP U 677-3(1.5-2.0)	GP U 677-4(0.3-0.8)	GP U 677-5(0.8-1.3)	HA-1 (1-1.5)	HA-2 (1-1.5)	HA-3 (1-1.5)	HA-3 (2)	HA-4 (1-1.5)	GP-1088-SS-1	GP-1088-SS-2
Sample Depth Sampling Company Laboratory Laboratory Work Order		А	в	1.5 - 2 ft UNKNOWN LL 1250778	0.8 - 1.3 ft UNKNOWN LL 1250778	1.5 - 2 ft UNKNOWN LL 1250778	0.3 - 0.8 ft UNKNOWN LL 1250778	0.8 - 1.3 ft UNKNOWN LL 1250778	1 - 1.5 ft UNKNOWN WGI UNKNOWN	1 - 1.5 ft UNKNOWN WGI UNKNOWN	1 - 1.5 ft UNKNOWN WGI UNKNOWN	1.5 - 2 ft UNKNOWN WGI UNKNOWN	1 - 1.5 ft UNKNOWN WGI UNKNOWN	0 - 0.5 ft UNKNOWN LL 1083612	0 - 0.5 ft UNKNOWN LL 1083612
Laboratory Sample ID	Units	MSC-PA	SHS-PA	6311687	6311688	6311689	6311690	6311691	HA-1 (1-1.5)	HA-2 (1-1.5)	HA-3 (1-1.5)	HA-3 (2)	HA-4 (1-1.5)	5315612	5315613
Volatile Organic Compounds															
Benzene	mg/kg	290 ^A	0.5 ^B	0.060 J (0.0005)	ND (0.0006) (0.0005)	ND (0.0005) (0.0005)	ND (0.0005) (0.0005)	ND (0.0005) (0.0005)	<u>920 D^{AB} ()</u>	<u>28 D^B</u> ()	<u>310 D^{AB} ()</u>	<u>170 D^B ()</u>	<u>190 D^B ()</u>	-	-
1,2-Dibromoethane (EDB)	mg/kg	3.7 ^A	0.005 ^B	0.130 J ^B (0.001)	ND (0.001) (0.001)	ND (0.001) (0.001)	ND (0.001) (0.001)	ND (0.001) (0.001)	-	-	-	-	-	-	-
1,2-Dichloroethane (EDC)	mg/kg	86 ^A	0.5 ^B	ND (0.070) (0.001)	ND (0.001) (0.001)	ND (0.001) (0.001)	ND (0.001) (0.001)	ND (0.001) (0.001)	-	-	-	-	-	-	-
Ethylbenzene	mg/kg	890 ^A	70 ^B	0.110 J (0.001)	ND (0.001) (0.001)	ND (0.001) (0.001)	ND (0.001) (0.001)	ND (0.001) (0.001)	<u>80 J D ^B ()</u>	0.85 ()	37 J D ()	8.5 ()	55 D ()	-	-
Isopropylbenzene (Cumene)	mg/kg	10000 ^A	2500 ^B	0.700 (0.001)	ND (0.001) (0.001)	ND (0.001) (0.001)	ND (0.001) (0.001)	ND (0.001) (0.001)	1600 D ()	17 D ()	1000 D ()	230 D ()	950 D ()	-	-
m, p-Xylenes	mg/kg	n/v	n/v	-	-	-	-	-	310 D ()	4.5 ()	140 D ()	29 D ()	210 D ()	-	-
Methyl Tertiary Butyl Ether	mg/kg	8600 ^A	2 ^B	ND (0.035) (0.0005)	ND (0.0006) (0.0005)	ND (0.0005) (0.0005)	ND (0.0005) (0.0005)	ND (0.0005) (0.0005)	ND (0.24) ()	ND (0.26) ()	ND (0.27) ()	ND (0.25) ()	ND (0.25) ()	-	-
Naphthalene	mg/kg	760 ^A	25 ^B	0.290 J (0.001)	ND (0.001) (0.001)	ND (0.001) (0.001)	ND (0.001) (0.001)	0.160 (0.001)	-	-	-	-	-	-	-
o-Xylene (1,2-Dimethylbenzene)	mg/kg	n/v	n/v	-	-	-	-	-	71 D ()	1.4 ()	29 J D ()	7.7 ()	50 J D ()	-	-
Toluene	mg/kg	10000 ^A	100 ^B	0.120 J (0.001)	ND (0.001) (0.001)	ND (0.001) (0.001)	ND (0.001) (0.001)	0.001 J (0.001)	1800 D ^B ()	11 D ()	920 D ^B ()	300 D ^B ()	660 D ^B ()	-	-
1,2,4-Trimethylbenzene	mg/kg	560 ^A	35 ^B	0.097 J (0.001)	ND (0.001) (0.001)	ND (0.001) (0.001)	ND (0.001) (0.001)	0.056 (0.001)	-	-	-	-	-	-	-
1,3,5-Trimethylbenzene	mg/kg	10000 ^A	210 ^B	ND (0.070) (0.001)	ND (0.001) (0.001)	ND (0.001) (0.001)	ND (0.001) (0.001)	0.046 (0.001)	-	-	-	-	-	-	-
Xylenes, Total (Dimethylbenzene)	mg/kg	8000 ^A	1000 ^B	0.420 (0.001)	ND (0.001) (0.001)	ND (0.001) (0.001)	ND (0.001) (0.001)	0.005 (0.001)	-	-	-	-	-	-	-
Semi-Volatile Organic Compounds										•					
Anthracene	mg/kg	190000 ^A	350 ^B	0.780 (0.00067)	0.037 J (0.00067)	0.500 (0.00067)	ND (0.028) (0.00067)	0.990 (0.00067)	-	-	-	-	-	-	-
Benzo(a)Anthracene	mg/kg	130 ^A	130 ^B	1.0 (0.00033)	0.110 (0.00033)	1.2 (0.00033)	0.031 (0.00033)	ND (0.590) (0.00033)	-	-	-	-	-	-	-
Benzo(a)Pyrene	mg/kg	12 ^A	12 ^B	1.2 (0.00033)	0.120 (0.00033)	1.2 (0.00033)	0.050 (0.00033)	0.620 (0.00033)	-	-	-	-	-	-	-
Benzo(b)Fluoranthene	mg/kg	76 ^A	76 ^B	0.800 (0.00027)	0.091 (0.00027)	0.850 (0.00027)	0.053 (0.00027)	0.810 (0.00027)	-	-	-	-	-	-	-
Benzo(g,h,i)Perylene	mg/kg	190000 ^A	180 ^B	1.7 (0.0020)	0.190 J (0.0020)	1.5 (0.0020)	0.130 J (0.0020)	1.4 (0.0020)	-	-	-	-	-	-	-
Chrysene	mg/kg	760 ^A	230 ^B	2.0 (0.0030)	0.160 (0.0030)	1.6 (0.0030)	0.250 (0.0030)	4.3 (0.0030)	-	-	-	-	-	-	-
Fluorene	mg/kg	130000 ^A	3800 ^B	1.3 (0.0033)	ND (0.085) (0.0033)	0.390 (0.0033)	ND (0.071) (0.0033)	2.5 (0.0033)	-	-	-	-	-	-	-
Naphthalene	mg/kg	760 ^A	25 ^B	-	-	-	-	-	0.65 ()	ND (0.26) ()	0.41 ()	0.3 ()	0.29 ()	-	-
Phenanthrene	mg/kg	190000 ^A	10000 ^B	2.2 (0.0020)	0.090 J (0.0020)	1.6 (0.0020)	0.095 J (0.0020)	5.2 (0.0020)	-	-	-	-	-	-	-
Pyrene	mg/kg	96000 ^A	2200 ^B	1.5 (0.0033)	0.240 J (0.0033)	2.3 (0.0033)	ND (0.370) (0.0033)	ND (17) (0.0033)	-	-	-	-	-	-	-
Metals	-														
Lead	µg/L	n/v	n/v	-	-	-	-	-	-	-	-	-	-	-	-
Lead	mg/kg	2240 ^A	450 ^B	453 ^B (0.220)	67.0 (0.220)	451^B (0.220)	47.8 (0.220)	18.5 (0.220)	-	-	-	-	-	-	-
General Chemistry															
Moisture, Percent	%	n/v	n/v	21.1 (0.50)	21.2 (0.50)	22.2 (0.50)	6.1 (0.50)	6.9 (0.50)	-	-	-	-	-	-	-
pH, Laboratory Measured	S.U.	n/v	n/v	-	-	-	-	-	-	-	-	-	-	11.2 (0.0100)	10.4 (0.0100)
Solids, Percent	%	n/v	n/v	-	-	-	-	-	-	-	-	-	-	-	-
Notes: MSC-PA Pennsylvania Department of Environmental P ^A Concentrations (MSCs) for Organic/Inorganic	rotection - 2016 l Regulated Subst	Medium-Specific ances in Soil -	:												

Direct Contact - Non-Residential Surface Soil (0-2 ft). Lead value is the site-specific standard.

SHS-PA Pennsylvania Department of Environmental Protection - Statewide Health Standards - 2016

PADEP Non-Residential Statewide Health Standards (0-2 ft bgs) (Unsaturated Soil) в <u>6.5</u>^A Concentration exceeds the indicated standard.

15.2 Measured concentration did not exceed the indicated standard.

ND (0.50) Laboratory reporting limit was greater than the applicable standard.

- ND (2.4) (1.2) Analyte was not detected at a concentration greater than the laboratory reporting limit. The first value in parenthesis is the reporting limit. The method detection limit is shown in the second set of parenthesis. n/v No standard/guideline value in database - 2016 values have been populated for
- Evergreen Comprehensive List only. Criteria for other analytes may be available but may not be represented here. Parameter not analyzed / not available.

D

- Indicates an identified compound in an analysis that has been diluted. This flag alerts the data user to any differences between the concentrations reported in the two analyses. J Indicates an estimated value.
- milligrams per kilogram
- mg/kg µg/L Micrograms per liter.
- S.U. Standard Units. ft
- Feet LL Eurofins Lancaster Laboratories Environmental
- PIP Pace Analytical Services, Inc.
- Method detection limit is shown in second set of parentheses.

GHD 11109613 (2)

Historical Soil Analytical Results Summary - AOI 6 (0-2 feet) Philadelphia Refinery Operations, a Series of Evergreen Resources Group, LLC

Sample Location Sample Date				GP-1088-SS-3 26-Mar-08	GP-1088-SS-4 26-Mar-08	GP-1088-SS-5 26-Mar-08	GP-1088-SS-6 26-Mar-08	GP-1088-SS-7 26-Mar-08	GP-1088-SS-8 26-Mar-08	GP-201-SS-1 26-Mar-08	GP-201-SS-2 26-Mar-08	GP-201-SS-3 26-Mar-08	GP-201-SS-4 26-Mar-08	GP-201-SS-5 26-Mar-08	GP-201-SS-6 26-Mar-08
Sample ID				GP-1088-SS-3	GP-1088-SS-4	GP-1088-SS-5	GP-1088-SS-6	GP-1088-SS-7	GP-1088-SS-8	GP-201-SS-1	GP-201-SS-2	GP-201-SS-3	GP-201-SS-4	GP-201-SS-5	GP-201-SS-6
Sample Depth Sampling Company Laboratory Laboratory Work Order Laboratory Sample ID	Units	A MSC-PA	B SHS-PA	0 - 0.5 ft UNKNOWN LL 1083612 5315614	0 - 0.5 ft UNKNOWN LL 1083612 5315615	0 - 0.5 ft UNKNOWN LL 1083612 5315616	0 - 0.5 ft UNKNOWN LL 1083612 5315617	0 - 0.5 ft UNKNOWN LL 1083612 5315618	0 - 0.5 ft UNKNOWN LL 1083612 5315619	0 - 0.5 ft STANTEC LL 1083613 5315620	0 - 0.5 ft STANTEC LL 1083613 5315621	0 - 0.5 ft STANTEC LL 1083613 5315622	0 - 0.5 ft STANTEC LL 1083613 5315623	0 - 0.5 ft STANTEC LL 1083613 5315624	0 - 0.5 ft STANTEC LL 1083613 5315625
Volatile Organic Compounds						1	1	1		1	1	1	I	1	1
Benzene	mg/kg	290 ^A	0.5 ^B	-	-	-	-	-	-	-	-	-	-	-	-
1,2-Dibromoethane (EDB)	mg/kg	3.7 ^A	0.005 ^B	-	-	-	-	-	-	-	-	-	-	-	-
1,2-Dichloroethane (EDC)	mg/kg	86 ^A	0.5 ^B	-	-	-	-	-	-	-	-	-	-	-	-
Ethylbenzene	mg/kg	890 ^A	70 ^B	-	-	-	-	-	-	-	-	-	-	-	-
Isopropylbenzene (Cumene)	mg/kg	10000 ^A	2500 ^B	-	-	-	-	-	-	-	-	-	-	-	-
m, p-Xylenes	mg/kg	n/v	n/v	-	-	-	-	-	-	-	-	-	-	-	-
Methyl Tertiary Butyl Ether	mg/kg	8600 ^A	2 ^B	-	-	-	-	-	-	-	-	-	-	-	-
Naphthalene	mg/kg	760 ^A	25 ^B	-	-	-	-	-	-	-	-	-	-	-	-
o-Xylene (1,2-Dimethylbenzene)	mg/kg	n/v	n/v	-	-	-	-	-	-	-	-	-	-	-	-
Toluene	mg/kg	10000 ^A	100 ^B	-	-	-	-	-	-	-	-	-	-	-	-
1,2,4-Trimethylbenzene	mg/kg	560 ^A	35 ^B	-	-	-	-	-	-	-	-	-	-	-	-
1,3,5-Trimethylbenzene	mg/kg	10000 ^A	210 ^B	-	-	-	-	-	-	-	-	-	-	-	-
Xylenes, Total (Dimethylbenzene)	mg/kg	8000 ^A	1000 ^B	-	-	-	-	-	-	-	-	-	-	-	-
Semi-Volatile Organic Compounds															
Anthracene	mg/kg	190000 ^A	350 ^B	-	-	-	-	-	-	-	-	-	-	-	-
Benzo(a)Anthracene	mg/kg	130 ^A	130 ^B	-	-	-	-	-	-	-	-	-	-	-	-
Benzo(a)Pyrene	mg/kg	12 ^A	12 ^B	-	-	-	-	-	-	-	-	-	-	-	-
Benzo(b)Fluoranthene	mg/kg	76 ^A	76 ^B	-	-	-	-	-	-	-	-	-	-	-	-
Benzo(g,h,i)Perylene	mg/kg	190000 ^A	180 ^B	-	-	-	-	-	-	-	-	-	-	-	-
Chrysene	mg/kg	760 ^A	230 ^B	-	-	-	-	-	-	-	-	-	-	-	-
Fluorene	mg/kg	130000 ^A	3800 ^B	-	-	-	-	-	-	-	-	-	-	-	-
Naphthalene	mg/kg	760 ^A	25 ^B	-	-	-	-	-	-	-	-	-	-	-	-
Phenanthrene	mg/kg	190000 ^A	10000 ^B	-	-	-	-	-	-	-	-	-	-	-	-
Pyrene	mg/kg	96000 ^A	2200 ^B	-	-	-	-	-	-	-	-	-	-	-	-
Metals															
Lead	µg/L	n/v	n/v	-	-	-	-	-	-	-	-	-	-	-	-
Lead	mg/kg	2240 ^A	450 ^B	-	-	-	-	-	-	-	-	-	-	-	-
General Chemistry															
Moisture, Percent	%	n/v	n/v	-	-	-	-	-	-	-	-	-	-	-	-
pH, Laboratory Measured	S.U.	n/v	n/v	10.1 (0.0100)	10.3 (0.0100)	10.7 (0.0100)	11.6 (0.0100)	10.1 (0.0100)	10.5 (0.0100)	8.88 (0.01)	9.00 (0.01)	8.53 (0.01)	8.55 (0.01)	8.88 (0.01)	7.89 (0.01)
Solids, Percent	%	n/v	n/v	-	-	-	-		-	-		-	-	-	-

Notes:

MSC-PA	Pennsylvania Department of Environmental Protection - 2016 Medium-Specific
A	Concentrations (MSCs) for Organic/Inorganic Regulated Substances in Soil -
	Direct Contact - Non-Residential
	Surface Soil (0-2 ft). Lead value is the site-specific standard.
SHS-PA	Pennsylvania Department of Environmental Protection - Statewide Health
	Standards - 2016
В	PADEP Non-Residential Statewide Health Standards (0-2 ft bgs) (Unsaturated Soil)
6.5 ^A	Concentration exceeds the indicated standard.
15.2	Measured concentration did not exceed the indicated standard.
ND (0.50)	Laboratory reporting limit was greater than the applicable standard.
ND (2.4) (1.2)	Analyte was not detected at a concentration greater than the laboratory reporting limit.
	The first value in parenthesis is the reporting limit. The method detection limit
	is shown in the second set of parenthesis.
n/v	No standard/guideline value in database - 2016 values have been populated for
	Evergreen Comprehensive List only. Criteria for other analytes may be available but
	may not be represented here.
-	Parameter not analyzed / not available.
D	Indicates an identified compound in an analysis that has been diluted. This flag
	alerts the data user to any differences between the concentrations reported in the
	two analyses.
J	Indicates an estimated value.
mg/kg	milligrams per kilogram
µg/L	Micrograms per liter.
S.U.	Standard Units.
ft	Feet
LL	Eurofins Lancaster Laboratories Environmental
PIP	Pace Analytical Services, Inc.
	Method detection limit is shown in second set of parentheses.

GHD 11109613 (2)

Historical Soil Analytical Results Summary - AOI 6 (0-2 feet) Philadelphia Refinery Operations, a Series of Evergreen Resources Group, LLC

Sample Location Sample Date				GP-201-SS-7 26-Mar-08	GP676-1 28-Apr-16	GP676-2 28-Apr-16	GP676-3 28-Apr-16	GP676-4 28-Apr-16	GP676-5 28-Apr-16	GP676-6 28-Apr-16	GP676-7 28-Apr-16	GP676-8 28-Apr-16	GP676-9 28-Apr-16	SR-31-1 7-Jun-11	SR-31-2 7-Jun-11
Sample ID				GP-201-SS-7	20160428	20160428	20160428	20160428	20160428	20160428	20160428	20160428	20160428	SR-31-1(1.3-1.8)	SR-31-2(0.9-1.4)
Sample Depth Sampling Company Laboratory				0 - 0.5 ft STANTEC LL	1.5 ft STANTEC LL	1.3 - 1.8 ft UNKNOWN LL	0.9 - 1.4 ft UNKNOWN LL								
Laboratory Work Order		Α	В	1083613	1655906	1655906	1655906	1655906	1655906	1655906	1655906	1655906	1655906	1250778	1250778
Laboratory Sample ID	Units	MSC-PA	SHS-PA	5315626	8358306	8358307	8358308	8358309	8358310	8358311	8358312	8358313	8358314	6311678	6311679
Volatile Organic Compounds															
Benzene	mg/kg	290 ^A	0.5 ^B	-	0.051 J (0.0005)	ND (0.064) (0.0005)	ND (0.13) (0.0005)	ND (0.0007) (0.0005)	ND (0.031) (0.0005)	ND (0.033) (0.0005)	ND (0.035) (0.0005)	ND (0.033) (0.0005)	ND (0.038) (0.0005)	0.044 (0.0005)	0.002 J (0.0005)
1,2-Dibromoethane (EDB)	mg/kg	3.7 ^A	0.005 ^B	-	-	-	-	-	-	-	-	-	-	ND (0.003) (0.001)	ND (0.002) (0.001)
1,2-Dichloroethane (EDC)	mg/kg	86 ^A	0.5 ^B	-	-	-	-	-	-	-	-	-	-	ND (0.003) (0.001)	ND (0.002) (0.001)
Ethylbenzene	mg/kg	890 ^A	70 ^B	-	-	-	-	-	-	-	-	-	-	0.015 (0.001)	ND (0.002) (0.001)
Isopropylbenzene (Cumene)	mg/kg	10000 ^A	2500 ^B	-	-	-	-	-	-	-	-	-	-	0.006 J (0.001)	ND (0.002) (0.001)
m, p-Xylenes	mg/kg	n/v	n/v	-	-	-	-	-	-	-	-	-	-	-	-
Methyl Tertiary Butyl Ether	mg/kg	8600 ^A	2 ^B	-	-	-	-	-	-	-	-	-	-	ND (0.001) (0.0005)	ND (0.0009) (0.0005)
Naphthalene	mg/kg	760 ^A	25 ^B	-	0.37 J (0.001)	ND (0.13) (0.001)	ND (0.25) (0.001)	ND (0.001) (0.001)	0.094 J (0.001)	0.14 J (0.001)	ND (0.070) (0.001)	ND (0.067) (0.001)	ND (0.077) (0.001)	0.008 J (0.001)	0.006 J (0.001)
o-Xylene (1,2-Dimethylbenzene)	mg/kg	n/v	n/v	-	-	-	-	-	-	-	-	-	-	-	-
Toluene	mg/kg	10000 ^A	100 ^B	-	-	-	-	-	-	-	-	-	-	0.041 (0.001)	0.002 J (0.001)
1,2,4-Trimethylbenzene	mg/kg	560 ^A	35 ^B	-	-	-	-	-	-	-	-	-	-	0.038 (0.001)	ND (0.002) (0.001)
1,3,5-Trimethylbenzene	mg/kg	10000 ^A	210 ^B	-	-	-	-	-	-	-	-	-	-	0.150 (0.001)	ND (0.002) (0.001)
Xylenes, Total (Dimethylbenzene)	mg/kg	8000 ^A	1000 ^B	-	-	-	-	-	-	-	-	-	-	0.110 (0.001)	0.002 J (0.001)
Semi-Volatile Organic Compounds															
Anthracene	mg/kg	190000 ^A	350 ^B	-	0.50 (0.003)	8.0 (0.003)	0.42 (0.003)	1.2 (0.003)	0.67 (0.003)	0.29 (0.003)	1.0 J (0.003)	0.97 (0.003)	1.9 (0.003)	0.089 (0.00067)	0.380 (0.00067)
Benzo(a)Anthracene	mg/kg	130 ^A	130 ^B	-	0.93 (0.003)	9.3 (0.003)	0.81 (0.003)	2.9 (0.003)	1.9 (0.003)	0.68 (0.003)	0.83 J (0.003)	1.5 (0.003)	0.61 J (0.003)	0.540 (0.00033)	2.9 (0.00033)
Benzo(a)Pyrene	mg/kg	12 ^A	12 ^B	-	0.93 (0.003)	5.2 (0.003)	0.87 (0.003)	3.8 (0.003)	1.9 (0.003)	0.56 (0.003)	1.5 (0.003)	0.86 (0.003)	0.59 J (0.003)	0.640 (0.00033)	2.8 (0.00033)
Benzo(b)Fluoranthene	mg/kg	76 ^A	76 ^B	-	1.1 (0.003)	2.6 (0.003)	1.2 (0.003)	4.2 (0.003)	2.2 (0.003)	0.40 (0.003)	0.61 J (0.003)	0.46 (0.003)	0.66 J (0.003)	0.570 (0.00027)	2.6 (0.00027)
Benzo(g,h,i)Perylene	mg/kg	190000 ^A	180 ^B	-	0.75 (0.003)	1.7 (0.003)	0.66 (0.003)	2.9 (0.003)	1.3 (0.003)	0.25 (0.003)	1.2 (0.003)	0.36 (0.003)	0.67 J (0.003)	0.830 (0.0020)	3.3 (0.0020)
Chrysene	mg/kg	760 ^A	230 ^B	-	0.99 (0.003)	15 (0.003)	0.99 (0.003)	3.0 (0.003)	2.0 (0.003)	1.2 (0.003)	3.1 (0.003)	2.2 (0.003)	0.99 J (0.003)	0.890 (0.0030)	4.0 (0.0030)
Fluorene	mg/kg	130000 ^A	3800 ^B	-	0.24 (0.003)	9.8 (0.003)	0.39 (0.003)	0.46 (0.003)	0.27 (0.003)	0.28 (0.003)	1.0 J (0.003)	0.85 (0.003)	3.1 (0.003)	0.160 J (0.0033)	0.370 J (0.0033)
Naphthalene	mg/kg	760 ^A	25 ^B	-	-	-	-	-	-	-	-	-	-	-	-
Phenanthrene	mg/kg	190000 ^A	10000 ^B	-	1.3 (0.003)	38 (0.003)	1.0 (0.003)	3.4 (0.003)	1.3 (0.003)	1.3 (0.003)	4.0 (0.003)	3.4 (0.003)	13 (0.003)	0.490 (0.0020)	1.4 (0.0020)
Pyrene	mg/kg	96000 ^A	2200 ^B	-	1.2 (0.003)	18 (0.003)	1.0 (0.003)	3.1 (0.003)	2.0 (0.003)	1.4 (0.003)	3.7 (0.003)	2.8 (0.003)	2.6 (0.003)	1.2 (0.0033)	5.0 (0.0033)
Metals	·														
Lead	µg/L	n/v	n/v	-	-	-	-	-	-	-	-	-	-	-	-
Lead	mg/kg	2240 ^A	450 ^B	-	-	-	-	-	-	-	-	-	-	1120^B (0.220)	898 ^B (0.220)
General Chemistry															
Moisture, Percent	%	n/v	n/v	-	26.4 (0.50)	17.3 (0.50)	32.3 (0.50)	28.9 (0.50)	17.9 (0.50)	18.6 (0.50)	16.9 (0.50)	23.2 (0.50)	22.8 (0.50)	31.1 (0.50)	37.4 (0.50)
pH, Laboratory Measured	S.U.	n/v	n/v	7.99 (0.01)	-	-	-	-	-	-	-	-	-	-	-
Solids, Percent	%	n/v	n/v	-	-	-	-	-	-	-	-	-	-	-	-

Notes:

MSC-PA	Pennsylvania Department of Environmental Protection - 2016 Medium-Specific
A	Concentrations (MSCs) for Organic/Inorganic Regulated Substances in Soil -
	Direct Contact - Non-Residential
	Surface Soil (0-2 ft). Lead value is the site-specific standard.
SHS-PA	Pennsylvania Department of Environmental Protection - Statewide Health
	Standards - 2016
В	PADEP Non-Residential Statewide Health Standards (0-2 ft bgs) (Unsaturated Soil)
6.5 ^A	Concentration exceeds the indicated standard.
15.2	Measured concentration did not exceed the indicated standard.
ND (0.50)	Laboratory reporting limit was greater than the applicable standard.
ND (2.4) (1.2)	Analyte was not detected at a concentration greater than the laboratory reporting limit.
	The first value in parenthesis is the reporting limit. The method detection limit
	is shown in the second set of parenthesis.
n/v	No standard/guideline value in database - 2016 values have been populated for
	Evergreen Comprehensive List only. Criteria for other analytes may be available but
	may not be represented here.
-	Parameter not analyzed / not available.
D	Indicates an identified compound in an analysis that has been diluted. This flag
	alerts the data user to any differences between the concentrations reported in the
	two analyses.
J	Indicates an estimated value.
mg/kg	milligrams per kilogram
µg/L	Micrograms per liter.
S.U.	Standard Units.
ft	Feet
LL	Eurofins Lancaster Laboratories Environmental
PIP	Pace Analytical Services, Inc.
	Method detection limit is shown in second set of parentheses.

Historical Soil Analytical Results Summary - AOI 6 (0-2 feet) Philadelphia Refinery Operations, a Series of Evergreen Resources Group, LLC

Sample Date				SR-31-3	SR-31-4	SR-31-5	SR-31-6	SR-31-7	SR-31-8	SR-31-9
						7-Juli-11				
				SR-31-3(0.8-1.3)	SR-31-4(0.9-1.4)	SR-31-5(0.8-1.3)	SR-31-6(1.0-1.5)	SR-31-7(1.1-1.6)	SR-31-8(0.5-1.0)	SR-31-9(1.2-1.7)
Sample Depth Sampling Company Laboratory Laboratory Work Order Laboratory Sample ID	Units	A MSC-PA	B SHS-PA	0.8 - 1.3 ft UNKNOWN LL 1250778 6311680	0.9 - 1.4 ft UNKNOWN LL 1250778 6311681	0.8 - 1.3 ft UNKNOWN LL 1250778 6311682	1 - 1.5 ft UNKNOWN LL 1250778 6311683	1.1 - 1.6 ft UNKNOWN LL 1250778 6311684	0.5 - 1 ft UNKNOWN LL 1250778 6311685	1.2 - 1.7 ft UNKNOWN LL 1250778 6311686
olatile Organic Compounds			-							1
Benzene	mg/kg	290 ^A	0.5 ^B	0.003 J (0.0005)	0.001 J (0.0005)	ND (0.065) (0.0005)	ND (0.045) (0.0005)	0.001 J (0.0005)	0.005 J (0.0005)	ND (0.0006) (0.000
,2-Dibromoethane (EDB)	mg/kg	3.7 ^A	0.005 ^B	ND (0.002) (0.001)	ND (0.002) (0.001)	ND (0.130) (0.001)	<i>ND (0.089)</i> (0.001)	ND (0.002) (0.001)	ND (0.001) (0.001)	ND (0.001) (0.001)
,2-Dichloroethane (EDC)	mg/kg	86 ^A	0.5 ^B	ND (0.002) (0.001)	ND (0.002) (0.001)	ND (0.130) (0.001)	ND (0.089) (0.001)	ND (0.002) (0.001)	ND (0.001) (0.001)	ND (0.001) (0.001)
thylbenzene	mg/kg	890 ^A	70 ^B	ND (0.002) (0.001)	ND (0.002) (0.001)	ND (0.130) (0.001)	ND (0.089) (0.001)	ND (0.002) (0.001)	ND (0.001) (0.001)	ND (0.001) (0.001)
sopropylbenzene (Cumene)	mg/kg	10000 ^A	2500 ^B	ND (0.002) (0.001)	ND (0.002) (0.001)	ND (0.130) (0.001)	ND (0.089) (0.001)	ND (0.002) (0.001)	ND (0.001) (0.001)	ND (0.001) (0.001)
n, p-Xylenes	mg/kg	n/v	n/v	-	-	-	-	-	-	-
Nethyl Tertiary Butyl Ether	mg/kg	8600 ^A	2 ^B	ND (0.0008) (0.0005)	ND (0.0008) (0.0005)	ND (0.065) (0.0005)	ND (0.045) (0.0005)	ND (0.0009) (0.0005)	ND (0.0007) (0.0005)	ND (0.0006) (0.000
laphthalene	mg/kg	760 ^A	25 ^B	ND (0.002) (0.001)	ND (0.002) (0.001)	0.200 J (0.001)	ND (0.089) (0.001)	ND (0.002) (0.001)	ND (0.001) (0.001)	ND (0.001) (0.001
-Xylene (1,2-Dimethylbenzene)	mg/kg	n/v	n/v	-	-	-	-	-	-	-
oluene	mg/kg	10000 ^A	100 ^B	0.002 J (0.001)	ND (0.002) (0.001)	ND (0.130) (0.001)	ND (0.089) (0.001)	ND (0.002) (0.001)	0.002 J (0.001)	ND (0.001) (0.001
,2,4-Trimethylbenzene	mg/kg	560 ^A	35 ^B	0.002 J (0.001)	ND (0.002) (0.001)	ND (0.130) (0.001)	ND (0.089) (0.001)	ND (0.002) (0.001)	ND (0.001) (0.001)	ND (0.001) (0.001
,3,5-Trimethylbenzene	mg/kg	10000 ^A	210 ^B	ND (0.002) (0.001)	ND (0.002) (0.001)	ND (0.130) (0.001)	ND (0.089) (0.001)	ND (0.002) (0.001)	ND (0.001) (0.001)	ND (0.001) (0.001
(ylenes, Total (Dimethylbenzene)	mg/kg	8000 ^A	1000 ^B	ND (0.002) (0.001)	ND (0.002) (0.001)	ND (0.130) (0.001)	ND (0.089) (0.001)	ND (0.002) (0.001)	ND (0.001) (0.001)	ND (0.001) (0.001
emi-Volatile Organic Compounds										
Inthracene	mg/kg	190000 ^A	350 ^B	0.180 (0.00067)	0.034 J (0.00067)	0.110 (0.00067)	0.260 (0.00067)	0.100 (0.00067)	0.050 J (0.00067)	0.140 (0.00067)
Benzo(a)Anthracene	mg/kg	130 ^A	130 ^B	0.730 (0.00033)	0.190 (0.00033)	0.340 (0.00033)	2.0 (0.00033)	0.380 (0.00033)	0.370 (0.00033)	0.580 (0.00033)
Benzo(a)Pyrene	mg/kg	12 ^A	12 ^B	0.810 (0.00033)	0.220 (0.00033)	0.420 (0.00033)	1.8 (0.00033)	0.440 (0.00033)	0.470 (0.00033)	0.770 (0.00033)
Benzo(b)Fluoranthene	mg/kg	76 ^A	76 ^B	0.620 (0.00027)	0.190 (0.00027)	0.350 (0.00027)	1.6 (0.00027)	0.360 (0.00027)	0.380 (0.00027)	0.680 (0.00027)
Benzo(g,h,i)Perylene	mg/kg	190000 ^A	180 ^B	0.950 (0.0020)	0.330 (0.0020)	0.610 (0.0020)	2.2 (0.0020)	0.590 (0.0020)	0.620 (0.0020)	1.0 (0.0020)
Chrysene	mg/kg	760 ^A	230 ^B	1.2 (0.0030)	0.360 (0.0030)	0.680 (0.0030)	2.5 (0.0030)	0.570 (0.0030)	0.590 (0.0030)	1.0 (0.0030)
	mg/kg	130000 ^A	3800 ^B	ND (0.190) (0.0033)	ND (0.100) (0.0033)	ND (0.120) (0.0033)	0.180 J (0.0033)	ND (0.110) (0.0033)	ND (0.093) (0.0033)	0.120 J (0.0033)
luorene			B		-	-	-	-	-	-
luorene laphthalene	mg/kg	760 ^A	25 ^B	-						
luorene aphthalene henanthrene	mg/kg mg/kg	760 ^A 190000 ^A	25 ^⁵ 10000 [₿]	0.660 (0.0020)	0.130 J (0.0020)	0.250 (0.0020)	1.0 (0.0020)	0.420 (0.0020)	0.200 (0.0020)	0.480 (0.0020)
uorene aphthalene henanthrene yrene	mg/kg mg/kg mg/kg	760 ^A 190000 ^A 96000 ^A	25 ^⁵ 10000 ^B 2200 ^B	0.660 (0.0020)	0.130 J (0.0020) 0.460 (0.0033)	0.250 (0.0020) 0.730 (0.0033)	1.0 (0.0020) 3.6 (0.0033)	0.420 (0.0020) 0.690 (0.0033)	0.200 (0.0020) 0.660 (0.0033)	0.480 (0.0020)
uorene aphthalene henanthrene yrene etals	mg/kg mg/kg mg/kg	760 ^A 190000 ^A 96000 ^A	25 ^B 10000 ^B 2200 ^B	0.660 (0.0020) 1.5 (0.0033)	0.130 J (0.0020) 0.460 (0.0033)	0.250 (0.0020) 0.730 (0.0033)	1.0 (0.0020) 3.6 (0.0033)	0.420 (0.0020) 0.690 (0.0033)	0.200 (0.0020) 0.660 (0.0033)	0.480 (0.0020) 1.2 (0.0033)
luorene laphthalene henanthrene yrene letals ead	mg/kg mg/kg mg/kg	760 ^A 190000 ^A 96000 ^A	25 ^B 10000 ^B 2200 ^B	0.660 (0.0020) 1.5 (0.0033)	0.130 J (0.0020) 0.460 (0.0033)	0.250 (0.0020) 0.730 (0.0033)	1.0 (0.0020) 3.6 (0.0033)	0.420 (0.0020) 0.690 (0.0033)	0.200 (0.0020) 0.660 (0.0033)	0.480 (0.0020) 1.2 (0.0033)
luorene aphthalene henanthrene yrene letals ead	mg/kg mg/kg μg/L mg/kg	760 ^A 190000 ^A 96000 ^A n/v	25 ^B 10000 ^B 2200 ^B n/v	0.660 (0.0020) 1.5 (0.0033)	0.130 J (0.0020) 0.460 (0.0033)	0.250 (0.0020) 0.730 (0.0033)	1.0 (0.0020) 3.6 (0.0033)	0.420 (0.0020) 0.690 (0.0033)	0.200 (0.0020) 0.660 (0.0033)	0.480 (0.0020) 1.2 (0.0033)
luorene aphthalene henanthrene yrene letals ead ead eneral Chemistry	mg/kg mg/kg μg/L μg/kg	760 ^A 190000 ^A 96000 ^A n/v 2240 ^A	25 ^B 10000 ^B 2200 ^B n/v 450 ^B	0.660 (0.0020) 1.5 (0.0033) - 774 ^B (0.220)	0.130 J (0.0020) 0.460 (0.0033) - 2210 ^B (0.220)	0.250 (0.0020) 0.730 (0.0033) - 1890 ⁸ (0.220)	1.0 (0.0020) 3.6 (0.0033) - 780 ⁸ (0.220)	0.420 (0.0020) 0.690 (0.0033) - 1370 ^B (0.220)	0.200 (0.0020) 0.660 (0.0033) - 1560 ^B (0.220)	0.480 (0.0020) 1.2 (0.0033) - 830 ⁸ (0.220)
luorene aphthalene henanthrene yrene letals ead ead eneral Chemistry loisture. Percent	mg/kg mg/kg µg/L mg/kg	760 ^A 190000 ^A 96000 ^A 2240 ^A	25 ^B 10000 ^B 2200 ^B n/v 450 ^B		0.130 J (0.0020) 0.460 (0.0033) - 2210 ^B (0.220) 36.1 (0.50)	0.250 (0.0020) 0.730 (0.0033) - 1890 ⁸ (0.220) 46.5 (0.50)	1.0 (0.0020) 3.6 (0.0033) - 780 ⁸ (0.220) 28.1 (0.50)	0.420 (0.0020) 0.690 (0.0033) - 1370 ^B (0.220) 36.8 (0.50)	0.200 (0.0020) 0.660 (0.0033) - 1560 ^B (0.220) 28.3 (0.50)	0.480 (0.0020) 1.2 (0.0033) - 830 ⁶ (0.220) 25.4 (0.50)
uorene aphthalene henanthrene etals ead eneral Chemistry oisture, Percent 1, Laboratory Measured	mg/kg mg/kg µg/L mg/kg % %	760 ^A 190000 ^A 96000 ^A 2240 ^A n/v n/v	25 ⁸ 10000 ^B 2200 ^B n/v 450 ^B	- 774 ^B (0.220) 33.3 (0.50)	0.130 J (0.0020) 0.460 (0.0033) - 2210 ^B (0.220) 36.1 (0.50)	0.250 (0.0020) 0.730 (0.0033) - 1890 ⁸ (0.220) 46.5 (0.50) -	1.0 (0.0020) 3.6 (0.0033) - 780 ⁸ (0.220) 28.1 (0.50)	0.420 (0.0020) 0.690 (0.0033) - 1370 ^B (0.220) 36.8 (0.50)	0.200 (0.0020) 0.660 (0.0033) - 1560 ^B (0.220) 28.3 (0.50)	0.480 (0.0020) 1.2 (0.0033) - 830 ^B (0.220) 25.4 (0.50) -

	Surface Soil (0-2 ft). Lead value is the site-specific standard.
SHS-PA	Pennsylvania Department of Environmental Protection - Statewide Health
в	PADEP Non-Residential Statewide Health Standards (0-2 ft bgs) (Unsaturated Soil)
<u>6.5</u> ^A	Concentration exceeds the indicated standard.
15.2	Measured concentration did not exceed the indicated standard.
ND (0.50)	Laboratory reporting limit was greater than the applicable standard.
ND (2.4) (1.2)	Analyte was not detected at a concentration greater than the laboratory reporting limit.
	The first value in parenthesis is the reporting limit. The method detection limit
	is shown in the second set of parenthesis.
n/v	No standard/guideline value in database - 2016 values have been populated for
	Evergreen Comprehensive List only. Criteria for other analytes may be available but
	may not be represented here.
-	Parameter not analyzed / not available.
D	Indicates an identified compound in an analysis that has been diluted. This flag
	alerts the data user to any differences between the concentrations reported in the
	two analyses.
J	Indicates an estimated value.
mg/kg	milligrams per kilogram
µg/L	Micrograms per liter.
S.U.	Standard Units.
ft	Feet
LL	Eurofins Lancaster Laboratories Environmental
PIP	Pace Analytical Services, Inc.
	Method detection limit is shown in second set of parentheses.

Historical Soil Analytical Results Summary - AOI 6 (>2 feet) Philadelphia Refinery Operations, a Series of Evergreen Resources Group, LLC

Comple Leastion	i i	Í.	i.		AOI6 BH 42 402		AOIE BH 42 406	A OIE BH 42 407	A OIG BU 42 409	AOI6 BH 42 400	AOI6 BH 43 440			AOI6 BH 42 447		AOI6 BH 43 434	AOI6 BH 42 422
Sample Location				AUI0 BH-12-101	AUI0 BH-12-102	3-Dec-12	AUI0 BH-12-100 3-Dec-12	AUI0 BH-12-107 3-Dec-12	3-Dec-12	3-Dec-12	AUI0 BH-12-110 3-Dec-12	3-Dec-12	AUI0 BH-12-110 3-Dec-12	3-Dec-12	AUI0 BH-12-110	AUI0 BH-12-121 3-Dec-12	AUI0 BH-12-122 3-Dec-12
Sample Date				4-Dec-12	4-Dec-12	3-Dec-12	3-Dec-12	3-Dec-12	3-Dec-12	3-Dec-12	3-Dec-12	3-Dec-12	3-Dec-12	3-Dec-12	4-Dec-12	3-Dec-12	3-Dec-12
Sample ID				BH-12-101_2-3'	BH-12-102_2-2.5'	BH-12-105_2-2.5'	BH-12-106_2-2.5'	BH-12-107_2.5-3'	BH-12-108_2-2.5'	BH-12-109_3'	BH-12-110_3-3.5'	BH-12-114_3-3.5'	BH-12-116_3.5'	BH-12-117_2-2.5'	BH-12-118_2-2.5'	BH-12-121_2-2.5'	BH-12-122_2.5-3'
Sample Depth				2-3ft	2 - 2 5 ft	2-25#	2-25 ft	25-3ft	2-25#	25-3ft	3 - 3 5 ft	3-35#	3-35ft	2-25 ft	2 - 2 5 ft	2 - 2 5 ft	25-3#
Sampling Company				UNKNOWN		UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN
Laboratory				ACCUTEST	ACCUTEST	ACCUITEST	ACCUTEST	ACCUTEST	ACCUTEST	ACCUTEST	ACCUTEST	ACCUTEST	ACCUTEST	ACCUTEST	ACCUTEST	ACCUTEST	ACCUTEST
Laboratory Work Order		Δ	в	JB22962	JB22962	JB22822	JB22822	JB22822	JB22822	JB22822	JB22822	JB22822	JB22822	JB22822	JB22962	JB22822	JB22822
Laboratory Sample ID	Units	MSC-PA	SHS-PA	IB22962-19	IB22962-18	IB22822-7	IB22822-9	IB22822-4	IB22822-13	IB22822-16	IB22822-5	IB22822-14	IB22822-17	IB22822-19	IB22962-17	IB22822-21	IB22822-20
	onito	MOOTA	ONOTA	OBLIGGE 15	UDLLUUL IU	UDILUIL I	UDILUIL U		OBELOEE 10		0011011 0	UDILUII 14	ODIECTE II		0022002 11		
Valatila Organia Compounda		1	1						1	1			1	1			
Benzene	ma/ka	220 ^A	0.5 ^B	0 121 (0 0075)	ND (0.13) (0.016)	E 24 ^B (0.042)	0.0011 (0.00011)	0.00066 1 (0.00013)	44.2 ^B (0.029)	0.476 (0.0073)	4 00^B (0.042)	0.245 (0.0070)	0.0680.(0.0066)	0 157 (0 0082)	0.00051 1 (0.00012)	0.0100 (0.00010)	4 93 ^B (0.0000)
Cyclobexane	mg/kg	10000 ^A	0.5 6000 ^B	0.121 (0.0073)	-	<u> </u>	-	0.00000 3 (0.00013)	<u> </u>	0.470 (0.0073)	<u>4.09</u> (0.042)	0.243 (0.0070)	0.0000 (0.0000)	0.137 (0.0002)	0.000313 (0.00012)	-	<u>1.03</u> (0.0000)
1 2-Dibromoethane (EDB)	mg/kg	10000	0.005 ^B	ND (0.063) (0.0080)	ND (0 13) (0 017)	ND (0.36) (0.045)	ND (0.00094) (0.00012)	ND (0.0011) (0.00014)	ND (0 23) (0 030)	ND (0.061) (0.0078)	ND (0.35) (0.045)	ND (0.059) (0.0075)	ND (0.056) (0.0071)	ND (0.069) (0.0088)	ND (0.00099) (0.00013)	ND (0.00084) (0.00011)	ND (0.056) (0.0071)
1 2-Dichloroethane (EDC)	mg/kg	4.5 98 ^A	0.005	ND (0.063) (0.0086)	ND (0.13) (0.018)	ND (0.36) (0.048)	ND (0.00094) (0.00013)	ND (0.0011) (0.00014)	ND (0.23) (0.032)	ND (0.061) (0.0082)	ND (0.35) (0.048)	ND (0.059) (0.0080)	ND (0.056) (0.0075)	ND (0.069) (0.0093)	ND (0.00099) (0.00013)	ND (0.00084) (0.00011)	ND (0.056) (0.0075)
Ethylbenzene	mg/kg	1000 ^A	70 ^B	0.0679 (0.017)	ND (0.13) (0.035)	0.976 (0.094)	ND (0.00094) (0.00025)	ND (0.0011) (0.00014)	100 ^B (0.61)	0 153 (0 016)	0 712 (0 093)	0 107 (0 016)	0.0714 (0.015)	0.0258 J (0.018)	ND (0.00099) (0.00026)	0.00029.1(0.00022)	0 191 (0 015)
Isopropylbenzene (Cumene)	mg/kg	10000 ^A	2500 ^B	0.382 (0.0047)	1 18 (0 0098)	5 76 (0.026)	0.00068.1(0.000070)	ND (0.0053) (0.000079)	58 7 (0 17)	1.55 (0.0045)	23.1 (0.026)	0.387 (0.0044)	0.524 (0.0041)	0 797 (0 0051)	0.00031.1(0.000074)	0.0017.1(0.000062)	0 720 (0 0041)
Methyl Tertiary Butyl Ether	ma/ka	9900 ^A	2000	ND (0.063) (0.015)	ND (0.13) (0.031)	ND (0.36) (0.084)	ND (0.00094) (0.00022)	ND (0.0011) (0.00025)	ND (0.23) (0.055)	ND (0.061) (0.014)	ND (0.35) (0.083)	ND (0.059) (0.014)	ND (0.056) (0.013)	ND (0.069) (0.016)	ND (0.00099) (0.00023)	ND (0.00084) (0.00020)	ND (0.056) (0.013)
Hexane	ma/ka	10000 ^A	5600 ^B	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Naphthalene	ma/ka	190000 ^A	25 ^B	0.0387 J (0.0077)	ND (0.66) (0.016)	0.966 J (0.043)	0.0020 J (0.00011)	ND (0.0053) (0.00013)	65.2 ^B (0.28)	0.512 (0.0074)	2,49 (0,043)	0.197 J (0.0072)	0.161 J (0.0068)	0.0757 J (0.0084)	ND (0.0050) (0.00012)	0.0018 J (0.00010)	0.500 (0.0068)
Butylbenzene, Sec-	ma/ka	10000 ^A	2800 ^B	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Butylbenzene, Tert-	ma/ka	10000 ^A	2200 ^B	- I	-	-	-	-	-	-	- I	-	-	-	-	-	-
Toluene	ma/ka	10000 ^A	100 ^B	0.0940 (0.0067)	0.0547 J (0.014)	0.330 J (0.037)	ND (0.00094) (0.000098)	ND (0.0011) (0.00011)	5,26 (0.025)	0.0993 (0.0064)	0.889 (0.037)	0,224 (0.0062)	0,100 (0.0058)	0.0813 (0.0072)	0.00026 J (0.00010)	0.0020 (0.000088)	0.261 (0.0058)
1.2.4-Trimethylbenzene	ma/ka	640 ^A	35 ^B	0.0245 J (0.013)	ND (0.66) (0.027)	3.11 (0.074)	ND (0.0047) (0.00020)	ND (0.0053) (0.00022)	455 ^B (2 0)	0.121 J (0.013)	4.23 (0.074)	0.131 J (0.012)	0.135 J (0.012)	0.0555 J (0.014)	ND (0.0050) (0.00021)	0.0022 J (0.00018)	0.291 (0.012)
1.3.5-Trimethylbenzene	ma/ka	10000 ^A	210 ^B	ND (0.32) (0.010)	ND (0.66) (0.021)	1.01 J (0.057)	ND (0.0047) (0.00015)	ND (0.0053) (0.00017)	191 (0.37)	0.0553 J (0.0098)	1.13 J (0.057)	0.0385 J (0.0094)	0.0469 J (0.0089)	ND (0.35) (0.011)	ND (0.0050) (0.00016)	0.0018 J (0.00013)	0.105 J (0.0089)
Xylenes, Total (Dimethylbenzene)	ma/ka	9100 ^A	1000 ^B	0.276 (0.0088)	0.0965 J (0.018)	4.24 (0.050)	ND (0.00094) (0.00013)	ND (0.0011) (0.00015)	675 (0.32)	0.170 (0.0085)	2.72 (0.049)	0.612 (0.0082)	0.245 (0.0077)	0.0616 J (0.0096)	ND (0.00099) (0.00014)	0.00097 (0.00012)	0.407 (0.0077)
Veletile Commis Commence de (CM/2014)		5100	1000			(0.000)			0.0 (0.02)		()						
1.2 Dibromoethane (EDR)	ma/ka	4 0 ^A	o oor ^B					1					1				
1,2-Dibiomoethane (EDB)	nig/kg	4.3	0.005-	-	-	-	-		-	-		-	-	-	-	-	-
Semi-Volatile Organic Compounds							1				-						
Acenaphthene	mg/kg	190000 ^A	4700 ⁸	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Anthracene	mg/kg	190000 ^A	350 ⁸	0.0217 J (0.013)	1.02 (0.017)	0.746 (0.012)	2.34 (0.012)	1.97 (0.012)	2.23 (0.011)	3.49 (0.025)	8.81 (0.52)	0.310 (0.013)	0.142 (0.012)	0.262 (0.014)	0.151 (0.012)	3.43 (0.11)	0.625 (0.011)
Benzo(a)Anthracene	mg/kg	190000 ^A	430 ^B	0.0907 (0.012)	0.276 (0.016)	1.85 (0.011)	10.9 (0.23)	4.21 (0.11)	6.04 (0.10)	10.9 (0.23)	22.3 (0.48)	0.699 (0.013)	0.233 (0.011)	0.436 (0.013)	0.608 (0.012)	9.60 (0.10)	1.05 (0.010)
Benzo(a)Pyrene	mg/kg	190000 ^A	46 ⁸	0.112 (0.011)	0.246 (0.015)	1.55 (0.011)	11.6 (0.22)	3.59 (0.11)	5.93 (0.097)	10.5 (0.22)	20.6 (0.45)	0.653 (0.012)	0.269 (0.011)	0.534 (0.012)	0.602 (0.011)	9.39 (0.098)	1.06 (0.0097)
Benzo(b)Fluoranthene	mg/kg	190000	170 [°]	0.122 (0.012)	0.376 (0.016)	1.48 (0.012)	14.0 (0.24)	3.49 (0.12)	8.41 (0.11)	13.9 (0.24)	24.3 (0.49)	0.615 (0.013)	0.328 (0.012)	0.446 (0.013)	0.616 (0.012)	9.66 (0.11)	1.21 (0.011)
Benzo(g,h,i)Perylene	mg/kg	190000	180 ^B	0.0816 (0.014)	0.304 (0.018)	1.15 (0.013)	7.06 (0.26)	2.53 (0.013)	4.07 (0.12)	6.29 (0.027)	11.9 (0.55)	0.537 (0.014)	0.302 (0.013)	0.488 (0.014)	0.343 (0.013)	5.39 (0.12)	0.764 (0.012)
Benzo(k)Fluoranthene	mg/kg	190000	610 ^b	-	-	-	-		-	-				-	-	-	-
	mg/kg	190000^	190 ⁸	-	-	-	-		-	-			-	-	-	-	-
Bis(2-Ethylhexyl) Phthalate	mg/kg	10000^	130	-	-	-	-		-	-	-			-	-	-	-
Di-n-Butyl Phthalate	mg/kg	10000*	49005	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chrysene	mg/kg	190000^	230 ⁸	0.0917 (0.012)	0.400 (0.017)	1.82 (0.012)	11.1 (0.24)	3.92 (0.12)	7.37 (0.11)	13.7 (0.24)	22.0 (0.50)	0.872 (0.013)	0.290 (0.012)	0.664 (0.013)	0.599 (0.012)	10.5 (0.11)	1.28 (0.011)
Dibenz(A,H)Anthracene	mg/kg	190000*	270 ⁵	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dietnyi Phthalate	mg/kg	10000*	9300 ⁵	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2,4-Dimethylphenol	mg/kg	10000*	230 ⁻	· ·	-	-	-	-	-	-			-	-	•	-	•
2,4-Dinitrophenoi	mg/kg	190000 ⁻¹	23-	-	-		-		-						•	-	-
Fluoranimene	mg/kg	190000	3200	-	- E C4 (0.004)	-	-	-	-	-	-	-	-	-	-	-	-
Fluorene	mg/kg	190000 ⁻¹	3800-	0.0199 J (0.012)	5.64 (0.061)	2.30 (0.011)	0.010 (0.012)	0.646 (0.011)	15.8 (0.10)	0.96 (0.023)	11.4 (0.46)	0.177 (0.013)	0.120 (0.011)	0.0701 (0.013)	0.0297 J (0.012)	2.69 (0.010)	1.30 (0.010)
2-Methylnanhthalene	mg/kg	190000	22000 ⁻	-	-				-						-	-	
	mg/kg	190000	1900 ⁻	-	-		-		-						-	-	
Cresol, p. (2-Methylphenol)	mg/kg	190000 400000 ^A	56U		-		-		-		-			-	-	-	
Nanhthalene	mg/kg	190000 ^A	25 ^B		-	-	-	-	-	-		-		-		-	<u> </u>
	mg/kg	190000 ^A	25 6 ^B	-	-	-				-				-	-	-	
Phenophenoi	mg/kg	190000 ^A	0 10000 ^B	0.0748 (0.017)	- 10 4 (0 11)	3 34 (0.016)	10.7 (0.32)	7 48 (0 16)	18.5 (0.14)	24.0 (0.32)	-	0 751 (0 017)	0.318 (0.016)	0.374 (0.018)	0.248 (0.016)	22.9 (0.15)	2.03 (0.014)
Phenol	mg/kg	190000 ^A	10000	0.0748 (0.017)	10.4 (0.11)	3.34 (0.010)	10.7 (0.32)	7.48 (0.10)	18.5 (0.14)	24.9 (0.32)	44.4 (0.07)	0.751 (0.017)	0.318 (0.010)	0.374 (0.018)	0.248 (0.010)	22.9 (0.13)	2.03 (0.014)
Byrene	mg/kg	10000 ^A	200 2200 ^B	0 121 (0 014)	1.05 (0.019)	2 80 (0.013)	18 7 (0 27)	7 59 (0 13)	- 11.3 (0.12)	10.7 (0.27)	41.9 (0.57)	1 24 (0.015)	0.446 (0.013)	0.984 (0.015)	0 728 (0 014)	- 23.1 (0.12)	1.95 (0.012)
Pyridine	mg/kg	10000 ^A	12 ^B	0.121 (0.014)	1.03 (0.013)	2.03 (0.013)	-	7.55 (0.15)	-	13.7 (0.27)	41.3 (0.57)	1.24 (0.013)	0.440 (0.013)	0.304 (0.013)	0.720 (0.014)	23.1 (0.12)	1.35 (0.012)
Quinoline	mg/kg	10000 ^A	0.37 ^B		-				-							-	
	iliging	10000	0.37		-	-	1		-	-	1	-	-	-	Ĭ	-	I
Metals							T	T	1				1		1		
Cobalt	mg/kg	190000^	160 ⁸	-	-	-	- -	- -	-	- -	-	-	-	-	-	-	-
Leao	mg/kg	190000	450°	56.3 (0.13)	283 (0.18)	341 (0.14)	<u>960 </u> (0.26)	<u>546 (0.13)</u>	383 (0.13)	<u>954</u> (0.13)	<u>2930 (0.28)</u>	34.7 (0.14)	<u>1070</u> (0.13)	350 (0.14)	93.1 (0.13)	199 (0.12)	173 (0.13)
NICKEI	mg/kg	190000	650°		-	-	-	-	-	-		-	-	-	-	-	
	mg/kg	190000	820°	-	-	-	-		-	-		-	-	-	-	-	-
Zinc	mg/kg	190000 ^A	12000 ³	-	-	-	-	-	-	-	-	-	-	-	-	-	-
General Chemistry																	
Moisture, Percent	%	n/v	n/v	-	-	-	-	-	-	-	-	-	-	-	-	-	-
pH, Laboratory Measured	S.U.	n/v	n/v	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Solids, Percent	%	n/v	n/v	84.2 ()	65.9 ()	79.4 ()	83.4 ()	83.9 ()	90.9 ()	83.2 ()	78.3 ()	83.5 ()	83.7 ()	77.6 ()	86.9 ()	90.1 ()	88.1 ()
Notes:																	

 Notes:

 MSC-PA
 Pennsylvania Department of Environmental Protection - 2016. Medium-Specific

 A
 Concentrations (MSCs) for Organic/Inorganic Regulated Substances in Soil - Direct Contact - Non-Residential Subsurface Soil (2-15 ft).

