SITE CHARACTERIZATION/REMEDIAL INVESTIGATION REPORT AOI 8

SUNOCO, INC. (R&M)
PHILADELPHIA REFINERY
PHILADELPHIA, PENNSYLVANIA

Sunoco, Inc. (R&M) 3144 Passyunk Avenue Philadelphia, Pennsylvania 19145

Prepared by: Langan Engineering & Environmental Services, Inc. 30 South 17th Street Suite 1300 Philadelphia, Pennsylvania 19103

> January 31, 2012 2574601

SITE CHARACTERIZATION/REMEDIAL INVESTIGATION REPORT AOI 8

Prepared by: Langan Engineering & Environmental Services, Inc. 30 South 17th Street Suite 1300 Philadelphia, Pennsylvania 19103

olleen

Jennis Web

Colleen Costello, P.G. Senior Principal PG-003736-E

Jason Hanna Senior Project Manager

> Dennis E. Webster Project Manager

January 31, 2012 2574601

TABLE OF CONTENTS

		<u> No.</u>
1.0	INTRODUCTION	
1.1	G. 12 2 2 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
1.2		
1.3		
1.4		
	1.4.1 Overview of the Land Farm Treatment Unit (LTU) in AOI 8	
2.0	ENVIRONMENTAL SETTING	
2.1		
2.2		
2.3		
	2.3.1 Shallow/Intermediate Groundwater Occurrence and Flow	
	2.3.2 Deep Groundwater Occurrence and Flow	
2.4		
2.5		
3.0	SITE CHARACTERIZATION ACTIVITIES	_
3.1		
3.2		
3.3		
	3.3.1 Fill/Alluvium (Shallow) and Trenton Gravel (Intermediate) Groundwater Monitoring Wells	
	3.3.2 Lower Sand (Deep) Groundwater Monitoring Wells	
3.4		
3.5		
3.6		
3.7		
3.8		
4.0	QUALITY ASSURANCE/QUALITY CONTROL	
4.1		
4.2		
4.3		
4.4		
4.5		
5.0	SITE CHARACTERIZATION ANALYTICAL RESULTS	
5.1		
5.2		
5.3		_
5.4		
5.5		
6.0	REMEDIAL SYSTEM EVALUATION AND UPDATE	
6.1		
6.2		
6.3		
6.4		
7.0	FATE AND TRANSPORT ANALYSIS	
7.1		
7.2		
7.3		
7.4		
8.0	SITE CONCEPTUAL MODEL	44

8.1	DESCRIPTION AND SITE USE	44
8.2	GEOLOGY AND HYDROGEOLOGY	45
8.3	COMPOUNDS OF CONCERN	46
8.4	LNAPL DISTRIBUTION AND LNAPL MOBILITY	47
8.5	FATE AND TRANSPORT OF COCS	48
8.6	POTENTIAL MIGRATION PATHWAYS AND SITE RECEPTORS	48
9.0	HUMAN HEALTH EXPOSURE ASSESSMENT/RISK ASSESSMENT	49
9.1	Surface Water	
9.2	Shallow Soils (0-2 Feet Below Grade)	
9.3	GROUNDWATER	
9.4	LNAPL	
9.5	VAPOR	53
10.0	ECOLOGICAL ASSESSMENT	54
11.0	COMMUNITY RELATION ACTIVITIES	
12.0	CONCLUSIONS AND RECOMMENDATIONS	55
13.0	SCHEDULE	57
14.0	SIGNATURES	
15.0	REFERENCES	59

LIST OF TABLES

Table 1 Table 2 Table 3 Table 4 Table 5 Table 6	Compounds of Concern Existing Well Summary Summary of AOI 8 Groundwater and LNAPL Elevations Summary of Soil Sample Analytical Results: Non-SWMU Areas Summary of Soil Sample Analytical Results: SWMU 2 Summary of Groundwater Analytical Results: Fill/Alluvium and Trenton Gravel Wells Summary of Groundwater Analytical Results: Lower Sand Wells			
LIST OF FIGURES				
Figure 1 Figure 2 Figure 3 Figure 4 Figure 5a Figure 5c Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12	Site Location Map Site Plan Completed Activities Cross Section Location Plan Geologic Cross Section S-S' Geologic Cross Section T-T' Geologic Cross Section U-U' Shallow/Intermediate Groundwater Elevation Contour Plan Deep (Lower Sand) Groundwater Elevation Contour Plan Summary of Soil Sample Exceedances: Non SWMU Areas Summary of Soil Sample Exceedances: SWMU 2 Summary of Groundwater Sample Exceedances Apparent LNAPL Thickness And Type Impervious Surfaces and Sewers			
	LIST OF APPENDICES			
Appendix A Appendix B Appendix C Appendix D Appendix E Appendix F Appendix G Appendix H	Notice of Intent to Remediate and Report Notifications Current and Historic Use Figures Soil Boring Logs and Monitoring Well Construction Summaries PADEP SCR Technical Review Comment Letter Soil, Groundwater, and Air Gas Analytical Reports (on CD) Groundwater Sampling Field Summary Report LNAPL Characterization Data Soil, Indoor Air, and Sewer Gas Investigation Results (Fire House Building & Jackson St. Sewer)			
Appendix I Appendix J Appendix K Appendix L	Remedial Systems Evaluation Fate/Transport and PENTOXSD Analysis Development of Site-Specific Standards and Risk Assessment Site Characterization Work Plan			

1.0 INTRODUCTION

Sunoco Inc. (R&M) (Sunoco) and the Pennsylvania Department of Environmental Protection (PADEP) entered into a Consent Order & Agreement (CO&A) in December 2003 with respect to Sunoco's Philadelphia Refinery (refinery). Sunoco's Phase I Remedial Plan (Phase I Plan), dated November 2003, was included as an attachment to the CO&A. In accordance with the CO&A and Phase I Plan, a Current Conditions Report and Comprehensive Remedial Plan (CCR) was prepared by Sunoco in June 2004. The Phase I Plan and the CCR divided the facility into 11 Areas of Interest (AOIs), and presented a prioritization of the AOIs based on specific risk factors. The AOIs are shown in Figures 1 and 2 of this report. The CCR also presented the Phase II remedial approach and schedule to characterize each of the 11 AOIs, and to conduct Phase I and II corrective action activities in accordance with the 2003 CO&A and the Phase I Plan. Since 2003, Sunoco has completed site characterization activities at eleven AOIs (AOIs 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, and 11). For each AOI that has been characterized, Sunoco has prepared and submitted a corresponding Site Characterization Report (SCR) in accordance with the Revised Phase II Corrective Action Activities schedule that was included in the CCR.

Sunoco submitted a Site Characterization Work Plan (Work Plan) for AOI 8 on May 16, 2008 to the PADEP and United States Environmental Protection Agency (EPA). This Work Plan summarized proposed activities to be completed to characterize AOI 8 in accordance with the objectives of the CCR. The Work Plan also included proposed activities to characterize the Resource, Conservation and Recovery Act (RCRA) Solid Waste Management Unit (SWMU) in AOI 8. The Work Plan was implemented between May and August 2008 and the results were summarized in a SCR submitted to PADEP and EPA on September 30, 2008. A PADEP technical response comment letter, dated November 14, 2008, was received by Sunoco in response to the SCR. In 2009, additional site characterization work was performed to address PADEP comments in the November 14, 2008 comment letter.

This report is a combined Site Characterization/Remedial Investigation Report (SCR/RIR) which summarizes the site characterization work completed in 2008 and 2009. This SCR/RIR is being submitted to the PADEP and EPA in accordance with the provisions of Pennsylvania's Land Recycling and Environmental Remediation Standards Act (Act 2).

In accordance with Act 2, Langan, on behalf of Sunoco, has prepared the required public and municipal notices as part of this report submittal. The notices and their proof of receipt/publication are included in Appendix A of this report.

1.1 Site Description

The Sunoco Philadelphia Refinery is located in southwest Philadelphia. AOI 8 is the northern most area of the refinery and is known as the Point Breeze Process Area North Yard. AOI 8 is bound by the Philadelphia Gas Works (PGW) property to the south, the Schuylkill River to the west, industrial properties to the north, and urban streets to the east (Figures 1 and 2), and encompasses approximately 250 acres.

1.2 Site History

The facility has a long history of petroleum transportation, storage, and processing. The oldest portion of the facility started petroleum related activities in the 1860's, when the Atlantic Refining Company was established as an oil distribution center. In the 1900's, crude oil processing began and full-scale gasoline production was initiated during World War II. In addition to refining crude oil, various chemicals, such as acids and ammonia, were also produced at the site for a time. Current operations at the refinery are limited to the production of fuels and basic petrochemicals for the chemical industry. The current and historic uses of AOI 8 are described on figures provided in Appendix B.