 SHS-PA
 Pennsylvania Department of Environmental Protection - Statewide Health Standards - 2016.

 B
 PADEP Non-Residential Statewide Health Standards (>2 ft bg) (Unsaturated Soil).

 E.5_
 Concentration exceeds the indicated standard.

 ND (2.50)
 Laboratory reporting limit was greater than the applicable standard.

 ND (2.4) (1.2 Analyte was not detected at a concentration greater than the laboratory reporting limit. The first value in parenthesis is the reporting limit. The method detection limit is shown in the second set of parenthesis.

 n/v
 No standard/guideline value in database - 2016 values have been populated for Evergreen Comprehensive List only. Criteria for other analytes may be available but may not be represented here.

 Parameter not analyzed / not available.

 J
 Indicates an estimated value.

 mg/kg
 milligrams per kilogram.

 t
 Feet.

ft Feet

Method detection limit is shown in second set of parentheses.

Historical Soil Analytical Results Summary - AOI 6 (>2 feet) Philadelphia Refinery Operations, a Series of Evergreen Resources Group, LLC

	I	1	i	1	1	1	1		1	1	1	1	1	1	1				
Sample Location				AOI6 BH-12-123	AOI6 BH-12-124	AOI6 BH-12-125	AOI6 BH-12-126	AOI6 BH-12-127	AOI6 BH-12-128	AOI6 BH-12-129	AOI6 BH-12-135	AOI6 BH-12-138	AOI6 BH-12-149	AOI6-BH-16-007	AOI6-BH-16-008	AOI6-BH	14 14 16	AOI6-BI	H-16-015
Sample Date				4-Dec-12	4-Dec-12	4-Dec-12	4-Dec-12	4-Dec-12	4-Dec-12	4-Dec-12	5-Dec-12	5-Dec-12	4-Dec-12	8-Apr-16	8-Apr-16	5-Apr-16	11-Jul-16	5-Apr-16	11-Jul-16
Sample ID				BH-12-123_2-2.5'	BH-12-124_3-3.5'	BH-12-125_2.5-3'	BH-12-126_2.5-3'	BH-12-127_2.5-3'	BH-12-128_3-3.5'	BH-12-129_2.5-3	' BH-12-135_2-2.5'	BH-12-138_2-2.5'	BH-12-149_2.5-3'	SOIL	SOIL	SOIL	4-071116	SOIL	4-071116
Sample Depth				2 - 2.5 ft	3 - 3.5 ft	2.5 - 3 ft	2.5 - 3 ft	2.5 - 3 ft	3 - 3.5 ft	2.5 - 3 ft	2 - 2.5 ft	2 - 2.5 ft	2.5 - 3 ft	2 - 2.25 ft	2 - 2.5 ft	2 - 2.5 ft	2 - 2.25 ft	2 - 2.1 ft	2 - 2.2 ft
Sampling Company				UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	GHD	GHD	GHD	GHD	GHD	GHD
Laboratory				ACCUTEST	ACCUTEST	ACCUTEST	ACCUTEST	ACCUTEST	ACCUTEST	ACCUTEST	ACCUTEST	ACCUTEST	ACCUTEST	LL	LL	LL	LL	LL	LL
Laboratory Work Order		Α	в	JB22962	JB22962	JB22962	JB22962	JB22962	JB22962	JB22962	JB23100	JB23100	JB22962	1649742	1649742	1647893	1682991	1647893	1682991
Laboratory Sample ID	Units	MSC-PA	SHS-PA	JB22962-2	JB22962-3	JB22962-12	JB22962-8	JB22962-10	JB22962-9	JB22962-7	JB23100-12	JB23100-7	JB22962-5	8329538	8329541	8321193	8475491	8321191	8475489
Volatile Organic Compounds			I																
Benzene	mg/kg	330 ^A	0.5 ^B	2.07 ^B (0.0059)	1380 ^{AB} (2.8)	ND (2.5) (0.29)	87.2 ^B (3.0)	149^B (0.30)	535 ^{AB} (1.5)	1850 ^{AB} (6.5)	ND (0.0013) (0.00015)	ND (0.0014) (0.00017)	517 ^{AB} (0.33)	0.004 J (0.0005)	0.001 J (0.0005)	ND (0.440) (0.0005)	-	ND (0.270) (0.0005)	- 1
Cyclohexane	mg/kg	10000 ^A	6900 ^B	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-
1,2-Dibromoethane (EDB)	mg/kg	4.3 ^A	0.005 ^B	ND (0.049) (0.0062)	ND (0.47) (0.060)	ND (2.5) (0.31)	ND (0.26) (0.032)	ND (0.050) (0.0064)	ND (0.050) (0.0064)	ND (0.27) (0.035)) ND (0.0013) (0.00016)	ND (0.0014) (0.00018)	ND (1.4) (0.18)	ND (0.005) (0.001)	ND (0.004) (0.001)	ND (0.440) (0.001)	-	ND (0.270) (0.001)	-
1,2-Dichloroethane (EDC)	mg/kg	98 ^A	0.5 ^B	ND (0.049) (0.0066)	ND (0.47) (0.064)	ND (2.5) (0.33)	ND (0.26) (0.034)	ND (0.050) (0.0068)	ND (0.050) (0.0068)	ND (0.27) (0.037)	ND (0.0013) (0.00017)	ND (0.0014) (0.00020)	ND (1.4) (0.19)	ND (0.005) (0.001)	ND (0.004) (0.001)	ND (0.440) (0.001)	-	ND (0.270) (0.001)	-
Ethylbenzene	mg/kg	1000 ^A	70 ⁸	0.464 (0.013)	5.87 (0.12)	ND (2.5) (0.65)	14.6 (0.067)	18.7 (0.66)	57.8 (0.33)	12.6 (0.072)	ND (0.0013) (0.00034)	ND (0.0014) (0.00038)	ND (1.4) (0.37)	ND (0.005) (0.001)	ND (0.004) (0.001)	ND (0.440) (0.001)	-	ND (0.270) (0.001)	
Isopropylbenzene (Cumene)	mg/kg	10000^	2500 ⁵	16.9 (0.018)	2110 (1.8)	64.2 (0.18)	678 (1.9)	374 (0.19)	919 (0.94)	6600 ⁵ (4.0)	ND (0.0065) (0.000096)	ND (0.0072) (0.00011)	74.7 (0.10)	ND (0.005) (0.001)	ND (0.004) (0.001)	ND (0.440) (0.001)	-	0.230 J (0.001)	
	mg/kg	9900 ⁻⁴	2- 5600 ^B	ND (0.049) (0.012)	ND (0.47) (0.11)	ND (2.5) (0.56)	ND (0.26) (0.060)	ND (0.050) (0.012)	ND (0.050) (0.012)	ND (0.27) (0.064)	0.000713(0.00030)	ND (0.0014) (0.00034)	ND (1.4) (0.33)	ND (0.005) (0.0005)	(0.0005)	ND (0.440) (0.0005)		ND (0.270) (0.0005)	
Naphthalene	mg/kg	190000 ^A	25 ^B	1.11 (0.0060)	0.479 J (0.058)	ND (12) (0.30)	0.304 J (0.031)	0.103 J (0.0061)	0.154 J (0.0062)	0.898 J (0.033)	-		ND (7.0) (0.17)		-	-			
Butylbenzene. Sec-	ma/ka	10000 ^A	2800 ^B	-	-	-	-	-	-	-	-	· .	-	-	· .		-	· .	· .
Butylbenzene, Tert-	mg/kg	10000 ^A	2200 ^B	-	-	-	-	-	-	-	-		-	-		-	-	-	-
Toluene	mg/kg	10000 ^A	100 ^B	0.722 (0.0052)	<u>1640^B</u> (2.5)	ND (2.5) (0.26)	197 ^B (2.7)	<u>339</u> ^B (0.26)	<u>1050^B</u> (1.3)	2070 ^B (5.7)	ND (0.0013) (0.00014)	ND (0.0014) (0.00015)	21.2 (0.15)	ND (0.005) (0.001)	ND (0.004) (0.001)	0.290 J (0.001)	-	ND (0.270) (0.001)	-
1,2,4-Trimethylbenzene	mg/kg	640 ^A	35 ^B	0.593 (0.010)	3.46 (0.099)	ND (12) (0.51)	4.62 (0.053)	3.04 (0.011)	6.32 (0.011)	9.43 (0.057)	ND (0.0065) (0.00027)	ND (0.0072) (0.00030)	ND (7.0) (0.29)	ND (0.005) (0.001)	ND (0.004) (0.001)	ND (0.440) (0.001)	-	ND (0.270) (0.001)	
1,3,5-Trimethylbenzene	mg/kg	10000 ^A	210 ^B	0.240 J (0.0079)	1.21 J (0.076)	ND (12) (0.39)	2.08 (0.041)	1.41 (0.0080)	2.92 (0.0081)	3.38 (0.044)	ND (0.0065) (0.00021)	ND (0.0072) (0.00023)	ND (7.0) (0.23)	ND (0.005) (0.001)	ND (0.004) (0.001)	ND (0.440) (0.001)	-	ND (0.270) (0.001)	
Xylenes, Total (Dimethylbenzene)	mg/kg	9100 ^A	1000 ^B	0.924 (0.0068)	22.6 (0.066)	0.738 J (0.34)	68.5 (0.035)	83.6 (0.35)	248 (0.18)	51.6 (0.038)	ND (0.0013) (0.00018)	ND (0.0014) (0.00020)	ND (1.4) (0.20)	ND (0.005) (0.001)	ND (0.004) (0.001)	0.100 J (0.001)	-	0.092 J (0.001)	<u> </u>
Volatile Organic Compounds (SW8011)	~~ <i>a</i> // <i>a</i>	1 0 ^A	o oorB	T	T	1	1		T	T	Т	1	Т	1	1			1	
Semi-Volatile Organic Compounds	iiig/kg	4.3	0.005	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Acenaphthene	ma/ka	190000 ^A	4700 ^B	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Anthracene	mg/kg	190000 ^A	350 ^B	2.32 (0.012)	ND (0.033) (0.012)	ND (0.035) (0.012)	ND (0.073) (0.026)	ND (0.032) (0.011)	ND (0.035) (0.012)	ND (0.070) (0.024	0.485 (0.015)	0.180 (0.032)	ND (0.036) (0.013)	0.840 (0.003)	1.800 (0.003)		12.000 (0.003)	-	2.300 (0.003)
Benzo(a)Anthracene	mg/kg	190000 ^A	430 ^B	8.99 (0.11)	0.0210 J (0.011)	0.0226 J (0.012)	0.0707 J (0.024)	0.0184 J (0.010)	ND (0.035) (0.011)	0.177 (0.023)	0.992 (0.014)	0.424 (0.029)	0.403 (0.012)	2.200 (0.003)	3.700 (0.003)	-	25.000 (0.003)	-	1.200 (0.003)
Benzo(a)Pyrene	mg/kg	190000 ^A	46 ^B	7.91 (0.11)	0.0179 J (0.010)	ND (0.035) (0.011)	0.0491 J (0.022)	0.0138 J (0.0097)	ND (0.035) (0.011)	0.121 (0.021)	1.33 (0.013)	0.414 (0.027)	0.452 (0.011)	1.800 (0.003)	2.900 (0.003)	-	26.000 (0.003)	-	1.200 (0.003)
Benzo(b)Fluoranthene	mg/kg	190000 ^A	170 ^B	9.36 (0.12)	ND (0.033) (0.011)	ND (0.035) (0.012)	0.0556 J (0.024)	ND (0.032) (0.011)	ND (0.035) (0.012)	0.126 (0.023)	1.20 (0.014)	0.416 (0.030)	0.708 (0.012)	2.300 (0.003)	4.000 (0.003)	-	26.000 (0.003)	-	1.200 (0.003)
Benzo(g,h,i)Perylene	mg/kg	190000 ^A	180 ⁸	3.58 (0.13)	ND (0.033) (0.012)	ND (0.035) (0.013)	0.0291 J (0.027)	ND (0.032) (0.012)	ND (0.035) (0.013)	0.0832 (0.026)	1.27 (0.015)	0.378 (0.034)	0.458 (0.013)	1.200 (0.003)	2.000 (0.003)	-	15.000 (0.003)	-	1.600 (0.003)
Benzo(k)Fluoranthene	mg/kg	190000 ^A	610 ^B	-	-	-	-	-	-	-	-		-	-	-	-	-	-	
1,1 -Bipnenyi Bis(2 Ethylhovyl) Phthalata	mg/kg	190000**	190 ⁸	-	-	-	-	-	-	-	-		-	-			-	-	
Dis(2-Ethylnexyl) Phinalate	mg/kg	10000 ⁻⁴	130 ⁻	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chrysene	mg/kg	190000 ^A	230 ^B	8.28 (0.12)	0.0197 J (0.011)	0.0298 J (0.012)	0.0845 (0.025)	0.0164 J (0.011)	ND (0.035) (0.012)	0.243 (0.024)	1.07 (0.014)	0.468 (0.030)	0.493 (0.012)	2.100 (0.003)	3,700 (0.003)	-	30.000 (0.003)		2.400 (0.003)
Dibenz(A,H)Anthracene	mg/kg	190000 ^A	270 ^B	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-
Diethyl Phthalate	mg/kg	10000 ^A	9300 ^B	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2,4-Dimethylphenol	mg/kg	10000 ^A	230 ^B	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-
2,4-Dinitrophenol	mg/kg	190000 ^A	23 ^B	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Fluoranthene	mg/kg	190000 ^A	3200 ^B	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Fluorene	mg/kg	190000 ^A	3800 ^B	3.39 (0.012)	ND (0.033) (0.011)	ND (0.035) (0.012)	0.0340 J (0.024)	ND (0.032) (0.010)	ND (0.035) (0.012)	0.182 (0.023)	0.202 (0.014)	0.0565 J (0.030)	ND (0.036) (0.012)	0.310 (0.003)	1.700 (0.003)	-	12.000 (0.003)	-	2.600 (0.003)
2-Methylpaphthalene	mg/kg	190000 ^A	22000 ⁻	-	-	-	-	-	-	-	-		-	-		-		-	
Cresol o- (2-Methylphenol)	mg/kg	190000 ^A	580 ^B			-	-		-							-			
Cresol, p- (4-Methylphenol)	mg/kg	190000 ^A	58 ^B	-	-		-		-	-	-	-	-	-	-		-	-	-
Naphthalene	mg/kg	190000 ^A	25 ^B	-	-	-	-	-	-	-	0.524 (0.011)	0.0426 J (0.025)	-	0.710 (0.003)	1.500 (0.003)	-	24.000 (0.003)	-	6.300 (0.003)
4-Nitrophenol	mg/kg	190000 ^A	6 ^B	-	-	-	-	-	-	-	-		-		-	-		-	
Phenanthrene	mg/kg	190000 ^A	10000 ^B	6.10 (0.16)	0.0626 (0.015)	0.0208 J (0.016)	0.115 (0.033)	0.0161 J (0.015)	ND (0.035) (0.016)	0.437 (0.032)	1.16 (0.019)	0.609 (0.041)	0.154 (0.016)	2.600 (0.003)	8.800 (0.003)	-	37.000 (0.003)	-	7.200 (0.003)
Phenol	mg/kg	18000 ^A	200 ⁸	-	-	-	-	-	-	-	-	-	-	•	-	-	-	-	
Pyrene Division and the second	mg/kg	190000*	2200 ^B	11.3 (0.14)	0.0317 J (0.013)	0.0363 (0.014)	0.123 (0.028)	0.0207 J (0.012)	ND (0.035) (0.013)	0.406 (0.027)	1.33 (0.016)	0.730 (0.035)	0.601 (0.014)	3.400 (0.003)	7.300 (0.003)	-	39.000 (0.003)	-	3.200 (0.003)
Pyridine	mg/kg	10000*	12 ⁵	-	-	-	-	-	-	-	-		-	-			-	-	
Quinoine	nig/kg	10000	0.37	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Metals			B	1	1	r	1	-	1	1	1	1	T	T	1			1	
Lead	mg/kg	190000 ^{°°}	160° 450 ^B	-	- 5.5 (0.13)	-	- 87 (0.13)	-	- 65 (0 14)	-	- 311 (0.15)		-	- 243 (0.510)	- 267 (0.510)	-	-	- 134 (0.510)	
Nickel	mg/kg	190000 ^A	450 650 ^B			-		-	-	-		<u>- 1150</u> (0.16)	-					-	+
Vanadium	mg/kg	190000 ^A	820 ^B		-	-	-		-	-		-	-		-		-	-	-
Zinc	mg/kg	190000 ^A	12000 ^B	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
General Chemistry				•	•	•	•		•	•	•	•	•	•	•			•	
Moisture, Percent	%	n/v	n/v	-	-	-	-	-	-	-	-	-	-	17.6 (0.50)	14.8 (0.50)	44.3 (0.50)	34.8 (0.50)	21.6 (0.50)	30.5 (0.50)
pH, Laboratory Measured	S.U.	n/v	n/v	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Solids, Percent	%	n/v	n/v	89.2 ()	89.6 ()	90.5 ()	89.4 ()	88.8 ()	88.1 ()	88.5 ()	74.4 ()	70.5 ()	85.0 ()	-	-	-	-	-	-

 Notes:

 MSC-PA
 Pennsylvania Department of Environmental Protection - 2016. Medium-Specific

 A
 Concentrations (MSCs) for Organic/Inorganic Regulated Substances in Soil - Direct Contact -Non-Residential Subsurface Soil (2-15 ft).

 SHS-PA
 Pennsylvania Department of Environmental Protection - Statewide Health Standards - 2016.

 B
 PADEP Non-Residential Statewide Health Standards (>21 ft bg) (Unsaturated Soil).

 6.5.4
 Concentration exceeds the indicated standard.

 ND (0.50)
 Laboratory reporting limit was greater than the applicable standard.

 ND (2.50)
 Laboratory reporting limit was greater than the paplicable standard.

 ND (2.4) (1.2)Analyte was not detected at a concentration greater than the laboratory reporting limit. The first value in parenthesis is the reporting limit. The method detection limit is shown in the second set of parenthesis.

 n/v
 No standard/guideline value in database - 2016 values have been populated for Evergreen Comprehensive List only. Criteria for other analytes may be available but may not be represented here.

 Parameter not analyzed / not available.

 J
 Indicates an estimated value.

 mg/kg
 milligrams per kilogram.

 ft
 Feet.

mg/kg ft

Feet. Method detection limit is shown in second set of parentheses.

GHD 11109613 (2)

Historical Soil Analytical Results Summary - AOI 6 (>2 feet) Philadelphia Refinery Operations, a Series of Evergreen Resources Group, LLC

Sample Location	1	1		AOI6-BH	I-16-016	AOI6-BH-16-022	AOI6-BH-16-027	AOI6-BH-16-029	AOI6-BH-16-030	AOI6-BH-16-031	AOI6-BH-16-032	AOI6-BH-16-033	AOI6-BH-16-034	AOI6-BH-16-035	AOI6-BH-16-036	AOI6-BH-16-043	B-166	B-167
Sample Date				4-Apr-16	11-Jul-16	6-Apr-16	13-Apr-16	13-Apr-16	14-Apr-16	14-Apr-16	13-Apr-16	13-Apr-16	13-Apr-16	13-Apr-16	14-Apr-16	7-Apr-16	13-Dec-12	13-Dec-12
Seconda ID				AOI6-BH-16-016-2-4	AOI6-BH-16-016-2	- AOI6-BH-16-022-2-4	AOI6-BH-16-027-2-4	- AOI6-BH-16-029-2-4	AOI6-BH-16-030-2-4-	AOI6-BH-16-031-2-4	4 AOI6-BH-16-032-2-4	AOI6-BH-16-033-2-4	AOI6-BH-16-034-2-4	- AOI6-BH-16-035-2-4	AOI6-BH-16-036-2-4	AOI6-BH-16-043-2-4	- D 400 01	D 407 4
Sample ID				SOIL	4-071116	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	B-100_3	B-167_4
Sample Depth				2 - 2.5 ft	2 - 2.25 ft	2.25 - 2.5 ft	2.5 - 2.75 ft	2.25 - 2.5 ft	2.5 - 2.75 ft	2 - 2.5 ft	2 - 2.5 ft	2 - 2.25 ft	2 - 2.25 ft	2 - 2.25 ft	2 - 2.25 ft	2 - 2.5 ft	2.5 - 3 ft	3.5 - 4 ft
Sampling Company				GHD	GHD	GHD	GHD	GHD	GHD	GHD	GHD	GHD	GHD	GHD	GHD	GHD	UNKNOWN	UNKNOWN
Laboratory				LL	LL	LL	LL	LL	LL	LL	LL	LL	LL	LL	LL	LL	ACCUTEST	ACCUTEST
Laboratory Work Order		Α	В	1647893	1682991	1648963	1651423	1651423	1651423	1651423	1651423	1651423	1651423	1651423	1651423	1648963	JB23816	JB23816
Laboratory Sample ID	Units	MSC-PA	SHS-PA	8321185	8475487	8325915	8336831	8336828	8336848	8336850	8336839	8336837	8336835	8336833	8336842	8325913	JB23816-4	JB23816-2
Volatile Organic Compounds				1		ł		1		I	•							
Benzene	mg/kg	330 ^A	0.5 ^B	ND (0.340) (0.0005)	-	ND (0.005) (0.0005)	<u>2.500 J^B</u> (0.0005)	<u>4.500 ^B (0.0005)</u>	<u>130.000^B</u> (0.0005)	27.000 ^B (0.0005)	<u>3.700 ^B (0.0005)</u>	ND (0.210) (0.0005)	<u>96.000 ^B (0.0005)</u>	0.002 J (0.0005)	<u>0.700 J^B</u> (0.0005)	<u>1.300^B (0.0005)</u>	ND (0.0017) (0.00020)	0.136 (0.0071)
Cyclohexane	mg/kg	10000 ^A	6900 ^B	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2-Dibromoethane (EDB)	mg/kg	4.3 ^A	0.005 ^B	ND (0.340) (0.001)	-	ND (0.005) (0.001)	ND (5.300) (0.001)	ND (0.280) (0.001)	ND (4.300) (0.001)	ND (2.000) (0.001)	ND (0.770) (0.001)	ND (0.210) (0.001)	ND (4.700) (0.001)	ND (0.004) (0.001)	ND (4.200) (0.001)	ND (0.240) (0.001)	ND (0.0017) (0.00021)	ND (0.059) (0.0075)
1,2-Dichloroethane (EDC)	mg/kg	98^	0.5 ^B	ND (0.340) (0.001)		ND (0.005) (0.001)	ND (5.300) (0.001)	ND (0.280) (0.001)	ND (4.300) (0.001)	ND (2.000) (0.001)	ND (0.770) (0.001)	ND (0.210) (0.001)	ND (4.700) (0.001)	ND (0.004) (0.001)	ND (4.200) (0.001)	ND (0.240) (0.001)	ND (0.0017) (0.00023)	ND (0.059) (0.0080)
Ethylbenzene	mg/kg	1000*	70 ^e	ND (0.340) (0.001)		ND (0.005) (0.001)	ND (5.300) (0.001)	0.810 (0.001)	ND (4.300) (0.001)	2.900 (0.001)	3.600 (0.001)	ND (0.210) (0.001)	1.200 J (0.001)	ND (0.004) (0.001)	ND (4.200) (0.001)	0.130 J (0.001)	ND (0.0017) (0.00044)	0.309 (0.016)
Isopropylbenzene (Cumene)	mg/kg	10000**	2500 ⁵	0.440 (0.001)	-	ND (0.005) (0.001)	360.000 (0.001)	10.000 (0.001)	710.000 (0.001)	180.000 (0.001)	110.000 (0.001)	0.130 J (0.001)	360.000 (0.001)	0.083 (0.001)	180.000 (0.001)	0.230 J (0.001)	ND (0.0085) (0.00013)	7.21 (0.0044)
Methyl Tertiary Butyl Ether	mg/kg	9900	2°	ND (0.340) (0.0005)	•	ND (0.005) (0.0005)	ND (5.300) (0.0005) ND (0.280) (0.0005)	ND (4.300) (0.0005)	ND (2.000) (0.0005)	ND (0.770) (0.0005)	ND (0.210) (0.0005)	ND (4.700) (0.0005)	ND (0.004) (0.0005)	ND (4.200) (0.0005)	ND (0.240) (0.0005)	ND (0.0017) (0.00040)	ND (0.059) (0.014)
Naphthalana	mg/kg	10000 ^A	5600	-		-	-	-	-	-		-	-		-			-
Butylbenzene Sec-	mg/kg	10000 ^A	25 2800 ^B			-		-		-			-					-
Butylbenzene, Tert-	mg/kg	10000 ^A	22000 ^B															
Toluene	ma/ka	10000 ^A	100 ^B	0.190 J (0.001)		ND (0.005) (0.001)	3.900 J (0.001)	1.200 (0.001)	20.000 (0.001)	22.000 (0.001)	45.000 (0.001)	ND (0.210) (0.001)	81.000 (0.001)	ND (0.004) (0.001)	ND (4.200) (0.001)	0.320 (0.001)	ND (0.0017) (0.00018)	0.163 (0.0062)
1.2.4-Trimethylbenzene	ma/ka	640 ^A	35 ^B	0.140 J (0.001)		ND (0.005) (0.001)	10.000 (0.001)	1.000 (0.001)	ND (4.300) (0.001)	0.960 J (0.001)	0.700 J (0.001)	ND (0.210) (0.001)	ND (4,700) (0.001)	ND (0.004) (0.001)	ND (4.200) (0.001)	0.088 J (0.001)	ND (0.0085) (0.00035)	0.481 (0.012)
1,3,5-Trimethylbenzene	mg/kg	10000 ^A	210 ^B	ND (0.340) (0.001)		ND (0.005) (0.001)	9.300 (0.001)	0.480 (0.001)	ND (4.300) (0.001)	0.440 J (0.001)	0.370 J (0.001)	ND (0.210) (0.001)	ND (4.700) (0.001)	ND (0.004) (0.001)	ND (4.200) (0.001)	0.081 J (0.001)	ND (0.0085) (0.00027)	0.155 J (0.0095)
Xylenes, Total (Dimethylbenzene)	mg/kg	9100 ^A	1000 ^B	0.160 J (0.001)	-	ND (0.005) (0.001)	3.300 J (0.001)	1.500 (0.001)	2.900 J (0.001)	12.000 (0.001)	17.000 (0.001)	ND (0.210) (0.001)	3.800 J (0.001)	ND (0.004) (0.001)	ND (4.200) (0.001)	0.560 (0.001)	ND (0.0017) (0.00024)	1.30 (0.0083)
Volatile Organic Compounds (SW8011)							•				•	• • • • •	•	• • • • • •				
1.2-Dibromoethane (EDB)	ma/ka	4 3 ^A	0.005 ^B	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Sami Valatila Organia Compoundo	g.n.g	4.0	0.000						1						1			
Accompany Compounds	ma/ka	100000 ^A	4700 ^B				1	1	1		1	1		1	1	1		
Anthracene	mg/kg	190000 ^A	250 ^B		- 3 400 (0 003)	- 0.050 (0.003)	3 400 (0 003)	2 200 (0.003)	- 0.160 (0.003)	-	- 0.004 1 (0.003)	-	- ND (0.092) (0.003)	-	- 0.036 (0.003)	- 0.290 (0.003)	- 0.110 (0.015)	- 1 26 (0.013)
Benzo(a)Anthracene	mg/kg	190000 ^A	430 ^B		3 300 (0.003)	0.130 (0.003)	2 300 (0.003)	2.200 (0.000)	0.079 (0.003)	0.014 (0.003)	0.014 (0.003)	0.026 (0.003)	0.050 1 (0.003)	0.015 (0.003)	0.086 (0.003)	0.900 (0.003)	0.0939 (0.014)	2 36 (0.012)
Benzo(a)Pyrene	mg/kg	190000 ^A	46 ^B		3.300 (0.003)	0.140 (0.003)	1.700 (0.003)	2.600 (0.003)	0.079 (0.003)	0.012 J (0.003)	0.013 J (0.003)	0.028 (0.003)	0.039 J (0.003)	0.02 (0.003)	0.088 (0.003)	1.500 (0.003)	0.0956 (0.013)	2.07 (0.011)
Benzo(b)Fluoranthene	ma/ka	190000 ^A	170 ^B		3.600 (0.003)	0.200 (0.003)	1.700 (0.003)	3.500 (0.003)	0.180 (0.003)	0.019 (0.003)	0.021 (0.003)	0.032 (0.003)	0.084 J (0.003)	0.022 (0.003)	0.120 (0.003)	1.900 (0.003)	0.0998 (0.014)	2.42 (0.012)
Benzo(g,h,i)Perylene	mg/kg	190000 ^A	180 ^B		3.500 (0.003)	0.110 (0.003)	1.000 (0.003)	1.700 (0.003)	0.073 (0.003)	0.008 J (0.003)	0.016 J (0.003)	0.029 (0.003)	0.042 J (0.003)	0.024 (0.003)	0.083 (0.003)	1.400 (0.003)	0.0802 (0.016)	1.26 (0.014)
Benzo(k)Fluoranthene	mg/kg	190000 ^A	610 ^B		-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,1'-Biphenyl	mg/kg	190000 ^A	190 ^B	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Bis(2-Ethylhexyl) Phthalate	mg/kg	10000 ^A	130 ^B	•	-	-		-	-	-	-	-	-	-	-	-	-	-
Di-n-Butyl Phthalate	mg/kg	10000 ^A	4900 ^B	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chrysene	mg/kg	190000 ^A	230 ^B	-	3.700 (0.003)	0.140 (0.003)	4.000 (0.003)	3.300 (0.003)	0.094 (0.003)	0.020 (0.003)	0.018 J (0.003)	0.032 (0.003)	0.095 (0.003)	0.020 (0.003)	0.100 (0.003)	1.100 (0.003)	0.113 (0.014)	2.25 (0.013)
Dibenz(A,H)Anthracene	mg/kg	190000 ^A	270 ^B	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Diethyl Phthalate	mg/kg	10000 ^A	9300 ⁸		-	-	-	-	-	-	-	-	-	-	-	-	-	-
2,4-Dimethylphenol	mg/kg	10000*	230 ^B	-		-	-	-	-	-		-	-	-	-	-	-	-
2,4-Dinitrophenol	mg/kg	190000 [^]	23 ⁵	-		-	-	-	-	-		-	-		-	-		-
Fluoranthene	mg/kg	190000*	3200 ⁵	•	-	-	-	-	-	-	-	- ND (0.018) (0.002)	-	- ND (0.010) (0.002)	-	-	-	-
Indene(1.2.2.e.d)Purene	mg/kg	190000 100000 ^A	3800		0.300 (0.003)	0.019 3 (0.003)	0.300 (0.003)	8.400 (0.003)	0.034 (0.003)	0.047 (0.003)	0.008 3 (0.003)	ND (0.018) (0.003)	0.033 3 (0.003)	ND (0.019) (0.003)	0.010 3 (0.003)	0.090 3 (0.003)	0.120 (0.014)	0.803 (0.012)
2-Methylnanhthalene	mg/kg	190000 ^A	1000 ^B						-	-	+ · ·		-	- · ·				-
Cresol o- (2-Methylphenol)	mg/kg	190000 ^A	580 ^B	· ·							· .							-
Cresol, p- (4-Methylphenol)	mg/kg	190000 ^A	58 ^B			-	-	-		-			-			-		
Naphthalene	mg/kg	190000 ^A	25 ^B		18.000 (0.003)	0.045 (0.003)	7.800 (0.003)	4.800 (0.003)	2.400 (0.003)	0.062 (0.003)	0.029 (0.003)	0.014 J (0.003)	0.160 (0.003)	ND (0.019) (0.003)	0.018 J (0.003)	0.420 (0.003)	0.0250 J (0.011)	0.226 (0.010)
4-Nitrophenol	mg/kg	190000 ^A	6 ^B		-	-		-	-	-	-	-	-	-	-	-	-	-
Phenanthrene	mg/kg	190000 ^A	10000 ^B		17.000 (0.003)	0.160 (0.003)	13.000 (0.003)	10.000 (0.003)	3.300 (0.003)	0.059 (0.003)	0.013 J (0.003)	0.011 J (0.003)	0.120 (0.003)	0.014 J (0.003)	0.077 (0.003)	0.580 (0.003)	0.314 (0.019)	5.20 (0.067)
Phenol	mg/kg	18000 ^A	200 ^B	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Pyrene	mg/kg	190000 ^A	2200 ^B	-	4.200 (0.003)	0.210 (0.003)	6.200 (0.003)	5.800 (0.003)	0.140 (0.003)	0.033 (0.003)	0.025 (0.003)	0.042 (0.003)	0.120 (0.003)	0.026 (0.003)	0.160 (0.003)	0.900 (0.003)	0.301 (0.016)	4.87 (0.057)
Pyridine	mg/kg	10000 ^A	12 ^B		-	-	-	-	-	-	-	-	-	-	-	-	-	-
Quinoline	mg/kg	10000 ^A	0.37 ^B	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Metals																		
Cobalt	mg/kg	190000 ^A	160 ⁸	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Lead	mg/kg	190000 ^A	450 ^B	256 (0.510)	-	101 (0.510)	90.6 (0.510)	137 (0.510)	34.3 (0.510)	6.19 (0.510)	10.6 (0.510)	9.85 (0.510)	15.3 (0.510)	10.9 (0.510)	18.9 (0.510)	<u>1720^B (0.510)</u>	<u>1020^B</u> (0.16)	204 (0.13)
Nickel	mg/kg	190000 ^A	650 ^B	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Vanadium	mg/kg	190000 ^A	820 ^B	· ·	-		-	-	-	-	-	-	-	-	· ·	-		-
Zinc	mg/kg	190000 ^A	12000 ⁸		-	-	-	-	-	-	-	-	-	-	-	-		-
General Chemistry																		
Moisture, Percent	%	n/v	n/v	32.5 (0.50)	32.3 (0.50)	10.9 (0.50)	15.0 (0.50)	10.5 (0.50)	11.6 (0.50)	8.6 (0.50)	9.0 (0.50)	5.7 (0.50)	8.9 (0.50)	9.4 (0.50)	8.0 (0.50)	9.3 (0.50)	-	-
pH, Laboratory Measured	S.U.	n/v	n/v	-	-	-	-	-	-	-	-	-	-	-	-	8.84 (0.0100)	-	-
Solids, Percent	%	n/v	n/v	-	-	-	-	-	-	-	-	-	-	-	-	-	67.2 ()	85.8 ()
Notos																		

 Notes:

 MSC-PA
 Pennsylvania Department of Environmental Protection - 2016. Medium-Specific

 ^
 Concentrations (MSCs) for Organic/Inorganic Regulated Substances in Soil - Direct Contact - Non-Residential Substurbace Soil (2-15 ft).

 SHS-PA
 Pennsylvania Department of Environmental Protection - Statewide Health Standards - 2016.

 *
 PADEP Non-Residential Substurbace Soil (2-15 ft).

 SHS-PA
 Pennsylvania Department of Environmental Protection - Statewide Health Standards - 2016.

 *
 PADEP Non-Residential Statewide Health Standards (>2 ft bgs) (Unsaturated Soil).

 6.5⁴
 Concentration exceeds the indicated standard.

 15.2
 Measured concentration did not exceed the indicated standard.

 ND (0.50)
 Laboratory reporting limit was greater than the applicable standard.

 ND (0.50)
 Laboratory reporting limit was greater than the applicable standard.

 ND (0.50)
 Laboratory reporting limit was greater than the applicable standard.

 ND (0.50)
 Laboratory reporting limit was greater than the applicable standard.

 ND (0.50)
 Laboratory reporting limit was greater than the applicable standard.

 ND (0.40)
 L.3 (Laboratory reporting limit was greater than the applicable standard.

 ND
 No standard/guideline value in database - 2016 values have been populated for Evergreen Comprehensive List only. Criteria f

mg/kg ft

Method detection limit is shown in second set of parentheses.

Historical Soil Analytical Results Summary - AOI 6 (>2 feet) Philadelphia Refinery Operations, a Series of Evergreen Resources Group, LLC

Comple Leastion	1	1	1	D 17	2	I P 17	·2	D 1	7.4	I P 1	75	CD769.4	CD768 3	CD769.3	CD769.4	CD769 F	CD769.6
Sample Location				B-17	<u>z</u>	B-17	J 40 1-140	D-1/	4 40 1-140	5 Ann 40	10	GF768-1	GF768-2	GF768-3	GF760-4	GF768-5	GF700-0
Sample Date				6-Apr-16	12-Jui-16	5-Apr-16	13-Jui-16	4-Apr-16	13-Jul-16	5-Apr-16	13-Jul-16	28-Apr-16	28-Apr-16	28-Apr-16	28-Apr-16	28-Apr-16	28-Apr-16
Sample ID				AOI6-B-172-2-4-	AOI6-B-172-2-4-	AOI6-B-173-2-4-	AOI6-B-173-2-4-	AOI6-B-174-2-4-	AOI6-B-174-2-4-	AOI6-B-175-2-4-	AOI6-B-175-2-4-	GP768-1-(3')-20160428	GP768-2-(3')-20160428	GP768-3-(3')-20160428	GP768-4-(2')-20160428	GP768-5-(2')-20160428	GP768-6-(2')-20160428
				SOIL	071216	SOIL	071316	SOIL	071316	SOIL	071316						
Sample Depth				2.5 - 3 ft	2.5 - 3 ft	3.5 - 4 ft	3.5 - 4 ft	3.5 - 4 ft	3.5 - 4 ft	2.7 - 3 ft	2.7 - 3 ft	3 ft	3 ft	3 ft	2 ft	2 ft	2 ft
Sampling Company				GHD	GHD	GHD	GHD	GHD	GHD	GHD	GHD	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC
Laboratory				LL	LL	LL	LL	LL	LL	LL	LL	LL	LL	LL	LL	LL	LL LL
Laboratory Work Order		Α	в	1647893	1682991	1647893	1682991	1647893	1682991	1647893	1682991	1655907	1655907	1655907	1655907	1655907	1655907
Laboratory Sample ID	Unite	MSC-PA	SHS-DA	8321105	8475493	8321187	8475495	8321183	8475497	8321180	8475499	8358315	8358316	8358317	8358318	8358310	8358320
	U		0.10171	0021100		0021101	0110100	0021100	00101	0021100							0000020
Volatile Organic Compounds																	
Benzene	mg/kg	330 ^A	0.5 ^B	ND (0.410) (0.0005)	-	0.054 J (0.0005)	-	0.005 (0.0005)	-	0.210 J (0.0005)	-	0.0006 J (0.0005)	0.0008 J (0.0005)	0.001 J (0.0005)	ND (0.29) (0.0005)	0.005 (0.0005)	ND (0.0005) (0.0005)
Cyclohexane	mg/kg	10000 ^A	6900 ^B	-	-	-	-	-	-	-	-	ND (0.0009) (0.001)	ND (0.001) (0.001)	ND (0.001) (0.001)	ND (0.58) (0.001)	ND (0.001) (0.001)	ND (0.0009) (0.001)
1,2-Dibromoethane (EDB)	mg/kg	4.3 ^A	0.005 ^B	ND (0.41) (0.001)	-	ND (0.330) (0.001)	-	ND (0.005) (0.001)	-	ND (0.340) (0.001)	-	-	-	-	-	-	-
1.2-Dichloroethane (EDC)	ma/ka	98 ^A	0.5 ^B	ND (0.410) (0.001)	-	ND (0.330) (0.001)	-	ND (0.005) (0.001)	-	ND (0.340) (0.001)	-	ND (0.0009) (0.001)	ND (0.001) (0.001)	ND (0.001) (0.001)	ND (0.58) (0.001)	ND (0.001) (0.001)	ND (0.0009) (0.001)
Ethylbenzene	ma/ka	1000 ^A	70 ^B	ND (0 410) (0 001)	-	ND (0.330) (0.001)	-	ND (0.005) (0.001)		0 230 .1 (0 001)		ND (0.0009) (0.001)	ND (0.001) (0.001)	ND (0.001) (0.001)	0.72.1 (0.001)	ND (0.001) (0.001)	ND (0.0009) (0.001)
Isopropylbenzene (Cumene)	mg/kg	1000 ^A	2500 ^B	ND (0.410) (0.001)		ND (0.330) (0.001)		ND (0.005) (0.001)		0.580 (0.001)		ND (0.0009) (0.001)			70 (0.001)	ND (0.001) (0.001)	ND (0.0009) (0.001)
Methyl Tertiany Butyl Ether	mg/kg	10000 ^A	2300 2 ^B	ND (0.410) (0.001)		ND (0.330) (0.001)	-	ND (0.005) (0.001)		ND (0.340) (0.0005)	-	ND (0.0003) (0.001)	ND (0.0006) (0.0005)	ND (0.0005) (0.0005)	ND (0.29) (0.0005)	ND (0.001) (0.001)	ND (0.0005) (0.001)
Hevene	mg/kg	9900 40000Å	2 5000 ^B	14D (0.410) (0.0003)	-	ND (0.330) (0.0003)	-	ND (0.003) (0.0003)	-	14D (0.340) (0.0003)	-	ND (0.0004) (0.0003)	ND (0.0000) (0.0003)	ND (0.0003) (0.0003)	ND (0.23) (0.0003)	ND (0.0003) (0.0003)	ND (0.0003) (0.0003)
Hexane	mg/kg	10000	5600-	-	-	-	-	-	-	-	-	ND (0.0009) (0.001)	ND (0.001) (0.001)	ND (0.001) (0.001)	ND (0.58) (0.001)	ND (0.001) (0.001)	ND (0.0009) (0.001)
Naphthalene	mg/kg	190000^	25		-	-	-		•	•	•	ND (0.0009) (0.001)	ND (0.001) (0.001)	ND (0.001) (0.001)	3.4 (0.001)	ND (0.001) (0.001)	ND (0.0009) (0.001)
Butylbenzene, Sec-	mg/kg	10000	2800 ^b	-	-	-	-	-	-	-	-	ND (0.0009) (0.001)	ND (0.001) (0.001)	ND (0.001) (0.001)	1.8 J (0.001)	ND (0.001) (0.001)	ND (0.0009) (0.001)
Butylbenzene, Tert-	mg/kg	10000 ^A	2200 ^B	-	-	-	-	-	-	-	-	ND (0.0009) (0.001)	ND (0.001) (0.001)	ND (0.001) (0.001)	ND (0.58) (0.001)	ND (0.001) (0.001)	ND (0.0009) (0.001)
Toluene	mg/kg	10000 ^A	100 ^B	0.410 (0.001)	-	0.380 (0.001)	-	0.001 J (0.001)	-	0.500 (0.001)	-	ND (0.0009) (0.001)	ND (0.001) (0.001)	0.001 J (0.001)	1.7 J (0.001)	ND (0.001) (0.001)	ND (0.0009) (0.001)
1,2,4-Trimethylbenzene	mg/kg	640 ^A	35 ^B	ND (0.410) (0.001)	-	ND (0.330) (0.001)	-	ND (0.005) (0.001)	-	0.880 (0.001)	-	ND (0.0009) (0.001)	ND (0.001) (0.001)	ND (0.001) (0.001)	19 (0.001)	ND (0.001) (0.001)	ND (0.0009) (0.001)
1,3,5-Trimethylbenzene	mg/kg	10000 ^A	210 ^B	ND (0.410) (0.001)	-	ND (0.330) (0.001)	-	ND (0.005) (0.001)	-	1.500 (0.001)	-	ND (0.0009) (0.001)	ND (0.001) (0.001)	ND (0.001) (0.001)	15 (0.001)	ND (0.001) (0.001)	ND (0.0009) (0.001)
Xylenes, Total (Dimethylbenzene)	ma/ka	9100 ^A	1000 ^B	0.091 J (0.001)	-	0.074 J (0.001)	-	ND (0.005) (0.001)	-	2,200 (0.001)	-	ND (0.0009) (0.001)	ND (0.001) (0.001)	ND (0.001) (0.001)	16 (0.001)	ND (0.001) (0.001)	ND (0.0009) (0.001)
		5100	1000														
Volatile Organic Compounds (SW8011)						1				1							
1,2-Dibromoethane (EDB)	mg/kg	4.3^	0.005 ^b	-	-	-	-	-	-	-	-	ND (0.00021) (0.00020)	ND (0.00021) (0.00020)	ND (0.00023) (0.00020)	ND (0.00020) (0.00020)	ND (0.00023) (0.00020)	ND (0.00021) (0.00020)
Semi-Volatile Organic Compounds																	
Acenaphthene	ma/ka	190000 ^A	4700 ^B	-	-	-	-	-	-	-	-	ND (0.0034) (0.0033)	0.0056 J (0.0033)	0.0050 J (0.0033)	1.5 (0.0033)	ND (0.0038) (0.0033)	ND (0.0035) (0.0033)
Anthracene	ma/ka	190000 ^A	350 ^B		0 270 (0 003)	-	0 190 .1 (0 003)		0 140 .1 (0 003)		4 300 (0 003)	0.0059.1(0.0033)	0.021 (0.0033)	0.029 (0.0033)	0.90 (0.0033)	0.016.1 (0.0033)	ND (0.0035) (0.0033)
Benzo(a)Anthracene	mg/kg	100000 ^A	420 ^B	-	0.480 (0.003)	-	0.450 (0.003)	-	0.630 (0.003)	-	5 600 (0.003)	0.024 (0.0033)	0.073 (0.0033)	0.058 (0.0033)	0.41 (0.0033)	0.029 (0.0033)	0.016 L (0.0033)
Benzo(a) Bureno	mg/kg	190000	430	-	0.400 (0.003)	-	0.450 (0.003)	-	0.030 (0.003)	-	3.000 (0.003)	0.024 (0.0033)	0.12 (0.0033)	0.030 (0.0033)	0.32 (0.0033)	0.029 (0.0033)	0.010 3 (0.0033)
Benzo(a)Fyrene	mg/kg	190000	46	· ·	0.300 (0.003)	-	0.450 (0.003)		0.520 (0.003)		4.400 (0.003)	0.020 (0.0033)	0.12 (0.0033)	0.079 (0.0033)	0.33 (0.0033)	0.050 (0.0033)	0.021 (0.0033)
Benzo(b)Fluorantinene	mg/kg	190000	170	· ·	0.500 (0.003)	-	0.630 (0.003)		0.650 (0.003)		7.700 (0.003)	0.037 (0.0033)	0.14 (0.0033)	0.15 (0.0033)	0.31 (0.0033)	0.062 (0.0033)	0.025 (0.0033)
Benzo(g,h,i)Perylene	mg/kg	190000^	180 ⁰		0.230 (0.003)	-	0.470 (0.003)		0.400 (0.003)	•	3.300 (0.003)	0.024 (0.0033)	0.11 (0.0033)	0.12 (0.0033)	0.21 (0.0033)	0.059 (0.0033)	0.020 (0.0033)
Benzo(k)Fluoranthene	mg/kg	190000	610 [°]	· ·	-	-	-	-	-	•	-	0.019 (0.0033)	0.056 (0.0033)	0.037 (0.0033)	0.083 J (0.0033)	0.021 (0.0033)	0.011 J (0.0033)
1,1'-Biphenyl	mg/kg	190000 ^A	190 ⁸	-	-	-	-	-	-	-	-	ND (0.017) (0.017)	ND (0.018) (0.017)	ND (0.020) (0.017)	1.0 (0.017)	ND (0.019) (0.017)	ND (0.018) (0.017)
Bis(2-Ethylhexyl) Phthalate	mg/kg	10000 ^A	130 ^B	-	-	-	-	-	-	-	-	ND (0.069) (0.067)	ND (0.073) (0.067)	ND (0.081) (0.067)	ND (0.35) (0.067)	ND (0.077) (0.067)	ND (0.071) (0.067)
Di-n-Butyl Phthalate	mg/kg	10000 ^A	4900 ^B	-	-	-	-		-		-	ND (0.069) (0.067)	ND (0.073) (0.067)	ND (0.081) (0.067)	ND (0.35) (0.067)	ND (0.077) (0.067)	ND (0.071) (0.067)
Chrysene	mg/kg	190000 ^A	230 ^B	-	0.510 (0.003)	-	0.650 (0.003)	-	0.670 (0.003)	-	5.600 (0.003)	0.026 (0.0033)	0.084 (0.0033)	0.067 (0.0033)	0.88 (0.0033)	0.033 (0.0033)	0.014 J (0.0033)
Dibenz(A,H)Anthracene	ma/ka	190000 ^A	270 ^B	· ·	-	-	- 1	-	-	-		0.0087 J (0.0033)	0.029 (0.0033)	0.034 (0.0033)	0.088 J (0.0033)	0.013 J (0.0033)	0.0074 J (0.0033)
Diethyl Phthalate	ma/ka	10000 ^A	0300 ^B		-	-	-					ND (0.069) (0.067)	ND (0.073) (0.067)	ND (0.081) (0.067)	ND (0.35) (0.067)	ND (0.077) (0.067)	ND (0.071) (0.067)
2.4-Dimethylphenol	mg/kg	10000 ^A	220 ^B	-	-	_	-	-		-		ND (0.017) (0.017)	ND (0.018) (0.017)	ND (0.020) (0.017)	ND (0.087) (0.017)	ND (0.019) (0.017)	ND (0.018) (0.017)
2.4 Dinitrophonol	mg/kg	10000	230 00 ^B	-	-	-	-	-	-	-	-	ND (0.21) (0.20)	ND (0.22) (0.20)	ND (0.36) (0.017)	ND (0.007) (0.017)	ND (0.24) (0.20)	ND (0.22) (0.20)
2,4-Dinitrophenoi	nig/kg	190000	23-		-	-	-	-	-	-		ND (0.31) (0.30)	ND (0.33) (0.30)	ND (0.36) (0.30)	ND (1.6) (0.30)	ND (0.34) (0.30)	ND (0.32) (0.30)
Fluorantnene	mg/kg	190000	32005		-		-	-	-	-	-	0.026 (0.0033)	0.086 (0.0033)	0.060 (0.0033)	0.39 (0.0033)	0.029 (0.0033)	0.013 J (0.0033)
Fluorene	mg/kg	190000 ^A	3800 ⁸	-	0.110 (0.003)	-	U.160 J (0.003)	-	0.041 J (0.003)	-	8.400 (0.003)	ND (0.0034) (0.0033)	0.0056 J (0.0033)	0.0069 J (0.0033)	2.0 (0.0033)	0.0061 J (0.0033)	ND (0.0035) (0.0033)
Indeno(1,2,3-c,d)Pyrene	mg/kg	190000 ^A	22000 ^B	-	-	-	-	-	-	-	-	0.020 (0.0033)	0.085 (0.0033)	0.097 (0.0033)	0.16 (0.0033)	0.043 (0.0033)	0.014 J (0.0033)
2-Methylnaphthalene	mg/kg	190000 ^A	1900 ^B	-	-	-	-	-	-	-	-	0.0049 J (0.0033)	0.022 (0.0033)	0.045 (0.0033)	13 (0.0033)	0.018 J (0.0033)	0.0046 J (0.0033)
Cresol, o- (2-Methylphenol)	mg/kg	190000 ^A	580 ^B	-	-	-	-	-	-	-	-	ND (0.017) (0.017)	ND (0.018) (0.017)	ND (0.020) (0.017)	ND (0.087) (0.017)	ND (0.019) (0.017)	ND (0.018) (0.017)
Cresol, p- (4-Methylphenol)	mg/kg	190000 ^A	58 ^B	-	-	-	-	-	-	-	-	ND (0.017) (0.017)	ND (0.018) (0.017)	ND (0.020) (0.017)	ND (0.087) (0.017)	ND (0.019) (0.017)	ND (0.018) (0.017)
Naphthalene	mg/kg	190000 ^A	25 ^B	-	0.120 (0.003)	-	1.200 (0.003)	-	0.140 J (0.003)	-	3.900 (0.003)	-	-	-	-	-	-
4-Nitrophenol	ma/ka	190000 ^A	6 ^B	-	-	-	-	-	-	-	-	ND (0.17) (0.17)	ND (0.18) (0.17)	ND (0.20) (0.17)	ND (0.87) (0.17)	ND (0.19) (0.17)	ND (0.18) (0.17)
Phenanthrene	mg/kg	190000 ^A	10000 ^B		0 790 (0 003)		0.880 (0.003)		0.530 (0.003)		22 000 (0 003)	0.0095 1 (0.0033)	0.032 (0.0033)	0.049 (0.0033)	4 3 (0 0033)	0.020 (0.0033)	0.0060 1 (0.0033)
Phenol	mg/kg	180000 ^A	10000	-	0.700 (0.000)	_		-	0.000 (0.000)	-	-	ND (0.017) (0.017)	ND (0.018) (0.017)	ND (0.020) (0.017)	ND (0.087) (0.017)	ND (0.019) (0.017)	ND (0.018) (0.017)
Press	mg/kg	100000	200	-	0 700 (0 002)	-	0.810 (0.002)	-	1 000 (0 002)	-	6 200 (0 002)	0.025 (0.0022)	0.10 (0.0022)	0.060 (0.0023)	1.4 (0.0022)	0.025 (0.0022)	0.015 1 (0.0022)
Pyrene	mg/kg	190000	2200-	-	0.780 (0.003)	-	0.810 (0.003)	-	1.000 (0.003)	-	6.300 (0.003)	0.025 (0.0033)	0.10 (0.0033)	0.060 (0.0033)	1.4 (0.0033)	0.035 (0.0033)	0.015 J (0.0033)
Pyriuine	mg/kg	10000	12	-	-		-		•			ND (0.069) (0.067)	ND (0.073) (0.067)	ND (0.081) (0.067)	ND (0.35) (0.067)	ND (0.077) (0.067)	ND (0.071) (0.067)
Quinoline	mg/kg	10000^	0.37	-	-	-	-	-	-	-	-	ND (0.034) (0.033)	ND (0.037) (0.033)	ND (0.040) (0.033)	ND (0.17) (0.033)	ND (0.038) (0.033)	ND (0.036) (0.033)
Metals																	
Cobalt	ma/ka	190000 ^A	160 ^B	-	-	-	-	-		-		4.34 (0.0810)	6.41 (0.0810)	9.74 (0.0810)	4.11 (0.0810)	6.66 (0.0810)	3.67 (0.0810)
Lead	ma/ka	190000 ^A	450 ^B	208 (0.510)	-	315 (0.510)	-	1360^B (0.510)	-	255 (0.510)	-	18.6 (0.510)	86.3 (0.510)	91.7 (0.510)	39.5 (0.510)	27.8 (0.510)	10.8 (0.510)
Nickel	ma/ka	100000 ^A	400 650 ^B	200 (0.010)	-	010 (0.010)	-	<u>1300</u> (0.510)	-	200 (0.010)	-	43.1 (0.200)	45.3 (0.310)	149 (0 200)	43.7 (0.200)	15.2 (0.200)	26.9 (0.200)
Vanadium	mg/kg	190000	050									43.1 (0.300)	40.0 (0.000)	221 (0.220)	40.7 (0.000)	10.2 (0.300)	20.3 (0.300)
	nig/kg	190000*	820		-		-		-			149 (0.230)	214 (0.230)	321 (0.230)	109 (0.230)	144 (0.230)	34.0 (0.230)
Zinc	mg/kg	190000 ^A	12000°	-	-	-	-	-	-	-	-	62.5 (0.770)	134 (0.770)	157 (0.770)	307 (0.770)	60.0 (0.770)	25.2 (0.770)
General Chemistry																	
Moisture, Percent	%	n/v	n/v	42.4 (0.50)	16.7 (0.50)	34.3 (0.50)	14.4 (0.50)	24.2 (0.50)	15.1 (0.50)	37.5 (0.50)	29.6 (0.50)	4.0 (0.50)	9.2 (0.50)	18.1 (0.50)	4.1 (0.50)	13.0 (0.50)	7.3 (0.50)
pH. Laboratory Measured	S.U.	n/v	n/v	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Solids Percent	%	n/v	n/v		-	· .	-			· ·		-		-	-		-
	/0	10.4	10.4	1	1	1	1	I	1	1	1	1	1	1	1	1	1
Notos																	

 Notes:

 MSC-PA
 Pennsylvania Department of Environmental Protection - 2016. Medium-Specific

 A
 Concentrations (MSCs) for Organic/Inorganic Regulated Substances in Soil - Direct Contact - Non-Residential Subsurface Soil (2-15 ft).

 SHS-PA
 Pennsylvania Department of Environmental Protection - Statewide Health Standards - 2016.

 B
 PADEP Non-Residential Statewide Health Standards (>2 ft bgs) (Unsaturated Soil).

 6.5.⁴
 Concentration exceeds the indicated standard.

 ND (2.5.0)
 Laboratory reporting limit was greater than the applicable standard.

 ND (2.4) (1.2 Analyte was not detected at a concentration greater than the laboratory reporting limit. The first value in parenthesis is the reporting limit. The method detection limit is shown in the second set of parenthesis.

 n/v
 No standard/guideline value in database - 2016 values have been populated for Evergreen Comprehensive List only. Criteria for other analytes may be available but may not be represented here.

 Parameter not analyzed / not available.

 J
 Indicates an estimated value.

 mg/kg
 milligrams per kilogram.

 ft
 Feet.

mg/kg ft Foot

Method detection limit is shown in second set of parentheses.

Summary of PADEP Open Storage Tank Incidents AOI 6 Remedial Investigation Report Philadelphia Refinery Operations, a Series of Evergreen Resources Group, LLC

Release/ Incident Date	PADEP Incident Number	Sun Tank Number	DEP Tank Number	Current PADEP Tank Number (PES)	Quantity Released (gallon)	Product Description	Regulatory Program
9/12/1993	45692	81	121A	NA	100	Caustic Release	PADEP Chapter 245 Storage Tank Program
7/19/1998	4844	676	130A	045A	2600	#6 Fuel Oil	PADEP Chapter 245 Storage Tank Program
6/10/2002	29122	797	097A	NA	5	Benzene	PADEP Chapter 245 Storage Tank Program

Note:

- 1 NA indicated information not applicable or not available
- 2 PADEP Release Incident Number 37546 for Tank 250 was originally listed as on open incident by the PADEP in their 2014 summary of open incidents but was changed to closed in accordance with Mr. David Brown's Technical Review Memo dated August 29, 2017.

														Wel	II Constructio	on Details ¹			
AOI	Well ID	Former Well ID ²	Well Status	Disposition of Well	Northing ³	Easting ³	Well Type ⁴	Well Classification/ Hydrostratigraphic Unit ⁵	Soil Boring Log Available (Y/N)	Construction Detail Available (Y/N)	Date of Well Completion	Well Completion Depth (ft/bgs) ⁶	Well Diameter (in) ⁷	Top of Inner Casing Elevation (ft msl) (NAVD88) ⁸	Ground Surface Elevation (ft msl) (NAVD88) ⁸	Top of Screen Elev (ft msl) (NAVD88) ⁸	Bottom of Screen Elevation (ft msl) (NAVD88) ⁸	Depth to Screen (ft bgs) ⁸	Screen Length (ft) ⁹
AOI 6	B-115				218058.703	2682824.9	MW	Shallow						7.5	4.88				
AOI 6	B-116				217899.153	2682925	MW	Shallow						5.07	6.33				
AOI 6	B-117				217678.393	2682499.4	MW	Shallow						5.97	8.89				
AOI 6	B-123				217145.729	2681457.9	MW	Shallow						10.76	7.61			_	1.0
AOI 6	B-124				216810.937	2681316.4	RW	Shallow	Y	Y	9/21/1992	15	4	8.97	5.91	0.91	-9.09	5	10
AOI 6	B-125				216828.873	2681099.2	MW	Shallow						8.51	5.25				
AOI 6	B-126				21/022.1/5	2680973.6	MVV	Shallow	X	X	0/00/4000	45		8.51	5.52	4.00	0.07		40
AOI 6	B-129				217874.097	2683017.7	MIVV	Shallow	Ý	Y	8/20/1992	15	4	8.02	6.33	1.33	-8.67	5	10
AOL6	B-130				21/39/.33/	2680131.2	IVIVV NAVA/	Shallow	Ý	Y	8/20/1992	16	4	9.69	8.11	3.11	-6.89	5	10
AOL6	B-131				216460.204	2680692.6		Shallow	ř	ř	8/20/1992	14	4	8.72	0.2	2.2	-7.8	4	10
AOL6	B-132 D 122				217350.988	2681170.9	IVIVV DW/	Shallow	ř V	ř V	8/28/2001	11	4	0.87	2.27	1.27	-8.73	1	10
AOLE	D-100 D-100				217307.140	2001200.0		Shallow	T V	I V	0/20/2001	11		7.33	3.3 2.20	2.3	-7.7	1	10
	D-134 B-135				217203.223	2001102.9	MW	Shallow	V I	I V	8/28/2001	11		6.38	3.30	2.30	-7.69	1	10
	B-136				217250 310	2681252.6	RW	Shallow	V V	V I	8/20/2001	12		9.15	6.31	/ 31	-5.69	2	10
	B-137				217233.513	2681298.4	RW	Shallow	Y	Y	8/29/2001	12		8.73	6.22	4.22	-5.78	2	10
AOL6	B-138				217137 758	2681330.3	RW	Shallow	Ý	Y	8/29/2001	12		9.33	6.06	4.06	-5.94	2	10
AOI 6	B-139		Damaged	Casing	217339.031	2681270.5	RW	Shallow	Ŷ	Ŷ	8/29/2001	12		9.4	6.93	4.93	-5.07	2	10
AOL6	B-140		Destroyed	uamageu	217269 283	2681316.4	RW	Shallow	Y	Y	8/29/2001	12		10 14	7.39	5.39	-4 61	2	10
	B-141		Damaged	new riser	217203.203	2681380.2	MW	Shallow	Y	Y	8/30/2001	12		8.69	7.75	5.75	-4.25	2	10
	D 111		Damaged	required	047477.044	2001000.2	DW			, , , , , , , , , , , , , , , , , , ,	0/00/2001	12		0.00	0.04	0.70	5.40	-	10
AOL6	B-142				21/1//.614	2681208.8	RW	Shallow	Ý	Y	8/29/2001	12		9.74	6.81	4.81	-5.19	2	10
AOI 6	B-143				21/20/.506	2681159	RW	Shallow	Ý	Y	8/29/2001	12		8.98	6.36	4.36	-5.64	2	10
AOL6	B-144				217133.772	2681234.7		Shallow	ř V	ř V	8/30/2001	12		9.02	0.10	4.16	-5.84	2	10
AOI 6	B-145 B-146		Unable to		217085.945	2681455.9	MW	Shallow	Y	Y	8/30/2001	12		7.77	7.8	5.8	-4.04	2	10
	D 4 47		Locate		047445 700	0004405.4	DW	Ohallaus	X	X	0/00/0004	40			0.0	1.0	5 4	0	40
AOL6	B-147				217145.729	2681125.1	RVV	Shallow	Y Y	Y	8/30/2001	12		8.9	6.6	4.6	-5.4	2	10
AOLG	D-140				217443.977	2001070.9		Shallow	ř	N X	9/17/2002	11		7.22	5.19	4.19	-5.61	1	10
AOLE	D-149 B 150				217430.203	2000999.2		Shallow	ř V	ř V	9/17/2002	11		7.74	5.0 5.92	4.0	-0.2	1	10
	B-150 B-151	10100-3			217400.232	2000903.3		Shallow	I V	I V	2/23/2006	13	1	7.0	5.03	4.03	-0.17	2	8
	B-152				2178/8 308	2680602.5	M\A/	Shallow	V	I V	2/23/2000	10	4	5.036	55	3.77	-4.25	2	8
	B-152				217475 27	2680101.7	MW	Shallow	Y	Y	2/24/2006	10	4	6 367	6.67	4.67	-3 33	2	8
AOL6	B-154				217552 437	2680926.8	MW	Shallow	Ý	Y	2/23/2006	13	4	8.68	6.43	4 43	-3.57	2	8
AOI 6	B-155				217399.88	2680974.7	MW	Shallow	Ŷ	Y	2/24/2006	13	4	8.541	6.54	4.54	-3.46	2	8
AOI 6	B-156				217365.5	2680904.1	MW	Shallow	Ý	Y	2/23/2006	13	4	8.856	6.65	4.65	-3.35	2	8
AOI 6	B-157		Unable to		217194.811	2680880.6	MW	Shallow	Y	Y	2/22/2006	12	4	4.924	5.26	3.26	-6.74	2	10
	B-158		Locale		217966 981	2679968 9	M\A/	Shallow	Y	V V	2/22/2006	12	4	8 209	8 66	6 66	-3 34	2	10
AOL6	B-159		Destroved		217268 172	2681614 1	MW	Shallow	Ý	Y	4/20/2006	10	4	6,1924	8.51	3,9193	-1.49	5	8
AOI 6	B-160		20010,00		217370.65	2681839.8	MW	Shallow	Ŷ	Y	2/27/2006	10	4	8.532	8.95	6.95	-1.05	2	8
AOI 6	B-161				216894.044	2681270.4	MW	Shallow	Y	Y	2/21/2006	15	4	8.3	6.98	4.98	-5.02	2	10
AOI 6	B-162				217903.199	2682803.5	MW	Shallow	Y	Y	2/20/2006	18	4	7.589	4.93	2.93	-10.07	2	13
AOI 6	B-163				217531.251	2681198.8	MW	Shallow	Y	Y	2/28/2006	10	4	7.452	7.68	5.68	-2.32	2	8

														Wel	I Construction	on Details ¹			
AOI	Well ID	Former Well ID ²	Well Status	Disposition of Well	Northing ³	Easting ³	Well Type⁴	Well Classification/ Hydrostratigraphic Unit ⁵	Soil Boring Log Available (Y/N)	Construction Detail Available (Y/N)	Date of Well Completion	Well Completion Depth (ft/bgs) ⁶	Well Diameter (in) ⁷	Top of Inner Casing Elevation (ft msl) (NAVD88) ⁸	Ground Surface Elevation (ft msl) (NAVD88) ⁸	Top of Screen Elev (ft msl) (NAVD88) ⁸	Bottom of Screen Elevation (ft msl) (NAVD88) ⁸	Depth to Screen (ft bgs) ⁸	Screen Length (ft) ⁹
AOI 6	B-164				216480.287	2680585.2	MW	Shallow	Y	Y	2/21/2006	15	4	8.822	5.86	3.86	-6.14	2	10
AOI 6	B-165				217152.414	2680186.5	MW	Shallow	N	N	12/31/1999			5.79	6.07				
AOI 6	B-166			Shallow	217408.526	2682932.2	MW	Shallow	N	N	12/31/1999			7.47	7.89				
AOI 6	B-167			Shallow	217814.189	2683187.9	MW	Shallow	N	N	12/31/1999			6.73	7.21				
AOI 6	B-168				217494.926	2680069.6	MW	Shallow	N	N	12/31/1999			6.46	6.77				
AOI 6	B-169				217416.456	2680092.2	MW	Shallow	N	N	12/31/1999			6.12	6.47				
AOI 6	B-170			Shallow	217350.272	2680110.6	MW	Shallow	N	N	12/31/1999			0.04	0.15				
AOI 6	B-171		Reserved				MW												-
AOI 6	B-172				217412.384	2680736.1	MW	Shallow	Ŷ	Ŷ	4/7/2016	10	4	8.01	5.15	3.15	-4.85	2	8
AOI 6	B-173				216650.661	2681020.8	MW	Shallow	Ŷ	Ŷ	4/6/2016	12	4	8.18	5.7	3.7	-6.3	2	10
AOI 6	B-174				216387.568	2681059.3	MW	Shallow	Y	Y	4/8/2016	12	4	8.3	5.5	3.5	-6.5	2	10
AOI 6	B-175				216862.933	2681336.1	MVV	Shallow	Y	Y	4/7/2016	12	4	8.77	5.9	3.9	-6.1	2	10
AOI 6	B-39				216614.006	2680589.9	MW	Shallow	Y	Y	2/19/1986	15	4	5.48	5.54	2.54	-9.46	3	12
AOI 6	B-40		Destroyed		216938.477	2680955.7	MVV	Shallow	Ý	Y	2/18/1986	13	4	/.1/	6.12	3.12	-6.88	3	10
AOI 6	B-41		Destroyed		21/614.988	2680836	MVV	Shallow	Ý	Y	2/21/1986	12	4	8.85	7.8	5.8	-4.2	2	10
AOI 6	B-42		Destroyed		217060.496	2680219.3	IVIVV	Shallow	Y Y	Ý	2/19/1986	15	4	8.04	6.99	4.49	-8.01	3	12.5
AOI 6	B-43		Destroyed		21/5/3.531	2680040.5		Shallow	Y	Ý	2/19/1986	14.5	4	7.21	7.14	4.14	-7.36	3	11.5
AOL6	B-44		Destroyed		21/9/3.28	2680563.8		Shallow	ř V	ř V	2/20/1986	15	4	8.21	7.16	4.16	-5.84	3	10
AOL 6	B-45				218353.448	2680392.9		Shallow	ř V	ř V	2/20/1986	15	4	5.099	4.9	1.9	-10.1	3	12
AOL 6	B-40				218130.015	2681908.7		Shallow	ř V	ř V	2/21/1986	12	4	8.03	8.32	6.32	-3.68	2	10
AOL 6	B-47				217433.012	2681963.1		Shallow	ř V	ř V	2/21/1986	13	4	8.3	8	5	-5	3	10
AOL6	B-48				21/529.482	2082248.1		Shallow	ř V	ř V	2/21/1980	14	4	0.0	0.8	2.8	-1.2	4	10
AOL6	B-92		Destroyed		210900.370	2681497.7		Shallow	ř	ř V	10/21/1986	10.0	4	10.23	1.3	1.8	-8.2	6	10
AOL6	B-93		Destroyed		217477.001	2081001.0		Shallow	ř V	ř V	10/22/1986	13.5	4	12.83	7.07	8.17	-1.83	4	10
AOI 6	B-94 B-95	GP U 677- MW			217541.104	2680372.6	MW	Shallow	T	T	10/22/1980	14	4	8.867	6.608	3.21	-0.79	4	10
AOI 6	GP-19		Destroved				MW	Shallow	Y	Ý	9/11/2000	15		7.8				5	10
AOI 6	GP-22		Destroyed				MW	Shallow	Y	Y	9/11/2000	15		7.5				10	5
AOI 6	GP-3		Destroyed				MW	Shallow	Y	Y	9/8/2000	14		7.6				4	9
AOI 6	PH-36		Destroyed				MW												
AOI 6	PH-37		Destroyed				MW												
AOI 6	PH-39		Destroyed				MW												
AOI 6	PH-42		Destroyed				MW												
AOI 6	PS-1		Destroyed		217224.428	2681226.9	MW		N	N				9.02					
AOI 6	PZ-132A				216103.54	2680865.9	Piezometer	Shallow	Y	Y	3/8/2001	10	1	10.15	8.12	3.12	-1.88	5	5
AOI 6	PZ-132B		Destroyed				Piezometer	Shallow	Y	Y	3/8/2001	10	1					5	5
AOI 6	PZ-134A		Destroyed				Piezometer	Shallow	Y	Y	3/8/2001	10	1					5	5
AOI 6	PZ-134B		Destroyed				Piezometer	Shallow	Y	Y	3/8/2001	10	1					5	5
AOI 6	PZ-135A				216284.976	2680664	Piezometer	Shallow	Y	Y	3/8/2001	10	1	10.18	8.57	3.57	-1.43	5	5
AOI 6	PZ-135B				216290.237	2680656.2	Piezometer	Shallow	Y	Y	3/8/2001	10	1	10.21				5	5
AOI 6	RW-9				216561.837	2681445.9	RW	Shallow	Y	Y				8.76	5.88				
AOI 6	SUMP-1				217217.47	2681190.8	RW	Shallow	Y	Y	11/1/2001	10	6	10.7				0	10
AOI 6	U-1				216621.098	2681638.4	MW	Shallow	Ν	N				10.7	7.22				
AOI 6	U-2				216693.553	2681797.9	MW	Shallow	Ν	N				9.39	7.13				
AOI 6	U-3				216811.345	2681941	MW	Shallow	N	N				9.8	6.84				

														We	II Construction	on Details ¹			
ΑΟΙ	Well ID	Former Well ID ²	Well Status	Disposition of Well	Northing ³	Easting ³	Well Type⁴	Well Classification/ Hydrostratigraphic Unit ⁵	Soil Boring Log Available (Y/N)	Construction Detail Available (Y/N)	Date of Well Completion	Well Completion Depth (ft/bgs) ⁶	Well Diameter (in) ⁷	Top of Inner Casing Elevation (ft msl) (NAVD88) ⁸	Ground Surface Elevation (ft msl) (NAVD88) ⁸	Top of Screen Elev (ft msl) (NAVD88) ⁸	Bottom of Screen Elevation (ft msl) (NAVD88) ⁸	Depth to Screen (ft bgs) ⁸	Screen Length (ft) ⁹
AOI 6	U-4				216875.006	2682042.6	MW	Shallow	N	N				9.22	6.64				
AOI 6	U-5				216800.942	2681801.5	MW	Shallow	N	N				9.79	7.6				
AOI 6	URS-1	B-132U			216100.512	2680858.7	MW	Shallow	N	N				10.02					
AOI 6	URS-2	B-133U	Unable to Locate		216725.578	2681726.7	MW	Shallow	N	N				7.89					
AOI 6	URS-3	B-134U			216761.463	2681038.8	MW	Shallow	N	N		18		7.6					
AOI 6	URS-4	B-135U			216277.495	2680670.6	MW	Shallow	N	N				9.941					
AOI 6	URS-5	B-136U			216793.509	2680400.6	MW	Shallow	N	N	0/11/1000	14		7.94					10
AOI 6	WP10-1		Destroyed				Temporary Well Point		Y	Y	6/11/1993	10.5						1	10
AOI 6	WP10-2		Destroyed				Temporary Well Point		Y	Y	6/11/1993	10.5						1	10
AOI 6	WP11-1		Destroyed				Temporary Well Point		Y	Y	6/11/1993	10.5						1	10
AOI 6	WP11-10		Destroyed				Temporary Well Point		Y	Y	6/11/1993	10.5						1	10
AOI 6	WP11-11		Destroyed				Temporary Well Point		Y	Y	6/11/1993	10.5						1	10
AOI 6	WP11-12		Destroyed				Temporary		Y	Y	6/11/1993	10.5						1	10
AOI 6	WP11-2		Destroyed				Temporary		Y	Y	6/11/1993	10.5						1	10
AOI 6	WP11-3		Destroyed				Well Point Temporary		Y	Y	6/11/1993	10.5						1	10
AOI 6	WP11-4		Destroyed				Well Point Temporary		Y	Y	6/11/1993	10.5						1	10
AOI 6	WP11-5		Destroyed				Well Point Temporary		Y	Y	6/11/1993	10.5						1	10
AOI 6	WP11-6		Destroyed				Well Point Temporary		Y	Y	6/11/1993	10.5						1	10
AOL 6	WP11-7		Destroyed				Well Point Temporary		Y	Y	6/11/1993	10.5						1	10
	W/P11_8		Destroyed				Well Point		· · ·	·	6/11/1003	10.5							10
			Destroyed				Well Point		I V	ı V	0/11/1995	10.5						1	10
	WP11-9		Destroyed				Well Point		Y	ř	0/11/1993	10.5						1	10
AOI 6	WP12-1		Destroyed				Temporary Well Point		Y	Y	6/11/1993	10.5						1	10
AOI 6	WP12-2		Destroyed				Temporary Well Point		Y	Y	6/11/1993	10.5						1	10
AOI 6	WP12-3		Destroyed				Temporary Well Point		Y	Y	6/11/1993	10.5						1	10
AOI 6	WP12-4		Destroyed				Temporary Well Point		Y	Y	6/11/1993	10.5						1	10
AOI 6	WP12-5		Destroyed				Temporary Well Point		Y	Y	6/11/1993	10.5						1	10

														We	II Construction	on Details ¹			
AOI	Well ID	Former Well ID ²	Well Status	Disposition of Well	Northing ³	Easting ³	Well Type ⁴	Well Classification/ Hydrostratigraphic Unit ⁵	Soil Boring Log Available (Y/N)	Construction Detail Available (Y/N)	Date of Well Completion	Well Completion Depth (ft/bgs) ⁶	Well Diameter (in) ⁷	Top of Inner Casing Elevation (ft msl) (NAVD88) ⁸	Ground Surface Elevation (ft msl) (NAVD88) ⁸	Top of Screen Elev (ft msl) (NAVD88) ⁸	Bottom of Screen Elevation (ft msl) (NAVD88) ⁸	Depth to Screen (ft bgs) ⁸	Screen Length (ft) ⁹
AOI 6	WP16-1		Destroyed				Temporary Well Point		Y	Y	6/11/1993	10.5						1	10
AOI 6	WP16-2				216956.412	2682316.8	MW			X	0/11/1000	10.5			13.59	10.00			
AOI 6	WP16-2		Destroyed				Vell Point		Ŷ	Y	6/11/1993	10.5			13.59	13.09	3.09	1	10
AOI 6	WP16-3		Destroyed				Temporary Well Point		Y	Y	6/11/1993	10.5						1	10
AOI 6	WP16-4		Destroyed				Temporary Well Point		Y	Y	6/11/1993	10.5						1	10
AOI 6	WP16-5		Destroyed		216990.29	2682366.6	Temporary Well Point	Shallow	Y	Y	6/21/1993	10.5	2	13.57				1	10
AOI 6	WP17-1		Destroyed				Temporary Well Point		Y	Y	6/11/1993	10.5						1	10
AOI 6	WP17-2		Destroyed				Temporary Well Point		Y	Y	6/11/1993	10.5						1	10
AOI 6	WP17-3		Destroyed				Temporary Well Point		Y	Y	6/11/1993	10.5						1	10
AOI 6	WP8-1		Destroyed				Temporary Well Point		Y	Y	5/25/1993	10.5						1	10
AOI 6	WP8-2		Destroyed				Temporary Well Point		Y	Y	5/25/1993	10.5						1	10
AOI 6	WP8-3		Destroyed				Temporary Well Point		Y	Y	5/25/1993	10.5						1	10
AOI 6	WP9-1		Destroyed		216858.765	2681350.3	Temporary Well Point	Shallow	Y	Y	5/26/1993	9			7.9	7.4	-2.1	1	9.5
AOI 6	WP9-2		Unable to		216787.024	2681262.6	Temporary Well Point	Shallow	Y	Y	5/26/1993	10.5		6.01				1	10
AOI 6	WP9-3		Damaged	Obstruction	216733.218	2681300.4	Temporary Well Point	Shallow	Y	Y	5/26/1993	9		6.16				1	9.5
AOI 6	WP9-4				216537.48	2681422.1	Temporary Well Point	Shallow	Y	Y	6/14/1993	9		9.04	5.8	5.3	-4.2	1	9.5
AOI 6	WP9-5		Destroyed		216613.65	2681159	Temporary Well Point		Y	Y	6/14/1993	10.5			-1.05	-1.55	-11.55	1	10
AOI 6	WP9-6		Destroyed		216850.79	2681081.2	Temporary Well Point		Y	Y	6/11/1993	10.5			10.02	9.52	-0.48	1	10
AOI 6	WPM-1		Destroyed		217185.58	2682396.5	Temporary Well Point								13.8				
AOI 6	WPM-10		Destroyed		217022.175	2682342.7	Temporary Well Point								9.99				
AOI 6	WPM-11				217105.984	2682370.8	Temporary Well Point	Shallow						6.509	6.858				
AOI 6	WPM-2		Repaired	Converted to	217072.188	2682472.1	Temporary Well Point	Shallow						7.47	7.964				
AOI 6	WPM-3				217085.439	2682433.1	Temporary	Shallow						8.031	7.964				
							Well Point												

Existing Well Summary AOI 6 Remedial Investigation Report Philadelphia Refinery Operations, a Series of Evergreen Resources Group, LLC

														We	II Construction	on Details ¹			
AOI	Well ID	Former Well ID ²	Well Status	Disposition of Well	Northing ³	Easting ³	Well Type ⁴	Well Classification/ Hydrostratigraphic Unit ⁵	Soil Boring Log Available (Y/N)	Construction Detail Available (Y/N)	Date of Well Completion	Well Completion Depth (ft/bqs) ⁶	Well Diameter (in) ⁷	Top of Inner Casing Elevation (ft msl) (NAVD88) ⁸	Ground Surface Elevation (ft msl) (NAVD88) ⁸	Top of Screen Elev (ft msl) (NAVD88) ⁸	Bottom of Screen Elevation (ft msl) (NAVD88) ⁸	Depth to Screen (ft bqs) ⁸	Screen Length (ft) ⁹
AOI 6	WPM-4		Destroyed		217323.088	2682639.6	Temporary Well Point							14.06	13.01				
AOI 6	WPM-5		Destroyed				Temporary Well Point							14.18	13.13				
AOI 6	WPM-6		Destroyed		217139.75	2682446.3	Temporary Well Point							14.35	13.3				
AOI 6	WPM-7		Destroyed		217235.212	2682631	Temporary Well Point								14.68				
AOI 6	WPM-8	RWM-8	Destroyed		217025.191	2682447.5	Temporary Well Point							12.61					
AOI 6	WPM-9		Destroyed				Temporary Well Point							16.5	15.45				

Notes:

2. Former Well IDs were derived from handwritten notes on boring logs or as referenced in historic reports.

3. Coordinate pairs are projected in the Pennsylvania State Plane Coordinate System (feet), referenced to the North American Datum of 1983 (NAD83).

4. MW = monitoring well; RW = recovery well

5. The hydrostratigraphic unit denotes the aquifer and/or mappable water-bearing stratum in which the well is interpreted to be screened by Stantec.

Historic wells without lithologic logs, wells without as-built information, and/or destroyed wells were not assigned hydrostratigraphic units.

6. ft bgs = feet below ground surface

7. in = inches

8. NAVD88 = North American Vertical Datum of 1988

9. ft = feet

General Note:

Stantec presently maintains an electronic database from which these well records were extracted. Many of the well records in that database were translated from historic paper records, or from electronic tables received from other consultants. Maintenance of the electronic well database, including revisions to anomalous or missing information, is ongoing and as such this table may be subject to future revision.

^{1.} Well construction details were obtained from well boring logs provided by historic reports.

Groundwater Analytical Results Summary - Shallow Aquifer AOI 6 Remedial Investigation Report Philadelphia Refinery Operations, a series of Evergreen Resources Group, LLC

Sample Location:		DADED	B-39	B-39	B-39	B-43	B-43	B-45	B-115	B-116
Sample Date:		Act2	05/11/2016	08/24/2016	08/24/2016	05/23/2016	08/22/2016	05/05/2016	05/04/2016	05/04/2016
Parameters	Units	Used Aquifer NR MSC								
Volatile Organic Compounds										
1,2,4-Trimethylbenzene	µg/L	62	ND(2)	1 J	0.6 J	ND(0.5)	ND(2)	ND(2)	ND(2)	ND(2)
1,2-Dichloroethane	µg/L	5	ND(1)	ND(1)	ND(1)	ND(0.5)	ND(1)	ND(1)	ND(1)	ND(1)
1,3,5-Trimethylbenzene	µg/L	1200	ND(2)	ND(2)	ND(2)	ND(0.5)	ND(2)	ND(2)	ND(2)	ND(2)
Benzene	µg/L	5	3	4	3	ND(0.5)	ND(1)	ND(1)	ND(1)	ND(1)
Ethylbenzene	µg/L	700	ND(1)	ND(1)	ND(1)	ND(0.5)	ND(1)	ND(1)	ND(1)	ND(1)
Isopropyl benzene	µg/L	3500	11	26	17	4	6	ND(2)	ND(2)	0.5 J
Methyl tert butyl ether (MTBE)	µg/L	20	ND(1)	ND(1)	ND(1)	ND(0.5)	ND(1)	ND(1)	ND(1)	ND(1)
Toluene	µg/L	1000	0.7 J	2	2	ND(0.5)	ND(1)	ND(1)	ND(1)	ND(1)
Total BTEX	µg/L		-	-	-	ND() ND	-	-	-	-
Xylenes (total)	µg/L	10000	4	5	4	ND(0.5)	0.6 J	ND(1)	ND(1)	ND(1)
Semi-Volatile Organic Compounds										
Anthracene	μg/L	66	5.8	1.6	0.41	0.7	0.22	0.042 J	0.065	0.27
Benzo(a)anthracene	μg/L	4.9	3.0	0.48	0.086	2	0.89	0.021 J	0.034 J	0.058
Benzo(a)pyrene	μg/L	0.2	2.5	0.34	0.071	2	0.66 J	0.030 J	ND(0.052)	0.013 J
Benzo(b)fluoranthene	μg/L	1.2	3.1	0.47	0.083	2	0.75 J	0.043 J	0.012 J	0.017 J
Benzo(g,h,i)perylene	µg/L	0.26	1.5	0.16	0.057	1	0.32 J	0.033 J	ND(0.052)	ND(0.050)
Chrysene	µg/L	1.9	2.6	0.43	0.090	3	1.0	0.050 J	0.035 J	0.066
Fluorene	µg/L	1900	14	5.5	3.0	0.9	0.34	0.042 J	0.13	1.5
Naphthalene	µg/L	100	8.0	4.4	ND(0.064)	ND(0.1)	ND(0.063)	ND(0.061)	ND(0.063)	0.070
Phenanthrene	µg/L	1100	25	6.0	0.86	ND(0.1)	0.24	0.065	0.40	0.054 J
Pyrene	µg/L	130	6.4	1.1	0.35	7	2.9	0.085	0.24	0.65
Metals										
Lead	µg/L	5	16.7	-	-	-	-	-	ND(1.0)	0.88 J
Lead (dissolved)	µg/L	5	-	2.1	4.7	ND(0.13)	2.8	0.14 J	-	-
Fumigant										
1,2-Dibromoethane (Ethylene dibromide)	µg/L	0.05	ND(0.029)	0.057	ND(0.028)	ND(0.0097)	ND(0.028)	ND(0.029)	ND(0.028)	ND(0.028)

Notes:

 ND
 Not detected at the associated reporting limit.

 J
 Estimated concentration.

 ND(10)
 Indicates the laboratory method detection limit (if available) was above the applicable standard. The reporting limit is shown if the laboratory method
 detection limit is not available. Value Concentration exceeds applicable criteria

Groundwater Analytical Results Summary - Shallow Aquifer AOI 6 Remedial Investigation Report Philadelphia Refinery Operations, a series of Evergreen Resources Group, LLC

Sample ID: Sample Date: Parameters Units Volatile Organic Compounds 1.2.4-Trimethylbenzene ug/L	PADEP Act2 Used Aquifer NR MSC	GW-11109613-B-116-082416-AC-026 08/24/2016	GW-11109613-B-116-082416-AC-027 08/25/2016	GW-11109613-B-116D-082416-AC-028 08/25/2016	GW-11109613-B117-05-04-16-AC-008 05/04/2016	GW-11109613-B-117-082216-AC-006 08/22/2016	GW-11109613-B125-05-09-16-MM-032	GW-11109613-B-125-082316-KC-010
Sample Date: Parameters Units Volatile Organic Compounds 1.2.4-Trimethylbenzene ug/L	Act2 Used Aquifer NR MSC	08/24/2016	08/25/2016	08/25/2016	05/04/2016	08/22/2016	05/09/2016	00/00/00/6
Parameters Units Volatile Organic Compounds 1.2.4-Trimethylbenzene uo/L	Used Aquifer NR MSC						03/03/2010	00/23/2010
Parameters Units Volatile Organic Compounds 1.2.4-Trimethylbenzene ug/L	NR MSC			Duplicate				
Volatile Organic Compounds								
1.2.4-Trimethylbenzene ug/L								
	62	ND(2)	ND(2)	ND(2)	ND(2)	ND(2)	2 J	0.8 J
1,2-Dichloroethane µg/L	5	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)
1,3,5-Trimethylbenzene µg/L	1200	ND(2)	ND(2)	ND(2)	ND(2)	ND(2)	3	2
Benzene µg/L	5	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	9	9
Ethylbenzene µg/L	700	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	0.6 J	ND(1)
Isopropyl benzene µg/L	3500	ND(2)	ND(2)	ND(2)	ND(2)	ND(2)	8	9
Methyl tert butyl ether (MTBE) µg/L	20	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)
Toluene µg/L	1000	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	3	4
Total BTEX µg/L		-	-	-	-	-	-	-
Xylenes (total) µg/L	10000	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	30	25
Semi-Volatile Organic Compounds								
Anthracene µg/L	66	0.036 J	0.11	0.080	1.8	1.0	1.5	1.9
Benzo(a)anthracene µg/L	4.9	0.021 J	0.045 J	0.028 J	0.46	0.25	0.45	0.16
Benzo(a)pyrene µg/L	0.2	ND(0.050)	0.018 J	ND(0.051)	0.34	0.19 J	0.23	0.040 J
Benzo(b)fluoranthene µg/L	1.2	ND(0.050)	0.023 J	ND(0.051)	0.42	0.23 J	0.25	0.046 J
Benzo(g,h,i)perylene µg/L	0.26	ND(0.050)	ND(0.051)	ND(0.051)	0.22	0.13 J	0.070	0.012 J
Chrysene µg/L	1.9	0.031 J	0.059	0.039 J	0.54	0.34	0.34	0.13
Fluorene µg/L	1900	0.054	1.1	0.91	0.74	0.24	4.8	6.6
Naphthalene µg/L	100	0.031 J	ND(0.061)	ND(0.062)	0.11	ND(0.061)	0.40	0.31
Phenanthrene µg/L	1100	ND(0.060)	ND(0.061)	ND(0.062)	0.94	1.1	1.2	3.3
Pyrene µg/L	130	0.29	0.39	0.32	3.3	2.4	2.1	1.4
Metals								
Lead µg/L	5	-	-	-	ND(1.0)	-	0.24 J	-
Lead (dissolved) µg/L	5	ND(1.0)	0.14 J	0.16 J	-	0.25 J	-	ND(1.0)
Fumigant								
1,2-Dibromoethane (Ethylene dibromide) µg/L	0.05	ND(0.028)	ND(0.028)	ND(0.029)	ND(0.028)	ND(0.028)	ND(0.029)	ND(0.028)

Notes:

ND

J

Not detected at the associated reporting limit. Estimated concentration. Indicates the laboratory method detection limit (if available) was above the applicable standard. The reporting limit is shown if the laboratory method ND(10) detection limit is not available. Value Concentration exceeds applicable criteria

Groundwater Analytical Results Summary - Shallow Aquifer AOI 6 Remedial Investigation Report Philadelphia Refinery Operations, a series of Evergreen Resources Group, LLC

Sample D: Sample Date: PA @P Act2 GW-11109613-B126-05-10-6-MM-03 Act2 GW-11109613-B132-05-11-16-AC-02 08/3/2016 GW-11109613-B132-05-11-16-AC-02 05/1/2016 GW-1109613-B132-05-11-16-AC-02 05/1/2016 GW-1109613-B132-05-11-16-AC-02 05/1/2016 GW-1109613-B132-05-11-16-AC-02 ND(2) GW-1109613-B132-05-11-16-AC-02 ND(2) GW-1109613-B132-05-11-16-AC-02 ND(2) SW-1109613-B132-05-11-16-AC-02 ND(2) SW-1109613-B132-05-11-16-AC-02 ND(2) SW-1109613-B132-05-11-16-AC-02 ND(2) SW-1109613-B132-05-11-16-AC-02 ND(2) SW-1109613-B132-05-11-16-AC-02 ND(2) SW-1109613-B132-05-11-16-AC-02 ND(2) SW-110-10-10-10-10-10-10-10-10-10-10-10-10	GW-11109613-B133-05-05-16-RM-020 05/05/2016 0.7 J ND(1) ND(2) ND(1)	GW-11109613-B-133D-082416-AC-029 08/25/2016
Sample Date:Act205/10/201608/23/201605/05/201605/11/201608/24/2016ParametersUnitsUse dutierUse dutier<	05/05/2016 0.7 J ND(1) ND(2) ND(1)	08/25/2016 ND(2)
ParameterUsed Aquifer NR MSC2010 compounds1,2-1c/inderylebazeneµg/L628 J5 JND(2)ND(2)ND(2)1,2-Dichloroethaneµg/L5ND(1)ND(5)ND(1)ND(1)ND(1)1,2-Dichloroethaneµg/L595781ND(1)ND(1)1,2-Dichloroethaneµg/L595781ND(1)ND(1)1,2-Dichloroethaneµg/L595781ND(1)ND(1)1,2-Dichloroethaneµg/L595781ND(1)ND(1)1,2-Dichloroethaneµg/L35006040885Ethylbenzeneµg/L20ND(1)ND(5)ND(1)ND(1)ND(1)1,2-Dichloroethaneµg/L20ND(10)ND(5)ND(1)ND(1)ND(1)1,2-Dichloroethaneµg/L20ND(10)ND(5)ND(1)ND(1)ND(1)1,2-Dichloroethaneµg/L20ND(10)ND(5)ND(1)ND(1)ND(1)1,2-Dichloroethaneµg/L10004029ND(1)ND(1)ND(1)1,2-Dichloroethaneµg/L1,2-Dichloroethaneµg/L100064470.6 JND(1)ND(1)	0.7 J ND(1) ND(2) ND(1)	ND(2)
Parameters Units NR MSC Volatie Organic Compounds 1.2.4-Trimethylbenzene µg/L 6.2 8 J 5 J ND(2) ND(2) ND(2) 1.2.9-Chickloroethane µg/L 5.5 ND(10) ND(5) ND(1) ND(1) ND(1) 1.3.5-Trimethylbenzene µg/L 1200 7 J 4 J ND(2) ND(2) ND(2) Benzene µg/L 700 13 9 ND(1) ND(1) ND(1) Ethylbenzene µg/L 3500 60 40 8 8 5 Methyl tert kutyl ether (MTBE) µg/L 20 ND(1) ND(1) ND(1) ND(1) Total BTEX µg/L 0.00 40 29 ND(1) ND(1) ND(1) Total BTEX µg/L - - - - - - Xylene (total) µg/L 1000 64 47 0.6 J ND(1) ND(1)	0.7 J ND(1) ND(2) ND(1)	ND(2)
Volatile Organic Compounds 1,2,4-Trimethylbenzene µg/L 62 8 J 5 J ND(2) ND(2) ND(2) 1,2-Dichloroethane µg/L 5 ND(10) ND(5) ND(1) ND(1) ND(1) 1,3,5-Trimethylbenzene µg/L 5 95 78 1 ND(1) ND(1) Benzene µg/L 70 13 9 ND(1) ND(1) ND(1) Ethylbenzene µg/L 3500 60 40 8 8 5 Methyl terb kulyl ether (MTBE) µg/L 20 ND(10) ND(5) ND(1) ND(1) ND(1) Total BTEX µg/L 1000 40 29 ND(1) ND(1) ND(1) Total BTEX µg/L 1000 64 47 0.6 J ND(1) ND(1)	0.7 J ND(1) ND(2) ND(1)	ND(2)
1,2,4-Trimethylbenzene µg/L 62 8 J 5 J ND(2) ND(2) ND(2) 1,2-Dichloroethane µg/L 5 ND(10) ND(5) ND(1) ND(1) ND(1) 1,3-5 Trimethylbenzene µg/L 1200 7 J 4 J ND(2) ND(2) ND(2) Benzene µg/L 5 95 78 1 ND(1) ND(1) Ethylbenzene µg/L 700 13 9 ND(1) ND(1) ND(1) Isopropi benzene µg/L 20 ND(10) ND(5) ND(1) ND(1) ND(1) Toluene µg/L 1000 40 29 ND(1) ND(1) ND(1) Total BTEX µg/L - - - - - - Xylenes (total) µg/L 1000 64 47 0.6 J ND(1) ND(1)	0.7 J ND(1) ND(2) ND(1)	ND(2)
1,2-Dichloroethane µg/L 5 ND(10) ND(5) ND(1) ND(1) ND(1) 1,3,5-Trimethylbenzene µg/L 1200 7 J 4 J ND(2) ND(2) ND(2) Benzene µg/L 5 95 78 1 ND(1) ND(1) Ethylbenzene µg/L 700 13 9 ND(1) ND(1) ND(1) Ispropyl benzene µg/L 3500 60 40 8 8 5 Methyl tert butyl ether (MTBE) µg/L 20 ND(10) ND(5) ND(1) ND(1) ND(1) Toluene µg/L 1000 40 29 ND(1) ND(1) ND(1) Total BTEX µg/L - - - - - - Xylenes (total) µg/L 1000 64 47 0.6 J ND(1) ND(1)	ND(1) ND(2) ND(1)	
1,3,5-Trimethylbenzene $\mu g/L$ 12007 J4 JND(2)ND(2)ND(2)Benzene $\mu g/L$ 595781ND(1)ND(1)Ethylbenzene $\mu g/L$ 70139ND(1)ND(1)ND(1)Isopropyl benzene $\mu g/L$ 35006040885Methyl tert butyl ether (MTBE) $\mu g/L$ 20ND(10)ND(5)ND(1)ND(1)ND(1)Toluene $\mu g/L$ 10004029ND(1)ND(1)ND(1)Total BTEX $\mu g/L$ 100064470.6 JND(1)ND(1)	ND(2) ND(1)	ND(1)
Benzene µg/L 5 95 78 1 ND(1) ND(1) Ethylbenzene µg/L 700 13 9 ND(1) ND(1) ND(1) Isopropyl benzene µg/L 3500 60 40 8 8 5 Methyl tert butyl ether (MTBE) µg/L 20 ND(10) ND(5) ND(1) ND(1) ND(1) Tolene µg/L 1000 40 29 ND(1) ND(1) ND(1) Total BTEX µg/L - - - - - - Xylenes (total) µg/L 1000 64 47 0.6 J ND(1) ND(1)	ND(1)	ND(2)
Ethylbenzene µg/L 700 13 9 ND(1) ND(1) ND(1) Isopropyl benzene µg/L 3500 60 40 8 8 5 Methyl tert butyl ether (MTBE) µg/L 20 ND(10) ND(5) ND(1) ND(1) ND(1) Tolene µg/L 1000 40 29 ND(1) ND(1) ND(1) Total BTEX µg/L - - - - - - Xylenes (total) µg/L 1000 64 47 0.6 J ND(1) ND(1)	ND(4)	ND(1)
Isopropyl benzene µg/L 3500 60 40 8 8 5 Methyl tert butyl ether (MTBE) µg/L 20 ND(10) ND(5) ND(1) ND(1) ND(1) Toluene µg/L 1000 40 29 ND(1) ND(1) ND(1) Total BTEX µg/L - - - - - - Xylenes (total) µg/L 1000 64 47 0.6 J ND(1) ND(1)	ND(1)	ND(1)
Methyl eth utyl ether (MTBE) µg/L 20 ND(1) ND(1) ND(1) ND(1) Toluene µg/L 1000 40 29 ND(1) ND(1) ND(1) Total BTEX µg/L - - - - - Xylenes (total) µg/L 1000 64 47 0.6 J ND(1) ND(1)	59	ND(2)
Toluene μg/L 100 40 29 ND(1) ND(1) ND(1) Total BTEX μg/L -	1	ND(1)
Total BTEX μg/L -	ND(1)	ND(1)
Xylenes (total) µg/L 10000 64 47 0.6 J ND(1) ND(1)	-	-
	2	ND(1)
Semi-Volatile Organic Compounds		
Anthracene μg/L 66 9.1 6.6 0.76 13 1.5	11	ND(0.050)
Benzo(a)anthracene μg/L 4.9 0.71 0.82 0.37 7.7 0.88	1.7	ND(0.050)
Benzo(a)pyrene μg/L 0.2 0.38 0.39 J 0.090 4.4 0.49	0.72	ND(0.050)
Benzo(b)fluoranthene μg/L 1.2 0.36 0.39 J 0.12 5.6 0.57	0.81	ND(0.050)
Benzo(g,h,i)perylene μg/L 0.26 0.11 0.14 J 0.021 J 1.5 0.17	0.23 J	ND(0.050)
Chrysene μg/L 1.9 0.60 0.67 0.29 5.1 0.61	1.3	ND(0.050)
Fluorene μg/L 1900 43 39 1.9 51 27	33	ND(0.050)
Naphthalene μg/L 100 22 5.4 ND(0.061) 1.4 ND(0.060)	ND(0.61)	0.039 J
Phenanthrene μg/L 1100 53 5.1 0.66 74 20	56	ND(0.060)
Pyrene µg/L 130 4.7 5.7 2.3 19 3.4	7.4	ND(0.050)
Metals		
Lead µg/L 5 ND(1.0) ND(1.0) -	-	-
Lead (dissolved) μg/L 5 ND(1.0) ND(1.0) - 0.12 J	ND(1.0)	0.48 J
Fumigant		
1,2-Dibromoethane (Ethylene dibromide) μg/L 0.05 ND(0.029) ND(0.028) ND(0.029) ND(0.029) ND(0.029)		

Notes:

ND Not detected at the associated reporting limit.

 ND
 Notestated the associated reporting initial

 J
 Estimated concentration.

 ND(10)
 Indicates the laboratory method detection limit (if available) was above the applicable standard. The reporting limit is shown if the laboratory method
 detection limit is not available. Value Concentration exceeds applicable criteria

Groundwater Analytical Results Summary - Shallow Aquifer AOI 6 Remedial Investigation Report Philadelphia Refinery Operations, a series of Evergreen Resources Group, LLC

Sample Location: Sample ID: Sample Date:		PADEP Act2	B-133 GW-11109613-B-133D-082416-AC-030 08/25/2016	B-134 GW-11109613-B134-05-11-16-MM-041 05/11/2016	B-144 GW-11109613-B144-05-11-16-AC-044 05/11/2016	B-145 GW-11109613-B145-05-09-16-AC-029 05/09/2016	B-145 GW-11109613-B-145-082416-KC-016 08/24/2016	B-150 GW-11109613-B150-05-11-16-AC-04€ 05/11/2016	B-150 GW-11109613-B-150-082416-AC-01§ 08/24/2016
Parameters	Units	Used Aquifer NR MSC							
Volatile Organic Compounds									
1,2,4-Trimethylbenzene	µg/L	62	ND(2)	ND(2)	460	1 J	1 J	ND(400)	76 J
1,2-Dichloroethane	µg/L	5	ND(1)	ND(1)	ND(5)	ND(1)	ND(1)	ND(200)	ND(50)
1,3,5-Trimethylbenzene	µg/L	1200	ND(2)	0.7 J	140	1 J	2 J	ND(400)	31 J
Benzene	µg/L	5	ND(1)	2	130	6	6	480000	320000
Ethylbenzene	µg/L	700	ND(1)	ND(1)	260	1	1	320	270
Isopropyl benzene	µg/L	3500	ND(2)	100	35	77	74	12000	7500
Methyl tert butyl ether (MTBE)	µg/L	20	1	ND(1)	ND(5)	ND(1)	ND(1)	ND(200)	ND(50)
Toluene	µg/L	1000	ND(1)	0.6 J	74	2	2	55000	33000
Total BTEX	µg/L		-	-	-	-	-	-	-
Xylenes (total)	µg/L	10000	ND(1)	0.5 J	1600	6	6	1400	1100
Semi-Volatile Organic Compounds									
Anthracene	µg/L	66	0.18	2.0	5.4	7.4	13	0.86	0.15 J
Benzo(a)anthracene	µg/L	4.9	ND(0.050)	0.46	2.0	0.68	0.67	0.52	0.10 J
Benzo(a)pyrene	µg/L	0.2	ND(0.050)	0.25	1.2	0.33	0.22	0.40 J	ND(0.50)
Benzo(b)fluoranthene	µg/L	1.2	ND(0.050)	0.30	1.6	0.36	0.24	0.53	ND(0.50)
Benzo(g,h,i)perylene	µg/L	0.26	ND(0.050)	0.075	0.42 J	0.11	0.071	0.22 J	ND(0.50)
Chrysene	µg/L	1.9	ND(0.050)	0.39	2.0	0.47	0.49	0.53	ND(0.50)
Fluorene	µg/L	1900	0.014 J	8.7	1.1	34	50	2.8	0.90
Naphthalene	µg/L	100	ND(0.060)	ND(0.062)	19	4.4	3.3	52	31
Phenanthrene	µg/L	1100	0.55	7.1	6.6	23	41	4.5	1.2
Pyrene	µg/L	130	ND(0.050)	1.8	4.3	4.2	5.4	0.93	0.15 J
Metals									
Lead	µg/L	5	-	ND(1.0)	0.24 J	0.70 J	-	ND(1.0)	-
Lead (dissolved)	μg/L	5	ND(1.0)	-	-	-	0.13 J	-	0.12 J
Fumigant									
1,2-Dibromoethane (Ethylene dibromide)	μg/L	0.05	ND(0.029)	ND(0.029)	ND(0.029)	ND(0.030)	ND(0.028)	ND(0.029)	ND(0.028)

Notes:

ND

J

Not detected at the associated reporting limit. Estimated concentration. Indicates the laboratory method detection limit (if available) was above the applicable standard. The reporting limit is shown if the laboratory method ND(10) detection limit is not available. Concentration exceeds applicable criteria

Value

Groundwater Analytical Results Summary - Shallow Aquifer AOI 6 Remedial Investigation Report Philadelphia Refinery Operations, a series of Evergreen Resources Group, LLC

Bange Dic. PADE Leaf Aug Own 11100013-18156-0614-0.4200 (901/2011) Own 1100013-18156-0545-16-AC01 (901/2011) Own 11000-100000 (901/2011) Own 11000000 (901/2011)	Sample Location:			B-152	B-152	B-153	B-154	B-155	B-156	B-158	
Sample for the Aquite ParameterAnd Deplote ParameterSolva of the Aquite Deplote ParameterSolva of the Aquite Deplote ParameterSolva of the Aquite Deplote ParameterSolva of the Aquite DeploteSolva of the Aquite Deplote12. Solva of the	Sample ID:		PADEP	GW-11109613-B152-05-09-16-AC-025	GW-11109613-DUP3-05-09-16-AC-027	GW-11109613-B153-05-04-16-RM-010	GW-11109613-B154-05-10-16-MM-038	GW-11109613-B155-05-05-16-AC-013	GW-11109613-B154-05-10-16-MM-036	GW-11109613-B158-05-09-16-AC-033	
Paramet Use Paramet Paramet Value National Science	Sample Date:		Act2	05/09/2016	05/09/2016	05/04/2016	05/10/2016	05/05/2016	05/10/2016	05/09/2016	
ParameVisit <t< th=""><th></th><th></th><th>Used Aquifer</th><th></th><th>Duplicate</th><th></th><th></th><th></th><th></th><th></th></t<>			Used Aquifer		Duplicate						
<th colsp<="" th=""><th>Parameters</th><th>Units</th><th>NR MSC</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th>	<th>Parameters</th> <th>Units</th> <th>NR MSC</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	Parameters	Units	NR MSC							
12.4 Transmissionane jpl 62 5 4 ND(2) ND(40) 62.1 4 ND(2) 13.5 Transmissionane jpl 6 ND(1) ND(1) ND(1) ND(20) ND(60) ND(60) ND(1) 13.5 Transmissionane jpl 5 42 30 ND(1) Sto00 12000 40 ND(1) Envisonance jpl 70 3 3 ND(1) ND(20) ND(20) 40 ND(1) Envisonance jpl 70 3 3 ND(1) ND(20) 120 4 ND(1) Envisonance jpl 20 ND(1) ND(1) ND(20) ND(20) ND(1) ND(20) ND(1) ND(20) ND(1) ND(1) ND(20) ND(1) ND(1) ND(20) ND(1) ND(1) ND(1) ND(20) ND(1) ND(1) ND(1) ND(20) ND(1) ND(1) ND(1) ND(20) ND(1) ND(1) <td>Volatile Organic Compounds</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Volatile Organic Compounds										
12-Decinocemente jpil 5 ND(1) ND(1) ND(2)	1,2,4-Trimethylbenzene	µg/L	62	5	4	ND(2)	ND(400)	62 J	4	ND(2)	
1.3.6 Trinstrybursene ppL 120 3 ND(2) NN(40) NO(10) 5 ND(2) Environe ppL 5 42 39 ND(1) ND(20) 120 4 ND(1) Environe ppL 70 3 3 ND(1) ND(20) 120 4 ND(1) Environe ppL 30 101 ND(2) 150.1 70.1 4.0 ND(1) Environe ppL 20 ND(1) ND(1) ND(20)	1,2-Dichloroethane	µg/L	5	ND(1)	ND(1)	ND(1)	ND(200)	ND(50)	ND(1)	ND(1)	
BanzaneμgL54239ND(1)5100012004949ND(1)BeryberzeneμgL550012010ND(2)150.179.J120ND(2)BeryberzeneμgL5500120100ND(2)150.1ND(2)ND(2)ND(2)TolameμgL1001615ND(1)ND(20)ND(2)ND(2)ND(2)TolameμgL1001615ND(1)ND(20)ND(2)10ND(2)TolameμgL1001615ND(1)ND(20)152.0ND(1)TolameμgL662.62.10.091.53.74.70.027 JBenzolgharpeneμgL120.140.0520.120.311.70.055 JBenzolgharpeneμgL0.20.080.110.053 J0.100.251.40.045 JBenzolgharpeneμgL0.20.080.0140.0540.0540.020.020.02BenzolgharpeneμgL100ND(0.061)0.043 J0.0540.080.050.023 JBenzolgharpeneμgL100ND(0.061)ND(0.061)0.0540.0640.020.024 JBenzolgharpeneμgL100ND(0.061)ND(0.061)0.0640.0640.0640.0640.0640.0640.064BenzolgharpeneμgL100ND(0.061)ND(0.061)0.020.021.4	1,3,5-Trimethylbenzene	µg/L	1200	3	3	ND(2)	ND(400)	ND(100)	5	ND(2)	
Enviponmen μpl 700 3 3 ND(1) ND(20) 120 120 MD(1) Metry bary form μpl 20 ND(1) ND(2) 150 ND(2) ND(1) ND(2) ND(2) ND(2) ND(2) ND(2) ND(1) ND(2)	Benzene	µg/L	5	42	39	ND(1)	51000	120000	49	ND(1)	
isopeoplemenent µgL 3500 120 110 ND(2) 150 70 70 120 ND(1) Toleme µgL 20 ND(1) ND(1) ND(200) ND(5) ND(1) ND(1) Toleme µgL 100 16 15 ND(1) 180 J 820 13 ND(1) Tolai BTEX µgL 1000 16 15 ND(1) ND(200) 100 20 0.00 ND(1) Tolai BTEX µgL 1000 28 2.0 ND(1) ND(200) 100 2.0 ND(1) Tolai BTEX µgL 66 2.6 2.1 0.099 1.5 3.7 4.7 0.027 Boncolgingrome µgL 0.2 0.088 0.011 0.084 0.024 1.5 0.65 0.051 Boncolgingrome µgL 0.2 0.058 0.064 0.024 1.5 0.051 Boncolgingrome µgL 0.28 0.059 <	Ethylbenzene	µg/L	700	3	3	ND(1)	ND(200)	120	4	ND(1)	
Methy drefu (MTE) µgL 20 ND(1) ND(1) ND(20) ND(20) ND(1) ND(20) Tolaine µgL 1000 16 15 ND(1) 180 J 820 13 ND(1) Tolaine Tolaine µgL 1000 28 25 ND(1) ND(200) 150 22 ND(1) Semucination of the top of	Isopropyl benzene	μg/L	3500	120	110	ND(2)	150 J	79 J	120	ND(2)	
Toluene µgL 1000 16 15 ND(1) 180.J 820 13 ND(1) Total BTS µgL 1000 28 25 ND(1) ND(20) 150 22 ND(1) Semi-tocapounds -	Methyl tert butyl ether (MTBE)	μg/L	20	ND(1)	ND(1)	ND(1)	ND(200)	ND(50)	ND(1)	ND(1)	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Toluene	μg/L	1000	16	15	ND(1)	180 J	820	13	ND(1)	
Xylenes (btal) μg/L 10000 28 25 ND(1) ND(20) 150 22 ND(1) Semi-Vacitie Organic Compounds	Total BTEX	μg/L		-	-	-	-	-	-	-	
Senvolation Senvolation <	Xylenes (total)	µg/L	10000	28	25	ND(1)	ND(200)	150	22	ND(1)	
Anthracene µgl. 66 2.6 2.1 0.09 1.5 3.7 4.7 0.027 J Benzo(a)pyrae µgl. 0.2 0.088 0.11 0.038 J 0.12 0.11 0.058 Benzo(a)pyrae µgl. 0.2 0.088 0.11 0.038 J 0.10 0.25 1.4 0.045 J Benzo(a)pyrae µgl. 0.2 0.13 0.040 J 0.064 0.24 1.5 0.051 Benzo(b)provene µgl. 1.9 0.13 0.14 0.058 0.064 0.26 0.064 0.26 0.064 0.064 Chysene µgl. 1.9 0.13 0.14 0.058 0.099 0.27 1.4 0.064 Naphtelene µgl. 100 ND(0.060) ND(0.061) ND(0.051 20 42 3.3 0.040 J Pyrane µgl. 1.0 1.6 0.27 0.51 1.3 3.4 0.22 Pyrane µgl. 5	Semi-Volatile Organic Compounds										
Benzo(a)phracene µg/L 4.9 0.12 0.14 0.052 0.12 0.31 1.7 0.058 Benzo(a)pyrene µg/L 0.2 0.088 0.11 0.038 0.10 0.25 1.4 0.056 Benzo(a)pyrene µg/L 1.2 0.11 0.13 0.040 J 0.084 0.26 1.5 0.050 0.051 Benzo(a)pyrene µg/L 1.9 0.13 0.14 0.058 0.064 0.026 0.50 0.029 J Benzo(a)pyrene µg/L 1.9 0.13 0.14 0.058 0.059 0.27 1.4 0.051 Benzo(a)pyrene µg/L 190 0.13 0.14 0.058 0.059 0.27 1.4 0.051 Fluorene µg/L 190 ND(0.061) ND(0.061) 2.0 4.2 3.3 0.042 J Pyrene µg/L 130 1.5 1.6 0.27 0.51 1.3 3.4 0.22 Pyrene µg/	Anthracene	μg/L	66	2.6	2.1	0.099	1.5	3.7	4.7	0.027 J	
Benzolspyrene yg/L 0.2 0.088 0.11 0.038 J 0.10 0.25 1.4 0.045 J Benzolsphroenhene yg/L 0.26 0.058 0.061 0.064 0.064 0.088 0.50 0.029 J Benzolsphroenhene yg/L 1.9 0.13 0.14 0.058 0.099 0.27 1.4 0.051 Benzolsphroenhene yg/L 1.9 0.13 0.14 0.058 0.099 0.27 1.4 0.051 Florene yg/L 100 2.3 2.3 0.018 J 7.0 6.6 10 0.064 Naphthene yg/L 100 4.9 3.8 0.043 J 4.9 12 3.3 0.042 J Prene yg/L 5 ND(1.0) ND(1.0) ND(1.0) 1.3 3.4 0.22 Lead (disolved) yg/L 5 ND(1.0) ND(1.0) ND(1.0) ND(1.0) ND(1.0) ND(1.0) ND(1.0) ND(1.0) ND(1.0) N	Benzo(a)anthracene	µg/L	4.9	0.12	0.14	0.052	0.12	0.31	1.7	0.058	
Berzo(ph/luoranthene µg/L 1.2 0.11 0.13 0.040 J 0.084 0.24 1.5 0.051 Berzo(ph,l)pervine µg/L 0.26 0.058 0.061 0.018 J 0.054 0.088 0.09 0.27 1.4 0.051 Chysene µg/L 1900 2.3 2.3 0.018 J 7.0 6.6 10 0.064 Naphthalene µg/L 100 ND(0.060) ND(0.061) ND(0.061) 20 4.2 3.3 0.042 J Prenanthrene µg/L 130 4.9 3.8 0.043 J 4.9 1.2 17 0.040 J Pyrene µg/L 130 1.5 1.6 0.27 0.51 1.3 3.4 0.22 Bead (disolved/) µg/L 5 ND(1.0) ND(1.0) ND(1.0) ND(1.0) 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2	Benzo(a)pyrene	µg/L	0.2	0.088	0.11	0.038 J	0.10	0.25	1.4	0.045 J	
Benzo(g,h,i)perylene µg/L 0.26 0.08 0.08 0.08 0.050 0.029 J Chrysene µg/L 1.9 0.13 0.14 0.058 0.099 0.27 1.4 0.051 Florene µg/L 1900 2.3 2.3 0.018 J 7.0 6.6 1.4 0.054 Naphthalene µg/L 100 ND(0.060) ND(0.061) ND(0.061) 20 42 3.3 0.042 J Phenanthrene µg/L 100 4.9 3.8 0.043 J 4.9 1.2 1.7 0.040 J Pyrene µg/L 130 1.5 1.6 0.27 0.51 1.3 3.4 0.22 Bead U Ng(1.0)	Benzo(b)fluoranthene	µg/L	1.2	0.11	0.13	0.040 J	0.084	0.24	1.5	0.051	
Chysene µg/L 1.9 0.13 0.14 0.058 0.099 0.27 1.4 0.051 Fluorene µg/L 100 2.3 2.3 0.018 J 7.0 6.6 10 0.064 Naphthalene µg/L 100 ND(0.60) ND(0.061) 20 42 3.3 0.042 J Phenanthrene µg/L 1100 4.9 3.8 0.043 J 4.9 12 17 0.040 J Pyrene µg/L 130 1.5 1.6 0.27 0.51 1.3 3.4 0.22 Metas 1.6 0.27 0.51 1.3 3.4 0.22 Metas 22 .	Benzo(g,h,i)perylene	µg/L	0.26	0.058	0.081	0.018 J	0.054	0.088	0.50	0.029 J	
Fluerene µg/L 1900 2.3 2.3 0.018 J 7.0 6.6 10 0.064 Naphthalene µg/L 100 ND(0.060) ND(0.061) ND(0.061) 2.0 4.2 3.3 0.042 J Phenanthrene µg/L 100 4.9 3.8 0.043 J 4.9 1.2 1.7 0.040 J Pyrene µg/L 130 1.5 1.6 0.27 0.51 1.3 3.4 0.22 Metals Lead µg/L 5 ND(1.0) ND(1.0) ND(1.0) - ND(1.0) 1.2 Lead (dissolved) µg/L 5 - - - ND(1.0) - ND(1.0) - - Fungant I 2-Dibromoethane (Ethylene dibromide) µg/L 0.05 ND(0.029)	Chrysene	µg/L	1.9	0.13	0.14	0.058	0.099	0.27	1.4	0.051	
Naphthaleneµg/L100ND(0.060)ND(0.061)ND(0.061)20423.30.042 JPhenanthreneµg/L11004.93.80.043 J4.912170.040 JPyreneµg/L1301.51.60.270.511.33.40.22MetalsLeadµg/L5ND(1.0)ND(1.0)ND(1.0)ND(1.0)-ND(1.0)1.2Lead idissolved)µg/L5ND(1.0)ND(1.0)ND(1.0)FungantTemigant1,2-Dibromethane (Ethylene dibromide)µg/L0.05ND(0.029)ND(0.029)ND(0.029)ND(0.029)ND(0.29)ND(0.29)	Fluorene	μg/L	1900	2.3	2.3	0.018 J	7.0	6.6	10	0.064	
Phenanthrene µg/L 1100 4.9 3.8 0.043 J 4.9 12 17 0.040 J Pyren µg/L 130 1.5 1.6 0.27 0.51 1.3 3.4 0.22 Metas Lead µg/L 5 ND(1.0) ND(1.0) ND(1.0) . ND(1.0) 1.2 Lead (dissolved) µg/L 5 ND(1.0) ND(1.0) ND(1.0) . . . Fungate J 0.05 ND(0.02) ND(0.02) ND(0.02) ND(0.02) ND(0.02) ND(0.02) ND(0.02)	Naphthalene	μg/L	100	ND(0.060)	ND(0.061)	ND(0.061)	20	42	3.3	0.042 J	
Pyrene µg/L 130 1.5 1.6 0.27 0.51 1.3 3.4 0.22 Metals	Phenanthrene	μg/L	1100	4.9	3.8	0.043 J	4.9	12	17	0.040 J	
Metals Lad µg/L 5 ND(1.0) ND(1.0) ND(1.0) ND(1.0) - ND(1.0) 1.2 Lad (dissolved) µg/L 5 -	Pyrene	μg/L	130	1.5	1.6	0.27	0.51	1.3	3.4	0.22	
Lead µg/L 5 ND(1.0) ND(1.0) ND(1.0) - ND(1.0) 1.2 Lead (dissolved) µg/L 5 - <	Metals										
Lead (dissolved) µg/L 5 - - - ND(1.0) - - - Funigant - <	Lead	µg/L	5	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	-	ND(1.0)	1.2	
Funigant 1,2-Dibromoethane (Ethylene dibromide) μg/L 0.05 ND(0.029) ND(0.029) ND(0.029) ND(0.029) ND(0.029)	Lead (dissolved)	µg/L	5	-	-	-		ND(1.0)	-	-	
1,2-Dibromoethane (Ethylene dibromide) µg/L 0.05 ND(0.029) ND(0.029) ND(0.029) ND(0.029) ND(0.029) ND(0.029)	Fumigant										
	1,2-Dibromoethane (Ethylene dibromide)	μg/L	0.05	ND(0.029)							

Notes:

 ND
 Not detected at the associated reporting limit.