AOI 8 was an active refinery process area since the early twentieth century with process areas and above ground storage tanks (ASTs). The area also included the former lube, asphalt, soap, and wax plants. The majority of AOI 8 structures were demolished between 1975 and 1980. Subsequent to decommissioning of the process areas, a Land Treatment Unit ("LTU") was operated from 1986 through 2000. Currently, the only remaining active facilities in AOI 8 are the asphalt dock, the boiler house, a storm water separator, fuel oil storage, butane and propane storage area, and loading and unloading facilities. Much of AOI 8 is unimproved and many of the ASTs have been demolished. The majority of the land surface in AOI 8 is not covered by impervious surfaces.

1.3 Selection of Compounds of Concern and Applicable Standards

The COCs for soil and groundwater are listed in Table 1 of this report. The COCs for the ongoing and proposed investigation activities include the current constituents from the Pennsylvania Corrective Action Process (CAP) Regulation Amendments effective December 1, 2001; provided in Chapter VI, Section E of PADEP's Closure Requirements

for Underground Storage Tank Systems. These COCs are the same as those listed in the CCR. In May 2009, Sunoco included two additional COCs 1,2,4-trimethylbenze and 1,3,5-trimethylbenzene. These two compounds were added to the list of COCs by Sunoco based on the PADEP's revisions to the petroleum short list of compounds at the request of the PADEP, but are not part of the COC lists for soil and groundwater in AOI 8 because the site characterization work in AOI 8 was performed prior to these chemicals being added to the list.

Media of Concern

Sunoco, Inc. Philadelphia Refinery

The media of concern for AOI 8 include groundwater and soil. The potential indoor air quality and off-site vapor migration exposure pathways were evaluated through the PADEP's vapor intrusion guidance. Surface water was evaluated as a receptor in relation to facility activities.

Act 2 Remediation Standards

The approach for attaining Act 2 remediation standards for the media of concern is described below by media.

Groundwater

Groundwater sample results were screened against the PADEP non-residential, used-aquifer (TDS<2,500) statewide health groundwater medium-specific concentrations (MSCs). As summarized in the CCR, where constituent concentrations are above these statewide health MSCs, Sunoco evaluated application of the site-specific remediation standard using either the pathway elimination or calculated risk-based standard options.

Shallow Soil - 0 to 2 Feet Interval

Shallow (0-2 feet) soil samples were collected at each soil boring/monitoring well location that represents a potential complete direct contact exposure pathway to site workers (e.g., unpaved areas). These shallow soil results were screened against the PADEP non-residential soil MSCs. Where constituent concentrations are above the PADEP non-residential soil MSCs, Sunoco evaluated application of the site-specific remediation standard using either the pathway elimination or calculated risk-based standard options.

Soil – 2 to 15 Feet Interval

A site-specific remediation standard using the pathway elimination option was applied for soil between 2 and 15 feet beneath the ground surface within the boundaries of AOI 8 based on Sunoco's existing permit program governing excavations. This permit program serves as an institutional control that prevents potential exposure to impacted soils greater than two feet beneath the ground surface. Soil at this depth is evaluated through the groundwater data.

Vapor Intrusion into Indoor Air

For the current occupied buildings in AOI 8 as depicted on Figure 2, groundwater is less than five feet below the ground surface; therefore, the PA DEP USEPA-PA Default Non-Residential Permissible Exposure Limit (PEL) for Volatilization to Indoor Air for soil and groundwater screening criteria in the PADEP's guidance could not be used. As part of the Cleanup Plan for AOI 8, further evaluation (i.e., soil gas samples) will be necessary to assess the impact to indoor air. Because the site specific standard is being used for the Facility, groundwater within some portions of AOI 8 is shallower than five feet, underground utilities exist and sampling was not completed below areas with impervious covers, Sunoco will place a restriction in the Uniform Environmental Covenants Act (UECA covenant) for AOI 8 that will require further vapor site characterization activities and/or installation of a vapor mitigation systems for any new occupied buildings that will be constructed within AOI 8.