 J
 Estimated concentration.

 ND(10)
 Indicates the laboratory method detection limit (if available) was above the applicable standard. The reporting limit is shown if the laboratory method detection limit is not unviloble.
 detection limit is not available. Value Concentration exceeds applicable criteria

Groundwater Analytical Results Summary - Shallow Aquifer AOI 6 Remedial Investigation Report Philadelphia Refinery Operations, a series of Evergreen Resources Group, LLC

Sample Location:			B-158	B-162	B-163	B-164	B-164	B-165	B-168
Sample ID:		PADEP	GW-11109613-B-158-082216-AC-002	GW-11109613-B162-05-10-16-AC-039	GW-11109613-B163-05-10-16-AC-037	GW-11109613-B164-05-09-16-AC-031	GW-11109613-B-164-082316-KC-014	GW-11109613-B165-05-05-16-AC-015	GW-11109613-B168-05-04-16-AC-009
Sample Date:		Act2	08/22/2016	05/10/2016	05/10/2016	05/09/2016	08/23/2016	05/05/2016	05/04/2016
		Used Aquifer							
Parameters	Units	NR MSC							
Volatile Organic Compounds									
1,2,4-Trimethylbenzene	µg/L	62	ND(2)	ND(2)	ND(2)	ND(2)	ND(2)	ND(2)	ND(2)
1,2-Dichloroethane	µg/L	5	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)
1,3,5-Trimethylbenzene	µg/L	1200	ND(2)	ND(2)	ND(2)	ND(2)	ND(2)	ND(2)	ND(2)
Benzene	µg/L	5	ND(1)	ND(1)	0.9 J	ND(1)	1	4	ND(1)
Ethylbenzene	µg/L	700	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)
Isopropyl benzene	µg/L	3500	ND(2)	ND(2)	ND(2)	5	5	5	2 J
Methyl tert butyl ether (MTBE)	µg/L	20	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	2	ND(1)
Toluene	µg/L	1000	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)
Total BTEX	µg/L		-	-	-	-	-	-	-
Xylenes (total)	µg/L	10000	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	0.5 J
Semi-Volatile Organic Compounds									
Anthracene	µg/L	66	0.037 J	0.62	0.044 J	0.026 J	0.057	0.48	0.52
Benzo(a)anthracene	µg/L	4.9	0.055	0.41	0.097	0.027 J	0.017 J	0.17	0.066
Benzo(a)pyrene	µg/L	0.2	0.042 J	0.32	0.090	0.047 J	0.019 J	0.039 J	0.037 J
Benzo(b)fluoranthene	µg/L	1.2	0.046 J	0.34	0.17	0.049 J	0.021 J	0.050 J	0.038 J
Benzo(g,h,i)perylene	µg/L	0.26	0.027 J	0.17	0.064	0.035 J	0.018 J	0.025 J	0.016 J
Chrysene	µg/L	1.9	0.045 J	0.47	0.13	0.027 J	0.013 J	0.13	0.063
Fluorene	µg/L	1900	0.094	1.4	1.2	0.081	0.069	1.4	2.1
Naphthalene	µg/L	100	0.078	0.61	ND(0.061)	ND(0.062)	0.037 J	ND(0.063)	ND(0.061)
Phenanthrene	µg/L	1100	0.043 J	0.56	0.037 J	ND(0.062)	0.045 J	0.37	0.92
Pyrene	µg/L	130	0.31	1.1	0.27	0.043 J	0.047 J	1.2	0.41
Metals									
Lead	µg/L	5	-	0.31 J	ND(1.0)	1.1	-	-	ND(1.0)
Lead (dissolved)	μg/L	5	0.89 J	-	-	-	1.9	1.0	-
Fumigant									
1 2-Dibromoethane (Ethylene dibromide)	ua/l	0.05	ND(0.028)	ND(0.028)	ND(0.029)	ND(0.029)	ND(0.029)	ND(0.029)	ND(0.028)
	۳9' -	0.00							

Notes:

 ND
 Not detected at the associated reporting limit.

 J
 Estimated concentration.

 ND(10)
 Indicates the laboratory method detection limit (if available) was above the applicable standard. The reporting limit is shown if the laboratory method
 detection limit is not available. Value Concentration exceeds applicable criteria

Groundwater Analytical Results Summary - Shallow Aquifer AOI 6 Remedial Investigation Report Philadelphia Refinery Operations, a series of Evergreen Resources Group, LLC

Sample Location:			B-169	B-169	B-170	B-170	B-170	B-172	B-172
Sample ID:		PADEP	GW-11109613-B169-05-09-16-MM-024	GW-11109613-B-169-082216-KC-001	GW-11109613-B170-05-05-16-AC-017	GW-11109613-DUP2-05-05-16-AC-019	GW-11109613-B-170-082216-KC-003	GW-11109613-B172-05-05-16-AC-021	GW-11109613-B-172-082316-AC-009
Sample Date:			05/09/2016	08/22/2016	05/05/2016	03/03/2016 Duplicate	08/22/2016	05/05/2016	06/23/2018
Parameters	Units	NR MSC				Duplicate			
Volatile Organic Compounds									
1,2,4-Trimethylbenzene	μg/L	62	ND(2)	ND(2)	ND(2)	ND(2)	ND(2)	ND(2)	ND(10)
1,2-Dichloroethane	μg/L	5	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(5)
1,3,5-Trimethylbenzene	μg/L	1200	ND(2)	ND(2)	ND(2)	ND(2)	ND(2)	ND(2)	ND(10)
Benzene	μg/L	5	0.7 J	ND(1)	5	5	3	13	160
Ethylbenzene	μg/L	700	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(5)
Isopropyl benzene	μg/L	3500	ND(2)	ND(2)	6	5	5	7	ND(10)
Methyl tert butyl ether (MTBE)	μg/L	20	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(5)
Toluene	μg/L	1000	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(5)
Total BTEX	μg/L		-	-	-	-	-	-	-
Xylenes (total)	µg/L	10000	ND(1)	ND(1)	2	1	0.7 J	0.6 J	ND(5)
Semi-Volatile Organic Compounds									
Anthracene	µg/L	66	0.084	ND(0.057)	0.36	0.37	0.26	0.33	0.33 J
Benzo(a)anthracene	μg/L	4.9	0.17	0.013 J	0.10	0.10	0.065	0.49	0.27 J
Benzo(a)pyrene	μg/L	0.2	0.17	0.015 J	0.11	0.090	0.043 J	0.45	0.18 J
Benzo(b)fluoranthene	μg/L	1.2	0.19	0.020 J	0.12	0.088	0.044 J	0.50	0.18 J
Benzo(g,h,i)perylene	µg/L	0.26	0.12	0.016 J	0.047 J	0.043 J	0.020 J	0.19	0.085 J
Chrysene	µg/L	1.9	0.17	0.017 J	0.11	0.11	0.069	0.51	0.25
Fluorene	µg/L	1900	0.043 J	ND(0.057)	2.5	2.3	0.61	0.42	0.56 J
Naphthalene	μg/L	100	0.071	ND(0.069)	2.3	4.8	ND(0.068)	0.27	ND(0.061)
Phenanthrene	µg/L	1100	0.069	ND(0.069)	1.3	1.8	0.99	0.38	0.26 J
Pyrene	µg/L	130	0.27	0.035 J	0.35	0.34	0.31	1.4	1.0
Metals									
Lead	μg/L	5	33.8	-	-	-	-	-	-
Lead (dissolved)	µg/L	5	-	6.5	ND(1.0)	ND(1.0)	ND(1.0)	0.18 J	0.30 J
Fumigant									
1,2-Dibromoethane (Ethylene dibromide)	µg/L	0.05	ND(0.029)	ND(0.028)	ND(0.029)	ND(0.029)	ND(0.029)	ND(0.029)	ND(0.028)

Notes:

ND

J

Not detected at the associated reporting limit. Estimated concentration. Indicates the laboratory method detection limit (if available) was above the applicable standard. The reporting limit is shown if the laboratory method detection limit is not workely. ND(10)
 Value
 Concentration exceeds applicable criteria

Groundwater Analytical Results Summary - Shallow Aquifer AOI 6 Remedial Investigation Report Philadelphia Refinery Operations, a series of Evergreen Resources Group, LLC

Sample Location:			B-172	B-173	B-173	B-174	B-174	B-175	B-175
Sample ID:		PADEP	GW-11109613-B-172D-082316-AC-011	GW-11109613-B173-05-05-16-RM-018	GW-11109613-B-173-082316-KC-012	GW-11109613-B174-05-05-16-RM-016	GW-11109613-B-174-082216-KC-007	GW-11109613-B175-05-11-16-MM-045	GW-11109613-B-175-082316-AC-015
Sample Date:		Act2	08/23/2016	05/05/2016	08/23/2016	05/05/2016	08/22/2016	05/11/2016	08/23/2016
		Used Aquifer	Duplicate						
Parameters	Units	NR MSC							
Volatile Organic Compounds									
1,2,4-Trimethylbenzene	µg/L	62	ND(10)	ND(20)	5	ND(2)	ND(2)	4 J	2 J
1,2-Dichloroethane	µg/L	5	ND(5)	ND(10)	ND(1)	ND(1)	ND(1)	ND(5)	ND(1)
1,3,5-Trimethylbenzene	µg/L	1200	ND(10)	13 J	14	ND(2)	ND(2)	51	10
Benzene	µg/L	5	160	14	17	ND(1)	ND(1)	260	65
Ethylbenzene	µg/L	700	ND(5)	ND(10)	4	ND(1)	ND(1)	25	5
Isopropyl benzene	µg/L	3500	ND(10)	27	33	ND(2)	ND(2)	150	63
Methyl tert butyl ether (MTBE)	µg/L	20	ND(5)	ND(10)	ND(1)	5	7	ND(5)	ND(1)
Toluene	µg/L	1000	ND(5)	5 J	5	ND(1)	ND(1)	70	15
Total BTEX	µg/L		-	-	-	-	-	-	-
Xylenes (total)	µg/L	10000	ND(5)	ND(10)	8	ND(1)	ND(1)	33	11
Semi-Volatile Organic Compounds									
Anthracene	µq/L	66	0.10 J	6.0	6.1	0.096	0.095	1.7	0.78
Benzo(a)anthracene	µg/L	4.9	0.13 J	2.1	1.2	0.048 J	0.080	1.3	0.36
Benzo(a)pyrene	µg/L	0.2	0.092 J	1.0	0.51 J	0.032 J	0.060 J	0.89	0.22 J
Benzo(b)fluoranthene	µg/L	1.2	0.094 J	1.0	0.55 J	0.038 J	0.065 J	1.1	0.27 J
Benzo(g,h,i)perylene	µg/L	0.26	0.041 J	0.25 J	0.12 J	0.015 J	0.034 J	0.38	0.096 J
Chrysene	µg/L	1.9	0.15	1.4	0.90	0.042 J	0.081	1.2	0.33
Fluorene	µg/L	1900	0.23 J	16	18	0.25	0.27	5.9	3.2
Naphthalene	µg/L	100	ND(0.064)	13	12	0.099	0.083	ND(0.061)	ND(0.062)
Phenanthrene	µg/L	1100	0.036 J	23	22	0.43	0.48	8.7	3.5
Pyrene	µg/L	130	0.86	6.4	4.8	0.19	0.33	2.3	0.93
Motolo									
	ug/l	5						6.9	
Lead (dissolved)	μg/L	5	0.25	0.75	1 /	ND(1.0)	1.0	0.9	- 31
	P9/⊏	J	0.23 3	0.755	1.4	100(1.0)	1.3	-	5.1
Fumigant									
1,2-Dibromoethane (Ethylene dibromide)	µg/L	0.05	ND(0.028)	0.020 J	ND(0.028)	ND(0.029)	ND(0.028)	ND(0.029)	ND(0.028)

Notes:

 ND
 Not detected at the associated reporting limit.

 J
 Estimated concentration.

 ND(10)
 Indicates the laboratory method detection limit (if available) was above the applicable standard. The reporting limit is shown if the laboratory method
 detection limit is not available. Value Concentration exceeds applicable criteria

Groundwater Analytical Results Summary - Shallow Aquifer AOI 6 Remedial Investigation Report Philadelphia Refinery Operations, a series of Evergreen Resources Group, LLC

Sample Location:			U-4	U-4	URS-1	URS-1	URS-3	URS-3	URS-3
Sample ID:		PADEP	GW-11109613-U4-05-05-16-AC-022	GW-11109613-U-4-082216-AC-004	GW-11109613-URS1-05-09-16-MM-028	GW-11109613-URS-1-082316-AC-013	GW-11109613-URS3-05-09-16-MM-030	GW-11109613-URS-3-082416-KC-024	GW-11109613-URS-3-082416-KC-025
Sample Date:		Act2	05/05/2016	08/22/2016	05/09/2016	08/23/2016	05/09/2016	08/24/2016	08/24/2016
		Used Aquifer							
Parameters	Units	NR MSC							
Volatile Organic Compounds									
1,2,4-Trimethylbenzene	µg/L	62	ND(2)	ND(2)	ND(2)	ND(2)	ND(2)	ND(2)	0.5 J
1,2-Dichloroethane	µg/L	5	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)
1,3,5-Trimethylbenzene	µg/L	1200	ND(2)	ND(2)	ND(2)	ND(2)	0.8 J	0.7 J	0.8 J
Benzene	µg/L	5	2	ND(1)	ND(1)	ND(1)	4	2	1
Ethylbenzene	μg/L	700	ND(1)	ND(1)	ND(1)	ND(1)	0.6 J	ND(1)	ND(1)
Isopropyl benzene	μg/L	3500	ND(2)	ND(2)	ND(2)	ND(2)	55	2 J	17
Methyl tert butyl ether (MTBE)	μg/L	20	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)
Toluene	μg/L	1000	0.9 J	ND(1)	ND(1)	ND(1)	2	0.9 J	1
Total BTEX	μg/L		-	-	-	-	-	-	-
Xylenes (total)	µg/L	10000	ND(1)	ND(1)	ND(1)	ND(1)	9	8	7
Semi-Volatile Organic Compounds									
Anthracene	μg/L	66	0.058	0.32 J	0.33	0.62	21	0.17	9.6
Benzo(a)anthracene	µg/L	4.9	0.42	0.99	0.038 J	0.017 J	66	5.3	17
Benzo(a)pyrene	µg/L	0.2	0.78	2.7 J	0.028 J	ND(0.053) J	47	4.5	12
Benzo(b)fluoranthene	µg/L	1.2	0.33	1.1 J	0.034 J	ND(0.053) J	56	5.4	14
Benzo(g,h,i)perylene	µg/L	0.26	0.44	2.4 J	0.012 J	ND(0.053) J	14	1.4	3.2
Chrysene	µg/L	1.9	1.1	4.5	0.035 J	0.012 J	46	3.9	12
Fluorene	µg/L	1900	0.085	0.22 J	5.2	16	27	4.9	28
Naphthalene	µg/L	100	ND(0.062)	9.3	0.29	4.4	3.2	ND(0.065)	ND(0.061)
Phenanthrene	μg/L	1100	ND(0.062)	ND(0.60)	0.73	0.98	55	2.5	40
Pyrene	μg/L	130	1.1	2.9	0.18	0.32	130	8.4	31
Metals									
Lead	µg/L	5	-	-	ND(1.0)	-	1.3	-	-
Lead (dissolved)	μg/L	5	0.50 J	0.78 J	-	0.22 J	-	-	2.1
Fumigant									
1,2-Dibromoethane (Ethylene dibromide)	µg/L	0.05	ND(0.029)	ND(0.028)	ND(0.029)	ND(0.029)	0.011 J	ND(0.028)	ND(0.028)
· · · · · ·									

Notes:

 ND
 Not detected at the associated reporting limit.

 J
 Estimated concentration.

 ND(10)
 Indicates the laboratory method detection limit (if available) was above the applicable standard. The reporting limit is shown if the laboratory method
 detection limit is not available. Value Concentration exceeds applicable criteria

Groundwater Analytical Results Summary - Shallow Aquifer AOI 6 Remedial Investigation Report Philadelphia Refinery Operations, a series of Evergreen Resources Group, LLC

Sample Location: Sample ID: Sample Date:		PADEP Act2	URS-4 GW-11109613-URS4-05-09-16-MM-026 05/09/2016	URS-4 GW-11109613-URS-4-082416-AC-017 08/24/2016	URS-5 GW-11109613-URS5-05-10-16-MM-040 05/10/2016	URS-5 GW-11109613-URS-5-082416-AC-020 08/24/2016	URS-5 GW-11109613-URS-5-082416-KC-021 08/24/2016
Parameters	Units	NR MSC					
Volatile Organic Compounds							
1,2,4-Trimethylbenzene	μg/L	62	ND(2)	ND(2)	190	92	230
1,2-Dichloroethane	µg/L	5	ND(1)	ND(1)	ND(25)	ND(10)	ND(20)
1,3,5-Trimethylbenzene	μg/L	1200	ND(2)	ND(2)	56	27	72
Benzene	μg/L	5	ND(1)	ND(1)	4000	2300	4900
Ethylbenzene	µg/L	700	ND(1)	ND(1)	560	280	530
Isopropyl benzene	μg/L	3500	ND(2)	ND(2)	22 J	13 J	31 J
Methyl tert butyl ether (MTBE)	μg/L	20	2	2	ND(25)	ND(10)	ND(20)
Toluene	μg/L	1000	ND(1)	ND(1)	8600	1500	6500
Total BTEX	μg/L		-	-	-	-	-
Xylenes (total)	µg/L	10000	ND(1)	ND(1)	3000	1500	2800
Semi-Volatile Organic Compounds							
Anthracene	µg/L	66	0.052	0.027 J	5.6	3.3	4.8
Benzo(a)anthracene	µg/L	4.9	0.012 J	ND(0.050)	0.96	0.23	0.46 J
Benzo(a)pyrene	μg/L	0.2	ND(0.050)	ND(0.050)	0.27 J	0.058	0.15 J
Benzo(b)fluoranthene	µg/L	1.2	ND(0.050)	ND(0.050)	0.24 J	0.056	0.14 J
Benzo(g,h,i)perylene	μg/L	0.26	ND(0.050)	ND(0.050)	ND(0.51)	0.017 J	ND(0.51)
Chrysene	μg/L	1.9	ND(0.050)	ND(0.050)	0.53	0.11	0.25 J
Fluorene	µg/L	1900	0.019 J	0.022 J	14	1.5	14
Naphthalene	μg/L	100	ND(0.060)	ND(0.060)	260	150	220
Phenanthrene	μg/L	1100	0.055 J	ND(0.060)	20	12	21
Pyrene	µg/L	130	0.074	0.067	3.5	1.7	2.8
Metals							
Lead	µg/L	5	ND(1.0)	-	ND(1.0)	-	-
Lead (dissolved)	μg/L	5	-	ND(1.0)	-	ND(1.0)	0.14 J
Fumigant							
1,2-Dibromoethane (Ethylene dibromide)	µg/L	0.05	ND(0.029)	ND(0.028)	ND(0.029)	0.089	ND(0.040)

Notes:

 ND
 Not detected at the associated reporting limit.

 J
 Estimated concentration.

 ND(10)
 Indicates the laboratory method detection limit (if available) was above the applicable standard. The reporting limit is shown if the laboratory method detection limit is not available.

 Value
 Concentration exceeds applicable criteria

Table 7b

Groundwater Analytical Results Summary - Semi-Confirmed (Lower) Aquifer AOI 6 Remedial Investigation Report Philadelphia Refinery Operations, a series of Evergreen Resources Group, LLC

Sample Location: Sample ID:		PADEP	B-48D GW-11109613-B48D-05-03-16-AC-005	B-132D GW-11109613-B132D-05-03-16-RM-002	B-133D GW-11109613-B133D-05-03-16-RM-004	B-134D GW-11109613-B134D-05-03-16-AC-001	B-134D GW-11109613-DUP1-05-03-16-AC-003
Sample Date:		Act2	05/03/2016	05/03/2016	05/03/2016	05/03/2016	05/03/2016
		Used Aquifer					Duplicate
Parameters	Units						·
Volatile Organic Compounds							
1,2,4-Trimethylbenzene	µg/L	62	ND(2)	ND(2)	ND(2)	ND(2)	ND(2)
1,2-Dichloroethane	µg/L	5	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)
1,3,5-Trimethylbenzene	µg/L	1200	ND(2)	ND(2)	ND(2)	ND(2)	ND(2)
Benzene	µg/L	5	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)
Ethylbenzene	µg/L	700	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)
Isopropyl benzene	µg/L	3500	ND(2)	ND(2)	ND(2)	ND(2)	ND(2)
Methyl tert butyl ether (MTBE)	µg/L	20	12	2	1	2	1
Toluene	µg/L	1000	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)
Total BTEX	µg/L		-	-	-	-	-
Xylenes (total)	µg/L	10000	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)
Semi-Volatile Organic Compounds							
Anthracene	µg/L	66	0.42	0.088	0.18	0.069	0.039 J
Benzo(a)anthracene	µg/L	4.9	0.044 J	0.018 J	0.024 J	ND(0.051)	0.011 J
Benzo(a)pyrene	µg/L	0.2	ND(0.050)	0.017 J	0.017 J	ND(0.051)	0.012 J
Benzo(b)fluoranthene	µg/L	1.2	ND(0.050)	0.018 J	0.015 J	ND(0.051)	0.013 J
Benzo(g,h,i)perylene	µg/L	0.26	ND(0.050)	0.013 J	0.010 J	ND(0.051)	0.017 J
Chrysene	µg/L	1.9	0.034 J	0.015 J	0.021 J	ND(0.051)	ND(0.051)
Fluorene	µg/L	1900	2.3	0.018 J	0.030 J	0.012 J	0.011 J
Naphthalene	µg/L	100	ND(0.060)	0.082	ND(0.060)	ND(0.061)	ND(0.061)
Phenanthrene	µg/L	1100	2.4	0.18	0.49	0.27	0.27
Pyrene	µg/L	130	0.43	0.033 J	0.047 J	0.017 J	0.020 J
Metals							
Lead	µg/L	5	ND(1.0)	ND(1.0)	1.4	0.14 J	0.14 J
Lead (dissolved)	µg/L	5	-	-	-	-	-
Fumigant							
1,2-Dibromoethane (Ethylene dibromide)	µg/L	0.05	ND(0.029)	ND(0.028)	ND(0.029)	ND(0.029)	ND(0.028)

Notes:

ND Not detected at the associated reporting limit.

Estimated concentration. J

Indicates the laboratory method detection limit (if available) was ND(10) above the applicable standard. The reporting limit is shown if the laboratory method detection limit is not available.

Concentration exceeds applicable criteria Value

			1							1							1						
Sample Location					B-39			E	3-43		B-45		В	-46	В	-48				B-48D			
Sample Date			8-Jan-13	8-Jan-13	11-May-16	24-Aug-16	24-Aug-16	23-May-16	22-Aug-16	7-Jan-13	7-Jan-13	5-May-16	7-Jan-13	7-Jan-13	4-Jan-13	4-Jan-13	5-Feb-13	5-Feb-13	5-Feb-13	5-Feb-13	1-Apr-13	1-Apr-13	3-May-16
Sample ID			B39_010813	B39_010813	GW-11109613-B39	- GW-11109613-B-3	9 GW-11109613-B-39	B-43-20160523	GW-11109613-B-43	B-45_010713	B-45_010713	GW-11109613-B45-	B46_010713	B46_010713	B48_010413	B48_010413	B-48D_020513	B-48D_020513	B-48D_020513	B-48D_020513	B-48D_40113	B-48D_40113	B48D-05-03-16-AC-
			_	_	05-11-16-MM-043	082416-AC-022	082416-KC-023		082216-KC-005	_	_	05-05-16-RM-014	_	_	_	_	_	_	_		_		005
Sampling Company			UNKNOWN	UNKNOWN	GHD	GHD	GHD	STANTEC	GHD	UNKNOWN	UNKNOWN	GHD	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	LANGAN	LANGAN	GHD
Laboratory			ACCUTEST	ACCUTEST	LL	LL	LL	LL	LL	ACCUTEST	ACCUTEST	LL	ACCUTEST	ACCUTEST	ACCUTEST	ACCUTEST	ACCUTEST	ACCUTEST	ACCUTEST	ACCUTEST	ACCUTEST	ACCUTEST	LL
Laboratory Work Order			JB25964	JB25964	1660120	1700681	1700681	1666456	1699628	JB25835	JB25835	1658374	JB25834	JB25834	JB25729	JB25729	JB28204	JB28204	JB28204R	JB28204R	JB32976	JB32976	1657425
Laboratory Sample ID	Units	MSC-PA	JB25964-4	JB25964-4F	8378039	8553514	8553515	8402590	8548681	JB25835-10	JB25835-10F	8370269	JB25834-5	JB25834-5F	JB25729-4	JB25729-4F	JB28204-3	JB28204-3F	JB28204-3FR	JB28204-3R	JB32976-7	JB32976-7F	8365508
Field Parameters		1																					
Conductivity	mS/cm	n/v	-	-	NM	-	-	-	0.34	-	-	3.48	-	-	-	-	-	-	-	-	-	-	0.62
Dissolved Oxygen, Field Measured	mg/L	n/v	-	-	NM	-	-	3.08	15.08	-	-	0	-	-	-	-	-	-	-	-	-	-	0
Oxidation Reduction Potential, Field Measured	mV	n/v	-	-	NM	-	-	-138	-135	-	-	-140	-	-	-	-	-	-	-	-	-	-	-83
pH, FIELD MEASURED	S.U.	n/v	-	-	NM	-	-	7.69	7.84	-	-	7.16	-	-	-	-	-	-	-	-	-	-	6.44
Specific Conductance Field	mS/cm	n/v	-	-	-	-	-	0.376	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Temperature, Field Measured	deg c	n/v	-	-	NM	-	-	18.37	25.7	-	-	12.6	-	-	-	-	-	-	-	-	-	-	15.27
Total Dissolved Solids, Field Measured	g/L	n/v	-	-	-	-	-	0.245	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Turbidity	NTU	n/v	-	-	NM	-	-	89.2	378	-	-	3	-	-	-	-	-	-	-	-	-	-	40.1
Volatile Organic Compounds																							
Benzene	µg/L	5	<u>44.0 (1.0)</u>		3 (0.5)	4 (0.5)	3 (0.5)	ND (0.5) (0.5)	ND (1) (0.5)	ND (1.0) (1.0)	-	ND (1) (0.5)	ND (1.0) (1.0)	-	ND (1.0) (1.0)	-	-	-	-	-	ND (1.0) (0.24)	-	ND (1) (0.5)
1,2-Dichloroethane (EDC)	μg/L	5	ND (1.0) (1.0)	-	ND (1) (0.5)	ND (1) (0.5)	ND (1) (0.5)	ND (0.5) (0.5)	ND (1) (0.5)	ND (1.0) (1.0)	-	ND (1) (0.5)	ND (1.0) (1.0)	-	ND (1.0) (1.0)	-	-	-	-	-	ND (1.0) (0.26)	-	ND (1) (0.5)
Ethylbenzene	μg/L	700	ND (1.0) (1.0)	-	ND (1) (0.5)	ND (1) (0.5)	ND (1) (0.5)	ND (0.5) (0.5)	ND (1) (0.5)	ND (1.0) (1.0)	-	ND (1) (0.5)	2.0 (1.0)	-	2.0 (1.0)	-	-	-	-	-	ND (1.0) (0.23)	-	ND (1) (0.5)
Isopropylbenzene (Cumene)	µg/L	3500	30.1 (2.0)	-	11 (0.5)	26 (0.5)	17 (0.5)	4 (0.5)	6 (0.5)	ND (2.0) (2.0)	-	ND (2) (0.5)	ND (2.0) (2.0)	-	ND (2.0) (2.0)	-	-	- 1	-	-	ND (2.0) (0.45)	-	ND (2) (0.5)
Methyl Tertiary Butyl Ether	µg/L	20	ND (1.0) (1.0)	-	ND (1) (0.5)	ND (1) (0.5)	ND (1) (0.5)	ND (0.5) (0.5)	ND (1) (0.5)	ND (1.0) (1.0)	-	ND (1) (0.5)	ND (1.0) (1.0)	-	ND (1.0) (1.0)	-	-	-	-	-	6.2 (0.16)	-	12 (0.5)
Toluene	µg/L	1000	3.1 (1.0)	-	0.7 J (0.5)	2 (0.5)	2 (0.5)	ND (0.5) (0.5)	ND (1) (0.5)	ND (1.0) (1.0)	-	ND (1) (0.5)	ND (1.0) (1.0)	-	ND (1.0) (1.0)	-	-	-	-	-	ND (1.0) (0.23)	-	ND (1) (0.5)
Total BTEX	µg/L	n/v	-	-	-	-	-	ND	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2,4-Trimethylbenzene	µg/L	62	ND (2.0) (2.0)	-	ND (2) (0.5)	1 J (0.5)	0.6 J (0.5)	ND (0.5) (0.5)	ND (2) (0.5)	ND (2.0) (2.0)	-	ND (2) (0.5)	3.7 (2.0)	-	3.7 (2.0)	-	-	-	-	-	ND (2.0) (0.19)	-	ND (2) (0.5)
1,3,5-Trimethylbenzene	µg/L	1200	ND (2.0) (2.0)	-	ND (2) (0.5)	ND (2) (0.5)	ND (2) (0.5)	ND (0.5) (0.5)	ND (2) (0.5)	ND (2.0) (2.0)	-	ND (2) (0.5)	ND (2.0) (2.0)	-	ND (2.0) (2.0)	-	-	-	-	-	ND (2.0) (0.36)	-	ND (2) (0.5)
Xylenes, Total (Dimethylbenzene)	µg/L	10000	3.8 (1.0)	-	4 (0.5)	5 (0.5)	4 (0.5)	ND (0.5) (0.5)	0.6 J (0.5)	ND (1.0) (1.0)	-	ND (1) (0.5)	7.3 (1.0)	-	7.4 (1.0)	-	-	-	-	-	ND (1.0) (0.24)	-	ND (1) (0.5)
Volatile Organic Compounds (SW8011)																							
1,2-DIBROMOETHANE (EDB)	µg/L	0.05	ND (0.020) (0.020)	-	ND (0.029) (0.0096	6) 0.057 (0.010)	ND (0.028) (0.010)	ND (0.0097) (0.010) ND (0.028) (0.010)	ND (0.020) (0.020)	-	ND (0.029) (0.0096)	ND (0.020) (0.020)	-	ND (0.020) (0.020)	-	-	-	-	-	ND (0.020) (0.011)	-	ND (0.029) (0.0096)
Semi-Volatile Organic Compounds						<u> </u>							, ,, ,		, ,, ,								
Anthracano	ug/l	66	14.2 (1.0)		5.8 (0.10)	1.6 (0.010)	0.41 (0.010)	0.7 (0.1)	0.22 (0.010)	ND (0.10) (0.10)		0.042 1 (0.010)	ND (0 10) (0 10)		ND (1.0) (1.0)						0.262 (0.020)		0.42(0.010)
Renze(a)Anthracene	µg/L	4.0	9.27 (1.0)	-	3.0 (0.10)	0.48 (0.010)	0.096 (0.010)	2 (0.1)	0.89 (0.010)	ND (0.10) (0.10)	-	0.042 3 (0.010)	0.175 (0.10)	-	ND (1.0) (1.0)	-	-	-	-	-	ND (0.10) (0.012)	-	0.42 (0.010)
Benzo(a)Pvrene	µg/L	0.2	6.03 (1.0)		2 5 (0 10)	0.34 (0.010)	0.071 (0.010)	2 (0.1)	0.66 (0.010)	ND (0.10) (0.10)		0.030 J (0.010)	0.177 (0.10)		ND (1.0) (1.0)						ND (0.10) (0.012)		ND (0.050) (0.010)
Benzo(h)Eluoranthane	µg/L	1.2	6.09 (1.0)		3 1 (0 10)	0.47 (0.010)	0.083 (0.010)	2 (0.1)	0.75 1 (0.010)	ND (0.10) (0.10)		0.043 1 (0.010)	0.167 (0.10)	-	ND (1.0) (1.0)		-			-	ND (0.10) (0.012)	-	ND (0.050) (0.010)
Benzo(o)i iuoraninene Benzo(o h i)Pervlene	µg/L	0.26	2.89 (1.0)		1.5 (0.10)	0.16 (0.010)	0.057 (0.010)	1 (0.1)	0.32 J (0.010)	ND (0.10) (0.10)		0.033 J (0.010)	0.120 (0.10)		ND (1.0) (1.0)						ND (0.10) (0.016)		ND (0.050) (0.010)
Chrysene	ug/L	1.9	6.78 (1.0)		2.6 (0.10)	0.43 (0.010)	0.090 (0.010)	3 (0,1)	1.0 (0.010)	ND (0.10) (0.10)		0.050 J (0.010)	0.120 (0.10)		ND (1.0) (1.0)		-			-	ND (0.10) (0.012)	-	0.034 J (0.010)
Fluorene	µg/L	1900	36.6 (1.0)		14 (0 10)	5.5 (0.010)	3.0 (0.010)	0.9(0.1)	0.34 (0.010)	ND (0.10) (0.10)	-	0.042 J (0.010)	0.319 (0.10)	-	2 12 (1.0)		_		-	-	1.07 (0.017)	-	2 3 (0 010)
Naphthalene	µg/L	100	ND (0.10) (0.10)	-	8.0 (0.30)	4.4 (0.030)	ND (0.064) (0.030)	ND (0.1) (0.1)	ND (0.063) (0.030)	ND (0.10) (0.10)	-	ND (0.061) (0.031)	0.914 (0.10)	-	1.44 (1.0)	-	-	-	-	-	ND (0.10) (0.036)	-	ND (0.060) (0.030)
Phenanthrene	ua/L	1100	74.9 (1.0)	-	25 (0.30)	6.0 (0.030)	0.86 (0.030)	ND (0.1) (0.1)	0.24 (0.030)	ND (0.10) (0.10)	-	0.065 (0.031)	0.219 (0.10)	-	1.26 (1.0)	-	-	-	-	-	0.920 (0.021)	-	2.4 (0.030)
Pyrene	µg/L	130	24.1 (1.0)	-	6.4 (0.10)	1.1 (0.010)	0.35 (0.010)	7 (0.1)	2.9 (0.010)	0.115 (0.10)	-	0.085 (0.010)	0.530 (0.10)	-	ND (1.0) (1.0)	-	-		-	-	0.270 (0.015)	-	0.43 (0.010)
Metals						, ,	. ,	. ,				. ,	, ,		, ,, ,						, ,		
Arsonia	ug/l	10						1					1				ND (2.0) (2.0)				2.2 1 (0.07)		
Cobalt	µg/L	25	-	-	-	-	-	-	-	-	-	-	-	-	-	-	ND (5.0) (5.0)	-	-	-	2.3 3 (0.97)	-	
Iron	µg/L	00 n/v							-					-			33700 (100)				40100 (24)		
Lead	µg/L	5	-						-	-	-						ND (3.0) (3.0)				6 4 (1 7)		-
Mangapese	µg/L	300			-	· .	· .	-		-	-	-		-			950 (15)		-	-	2210 (0.40)	-	· ·
Mercury	µg/L	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	ND (0.20) (0.20)	ND (0.20) (0.089)	-	-
Metals, Dissolved	10		1					1												(* *)(* *)	(***)(****)		
Aroopia		10						1					1				1	ND (2.0) (2.0)				181(0.07)	
Cobalt	μg/L	25	+	-					-		-		-			-	-	ND (50) (50)	-	-	-	ND (50) (0.97)	
	µg/L	55 n/v	-	-		-		-		-	-						-	25200 (100)		-		24800 (24)	
head	µg/L	5	-	57(30)	16 7 (0 13)	2 1 (0.090)	4.7 (0.090)	ND (0.13) (0.13)	2.8 (0.09)		ND (3.0) (3.0)	0.14 (0.13)		42(30)	-	ND (3.0) (3.0)	-	ND (3.0) (3.0)		-		5 2 (1 7)	ND (1.0) (0.13)
Manganese	µg/L	300		<u>5.7 (5.6)</u>	10.7 (0.10)	2.1 (0.000)	4.7 (0.000)	140 (0.10) (0.10)	2.0 (0.03)		110 (0.0) (0.0)	0.140(0.10)		4.2 (0.0)		100 (0.0) (0.0)		2070 (15)				2110 (0.40)	
Mercury	µg/L	2	-						-	-								-	ND (0.20) (0.20)			ND (0.20) (0.089)	
General Chemistry	P3		1				1			1					1		I						
													1				1				050000 (5000)		
Alkalinity, Bicarbonate (As Caco3)	µg/L	n/v	-	-	-			-	-	-	-		-	-	-	-	-		-	-	350000 (5000)	-	· ·
Aikainiity, Total (As Caco3)	µg/L	n/v		-		-	-		-		-		-	-		-	-	-	-	-	30000 (3500)	-	
Eluorido	µg/L	1/V	+ -	-		-		-	-		-		-	-		-	-		-	-	150 P (5 1)	-	
Nitrogen Ammonia (as n)	µg/L	4000	-	-				-	-		-		-		-	-	-		-	-	100 B (0.1)	-	
Nitrogen Nitrate (as n)	µg/L	10000		-	-				-		-			-	+	-	-	-	-	-	20 R (5 C)	-	
Nitrogen Nitrate-Nitrite	µg/L	10000		-	-			-	-		-		-	-	+ -	-	-		-	-	20 D (0.0)	-	
Nitrogen Nitrite	μα/L	1000	+	-							-	-			-	-	-		-	-	ND (10) (1)	-	
Sulfate (as SO4)	-9°-	n/v	-	-	-	-	-	-	-	<u> </u>	-	-	-	-	-	-	-			-	380 B (380)	-	-
Sulfide	μα/I	n/v	-	-	-	-	-	-	-		-	-	-	-	-	-	-			-	680 B (280)	-	-
Total Carbon	μα/I	n/v	-	-	-	-	-	-	-	<u> </u>	-	-	-	-	-	-	-			-	4800 (240)	-	-
Total Dissolved Solids (Residue, Filterable)	µg/L	n/v	-	-	-	-	-	-	-		-	· .	-	-	-	-	-	· ·	-	-	300000 (1800)	-	-

5 E-h 40		4.4	4 4 45	0.11-11.40
5-Feb-13	5-Feb-13	1-Apr-13	1-Apr-13	3-May-16 GW-11109613-
48D_020513	B-48D_020513	B-48D_40113	B-48D_40113	848D-05-03-16-AC- 005
UNKNOWN	UNKNOWN	LANGAN	LANGAN	GHD
ACCUTEST	ACCUTEST	ACCUTEST	ACCUTEST	LL
JB28204R	JB28204R	JB32976	JB32976	1657425
B28204-3FR	JB28204-3R	JB32976-7	JB32976-7F	8365508
-	-	-	-	0.62
-	-	-	-	0
-	-	-	-	-83
-	-	-	-	6.44
-	-	-	-	-
-	-	-	-	15.27
-	-	-	-	-
-	-	-	-	40.1
-	-	ND (1.0) (0.24)	-	ND (1) (0.5)
-	-	ND (1.0) (0.26)	-	ND (1) (0.5)
-	-	ND (1.0) (0.23)	-	ND (1) (0.5)
-	-	ND (2.0) (0.45)	-	ND (2) (0.5)
-	-	6.2 (0.16)	-	12 (0.5)
-	-	ND (1.0) (0.23)	-	ND (1) (0.5)
-	-	-	-	-
-	-	ND (2.0) (0.19)	-	ND (2) (0.5)
-	-	ND (2.0) (0.36)	-	ND (2) (0.5)
-	-	ND (1.0) (0.24)	-	ND (1) (0.5)
-	-	ND (0.020) (0.011)	-	ND (0.029) (0.0096)
	1			
-	-	0.262 (0.020)	-	0.42 (0.010)
-	-	ND (0.10) (0.012)	-	0.044 J (0.010)
-	-	ND (0.10) (0.012)	-	ND (0.050) (0.010)
-	-	ND (0.10) (0.010)	-	ND (0.050) (0.010)
-	-	ND (0.10) (0.016)	-	ND (0.050) (0.010)
				(1 100)(01010)

O-marks I	i i		в	02	l			I.	D 445		1		в	116				47	B 4	22	1	в	125	1
Sample Location				-92 9 Jan 13	7 Jan 12	7 Jan 12	B-95	4 Jan 42	B-113	4 May 46	4 Jan 42	4 Jan 12	4 May 46	24 Aug 46	2E Aug 46	25 Aug 16	A May 16	22 Aug 16	8 Jan 12	23 8 Jan 12	8 Jan 42	B-	0 May 16	22 Aug 16
Sample Date			8-Jan-13 B92 010813	8-Jan-13 B92 010813	7-Jan-13 B94 010713	7-Jan-13 B94 010713	B-95-20160523	4-Jan-13 B115 010413	4-Jan-13 B115 010413	4-May-16 GW-11109613- B115-05-04-16-AC-	4-Jan-13 B116 010413	4-Jan-13 B116 010413	4-may-16 GW-11109613- B116-05-04-16-RM-	GW-11109613-B-	GW-11109613-B- 116-082416-AC-	GW-11109613-B- 116D-082416-AC-	4-May-16 GW-11109613- B117-05-04-16-AC-	GW-11109613-B- 117-082216-AC-	8-Jan-13 B123 010813	8-Jan-13 B123 010813	8-Jan-13 B125 010813	8-Jan-13 B125 010813	9-мау-16 GW-11109613- B125-05-09-16-MM	GW-11109613-B-
Sampling Company							STANTEC			007 GHD			006 GHD	026 GHD	027 GHD	028 GHD	008 GHD	006 GHD					032 GHD	010 GHD
			ACCUTEST	ACCUITEST	ACCUTEST	ACCUTEST		ACCUTEST	ACCUTEST	11	ACCUITEST	ACCUITEST	11		11	11		11	ACCUTEST	ACCUTEST	ACCUTEST	ACCUTEST	11	
			IDOCOCC	ACCOTEST	ACCOTEST	ACCOTEST	4000450	ACCOTEST	ACCOTEST	4057405	ACCOTEST	ACCOTEST	4057405	4700004	4700004	4700004	4057405	1000000	ACCOTEST	IDOCOCC	ACCOLLSI	ACCOTEST	4050004	4000000
Laboratory Work Order			JB25963	JB25963	JB25834	JB25834	1666456	JB25729	JB25729	1657425	JB25729	JB25729	1657425	1700681	1700681	1700681	165/425	1699628	JB25963	JB25963	JB25964	JB25964	1659064	1699628
Laboratory Sample ID	Units	MSC-PA	JB25963-4	JB25963-4F	JB25834-1	JB25834-1F	8402591	JB25729-1	JB25729-1F	8365510	JB25729-2	JB25729-2F	8365509	8553518	8553520	8553521	8365511	8548682	JB25963-1	JB25963-1F	JB25964-1	JB25964-1F	8373137	8548687
Field Parameters			r	1						1	ł				1	1								
Conductivity	mS/cm	n/v	-	-	-	-	-	-	-	0.866	-	-	1.44	-	1.42	1.42	1.67	1.4	-	-	-	-	5.06	5.81
Dissolved Oxygen, Field Measured	mg/L	n/v	-	-	-	-	2.5	-	-	4.88	-	-	0	-	7.38	7.38	0	1.83	-	-	-	-	0.68	2.72
Oxidation Reduction Potential, Field Measured	mV	n/v	-	-	-	-	-83	-	-	-22	-	-	-66	-	111	111	-49	-128	-	-	-	-	-152	-146
pH, FIELD MEASURED	S.U.	n/v	-	-	-	-	7.49	-	-	6.67	-	-	6.29	-	6.55	6.55	6.11	6.57	-	-	-	-	6.8	6.92
Specific Conductance Field	mS/cm	n/v	-	-	-	-	0.518	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Temperature, Field Measured	dea c	n/v	-	-	-	-	17.52	-	-	13	-	-	13.3	-	23	23	13.4	22.94		-	-	-	15.6	23.2
Total Dissolved Solids, Field Measured	α/I	n/v	-		-		0.331	-			-				-	-		-		-		-		
Turbidity	9/L NTU	nlu	_	-	-	-	74.2	-	-	10	-		470	-	292	282	42	365	-		-	-	0	0.1
Volatile Organic Compounds	NIO	10.4	-	-	-	-	14.2	-		10	-	-	470	-	202	202	42	303		-	-		0	0.1
Volatile organie oompounds			-																					
Benzene	µg/L	5	ND (1.0) (1.0)	-	ND (1.0) (1.0)	-	ND (0.5) (0.5)	ND (1.0) (1.0)	-	ND (1) (0.5)	ND (1.0) (1.0)	-	ND (1) (0.5)	ND (1) (0.5)	ND (1) (0.5)	ND (1) (0.5)	ND (1) (0.5)	ND (1) (0.5)	ND (1.0) (1.0)		<u>173 (1.0)</u>	-	<u>9 (0.5)</u>	<u>9 (0.5)</u>
1,2-Dichloroethane (EDC)	µg/L	5	ND (1.0) (1.0)	-	ND (1.0) (1.0)	-	ND (0.5) (0.5)	ND (1.0) (1.0)	-	ND (1) (0.5)	ND (1.0) (1.0)	-	ND (1) (0.5)	ND (1) (0.5)	ND (1) (0.5)	ND (1) (0.5)	ND (1) (0.5)	ND (1) (0.5)	ND (1.0) (1.0)	-	ND (1.0) (1.0)	-	ND (1) (0.5)	ND (1) (0.5)
Ethylbenzene	µg/L	700	1.0 (1.0)	-	1.2 (1.0)	-	ND (0.5) (0.5)	2.0 (1.0)	-	ND (1) (0.5)	1.7 (1.0)	-	ND (1) (0.5)	ND (1) (0.5)	ND (1) (0.5)	ND (1) (0.5)	ND (1) (0.5)	ND (1) (0.5)	1.4 (1.0)	-	1.3 (1.0)	-	0.6 J (0.5)	ND (1) (0.5)
Isopropylbenzene (Cumene)	µg/L	3500	11.0 (2.0)	-	ND (2.0) (2.0)	-	ND (0.5) (0.5)	ND (2.0) (2.0)	-	ND (2) (0.5)	ND (2.0) (2.0)	-	0.5 J (0.5)	ND (2) (0.5)	ND (2) (0.5)	ND (2) (0.5)	ND (2) (0.5)	ND (2) (0.5)	29.7 (2.0)	-	14.0 (2.0)	-	8 (0.5)	9 (0.5)
Methyl Tertiary Butyl Ether	μα/L	20	ND (1.0) (1.0)	-	12.3 (1.0)	-	ND (0.5) (0.5)	ND (1.0) (1.0)	-	ND (1) (0.5)	ND (1.0) (1.0)	-	ND (1) (0.5)	ND (1) (0.5)	ND (1) (0.5)	ND (1) (0.5)	ND (1) (0.5)	ND (1) (0.5)	ND (1.0) (1.0)	-	ND (1.0) (1.0)	-	ND (1) (0.5)	ND (1) (0.5)
Toluene	uo/I	1000	ND (1.0) (1.0)	-	ND (1.0) (1.0)		ND (0.5) (0.5)	ND (1.0) (1.0)		ND (1) (0.5)	ND (1.0) (1.0)		ND (1) (0.5)	ND (1) (0.5)	ND (1) (0.5)	ND (1) (0.5)	ND (1) (0.5)	ND (1) (0.5)	ND (1.0) (1.0)	-	6.1 (1.0)		3 (0.5)	4 (0.5)
Total BTEX	µg/l	n/v		-	-			-											-	-				. (0.2)
1.2.4 Trimethulhanzana	µg/L	62	2.2 (2.0)	-	2.5 (2.0)	-		27(20)	-	ND (2) (0.5)	24(20)	-	ND (2) (0.5)	ND (2) (0.5)	ND (2) (0 E)	ND (2) (0.5)	ND (2) (0.5)	ND (2) (0.5)	24(20)	-	ND (2.0) (2.0)	-	21(05)	0.9.1(0.5)
	µg/L	4000	2.0 (2.0)	-	2.0 (2.0)	-	ND (0.5) (0.5)	0.7 (2.0)	-	ND (2) (0.5)	0.4 (2.0)	-	ND (2) (0.5)	ND (2) (0.5)	ND (2) (0.5)	ND (2) (0.5)	ND (2) (0.5)	ND (2) (0.5)	2.4 (2.0)		ND (2.0) (2.0)	-	2 0 (0.5)	0.00(0.5)
1,3,5-11Inethylberizene	µg/L	1200	ND (2.0) (2.0)	-	ND (2.0) (2.0)	-	ND (0.5) (0.5)	ND (2.0) (2.0)	-	ND (2) (0.5)	ND (2.0) (2.0)	-	ND (2) (0.5)	ND (2) (0.5)	ND (2) (0.5)	ND (2) (0.5)	ND (2) (0.5)	ND (2) (0.5)	ND (2.0) (2.0)	-	ND (2.0) (2.0)	-	3 (0.5)	2 (0.5)
Xylenes, Total (Dimethylbenzene)	µg/L	10000	4.8 (1.0)	-	4.7 (1.0)	-	ND (0.5) (0.5)	7.4 (1.0)	-	ND (1) (0.5)	6.3 (1.0)	-	ND (1) (0.5)	ND (1) (0.5)	ND (1) (0.5)	ND (1) (0.5)	ND (1) (0.5)	ND (1) (0.5)	6.0 (1.0)	-	9.0 (1.0)	-	30 (0.5)	25 (0.5)
Volatile Organic Compounds (SW6011)			-																					
1,2-DIBROMOETHANE (EDB) Semi-Volatile Organic Compounds	µg/L	0.05	ND (0.020) (0.020)	-	ND (0.020) (0.020)	-	ND (0.0097) (0.010)	ND (0.020) (0.020)	-	ND (0.028) (0.0095)	ND (0.020) (0.020)	-	ND (0.028) (0.0094)) ND (0.028) (0.010)	ND (0.028) (0.010)	ND (0.029) (0.010)	ND (0.028) (0.0095)	ND (0.028) (0.010)	ND (0.020) (0.020)	-	ND (0.020) (0.020)	-	ND (0.029) (0.0096) ND (0.028) (0.010)
Anthracene	ua/l	66	6.00(1.0)	-	0 154 (0 10)	-	ND (0 1) (0 1)	ND (1.0) (1.0)	-	0.065 (0.010)	0.363 (0.10)		0.27 (0.010)	0.036.1(0.010)	0.11 (0.010)	0.080 (0.010)	1.8 (0.010)	1.0 (0.010)	4 51 (0 11)	-	2 15 (0 10)	-	1.5 (0.010)	19(0.010)
Benzo(a)Anthracene	µg/l	4.9	0.360 (0.10)		ND (0 10) (0 10)		02.1(0.1)	ND (1.0) (1.0)	-	0.034 (0.010)	ND (0.10) (0.10)		0.058 (0.010)	0.021.1(0.010)	0.045.1(0.010)	0.028.1(0.010)	0.46 (0.010)	0.25 (0.010)	ND (0 11) (0 11)	-	0.559 (0.10)		0.45 (0.010)	0.16(0.010)
Bonzo(a)Puropo	µg/L	4.5	0.133 (0.10)	-	ND (0.10) (0.10)	-	0.2 0 (0.1)	ND (1.0) (1.0)	-	ND (0.052) (0.010)	ND (0.10) (0.10)		0.013 (0.010)	ND (0.050) (0.010)	0.049 0 (0.010)	ND (0.051) (0.010)	0.34 (0.010)	0.10 (0.010)	ND (0.11) (0.11)		0.362 (0.10)	-	0.22 (0.010)	0.040 1 (0.010)
	µg/L	0.2	0.133 (0.10)	-	ND (0.10) (0.10)		0.0 1 (0.1)	ND (1.0) (1.0)		ND (0.032) (0.010)	ND (0.10) (0.10)		0.013 J (0.010)	ND (0.050) (0.010)	0.018 J (0.010)	ND (0.051) (0.010)	0.10 (0.010)	0.193(0.010)	ND (0.11) (0.11)	-	0.004 (0.10)		0.25 (0.010)	0.040 J (0.010)
Benzo(b)Fluoranthene	µg/L	1.2	ND (0.10) (0.10)	-	ND (0.10) (0.10)	-	0.2 J (0.1)	ND (1.0) (1.0)	-	0.012 J (0.010)	ND (0.10) (0.10)	-	0.017 J (0.010)	ND (0.050) (0.010)	0.023 J (0.010)	ND (0.051) (0.010)	0.42 (0.010)	0.23 J (0.010)	ND (0.11) (0.11)	-	0.224 (0.10)	-	0.25 (0.010)	0.046 J (0.010)
Benzo(g,n,i)Perviene	µg/L	0.26	ND (0.10) (0.10)	-	ND (0.10) (0.10)	-	0.2 J (0.1)	ND (1.0) (1.0)	-	ND (0.052) (0.010)	ND (0.10) (0.10)	-	ND (0.050) (0.010)	ND (0.050) (0.010)	ND (0.051) (0.010)	ND (0.051) (0.010)	0.22 (0.010)	0.13 J (0.010)	ND (0.11) (0.11)	-	ND (0.10) (0.10)	-	0.070 (0.010)	0.012 J (0.010)
Chrysene	µg/L	1.9	0.315 (0.10)	-	ND (0.10) (0.10)	-	0.4 J (0.1)	ND (1.0) (1.0)	-	0.035 J (0.010)	ND (0.10) (0.10)		0.066 (0.010)	0.031 J (0.010)	0.059 (0.010)	0.039 J (0.010)	0.54 (0.010)	0.34 (0.010)	ND (0.11) (0.11)	-	0.414 (0.10)	-	0.34 (0.010)	0.13 (0.010)
Fluorene	µg/L	1900	28.0 (1.0)	-	1.16 (0.10)	-	ND (0.1) (0.1)	ND (1.0) (1.0)	-	0.13 (0.010)	1.50 (0.10)	-	1.5 (0.010)	0.054 (0.010)	1.1 (0.010)	0.91 (0.010)	0.74 (0.010)	0.24 (0.010)	14.4 (1.1)	-	5.77 (1.0)	-	4.8 (0.010)	6.6 (0.010)
Naphthalene	µg/L	100	1.18 (0.10)	-	0.601 (0.10)	-	ND (0.1) (0.1)	1.24 (1.0)	-	ND (0.063) (0.031)	0.793 (0.10)	-	0.070 (0.030)	0.031 J (0.030)	ND (0.061) (0.030)	ND (0.062) (0.030)	0.11 (0.031)	ND (0.061) (0.030)	2.12 (0.11)	-	1.16 (0.10)	-	0.40 (0.030)	0.31 (0.030)
Phenanthrene	µg/L	1100	30.4 (1.0)	-	1.18 (0.10)	-	ND (0.1) (0.1)	ND (1.0) (1.0)	-	0.40 (0.031)	0.946 (0.10)	-	0.054 J (0.030)	ND (0.060) (0.030)	ND (0.061) (0.030)	ND (0.062) (0.030)	0.94 (0.031)	1.1 (0.030)	5.34 (1.1)	-	1.48 (0.10)	-	1.2 (0.030)	3.3 (0.030)
Pyrene	µg/L	130	2.91 (0.10)	-	0.384 (0.10)	-	0.7 (0.1)	ND (1.0) (1.0)	-	0.24 (0.010)	0.383 (0.10)	-	0.65 (0.010)	0.29 (0.010)	0.39 (0.010)	0.32 (0.010)	3.3 (0.010)	2.4 (0.010)	2.44 (0.11)	-	2.55 (0.10)	-	2.1 (0.010)	1.4 (0.010)
Metals																								
Arsenic	µg/L	10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-
Cobalt	ua/l	35	-	-	-	-	-	-	-		-	-	-	-	-		-		-	-	-	-	-	-
Iron	ua/l	n/v	-	-	-	-	-	-	-		-	-	-	-	-		-		-	-	-	-	-	-
Lead	µg/l	5	-										· .							-				
Manganese	µg/l	300	_	-				-		-			-		-	-	-	-		-			-	
Mercury	µg/L	2	_	-				-		-			-		-	-	-	-		-			-	
Metals. Dissolved	P9/2	-																						
			I							1	1		1		1									1
Arsenic	µg/L	10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Cobalt	µg/L	35	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Iron	µg/L	n/v	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Lead	µg/L	5	-	4.1 (3.0)	-	ND (3.0) (3.0)	ND (0.13) (0.13)	-	ND (3.0) (3.0)	ND (1.0) (0.13)	-	ND (3.0) (3.0)	0.88 J (0.13)	ND (1.0) (0.090)	0.14 J (0.090)	0.16 J (0.090)	ND (1.0) (0.13)	0.25 J (0.09)	-	ND (3.0) (3.0)	-	4.4 (3.0)	0.24 J (0.13)	ND (1.0) (0.09)
Manganese	µg/L	300	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Mercury	µg/L	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
General Chemistry																								
Alkalinity, Bicarbonate (As Caco3)	ua/L	n/v	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Alkalinity, Total (As Caco3)	μα/I	n/v	-	-	<u> </u>	-	- I	-	-	-	-	-	-	-	-	-	-		-	-		-	-	-
Chloride (As Cl)	µg/L	n/v	_	-				-		-			-		-	-	-	-		-			-	
Eluoride	P9'L	4000	-	-	-		-		-	-	-	-	-	-	-	-	-			-			-	-
Nitrogon Ammonia (as n)	µg/L	30000	-	-		-		-	-			-			-	-	-		-	-		-	-	
Nitrogen, Nitrote (e)	µg/L	30000	-	-		-		-	-		-	-	-		-	-	-	-	-	-		-	-	
Nitrogen, Nitrate (as n)	µg/L	10000	-	-		-		-	-		-	-	-	-	-	-	-	-	-	-		-	-	
Nitrogen, Nitrate-Nitrite	µg/L	n/V	-			-		-	-		-	-			-	-	-	-	-	-		-	-	
Nitrogen, Nitrite	µg/L	1000	-	-		-		-	-		-	-	-	-	-	-	-	-	-	-		-	-	-
Suitate (as SO4)	µg/L	n/v	-	-		-		-	-		-	-	-	-	-	-	-	-	-	-		-	-	
Sumae	µg/L	n/v	-	-		-		-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-
Total Carbon	µg/L	n/v	-	-		-		-	-		-	-	-	-	-	-	-	-	-	-		-	-	-
Total Dissolved Solids (Residue, Filterable)	µg/L	n/v	-	-		-	-		-		-	-	-	-		-	-	-	-	-		-	-	-

Sample Location	1	I.	1	в	-126		I.				B-131					l B.	132	I	B-132D	
Sample Date			7-Jan-13	7-Jan-13	10-May-16	23-Aug-16	8-Jan-13	8-Jan-13	8-Apr-13	8-Apr-13	8-Apr-13	2-Jun-14	2-Jun-14	20-Mav-15	5-Mav-16	11-Mav-16	24-Aug-16	29-Mar-13	29-Mar-13	3-Mav-16
Sample ID			B-126_010713	B-126_010713	GW-11109613- B126-05-10-16-MM	GW-11109613-B- 126-082316-KC-	B131_010813	B131_010813	B-131	B-131_040813	B-131_040813	B-131	B-131	B-131_20150520	GW-11109613- B131-05-05-16-RM-	GW-11109613- B132-05-11-16-AC	GW-11109613-B- 132-082416-AC-	B-132D_32913	B-132D_32913	GW-11109613- B132D-05-03-16-
Sampling Company					035	008 GHD				STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	012	042	018			RM-002
Laboratory			ACCUTEST	ACCUTEST	U		ACCUTEST	ACCUTEST	UNKNOWN	ACCUTEST	ACCUTEST	ACCUITEST	ACCUTEST	JI				ACCUTEST	ACCUTEST	
Laboratory Work Order			JB25835	JB25835	1659064	1699628	JB25964	JB25964	20140718F7	.IB33644	JB33644	JB68336	JB68336	1562821	1658374	1660120	1700681	JB32843	JB32843	1657425
	Unite	MSC-DA	JB25035	JB25035	9272140	9549695	JB25964-2	JB25964-2E		JB33044	JB33044	JE00330	ID69226-14E	7996252	9270267	9279029	9552510	JB32043	JB32043	9265505
Laboratory Sample ID	Units	MOC-PA	5625655-1	5625655-11	0373140	0340003	3823904-2	JB2J304-21	ONKNOWN	5655044-10	3833044-101	3800330-14	3808330-141	7650255	63/020/	0370030	6555510	5652045-2	JB32043-2F	030303
Field Parameters							1											1		
Conductivity	mS/cm	n/v	-	-	1.19	1.27	-	-	-	-	-	-	-	-	1.01	NM	-	-	-	1.12
Dissolved Oxygen, Field Measured	mg/L	n/v	-	-	18.5	12.69	-	-	-	-	-	-	-	0.55	0	NM	-	-	-	0
Oxidation Reduction Potential, Field Measured	mV	n/v	-	-	-118	-168	-	-	-	-	-	-	-	-103	-95	NM	-	-	-	-77
pH, FIELD MEASURED	S.U.	n/v	-	-	7.07	7.07	-	-	-	-	-	-	-	7.87	6.84	NM	-	-	-	6.13
Specific Conductance Field	mS/cm	n/v	-	-	-	-	-	-	-	-	-	-	-	0.956	-	-	-	-	-	-
Temperature, Field Measured	deg c	n/v	-	-	13.3	23.4	-	-	-	-	-	-	-	14.17	11.9	NM	-	-	-	14.8
Total Dissolved Solids, Field Measured	g/L	n/v	-	-	-	-	-	-	-	-	-	-	-	0.611	-	-	-	-	-	-
Turbidity	NTU	n/v	-	-	0	0	-	-	-	-	-	-	-	18.8	0	NM	-	-	-	170
																		-		
Benzene	µg/L	5	<u>189 (5.0)</u>	-	<u>95 (5)</u>	<u>78 (0.5)</u>	<u>19.7 (1.0)</u>	-	-	1.1 (0.24)	-	0.29 J (0.21)	-	2 (0.5)	1 (0.5)	ND (1) (0.5)	ND (1) (0.5)	ND (1.0) (0.24)	-	ND (1) (0.5)
1,2-Dichloroethane (EDC)	µg/L	5	ND (1.0) (1.0)	-	ND (10) (5)	ND (5) (0.5)	ND (1.0) (1.0)	-	-	ND (1) (0.26)	-	ND (1.0) (0.30)	-	ND (0.5) (0.5)	ND (1) (0.5)	ND (1) (0.5)	ND (1) (0.5)	ND (1.0) (0.26)	-	ND (1) (0.5)
Ethylbenzene	µg/L	700	17.7 (1.0)	-	13 (5)	9 (0.5)	ND (1.0) (1.0)	-	-	0.32 J (0.23)	-	ND (1.0) (0.40)	-	ND (0.5) (0.5)	ND (1) (0.5)	ND (1) (0.5)	ND (1) (0.5)	ND (1.0) (0.23)	-	ND (1) (0.5)
Isopropylbenzene (Cumene)	µg/L	3500	63.5 (2.0)	-	60 (5)	40 (0.5)	10.6 (2.0)	-	-	13 (0.45)	-	12.1 (0.26)	-	11 (0.5)	8 (0.5)	8 (0.5)	5 (0.5)	ND (2.0) (0.45)	-	ND (2) (0.5)
Methyl Tertiary Butyl Ether	µg/L	20	ND (1.0) (1.0)	-	ND (10) (5)	ND (5) (0.5)	ND (1.0) (1.0)	-	-	ND (1) (0.16)	-	ND (1.0) (0.26)	-	ND (0.5) (0.5)	ND (1) (0.5)	ND (1) (0.5)	ND (1) (0.5)	2.1 (0.16)	-	2 (0.5)
Toluene	µg/L	1000	43.1 (1.0)	-	40 (5)	29 (0.5)	ND (1.0) (1.0)	-	-	0.61 J (0.23)	-	0.30 J (0.22)	-	0.9 J (0.5)	ND (1) (0.5)	ND (1) (0.5)	ND (1) (0.5)	ND (1.0) (0.23)	-	ND (1) (0.5)
Total BTEX	µg/L	n/v	-	-	-	-	-	-	2.65 ()	-	-	-	-	3.5 ()	-	-	-	-	-	-
1,2,4-Trimethylbenzene	µg/L	62	12.3 (2.0)	-	8 J (5)	5 J (0.5)	ND (2.0) (2.0)	-	-	ND (2) (0.19)	-	ND (2.0) (0.19)	-	ND (0.5) (0.5)	ND (2) (0.5)	ND (2) (0.5)	ND (2) (0.5)	ND (2.0) (0.19)	-	ND (2) (0.5)
1,3,5-Trimethylbenzene	µg/L	1200	6.6 (2.0)	-	7 J (5)	4 J (0.5)	ND (2.0) (2.0)	-	-	ND (2) (0.36)	-	ND (2.0) (0.17)	-	ND (0.5) (0.5)	ND (2) (0.5)	ND (2) (0.5)	ND (2) (0.5)	ND (2.0) (0.36)	-	ND (2) (0.5)
Xylenes, Total (Dimethylbenzene)	µg/L	10000	76.2 (1.0)	-	64 (5)	47 (0.5)	1.1 (1.0)	-	-	0.62 J (0.24)	-	0.56 J (0.20)	-	0.6 J (0.5)	0.6 J (0.5)	ND (1) (0.5)	ND (1) (0.5)	ND (1.0) (0.24)	-	ND (1) (0.5)
Volatile Organic Compounds (SW8011)																				
1,2-DIBROMOETHANE (EDB)	µg/L	0.05	ND (0.020) (0.020)	-	ND (0.029) (0.0097)	ND (0.028) (0.010)	ND (0.020) (0.020)	-	-	ND (0.02) (0.011)	-	ND (0.020) (0.011)	-	ND (0.0096) (0.010	ND (0.029) (0.0097)	ND (0.029) (0.0096	ND (0.029) (0.010)	ND (0.020) (0.011)	-	ND (0.028) (0.0094)
Semi-volatile Organic Compounds	_	1				1								1						1
Anthracene	µg/L	66	10.5 (1.0)	-	9.1 (0.010)	6.6 (0.010)	0.916 (0.10)	-	-	0.477 (0.02)	-	0.747 (0.020)	-	0.7 (0.1)	0.76 (0.010)	13 (0.10)	1.5 (0.010)	ND (0.10) (0.020)	-	0.088 (0.010)
Benzo(a)Anthracene	µg/L	4.9	0.363 (0.10)	-	0.71 (0.010)	0.82 (0.010)	0.356 (0.10)	-	-	0.169 (0.012)	-	0.258 (0.012)	-	0.4 J (0.1)	0.37 (0.010)	<u>7.7 (0.10)</u>	0.88 (0.010)	ND (0.10) (0.012)	-	0.018 J (0.010)
Benzo(a)Pyrene	µg/L	0.2	0.119 (0.10)	-	0.38 (0.010)	<u>0.39 J (0.010)</u>	ND (0.10) (0.10)	-	-	ND (0.1) (0.012)	-	ND (0.10) (0.012)	-	0.2 J (0.1)	0.090 (0.010)	<u>4.4 (0.10)</u>	0.49 (0.010)	ND (0.10) (0.012)	-	0.017 J (0.010)
Benzo(b)Fluoranthene	µg/L	1.2	ND (0.10) (0.10)	-	0.36 (0.010)	0.39 J (0.010)	ND (0.10) (0.10)	-	-	ND (0.1) (0.01)	-	ND (0.10) (0.010)	-	0.2 J (0.1)	0.12 (0.010)	<u>5.6 (0.10)</u>	0.57 (0.010)	ND (0.10) (0.010)	-	0.018 J (0.010)
Benzo(g,h,i)Perylene	µg/L	0.26	ND (0.10) (0.10)	-	0.11 (0.010)	0.14 J (0.010)	ND (0.10) (0.10)	-	-	ND (0.1) (0.016)	-	ND (0.10) (0.016)	-	ND (0.1) (0.1)	0.021 J (0.010)	<u>1.5 (0.10)</u>	0.17 (0.010)	ND (0.10) (0.016)	-	0.013 J (0.010)
Chrysene	µg/L	1.9	0.296 (0.10)		0.60 (0.010)	0.67 (0.010)	0.331 (0.10)	-	-	0.132 (0.012)	-	0.206 (0.012)	-	0.4 J (0.1)	0.29 (0.010)	<u>5.1 (0.10)</u>	0.61 (0.010)	ND (0.10) (0.012)	-	0.015 J (0.010)
Fluorene	µg/L	1900	49.5 (1.0)	-	43 (0.10)	39 (0.010)	1.41 (0.10)	-	-	1.08 (0.017)	-	1.74 (0.017)	-	2 (0.1)	1.9 (0.010)	51 (0.10)	27 (0.010)	ND (0.10) (0.017)	-	0.018 J (0.010)
Naphthalene	µg/L	100	25.3 (1.0)	-	22 (0.31)	5.4 (0.030)	ND (0.10) (0.10)	-	-	ND (0.1) (0.036)	-	ND (0.10) (0.036)	-	ND (0.1) (0.1)	ND (0.061) (0.030)	1.4 (0.31)	ND (0.060) (0.030)	ND (0.10) (0.036)	-	0.082 (0.030)
Phenanthrene	µg/L	1100	54.4 (1.0)	-	53 (0.31)	5.1 (0.030)	0.496 (0.10)	-	-	0.43 (0.021)	-	0.333 (0.021)	-	0.4 J (0.1)	0.66 (0.030)	74 (0.31)	20 (0.030)	0.180 (0.021)	-	0.18 (0.030)
Metals	µg/L	130	3.00 (0.10)	-	4.7 (0.010)	5.7 (0.010)	3.00 (0.10)	-	-	1.13 (0.015)	-	2.51 (0.015)	-	3 (0.1)	2.3 (0.010)	19 (0.10)	3.4 (0.010)	ND (0.10) (0.015)	-	0.033 3 (0.010)
	-	1	1			1				1		1		1		1	1	1		1
Arsenic	µg/L	10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	3.5 (0.97)	-	-
Cobalt	µg/L	35	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	ND (50) (0.59)	-	-
Iron	µg/L	n/v	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	37100 (24)	-	-
Lead	µg/L	5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<u>5.8 (1.7)</u>	-	-
Manganese	µg/L	300	-	-	-	-	-	-	-	-	-	-	-	-		-	-	275 (0.40)	-	-
Metals Dissolved	µg/L	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	ND (0.20) (0.095)	-	-
		1				1								1		r				1
Arsenic	µg/L	10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2.0 J (0.97)	-
Cobalt	µg/L	35	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	ND (50) (0.59)	-
Iron	µg/L	n/v	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	28400 (24)	-
Lead	µg/L	5	-	ND (3.0) (3.0)	ND (1.0) (0.13)	ND (1.0) (0.09)	-	3.5 (3.0)	-	-	ND (3) (1.7)	-	1.6 J (1.3)	0.13 J (0.082)	ND (1.0) (0.13)	ND (1.0) (0.13)	0.12 J (0.090)	-	<u>6.4 (1.7)</u>	ND (1.0) (0.13)
Manganese	µg/L	300	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	274 (0.40)	-
Mercury	µg/L	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	ND (0.20) (0.095)	-
General Chemistry																				
Alkalinity, Bicarbonate (As Caco3)	µg/L	n/v	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	295000 (5000)	-	-
Alkalinity, Total (As Caco3)	µg/L	n/v	-	-		-	-	-	-	-	-	-	-	-	-	-	-	298000 (2800)	-	-
Chloride (As Cl)	µg/L	n/v	-	-	-	-	-	-	-	-	-	-	-		-	-	-	75500 (48)	-	-
Fluoride	µg/L	4000	-	-	-	-	-	-	-	-	-	-	-		-	-	-	170 B (5.1)	-	-
Nitrogen, Ammonia (as n)	µg/L	30000	-	-	-	-	-	-	-	-	-	-	-		-	-	-	24400 (1500)	-	-
Nitrogen, Nitrate (as n)	µg/L	10000	-	-	-	-	-	-	-	-	-	-	-		-	-	-	ND (110) (5.6)	-	-
Nitrogen, Nitrate-Nitrite	µg/L	n/v	-	-	-	-	-	-	-	-	-	-	-		-	-	-	ND (100) (4.6)	-	-
Nitrogen, Nitrite	µg/L	1000	-	-	-	-	-	-	-	-	-	-	-		-	-	-	ND (10) (1)	-	-
Sulfate (as SO4)	µg/L	n/v	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	ND (10000) (380)	-	-
Sulfide	µg/L	n/v	-	-		-	-	-	-	-	-	-	-	-	-	-	-	410 B (280)	-	-
Total Carbon	µg/L	n/v	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	6200 (240)	-	-
I otal Dissolved Solids (Residue, Filterable)	µg/L	n/v	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	302000 (1800)	-	-

	24-Aug-16	29-Mar-13	29-Mar-13	3-May-16
c-	GW-11109613-B- 132-082416-AC- 018	B-132D_32913	B-132D_32913	GW-11109613- B132D-05-03-16- RM-002
	GHD	LANGAN	LANGAN	GHD
	LL	ACCUTEST	ACCUTEST	LL
	1700681	JB32843	JB32843	1657425
	8553510	JB32843-2	JB32843-2F	8365505
	-	-	-	1.12
	-	-	-	0
	-	-	-	-77
	-	-	-	6.13
	-	-	-	-
	-	-	-	14.8
	-	-	-	-
	-	-	-	170
	ND (1) (0.5)	ND (1.0) (0.24)	-	ND (1) (0.5)
	ND (1) (0.5)	ND (1.0) (0.26)	-	ND (1) (0.5)
	ND (1) (0.5)	ND (1.0) (0.23)	-	ND (1) (0.5)
	5 (0.5)	ND (2.0) (0.45)	-	ND (2) (0.5)
	ND (1) (0.5)	2.1 (0.16)	-	2 (0.5)
	ND (1) (0.5)	ND (1.0) (0.23)	-	ND (1) (0.5)
	-	-	-	-
	ND (2) (0.5)	ND (2.0) (0.19)	-	ND (2) (0.5)
	ND (2) (0.5)	ND (2.0) (0.36)	-	ND (2) (0.5)
	ND (1) (0.5)	ND (1.0) (0.24)	-	ND (1) (0.5)
96)	ND (0.029) (0.010)	ND (0.020) (0.011)	-	ND (0.028) (0.0094)
	1.5 (0.010)	ND (0.10) (0.020)	-	0.088 (0.010)
	0.88 (0.010)	ND (0.10) (0.012)	-	0.018 J (0.010)
	<u>0.49 (0.010)</u>	ND (0.10) (0.012)	-	0.017 J (0.010)
	0.57 (0.010)	ND (0.10) (0.010)	-	0.018 J (0.010)
	0.17 (0.010)	ND (0.10) (0.016)	-	0.013 J (0.010)

			1					1			1		i								1		
Sample Location					B-133				B-133D			B-134			551.40		B-1	34D				B-	135
Sample Date			9-Jan-13	9-Jan-13	5-May-16 GW-11109613-	25-Aug-16 GW-11109613-B-	25-Aug-16 GW-11109613-B-	29-Mar-13	29-Mar-13	3-May-16 GW-11109613-	9-Jan-13	9-Jan-13	11-May-16 GW-11109613-	5-Feb-13	5-Feb-13	5-Feb-13	5-Feb-13	1-Apr-13	1-Apr-13	3-May-16 GW-11109613-	3-May-16 GW-11109613-	9-Jan-13	9-Jan-13
Sample ID			B133_010913	B133_010913	B133-05-05-16-RM- 020	- 133D-082416-AC- 029	133D-082416-AC- 030	B-133D_32913	B-133D_32913	B133D-05-03-16- RM-004	B134_010913	B134_010913	B134-05-11-16-MM- 041	B-134D_020513	B-134D_020513	B-134D_020513	B-134D_020513	B-134D_40113	B-134D_40113	B134D-05-03-16- AC-001	DUP1-05-03-16-AC- 003	B135_010913	B135_010913
Sampling Company			UNKNOWN	UNKNOWN	GHD	GHD	GHD	LANGAN	LANGAN	GHD	UNKNOWN	UNKNOWN	GHD	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	LANGAN	LANGAN	GHD	GHD	UNKNOWN	UNKNOWN
Laboratory			ACCUTEST	ACCUTEST	LL	LL	LL	ACCUTEST	ACCUTEST	LL	ACCUTEST	ACCUTEST	LL	ACCUTEST	ACCUTEST	ACCUTEST	ACCUTEST	ACCUTEST	ACCUTEST	LL	LL	ACCUTEST	ACCUTEST
Laboratory Work Order			JB26467	JB26467	1658374	1700681	1700681	JB32843	JB32843	1657425	JB26467	JB26467	1660120	JB28204	JB28204	JB28204R	JB28204R	JB32976	JB32976	1657425	1657425	JB26467	JB26467
Laboratory Sample ID	Units	MSC-PA	JB26467-1	JB26467-1F	8370275	8553522	8553523	JB32843-3	JB32843-3F	8365507	JB26467-2	JB26467-2F	8378037	JB28204-2	JB28204-2F	JB28204-2FR	JB28204-2R	JB32976-8	JB32976-8F	8365504	8365506	JB26467-3	JB26467-3F
Field Parameters																							
Conductivity	mS/cm	n/v	-	-	1.17	-	0.69	-	-	1.22			NM		-	-			-	0.698	0.698	-	
Dissolved Oxygen, Field Measured	ma/l	n/v			0		0	-		0			NM	-			-			2 17	2 17	-	· · · ·
Ovidation Reduction Potential Field Measured	m\/	n/v		-	-98		-140			-86			NM							-76	-76		
	811	nhu	-	-	6.46	-	6.51	-	-	6.11	-	-	NM	_	-	-		-		6.63	6.63	-	
Specific Conductance Field	3.0. mS/cm	n/v	-	-	0.40	-	0.51	-	-	0.11	-	-	INIVI	-	-	-	-	-		0.03	0.05	-	
Temperature Field Measured	deg c	n/v			14.3		19.97			15.2			NM							14.95	14.95		
Total Dissolved Solids, Field Measured	alog o	n/v	-	-	-		-		-	-	-		-	-	· .					-	-	-	
Turbidity	NTU	n/v			14		50.8	-		69			NM	-			-			50.2	50.2	-	· · · ·
Volatile Organic Compounds								1															
			100000	1	10 (1) (2 (2)				1			1	0.05		1	1					10 (1) (2 (2)		
Benzené	µg/L	5	ND (1.0) (1.0)	-	ND (1) (0.5)	ND (1) (0.5)	ND (1) (0.5)	ND (1.0) (0.24)	-	ND (1) (0.5)	ND (1.0) (1.0)	-	2 (0.5)	-	-	-	-	ND (1.0) (0.24)	-	ND (1) (0.5)	ND (1) (0.5)	2.9 (1.0)	
1,2-Dicnloroethane (EDC)	µg/L	5	ND (1.0) (1.0)	-	ND (1) (0.5)	ND (1) (0.5)	ND (1) (0.5)	ND (1.0) (0.26)	-	ND (1) (0.5)	ND (1.0) (1.0)	-	ND (1) (0.5)	-	-	-	-	ND (1.0) (0.26)	-	ND (1) (0.5)	ND (1) (0.5)	ND (1.0) (1.0)	
Etnyioenzene	µg/L	700	1.7 (1.0)	-	ND (1) (0.5)	ND (1) (0.5)	ND (1) (0.5)	ND (1.0) (0.23)	-	ND (1) (0.5)	1.9 (1.0)	-	ND (1) (0.5)	-	-	-	-	ND (1.0) (0.23)	-	ND (1) (0.5)	NU (1) (0.5)	3.2 (1.0)	
Isopropylbenzene (Cumene)	µg/L	3500	52.0 (2.0)	-	59 (0.5)	ND (2) (0.5)	ND (2) (0.5)	ND (2.0) (0.45)	-	ND (2) (0.5)	67.8 (2.0)	-	100 (0.5)	-	-	-	-	ND (2.0) (0.45)	-	ND (2) (0.5)	ND (2) (0.5)	33.6 (2.0)	
memyi Tertiary Butyl Ether	µg/L	20	3.2 (1.0)	-	1 (0.5)	ND (1) (0.5)	1 (0.5)	1.6 (0.16)	-	1 (0.5)	2.5 (1.0)	-	ND (1) (0.5)	-	-		-	1.8 (0.16)	-	2 (0.5)	1 (0.5)	NU (1.0) (1.0)	
loluene	µg/L	1000	ND (1.0) (1.0)	-	ND (1) (0.5)	ND (1) (0.5)	ND (1) (0.5)	ND (1.0) (0.23)	-	ND (1) (0.5)	ND (1.0) (1.0)	-	0.6 J (0.5)	-	-	-	-	ND (1.0) (0.23)	-	ND (1) (0.5)	ND (1) (0.5)	1.9 (1.0)	-
Iotal BIEX	µg/L	n/v	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
1,2,4-Irimethylbenzene	µg/L	62	3.6 (2.0)	-	0.7 J (0.5)	ND (2) (0.5)	ND (2) (0.5)	ND (2.0) (0.19)	-	ND (2) (0.5)	4.7 (2.0)	-	ND (2) (0.5)	-		-	-	ND (2.0) (0.19)	-	ND (2) (0.5)	ND (2) (0.5)	4.3 (2.0)	-
1,3,5-Irimethylbenzene	µg/L	1200	ND (2.0) (2.0)	-	ND (2) (0.5)	ND (2) (0.5)	ND (2) (0.5)	ND (2.0) (0.36)	-	ND (2) (0.5)	2.0 (2.0)	-	0.7 J (0.5)	-	-	-	-	ND (2.0) (0.36)	-	ND (2) (0.5)	ND (2) (0.5)	2.0 (2.0)	
Xylenes, Total (Dimethylbenzene)	µg/L	10000	9.1 (1.0)	-	2 (0.5)	ND (1) (0.5)	ND (1) (0.5)	ND (1.0) (0.24)	-	ND (1) (0.5)	11.2 (1.0)	-	0.5 J (0.5)	-	-	-	-	ND (1.0) (0.24)	-	ND (1) (0.5)	ND (1) (0.5)	17.7 (1.0)	-
Volatile Organic Compounds (Swoor r)																							
1,2-DIBROMOETHANE (EDB) Semi-Volatile Organic Compounds	µg/L	0.05	ND (0.020) (0.020)	-	ND (0.029) (0.0096)	i) ND (0.029) (0.010)	ND (0.029) (0.010)	ND (0.020) (0.011)	-	ND (0.029) (0.0095)	ND (0.020) (0.020)	-	ND (0.029) (0.0097)	-	-		-	ND (0.020) (0.011)	-	ND (0.029) (0.0095)	ND (0.028) (0.0095)	ND (0.020) (0.020)	-
Anthracene	ua/L	66	5.66 (1.0)	-	11 (0.10)	ND (0.050) (0.010)	0.18 (0.010)	0.133 (0.020)	-	0.18 (0.010)	5.26 (1.0)	-	2.0 (0.010)	-	-	-	-	ND (0.10) (0.020)	-	0.069 (0.010)	0.039 J (0.010)	9.34 (1.0)	-
Benzo(a)Anthracene	ua/L	4.9	0.866 (0.10)	-	1.7 (0.10)	ND (0.050) (0.010)	ND (0.050) (0.010)	ND (0.10) (0.012)	-	0.024 J (0.010)	0.148 (0.10)	-	0.46 (0.010)	-	-	-	-	ND (0.10) (0.012)	-	ND (0.051) (0.010)	0.011 J (0.010)	7.94 (1.0)	
Benzo(a)Pyrene	μg/L	0.2	0.245 (0.10)		0.72 (0.10)	ND (0.050) (0.010)	ND (0.050) (0.010)	ND (0.10) (0.012)	-	0.017 J (0.010)	ND (0.10) (0.10)	-	0.25 (0.010)	-	-	-	-	ND (0.10) (0.012)	-	ND (0.051) (0.010)	0.012 J (0.010)	4.02 (0.10)	· ·
Benzo(b)Fluoranthene	µg/L	1.2	0.193 (0.10)	-	0.81 (0.10)	ND (0.050) (0.010)	ND (0.050) (0.010)	ND (0.10) (0.010)	-	0.015 J (0.010)	ND (0.10) (0.10)	-	0.30 (0.010)	-	-	-	-	ND (0.10) (0.010)	-	ND (0.051) (0.010)	0.013 J (0.010)	4.35 (0.10)	· ·
Benzo(g,h,i)Perylene	µg/L	0.26	ND (0.10) (0.10)	-	0.23 J (0.10)	ND (0.050) (0.010)	ND (0.050) (0.010)	ND (0.10) (0.016)	-	0.010 J (0.010)	ND (0.10) (0.10)	-	0.075 (0.010)	-	-	-	-	ND (0.10) (0.016)	-	ND (0.051) (0.010)	0.017 J (0.010)	1.46 (0.10)	-
Chrysene	µg/L	1.9	0.663 (0.10)	-	1.3 (0.10)	ND (0.050) (0.010)	ND (0.050) (0.010)	ND (0.10) (0.012)	-	0.021 J (0.010)	0.121 (0.10)	-	0.39 (0.010)	-	-	-	-	ND (0.10) (0.012)	-	ND (0.051) (0.010)	ND (0.051) (0.010)	<u>4.87 (0.10)</u>	-
Fluorene	µg/L	1900	26.4 (1.0)	-	33 (0.10)	ND (0.050) (0.010)	0.014 J (0.010)	ND (0.10) (0.017)	-	0.030 J (0.010)	31.9 (1.0)	-	8.7 (0.010)	-	-	-	-	ND (0.10) (0.017)	-	0.012 J (0.010)	0.011 J (0.010)	37.6 (1.0)	-
Naphthalene	µg/L	100	1.41 (0.10)	-	ND (0.61) (0.30)	0.039 J (0.030)	ND (0.060) (0.030)	ND (0.10) (0.036)	-	ND (0.060) (0.030)	0.964 (0.10)	-	ND (0.062) (0.031)	-	-	-	-	ND (0.10) (0.036)	-	ND (0.061) (0.030)	ND (0.061) (0.030)	1.86 (0.10)	-
Phenanthrene	µg/L	1100	32.7 (1.0)	-	56 (0.30)	ND (0.060) (0.030)	0.55 (0.030)	0.415 (0.021)	-	0.49 (0.030)	29.0 (1.0)	-	7.1 (0.031)	-	-	-	-	0.162 (0.021)	-	0.27 (0.030)	0.27 (0.030)	32.7 (1.0)	-
Pyrene	µg/L	130	4.45 (0.10)	-	7.4 (0.10)	ND (0.050) (0.010)	ND (0.050) (0.010)	ND (0.10) (0.015)	-	0.047 J (0.010)	1.93 (0.10)	-	1.8 (0.010)	-	-	-	-	ND (0.10) (0.015)	-	0.017 J (0.010)	0.020 J (0.010)	19.6 (1.0)	-
Metals			•					•	•	•	-					•							
Arsenic	ua/L	10	-	-	-	-	-	10.2 (0.97)	-	-	-	-	-	ND (3.0) (3.0)	-	-	-	5.5 (0.97)	-	-	-	-	-
Cobalt	ua/l	35	-	· .			-	1.1.1 (0.59)				-	I	ND (50) (50)	· .		-	ND (50) (0.59)			-	-	
Iron	ua/L	n/v	-	-	-	-	-	35600 (24)	-	-	-	-	-	27600 (100)	-	-	-	33300 (24)	-	-	-	-	-
Lead	ua/L	5	-	-	-	-	-	8.5 (1.7)	-	-	-	-	-	ND (3.0) (3.0)	-	-	-	7.3 (1.7)	-	-	-	-	-
Manganese	ua/L	300	-	-	-	-	-	249 (0.40)	-	-	-	-	-	284 (15)	-	-	-	238 (0.40)	-	-	-	-	-
Mercury	μg/L	2	-	-	-	-	-	ND (0.20) (0.095)	-	-	-	-	-	-	-	-	ND (0.20) (0.20)	ND (0.20) (0.089)	-	-	-	-	-
Metals, Dissolved									1	1						1							·
Arsenic	ug/l	10	-			-	_	_	5.6 (0.97)		-				ND (3.0) (3.0)		-		2.0 1 (0.97)		-	_	
Cobalt	µg/L	35	-		-	-	-	-	0.80 1 (0.59)	-					ND (50) (50)	-			0.90 1 (0.59)	-	-		
Iron	µg/L	00 n/v		-			-		24600 (24)						22000 (100)				9890 (24)				
Lead	µg/L	5	-	ND (3.0) (3.0)	ND (1.0) (0.13)	0.48 1 (0.090)	ND (1.0) (0.090)	-	6.0 (1.7)	1.4 (0.13)		ND (3.0) (3.0)	ND (1.0) (0.13)		ND (3.0) (3.0)	-			66(17)	0.14 1 (0.13)	0.14 1 (0.13)		ND (3.0) (3.0)
Manganese	µg/L	300		-	-	-	-		229 (0.40)	-		-			1850 (15)				219 (0.40)	-	-		-
Mercury	ug/l	2		-					ND (0.20) (0.095)			-	-	-	-	ND (0.20) (0.20)	-		ND (0.20) (0.089)		-		
General Chemistry	F-5		1					1							1								
		<u> </u>	1	1																1			
Aikalinity, Bicarbonate (As Caco3)	µg/L	n/v	-			-	-	286000 (5000)	-	-	-	-	-	-		-	-	416000 (5000)	-	-	-	-	
Aikalinity, Total (As Caco3)	µg/L	n/v	-			-	-	287000 (2800)	-	-	-	-	-	-		-	-	41/000 (3500)	-	-	-	-	
Chioride (AS CI)	µg/L	n/v	-	-			-	89600 (48)	-		-	-	-	-	-	-	-	000 5 (5 1)	-	-	-	-	
Huonae	µg/L	4000	-	-	-	-	-	160 B (5.1)	-	-	-	-	-	-	-	-	-	160 B (5.1)	-	-	-	-	
Niluogen, Ammonia (as n)	µg/L	30000	-	-			-	20000 (1500)	-		-	-	-	-	-	-	-	<u>31700 (1600)</u>	-	-	-	-	
Nitrogen, Nitrate (as n)	µg/L	10000	-	-	-	-	-	ND (110) (5.6)	-	-	-	-	-	-	-	-	-	19 B (5.6)	-	-	-	-	
Nitrogen Nitrite	µg/L	n/v	-	-			-	ND (100) (4.6)	-	-	-	-		-	-	-	-	I9 B (4.6)	-	-	-	-	
Nillogen, Nillille	µg/L	1000	-	-			-	ND (10) (1)	-		-	-		-	-		-	ND (10) (1)	-		-	-	
Sulfido	µg/L	n/v	-	-			-	ND (10000) (380)	-	-	-	-		-	-	-	-	ND (10000) (380)	-	-	-	-	
Total Carbon	µg/L	10/1						6300 (240)	-	-		-		-	-	-	-	5000 (240)	-	-	-	-	
Total Dissolved Solids (Residue Filterable)	µg/L	n/v	-			-	-	367000 (240)	-			-		-			-	285000 (240)		-	-	-	
(Clar Dissolved Collus (Colluc, I literable)	P9/L	10.4	1 -		-			001000 (1000)	1		-		1 1	-			-	200000 (1000)				-	

Sample Leastion	1	1	I	B-144		1	-	2-145		p.	140	.	150	I 8.	151	1	Р	152		1	P-152	1
Sample Location			8-Jan-13	8-Jan-13	11-May-16	8-Jan-13	8-Jan-13	9-Mav-16	24-Aug-16	7-Jan-13	7-Jan-13	11-May-16	24-Aug-16	7-Jan-13	7-Jan-13	7-Jan-13	7-Jan-13	-152 9-May-16	9-May-16	4-Jan-13	4-Jan-13	4-May-16
Sample ID			B144 010813	B144 010813	GW-11109613- B144-05-11-16-AC	- B145 010813	B145 010813	GW-11109613- B145-05-09-16-AC-	GW-11109613-B- 145-082416-KC-	B-149 010713	B-149 010713	GW-11109613- B150-05-11-16-AC	GW-11109613-B-	B-151 010713	B-151 010713	B-152 010713	B-152 010713	GW-11109613- B152-05-09-16-AC-	GW-11109613-	B-153 010413	B-153 010413	GW-11109613- B153-05-04-16-RM-
					044			029	016			046	019					025	027			010
Sampling Company			UNKNOWN	UNKNOWN	GHD	UNKNOWN	UNKNOWN	GHD	GHD	UNKNOWN	UNKNOWN	GHD	GHD	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	GHD	GHD	UNKNOWN	UNKNOWN	GHD
			ACCUTEST	ACCUTEST	LL	ACCUTEST	ACCUTEST	LL	LL	ACCUTEST	ACCUTEST	LL	LL	ACCUTEST	ACCUTEST	ACCUTEST	ACCUTEST	LL	LL	ACCUTEST	ACCUTEST	LL
Laboratory Work Order	11-14-		JB25963	JB25963	1660120	JB25963	JB25963	1659064	1700681	JB25835	JB25835	1660120	1700681	JB25835	JB25835	JB25835	JB25835	1659064	1659064	JB25728	JB25728	1657425
Laboratory Sample ID	Units	MSC-PA	JB25963-2	JB25963-2F	8378040	JB25963-3	JB25963-3F	8373134	8553508	JB25835-2	JB25835-2F	8378042	8553511	JB25835-3	JB25835-3F	JB25835-4	JB25835-4F	8373130	8373132	JB25728-4	JB25728-4F	8365513
Field Parameters																						
Conductivity	mS/cm	n/v	-	-	NM	-	-	0.272	0.24	-	-	NM	-	-	-	-	-	0.433	0.433	-	-	1.17
Dissolved Oxygen, Field Measured	mg/L	n/v	-	-	NM	-	-	2.38	3.06	-	-	NM	-	-	-	-	-	1.96	1.96	-	-	0.41
Oxidation Reduction Potential, Field Measured	mV	n/v	-	-	NM	-	-	-120	-169	-	-	NM	-	-	-	-	-	-108	-108	-	-	-38
pH, FIELD MEASURED	S.U.	n/v	-	-	NM	-	-	7.28	7.35	-	-	NM	-	-	-	-	-	6.69	6.69	-	-	6.8
Specific Conductance Field	mS/cm	n/v	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Temperature, Field Measured	deg c	n/v	-	-	NM	-	-	16.32	23.4	-	-	NM	-	-	-	-	-	15.65	15.65	-	-	13.9
Total Dissolved Solids, Field Measured	g/L	n/v	-	-	-	-	-	- 47.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Volatile Organic Compounds	NIU	n/v	-	-	INIM	-	-	17.5	0	-	-	INIM	-	-	-	-	-	12.1	12.1	-	-	0
Benzene	µg/L	5	<u>77.5 (1.0)</u>	-	<u>130 (3)</u>	<u>18.0 (1.0)</u>	-	<u>6 (0.5)</u>	<u>6 (0.5)</u>	<u>47400 (500)</u>	-	<u>480000 (10000)</u>	320000 (0.5)	<u>15.2 (1.0)</u>	-	<u>38.8 (1.0)</u>	-	<u>42 (0.5)</u>	<u>39 (0.5)</u>	ND (1.0) (1.0)	-	ND (1) (0.5)
1,2-Dichloroethane (EDC)	µg/L	5	ND (1.0) (1.0)	-	ND (5) (3)	ND (1.0) (1.0)	-	ND (1) (0.5)	ND (1) (0.5)	ND (200) (200)	-	ND (200) (100)	ND (50) (0.5)	ND (1.0) (1.0)	-	ND (1.0) (1.0)	-	ND (1) (0.5)	ND (1) (0.5)	ND (1.0) (1.0)	-	ND (1) (0.5)
Ethylbenzene	µg/L	700	101 (1.0)	-	260 (3)	2.3 (1.0)	-	1 (0.5)	1 (0.5)	ND (200) (200)		320 (100)	270 (0.5)	1.3 (1.0)	-	3.5 (1.0)	-	3 (0.5)	3 (0.5)	ND (1.0) (1.0)	-	ND (1) (0.5)
Nethyl Tertiary Butyl Ether	µg/L	3000	ND (1 0) (1 0)	-	35 (3)	58.8 (2.0)	-	// (U.5)	/4 (U.5)	1750 (400) ND (200) (200)	-	<u>12000 (100)</u>	<u>7500 (0.5)</u> ND (50) (0.5)	15.6 (2.0)	-	104 (2.0)	-	ND (1) (0.5)	ND (1) (0.5)	ND (2.0) (2.0)	-	ND (2) (0.5)
Toluene	μg/L μg/l	1000	35.6 (1.0)	-	74 (3)	2.9 (1.0)		2 (0.5)	2 (0.5)	357 (200)	-	55000 (100)	33000 (0.5)	4.4 (1.0)	-	16.8 (1.0)	-	16 (0.5)	15 (0.5)	ND (1.0) (1.0)	-	ND (1) (0.5)
Total BTEX	ug/l	n/v	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1.2.4-Trimethylbenzene	µg/=	62	212 (10)	-	460 (3)	2,9 (2,0)	-	1 J (0.5)	1 J (0.5)	ND (400) (400)	-	ND (400) (100)	76 J (0.5)	ND (2.0) (2.0)	-	6.0 (2.0)	-	5 (0.5)	4 (0.5)	ND (2.0) (2.0)	-	ND (2) (0.5)
1,3,5-Trimethylbenzene	µg/L	1200	64.4 (2.0)	-	140 (3)	2.0 (2.0)	-	1 J (0.5)	2 J (0.5)	ND (400) (400)	-	ND (400) (100)	31 J (0.5)	ND (2.0) (2.0)	-	4.7 (2.0)	-	3 (0.5)	3 (0.5)	ND (2.0) (2.0)	-	ND (2) (0.5)
Xylenes, Total (Dimethylbenzene)	µg/L	10000	506 (5.0)	-	1600 (3)	8.1 (1.0)	-	6 (0.5)	6 (0.5)	ND (200) (200)	-	1400 (100)	1100 (0.5)	6.2 (1.0)	-	29.0 (1.0)	-	28 (0.5)	25 (0.5)	1.4 (1.0)	-	ND (1) (0.5)
Volatile Organic Compounds (SW8011)												1		- · · ·		· · ·				I		
1.2-DIBROMOETHANE (EDB)	ua/L	0.05	ND (0.020) (0.020)	-	ND (0.029) (0.0097	ND (0.020) (0.020)	-	ND (0.030) (0.0099)	ND (0.028) (0.010)) ND (0.020) (0.020)	-	ND (0.029) (0.0097	7) ND (0.028) (0.010)) ND (0.020) (0.020)	-	ND (0.020) (0.020)	-	ND (0.029) (0.0097) ND (0.029) (0.0097	ND (0.020) (0.020)	-	ND (0.029) (0.0095)
Semi-Volatile Organic Compounds	10				(***),(****	/ (****/(****/		(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		(()) ())		() , ()	/ (****/(****)	, (****,(****),								(, , , , , , , , , , , , , , , , , , ,
Anthracono	ug/l	66	0.270 (0.10)		54(010)	4.92 (0.10)		7.4 (0.010)	13 (0.010)	1 33 (0 10)		0.86 (0.10)	0.15 1 (0.010)	0.522 (0.10)		1.41.(0.10)		2.6 (0.010)	2.1 (0.010)	0.100 (0.10)		0.000 (0.010)
Benzo(a)Anthracene	µg/L	4.9	ND (0.10) (0.10)	-	2.0 (0.10)	4.32 (0.10)	-	0.68 (0.010)	0.67 (0.010)	0.193 (0.10)		0.52 (0.10)	0.10 J (0.010)	ND (0.10) (0.10)		ND (0.10) (0.10)		0.12(0.010)	0.14 (0.010)	ND (0.10) (0.10)		0.052 (0.010)
Benzo(a)Pvrene	µg/=	0.2	ND (0.10) (0.10)	-	1.2 (0.10)	0.141 (0.10)	-	0.33 (0.010)	0.22 (0.010)	0.122 (0.10)	-	0.40 J (0.10)	ND (0.50) (0.010)	ND (0.10) (0.10)	-	ND (0.10) (0.10)	-	0.088 (0.010)	0.11 (0.010)	ND (0.10) (0.10)	-	0.038 J (0.010)
Benzo(b)Fluoranthene	µg/L	1.2	ND (0.10) (0.10)	-	1.6 (0.10)	0.137 (0.10)	-	0.36 (0.010)	0.24 (0.010)	ND (0.10) (0.10)	-	0.53 (0.10)	ND (0.50) (0.010)	ND (0.10) (0.10)	-	ND (0.10) (0.10)	-	0.11 (0.010)	0.13 (0.010)	ND (0.10) (0.10)	-	0.040 J (0.010)
Benzo(g,h,i)Perylene	μg/L	0.26	ND (0.10) (0.10)	-	0.42 J (0.10)	ND (0.10) (0.10)	-	0.11 (0.010)	0.071 (0.010)	ND (0.10) (0.10)	-	0.22 J (0.10)	ND (0.50) (0.010)	ND (0.10) (0.10)	-	ND (0.10) (0.10)	-	0.058 (0.010)	0.081 (0.010)	ND (0.10) (0.10)	-	0.018 J (0.010)
Chrysene	µg/L	1.9	ND (0.10) (0.10)	-	<u>2.0 (0.10)</u>	0.341 (0.10)	-	0.47 (0.010)	0.49 (0.010)	0.141 (0.10)	-	0.53 (0.10)	ND (0.50) (0.010)	ND (0.10) (0.10)	-	ND (0.10) (0.10)	-	0.13 (0.010)	0.14 (0.010)	ND (0.10) (0.10)	-	0.058 (0.010)
Fluorene	µg/L	1900	2.14 (0.10)	-	1.1 (0.10)	19.4 (1.0)	-	34 (0.10)	50 (0.010)	4.66 (0.10)	-	2.8 (0.10)	0.90 (0.010)	1.64 (0.10)	-	4.72 (0.10)	-	2.3 (0.010)	2.3 (0.010)	0.192 (0.10)	-	0.018 J (0.010)
Naphthalene	µg/L	100	4.01 (0.10)	-	19 (0.30)	3.40 (0.10)	-	4.4 (0.030)	3.3 (0.030)	27.7 (1.0)	-	52 (0.31)	31 (0.030)	0.453 (0.10)	-	1.46 (0.10)	-	ND (0.060) (0.030)	ND (0.061) (0.030)	0.466 (0.10)	-	ND (0.061) (0.030)
Phenanthrene	µg/L	1100	0.917 (0.10)	-	6.6 (0.30)	11.7 (1.0)	-	23 (0.30)	41 (0.030)	7.35 (1.0)	-	4.5 (0.31)	1.2 (0.030)	0.114 (0.10)	-	2.30 (0.10)	-	4.9 (0.030)	3.8 (0.030)	ND (0.10) (0.10)	-	0.043 J (0.030)
Pyrene	µg/L	130	0.123 (0.10)	-	4.3 (0.10)	2.79 (0.10)	-	4.2 (0.010)	5.4 (0.010)	1.01 (0.10)	-	0.93 (0.10)	0.15 J (0.010)	0.433 (0.10)	-	1.04 (0.10)	-	1.5 (0.010)	1.6 (0.010)	0.213 (0.10)	-	0.27 (0.010)
Metals																						
Arsenic	µg/L	10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Cobalt	µg/L	35	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Iron	µg/L	n/v	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Lead	µg/L	5	-	-			-	-	-		-	-	-	-	-	-	-	-	-	-	-	
Manganese	µg/L	300	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Metals. Dissolved	μg/L	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
			1	1	1					1		1		1		1	1			1		
Arsenic	μg/L 	10	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	
	µg/L	35	-	-	-		-		-			-	-	-	-	-	-	-	-	-	-	
Lood	µg/L	n/v F	-	42/20	-		-	-	-		- ND (2.0) (2.0)	- ND (1.0) (0.40)	-	-	- ND (2.0) (2.0)	-	- ND (2.0) (2.0)	- ND (1 0) (0 10)	- ND (1.0) (0.12)	-	- ND (2.0) (2.0)	- ND (1.0) (0.12)
Manganoso	µg/L	300	-	4.2 (3.0)	0.24 J (0.13)	-	3.7 (3.0)	0.70 3 (0.13)	0.13 3 (0.090)	-	ND (3.0) (3.0)	ND (1.0) (0.13)	0.12 3 (0.090)	-	ND (3.0) (3.0)	-	ND (3.0) (3.0)	ND (1.0) (0.13)	ND (1.0) (0.13)	-	ND (3.0) (3.0)	ND (1.0) (0.13)
Manganese	µg/L	2	-				-															
General Chemistry	P9-2	-	I									1								1		
		- 6 -	1	1						1	1				1	1	1	1	1			
Alkalinity, Total (As Caco3)	µg/L	n/v	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chloride (As Cl)	μg/L μg/l	n/v	-	-	-			-	-		-	-	-	-	-		-	-	-	-	-	
Fluoride	µg/L	4000			-									-		-		-			-	
Nitrogen, Ammonia (as n)	μα/L	30000	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Nitrogen, Nitrate (as n)	μα/L	10000	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	· -	· .	-	-	· .
Nitrogen, Nitrate-Nitrite	μg/L	n/v	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Nitrogen, Nitrite	µg/L	1000	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Sulfate (as SO4)	µg/L	n/v	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	· ·	-	-	-
Sulfide	µg/L	n/v	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Total Carbon	µg/L	n/v	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Total Dissolved Solids (Residue, Filterable)	µg/L	n/v	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