1.4 Overview of Investigative Framework and Remedial Approach for AOI 8

The current remediation program for the refinery is performed under the 2003 CO&A between PADEP and Sunoco. Below is a general summary of the regulatory frame work for the refinery:

- In April 2004, the PADEP and EPA signed an agreement entitled "One Cleanup Program Memorandum of Agreement (MOA or One-Cleanup Program)," which clarifies how sites remediated under Pennsylvania's Act 2 program may satisfy RCRA corrective action requirements through characterization and attainment of Act 2 remediation standards pursuant to Pennsylvania's Act 2.
- In 2005, PADEP, EPA, and Sunoco agreed that the One Cleanup Program would benefit the project by merging the remediation obligations under the various

programs into one streamlined approach which would be conducted under the existing 2003 CO&A.

- In October 2006, Sunoco submitted a notice of intent to remediate (NIR) to the PADEP for the refinery entering the refinery into the Act 2 program, excluding the Belmont Terminal. A copy of this NIR and the Act 2 report notifications for this SCR/RIR/Cleanup Plan are included in Appendix A.
- In September 2007, Sunoco held a public involvement meeting in South Philadelphia, Pennsylvania.
- On November 8, 2011, the EPA provided an acknowledgment letter to Sunoco formerly accepting the Sunoco Philadelphia Refinery into the One Clean Up Program. EPA acknowledges that Sunoco is currently operating under the one EPA ID Number (PAD049791098) for Point Breeze, Girard Point and Schuylkill River Tank Farm. EPA will issue a letter to Sunoco for each characterized SWMU that lists a non-leaded tank bottom designation for which no further action is required.
- On November 30, 2011, Sunoco submitted a revised Work Plan for Sitewide Approach Under the One Cleanup Program (Work Plan for Sitewide Approach), to document the Sitewide remedial approach extending beyond the requirements of the 2003 CO&A. DEP and EPA have reviewed and provided input to this report. With this work plan Sunoco submitted a letter of commitment stating Sunoco will remediate the Philadelphia refinery site according to the Work Plan for Sitewide Approach.

1.4.1 Overview of the Land Farm Treatment Unit (LTU) in AOI 8

The LTU is located in the northwestern portion of AOI 8 and encompasses approximately 20 acres. RCRA closure of the LTU was completed in 2005 and the unit is currently undergoing RCRA Closure and Post-Closure monitoring activities in accordance with a separate 1996 CO&A. Therefore, no characterization work was undertaken at the LTU as part of this site characterization. A description of the LTU is included in the Amended Post-Closure Plan (original dated November 1988 and amended May 2004).

2.0 ENVIRONMENTAL SETTING

AOI 8 is located in the northern most portion of the refinery and is also known as the North Yard. AOI 8 is bound by the PGW property to the south, the Schuylkill River to the west, industrial properties to the north and urban streets to the east (Figures 1 and 2). AOI 8 encompasses approximately 250 acres.

2.1 Historic and Current Use

AOI 8 was an active refinery process area since the early twentieth century with significant process areas and ASTs. The area also included the former lube, asphalt, soap, and wax plants. The majority of AOI 8 structures were demolished between 1975 and 1980. Subsequent to decommissioning of the process areas, the LTU was operated from 1986 through 2000.

Currently, the only remaining active facilities in AOI 8 are the asphalt dock, the boiler house, a storm water separator, fuel oil storage, butane and propane storage area, and loading and unloading facilities. Much of AOI 8 is unimproved and many of the ASTs have been removed. The majority of the land surface in AOI 8 is not covered by impervious surfaces.

Sheet pile and wooden bulkheads exist along the Schuylkill River as shown in Figure 2. The bulkheads extend along the Schuylkill River from the storm water separator south towards and including the active asphalt loading dock in the southwestern portion of AOI 8. The wooden portion of the bulkhead was constructed in the early 1930s and starts just south of the AOI 8 storm water separator and extends approximately 2,460 feet downstream. The southern 940 feet of the bulkhead is of newer steel sheet piling construction.

The 1991 RFI identified one SWMU in AOI 8 that required further characterization. This SWMU was identified as SWMU 2 containing leaded tank bottoms sludge and is located in the southwestern portion of AOI 8. This SWMU area was characterized during the site characterization activities and is described in further detail in Section 3.0 below.