O-mula Lagation	1	1	1	B 454		1	D 455		1	B 456		I					450					B	60
Sample Location			7- Jan-13	D-134	10-May-16	7- Jan-13	B-133	5-May-16	7- Jan-13	5-150 7- Jan-13	10-May-16	7- Jan-13	7- Jan-13	8-Apr-13	8-Apr-13	8-Apr-13	-150 2- lun-14	2- Jun-14	20-May-15	9-May-16	22-Aug-16	7- lan-13	7- Jan-13
Sample ID			B-154_010713	B-154_010713	GW-11109613- B154-05-10-16-MM	- B-155_010713	B-155_010713	GW-11109613- B155-05-05-16-AC-	B-156_010713	B-156_010713	GW-11109613- B154-05-10-16-MM	B-158_010713	B-158_010713	B-158	B-158_040813	B-158_040813	B-158	B-158	B-158_20150520	GW-11109613- B158-05-09-16-AC-	GW-11109613-B- 158-082216-AC-	B160_010713	B160_010713
					038			013			036									033	002		
Sampling Company			UNKNOWN	UNKNOWN	GHD	UNKNOWN	UNKNOWN	GHD	UNKNOWN	UNKNOWN	GHD	UNKNOWN	UNKNOWN	UNKNOWN	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	GHD	GHD	UNKNOWN	UNKNOWN
Laboratory			ACCUTEST	ACCUTEST	LL	ACCUTEST	ACCUTEST	LL	ACCUTEST	ACCUTEST	LL	ACCUTEST	ACCUTEST	UNKNOWN	ACCUTEST	ACCUTEST	ACCUTEST	ACCUTEST	LL	LL	LL	ACCUTEST	ACCUTEST
Laboratory Work Order			JB25835	JB25835	1660120	JB25835	JB25835	1658374	JB25835	JB25835	1660120	JB25835	JB25835	20140718EZ	JB33644	JB33644	JB68336	JB68336	1562821	1659064	1699628	JB25834	JB25834
Laboratory Sample ID	Units	MSC-PA	JB25835-5	JB25835-5F	8378043	JB25835-6	JB25835-6F	8370268	JB25835-7	JB25835-7F	8378032	JB25835-8	JB25835-8F	UNKNOWN	JB33644-14	JB33644-14F	JB68336-15	JB68336-15F	7896251	8373138	8548678	JB25834-4	JB25834-4F
Field Parameters																							
Conductivity	mS/cm	n/v	-	-	0.246	-	-	0.593	-	-	0.629	-	-	-	-	-	-	-	-	0.376	0.4	-	-
Dissolved Oxygen, Field Measured	mg/L	n/v	-	-	2.46	-	-	2.56	-	-	19.15	-	-	-	-	-	-	-	2.01	6.95	1.68	-	-
Oxidation Reduction Potential, Field Measured	mV	n/v	-	-	-71	-	-	-70	-	-	-90	-	-	-	-	-	-	-	52	-70	-88	-	-
pH, FIELD MEASURED	S.U.	n/v	-	-	7.21	-	-	6.56	-	-	6.93	-	-	-	-	-	-	-	8.04	7.65	7.59	-	-
Specific Conductance Field	mS/cm	n/v	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.479	-	-	-	-
Temperature, Field Measured	deg c	n/v	-	-	13.21	-	-	15.61	-	-	14.02	-	-	-	-	-	-	-	14.94	15.33	26.06	-	-
Total Dissolved Solids, Field Measured	g/L	n/v	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	NM	-	-	-	-
Turbidity	NTU	n/v	-	-	0	-	-	57.3	-	-	284	-	-	-	-	-	-	-	141	15.5	0	-	-
Volatile Organic Compounds																							
Benzene	µg/L	5	238000 (5000)	-	51000 (1000)	77800 (500)	-	120000 (1000)	301 (5.0)		49 (0.5)	ND (1.0) (1.0)		-	ND (1) (0.24)	-	ND (0.50) (0.21)	-	ND (0.5) (0.5)	ND (1) (0.5)	ND (1) (0.5)	ND (1.0) (1.0)	-
1.2-Dichloroethane (EDC)	ug/l	5	ND (1000) (1000)	-	ND (200) (100)	ND (500) (500)	-	ND (50) (25)	ND (1.0) (1.0)		ND (1) (0.5)	ND (1.0) (1.0)		-	ND (1) (0.26)		ND (1.0) (0.30)	-	ND (0.5) (0.5)	ND (1) (0.5)	ND (1) (0.5)	ND (1.0) (1.0)	
Ethylbenzene	ug/l	700	ND (1000) (1000)	-	ND (200) (100)	ND (500) (500)	-	120 (25)	5.5 (1.0)		4 (0.5)	ND (1.0) (1.0)		-	ND (1) (0.23)	-	ND (1.0) (0.40)	-	ND (0.5) (0.5)	ND (1) (0.5)	ND (1) (0.5)	4.1 (1.0)	
Isopropylbenzene (Cumene)	µg/l	3500	ND (2000) (2000)		150.1 (100)	ND (1000) (1000)	-	79.1(25)	101 (2.0)		120 (0.5)	ND (2.0) (2.0)		-	ND (2) (0.45)		ND (1.0) (0.26)	-	ND (0.5) (0.5)	ND (2) (0.5)	ND (2) (0.5)	29(20)	-
Methyl Tertiary Butyl Ether	ug/l	20	ND (1000) (1000)	-	ND (200) (100)	ND (500) (500)	-	ND (50) (25)	ND (1.0) (1.0)		ND (1) (0.5)	ND (1.0) (1.0)		-	ND (1) (0.16)	-	ND (1.0) (0.26)	-	ND (0.5) (0.5)	ND (1) (0.5)	ND (1) (0.5)	ND (1.0) (1.0)	-
Toluene	ug/l	1000	1100 (1000)	-	180 J (100)	ND (500) (500)	-	820 (25)	21.0 (1.0)		13 (0.5)	ND (1.0) (1.0)		-	ND (1) (0.23)	-	ND (1.0) (0.22)	-	ND (0.5) (0.5)	ND (1) (0.5)	ND (1) (0.5)	1.7 (1.0)	-
Total BTEX	µg/l	n/v		-	-	-	-					-		ND	-		-	-	ND	-	-	-	-
1 2 4-Trimethylbenzene	µg/2	62	ND (2000) (2000)		ND (400) (100)	ND (1000) (1000)	-	62.1(25)	55(20)		4 (0.5)	ND (2.0) (2.0)		-	ND (2) (0 19)		ND (2.0) (0.19)	-	ND (0.5) (0.5)	ND (2) (0.5)	ND (2) (0.5)	79(20)	-
1.3.5-Trimethylbenzene	µg/2	1200	ND (2000) (2000)	-	ND (400) (100)	ND (1000) (1000)		ND (100) (25)	5.6 (2.0)	-	5 (0.5)	ND (2.0) (2.0)	· ·	-	ND (2) (0.36)	-	ND (2.0) (0.17)	-	ND (0.5) (0.5)	ND (2) (0.5)	ND (2) (0.5)	22(20)	-
Xylenes Total (Dimethylbenzene)	ug/l	10000	ND (1000) (1000)		ND (200) (100)	ND (500) (500)	-	150 (25)	33.2 (1.0)		22 (0.5)	ND (1.0) (1.0)		-	ND (1) (0.24)		ND (1.0) (0.20)	-	ND (0.5) (0.5)	ND (1) (0.5)	ND (1) (0.5)	15.3 (1.0)	-
Volatile Organic Compounds (SW8011)	P9-2	10000	112 (1000) (1000)		112 (200) (100)	112 (000) (000)		100 (20)	00.2 (1.0)		22 (0.0)	110 (1.0) (1.0)			110 (1)(0.2.1)		110 (1.0) (0.20)		112 (0.0) (0.0)	110 (1) (0.0)	112 (1) (0.0)	10.0 (1.0)	
		0.05			ND (0.000) (0.0005)			ND (0.000) (0.0007)			ND (0.000) (0.0007)	ND (0.000) (0.000)			ND (0.00) (0.044)		ND (0.000) (0.014)		ND (0.0005) (0.040)				
Semi-Volatile Organic Compounds	µg/L	0.05	ND (0.020) (0.020)	-	ND (0.029) (0.0095)) ND (0.020) (0.020)	-	ND (0.029) (0.0097)	ND (0.020) (0.020)	-	ND (0.029) (0.0097)	ND (0.020) (0.020)	-	-	ND (0.02) (0.011)	-	ND (0.020) (0.011)	-	ND (0.0095) (0.010)	ND (0.029) (0.0096)	ND (0.028) (0.010)	ND (0.020) (0.020)	-
Anthracene	µg/L	66	3.10 (0.10)	-	1.5 (0.010)	1.74 (0.10)	-	3.7 (0.010)	1.79 (0.10)	-	4.7 (0.010)	ND (0.10) (0.10)	-	-	ND (0.1) (0.02)	-	ND (0.10) (0.020)	-	ND (0.1) (0.1)	0.027 J (0.010)	0.037 J (0.010)	ND (10) (10)	-
Benzo(a)Anthracene	µg/L	4.9	ND (0.10) (0.10)	-	0.12 (0.010)	ND (0.10) (0.10)	-	0.31 (0.010)	0.184 (0.10)	-	1.7 (0.010)	ND (0.10) (0.10)	-	-	ND (0.1) (0.012)	-	ND (0.10) (0.012)	-	ND (0.1) (0.1)	0.058 (0.010)	0.055 (0.010)	ND (10) (10)	-
Benzo(a)Pyrene	µg/L	0.2	ND (0.10) (0.10)	-	0.10 (0.010)	ND (0.10) (0.10)	-	<u>0.25 (0.010)</u>	ND (0.10) (0.10)	-	<u>1.4 (0.010)</u>	ND (0.10) (0.10)	-	-	ND (0.1) (0.012)	-	ND (0.10) (0.012)	-	ND (0.1) (0.1)	0.045 J (0.010)	0.042 J (0.010)	ND (10) (10)	-
Benzo(b)Fluoranthene	µg/L	1.2	ND (0.10) (0.10)	-	0.084 (0.010)	ND (0.10) (0.10)	-	0.24 (0.010)	ND (0.10) (0.10)	-	<u>1.5 (0.010)</u>	ND (0.10) (0.10)	-	-	ND (0.1) (0.01)	-	ND (0.10) (0.010)	-	ND (0.1) (0.1)	0.051 (0.010)	0.046 J (0.010)	ND (10) (10)	-
Benzo(g,h,i)Perylene	µg/L	0.26	ND (0.10) (0.10)	-	0.054 (0.010)	ND (0.10) (0.10)	-	0.088 (0.010)	ND (0.10) (0.10)	-	<u>0.50 (0.010)</u>	ND (0.10) (0.10)	-	-	ND (0.1) (0.016)	-	ND (0.10) (0.016)	-	ND (0.1) (0.1)	0.029 J (0.010)	0.027 J (0.010)	ND (10) (10)	-
Chrysene	µg/L	1.9	ND (0.10) (0.10)	-	0.099 (0.010)	ND (0.10) (0.10)	-	0.27 (0.010)	0.161 (0.10)	-	1.4 (0.010)	ND (0.10) (0.10)	-	-	ND (0.1) (0.012)	-	ND (0.10) (0.012)	-	ND (0.1) (0.1)	0.051 (0.010)	0.045 J (0.010)	ND (10) (10)	-
Fluorene	µg/L	1900	15.8 (1.0)	-	7.0 (0.010)	6.74 (1.0)	-	6.6 (0.010)	8.16 (1.0)	-	10 (0.010)	ND (0.10) (0.10)	-	-	ND (0.1) (0.017)	-	ND (0.10) (0.017)	-	ND (0.1) (0.1)	0.064 (0.010)	0.094 (0.010)	ND (10) (10)	-
Naphthalene	µg/L	100	57.3 (1.0)	-	20 (0.31)	52.4 (1.0)	-	42 (0.61)	1.65 (0.10)	-	3.3 (0.031)	0.155 (0.10)	-	-	ND (0.1) (0.036)	-	ND (0.10) (0.036)	-	ND (0.1) (0.1)	0.042 J (0.030)	0.078 (0.030)	ND (10) (10)	-
Phenanthrene	µg/L	1100	17.0 (1.0)	-	4.9 (0.031)	8.73 (1.0)	-	12 (0.61)	9.87 (1.0)	-	17 (0.31)	ND (0.10) (0.10)	-	-	ND (0.1) (0.021)	-	ND (0.10) (0.021)	-	ND (0.1) (0.1)	0.040 J (0.030)	0.043 J (0.030)	ND (10) (10)	-
Pyrene	µg/L	130	0.983 (0.10)	-	0.51 (0.010)	0.746 (0.10)	-	1.3 (0.010)	0.883 (0.10)	-	3.4 (0.010)	0.196 (0.10)	-	-	ND (0.1) (0.015)	-	0.126 (0.015)	-	0.2 J (0.1)	0.22 (0.010)	0.31 (0.010)	ND (10) (10)	-
Metals																							
Arsenic	µg/L	10	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-
Cobalt	µg/L	35	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Iron	µg/L	n/v	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Lead	µg/L	5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Manganese	µg/L	300	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Mercury	µg/L	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Metals, Dissolved									•						1								
Arsenic	uo/l	10	-	_	_	-	-	-	-	-	-	_		_	-	-	<u> </u>	-	-		. 1	_	-
Cobalt	µg/L	25	-	-	-	-		-	_	-	-	_	-		-	-	-	_	-	-	-	-	
	µg/L	55 n/v	-	-	-			-	-			-					-			-	-	-	
	µg/L	5	-	ND (3.0) (3.0)	ND (1.0) (0.13)		ND (3.0) (3.0)	ND (1.0) (0.13)		ND (3.0) (3.0)	ND (1.0) (0.13)		ND (3.0) (3.0)		-	ND (3) (1 7)	-	171(13)	0.14 1 (0.082)	1 2 (0 13)	0.89 1 (0.09)		ND (3.0) (3.0)
Manganese	µg/L	300		140 (0.0) (0.0)	140 (1.0) (0.10)		140 (0.0) (0.0)	140 (1.0) (0.10)		110 (0.0) (0.0)	100 (1.0) (0.10)		110 (0.0) (0.0)		-	110 (0) (1.7)	-	1.7 0 (1.0)	0.140 (0.002)	1.2 (0.10)	0.00 0 (0.00)		140 (0.0) (0.0)
Marguny	µg/L	2			-			-							-		-		-				
General Chemistry	P9-2	-																					
		1	1			1		1	1	1					1	1							
Alkalinity, Bicarbonate (As Caco3)	µg/L	n/v	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Alkalinity, Total (As Caco3)	µg/L	n/v	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-
Chloride (As Cl)	µg/L	n/v	-	-	-	-	-	-	-	-	-	-	· ·	-	-	-		-	-	-	-	-	-
Fluoride	µg/L	4000	-	-	-	-	-	-	-	-		-	· ·	-	-	-		-	-	-	-	-	-
Nitrogen, Ammonia (as n)	µg/L	30000	-	-	-	-	-	-	-	-		-		-	-	-	-	-	-	-	-	-	-
Nitrogen, Nitrate (as n)	µg/L	10000	-	-	-	-	-	-	-	-		-	· ·	-	-	-		-	-	-	-	-	-
Nitrogen, Nitrate-Nitrite	µg/L	n/v	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-
Nitrogen, Nitrite	µg/L	1000	-	-	-	-	-	-	-	-	-	-	· ·	-	-	-		-	-	-	-	-	-
Sulfate (as SO4)	µg/L	n/v	-	-	-	-	-	-	-	-	-	-	· ·	-	-	-		-	-	-	-	-	-
Sumae	µg/L	n/v	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-
	µg/L	n/v	-	-	-	-	-	-	-	-	-	-		-		-		-	-	-	-	-	-
i otai Dissolved Solids (Residue, Filterable)	µg/L	n/v	-	-	-	-	-	-			-	-		-				-			-	-	-

Comple Location	1		1	P-162		1	P-162		1	D.	164		1		P.1	65			B-1	66	R-4	167
Sample Location			4- Jan-12	B-162	10-May-16	7- Jan-12	B-103	10-May-16	9- Jan-12	9- Jan-12	9-May-16	22-449-16	4- Jan-12	4- Jan-12	B-1	2- lun-14	20-May-15	5-May-16	7- Jap-12	7- lan-12	7- Jan-12	7- lan-12
Sample ID			B162 010413	B162 010413	GW-11109613- B162-05-10-16-AC-	B-163 010713	B-163 010713	GW-11109613- B163-05-10-16-AC-	B164 010813	B164_010813	GW-11109613- B164-05-09-16-AC-	GW-11109613-B- 164-082316-KC-	B-165 010413	B-165 010413	B-165	B-165	B-165 20150520	GW-11109613- B165-05-05-16-AC-	B166 010713	B166_010713	B167_010713	B167_010713
Sampling Company					039 GHD			037 GHD			031 GHD	014 GHD			STANTEC	STANTEC	STANTEC	015 GHD				
			ACCUTEST	ACCUITEST	GHD	ACCUTEST	ACCUITERT	GHD	ACCUTERT	ACCUITEST	GHD	GHD	ACCUTERT	ACCUITEST	ACCUITERT	ACCUTERT	STANTEC	GHD	ACCUTERT	ACCUTEST	ACCUTEST	ACCUTEST
Laboratory Work Order			IR25720	IR25720	1660120	IP25925	IP25925	1660120	IR25064	IR25064	1650064	1600628	IR25729	IB25729	IDE0226	IDE022E	1562921	1659274	IR25924	IB25924	IB25924	IB25924
	Unite	MCC DA	JB25725	JB25729	9279025	JB25035	JB25035	9279022	JB25904	1825064.25	9272426	9549604	JB25728 4	JB25720	JB00330	JB00330	7806252	8270270	1825034	1825034	JB25034	JB25034
	Units	WSC-PA	JB23729-3	JB23/29-3F	0370035	JB25655-9	JB23633-9F	6376033	JB23904-3	JB25904-3F	0373130	0340091	JB23720-1	JB23720-1F	JB00330-19	JD00330-19F	7896252	83/02/0	JB23034-2	JB23034-2F	JB23034-3	JB25654-5F
Field Parameters	-		н Т	1		н Т	1			1	1	1	н Т		1			1				
Conductivity	mS/cm	n/v	-	-	0.658	-	-	0.391	-	-	0.406	0.48	-	-	-	-	•	0.687	-	-	-	-
Dissolved Oxygen, Field Measured	mg/L	n/v	-	-	33.3	-	-	26.08	-	-	10.51	15.59	-	-	-	-	1.12	1.1	-	-	-	-
Oxidation Reduction Potential, Field Measured	mV	n/v	-	-	-74	-	-	-83	-	-	120	53	-	-	-	-	-115	-122	-	-	-	-
pH, FIELD MEASURED	S.U.	n/v	-	-	6.31	-	-	6.92	-	-	7.74	7.33	-	-	-	-	7.79	7.07	-	-	-	-
Specific Conductance Field	mS/cm	n/v	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1.04	-	-	-	-	-
Temperature, Field Measured	deg c	n/v	-	-	14.49	-	-	17.36	-	-	15.53	21.5	-	-	-	-	18.25	15.68	-	-	-	-
Total Dissolved Solids, Field Measured	g/L	n/v	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.663	-	-	-	-	-
I urbidity	NIU	n/v	-	-	90.1	-	-	0	-	-	105	20.6	-	-	-	-	32.4	23.4	-	-	-	-
			•			_																
Benzene	µg/L	5	ND (1.0) (1.0)	-	ND (1) (0.5)	<u>373 (5.0)</u>	-	0.9 J (0.5)	<u>99.1 (1.0)</u>	-	ND (1) (0.5)	1 (0.5)	ND (1.0) (1.0)	-	ND (0.50) (0.21)	-	ND (0.5) (0.5)	4 (0.5)	ND (1.0) (1.0)	-	<u>10.2 (1.0)</u>	-
1,2-Dichloroethane (EDC)	µg/L	5	ND (1.0) (1.0)	-	ND (1) (0.5)	ND (1.0) (1.0)	-	ND (1) (0.5)	ND (1.0) (1.0)	-	ND (1) (0.5)	ND (1) (0.5)	ND (1.0) (1.0)	-	ND (1.0) (0.30)	-	ND (0.5) (0.5)	ND (1) (0.5)	ND (1.0) (1.0)	-	ND (1.0) (1.0)	-
Ethylbenzene	µg/L	700	1.7 (1.0)	-	ND (1) (0.5)	1.8 (1.0)	-	ND (1) (0.5)	ND (1.0) (1.0)		ND (1) (0.5)	ND (1) (0.5)	ND (1.0) (1.0)	-	ND (1.0) (0.40)	-	ND (0.5) (0.5)	ND (1) (0.5)	1.1 (1.0)	-	3.9 (1.0)	-
Isopropylbenzene (Cumene)	µg/L	3500	ND (2.0) (2.0)	-	ND (2) (0.5)	3.5 (2.0)	-	ND (2) (0.5)	7.2 (2.0)	-	5 (0.5)	5 (0.5)	3.0 (2.0)	-	3.4 (0.26)	-	6 (0.5)	5 (0.5)	2.1 (2.0)	-	81.6 (2.0)	-
Methyl Tertiary Butyl Ether	µg/L	20	ND (1.0) (1.0)	-	ND (1) (0.5)	ND (1.0) (1.0)	-	ND (1) (0.5)	ND (1.0) (1.0)	-	ND (1) (0.5)	ND (1) (0.5)	ND (1.0) (1.0)	-	0.34 J (0.26)	-	0.6 J (0.5)	2 (0.5)	ND (1.0) (1.0)	-	ND (1.0) (1.0)	-
Toluene	µg/L	1000	ND (1.0) (1.0)	-	ND (1) (0.5)	6.4 (1.0)	-	ND (1) (0.5)	1.7 (1.0)	-	ND (1) (0.5)	ND (1) (0.5)	ND (1.0) (1.0)	-	ND (1.0) (0.22)	-	ND (0.5) (0.5)	ND (1) (0.5)	ND (1.0) (1.0)	-	4.5 (1.0)	
Total BTEX	µg/L	n/v	-	-	-	-	-	-	-	-	-	-	-	-		-	ND	-	-	-	-	-
1,2,4-Trimethylbenzene	µg/L	62	3.3 (2.0)	-	ND (2) (0.5)	ND (2.0) (2.0)	-	ND (2) (0.5)	ND (2.0) (2.0)	-	ND (2) (0.5)	ND (2) (0.5)	ND (2.0) (2.0)	-	0.23 J (0.19)	-	ND (0.5) (0.5)	ND (2) (0.5)	2.3 (2.0)	-	4.0 (2.0)	-
1,3,5-Trimethylbenzene	µg/L	1200	ND (2.0) (2.0)	-	ND (2) (0.5)	ND (2.0) (2.0)	-	ND (2) (0.5)	ND (2.0) (2.0)	-	ND (2) (0.5)	ND (2) (0.5)	ND (2.0) (2.0)	-	ND (2.0) (0.17)	-	ND (0.5) (0.5)	ND (2) (0.5)	ND (2.0) (2.0)	-	ND (2.0) (2.0)	-
Xylenes, Total (Dimethylbenzene)	µg/L	10000	6.3 (1.0)	-	ND (1) (0.5)	3.5 (1.0)	-	ND (1) (0.5)	1.2 (1.0)	-	ND (1) (0.5)	ND (1) (0.5)	ND (1.0) (1.0)	-	ND (1.0) (0.20)	-	ND (0.5) (0.5)	ND (1) (0.5)	3.9 (1.0)	-	17.4 (1.0)	-
Volatile Organic Compounds (SW8011)																						
1,2-DIBROMOETHANE (EDB) Semi-Volatile Organic Compounds	µg/L	0.05	ND (0.020) (0.020)	-	ND (0.028) (0.0094)) ND (0.020) (0.020)	-	ND (0.029) (0.0096)	ND (0.020) (0.020)	-	ND (0.029) (0.0096)	ND (0.029) (0.010)	ND (0.020) (0.020)	-	ND (0.020) (0.011)	-	ND (0.0096) (0.010)	ND (0.029) (0.0096)	ND (0.020) (0.020)	-	ND (0.020) (0.020)	-
Anthracene	µg/L	66	ND (1.0) (1.0)	-	0.62 (0.010)	0.156 (0.10)	-	0.044 J (0.010)	ND (0.10) (0.10)	-	0.026 J (0.010)	0.057 (0.010)	0.790 (0.10)	-	0.416 (0.020)	-	0.6 (0.1)	0.48 (0.010)	ND (0.10) (0.10)	-	ND (0.10) (0.10)	-
Benzo(a)Anthracene	µg/L	4.9	ND (1.0) (1.0)	-	0.41 (0.010)	ND (0.10) (0.10)	-	0.097 (0.010)	ND (0.10) (0.10)	-	0.027 J (0.010)	0.017 J (0.010)	0.223 (0.10)	-	0.196 (0.012)	-	0.2 J (0.1)	0.17 (0.010)	ND (0.10) (0.10)	-	ND (0.10) (0.10)	-
Benzo(a)Pyrene	µg/L	0.2	ND (1.0) (1.0)	-	0.32 (0.010)	ND (0.10) (0.10)	-	0.090 (0.010)	ND (0.10) (0.10)	-	0.047 J (0.010)	0.019 J (0.010)	ND (0.10) (0.10)	-	ND (0.10) (0.012)	-	ND (0.1) (0.1)	0.039 J (0.010)	ND (0.10) (0.10)	-	ND (0.10) (0.10)	-
Benzo(b)Fluoranthene	µg/L	1.2	ND (1.0) (1.0)	-	0.34 (0.010)	ND (0.10) (0.10)	-	0.17 (0.010)	ND (0.10) (0.10)	-	0.049 J (0.010)	0.021 J (0.010)	ND (0.10) (0.10)	-	0.124 (0.010)	-	0.1 J (0.1)	0.050 J (0.010)	ND (0.10) (0.10)	-	ND (0.10) (0.10)	-
Benzo(g,h,i)Perylene	µg/L	0.26	ND (1.0) (1.0)	-	0.17 (0.010)	ND (0.10) (0.10)	-	0.064 (0.010)	ND (0.10) (0.10)	-	0.035 J (0.010)	0.018 J (0.010)	ND (0.10) (0.10)	-	ND (0.10) (0.016)	-	ND (0.1) (0.1)	0.025 J (0.010)	ND (0.10) (0.10)	-	ND (0.10) (0.10)	-
Chrysene	µg/L	1.9	ND (1.0) (1.0)	-	0.47 (0.010)	ND (0.10) (0.10)	-	0.13 (0.010)	ND (0.10) (0.10)	-	0.027 J (0.010)	0.013 J (0.010)	0.148 (0.10)	-	0.134 (0.012)	-	0.2 J (0.1)	0.13 (0.010)	ND (0.10) (0.10)	-	ND (0.10) (0.10)	-
Fluorene	µg/L	1900	1.51 (1.0)	-	1.4 (0.010)	8.24 (1.0)	-	1.2 (0.010)	0.184 (0.10)	-	0.081 (0.010)	0.069 (0.010)	2.03 (0.10)	-	1.67 (0.017)	-	2 (0.1)	1.4 (0.010)	0.420 (0.10)	-	0.316 (0.10)	-
Naphthalene	µg/L	100	ND (1.0) (1.0)	-	0.61 (0.030)	0.491 (0.10)	-	ND (0.061) (0.031)	0.304 (0.10)	-	ND (0.062) (0.031)	0.037 J (0.030)	1.29 (0.10)	-	ND (0.10) (0.036)	-	ND (0.1) (0.1)	ND (0.063) (0.031)	0.438 (0.10)	-	2.08 (0.10)	-
Phenanthrene	µg/L	1100	ND (1.0) (1.0)	-	0.56 (0.030)	0.170 (0.10)	-	0.037 J (0.031)	ND (0.10) (0.10)	-	ND (0.062) (0.031)	0.045 J (0.030)	0.446 (0.10)	-	0.223 (0.021)	-	0.1 J (0.1)	0.37 (0.031)	ND (0.10) (0.10)	-	0.289 (0.10)	-
Pyrene	µg/L	130	ND (1.0) (1.0)	-	1.1 (0.010)	0.177 (0.10)	-	0.27 (0.010)	0.123 (0.10)	-	0.043 J (0.010)	0.047 J (0.010)	1.65 (0.10)	-	1.14 (0.015)	-	2 (0.1)	1.2 (0.010)	0.135 (0.10)	-	ND (0.10) (0.10)	-
Metals									-													
Arsenic	µg/L	10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Cobalt	µg/L	35	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Iron	µg/L	n/v	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Lead	µg/L	5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Manganese	µg/L	300	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Mercury	µg/L	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Metals, Dissolved									•													
Arsenic	ua/l	10	-					-	-	-		-					-	-		-	-	
Cobalt	ua/l	35	-		· .	-				-	-		-		· ·			-				-
Iron	µg/l	n/v	-		· .	-				-	-		-		· ·			-				-
lead	µg/l	5		ND (3.0) (3.0)	0.31 J (0.13)		ND (3.0) (3.0)	ND (1.0) (0.13)		ND (3.0) (3.0)	1.1 (0.13)	1.9 (0.09)		ND (3.0) (3.0)		1.4 J (1.3)	0.11.1(0.082)	1.0 (0.13)		ND (3.0) (3.0)		ND (3.0) (3.0)
Manganese	µg/L	300	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Mercury	µg/L	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
General Chemistry															1							
Alkelinity, Biographenete (Ap Copp2)	.ug/l	nhi											1									
	µg/L	n/V	-	-		-		-			-	-		-		-	-	-		-	-	
Chlorido (Ao Cl)	µg/L	11/V	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-
	µg/L	4000		-	-		-			-		-		-		-	-			-	-	
	µg/L	4000	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Nitrogen Nitrate (as n)	µg/L	10000	-	-	-	-	-	-	-		-	-	-	-		-		-		-	-	
Nitrogen Nitrate-Nitrito	µg/L	10000	-	-	-	-		-	-		-	-	-	-		-	-	-		-	-	
Nitrogen Nitrite	µg/L	1000	-	-	-	-		-	-		-	-	-	-		-	-	-		-	-	
Sulfate (as SO4)	µg/L	1000		-	-		-			-		-		-		-	-			-	-	
Sulfide	µg/L	n/V	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-		-	-	-
Total Carbon	µg/L	n/V		-	-		-			-		-		-		-	-			-	-	
Tatal Disselved Salida (Desidue, Eilterable)	µg/L	11/V	-	-		-		-			-	-		-		-	-	-	-	-	-	

			1			1		_				ı			i.				1				
Sample Location				B-168				B-	169				B-170			B-172		B-1	73	B-'	174	B-	175
Sample Date			4-Jan-13 B-168 010413	4-Jan-13 B-168 010413	4-May-16 GW-11109613- B168-05-04-16-AC-	4-Jan-13 B-169 010413	4-Jan-13 B-169 010413	9-Jan-13 B-169 010913	9-Jan-13 B-169 010913	9-May-16 GW-11109613- B169-05-09-16-MM	GW-11109613-B-	5-May-16 GW-11109613- B170-05-05-16-AC-	5-May-16 GW-11109613- DUP2-05-05-16-AC	22-Aug-16 GW-11109613-B- 170-082216-KC-	5-May-16 GW-11109613- B172-05-05-16-AC-	23-Aug-16 GW-11109613-B- 172-082316-AC-	23-Aug-16 GW-11109613-B- 172D-082316-AC-	5-May-16 GW-11109613- B173-05-05-16-RM-	23-Aug-16 GW-11109613-B- 173-082316-KC-	5-May-16 GW-11109613- B174-05-05-16-RM-	22-Aug-16 GW-11109613-B- 174-082216-KC-	11-May-16 GW-11109613- B175-05-11-16-MM	23-Aug-16 GW-11109613-B- 175-082316-AC-
			2.00_0.0010	5.00_010110	009	2 100_010410	2 100_010410	2.00_0.0010	2.00_0.0010	024	001	017	019	003	021	009	011	018	012	016	007	045	015
Sampling Company			UNKNOWN	UNKNOWN	GHD	UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	GHD	GHD	GHD	GHD	GHD	GHD	GHD	GHD	GHD	GHD	GHD	GHD	GHD	GHD
Laboratory			ACCUTEST	ACCUTEST	LL	ACCUTEST	ACCUTEST	ACCUTEST	ACCUTEST	LL	LL	LL	LL	LL	LL	LL	ш	LL	ш	LL	LL	LL	LL
Laboratory Work Order			JB25728	JB25728	1657425	JB25728	JB25728	JB26465	JB26465	1659064	1699628	1658374	1658374	1699628	1658374	1699628	1699628	1658374	1699628	1658374	1699628	1660120	1699628
Laboratory Sample ID	Units	MSC-PA	JB25728-2	JB25728-2F	8365512	JB25728-3	JB25728-3F	JB26465-4	JB26465-4F	8373129	8548677	8370272	8370274	8548679	8370276	8548686	8548688	8370273	8548689	8370271	8548683	8378041	8548692
Field Parameters																							
Conductivity	mS/cm	n/v	-	-	0.472	-	-	-	-	0.317	0.58	0.596	0.596	0.55	418	0.45	0.45	1.64	1.56	1.57	1.66	NM	-
Dissolved Oxygen, Field Measured	mg/L	n/v	-	-	9.68	-	-	-	-	19.8	14.4	1.17	1.17	6.44	2.38	4.72	4.72	0	1.61	0	3.26	NM	
Oxidation Reduction Potential, Field Measured	mV	n/v	-	-	-67	-	-	-	-	-135	-207	-125	-125	-157	-25	-99	-99	-96	-146	-92	-133	NM	-
pH, FIELD MEASURED	S.U.	n/v	-	-	7.35	-	-	-	-	7.11	6.75	8.27	8.27	6.76	7.2	7.07	7.07	6.47	6.61	7.02	6.85	NM	-
Specific Conductance Field	mS/cm	n/v	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Temperature, Field Measured	deg c	n/v	-	-	13.65	-	-	-	-	14.25	21.8	14.25	14.25	21.7	13.44	24.7	24.7	13	20.7	12.6	24.6	NM	-
Total Dissolved Solids, Field Measured	g/L	n/v	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Velatile Organic Compounds	NIU	n/v	-	-	13.1	-	-	-	-	14	8.9	U	U	9.4	26.6	10.9	10.9	130	U	2	49.2	NM	-
Volatile Organic Compounds					1					1	1		1										
Benzene	µg/L	5	ND (1.0) (1.0)	-	ND (1) (0.5)	<u>5.2 (1.0)</u>	-	<u>6.4 (1.0)</u>	-	0.7 J (0.5)	ND (1) (0.5)	5 (0.5)	5 (0.5)	3 (0.5)	<u>13 (0.5)</u>	<u>160 (0.5)</u>	<u>160 (0.5)</u>	<u>14 (5)</u>	<u>17 (0.5)</u>	ND (1) (0.5)	ND (1) (0.5)	<u>260 (3)</u>	<u>65 (0.5)</u>
1,2-Uichloroethane (EDC)	µg/L	5	ND (1.0) (1.0)	-	ND (1) (0.5)	ND (1.0) (1.0)	-	ND (1.0) (1.0)	-	ND (1) (0.5)	ND (1) (0.5)	ND (1) (0.5)	ND (1) (0.5)	ND (1) (0.5)	ND (1) (0.5)	ND (5) (0.5)	ND (5) (0.5)	ND (10) (5)	ND (1) (0.5)	ND (1) (0.5)	ND (1) (0.5)	ND (5) (3)	ND (1) (0.5)
	µg/L	700	ND (1.0) (1.0)	-	NU (1) (0.5)	1.8 (1.0)	-	ND (1.0) (1.0)	-	ND (1) (0.5)	ND (1) (0.5)	ND (1) (0.5)	ND (1) (0.5)	ND (1) (0.5)	ND (1) (0.5)	ND (5) (0.5)	ND (5) (0.5)	ND (10) (5)	4 (U.5)	ND (1) (0.5)	ND (1) (0.5)	∠5 (3) 150 (2)	5 (U.5)
Isopropyidenzene (Cumene)	µg/L	3000	3.8 (2.0)	-	2 J (U.5)	8.3 (2.0)	-	ND (2.0) (2.0)	-	ND (2) (0.5)	ND (2) (0.5)	0 (U.5)	5 (U.5)	5 (U.5)	/ (U.5)	ND (10) (0.5)	ND (10) (0.5)	27 (5)	33 (U.5)	NU (2) (0.5)	7 (0.5)	10U (3)	ND (1) (0.5)
	µg/L	20	ND (1.0) (1.0) ND (1.0) (1.0)	-	ND (1) (0.5)	20(10)	-	ND (1.0) (1.0)	-	ND (1) (0.5)	ND (1) (0.5)	ND (1) (0.5)	ND (1) (0.5)	ND (1) (0.5)	ND (1) (0.5)	ND (5) (0.5)	ND (5) (0.5)	5.1 (5)	5 (0.5)	5 (0.5) ND (1) (0.5)	ND (1) (0.5)	70 (3)	15 (0.5)
Total BTEX	µg/L	n/v	-		-	-		-		-	-	-	-	-	-	-	-		-	-	-		
1,2,4-Trimethylbenzene	µg/L	62	ND (2.0) (2.0)	-	ND (2) (0.5)	4.7 (2.0)	-	ND (2.0) (2.0)	-	ND (2) (0.5)	ND (2) (0.5)	ND (2) (0.5)	ND (2) (0.5)	ND (2) (0.5)	ND (2) (0.5)	ND (10) (0.5)	ND (10) (0.5)	ND (20) (5)	5 (0.5)	ND (2) (0.5)	ND (2) (0.5)	4 J (3)	2 J (0.5)
1,3,5-Trimethylbenzene	μg/L	1200	ND (2.0) (2.0)	-	ND (2) (0.5)	ND (2.0) (2.0)	-	ND (2.0) (2.0)	-	ND (2) (0.5)	ND (2) (0.5)	ND (2) (0.5)	ND (2) (0.5)	ND (2) (0.5)	ND (2) (0.5)	ND (10) (0.5)	ND (10) (0.5)	13 J (5)	14 (0.5)	ND (2) (0.5)	ND (2) (0.5)	51 (3)	10 (0.5)
Xylenes, Total (Dimethylbenzene)	µg/L	10000	2.0 (1.0)	-	0.5 J (0.5)	6.3 (1.0)	-	ND (1.0) (1.0)	-	ND (1) (0.5)	ND (1) (0.5)	2 (0.5)	1 (0.5)	0.7 J (0.5)	0.6 J (0.5)	ND (5) (0.5)	ND (5) (0.5)	ND (10) (5)	8 (0.5)	ND (1) (0.5)	ND (1) (0.5)	33 (3)	11 (0.5)
Volatile Organic Compounds (SW8011)						•														•			
1,2-DIBROMOETHANE (EDB) Semi-Volatile Organic Compounds	µg/L	0.05	ND (0.020) (0.020)	-	ND (0.028) (0.0094)	ND (0.020) (0.020)	-	ND (0.020) (0.020)	-	ND (0.029) (0.0097) ND (0.028) (0.010)	ND (0.029) (0.0095)	ND (0.029) (0.0096)	ND (0.029) (0.010)	ND (0.029) (0.0097)	ND (0.028) (0.010)	ND (0.028) (0.010)	0.020 J (0.0097)	ND (0.028) (0.010)	ND (0.029) (0.0095)	ND (0.028) (0.010)	ND (0.029) (0.0096)	ND (0.028) (0.010)
Anthracene	ug/l	66	0.503 (0.10)	-	0.52 (0.010)	0.377 (0.10)	-	0.217 (0.10)		0.084 (0.010)	ND (0.057) (0.010)	0.36 (0.010)	0.37 (0.010)	0.26 (0.010)	0.33 (0.010)	0.33 1 (0.010)	0.10 1 (0.010)	6.0 (0.10)	6.1 (0.010)	0.096 (0.010)	0.095 (0.010)	17(0.010)	0.78 (0.010)
Benzo(a)Anthracene	ug/l	4.9	0.254 (0.10)	-	0.066 (0.010)	0.197 (0.10)	-	0.187 (0.10)	-	0.17 (0.010)	0.013 J (0.010)	0.10 (0.010)	0.10(0.010)	0.065 (0.010)	0.49 (0.010)	0.27 J (0.010)	0.13 J (0.010)	2.1 (0.10)	1.2 (0.010)	0.048 J (0.010)	0.080 (0.010)	1.3 (0.010)	0.36 (0.010)
Benzo(a)Pyrene	μg/L	0.2	ND (0.10) (0.10)	-	0.037 J (0.010)	ND (0.10) (0.10)	-	0.223 (0.10)	-	0.17 (0.010)	0.015 J (0.010)	0.11 (0.010)	0.090 (0.010)	0.043 J (0.010)	0.45 (0.010)	0.18 J (0.010)	0.092 J (0.010)	1.0 (0.10)	0.51 J (0.010)	0.032 J (0.010)	0.060 J (0.010)	0.89 (0.010)	0.22 J (0.010)
Benzo(b)Fluoranthene	µg/L	1.2	ND (0.10) (0.10)	-	0.038 J (0.010)	ND (0.10) (0.10)	-	0.222 (0.10)	-	0.19 (0.010)	0.020 J (0.010)	0.12 (0.010)	0.088 (0.010)	0.044 J (0.010)	0.50 (0.010)	0.18 J (0.010)	0.094 J (0.010)	1.0 (0.10)	0.55 J (0.010)	0.038 J (0.010)	0.065 J (0.010)	1.1 (0.010)	0.27 J (0.010)
Benzo(g,h,i)Perylene	µg/L	0.26	ND (0.10) (0.10)	-	0.016 J (0.010)	ND (0.10) (0.10)	-	0.173 (0.10)	-	0.12 (0.010)	0.016 J (0.010)	0.047 J (0.010)	0.043 J (0.010)	0.020 J (0.010)	0.19 (0.010)	0.085 J (0.010)	0.041 J (0.010)	0.25 J (0.10)	0.12 J (0.010)	0.015 J (0.010)	0.034 J (0.010)	<u>0.38 (0.010)</u>	0.096 J (0.010)
Chrysene	µg/L	1.9	0.190 (0.10)	-	0.063 (0.010)	0.131 (0.10)	-	0.268 (0.10)	-	0.17 (0.010)	0.017 J (0.010)	0.11 (0.010)	0.11 (0.010)	0.069 (0.010)	0.51 (0.010)	0.25 (0.010)	0.15 (0.010)	1.4 (0.10)	0.90 (0.010)	0.042 J (0.010)	0.081 (0.010)	1.2 (0.010)	0.33 (0.010)
Fluorene	µg/L	1900	3.09 (0.10)	-	2.1 (0.010)	1.98 (0.10)	-	0.527 (0.10)	-	0.043 J (0.010)	ND (0.057) (0.010)	2.5 (0.010)	2.3 (0.010)	0.61 (0.010)	0.42 (0.010)	0.56 J (0.010)	0.23 J (0.010)	16 (0.10)	18 (0.010)	0.25 (0.010)	0.27 (0.010)	5.9 (0.010)	3.2 (0.010)
Naphthalene	µg/L	100	1.38 (0.10)	-	ND (0.061) (0.030)	41.7 (0.10)	-	0.165 (0.10)	-	0.071 (0.030)	ND (0.069) (0.030)	2.3 (0.031)	4.8 (0.031)	ND (0.068) (0.030)	0.27 (0.031)	ND (0.061) (0.030)	ND (0.064) (0.030)	13 (0.31)	12 (0.030)	0.099 (0.030)	0.083 (0.030)	ND (0.061) (0.030)	ND (0.062) (0.030)
Phenanthrene	µg/L	1100	0.172 (0.10)	-	0.92 (0.030)	1.44 (0.10)	-	0.296 (0.10)	-	0.069 (0.030)	ND (0.069) (0.030)	1.3 (0.031)	1.8 (0.031)	0.99 (0.030)	0.38 (0.031)	0.26 J (0.030)	0.036 J (0.030)	23 (0.31)	22 (0.030)	0.43 (0.030)	0.48 (0.030)	8.7 (0.030)	3.5 (0.030)
Pyrene Metals	µg/L	130	1.07 (0.10)	-	0.41 (0.010)	0.646 (0.10)	-	0.587 (0.10)	-	0.27 (0.010)	0.035 J (0.010)	0.35 (0.010)	0.34 (0.010)	0.31 (0.010)	1.4 (0.010)	1.0 (0.010)	0.86 (0.010)	6.4 (0.10)	4.8 (0.010)	0.19 (0.010)	0.33 (0.010)	2.3 (0.010)	0.93 (0.010)
	r					1						1	1		1	1						1	
Arsenic	µg/L	10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Cobalt	µg/L	35	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Lead	ug/L	5	-			-	-																
Manganese	ua/L	300	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Mercury	µg/L	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Metals, Dissolved			•			•											•		•				
Arsenic	µg/L	10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Cobalt	µg/L	35	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Iron	µg/L	n/v	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Lead	µg/L	5	-	ND (3.0) (3.0)	ND (1.0) (0.13)	-	ND (3.0) (3.0)	-	ND (3.0) (3.0)	<u>33.8 (0.13)</u>	<u>6.5 (0.09)</u>	ND (1.0) (0.13)	ND (1.0) (0.13)	ND (1.0) (0.09)	0.18 J (0.13)	0.30 J (0.09)	0.25 J (0.09)	0.75 J (0.13)	1.4 (0.09)	ND (1.0) (0.13)	1.9 (0.09)	<u>6.9 (0.13)</u>	3.1 (0.09)
Manganese	µg/L	300	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Mercury	µg/L	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
					1					1	1		1			1							
Alkalinity, Bicarbonate (As Caco3)	µg/L	n/v		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Alkalinity, Total (As Caco3)	µg/L	n/v		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Chionae (As Cl)	µg/L	n/v		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Nitrogen Ammonia (as n)	µg/L	30000		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Nitrogen, Nitrate (as n)	P9/⊏ µ0/I	10000		-	-	-	-	-	-		-	-	-	-		-		-	-				
Nitrogen, Nitrate-Nitrite	μα/L	n/v	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-
Nitrogen, Nitrite	μg/L	1000	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Sulfate (as SO4)	µg/L	n/v	-	-	-	-	-	-	-	· ·	· ·	-	-	-	-	-	-	-	-	-	-	-	-
Sulfide	µg/L	n/v	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Total Carbon	µg/L	n/v		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Total Dissolved Solids (Residue, Filterable)	µg/L	n/v		-	-	-	-	-	· ·	-	-	-	-	-		-	-	-	-	-	-	-	-

Ormale Location	I	1	1	c	1240		I		14		I.		26.4			6.2	I		1		LID		1
Sample Location			1-Apr-12	1-Apr-12	-134D 20- Jul-16	10-Aug-16	9- Jan-12	9- Jan-12	5-May-16	22-449-16	9- Jan-12	9- Jap-12	-May-16	22-449-16	9- Jan-12	0-lan-12	9-May-16	0R3-3	24-Aug-16	9- Jan-12	0- Jan-12	9-Mov-16	24-449-16
Sample ID			C-134D 40113	C-134D 40113	GW-11109614-C- 134D-072016-AC-	GW-11109614- C134D-081916-AC-	9-Jan-13 U4 010913	U4 010913	GW-11109613-U4-	GW-11109613-U-4-	9-Jan-13 URS-1_010913	9-Jan-13 URS-1 010913	GW-11109613- URS1-05-09-16-	GW-11109613-URS	URS2 010913	URS2 010913	GW-11109613- URS3-05-09-16-	GW-11109613-URS- (24-Aug-16	9-Jan-13 URS-4 010913	9-5an-15 URS-4 010913	GW-11109613- URS4-05-09-16-	GW-11109613-URS-
Sampling Company			LANGAN	LANGAN	002 GHD	02 GHD		UNKNOWN	05-05-16-AC-022 GHD	082216-AC-004 GHD			MM-028 GHD	1-082316-AC-013 GHD			MM-030 GHD	3-082416-KC-024 GHD	3-082416-KC-025 GHD			MM-026 GHD	4-082416-AC-017 GHD
Laboratory			ACCUTEST	ACCUTEST	LL	LL	ACCUTEST	ACCUTEST	LL	LL	ACCUTEST	ACCUTEST	LL	Ц	ACCUTEST	ACCUTEST	Ц	LL	ш	ACCUTEST	ACCUTEST	LL	LL
Laboratory Work Order			JB32976	JB32976	1686199	1698036	JB26467	JB26467	1658374	1699628	JB26465	JB26465	1659064	1699628	JB26467	JB26467	1659064	1700681	1700681	JB26465	JB26465	1659064	1700681
Laboratory Sample ID	Units	MSC-PA	JB32976-6	JB32976-6F	8489350	8541532	JB26467-4	JB26467-4F	8370277	8548680	JB26465-1	JB26465-1F	8373133	8548690	JB26467-5	JB26467-5F	8373135	8553516	8553517	JB26465-2	JB26465-2F	8373131	8553509
Field Decementary																							
			1			1	r		1	1			1			1			r				
Conductivity	mS/cm	n/v	-	-	0.725	-	-	-	0.597	0.66	-	-	0.352	0.44	-	-	0.72	-	0.68	-	-	0.34	0.41
Dissolved Oxygen, Field Measured	mg/L	n/v	-	-	2.83	-	-	-	2.6	2.76	-	-	7.7	0.12	-	-	0.75	-	33.82	-	-	2.45	2.79
Oxidation Reduction Potential, Field Measured	mV	n/v	-	-	-48	-	-	-	-103	-153	-	-	-101	-135	-	-	-146	-	-154	-	-	-96	-142
pH, FIELD MEASURED	S.U.	n/v	-	-	6.58	-	-	-	7.59	7.56	-	-	6.89	7.17	-	-	6.46	-	6.79	-	-	6.64	6.99
Specific Conductance Field	mS/cm	n/v	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Temperature, Field Measured	deg c	n/v	-	-	22.45		-	-	13.7	28.07	-	-	13.9	21.9	-	-	14.5	-	22.0	-	-	18.98	24.11
Turbidity	g/L	n/v	-	-	- 76.4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- 760	-
Volatile Organic Compounds	NIU	11/V	-	-	/0.4	-	-	-	3.7	0	-	-	0	0	-	-	3.3	-	07.4	-	-	760	204
Totallo organio compoundo		1	1				1		1				1		1	1	1						
Benzene	µg/L	5	ND (1.0) (0.24)	-	ND (1) (0.5)	ND (1) (0.5)	1.4 (1.0)	-	2 (0.5)	ND (1) (0.5)	<u>13.0 (1.0)</u>	-	ND (1) (0.5)	ND (1) (0.5)	3.4 (1.0)	-	4 (0.5)	2 (0.5)	1 (0.5)	<u>46.8 (1.0)</u>	-	ND (1) (0.5)	ND (1) (0.5)
1,2-Dichloroethane (EDC)	µg/L	5	ND (1.0) (0.26)	-	ND (1) (0.5)	ND (1) (0.5)	ND (1.0) (1.0)	-	ND (1) (0.5)	ND (1) (0.5)	ND (1.0) (1.0)	-	ND (1) (0.5)	ND (1) (0.5)	ND (1.0) (1.0)	-	ND (1) (0.5)	ND (1) (0.5)	ND (1) (0.5)	ND (1.0) (1.0)	-	ND (1) (0.5)	ND (1) (0.5)
Ethylbenzene	µg/L	700	ND (1.0) (0.23)	-	ND (1) (0.5)	ND (1) (0.5)	1.7 (1.0)	-	ND (1) (0.5)	ND (1) (0.5)	ND (1.0) (1.0)	-	ND (1) (0.5)	ND (1) (0.5)	3.8 (1.0)	-	0.6 J (0.5)	ND (1) (0.5)	ND (1) (0.5)	ND (1.0) (1.0)	-	ND (1) (0.5)	ND (1) (0.5)
Isopropylbenzene (Cumene)	µg/L	3500	ND (2.0) (0.45)	-	ND (2) (0.5)	ND (2) (0.5)	3.4 (2.0)	-	ND (2) (0.5)	ND (2) (0.5)	ND (2.0) (2.0)	-	ND (2) (0.5)	ND (2) (0.5)	7.7 (2.0)	-	55 (0.5)	2 J (0.5)	17 (0.5)	2.8 (2.0)	-	ND (2) (0.5)	ND (2) (0.5)
Teluene	µg/L	20	0.92 J (0.16)	-	ND (1) (0.5)	ND (1) (0.5)	ND (1.0) (1.0)	-	ND (1) (0.5)	ND (1) (0.5)	ND (1.0) (1.0)	-	ND (1) (0.5)	ND (1) (0.5)	ND (1.0) (1.0)	-	ND (1) (0.5)	ND (1) (0.5)	ND (1) (0.5)	4.7 (1.0)	-	2 (0.5)	2 (0.5)
	µg/L	1000	ND (1.0) (0.23)	-	ND (1) (0.5)	ND (1) (0.5)	ND (1.0) (1.0)	-	0.9 3 (0.5)	ND (1) (0.5)	ND (1.0) (1.0)	-	ND (1) (0.5)	ND (1) (0.5)	2.3 (1.0)	-	2 (0.5)	0.9 J (0.5)	1 (0.5)	ND (1.0) (1.0)	-	ND (1) (0.5)	ND (1) (0.5)
1.2.4-Trimethylbenzene	µg/L	62	- ND (2.0) (0.19)		- ND (2) (0.5)	- ND (2) (0.5)	29(20)		- ND (2) (0.5)	- ND (2) (0.5)	- ND (2.0) (2.0)		- ND (2) (0.5)	- ND (2) (0.5)	62(20)	-	- ND (2) (0.5)	- ND (2) (0.5)	- 0.5 1 (0.5)	- ND (2.0) (2.0)	-	- ND (2) (0.5)	ND (2) (0.5)
1.3.5-Trimethylbenzene	µg/L	1200	ND (2.0) (0.16)		ND (2) (0.5)	ND (2) (0.5)	ND (2.0) (2.0)		ND (2) (0.5)	ND (2) (0.5)	ND (2.0) (2.0)		ND (2) (0.5)	ND (2) (0.5)	2.2 (2.0)	-	0.8 1 (0.5)	0.7 1 (0.5)	0.8 1 (0.5)	ND (2.0) (2.0)	-	ND (2) (0.5)	ND (2) (0.5)
Xylenes, Total (Dimethylbenzene)	ug/L	10000	ND (2.0) (0.30)	-	ND (1) (0.5)	ND (1) (0.5)	8.3 (1.0)		ND (1) (0.5)	ND (1) (0.5)	ND (1.0) (1.0)	-	ND (1) (0.5)	ND (1) (0.5)	19.9 (1.0)	-	9 (0.5)	8 (0.5)	7 (0.5)	ND (1.0) (1.0)	-	ND (1) (0.5)	ND (1) (0.5)
Volatile Organic Compounds (SW8011)	P9/2	10000	HB (1.0) (0.21)		112 (1) (0.0)	110 (1) (0.0)	0.0 (1.0)		110 (1) (0.0)	110 (1)(0.0)	110 (110) (110)		110 (1) (0.0)	110 (1) (0.0)	10.0 (1.0)		0 (0.0)	0 (0.0)	1 (0.0)	110 (1.0) (1.0)		110 (1) (0.0)	110 (1) (0.0)
	10/	0.05	ND (0.020) (0.011)		ND (0.020) (0.010)	ND (0.028) (0.010)	ND (0.020) (0.020)		ND (0.020) (0.0005)	ND (0.028) (0.010)	ND (0.020) (0.020)		ND (0.020) (0.0008)	ND (0.020) (0.010)	ND (0.020) (0.020)		0.011 1/0.0006)	ND (0.028) (0.010)	ND (0.028) (0.010)	ND (0.020) (0.020)		ND (0.020) (0.0008)	ND (0.028) (0.010)
Semi-Volatile Organic Compounds	µg/∟	0.05	140 (0.020) (0.011)	-	ND (0.023) (0.010)	(0.020) (0.010)	ND (0.020) (0.020)	-	ND (0.029) (0.0093)	ND (0.028) (0.010)	ND (0.020) (0.020)	-	ND (0.029) (0.0090)) 100 (0.029) (0.010)	ND (0.020) (0.020)	-	0.0113 (0.0030)	ND (0.020) (0.010)	ND (0.028) (0.010)	ND (0.020) (0.020)	-	ND (0.029) (0.0098)	ND (0.020) (0.010)
					0.044 140.040				0.050 (0.040)				0.00 (0.040)	0.00 (0.040)	1 00 /0 /0	1		0.47.00.000				0.050 (0.040)	0.007.1/0.0/01
Anthracene	µg/L	66	ND (0.10) (0.020)	-	0.011 J (0.010)	ND (0.050) (0.010)	1.18 (0.10)	-	0.058 (0.010)	0.32 J (0.010)	ND (0.10) (0.10)	-	0.33 (0.010)	0.62 (0.010)	1.23 (0.10)	-	21 (0.10)	0.17 (0.010)	9.6 (0.010)	ND (0.10) (0.10)	-	0.052 (0.010)	0.027 J (0.010)
Benzo(a)Antinacene	µg/L	4.9	ND (0.10) (0.012)	-	ND (0.051) (0.010)	ND (0.050) (0.010)	0.997 (0.10)		0.42 (0.010)	2.7 1 (0.010)	ND (0.10) (0.10)	-	0.038 J (0.010)	0.017 3 (0.010)	0.787 (0.10)	-	47 (0.10)	<u>5.3 (0.010)</u>	12 (0.010)	ND (0.10) (0.10)	-	0.012 J (0.010)	ND (0.050) (0.010)
Benzo(b)Elucraphono	µg/L	1.2	ND (0.10) (0.012)	-	ND (0.051) (0.010)	ND (0.050) (0.010)	0.350 (0.10)	-	0.33 (0.010)	<u>2.7 3 (0.010)</u>	ND (0.10) (0.10)	-	0.028 J (0.010)	0.053 03 (0.010)	0.333 (0.10)	-	<u>47 (0.10)</u> 56 (0.10)	<u>4.3 (0.010)</u> 5.4 (0.010)	14 (0.010)	ND (0.10) (0.10)	-	ND (0.050) (0.010)	ND (0.050) (0.010)
Benzo(a h i)Pervlene	µg/L µg/l	0.26	ND (0.10) (0.016)		ND (0.051) (0.010)	ND (0.050) (0.010)	0.344 (0.10)		0.44 (0.010)	2 4 .1 (0.010)	ND (0.10) (0.10)		0.012 J (0.010)	0.053 UJ (0.010)	0.314 (0.10)		14 (0 10)	<u>1 4 (0 010)</u>	3 2 (0.010)	ND (0.10) (0.10)		ND (0.050) (0.010)	ND (0.050) (0.010)
Chrysene	ug/l	1.9	ND (0.10) (0.012)		ND (0.051) (0.010)	ND (0.050) (0.010)	1.59 (0.10)	-	1.1 (0.010)	4.5 (0.010)	ND (0.10) (0.10)	-	0.035 J (0.010)	0.012 J (0.010)	0.805 (0.10)		46 (0.10)	3.9 (0.010)	12 (0.010)	ND (0.10) (0.10)		ND (0.050) (0.010)	ND (0.050) (0.010)
Fluorene	µg/L	1900	ND (0.10) (0.017)	-	0.075 (0.010)	ND (0.050) (0.010)	1.91 (0.10)	-	0.085 (0.010)	0.22 J (0.010)	1.37 (0.10)	-	5.2 (0.010)	16 (0.010)	1.61 (0.10)	-	27 (0.10)	4.9 (0.010)	28 (0.010)	0.144 (0.10)	-	0.019 J (0.010)	0.022 J (0.010)
Naphthalene	µg/L	100	ND (0.10) (0.036)	-	ND (0.061) (0.030)	ND (0.060) (0.030)	0.692 (0.10)	-	ND (0.062) (0.031)	9.3 (0.030)	1.74 (0.10)	-	0.29 (0.030)	4.4 (0.030)	1.24 (0.10)	-	3.2 (0.31)	ND (0.065) (0.030)	ND (0.061) (0.030)	0.268 (0.10)	-	ND (0.060) (0.030)	ND (0.060) (0.030)
Phenanthrene	μg/L	1100	ND (0.10) (0.021)	-	ND (0.061) (0.030)	ND (0.060) (0.030)	3.29 (0.10)	-	ND (0.062) (0.031)	ND (0.60) (0.030)	0.127 (0.10)	-	0.73 (0.030)	0.98 (0.030)	1.99 (0.10)	-	55 (0.31)	2.5 (0.030)	40 (0.030)	0.113 (0.10)	-	0.055 J (0.030)	ND (0.060) (0.030)
Pyrene	µg/L	130	ND (0.10) (0.015)	-	0.033 J (0.010)	ND (0.050) (0.010)	2.59 (0.10)	-	1.1 (0.010)	2.9 (0.010)	0.218 (0.10)	-	0.18 (0.010)	0.32 (0.010)	2.09 (0.10)	-	130 (0.51)	8.4 (0.010)	31 (0.010)	0.443 (0.10)	-	0.074 (0.010)	0.067 (0.010)
Metals			•	•						•													
Arsenic	µg/L	10	4.9 (0.97)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Cobalt	µg/L	35	ND (50) (0.59)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Iron	µg/L	n/v	17100 (24)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Lead	µg/L	5	<u>5.7 (1.7)</u>	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Manganese	µg/L	300	<u>785 (0.40)</u>	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Mercury	µg/L	2	ND (0.20) (0.089)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Metals, Dissolved																							
Arsenic	µg/L	10	-	2.1 J (0.97)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Cobalt	µg/L	35	-	ND (50) (0.59)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Iron	µg/L	n/v	-	1150 (24)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Lead	µg/L	5	-	<u>6.0 (1.7)</u>	ND (1.0) (0.090)	ND (1.0) (0.090)	-	ND (3.0) (3.0)	0.50 J (0.13)	0.78 J (0.09)	-	ND (3.0) (3.0)	ND (1.0) (0.13)	0.22 J (0.09)	-	3.5 (3.0)	1.3 (0.13)	-	2.1 (0.090)	-	ND (3.0) (3.0)	ND (1.0) (0.13)	ND (1.0) (0.090)
Manganese	µg/L	300	-	<u>711 (0.40)</u>	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Mercury	µg/L	2	-	ND (0.20) (0.089)) -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
							-				-												
Alkalinity, Bicarbonate (As Caco3)	µg/L	n/v	382000 (5000)		-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-
Alkalinity, Total (As Caco3)	µg/L	n/v	383000 (3500)	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-
Chioride (As CI)	µg/L	n/v	136000 (48)	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-
Huoride	µg/L	4000	740 (5.1)	-			-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-
Nitrogen, Ammonia (as n)	µg/L	30000	16200 (1200)	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-
Nitrogen, Nitrate (as n)	µg/L	10000	30 B (5.6)	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-
Nitrogen Nitrite	µg/L	1000	ND (10) (1)	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-
Sulfate (as SO4)	P9/L	n/v	11200 (380)	-			-	-	-	-		-	-		-	-	-		-	-		-	
Sulfide	µg/L µa/l	n/v	410 B (280)				-	-	-						-	-	-		-	-	-	-	
Total Carbon	µa/L	n/v	2900 (240)	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-
Total Dissolved Solids (Residue, Filterable)	μg/L	n/v	544000 (1800)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Historical Groundwater Analytical Results Summary - AOI 6 2013 to present Philadelphia Refinery Operations, a Series of Evergreen Resources Group, LLC

Sample Location				URS-5	WPM-11				
Sample Date			10-May-16	24-Aug-16	24-Aug-16	9-Jan-13	9-Jan-13		
Sample ID			GW-11109613- URS5-05-10-16-	GW-11109613-URS- 5-082416-AC-020	GW-11109613-URS 5-082416-KC-021	WPM-11_010913	WPM-11_010913		
Sampling Company			GHD	GHD	GHD				
Laboratory						ACCUTEST	ACCUTEST		
Laboratory Work Order			1660120	1700681	1700681	JB26465	JB26465		
Laboratory Sample ID	Units	MSC-PA	8378036	8553512	8553513	JB26465-3	JB26465-3F		
Field Parameters									
Conductivity	mS/cm	n/v	1.24	-	0.94	-	-		
Dissolved Oxygen, Field Measured	mg/L	n/v	1.29	-	3.22	-	-		
Oxidation Reduction Potential, Field Measured	mV	n/v	-319	-	-319	-	-		
pH, FIELD MEASURED	S.U.	n/v	7.77	-	7.59	-	-		
Specific Conductance Field	mS/cm	n/v	-	-	-	-	-		
Temperature, Field Measured	deg c	n/v	14.23	-	22.44	-			
Turbidity	g/L	n/v	- 70	-	-	-			
Volatile Organic Compounds	NIU	10/4	70	-	413	-	-		
Ponzono	ug/l	5	4000 (12)	2200 (0.5)	4900 (0.5)	20.5 (1.0)			
1 2-Dichloroethane (EDC)	µg/L	5	ND (25) (12)	ND (10) (0.5)	ND (20) (0.5)	ND (1 0) (1 0)			
Ethylbenzene	P9/⊏ µ0/I	700	560 (13)	280 (0.5)	530 (0.5)	ND (1.0) (1.0)	-		
Isopropylbenzene (Cumene)	µg/L	3500	22 J (13)	13 J (0.5)	31 J (0.5)	ND (2.0) (2.0)	-		
Methyl Tertiary Butyl Ether	μα/L	20	ND (25) (13)	ND (10) (0.5)	ND (20) (0.5)	ND (1.0) (1.0)			
Toluene	μg/L	1000	8600 (130)	<u>1500 (0.5)</u>	<u>6500 (0.5)</u>	ND (1.0) (1.0)	-		
Total BTEX	µg/L	n/v	-	-	-	-	-		
1,2,4-Trimethylbenzene	μg/L	62	<u>190 (13)</u>	<u>92 (0.5)</u>	<u>230 (0.5)</u>	ND (2.0) (2.0)	-		
1,3,5-Trimethylbenzene	µg/L	1200	56 (13)	27 (0.5)	72 (0.5)	ND (2.0) (2.0)	-		
Xylenes, Total (Dimethylbenzene)	µg/L	10000	3000 (13)	1500 (0.5)	2800 (0.5)	2.2 (1.0)	-		
Volatile Organic Compounds (SW8011)									
1,2-DIBROMOETHANE (EDB)	µg/L	0.05	ND (0.029) (0.0097)	<u>0.089 (0.010)</u>	ND (0.040) (0.010)	ND (0.020) (0.020)	-		
Semi-Volatile Organic Compounds									
Anthracene	µg/L	66	5.6 (0.10)	3.3 (0.010)	4.8 (0.010)	24.8 (0.50)	-		
Benzo(a)Anthracene	µg/L	4.9	0.96 (0.10)	0.23 (0.010)	0.46 J (0.010)	<u>66.0 (5.0)</u>	-		
Benzo(a)Pyrene	µg/L	0.2	<u>0.27 J (0.10)</u>	0.058 (0.010)	0.15 J (0.010)	<u>115 (5.0)</u>	-		
Benzo(b)Fluoranthene	µg/L	1.2	0.24 J (0.10)	0.056 (0.010)	0.14 J (0.010)	<u>161 (5.0)</u>	-		
Benzo(g,h,i)Perylene	µg/L	0.26	ND (0.51) (0.10)	0.017 J (0.010)	ND (0.51) (0.010)	<u>118 (5.0)</u>	-		
Chrysene	µg/L	1.9	0.53 (0.10)	0.11 (0.010)	0.25 J (0.010)	<u>149 (5.0)</u>	-		
Fluorene	µg/L	1900	14 (0.10)	1.5 (0.010)	14 (0.010)	18.0 (0.50)			
Naphthalene	µg/L	100	<u>260 (3.0)</u>	<u>150 (0.030)</u>	220 (0.030)	1.86 (0.50)	-		
Phenanthrene	µg/L	1100	20 (0.30)	12 (0.030)	21 (0.030)	96.5 (5.0)			
Metals	µg/L	130	3.5 (0.10)	1.7 (0.010)	2.8 (0.010)	265 (5.0)	-		
		10	1	1					
Arsenic	µg/L	10	-	-	-	-			
	µg/L	35 n/v	-	-		-			
Lead	µg/∟ µg/l	5	-						
Manganese	μα/L	300	-	-		-			
Mercury	μg/L	2	-	-	-	-	-		
Metals, Dissolved									
Arsenic	µg/L	10	-	-	-	-	-		
Cobalt	μg/L	35	-	-	-	-	-		
Iron	µg/L	n/v	-	-	-	-	-		
Lead	µg/L	5	ND (1.0) (0.13)	ND (1.0) (0.090)	0.14 J (0.090)	-	ND (3.0) (3.0)		
Manganese	µg/L	300	-	-	-	-	-		
Mercury	µg/L	2	-	-	-	-	-		
General Chemistry									
Alkalinity, Bicarbonate (As Caco3)	µg/L	n/v	-	-	-	-	-		
Alkalinity, Total (As Caco3)	µg/L	n/v	-	-	-	-	-		
Chloride (As Cl)	µg/L	n/v	-	-	-	-	-		
Fluoride	µg/L	4000	-	-	-	-	-		
Nitrogen, Ammonia (as n)	µg/L	30000	-	-	-	-	-		
Nitrogen, Nitrate (as n)	µg/L	10000	-	-	-	-			
Nitrogen, Nitrite	µg/L	n/V 1000	-	-	-	-	-		
Sulfate (as SQ4)	µg/L	n/v	-	-		-			
Sulfide	μα/L	n/v	-	-	-	-	-		
Total Carbon	μg/L	n/v	-	-	-	-	-		
Total Dissolved Solids (Residue, Filterable)	µg/L	n/v	-	-	-	-	-		

Page 10 of 11

Historical Groundwater Analytical Results Summary - AOI 6 2013 to present Philadelphia Refinery Operations, a Series of Evergreen Resources Group, LLC

Notes:

MSC-PA	Pennsylvania Department of Environmental Protection - 2016 Medium-Specific Concentrations (MSCs) for Organic/Inorganic Regulated Substances in Groundwater - Used Aquifer, Non Residential, TD \$2500
<u>6.5</u>	Concentration exceeds the indicated standard.
15.2	Measured concentration did not exceed the indicated standard.
ND (0.50)	Laboratory reporting limit was greater than the applicable standard.
ND (0.03)	Analyte was not detected at a concentration greater than the laboratory reporting limit.
n/v	No standard/guideline value in database - 2016 values have been populated for Evergreen Comprehensive List only. Criteria for other analytes may be available but may not be represented here.
-	Parameter not analyzed / not available.
NM	Not measured.
В	Indicates the analyte is detected in the associated blank as well as in the sample.
J	Indicates an estimated value.
UJ	The analyte was analyzed for, but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
µg/L	Micrograms per liter.
mg/L	Milligrams per liter.
mV	Millivolts.
S.U.	Standard Units.
mS/cm	Microsiemens per centimeter.
deg c	Degrees Celcius.
g/L	Grams per liter.
NTU	Nephelometric Turbidity Units.
LL	Eurofins Lancaster Laboratories Environmental
	Method detection limit is shown in second set of parentheses.
2016 Gauging Data for AOI 6 Philadelphia Refinery Operations, a Series of Evergreen Resources Group, LLC

ΑΟΙ	Well ID	Top Inner Casing Elevation (ft msl) (NAVD88)	Date	Depth to LNAPL (ft btoc)	Depth to Water (ft btoc)	Apparent NAPL Thickness (ft)	Corrected Groundwater Elevation (ft AMSL)	Assigned LNAPL Density	LNAPL Density Source Well	
AOI 6	B-115	7.5	05/02/2016		2.49		5.01			
AOI 6	B-116	5.07	05/04/2016		5.38		-0.31	0.8654	B-129	ſ
AOI 6	B-117	5.97	05/02/2016		8.15		-2.18			
AOI 6	B-125	8.51	05/02/2016		4.92		3.59			
AOI 6	B-126	8.51	05/02/2016		5.19		3.32			ſ
AOI 6	B-131	8.72	05/02/2016		5.31		3.41			
AOI 6	B-132	6.87	05/02/2016	4.79	4.96	0.17	2.06	0.8654	B-129	
AOI 6	B-133	7.33	05/02/2016		5.06		2.27			ſ
AOI 6	B-134	6.52	05/02/2016	4.77	4.81	0.04	1.71			
AOI 6	B-144	9.02	05/02/2016	5.26	5.28	0.02	3.76	0.8654	B-144	
AOI 6	B-145	9.81	05/02/2016		5.16		4.65			
AOI 6	B-150	7.8	05/02/2016	3.55	5.56	2.02	3.99	0.8668	B-150	
AOI 6	B-152	5.036	05/02/2016		1.09		3.95			
AOI 6	B-153	6.367	05/02/2016		2.77		3.60			
AOI 6	B-154	8.68	05/02/2016		3.92		4.76			
AOI 6	B-155	8.541	05/02/2016		5.37		3.17			
AOI 6	B-156	8.856	05/02/2016		5.91		2.95			
AOI 6	B-158	8.209	05/02/2016		3.71		4.50			ſ
AOI 6	B-162	7.589	05/10/2016		2.25		5.34			
AOI 6	B-163	7.452	05/02/2016		1.62		5.83			
AOI 6	B-164	8.822	05/02/2016		5.28		3.54			
AOI 6	B-165	5.79	05/02/2016		3.07		2.72			
AOI 6	B-168	6.46	05/02/2016		2.96		3.50			ĺ
AOI 6	B-169	6.12	05/02/2016		2.31		3.81			
AOI 6	B-170	0.04	05/02/2016		2.37		-2.33			ſ
AOI 6	B-39	5.48	05/02/2016	2.01	2.56	0.55	3.40	0.8734	B-39	
AOI 6	B-43	7.21	05/11/2016		3.9		3.31			
AOI 6	B-45	5.099	05/02/2016		1.58		3.52			
AOI 6	U-4	9.22	05/02/2016		4.49		4.73			
AOI 6	URS-1	10.02	05/02/2016		6.63		3.39			
AOI 6	URS-3	7.6	05/02/2016		4.19		3.41			
AOI 6	URS-4	9.941	05/02/2016		6.87		3.07			
AOI 6	URS-5	7.94	05/02/2016		5.42		2.52	0.8734	B-39	
AOI 6	B-132D	10.31	05/02/2016		15.56		-5.25			ſ
AOI 6	B-133D	8.6	05/02/2016		10.36		-1.76			ſ
AOI 6	B-134D	8.12	05/02/2016		11.28		-3.16			
AOI 6	B-48D	9.42	05/02/2016		11.14		-1.72			ſ

Generalized Stratigraphic Section and Interpreted Hydrostratigraphic Units AOI 6 Remedial Investigation Report Philadelphia Refinery Operations, a series of Evergreen Resources Group, LLC

System	Series	Hydrogeologi	c Unit	Hydrostratigraphic Unit
Quaternary	Holocene	Alluvium		
Quaternary	Pleistocene	Trenton "gra	vel"	
		E	Upper clay unit	Unconfined (Water-Table) aquifer
		syste	Upper sand unit	
		aquifer	Middle clay unit	
Crotacoouc	Upper Cretaceous	gothy a	Middle sand unit	
Cletaceous		an-Ma	Lower clay unit	
		otomac-Rarit	Lower sand unit	Lower aquifer
	Lower Cretaceous	d		
Pre-Cretaceous		Wissahickon Formation		

Notes:

- 1. Adopted from Figure 2 of Schreffler, 2001.
- 2. Hydrostratigraphic units interpreted by Stantec based on observed AOI 1 subsurface conditions.

Summary of LNAPL Characterization Results (Generalized LNAPL Types) Philadelphia Refinery Operations, a Series of Evergreen Resources Group, LLC

			LNAPL S	ub Types		LNAPL Type
Generalized LNAPL Type	Well ID	Sample Date		Proportions %	Weathering	Interpretation By
			Light Distillate	5	Severe	TGI
Middle Distillate	B-129	02/27/2004	Heavier Material	20	Extreme	TGI
			Middle Distillate	75	Extreme	TGI
Middle Distillate	B-130	02/27/2004	Middle Distillate	20	Severe	TGI
	B-130	02/21/2004	Residual Oil	80	Extreme	TGI
Light Distillato	P 144	02/27/2004	Light Distillate	90	Severe	TGI
	D-144	02/21/2004	Residual Oil	10	Severe	TGI
Middle Distillate	B 20	02/27/2004	Light Distillate	2	Severe	TGI
	D-39	02/21/2004	Middle Distillate	98	Severe	TGI
Middle Distillate	B-43	02/27/2004	Middle Distillate	100	Extreme	TGI
Light Distillato	WD02	03/01/2004	Aviation Gasoline	80	Severe	TGI
	VVF 9-2	03/01/2004	Middle Distillate	20	Severe	TGI
Residual Oil	B 47	04/12/2006	Residual Oil	100	Extreme	TGI
Residual Oli	D-47	04/12/2000	Unknown Aromatics	Trace	Extreme	TGI
Light Distillate	B-150	04/12/2006	Unknown Aromatics	100	Unknown	TGI

Vapor Intrusion Screening Building Information AOI 6 Remedial Investigation Report Philadelphia Refinery Operations, a series of Evergreen Resources Group, LLC

			Approximate				# Indoor Air
	Building		Footprint (square	Height of			Samples
AOI	Number	Building Name	feet)	Building	Basement	Description of Use	Collected
6						Fitness Center-3rd Floor	1
6	651	CP Training Bldg	13/20	Λ	Voc	Offices - 1st Floor East	1
6	051	GF Training blug	13420	4	165	Offices - 1st Floor West	1
6						Offices - Basement	1
6	178	Trade Shops	5750	1	No	Lockers, Plumbers/Carpenter Shops	2
6	295	24 Gate Building	2501	2	No	2 floors offices	5
6	475	North Tank Field	1156	1	No	Control Room Office	2
6						Basement Center	1
6						Basement East	1
6						Basement West	1
6	650	GP - MOB	21558	4	Yes	1st Floor Entrance	1
6						1st Floor West	1
6						2nd Floor East	1
6						2nd Floor West	1
6	726	Carpenter Shop	1280	1	No	Carpenter Shop	2
6	739	Control Room	3150	1	No	Control Room	2
6	745	WTP	5700	1	No	Prefab, 5' by 10'	2
6	6627	Control Room	546	1	No	Control Room	2
6	6636	New Scale House	540	1	No	Trailer	2

Summary of Indoor and Outdoor Air from the Vapor Intrusion Sampling AOI 6 Remedial Investigation Report Philadelphia Refinery Operations, a series of Evergreen Resources Group, LLC

Sample Location

												Outdoor	Ambient Outdoor Near Carpenter Shop Open Area	475 Building	745 Building	Control Room, 6627 Building
Sample Date												28-Mar-16	29-Mar-16 IA-A016-	28-Mar-16	28-Mar-16	28-Mar-16
Sample ID												OUTDOOR 739	OUTDOOR-	IA-AOI6-475	IA-AOI6-745	IA-AOI6-6627
Sampling Company Laboratory Laboratory Work Order Laboratory Sample ID												GHD LL MHF24 8316897	GHD ESC L827327 L827327-04	GHD LL MHF24 8316892	GHD LL MHF24 8316893	GHD LL MHF24 8316894
		PADEP SHS VI Screening	1/10th PADEP SHS VI Screening	OSHA	USEPA	USEPA	ACGIH	NIOSH	Cal/ OSHA							
Sample Type	Units	Value	Value	PEL	RSL	RSL	TLV	REL	PEL	MH Air Tox	EPA Res IA					
		а	b	С	d	е	f	g	h	i	j					
Volatile Organic Compounds																
Benzene	µg/m ³	16	16	2100	10	10										
			1.0	2190	1.0	1.0	1600	319.47	319.47	2.59	29	1.8 J ^{bde}	3.95 ^{bdei}	5.5 ^{bdei}	1.3 J	36 ^{abdeij}
1,2-Dibromoethane (EDB)	µg/m°	0.2	0.02	153700	0.02	0.02	1600	319.47 345.79	319.47	2.59 n/v	29 n/v	<mark>1.8 J^{bde}</mark> ND (11)	<mark>3.95^{bdei}</mark> ND (1.54)	<mark>5.5^{bdei}</mark> ND (7.7)	1.3 J ND (7.7)	<mark>36</mark> ^{abdeij} ND (7.7)
1,2-Dibromoethane (EDB) 1,2-Dichloroethane (EDC)	<u>µg/m³</u> µg/m³	0.2 4.7	0.02 0.47	153700 202400	0.02	0.02		319.47 345.79 4000	<u>319.47</u> - 4000	2.59 n/v 0.16	29 n/v 0.2	<mark>1.8 J^{bde}</mark> ND (11) ND (5.6)	3.95 ^{bdei} ND (1.54) ND (0.810)	5.5 ^{bdei} ND (7.7) ND (4.0)	1.3 J ND (7.7) ND (4.0)	36 ^{abdeij} ND (7.7) ND (4.0)
1,2-Dibromoethane (EDB) 1,2-Dichloroethane (EDC) Ethylbenzene	µg/m ³ µg/m ³ µg/m ³	0.2 4.7 49	0.02 0.47 4.9	153700 202400 435000	1.6 0.02 0.47 4.9	1.6 0.02 0.47 4.9	1600 - 40500 86800	319.47 345.79 4000 435000	319.47 - 4000 435000	2.59 n/v 0.16 0.68	29 n/v 0.2 17	1.8 J ^{bde} ND (11) ND (5.6) ND (6.0)	3.95 ^{bdei} ND (1.54) ND (0.810) ND (0.867)	5.5 ^{bdei} ND (7.7) ND (4.0) 1.1 J ⁱ	1.3 J ND (7.7) ND (4.0) ND (4.3)	36 ^{abdeij} ND (7.7) ND (4.0) 2.0 J ⁱ
1,2-Dibromoethane (EDB) 1,2-Dichloroethane (EDC) Ethylbenzene Isopropylbenzene (Cumene)	<u>μg/m³</u> μg/m ³ μg/m ³ μg/m ³	0.2 4.7 49 1800	0.02 0.47 4.9 180	3190 153700 202400 435000 245000	1.6 0.02 0.47 4.9 1800	1.6 0.02 0.47 4.9 180	1600 - 40500 86800 246000	319.47 345.79 4000 435000 245000	319.47 - 4000 435000 245000	2.59 n/v 0.16 0.68 11.2	29 n/v 0.2 17 n/v	1.8 J ^{bde} ND (11) ND (5.6) ND (6.0) 1.5 J	3.95 ^{bdei} ND (1.54) ND (0.810) ND (0.867) 1.72	5.5 ^{bdei} ND (7.7) ND (4.0) 1.1 J ⁱ 9.1	1.3 J ND (7.7) ND (4.0) ND (4.3) ND (4.9)	36 ^{abdeij} ND (7.7) ND (4.0) 2.0 J ⁱ 7.8
1,2-Dibromoethane (EDB) 1,2-Dichloroethane (EDC) Ethylbenzene Isopropylbenzene (Cumene) Methyl Tert-Butyl Ether	μg/m ³ μg/m ³ μg/m ³ μg/m ³ μg/m ³	0.2 4.7 49 1800 470	0.02 0.47 4.9 180 47	153700 202400 435000 245000 -	1.6 0.02 0.47 4.9 1800 47	1.6 0.02 0.47 4.9 180 47	1600 - 40500 86800 246000 180000	319.47 345.79 4000 435000 245000	319.47 - 4000 435000 245000 144000	2.59 n/v 0.16 0.68 11.2 n/v	29 n/v 0.2 17 n/v 72	1.8 J ^{bde} ND (11) ND (5.6) ND (6.0) 1.5 J ND (5.0)	3.95 ^{bdei} ND (1.54) ND (0.810) ND (0.867) 1.72 ND (0.721)	5.5 ^{bdei} ND (7.7) ND (4.0) 1.1 J ⁱ 9.1 ND (3.6)	1.3 J ND (7.7) ND (4.0) ND (4.3) ND (4.9) ND (3.6)	36 ^{abdeij} ND (7.7) ND (4.0) 2.0 J ⁱ 7.8 ND (3.6)
1,2-Dibromoethane (EDB) 1,2-Dichloroethane (EDC) Ethylbenzene Isopropylbenzene (Cumene) Methyl Tert-Butyl Ether Naphthalene	μg/m ³ μg/m ³ μg/m ³ μg/m ³ μg/m ³ μg/m ³	0.2 4.7 49 1800 470 3.6	0.02 0.47 4.9 180 47 0.36	153700 202400 435000 245000 - 50000	1.6 0.02 0.47 4.9 1800 47 0.36	1.6 0.02 0.47 4.9 180 47 0.36	1600 - 40500 86800 246000 180000 52000	319.47 345.79 4000 435000 245000 - 50000	319.47 - 4000 435000 245000 144000 50000	2.59 n/v 0.16 0.68 11.2 n/v n/v	29 n/v 0.2 17 n/v 72 4.8*	1.8 J ^{bde} ND (11) ND (5.6) ND (6.0) 1.5 J ND (5.0) 4.1 J ^{abde}	3.95 ^{bdei} ND (1.54) ND (0.810) ND (0.867) 1.72 ND (0.721) ND (3.30)	5.5 ^{bdei} ND (7.7) ND (4.0) 1.1 J ⁱ 9.1 ND (3.6) ND (5.2)	1.3 J ND (7.7) ND (4.0) ND (4.3) ND (4.9) ND (3.6) ND (5.2)	36 ^{abdeij} ND (7.7) ND (4.0) 2.0 J ⁱ 7.8 ND (3.6) ND (5.2)
1,2-Dibromoethane (EDB) 1,2-Dichloroethane (EDC) Ethylbenzene Isopropylbenzene (Cumene) Methyl Tert-Butyl Ether Naphthalene Toluene	μg/m ³ μg/m ³ μg/m ³ μg/m ³ μg/m ³ μg/m ³	0.2 4.7 49 1800 470 3.6 22000	0.02 0.47 4.9 180 47 0.36 2200	153700 202400 435000 245000 - 50000 754000	1.6 0.02 0.47 4.9 1800 47 0.36 22000	1.6 0.02 0.47 4.9 180 47 0.36 2200	1600 - 40500 86800 246000 180000 52000 75400	319.47 345.79 4000 435000 245000 - 50000 375000	319.47 - 4000 435000 245000 144000 50000 37500	2.59 n/v 0.16 0.68 11.2 n/v n/v 4.52	29 n/v 0.2 17 n/v 72 4.8* 144	1.8 J ^{bde} ND (11) ND (5.6) ND (6.0) 1.5 J ND (5.0) 4.1 J ^{abde} 2.1 J	3.95 ^{bdei} ND (1.54) ND (0.810) ND (0.867) 1.72 ND (0.721) ND (3.30) 2.85	5.5 ^{bdei} ND (7.7) ND (4.0) 1.1 J ⁱ 9.1 ND (3.6) ND (5.2) 3.9	1.3 J ND (7.7) ND (4.0) ND (4.3) ND (4.9) ND (3.6) ND (5.2) 2.2 J	36 ^{abdeij} ND (7.7) ND (4.0) 2.0 J ⁱ 7.8 ND (3.6) ND (5.2) 13 ⁱ
1,2-Dibromoethane (EDB) 1,2-Dichloroethane (EDC) Ethylbenzene Isopropylbenzene (Cumene) Methyl Tert-Butyl Ether Naphthalene Toluene 1,2,4-Trimethylbenzene**	<u>µq/m³</u> <u>µq/m³</u> <u>µq/m³</u> <u>µq/m³</u> <u>µq/m³</u> <u>µq/m³</u> <u>µq/m³</u>	0.2 4.7 49 1800 470 3.6 22000 31	0.02 0.47 4.9 180 47 0.36 2200 3.1	153700 202400 435000 245000 - 50000 754000 -	1.6 0.02 0.47 4.9 1800 47 0.36 22000 260	1.6 0.02 0.47 4.9 180 47 0.36 2200 26	1600 - 40500 86800 246000 180000 52000 75400 123000	319.47 345.79 4000 435000 245000 - 50000 375000 125000	319.47 - 4000 435000 245000 144000 50000 37500 125000	2.59 n/v 0.16 0.68 11.2 n/v n/v 4.52 0.38	29 n/v 0.2 17 n/v 72 4.8* 144 6.5	1.8 J ^{bde} ND (11) ND (5.6) ND (6.0) 1.5 J ND (5.0) 4.1 J ^{abde} 2.1 J ND (6.8)	3.95 ^{bdei} ND (1.54) ND (0.810) ND (0.867) 1.72 ND (0.721) ND (3.30) 2.85 ND (0.982)	5.5 ^{bdei} ND (7.7) ND (4.0) 1.1 J ⁱ 9.1 ND (3.6) ND (5.2) 3.9 1.4 J ⁱ	1.3 J ND (7.7) ND (4.0) ND (4.3) ND (4.3) ND (4.9) ND (3.6) ND (5.2) 2.2 J ND (4.9)	36 ^{abdeij} ND (7.7) ND (4.0) 2.0 J ⁱ 7.8 ND (3.6) ND (5.2) 13 ⁱ 3.6 J ^{bi}
1,2-Dibromoethane (EDB) 1,2-Dichloroethane (EDC) Ethylbenzene Isopropylbenzene (Cumene) Methyl Tert-Butyl Ether Naphthalene Toluene 1,2,4-Trimethylbenzene** 1,3,5-Trimethylbenzene**	<u>µq/m³</u> <u>µq/m³</u> <u>µq/m³</u> <u>µq/m³</u> <u>µq/m³</u> <u>µq/m³</u> <u>µq/m³</u> <u>µq/m³</u>	0.2 4.7 49 1800 470 3.6 22000 31 31 31	0.02 0.47 4.9 180 47 0.36 2200 3.1 3.1	153700 202400 435000 245000 - 50000 754000 - - -	1.6 0.02 0.47 4.9 1800 47 0.36 22000 260 260	1.6 0.02 0.47 4.9 180 47 0.36 2200 26 26 26	1600 - 40500 86800 246000 180000 52000 75400 123000 123000	319.47 345.79 4000 245000 - 50000 375000 125000 125000	319.47 - 4000 435000 245000 144000 50000 37500 125000 125000	2.59 n/v 0.16 0.68 11.2 n/v n/v 4.52 0.38 1.12	29 n/v 0.2 17 n/v 72 4.8* 144 6.5 19	1.8 J ^{bde} ND (11) ND (5.6) ND (5.0) 1.5 J ND (5.0) 4.1 J ^{abde} 2.1 J ND (6.8) ND (6.8)	3.95 ^{bdei} ND (1.54) ND (0.810) ND (0.867) 1.72 ND (0.721) ND (3.30) 2.85 ND (0.982) ND (0.982)	5.5 ^{bdei} ND (7.7) ND (4.0) 1.1 J ⁱ 9.1 ND (3.6) ND (5.2) 3.9 1.4 J ⁱ ND (4.9)	1.3 J ND (7.7) ND (4.0) ND (4.3) ND (4.9) ND (3.6) ND (5.2) 2.2 J ND (4.9) ND (4.9)	36 ^{abdeij} ND (7.7) ND (4.0) 2.0 J ⁱ 7.8 ND (3.6) ND (5.2) 13 ⁱ 3.6 J ^{bi} 1.3 J ⁱ

Notes:

VI-PA ^A _A	PADEP Indoor Air Statewide Health Standard Vapor Intrusion Screening Values, Non-Residential (January 2017). Indoor Air Statewide Health Standard Vapor Intrusion Screening Values, Non-Residential.
В	One-tenth of PADEP Indoor Air Statewide Health Standard Vapor Intrusion Screening Values. Non-Residential.
OSHA ^C	Occupational Safety and Health Administration - Permissible Exposure Limits.
C	Permissible Exposure Limits.
USEPA RSL	United States Environmental Protection Agency (June 2017).
D	Regional Screening Level for Non-residential indoor air Hazard Index of 1.
E	Regional Screening Level for Non-residential indoor air Hazard Index of 0.1.
ACGIH TLV	American Conference of Governmental Industrial Hygienists.
F	Threshold Limit Value.
NIOSH	National Institute for Occupational Safety and Health.
- · · · · · H	Recommended Exposure Limits.
Cal / OSHA '	California Division of Occupational Safety and Health - Permissible Exposure Limits for chemical contaminants.
MH Air Tox ¦	Marcus Hook Air Toxics Monitor 2015, maximum value of PADEP data accessed February 5, 2016.
USEPA Res IA	USEPA Background Residential Indoor Air 2011, 95th percentile.
* *	95th percentile value not provided, value is 90th percentile.
4.63	Concentration exceeds the indicated standard.
	Analyte was not detected at a concentration greater than the laboratory reporting limit. The first value in
ND(2.4)(1.2)	narenthesis is the reporting limit. The method detection limit is shown in the second set of parenthesis
n/v	No standard/guideline value.

J Indicates an estimated value.

AOI6-AA-16-001 AOI6-AA-16-002 AOI6-AI-16-001 AOI6-AI-16-002 AOI6-AI-16-003

Summary of Indoor and Outdoor Air from the Vapor Intrusion Sampling AOI 6 Remedial Investigation Report Philadelphia Refinery Operations, a series of Evergreen Resources Group, LLC

Sample Location

Sample Date												Truck Scale House, 6636 Building 28-Mar-16	Control Room, 739 Building 28-Mar-16	726 Building, Carpenter Shop 29-Mar-16	178 Building, Carpenter Trade Shop 29-Mar-16	295 Gate Building 1st Floor 29-Mar-16
Sample ID												IA-AOI6-6636	IA-AOI6-739	IA-AOI6-726	IA-AOI6-178	IA-AOI6-295-1
Sampling Company Laboratory Laboratory Work Order Laboratory Sample ID												GHD LL MHF24 8316895	GHD LL MHF24 8316896	GHD ESC L827327 L827327-02	GHD ESC L827327 L827327-03	GHD ESC L827327 L827327-05
		PADEP SHS VI	1/10th PADEP SHS													
Somple Tune	Unito	Screening	VI Screening	OSHA		USEPA		NIOSH	Cal/ OSHA							
Sample Type	Units	a	b	C	d	e RSL	f	g	h	i i i	j					
Volatile Organic Compounds																
Benzene	µg/m ³	16	1.6	3190	1.6	1.6	1600	319.47	319.47	2.59	29	2.1 J ^{bde}	4.5 ^{bdei}	3.46 ^{bdei}	5.05 ^{bdei}	3.97 ^{bdei}
1,2-Dibromoethane (EDB)	$\mu g/m^3$	0.2	0.02	153700	0.02	0.02	-	345.79	-	n/v	n/v	ND (7.7)	ND (7.7)	ND (1.54)	ND (1.54)	ND (1.54)
1,2-Dichloroethane (EDC)	µg/m ³	4.7	0.47	202400	0.47	0.47	40500	4000	4000	0.16	0.2	ND (4.0)	ND (4.0)	ND (0.810)	ND (0.810)	ND (0.810)
Ethylbenzene	µg/m ³	49	4.9	435000	4.9	4.9	86800	435000	435000	0.68	17	2.1 J ⁱ	3.2 J ⁱ	ND (0.867)	ND (0.867)	ND (0.867)
Isopropylbenzene (Cumene)	µg/m ³	1800	180	245000	1800	180	246000	245000	245000	11.2	n/v	ND (4.9)	2.8 J	1.45	1.60	ND (0.983)
Methyl Tert-Butyl Ether	$\mu g/m^3$	470	47	-	47	47	180000	-	144000	n/v	72	ND (3.6)	ND (3.6)	ND (0.721)	ND (0.721)	ND (0.721)
Naphthalene	µg/m ³	3.6	0.36	50000	0.36	0.36	52000	50000	50000	n/v	4.8*	ND (5.2)	ND (5.2)	ND (3.30)	ND (3.30)	ND (3.30)
Toluene	uq/m ³	22000	2200	754000	22000	2200	75400	375000	37500	4.52	144	2.6 J	3.9	2.06	2.57	3.12
1,2,4-Trimethylbenzene**	µg/m ³	31	3.1	-	260	26	123000	125000	125000	0.38	6.5	<u>1.1 J</u>	ND (4.9)	ND (0.982)	ND (0.982)	2.18
1,3,5-Trimethylbenzene**	<u>µg/m្ទ័</u>	31	3.1	-	260	26	123000	125000	125000	1.12	19	ND (4.9)	ND (4.9)	ND (0.982)	ND (0.982)	ND (0.982)
Total Xylene	µg/m°	440	44	435000	440	44	434000	435000	435000	3.14	63.5	9.8'	14.1	ND (1.73)	1.76	2.2

Notes:

VI-PA ^A _A	PADEP Indoor Air Statewide Health Standard Vapor Intrusion Screening Values, Non-Residential (January 2017). Indoor Air Statewide Health Standard Vapor Intrusion Screening Values, Non-Residential.
В	One-tenth of PADEP Indoor Air Statewide Health Standard Vapor Intrusion Screening Values, Non-Residential.
OSHA ^C	Occupational Safety and Health Administration - Permissible Exposure Limits.
C	Permissible Exposure Limits.
USEPA RSL	United States Environmental Protection Agency (June 2017).
D	Regional Screening Level for Non-residential indoor air Hazard Index of 1.
E	Regional Screening Level for Non-residential indoor air Hazard Index of 0.1.
ACGIH TLV	American Conference of Governmental Industrial Hygienists.
F	Threshold Limit Value.
NIOSH	National Institute for Occupational Safety and Health.
G L	Recommended Exposure Limits.
Cal / OSHA ''	California Division of Occupational Safety and Health - Permissible Exposure Limits for chemical contaminants.
MH Air Tox	Marcus Hook Air Toxics Monitor 2015, maximum value of PADEP data accessed February 5, 2016.
USEPA Res IA	USEPA Background Residential Indoor Air 2011, 95th percentile.
*	95th percentile value not provided, value is 90th percentile.
4.63	Concentration exceeds the indicated standard.
	Measured concentration did not exceed the indicated standard.
ND (2.4) (1.2)	Analyte was not detected at a concentration greater than the laboratory reporting limit. The first value in parenthesis is the reporting limit. The method detection limit is shown in the second set of parenthesis
n/v	No standard/quideline value
10.4	

J Indicates an estimated value.

AOI6-AI-16-004	AOI6-AI-16-005	AOI6-AI-16-006	AOI6-AI-16-007	AOI6-AI-16-008

Summary of Indoor and Outdoor Air from the Vapor Intrusion Sampling AOI 6 Remedial Investigation Report Philadelphia Refinery Operations, a series of Evergreen Resources Group, LLC

Sample Location												AOI6-AI-16-009	AOI6-AI-17-01	AOI6-AI-17-02	AOI6-AI-17-03	AOI6-AI-17-04	AOI6-AI-17-05
													651 GP			651 GP	
													Training	651 GP	651 GP	Training	
												295 Gate	Building 3rd	Training	Training	Building	178 Building
												Building 2nd	Floor Fitness	Building 1st	Building 1st	Basamant	Carpenter
												Eloor	Contor	Eloor East	Eloor Wost		Trado Shon
Sample Date												29-Mar-16	8-Mar-17	8-Mar-17	8-Mar-17	8-Mar-17	9-Mar-17
Sample ID												14-4016-205-2	AOI6-AI-17-01	AOI6-AI-17-02	AOI6-AI-17-03	A OI6-AL-17-04	AOI6-AI-17-05
Sample ID												IA-A010-293-2	A010-AI-17-01	A010-AI-17-02	A010-AI-17-03	A010-AI-17-04	A010-AI-17-03
Sampling Company												GHD	GHD	GHD	GHD	GHD	GHD
Laboratory												ESC	LL	LL	LL	LL	PACE
Laboratory Work Order												L827327	1775150	1775150	1775150	1775150	10381753
Laboratory Sample ID												L827327-06	8876948	8876950	8876949	8876953	10381753003
		PADEP	1/10th														
		SHS VI	PADEP SHS														
		0	V/I 0	00114				NIOCH									
		Screening	vi Screening	USHA	USEPA	USEPA	ACGIN	NIOSH									
Sample Type	Units	Value	VI Screening Value	PEL	RSL	RSL	TLV	REL	PEL	MH Air Tox EPA	Res IA						
Sample Type	Units	Value a	VI Screening Value b	DSHA PEL c	RSL d	RSL e	TLV f	REL	PEL h	MH Air Tox EPA	Res IA j						
Sample Type	Units	Value a	VI Screening Value b	PEL c	RSL d	RSL e	TLV f	REL g	PEL h	MH Air Tox EPA ∣ i	Res IA j						
Sample Type Volatile Organic Compounds Benzene	Units	Value a 16	VI Screening Value b 1.6	05HA PEL c 3190	d 1.6	RSL e 1.6	f 1600	REL g 319.47	Call OSHA PEL h 319.47	MH Air Tox EPA	Res IA j 29	3.94 ^{bdei}	6.9 (0.64) ^{bdei}	6.8 (0.64) ^{bdei}	7.1 (0.64) ^{bdei}	6.4 (0.64) ^{bdei}	0.76 J (0.16)
Sample Type Volatile Organic Compounds Benzene 1,2-Dibromoethane (EDB)	Units <u>µq/m³</u> µq/m ³	Value a 16 0.2	Vi Screening Value b 1.6 0.02	05HA PEL c 3190 153700	USEPA RSL d 1.6 0.02	03EPA RSL e 1.6 0.02	TLV f 1600	REL g 319.47 345.79	2319.47	MH Air Tox EPA	Res IA j 29 n/v	<mark>3.94^{bdei}</mark> ND (1.54)	<mark>6.9 (0.64)^{bdei}</mark> ND (7.7) (1.5)	<mark>6.8 (0.64)^{bdei}</mark> ND (7.7) (1.5)	<mark>7.1 (0.64)^{bdei}</mark> ND (7.7) (1.5)	<mark>6.4 (0.64)^{bdei}</mark> ND (7.7) (1.5)	0.76 J (0.16) ND (2.1) (1.0)
Sample Type Volatile Organic Compounds Benzene 1,2-Dibromoethane (EDB) 1,2-Dichloroethane (EDC)	Units ug/m ³ ug/m ³ ug/m ³	Screening Value a 16 0.2 4.7	Vi Screening Value b 1.6 0.02 0.47	05HA PEL c 3190 153700 202400	1.6 0.02 0.47	0SEPA RSL e 1.6 0.02 0.47	1600 - 40500	REL g 319.47 345.79 4000	2319.47 - 4000	MH Air Tox EPA i 2.59 2 n/v r 0.16 0	Res IA j 29 n/v 0.2	<mark>3.94^{bdei} ND (1.54) ND (0.810)</mark>	<mark>6.9 (0.64)^{bdei}</mark> ND (7.7) (1.5) ND (4.0) (0.81)	<mark>6.8 (0.64)^{bdei}</mark> ND (7.7) (1.5) ND (4.0) (0.81)	<mark>7.1 (0.64)^{bdei}</mark> ND (7.7) (1.5) ND (4.0) (0.81)	<mark>6.4 (0.64)^{bdei}</mark> ND (7.7) (1.5) ND (4.0) (0.81)	0.76 J (0.16) ND (2.1) (1.0) ND (1.1) (0.27)
Sample Type Volatile Organic Compounds Benzene 1,2-Dibromoethane (EDB) 1,2-Dichloroethane (EDC) Ethylbenzene	Units 	Screening Value a 16 0.2 4.7 49	Vi Screening Value b 1.6 0.02 0.47 4.9	3190 153700 202400 435000	0.02 0.47 4.9	0.02 0.47 4.9	1600 - 40500 86800	REL g 319.47 345.79 4000 435000	2319.47 - 4000 435000	MH Air Tox EPA i 2.59 2 n/v r 0.16 0 0.68 2 1	Res IA j 29 h/v 0.2 17	<mark>3.94^{bdei}</mark> ND (1.54) ND (0.810) 0.960ⁱ	<mark>6.9 (0.64)^{bdei}</mark> ND (7.7) (1.5) ND (4.0) (0.81) ND (4.3) (0.87)	<mark>6.8 (0.64)^{bdei}</mark> ND (7.7) (1.5) ND (4.0) (0.81) 0.93 J (0.87) ⁱ	<mark>7.1 (0.64)^{bdei}</mark> ND (7.7) (1.5) ND (4.0) (0.81) 1.0 J (0.87)ⁱ	<mark>6.4 (0.64)^{bdei}</mark> ND (7.7) (1.5) ND (4.0) (0.81) ND (4.3) (0.87)	0.76 J (0.16) ND (2.1) (1.0) ND (1.1) (0.27) 1.5 J (0.57) ⁱ
Sample Type Volatile Organic Compounds Benzene 1,2-Dibromoethane (EDB) 1,2-Dichloroethane (EDC) Ethylbenzene Isopropylbenzene (Cumene)	Units <u>µq/m³</u> <u>µq/m³</u> <u>µq/m³</u> <u>µq/m³</u>	Screening Value a 16 0.2 4.7 49 1800	1.6 0.02 0.47 4.9 180	3190 153700 202400 435000 245000	1.6 0.02 0.47 4.9 1800	1.6 0.02 0.47 4.9 180	ACGIN TLV f 1600 - 40500 86800 246000	REL g 319.47 345.79 4000 435000 245000	Call OSHA PEL h 319.47 - 4000 435000 245000	MH Air Tox EPA i 2.59 2 n/v r 0.16 0 0.68 r 11.2 r	Res IA j 29 h/v 0.2 17 h/v	<mark>3.94^{bdei}</mark> ND (1.54) ND (0.810) 0.960ⁱ ND (0.983)	<mark>6.9 (0.64)^{bdei}</mark> ND (7.7) (1.5) ND (4.0) (0.81) ND (4.3) (0.87) 3.3 J (0.98)	<mark>6.8 (0.64)^{bdei}</mark> ND (7.7) (1.5) ND (4.0) (0.81) 0.93 J (0.87)ⁱ 2.1 J (0.98)	<mark>7.1 (0.64)^{bdei}</mark> ND (7.7) (1.5) ND (4.0) (0.81) 1.0 J (0.87)ⁱ 2.3 J (0.98)	<mark>6.4 (0.64)^{bdei}</mark> ND (7.7) (1.5) ND (4.0) (0.81) ND (4.3) (0.87) 1.5 J (0.98)	0.76 J (0.16) ND (2.1) (1.0) ND (1.1) (0.27) 1.5 J (0.57)¹ ND (3.4) (0.18)
Sample Type Volatile Organic Compounds Benzene 1,2-Dibromoethane (EDB) 1,2-Dichloroethane (EDC) Ethylbenzene Isopropylbenzene (Cumene) Methyl Tert-Butyl Ether	Units µa/m ³ µa/m ³ µa/m ³ µa/m ³ µa/m ³ µa/m ³	Screening Value a 16 0.2 4.7 49 1800 470	1.6 0.02 0.47 4.9 180 47	3190 153700 202400 435000 245000	1.6 0.02 0.47 4.9 1800 47	1.6 0.02 0.47 4.9 180 47	ACGIN TLV f 1600 - 40500 86800 246000 180000	REL g 319.47 345.79 4000 435000 245000 -	Call OSHA PEL h 319.47 - 4000 435000 245000 144000	MH Air Tox EPA i 2.59 2 n/v r 0.16 0 0.68 r 11.2 r n/v r 7 7	Res IA j 29 1/v 0.2 17 1/v 72	3.94 ^{bdei} ND (1.54) ND (0.810) 0.960 ⁱ ND (0.983) ND (0.721)	<mark>6.9 (0.64)^{bdei}</mark> ND (7.7) (1.5) ND (4.0) (0.81) ND (4.3) (0.87) 3.3 J (0.98) ND (3.6) (0.72)	<mark>6.8 (0.64)^{bdei}</mark> ND (7.7) (1.5) ND (4.0) (0.81) 0.93 J (0.87)ⁱ 2.1 J (0.98) ND (3.6) (0.72)	<mark>7.1 (0.64)^{bdei}</mark> ND (7.7) (1.5) ND (4.0) (0.81) 1.0 J (0.87)ⁱ 2.3 J (0.98) ND (3.6) (0.72)	<mark>6.4 (0.64)^{bdei}</mark> ND (7.7) (1.5) ND (4.0) (0.81) ND (4.3) (0.87) 1.5 J (0.98) ND (3.6) (0.72)	0.76 J (0.16) ND (2.1) (1.0) ND (1.1) (0.27) 1.5 J (0.57)ⁱ ND (3.4) (0.18) ND (4.9) (0.41)
Sample Type Volatile Organic Compounds Benzene 1,2-Dibromoethane (EDB) 1,2-Dichloroethane (EDC) Ethylbenzene Isopropylbenzene (Cumene) Methyl Tert-Butyl Ether Naphthalene	Units <u>µa/m³</u> <u>µa/m³</u> <u>µa/m³</u> <u>µa/m³</u> <u>µa/m³</u> <u>µa/m³</u> <u>µa/m³</u>	Screening Value a 16 0.2 4.7 49 1800 470 3.6	VI Screening Value b 1.6 0.02 0.47 4.9 180 47 0.36	OSHA PEL c 3190 153700 202400 435000 245000 - 50000	USEPA RSL d 1.6 0.02 0.47 4.9 1800 47 0.36	USEPA RSL e 1.6 0.02 0.47 4.9 180 47 0.36	Action TLV f 1600 - 40500 86800 246000 180000 52000	REL g 319.47 345.79 4000 435000 245000 - 50000	Call OSHA PEL h 319.47 - 4000 435000 245000 144000 50000	MH Air Tox EPA i 2.59 2 n/v r 0.16 0 0.68 r 11.2 r n/v 7 n/v 7 n/v 4	Res IA j 29 n/v 0.2 17 n/v 72 .8*	3.94 ^{bdei} ND (1.54) ND (0.810) 0.960 ⁱ ND (0.983) ND (0.721) ND (3.30)	6.9 (0.64) ^{bdei} ND (7.7) (1.5) ND (4.0) (0.81) ND (4.3) (0.87) 3.3 J (0.98) ND (3.6) (0.72) 9.6 (2.6) ^{abdej}	<mark>6.8 (0.64)^{bdei}</mark> ND (7.7) (1.5) ND (4.0) (0.81) 0.93 J (0.87)ⁱ 2.1 J (0.98) ND (3.6) (0.72) ND (5.2) (2.6)	<mark>7.1 (0.64)^{bdei}</mark> ND (7.7) (1.5) ND (4.0) (0.81) 1.0 J (0.87)ⁱ 2.3 J (0.98) ND (3.6) (0.72) ND (5.2) (2.6)	<mark>6.4 (0.64)^{bdei}</mark> ND (7.7) (1.5) ND (4.0) (0.81) ND (4.3) (0.87) 1.5 J (0.98) ND (3.6) (0.72) ND (5.2) (2.6)	0.76 J (0.16) ND (2.1) (1.0) ND (1.1) (0.27) 1.5 J (0.57)ⁱ ND (3.4) (0.18) ND (4.9) (0.41) 3.3 J (0.41) ^{bde}
Sample Type Volatile Organic Compounds Benzene 1,2-Dibromoethane (EDB) 1,2-Dichloroethane (EDC) Ethylbenzene Isopropylbenzene (Cumene) Methyl Tert-Butyl Ether Naphthalene Toluene	Units µq/m ³ µq/m ³ µq/m ³ µq/m ³ µq/m ³ µq/m ³ µq/m ³ µq/m ³	Screening Value a 16 0.2 4.7 49 1800 470 3.6 22000	VI Screening Value b 1.6 0.02 0.47 4.9 180 47 0.36 2200	OSHA PEL c 3190 153700 202400 435000 245000 - 50000 754000	USEPA RSL d 1.6 0.02 0.47 4.9 1800 47 0.36 22000	OSEPA RSL e 1.6 0.02 0.47 4.9 180 47 0.36 2200	ACGIN TLV f 1600 - 40500 86800 246000 180000 52000 75400	REL g 319.47 345.79 4000 435000 245000 - 50000 375000	Call OSHA PEL h 319.47 - 4000 435000 245000 144000 50000 37500	MH Air Tox EPA 2.59 2 n/v r 0.16 0 0.68 r 11.2 r n/v 7 n/v 4 4.52 1	Res IA j 29 h/v 0.2 17 h/v 72 .8* 44	3.94 ^{bdei} ND (1.54) ND (0.810) 0.960 ⁱ ND (0.983) ND (0.721) ND (3.30) 3.11	6.9 (0.64) ^{bdei} ND (7.7) (1.5) ND (4.0) (0.81) ND (4.3) (0.87) 3.3 J (0.98) ND (3.6) (0.72) 9.6 (2.6) ^{abdej} 3.7 J (0.75)	 6.8 (0.64)^{bdei} ND (7.7) (1.5) ND (4.0) (0.81) 0.93 J (0.87)ⁱ 2.1 J (0.98) ND (3.6) (0.72) ND (5.2) (2.6) 5.2 (0.75)ⁱ 	7.1 (0.64) ^{bdei} ND (7.7) (1.5) ND (4.0) (0.81) 1.0 J (0.87) ⁱ 2.3 J (0.98) ND (3.6) (0.72) ND (5.2) (2.6) 3.9 (0.75)	<mark>6.4 (0.64)^{bdei}</mark> ND (7.7) (1.5) ND (4.0) (0.81) ND (4.3) (0.87) 1.5 J (0.98) ND (3.6) (0.72) ND (5.2) (2.6) 3.0 J (0.75)	0.76 J (0.16) ND (2.1) (1.0) ND (1.1) (0.27) 1.5 J (0.57)ⁱ ND (3.4) (0.18) ND (4.9) (0.41) 3.3 J (0.41) ^{bde} 1.7 (0.21)
Sample Type Volatile Organic Compounds Benzene 1,2-Dibromoethane (EDB) 1,2-Dichloroethane (EDC) Ethylbenzene Isopropylbenzene (Cumene) Methyl Tert-Butyl Ether Naphthalene Toluene 1,2,4-Trimethylbenzene**	Units µa/m ³ µa/m ³ µa/m ³ µa/m ³ µa/m ³ µa/m ³ µa/m ³ µa/m ³ µa/m ³	Screening Value a 16 0.2 4.7 49 1800 470 3.6 22000 31	VI Screening Value b 1.6 0.02 0.47 4.9 180 47 0.36 2200 3.1	OSHA PEL c 3190 153700 202400 435000 245000 - 50000 754000 -	USEPA RSL d 1.6 0.02 0.47 4.9 1800 47 0.36 22000 260	USEPA RSL e 1.6 0.02 0.47 4.9 180 47 0.36 2200 26	ACGIN TLV f 1600 - 40500 86800 246000 180000 52000 75400 123000	REL g 319.47 345.79 4000 435000 245000 - 50000 375000 125000	Call OSHA PEL h 319.47 - 4000 435000 245000 144000 50000 37500 125000	MH Air Tox EPA i 2.59 2 n/v r 0.16 0 0.16 0 0 0 11.2 r r 1 n/v 4 1 52 1 0.38 6 6 6	Res IA j 29 h/v 0.2 17 h/v 72 8* 44 5.5	3.94 ^{bdei} ND (1.54) ND (0.810) 0.960 ⁱ ND (0.983) ND (0.721) ND (3.30) 3.11 2.04 ⁱ	6.9 (0.64) ^{bdei} ND (7.7) (1.5) ND (4.0) (0.81) ND (4.3) (0.87) 3.3 J (0.98) ND (3.6) (0.72) 9.6 (2.6) ^{abdej} 3.7 J (0.75) ND (4.9) (0.98)	 6.8 (0.64)^{bdei} ND (7.7) (1.5) ND (4.0) (0.81) 0.93 J (0.87)ⁱ 2.1 J (0.98) ND (3.6) (0.72) ND (5.2) (2.6) 5.2 (0.75)ⁱ ND (4.9) (0.98) 	7.1 (0.64) ^{bdei} ND (7.7) (1.5) ND (4.0) (0.81) 1.0 J (0.87) ⁱ 2.3 J (0.98) ND (3.6) (0.72) ND (5.2) (2.6) 3.9 (0.75) ND (4.9) (0.98)	6.4 (0.64) ^{bdei} ND (7.7) (1.5) ND (4.0) (0.81) ND (4.3) (0.87) 1.5 J (0.98) ND (3.6) (0.72) ND (5.2) (2.6) 3.0 J (0.75) ND (4.9) (0.98)	0.76 J (0.16) ND (2.1) (1.0) ND (1.1) (0.27) 1.5 J (0.57)ⁱ ND (3.4) (0.18) ND (4.9) (0.41) 3.3 J (0.41)^{bde} 1.7 (0.21) 2.0 J (0.17)ⁱ
Sample Type Volatile Organic Compounds Benzene 1,2-Dibromoethane (EDB) 1,2-Dichloroethane (EDC) Ethylbenzene Isopropylbenzene (Cumene) Methyl Tert-Butyl Ether Naphthalene Toluene 1,2,4-Trimethylbenzene** 1,3,5-Trimethylbenzene**	Units <u>ua/m³</u> <u>ua/m³</u> <u>ua/m³</u> <u>ua/m³</u> <u>ua/m³</u> <u>ua/m³</u> <u>ua/m³</u> <u>ua/m³</u> <u>ua/m³</u> <u>ua/m³</u>	Screening Value a 16 0.2 4.7 49 1800 470 3.6 22000 31 31	VI Screening Value b 1.6 0.02 0.47 4.9 180 47 0.36 2200 3.1 3.1 3.1	OSHA PEL c 3190 153700 202400 435000 245000 - 50000 754000 - - - -	0.36 2000 260 260 260 260 260	0.36 2200 26 26 26 26 26 26 26 26 26 26	ACGIN TLV f 1600 - 40500 86800 246000 180000 52000 75400 123000 123000	REL g 319.47 345.79 4000 435000 245000 - 50000 375000 125000 125000	Call OSHA PEL h 319.47 - 4000 435000 245000 144000 50000 37500 125000 125000	MH Air Tox EPA 2.59 2 n/v r 0.16 0 0.68 r 11.2 r n/v 4 4.52 1 0.38 6 1.12 r	Res IA j 29 h/v 0.2 17 h/v 72 8* 44 44 5.5 19	3.94 ^{bdei} ND (1.54) ND (0.810) 0.960 ⁱ ND (0.983) ND (0.721) ND (3.30) 3.11 2.04 ⁱ ND (0.982)	6.9 (0.64) ^{bdei} ND (7.7) (1.5) ND (4.0) (0.81) ND (4.3) (0.87) 3.3 J (0.98) ND (3.6) (0.72) 9.6 (2.6) ^{abdej} 3.7 J (0.75) ND (4.9) (0.98) ND (4.9) (0.98)	 6.8 (0.64)^{bdei} ND (7.7) (1.5) ND (4.0) (0.81) 0.93 J (0.87)ⁱ 2.1 J (0.98) ND (3.6) (0.72) ND (5.2) (2.6) 5.2 (0.75)ⁱ ND (4.9) (0.98) ND (4.9) (0.98) 	7.1 (0.64) ^{bdei} ND (7.7) (1.5) ND (4.0) (0.81) 1.0 J (0.87) ⁱ 2.3 J (0.98) ND (3.6) (0.72) ND (5.2) (2.6) 3.9 (0.75) ND (4.9) (0.98) ND (4.9) (0.98)	6.4 (0.64) ^{bdei} ND (7.7) (1.5) ND (4.0) (0.81) ND (4.3) (0.87) 1.5 J (0.98) ND (3.6) (0.72) ND (5.2) (2.6) 3.0 J (0.75) ND (4.9) (0.98) ND (4.9) (0.98)	0.76 J (0.16) ND (2.1) (1.0) ND (1.1) (0.27) 1.5 J (0.57)ⁱ ND (3.4) (0.18) ND (4.9) (0.41) 3.3 J (0.41) ^{bde} 1.7 (0.21) 2.0 J (0.17)ⁱ ND (3.3) (0.25)

Notes:

VI-PA ^A B	PADEP Indoor Air Statewide Health Standard Vapor Intrusion Screening Values, Non-Residential (January 2017). Indoor Air Statewide Health Standard Vapor Intrusion Screening Values, Non-Residential. One-tenth of PADEP Indoor Air Statewide Health Standard Vapor Intrusion Screening Values, Non-Residential
OSHA ^C	Occupational Safety and Health Administration - Permissible Exposure Limits.
С	Permissible Exposure Limits.
USEPA RSL	United States Environmental Protection Agency (June 2017).
D	Regional Screening Level for Non-residential indoor air Hazard Index of 1.
E	Regional Screening Level for Non-residential indoor air Hazard Index of 0.1.
ACGIH TLV	American Conference of Governmental Industrial Hygienists.
F	Threshold Limit Value.
NIOSH	National Institute for Occupational Safety and Health.
G	Recommended Exposure Limits.
Cal / OSHA ^H	California Division of Occupational Safety and Health - Permissible Exposure Limits for chemical contaminants.
MH Air Tox ^I	Marcus Hook Air Toxics Monitor 2015, maximum value of PADEP data accessed February 5, 2016.
USEPA Res IA ^J	USEPA Background Residential Indoor Air 2011, 95th percentile.
*	95th percentile value not provided, value is 90th percentile.
4.63 ^B	Concentration exceeds the indicated standard.
1.32	Measured concentration did not exceed the indicated standard.
ND (2.4) (1.2)	Analyte was not detected at a concentration greater than the laboratory reporting limit. The first value in
	parenthesis is the reporting limit. The method detection limit is shown in the second set of parenthesis.
n/v	No standard/guideline value.