The existing monitoring well network in AOI 8 includes a total of 174 monitoring points as listed in Table 2. This network includes those monitoring wells that were installed as part of the 2008 site characterization effort. The monitoring wells in AOI 8 are summarized in Table 2 and the remedial systems in AOI 8 are discussed in detail in Section 5.0. Sunoco samples select monitoring wells in AOI 8 for site COCs established in the CCR on an annual basis. Groundwater gauging of select monitoring wells in AOI 8 also occurs on an annual basis during the fourth quarter of each year. Annual gauging activities and groundwater results are reported to the PADEP and EPA in Quarterly Reports prepared by Sunoco.

Institutional controls (i.e. permits governing excavation, Occupation Safety and Health Administration (OSHA) restrictions, etc.) apply to AOI 8. These institutional controls limit exposure to hazardous site compounds of concern (COCs) as listed in Table 1. Prior to any work being completed within AOI 8, appropriate work permits, safety and security measures, etc. must be approved by refinery personnel. Operating areas of AOI 8 are located within a secured area to prevent unauthorized access. Direct contact to site soils (soils greater than two feet beneath the ground surface) is governed by Sunoco's on-site procedures and personal protective equipment (PPE).

2.2 Geology

To further characterize geology at AOI 8, Sunoco advanced 39 shallow and intermediate monitoring wells. Four deep soil borings were advanced to the top of bedrock. Each shallow, intermediate and deep boring was continually logged by a field geologist. To illustrate the geology at AOI 8, three geologic cross sections were prepared and are provided as Figures 5a, 5b and 5c in this report. The geologic cross section location lines are shown in Figure 4.

The following paragraphs describe the primary geologic units beneath AOI 8 beginning with the deepest units to the shallowest units.

Wissahickon Formation – Bedrock beneath the refinery and AOI 8 is identified as the Wissahickon Schist. This formation is a metamorphosed greenish-gray micaceous schist and quartzite. The competent bedrock of the Wissahickon Formation is overlain by weathered bedrock consisting of micaceous clay, which becomes increasingly sandy as the degree of weathering lessens and competent bedrock is encountered. Based on

deep monitoring well and soil borings completed in AOI 8, the Wissahickon Schist ranges between approximately 40 feet beneath the ground surface in the northern portion of AOI 8 to approximately 70 feet beneath the ground surface in the southern portion. This range in bedrock depth is illustrated in Figure 5c.

Lower Sand Unit of the PRM – Throughout the majority of the refinery, the Wissahickon Formation is overlain by the Lower Sand, which is the lowest member of the Potomac-Raritan Magothy (PRM) Aquifer System. As shown in Figures 5a through 5c, the Lower Sand overlies bedrock in the eastern and central portions of AOI 8, but is absent in the northwestern and western portions where it has been eroded and replaced with alluvium.

The Lower Sand beneath AOI 8 is a green, brown, orange and/or red, fine gravel and course sand that grades upward into medium-to-fine sands and contains layers of silts and clay. The Lower/Middle Clay overlies the Lower Sand in the central and eastern portions of AOI 8 as shown in Figures 5a and 5b. As shown in Figures 5a through 5c, in the western and northwestern portions AOI 8, the Lower Sand is overlain by either alluvium or Trenton Gravel and the Lower/Middle Clay is absent. Where present at AOI 8, the Lower Sand ranges in thickness between 7 to 63 feet.

Fourteen deep (Lower Sand) groundwater monitoring wells existed in AOI 8 when the AOI 8 Work Plan was prepared. These monitoring wells included N-13, N-19, N-21, N-27, N-30, N-38D, N-4, N-43, N-46D, N-50D, N-69, N-79, N-83, and N-9. Using the geologic information gathered in AOI 8 as part of the characterization activities, the classification of the 14 monitoring wells were re-evaluated considering known geology and monitoring well construction. Based on this evaluation, three of these monitoring wells (N-69, N-79 and N-83) are not screened in the Lower Sand and therefore have been re-classified as intermediate monitoring wells.

Middle/Lower Clay – The Middle/Lower Clay, where present in beneath the refinery is characterized by very low permeability reddish-brown, brown or gray clays and sandy clays. Based on recent geologic data collected in AOI 8, the Middle/Lower Clay is present beneath AOI 8 as a wedge which thickens towards the west and the Schuylkill River. As shown in Figure 5a, the clay ranges in thickness from approximately 10 feet on the east side of AOI 8 to approximately 38 feet in the central portion of AOI 8.

Trenton Gravel – Throughout most of the refinery, the Trenton Gravel typically overlies the Middle/Lower Clay and Lower Sand with thicknesses up to 80 feet and a typical thickness of 40 feet. The Trenton Gravel is of Pleistocene Age (Ice Age; less than 2 million years) and is a very heterogeneous unit comprised of a predominant brown to gray sand, gravel and minor amounts of clay (Owens and Minard, 1979). As shown in Figures 5a through 5c, Trenton Gravel is present in the northern, central and eastern portions of AOI 8 and is absent in the western portion of AOI 8 where it has been eroded and replaced with alluvium.

Recent Fill/Alluvium - The alluvium deposits in AOI 8 generally consist of dark gray organic clayey mud or silt and fine sand. As shown in Figures 5a through 5c, alluvium deposits exist in the western and central portions of AOI 8 and to a lesser extent in the northern portion. No alluvium materials are located in the eastern portion of AOI 8. As shown in Figures 5a and 5c, the alluvium thickens in the western portion of AOI 8 where the Pleistocene age deposits have been eroded and replaced. As shown in Figures 5a through 5c, the alluvium deposits range in thickness between 2 and 60 feet in AOI 8.

Fill type varies across AOI 8 and includes various sands and gravels, brick and wood fragments, and cinder ash. Fill overlies native geologic deposits throughout AOI 8 and ranges between 2 and 15 feet in thickness.

In addition to the above descriptions, the following general observations can be made concerning the geology in AOI 8:

- Fill materials are present throughout AOI 8 generally ranging from 5 to 20 feet in thickness.
- In the western portion of AOI 8, the Pleistocene age formations have been eroded and replaced with alluvium. The alluvium extends to the central and northern portions of AOI 8, but is absent in the eastern portion. Where present the alluvium generally ranges in thickness from 5 to 60 feet.
- Trenton Gravel is present in the northern, central and eastern portions of AOI 8 but is absent in the western portion where it has been eroded and replaced with

alluvium. Where present the Trenton Gravel ranges in thickness from 5 to 30 feet.

- The Middle/Lower Clay is present beneath AOI 8 as a wedge that thickens towards the west and the Schuylkill River. The clay is absent between the central and western portions of AOI 8. Where present the clay ranges in thickness from 10 to 20 feet.
- The Lower Sand overlies bedrock in the eastern and central portions of AOI 8, but is absent in the northwestern and western portions of AOI 8. Where present the Lower Sand ranges in thickness from 2 to 60 feet.
- In the western and northern portions of AOI 8, the middle clay is absent, and the alluvium is in direct contact with Trenton Gravel, Lower/Middle Clay, Lower Sand and/or bedrock.
- The depth to bedrock beneath AOI 8 increases towards the south. Depth to bedrock in the northern portion of AOI 8 is generally encountered at 40 ft bgs and along the southern portion of AOI 8 is located at 75 ft bgs.

2.3 Hydrogeology

2.3.1 Shallow/Intermediate Groundwater Occurrence and Flow

Shallow groundwater at the refinery refers to unconfined groundwater that occurs in either the fill or alluvium (or both). Intermediate groundwater at the refinery refers to unconfined groundwater that occurs in Trenton Gravel. Groundwater gauging data collected by Stantec in May 2011 was used to generate a groundwater flow figure for the shallow/intermediate zone in AOI 8 (Figure 6). The groundwater elevation data from this gauging event is provided in Table 3. Monitoring well construction details for these monitoring wells are provided in Table 2 and boring/well construction logs for the newly installed monitoring wells are provided in Appendix C of this report. Historic boring/well logs for monitoring wells installed prior to the site characterization activities are provided in Appendix D of the CCR. Based on the groundwater elevations as shown in Figure 6, the following observations can be made.

 Groundwater in the shallow/intermediate zone of AOI 8 occurs at depths between 1 and 37 feet below the ground surface under unconfined conditions.

- A groundwater flow divide, trending northwest to southeast, is present in the central portion of AOI 8. This divide generally corresponds with the eastern extent of the alluvium materials deposited following the erosion and removal of the Pleistocene age deposits. Where the Pleistocene age deposits have been eroded, the alluvium is in direct contact with the Trenton Gravel, Lower/Middle Clay, and/or the Lower Sand. Groundwater on the east side of the divide flows to the northeast. Groundwater on the west side of the divide flows to the southwest.
- The hydraulic gradient in the western portion of AOI 8 is relatively flat with some depressions and mounds at isolated locations.
- Along the western boundary of AOI 8, flow is more pronounced towards the bulkheads and Schuylkill River.
- The hydraulic gradient in the eastern and southern portions of AOI 8 is relatively flat with some depressions and mounds at isolated locations.