J Indicates an estimated value.

Summary of Indoor and Outdoor Air from the Vapor Intrusion Sampling AOI 6 Remedial Investigation Report Philadelphia Refinery Operations, a series of Evergreen Resources Group, LLC

Sample Date
Sample ID AOI6-AI-17-0f AOI6-AI-17-0
Sampling Company Laboratory Laboratory Work Order Laboratory Work Order GHD PACE LL Dission Dission Dission Dission GHD GHD PACE LL LL LL
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
Sample Type Screening Units VI Screening Value a VI Screening PEL b OSHA RSL d USEPA RSL f ACGIH RSL g NIOSH REL f Cal/ OSHA pEL h MH Air Tox i EPA Res IA j Volatile Organic Compounds b 1.6 1.6 1.6 160 319.47 319.47 2.59 29 2.2 (0.16) ^{bde} 6.2 (0.64) ^{bdei} 4.3 (0.64) ^{bdei} 6.4 (0.16) ^{bdei} 10.3 (0.16) ^{bdei} 1,2-Dibromoethane (EDB) µq/m ³ 0.2 0.02 153700 0.02 - 345.79 - n/v n/v ND (5.2) (1.0) ND (2.4) (1.2) ND (7.7) (1.5) ND (2.1) (1.0) ND (2.1) (1.0) 1,2-Dichloroethane (EDC) µq/m ³ 4.7 0.47 202400 0.47 0.47 40500 4000 0.16 0.2 ND (0.55) (0.27) ND (4.0) (0.81) N
Volatile Organic Compounds Benzene µg/m³ 16 1.6 3190 1.6 1.6 1600 319.47 319.47 2.59 29 2.2 (0.16) ^{bde} 6.2 (0.64) ^{bdei} 8.2 (0.19) ^{bdei} 4.3 (0.64) ^{bdei} 6.4 (0.16) ^{bdei} 10.3 (0.16) ^{bdei} 1,2-Dibromoethane (EDB) µg/m³ 0.2 0.02 153700 0.02 0.02 - 345.79 - n/v ND (5.2) (1.0) ND (7.7) (1.5) ND (2.4) (1.2) ND (7.7) (1.5) ND (2.1) (1.0) ND (0.55) (0.27) ND (4.0) (0.81) ND (1.1) (0.27) ND (0.55) (0.27)
Benzene $\mu g/m^3$ 16 1.6 3190 1.6 1.6 1600 319.47 319.47 2.59 29 2.2 (0.16) ^{bde} 6.2 (0.64) ^{bdei} 8.2 (0.19) ^{bdei} 4.3 (0.64) ^{bdei} 6.4 (0.16) ^{bdei} 10.3 (0.16) ^{bdei} 1,2-Dibromoethane (EDB) $\mu g/m^3$ 0.2 0.02 153700 0.02 - 345.79 - n/v ND (5.2) (1.0) ND (2.4) (1.2) ND (7.7) (1.5) ND (2.1) (1.0) ND (0.55) (0.27) ND (4.0) (0.81) ND (4.0) (0.81) ND (1.1) (0.27) ND (0.55) (0.27)
1,2-Dibromoethane (EDB) μg/m³ 0.2 0.02 153700 0.02 0.02 - 345.79 - n/v ND (5.2) (1.0) ND (7.7) (1.5) ND (7.7) (1.5) ND (2.1) (1.0) ND (0.55) (0.27) ND (0.55) (0.27) ND (0.64) (0.32) ND (0.61) (0.64) (0.32) ND (0.55) (0.27) ND (0.55)
1,2-Dichloroethane (EDC) µg/m ³ 4.7 0.47 202400 0.47 0.47 40500 4000 4000 0.16 0.2 ND (0.55) (0.27) ND (4.0) (0.81) ND (0.64) (0.32) ND (4.0) (0.81) ND (1.1) (0.27) ND (0.55) (0.2.1)
Ethylbenzene μg/m ³ 49 4.9 435000 4.9 4.9 86800 435000 0.68 17 2.2 J (0.57)' ND (4.3) (0.87) 1.7 (0.66)' ND (4.3) (0.87) 1.5 J (0.57)' ND (1.2) (0.57)' ND (1
1000000000000000000000000000000000000
$\frac{\text{Methyl Feft-Butyl Ether}}{\text{Nambthalana}} = \frac{144000}{1000} + \frac{14400}{1000} + \frac{144000}{1000} + \frac{14400}{1000} + \frac{14400}{1000} + \frac{14400}{1000} + $
$\frac{\text{Naphthalene}}{\text{Talvara}} = \frac{\mu g/m^{\circ}}{3.6} \frac{3.6}{0.36} \frac{50000}{50000} \frac{0.36}{0.36} \frac{52000}{50000} \frac{50000}{50000} \frac{50000}{50000} \frac{50000}{50000} \frac{1.6 \text{ J}}{0.41} \frac{(0.41)}{3.6} \frac{1.6 \text{ J}}{3.6} \frac$
$\frac{100000}{100000} \frac{100000}{100000} \frac{10000}{100000} \frac{100000}{100000} \frac{10000}{100000} \frac{10000}{10000} \frac{10000}{10000} \frac{10000}{100000} \frac{10000}{100000} \frac{10000}{100000} \frac{10000}{100000} \frac{10000}{100000} \frac{10000}{100000} \frac{10000}{10000} \frac{10000}{10000} \frac{10000}{100000} \frac{10000}{10000} \frac{10000}{10000} \frac{10000}{100000} 100$
1,2,4-1111111111111111111111111111111111
$\frac{1,3,5-111100117000}{125000} \frac{125000}{125000} \frac{12500}{125000} \frac{125000}{125000} \frac{12500}{125000} \frac{12500}{125000} \frac{12500}{125000} $
$\mu y_{111} = $

Notes:

VI-PA ^A A	PADEP Indoor Air Statewide Health Standard Vapor Intrusion Screening Values, Non-Residential (January 2017). Indoor Air Statewide Health Standard Vapor Intrusion Screening Values, Non-Residential.
В	One-tenth of PADEP Indoor Air Statewide Health Standard Vapor Intrusion Screening Values, Non-Residential.
OSHA ^C	Occupational Safety and Health Administration - Permissible Exposure Limits.
С	Permissible Exposure Limits.
USEPA RSL	United States Environmental Protection Agency (June 2017).
D	Regional Screening Level for Non-residential indoor air Hazard Index of 1.
E	Regional Screening Level for Non-residential indoor air Hazard Index of 0.1.
ACGIH TLV	American Conference of Governmental Industrial Hygienists.
F	Threshold Limit Value.
NIOSH	National Institute for Occupational Safety and Health.
G	Recommended Exposure Limits.
Cal / OSHA ^H	California Division of Occupational Safety and Health - Permissible Exposure Limits for chemical contaminants.
MH Air Tox ¹	Marcus Hook Air Toxics Monitor 2015, maximum value of PADEP data accessed February 5, 2016.
USEPA Res IA ^J	USEPA Background Residential Indoor Air 2011, 95th percentile.
*	95th percentile value not provided, value is 90th percentile.
4.63 ^B	Concentration exceeds the indicated standard.
1.32	Measured concentration did not exceed the indicated standard.
ND (2.4) (1.2)	Analyte was not detected at a concentration greater than the laboratory reporting limit. The first value in
	parenthesis is the reporting limit. The method detection limit is shown in the second set of parenthesis.
n/v	No standard/guideline value.

J Indicates an estimated value.

Summary of Indoor and Outdoor Air from the Vapor Intrusion Sampling AOI 6 Remedial Investigation Report Philadelphia Refinery Operations, a series of Evergreen Resources Group, LLC

Sample Location												AOI6-AI-17-11	AOI6-AI-17-12	AOI6-AI-17-13	AOI6-AI-17-14	AOI6-AI-17-15	AOI6-AI-17-17
Sample Date												650 GP Office Building Basement, West 8-Mar-17	650 GP Office Building 1st Floor, Entrance 8-Mar-17	650 GP Office Building 1st Floor, West 8-Mar-17	650 GP Office Building 2nd Floor, East 8-Mar-17	650 GP Office Building 2nd Floor, West 9-Mar-17	726 Building, Carpenter Shop 8-Mar-17
Sample ID												AOI6-AI-17-11	AOI6-AI-17-12	AOI6-AI-17-13	AOI6-AI-17-14	AOI6-AI-17-15	AOI6-AI-17-17
Sampling Company Laboratory Laboratory Work Order Laboratory Sample ID												GHD PACE 10381907 10381907003	GHD PACE 10381907 10381907004	GHD PACE 10381907 10381907005	GHD PACE 10381907 10381907006	GHD LL 1777963 8889684	GHD LL 1775150 8876957
		PADEP SHS VI	1/10th PADEP SHS														
		Screening	VI Screening	OSHA	USEPA	USEPA	ACGIH	NIOSH	Cal/ OSHA								
Sample Type	Units	Screening Value	VI Screening Value	OSHA PEL	USEPA RSL	USEPA RSL	ACGIH TLV	NIOSH REL	Cal/ OSHA PEL	MH Air Tox EPA F	Res IA						
Sample Type	Units	Screening Value a	VI Screening Value b	OSHA PEL c	USEPA RSL d	USEPA RSL e	ACGIH TLV f	NIOSH REL g	Cal/ OSHA PEL h	MH Air Tox EPA F i	Res IA j						
Sample Type Volatile Organic Compounds	Units	Screening Value a	VI Screening Value b	OSHA PEL c	USEPA RSL d	USEPA RSL e	ACGIH TLV f	NIOSH REL g	Cal/ OSHA PEL h	MH Air Tox EPA F i	Res IA j						
Sample Type Volatile Organic Compounds Benzene	Units µg/m ³	Screening Value a 16	VI Screening Value b	OSHA PEL c 3190	USEPA RSL d	USEPA RSL e 1.6	ACGIH TLV f	NIOSH REL g 319.47	Cal/ OSHA PEL h 319.47	MH Air Tox EPA F i	Res IA j 29	8.6 (0.18) ^{bdei}	14.1 (0.22) ^{bdei}	15.8 (0.16) ^{bdei}	5.9 (0.16) ^{bdei}	3.6 (0.64) ^{bdei}	1.2 J (0.64)
Sample Type Volatile Organic Compounds Benzene 1,2-Dibromoethane (EDB)	Units <u>uq/m³</u> ug/m ³	Screening Value a 16 0.2	VI Screening Value b 1.6 0.02	OSHA PEL c 3190 153700	USEPA RSL d 1.6 0.02	USEPA RSL e 1.6 0.02	ACGIH TLV f 1600	NIOSH REL g 319.47 345.79	Cal/ OSHA PEL h 319.47	MH Air Tox EPA F i 1 2.59 2 n/v n	Res IA j 29 /v	<mark>8.6 (0.18)^{bdei}</mark> ND (5.6) (1.1)	<mark>14.1 (0.22)^{bdei}</mark> ND (7.0) (1.4)	<mark>15.8 (0.16)^{bdei}</mark> ND (5.2) (1.0)	<mark>5.9 (0.16)^{bdei}</mark> ND (5.2) (1.0)	<mark>3.6 (0.64)^{bdei}</mark> ND (7.7) (1.5)	1.2 J (0.64) ND (7.7) (1.5)
Sample Type Volatile Organic Compounds Benzene 1,2-Dibromoethane (EDB) 1,2-Dichloroethane (EDC)	Units uq/m ³ uq/m ³ uq/m ³	Screening Value a 16 0.2 4.7	VI Screening Value b 1.6 0.02 0.47	OSHA PEL c 3190 153700 202400	USEPA RSL d 1.6 0.02 0.47	USEPA RSL e 1.6 0.02 0.47	ACGIH TLV f 1600 - 40500	NIOSH REL g 319.47 345.79 4000	Cal/ OSHA PEL h 319.47 - 4000	MH Air Tox EPA F i 1 2.59 2 n/v n/ 0.16 0	Res IA j 29 /v .2	<mark>8.6 (0.18)^{bdei}</mark> ND (5.6) (1.1) ND (0.59) (0.30)	<mark>14.1 (0.22)^{bdei}</mark> ND (7.0) (1.4) ND (0.74) (0.37)	<mark>15.8 (0.16)^{bdei}</mark> ND (5.2) (1.0) ND (0.55) (0.27)	<mark>5.9 (0.16)^{bdei} ND (5.2) (1.0) ND (0.55) (0.27)</mark>	<mark>3.6 (0.64)^{bdei}</mark> ND (7.7) (1.5) ND (4.0) (0.81)	1.2 J (0.64) ND (7.7) (1.5) ND (4.0) (0.81)
Sample Type Volatile Organic Compounds Benzene 1,2-Dibromoethane (EDB) 1,2-Dichloroethane (EDC) Ethylbenzene	Units <u>µg/m³</u> <u>µg/m³</u> <u>µg/m³</u> <u>µg/m³</u>	Screening Value a 16 0.2 4.7 49	VI Screening Value b 1.6 0.02 0.47 4.9	OSHA PEL c 3190 153700 202400 435000	USEPA RSL d 1.6 0.02 0.47 4.9	USEPA RSL e 1.6 0.02 0.47 4.9	ACGIH TLV f 1600 - 40500 86800	NIOSH REL g 319.47 345.79 4000 435000	Cal/ OSHA PEL h 319.47 - 4000 435000	MH Air Tox EPA F i 1 2.59 2 n/v n/ 0.16 0 0.68 1	Res IA j 29 /v .2 7	<mark>8.6 (0.18)^{bdei}</mark> ND (5.6) (1.1) ND (0.59) (0.30) ND (3.2) (0.61)	<mark>14.1 (0.22)^{bdei}</mark> ND (7.0) (1.4) ND (0.74) (0.37) ND (4.0) (0.76)	<mark>15.8 (0.16)^{bdei}</mark> ND (5.2) (1.0) ND (0.55) (0.27) ND (3.0) (0.57)	<mark>5.9 (0.16)^{bdei}</mark> ND (5.2) (1.0) ND (0.55) (0.27) ND (3.0) (0.57)	<mark>3.6 (0.64)^{bdei}</mark> ND (7.7) (1.5) ND (4.0) (0.81) ND (4.3) (0.87)	1.2 J (0.64) ND (7.7) (1.5) ND (4.0) (0.81) ND (4.3) (0.87)
Sample Type Volatile Organic Compounds Benzene 1,2-Dibromoethane (EDB) 1,2-Dichloroethane (EDC) Ethylbenzene Isopropylbenzene (Cumene)	Units µq/m ³ µq/m ³ µq/m ³ µq/m ³ µq/m ³	Screening Value a 16 0.2 4.7 49 1800	VI Screening Value b 1.6 0.02 0.47 4.9 180	OSHA PEL c 3190 153700 202400 435000 245000	USEPA RSL d 1.6 0.02 0.47 4.9 1800	USEPA RSL e 1.6 0.02 0.47 4.9 180	ACGIH TLV f 1600 - 40500 86800 246000	NIOSH REL g 319.47 345.79 4000 435000 245000	Cal/ OSHA PEL h 319.47 - 4000 435000 245000	MH Air Tox EPA F i 1 2.59 2 n/v n. 0.16 0. 0.68 1 11.2 n.	Res IA j 29 /v .2 7 /v	<mark>8.6 (0.18)^{bdei}</mark> ND (5.6) (1.1) ND (0.59) (0.30) ND (3.2) (0.61) ND (3.6) (0.20)	<mark>14.1 (0.22)^{bdei}</mark> ND (7.0) (1.4) ND (0.74) (0.37) ND (4.0) (0.76) ND (4.5) (0.25)	<mark>15.8 (0.16)^{bdei}</mark> ND (5.2) (1.0) ND (0.55) (0.27) ND (3.0) (0.57) ND (3.4) (0.18)	<mark>5.9 (0.16)^{bdei}</mark> ND (5.2) (1.0) ND (0.55) (0.27) ND (3.0) (0.57) ND (3.4) (0.18)	<mark>3.6 (0.64)^{bdei}</mark> ND (7.7) (1.5) ND (4.0) (0.81) ND (4.3) (0.87) ND (4.9) (0.98)	1.2 J (0.64) ND (7.7) (1.5) ND (4.0) (0.81) ND (4.3) (0.87) ND (4.9) (0.98)
Sample Type Volatile Organic Compounds Benzene 1,2-Dibromoethane (EDB) 1,2-Dichloroethane (EDC) Ethylbenzene Isopropylbenzene (Cumene) Methyl Tert-Butyl Ether	Units µq/m ³ µq/m ³ µq/m ³ µq/m ³ µq/m ³ µq/m ³	Screening Value a 16 0.2 4.7 49 1800 470	VI Screening Value b 1.6 0.02 0.47 4.9 180 47	OSHA PEL c 3190 153700 202400 435000 245000	USEPA RSL d 1.6 0.02 0.47 4.9 1800 47	USEPA RSL e 1.6 0.02 0.47 4.9 180 47	ACGIH TLV f 1600 - 40500 86800 246000 180000	NIOSH REL g 319.47 345.79 4000 435000 245000	Cal/ OSHA PEL h 319.47 - 4000 435000 245000 144000	MH Air Tox EPA F i 2 2.59 2 n/v n. 0.16 0 0.68 1 11.2 n. n/v 7	Res IA j 29 /v .2 7 /v 7 /v 2	8.6 (0.18) ^{bdei} ND (5.6) (1.1) ND (0.59) (0.30) ND (3.2) (0.61) ND (3.6) (0.20) ND (5.3) (0.44)	<mark>14.1 (0.22)^{bdei}</mark> ND (7.0) (1.4) ND (0.74) (0.37) ND (4.0) (0.76) ND (4.5) (0.25) ND (6.6) (0.55)	<mark>15.8 (0.16)^{bdei}</mark> ND (5.2) (1.0) ND (0.55) (0.27) ND (3.0) (0.57) ND (3.4) (0.18) ND (4.9) (0.41)	<mark>5.9 (0.16)^{bdei}</mark> ND (5.2) (1.0) ND (0.55) (0.27) ND (3.0) (0.57) ND (3.4) (0.18) ND (4.9) (0.41)	<mark>3.6 (0.64)^{bdei}</mark> ND (7.7) (1.5) ND (4.0) (0.81) ND (4.3) (0.87) ND (4.9) (0.98) ND (3.6) (0.72)	1.2 J (0.64) ND (7.7) (1.5) ND (4.0) (0.81) ND (4.3) (0.87) ND (4.9) (0.98) ND (3.6) (0.72)
Sample Type Volatile Organic Compounds Benzene 1,2-Dibromoethane (EDB) 1,2-Dichloroethane (EDC) Ethylbenzene Isopropylbenzene (Cumene) Methyl Tert-Butyl Ether Naphthalene	Units µq/m ³ µq/m ³ µq/m ³ µq/m ³ µq/m ³ µq/m ³ µq/m ³	Screening Value a 16 0.2 4.7 49 1800 470 3.6	VI Screening Value b 1.6 0.02 0.47 4.9 180 47 0.36	OSHA PEL c 3190 153700 202400 435000 245000 -	USEPA RSL d 1.6 0.02 0.47 4.9 1800 47 0.36	USEPA RSL e 1.6 0.02 0.47 4.9 180 47 0.36	ACGIH TLV f 1600 - 40500 86800 246000 180000 52000	NIOSH REL g 319.47 345.79 4000 435000 245000 - 50000	Cal/ OSHA PEL h 319.47 - 4000 435000 245000 144000 50000	MH Air Tox EPA F i j 2.59 2 n/v n. 0.16 0 0.68 1 11.2 n. n/v 7 n/v 4.	Res IA j 29 /v .2 7 /v 2 8*	8.6 (0.18) ^{bdei} ND (5.6) (1.1) ND (0.59) (0.30) ND (3.2) (0.61) ND (3.6) (0.20) ND (5.3) (0.44) 1.9 J (0.44) ^{bde}	14.1 (0.22) ^{bdei} ND (7.0) (1.4) ND (0.74) (0.37) ND (4.0) (0.76) ND (4.5) (0.25) ND (6.6) (0.55) 1.0 J (0.55) ^{bde}	15.8 (0.16) ^{bdei} ND (5.2) (1.0) ND (0.55) (0.27) ND (3.0) (0.57) ND (3.4) (0.18) ND (4.9) (0.41) 5.9 (0.41) ^{abdej}	5.9 (0.16) ^{bdei} ND (5.2) (1.0) ND (0.55) (0.27) ND (3.0) (0.57) ND (3.4) (0.18) ND (4.9) (0.41) 0.74 J (0.41) ^{bde}	3.6 (0.64) ^{bdei} ND (7.7) (1.5) ND (4.0) (0.81) ND (4.3) (0.87) ND (4.9) (0.98) ND (3.6) (0.72) ND (5.2) (2.6)	1.2 J (0.64) ND (7.7) (1.5) ND (4.0) (0.81) ND (4.3) (0.87) ND (4.9) (0.98) ND (3.6) (0.72) ND (5.2) (2.6)
Sample Type Volatile Organic Compounds Benzene 1,2-Dibromoethane (EDB) 1,2-Dichloroethane (EDC) Ethylbenzene Isopropylbenzene (Cumene) Methyl Tert-Butyl Ether Naphthalene Toluene	Units µq/m ³ µq/m ³ µq/m ³ µq/m ³ µq/m ³ µq/m ³ µq/m ³ µq/m ³	Screening Value a 16 0.2 4.7 49 1800 470 3.6 22000	VI Screening Value b 1.6 0.02 0.47 4.9 180 47 0.36 2200	OSHA PEL c 3190 153700 202400 435000 245000 - 50000 754000	USEPA RSL d 1.6 0.02 0.47 4.9 1800 47 0.36 22000	USEPA RSL e 1.6 0.02 0.47 4.9 180 47 0.36 2200	ACGIH TLV f 1600 - 40500 86800 246000 180000 52000 75400	NIOSH REL g 319.47 345.79 4000 435000 245000 - 50000 375000	Cal/ OSHA PEL h 319.47 - 4000 435000 245000 245000 144000 50000 37500	MH Air Tox EPA F i 2 2.59 2 n/v n. 0.16 0 0.68 1 11.2 n. n/v 7 n/v 4.52	Res IA j 29 /v .2 7 /v 2 8* 44	8.6 (0.18) ^{bdei} ND (5.6) (1.1) ND (0.59) (0.30) ND (3.2) (0.61) ND (3.6) (0.20) ND (5.3) (0.44) 1.9 J (0.44) ^{bde} 3.5 (0.22)	<mark>14.1 (0.22)^{bdei}</mark> ND (7.0) (1.4) ND (0.74) (0.37) ND (4.0) (0.76) ND (4.5) (0.25) ND (6.6) (0.55) 1.0 J (0.55) ^{bde} 4.1 (0.28)	15.8 (0.16) ^{bdei} ND (5.2) (1.0) ND (0.55) (0.27) ND (3.0) (0.57) ND (3.4) (0.18) ND (4.9) (0.41) 5.9 (0.41) ^{abdej} 5.3 (0.21) ⁱ	5.9 (0.16) ^{bdei} ND (5.2) (1.0) ND (0.55) (0.27) ND (3.0) (0.57) ND (3.4) (0.18) ND (4.9) (0.41) 0.74 J (0.41) ^{bde} 3.6 (0.21)	3.6 (0.64) ^{bdei} ND (7.7) (1.5) ND (4.0) (0.81) ND (4.3) (0.87) ND (4.9) (0.98) ND (3.6) (0.72) ND (5.2) (2.6) 2.0 J (0.75)	1.2 J (0.64) ND (7.7) (1.5) ND (4.0) (0.81) ND (4.3) (0.87) ND (4.9) (0.98) ND (3.6) (0.72) ND (5.2) (2.6) 1.4 J (0.75)
Sample Type Volatile Organic Compounds Benzene 1,2-Dibromoethane (EDB) 1,2-Dichloroethane (EDC) Ethylbenzene Isopropylbenzene (Cumene) Methyl Tert-Butyl Ether Naphthalene Toluene 1,2,4-Trimethylbenzene**	Units µq/m ³ µq/m ³ µq/m ³ µq/m ³ µq/m ³ µq/m ³ µq/m ³ µq/m ³ µq/m ³ µq/m ³	Screening Value a 16 0.2 4.7 49 1800 470 3.6 22000 31	VI Screening Value b 1.6 0.02 0.47 4.9 180 47 0.36 2200 3.1	OSHA PEL c 3190 153700 202400 435000 245000 - 50000 754000	USEPA RSL d 1.6 0.02 0.47 4.9 1800 47 0.36 22000 260	USEPA RSL e 1.6 0.02 0.47 4.9 180 47 0.36 2200 26	ACGIH TLV f 1600 - 40500 86800 246000 180000 52000 75400 123000	NIOSH REL g 319.47 345.79 4000 435000 245000 - 50000 375000 125000	Cal/ OSHA PEL h 319.47 - 4000 435000 245000 245000 144000 50000 37500 125000	MH Air Tox EPA F i 2 2.59 2 n/v n. 0.16 0. 0.68 1 11.2 n. n/v 7 n/v 4. 0.38 6	Res IA j 29 /v .2 7 /v 2 8* 44 .5	8.6 (0.18) ^{bdei} ND (5.6) (1.1) ND (0.59) (0.30) ND (3.2) (0.61) ND (3.6) (0.20) ND (5.3) (0.44) 1.9 J (0.44) ^{bde} 3.5 (0.22) 2.5 J (0.18) ⁱ	14.1 (0.22) ^{bdei} ND (7.0) (1.4) ND (0.74) (0.37) ND (4.0) (0.76) ND (4.5) (0.25) ND (6.6) (0.55) 1.0 J (0.55) ^{bde} 4.1 (0.28) 3.0 J (0.22) ¹	15.8 (0.16) ^{bdei} ND (5.2) (1.0) ND (0.55) (0.27) ND (3.0) (0.57) ND (3.4) (0.18) ND (4.9) (0.41) 5.9 (0.41) ^{abdej} 5.3 (0.21) ⁱ 2.4 J (0.17) ⁱ	5.9 (0.16) ^{bdei} ND (5.2) (1.0) ND (0.55) (0.27) ND (3.0) (0.57) ND (3.4) (0.18) ND (4.9) (0.41) 0.74 J (0.41) ^{bde} 3.6 (0.21) 2.6 J (0.17) ⁱ	3.6 (0.64) ^{bdei} ND (7.7) (1.5) ND (4.0) (0.81) ND (4.3) (0.87) ND (4.9) (0.98) ND (3.6) (0.72) ND (5.2) (2.6) 2.0 J (0.75) ND (4.9) (0.98)	1.2 J (0.64) ND (7.7) (1.5) ND (4.0) (0.81) ND (4.3) (0.87) ND (4.9) (0.98) ND (3.6) (0.72) ND (5.2) (2.6) 1.4 J (0.75) ND (4.9) (0.98)
Sample Type Volatile Organic Compounds Benzene 1,2-Dibromoethane (EDB) 1,2-Dichloroethane (EDC) Ethylbenzene Isopropylbenzene (Cumene) Methyl Tert-Butyl Ether Naphthalene Toluene 1,2,4-Trimethylbenzene** 1,3,5-Trimethylbenzene**	Units µq/m ³ µq/m ³	Screening Value a 16 0.2 4.7 49 1800 470 3.6 22000 31 31	VI Screening Value b 1.6 0.02 0.47 4.9 180 47 0.36 2200 3.1 3.1	OSHA PEL c 3190 153700 202400 435000 245000 245000 - 50000 754000 -	USEPA RSL d 1.6 0.02 0.47 4.9 1800 47 0.36 22000 260 260	USEPA RSL e 1.6 0.02 0.47 4.9 180 47 0.36 2200 26 26	ACGIH TLV f 1600 - 40500 86800 246000 180000 52000 75400 123000	NIOSH REL g 319.47 345.79 4000 435000 245000 - 50000 375000 125000	Cal/ OSHA PEL h 319.47 - 4000 435000 245000 245000 144000 50000 37500 125000	MH Air Tox EPA F i 2 2.59 2 n/v n/ 0.16 0 0.68 1 11.2 n/ n/v 7 n/v 4. 0.38 6 1.12 1	Res IA j 29 /v .2 7 /v 2 8* 44 .5 9	 8.6 (0.18)^{bdei} ND (5.6) (1.1) ND (0.59) (0.30) ND (3.2) (0.61) ND (3.6) (0.20) ND (5.3) (0.44) 1.9 J (0.44)^{bde} 3.5 (0.22) 2.5 J (0.18)ⁱ ND (3.6) (0.26) 	14.1 (0.22) ^{bdei} ND (7.0) (1.4) ND (0.74) (0.37) ND (4.0) (0.76) ND (4.5) (0.25) ND (6.6) (0.55) 1.0 J (0.55) ^{bde} 4.1 (0.28) 3.0 J (0.22) ⁱ ND (4.5) (0.33)	15.8 (0.16) ^{bdei} ND (5.2) (1.0) ND (0.55) (0.27) ND (3.0) (0.57) ND (3.4) (0.18) ND (4.9) (0.41) 5.9 (0.41) ^{abdej} 5.3 (0.21) ⁱ 2.4 J (0.17) ⁱ ND (3.3) (0.25)	 5.9 (0.16)^{bdei} ND (5.2) (1.0) ND (0.55) (0.27) ND (3.0) (0.57) ND (3.4) (0.18) ND (4.9) (0.41) 0.74 J (0.41)^{bde} 3.6 (0.21) 2.6 J (0.17)ⁱ ND (3.3) (0.25) 	3.6 (0.64) ^{bdei} ND (7.7) (1.5) ND (4.0) (0.81) ND (4.3) (0.87) ND (4.9) (0.98) ND (3.6) (0.72) ND (5.2) (2.6) 2.0 J (0.75) ND (4.9) (0.98) ND (4.9) (0.98)	1.2 J (0.64) ND (7.7) (1.5) ND (4.0) (0.81) ND (4.3) (0.87) ND (4.9) (0.98) ND (3.6) (0.72) ND (5.2) (2.6) 1.4 J (0.75) ND (4.9) (0.98) ND (4.9) (0.98)

Notes:

VI-PA ^A _A	PADEP Indoor Air Statewide Health Standard Vapor Intrusion Screening Values, Non-Residential (January 2017). Indoor Air Statewide Health Standard Vapor Intrusion Screening Values, Non-Residential.
В	One-tenth of PADEP Indoor Air Statewide Health Standard Vapor Intrusion Screening Values, Non-Residential.
OSHA ^C	Occupational Safety and Health Administration - Permissible Exposure Limits.
С	Permissible Exposure Limits.
USEPA RSL	United States Environmental Protection Agency (June 2017).
D	Regional Screening Level for Non-residential indoor air Hazard Index of 1.
E	Regional Screening Level for Non-residential indoor air Hazard Index of 0.1.
ACGIH TLV	American Conference of Governmental Industrial Hygienists.
F	Threshold Limit Value.
NIOSH	National Institute for Occupational Safety and Health.
G	Recommended Exposure Limits.
Cal / OSHA ^H	California Division of Occupational Safety and Health - Permissible Exposure Limits for chemical contaminants.
MH Air Tox ¹	Marcus Hook Air Toxics Monitor 2015, maximum value of PADEP data accessed February 5, 2016.
USEPA Res IA ^J	USEPA Background Residential Indoor Air 2011, 95th percentile.
*	95th percentile value not provided, value is 90th percentile.
4.63 ^B	Concentration exceeds the indicated standard.
1.32	Measured concentration did not exceed the indicated standard.
ND (2.4) (1.2)	Analyte was not detected at a concentration greater than the laboratory reporting limit. The first value in
	parenthesis is the reporting limit. The method detection limit is shown in the second set of parenthesis.
n/v	No standard/guideline value.
J	indicates an estimated value.

GHD 11109613 (2)

Summary of Indoor and Outdoor Air from the Vapor Intrusion Sampling AOI 6 Remedial Investigation Report Philadelphia Refinery Operations, a series of Evergreen Resources Group, LLC

Sample Location

Sample Date												Control Room, 739 Building 8-Mar-17	745 Building 8-Mar-17	Control Room, 6627 Building 8-Mar-17	Truck Scale House, 6636 Building 8-Mar-17
Sample ID												AOI6-AI-17-18	AOI6-AI-17-19	AOI6-AI-17-20	AOI6-AI-17-21
Sampling Company Laboratory Laboratory Work Order Laboratory Sample ID		PADEP	1/10th									GHD LL 1775150 8876952	GHD LL 1775150 8876958	GHD LL 1775150 8876946	GHD LL 1775150 8876956
		SHS VI	PADEP SHS	06114				NIOSU							
Sample Type	Units	Value	Viscreening	PFI	RSL	RSL		REI	Dai/ USHA	MH Air Tox	EPA Res IA				
	••••••	Taiao	Taiao												
	enne	a	b	C	d	e	f	g	h	i	j				
Volatile Organic Compounds	enne	a	b	C	d	e	f	g	h	i	j				
Volatile Organic Compounds Benzene	μg/m ³	a 16	1.6	c 3190	d	e	f 1600	g 319.47	h 319.47	i 2.59	29	10 (0.64) ^{bdei}	0.86 J (0.64)	21 (0.64) ^{abdei}	5.0 (0.64) ^{bdei}
Volatile Organic Compounds Benzene 1,2-Dibromoethane (EDB)	μq/m ³ μq/m ³	a 16 0.2	1.6 0.02	c 3190 153700	d 1.6 0.02	e 1.6 0.02	f 1600 -	g 319.47 345.79	h 319.47	i 2.59 n/v	29 n/v	<mark>10 (0.64)^{bdei}</mark> ND (7.7) (1.5)	0.86 J (0.64) ND (7.7) (1.5)	<mark>21 (0.64)^{abdei}</mark> ND (7.7) (1.5)	<mark>5.0 (0.64)^{bdei}</mark> ND (7.7) (1.5)
Volatile Organic Compounds Benzene 1,2-Dibromoethane (EDB) 1,2-Dichloroethane (EDC)	μg/m ³ μg/m ³ μg/m ³	16 0.2 4.7	1.6 0.02 0.47	c 3190 153700 202400	d 1.6 0.02 0.47	e 1.6 0.02 0.47	f 1600 - 40500	g 319.47 345.79 4000	319.47 - 4000	i 2.59 n/v 0.16	j 29 n/v 0.2	<mark>10 (0.64)^{bdei}</mark> ND (7.7) (1.5) ND (4.0) (0.81)	0.86 J (0.64) ND (7.7) (1.5) ND (4.0) (0.81)	<mark>21 (0.64)^{abdei}</mark> ND (7.7) (1.5) ND (4.0) (0.81)	<mark>5.0 (0.64)^{bdei}</mark> ND (7.7) (1.5) ND (4.0) (0.81)
Volatile Organic Compounds Benzene 1,2-Dibromoethane (EDB) 1,2-Dichloroethane (EDC) Ethylbenzene	μg/m ³ μg/m ³ μg/m ³ μg/m ³	16 0.2 4.7 49	1.6 0.02 0.47 4.9	c 3190 153700 202400 435000	d 1.6 0.02 0.47 4.9	e 1.6 0.02 0.47 4.9	f 1600 - 40500 86800	g 319.47 345.79 4000 435000	h 319.47 	i 2.59 n/v 0.16 0.68	j 29 n/v 0.2 17	<mark>10 (0.64)^{bdei}</mark> ND (7.7) (1.5) ND (4.0) (0.81) ND (4.3) (0.87)	0.86 J (0.64) ND (7.7) (1.5) ND (4.0) (0.81) ND (4.3) (0.87)	<mark>21 (0.64)^{abdei}</mark> ND (7.7) (1.5) ND (4.0) (0.81) 1.1 J (0.87)ⁱ	<mark>5.0 (0.64)^{bdei}</mark> ND (7.7) (1.5) ND (4.0) (0.81) ND (4.3) (0.87)
Volatile Organic Compounds Benzene 1,2-Dibromoethane (EDB) 1,2-Dichloroethane (EDC) Ethylbenzene Isopropylbenzene (Cumene)	μg/m ³ μg/m ³ μg/m ³ μg/m ³ μg/m ³	a 16 0.2 4.7 49 1800	1.6 0.02 0.47 4.9 180	c 3190 153700 202400 435000 245000	d 1.6 0.02 0.47 4.9 1800	e 1.6 0.02 0.47 4.9 180	f 1600 - 40500 86800 246000	g 319.47 345.79 4000 435000 245000	h 319.47 - 4000 435000 245000	i 2.59 n/v 0.16 0.68 11.2	j 29 n/v 0.2 17 n/v	<mark>10 (0.64)^{bdei}</mark> ND (7.7) (1.5) ND (4.0) (0.81) ND (4.3) (0.87) 15 (0.98)ⁱ	0.86 J (0.64) ND (7.7) (1.5) ND (4.0) (0.81) ND (4.3) (0.87) ND (4.9) (0.98)	<mark>21 (0.64)^{abdei}</mark> ND (7.7) (1.5) ND (4.0) (0.81) 1.1 J (0.87) ⁱ 34 (0.98) ⁱ	<mark>5.0 (0.64)^{bdei}</mark> ND (7.7) (1.5) ND (4.0) (0.81) ND (4.3) (0.87) 2.4 J (0.98)
Volatile Organic Compounds Benzene 1,2-Dibromoethane (EDB) 1,2-Dichloroethane (EDC) Ethylbenzene Isopropylbenzene (Cumene) Methyl Tert-Butyl Ether	μq/m ³ μq/m ³ μq/m ³ μq/m ³ μq/m ³ μq/m ³	a 16 0.2 4.7 49 1800 470	1.6 0.02 0.47 4.9 180 47	3190 153700 202400 435000 245000	d 1.6 0.02 0.47 4.9 1800 47	e 1.6 0.02 0.47 4.9 180 47	f 1600 - 40500 86800 246000 180000	g 319.47 345.79 4000 435000 245000	h 319.47 - 4000 435000 245000 144000	i 2.59 n/v 0.16 0.68 11.2 n/v	j 29 n/v 0.2 17 n/v 72	<mark>10 (0.64)^{bdei}</mark> ND (7.7) (1.5) ND (4.0) (0.81) ND (4.3) (0.87) 15 (0.98) ⁱ ND (3.6) (0.72)	0.86 J (0.64) ND (7.7) (1.5) ND (4.0) (0.81) ND (4.3) (0.87) ND (4.9) (0.98) ND (3.6) (0.72)	<mark>21 (0.64)^{abdei}</mark> ND (7.7) (1.5) ND (4.0) (0.81) 1.1 J (0.87)ⁱ 34 (0.98)ⁱ ND (3.6) (0.72)	<mark>5.0 (0.64)^{bdei}</mark> ND (7.7) (1.5) ND (4.0) (0.81) ND (4.3) (0.87) 2.4 J (0.98) ND (3.6) (0.72)
Volatile Organic Compounds Benzene 1,2-Dibromoethane (EDB) 1,2-Dichloroethane (EDC) Ethylbenzene Isopropylbenzene (Cumene) Methyl Tert-Butyl Ether Naphthalene	μg/m ³ μg/m ³ μg/m ³ μg/m ³ μg/m ³ μg/m ³ μg/m ³	a 16 0.2 4.7 49 1800 470 3.6	1.6 0.02 0.47 4.9 180 47 0.36	3190 153700 202400 435000 245000 - 50000	d 1.6 0.02 0.47 4.9 1800 47 0.36	e 1.6 0.02 0.47 4.9 180 47 0.36	f 1600 - 40500 86800 246000 180000 52000	g 319.47 345.79 4000 435000 245000 - 50000	h 319.47 - 4000 435000 245000 144000 50000	i 2.59 n/v 0.16 0.68 11.2 n/v n/v	j 29 n/v 0.2 17 n/v 72 4.8*	<mark>10 (0.64)^{bdei}</mark> ND (7.7) (1.5) ND (4.0) (0.81) ND (4.3) (0.87) 15 (0.98)ⁱ ND (3.6) (0.72) ND (5.2) (2.6)	0.86 J (0.64) ND (7.7) (1.5) ND (4.0) (0.81) ND (4.3) (0.87) ND (4.9) (0.98) ND (3.6) (0.72) ND (5.2) (2.6)	<mark>21 (0.64)^{abdei}</mark> ND (7.7) (1.5) ND (4.0) (0.81) 1.1 J (0.87)ⁱ 34 (0.98)ⁱ ND (3.6) (0.72) ND (5.2) (2.6)	5.0 (0.64) ^{bdei} ND (7.7) (1.5) ND (4.0) (0.81) ND (4.3) (0.87) 2.4 J (0.98) ND (3.6) (0.72) ND (5.2) (2.6)
Volatile Organic Compounds Benzene 1,2-Dibromoethane (EDB) 1,2-Dichloroethane (EDC) Ethylbenzene Isopropylbenzene (Cumene) Methyl Tert-Butyl Ether Naphthalene Toluene	μq/m ³ μq/m ³ μq/m ³ μq/m ³ μq/m ³ μq/m ³ μq/m ³ μq/m ³	a 16 0.2 4.7 49 1800 470 3.6 22000	1.6 0.02 0.47 4.9 180 47 0.36 2200	3190 153700 202400 435000 245000 - 50000 754000	d 1.6 0.02 0.47 4.9 1800 47 0.36 22000	e 1.6 0.02 0.47 4.9 180 47 0.36 2200	f 1600 - 40500 86800 246000 180000 52000 75400	g 319.47 345.79 4000 435000 245000 - 50000 375000	h 319.47 - 4000 435000 245000 144000 50000 37500	i 2.59 n/v 0.16 0.68 11.2 n/v n/v 4.52	j 29 n/v 0.2 17 n/v 72 4.8* 144	10 (0.64) ^{bdei} ND (7.7) (1.5) ND (4.0) (0.81) ND (4.3) (0.87) 15 (0.98) ⁱ ND (3.6) (0.72) ND (5.2) (2.6) 2.5 J (0.75)	0.86 J (0.64) ND (7.7) (1.5) ND (4.0) (0.81) ND (4.3) (0.87) ND (4.9) (0.98) ND (3.6) (0.72) ND (5.2) (2.6) 1.1 J (0.75)	21 (0.64) ^{abdei} ND (7.7) (1.5) ND (4.0) (0.81) 1.1 J (0.87) ⁱ 34 (0.98) ⁱ ND (3.6) (0.72) ND (5.2) (2.6) 2.7 J (0.75)	5.0 (0.64) ^{bdei} ND (7.7) (1.5) ND (4.0) (0.81) ND (4.3) (0.87) 2.4 J (0.98) ND (3.6) (0.72) ND (5.2) (2.6) 2.7 J (0.75)
Volatile Organic Compounds Benzene 1,2-Dibromoethane (EDB) 1,2-Dichloroethane (EDC) Ethylbenzene Isopropylbenzene (Cumene) Methyl Tert-Butyl Ether Naphthalene Toluene 1,2,4-Trimethylbenzene**	μq/m ³ μq/m ³ μq/m ³ μq/m ³ μq/m ³ μq/m ³ μq/m ³ μq/m ³	a 16 0.2 4.7 49 1800 470 3.6 22000 31	1.6 0.02 0.47 4.9 180 47 0.36 2200 3.1	3190 153700 202400 435000 245000 - 50000 754000 -	d 1.6 0.02 0.47 4.9 1800 47 0.36 22000 260 260	e 1.6 0.02 0.47 4.9 180 47 0.36 2200 26	f 1600 - 40500 86800 246000 180000 52000 75400 123000 123000	g 319.47 345.79 4000 435000 245000 - 50000 375000 125000	h 319.47 - 4000 435000 245000 144000 50000 37500 125000	i 2.59 n/v 0.16 0.68 11.2 n/v n/v 4.52 0.38	j 29 n/v 0.2 17 n/v 72 4.8* 144 6.5	10 (0.64) ^{bdei} ND (7.7) (1.5) ND (4.0) (0.81) ND (4.3) (0.87) 15 (0.98) ⁱ ND (3.6) (0.72) ND (5.2) (2.6) 2.5 J (0.75) ND (4.9) (0.98)	0.86 J (0.64) ND (7.7) (1.5) ND (4.0) (0.81) ND (4.3) (0.87) ND (4.9) (0.98) ND (3.6) (0.72) ND (5.2) (2.6) 1.1 J (0.75) ND (4.9) (0.98)	21 (0.64) ^{abdei} ND (7.7) (1.5) ND (4.0) (0.81) 1.1 J (0.87) ⁱ 34 (0.98) ⁱ ND (3.6) (0.72) ND (5.2) (2.6) 2.7 J (0.75) 1.9 J (0.98) ⁱ	5.0 (0.64) ^{bdei} ND (7.7) (1.5) ND (4.0) (0.81) ND (4.3) (0.87) 2.4 J (0.98) ND (3.6) (0.72) ND (5.2) (2.6) 2.7 J (0.75) ND (4.9) (0.98)
Volatile Organic Compounds Benzene 1,2-Dibromoethane (EDB) 1,2-Dichloroethane (EDC) Ethylbenzene Isopropylbenzene (Cumene) Methyl Tert-Butyl Ether Naphthalene Toluene 1,2,4-Trimethylbenzene** 1,3,5-Trimethylbenzene**	<u>µq/m³</u> µq/m ³ µq/m ³ µq/m ³ µq/m ³ µq/m ³ µq/m ³ µq/m ³ µq/m ³	a 16 0.2 4.7 49 1800 470 3.6 22000 31 31	1.6 0.02 0.47 4.9 180 47 0.36 2200 3.1 3.1	3190 153700 202400 435000 245000 - 50000 754000 - -	d 1.6 0.02 0.47 4.9 1800 47 0.36 22000 260 260 260	e 1.6 0.02 0.47 4.9 180 47 0.36 2200 26 26 26	f 1600 - 40500 86800 246000 180000 52000 75400 123000 123000 123000	g 319.47 345.79 4000 435000 245000 - 50000 375000 125000 125000	h 319.47 - 4000 435000 245000 245000 144000 50000 37500 125000 125000	i 2.59 n/v 0.16 0.68 11.2 n/v n/v 4.52 0.38 1.12	j 29 n/v 0.2 17 n/v 72 4.8* 144 6.5 19	10 (0.64) ^{bdei} ND (7.7) (1.5) ND (4.0) (0.81) ND (4.3) (0.87) 15 (0.98) ⁱ ND (3.6) (0.72) ND (5.2) (2.6) 2.5 J (0.75) ND (4.9) (0.98) ND (4.9) (0.98)	0.86 J (0.64) ND (7.7) (1.5) ND (4.0) (0.81) ND (4.3) (0.87) ND (4.9) (0.98) ND (3.6) (0.72) ND (5.2) (2.6) 1.1 J (0.75) ND (4.9) (0.98) ND (4.9) (0.98)	21 (0.64) ^{abdei} ND (7.7) (1.5) ND (4.0) (0.81) 1.1 J (0.87) ⁱ 34 (0.98) ⁱ ND (3.6) (0.72) ND (5.2) (2.6) 2.7 J (0.75) 1.9 J (0.98) ⁱ ND (4.9) (0.98)	5.0 (0.64) ^{bdei} ND (7.7) (1.5) ND (4.0) (0.81) ND (4.3) (0.87) 2.4 J (0.98) ND (3.6) (0.72) ND (5.2) (2.6) 2.7 J (0.75) ND (4.9) (0.98) ND (4.9) (0.98)

Notes:

VI-PA ^A _A	PADEP Indoor Air Statewide Health Standard Vapor Intrusion Screening Values, Non-Residential (January 2017). Indoor Air Statewide Health Standard Vapor Intrusion Screening Values, Non-Residential
В	One-tenth of PADEP Indoor Air Statewide Health Standard Vapor Intrusion Screening Values, Non-Residential
0.5HA ^C	Occupational Safety and Health Administration - Permissible Exposure Limits.
C C	Permissible Exposure Limits.
USEPA RSL	United States Environmental Protection Agency (June 2017).
D	Regional Screening Level for Non-residential indoor air Hazard Index of 1.
E	Regional Screening Level for Non-residential indoor air Hazard Index of 0.1.
ACGIH TLV	American Conference of Governmental Industrial Hygienists.
F	Threshold Limit Value.
NIOSH	National Institute for Occupational Safety and Health.
G	Recommended Exposure Limits.
Cal / OSHA 🖞	California Division of Occupational Safety and Health - Permissible Exposure Limits for chemical contaminants.
MH Air Tox	Marcus Hook Air Toxics Monitor 2015, maximum value of PADEP data accessed February 5, 2016.
USEPA Res IA ^J	USEPA Background Residential Indoor Air 2011, 95th percentile.
*	95th percentile value not provided, value is 90th percentile.
4.63	Concentration exceeds the indicated standard.
1.32	Measured concentration did not exceed the indicated standard.
ND (2.4) (1.2)	Analyte was not detected at a concentration greater than the laboratory reporting limit. The first value in
nhu	parentnesis is the reporting limit. The method detection limit is shown in the second set of parentnesis.
1// V	Indicates an estimated value
J	וועוטמנס מוו סגוווומנכע אמועכ.

AOI6-AI-17-18 AOI6-AI-17-19 AOI6-AI-17-20 AOI6-AI-17-21

Summary of Outdoor Air Sampling Over NAPL AOI 6 Remedial Investigation Report Philadelphia Refinery Operations, a series of Evergreen Resources Group, LLC

Sample Location: Sample ID: Sample Date:				AOI6-AA-16-001 AOI6-AA16-001 08/25/2016	AOI6-AA-16-002 AOI6-AA16-002 08/25/2016	AOI6-AA-16-003 AOI6-AA16-003 08/25/2016
Parameters	Units	MH Air Tox	USEPA Res IA			
Volatile Organic Compounds						
1,2,4-Trimethylbenzene	µg/m³	1.12	19	ND(4.9)	ND(4.9)	ND(4.9)
1,2-Dibromoethane (Ethylene dibromide)	µg/m³	N/V	N/V	ND(7.7)	ND(7.7)	ND(7.7)
1,2-Dichloroethane	µg/m ³	0.16	0.2	ND(4.0)	ND(4.0)	ND(4.0)
1,3,5-Trimethylbenzene	µg/m³	0.38	6.5	ND(4.9)	ND(4.9)	ND(4.9)
Benzene	µg/m³	2.59	29	ND(3.2)	ND(3.2)	ND(3.2)
Ethylbenzene	µg/m ³	0.68	17	ND(4.3)	ND(4.3)	ND(4.3)
Isopropyl benzene	µg/m ³	11.2	N/V	ND(4.9)	ND(4.9)	ND(4.9)
Methyl tert butyl ether (MTBE)	µg/m ³	N/V	72	ND(3.6)	ND(3.6)	ND(3.6)
Naphthalene	µg/m³	N/V	4.8*	ND(5.2)	ND(5.2)	ND(5.2)
Toluene	µg/m ³	4.52	144	ND(3.8)	ND(3.8)	ND(3.8)
Xylenes (total)	µg/m ³	3.14	63.5	ND	ND	2.6 J

Notes:

J	Estimated concentration.
ND	Not detected at the associated reporting limit.
N/V	No criteria value.
MH Air Tox	Marcus Hook Air Toxics Monitor 2015, maximum value of PADEP data accessed February 5, 2016.
USEPA Res IA	USEPA Background Residential Indoor Air 2011, 95th percentile.
*	95th percentile value not provided, value is 90th percentile.