2.3.2 Deep Groundwater Occurrence and Flow

Eleven deep (Lower Sand) monitoring wells are located in AOI 8 which include N-4, N-9, N-13, N-19, N-21, N-27, N-30, N-38D, N-44D, N-46D and N-50D. Well construction details for these monitoring wells are provided in Table 2 and the available logs for these monitoring wells are provided in the CCR.

Groundwater gauging data collected by Stantec in May 2011 was used to generate groundwater flow figures for the deep groundwater zone in AOI 8 (Figure 7). The groundwater elevation data from this gauging event are provided in Table 3. Based on the groundwater elevations as shown in Figure 7, the following observations can be made:

 A groundwater flow divide, trending northwest to southeast, is present in the central portion of AOI 8. This divide generally corresponds with the eastern extent of the alluvium materials deposited following the erosion and removal of the Pleistocene age deposits. Where the Pleistocene age deposits have been eroded, the alluvium is in direct contact with the Trenton Gravel, Lower/Middle Clay, and/or the Lower Sand. Groundwater on the east side of the divide flows to the east and southeast. Groundwater on the west side of the divide flows to the southwest.

 A downward vertical flow gradient exists between the shallow/intermediate and deep zone as indicated by the groundwater elevations in the following monitoring well pairs: N-3/N-4, N-12/N-13, N-8/N-9, N-18/N-19, N-20/N-21, N-29/N-30, N-38/N-38D, N-43/N-44D, N-47/N-46D and N-51/N-50D. This is consistent with vertical gradients elsewhere in the refinery.

No aquifer testing was performed in AOI 8 as part of the 2008 site characterization activities since sufficient data was available from former aquifer tests (pumping and slug tests) performed in AOI 8 by others (GES in 1993 and 1994). Aquifer testing, consisting of 40 and 48-hour constant rate pump tests were performed on two monitoring wells (N-76 and N-80) in AOI 8 by GES in December 1993. Slug tests were completed in August 1994 on monitoring wells N-29, N-32, N-81 and N-82. Based on these tests and other site specific data obtained from the CCR, for the fate and transport modeling a hydraulic conductivity of 24 ft/day was used for monitoring wells screened in the Trenton Gravel and a hydraulic conductivity of 4.64 ft/day was used for monitoring wells screened in the alluvium. A hydraulic conductivity of 135 ft/day was used for monitoring wells screened in the Lower Sand which was obtained from the USGS Water-Supply Paper 2346.

2.4 Surface Water

No surface water features are located in AOI 8. The nearest surface water body to AOI 8 is the Schuylkill River which borders the western boundary. Sheet pile and wooden bulkheads exist along the Schuylkill River as shown in Figure 2. The bulkhead extend along the Schuylkill River from the storm water separator south towards, and including, the active asphalt loading dock in the southwestern portion of AOI 8. The wooden portion of the bulkhead was constructed in the early 1930s and begins south of the AOI 8 storm water separator and extends approximately 2,460 feet downstream. In 1957, upgrades were completed to approximately 100 linear feet of the timber bulkhead that included steel sheet piles and partial replacement of timber spur piles with steel pipe piles. More recently, tie rods have also been installed in this area. The southern

940 feet of the bulkhead is of newer, steel sheet piling construction. Shallow/intermediate groundwater interaction with surface water is limited by the bulk head and sheet pile wall.

2.5 Jackson Street Sewer

To address question No. 2 of the PADEPs technical response letter (Appendix D), the following response was prepared to provide additional information on the Jackson Street Sewer. The Jackson Street sewer is a combined storm and sanitary sewer traversing the North Yard in an east-west direction. The sewer was constructed of brick between 1903 and 1917 and is 6.5 feet in diameter where it enters the refinery, on the eastern border near 29th Street and the Schuylkill Expressway. The sewer continues west across Sunoco property for 4,180 ft. at a grade of approximately 0.0028 ft. per ft. and increases in diameter to 7.5 ft. at its terminus, the Jackson Street Sewer Outfall on the Schuylkill River (GES 1993). Section 5.0 and 6.0 below provides an evaluation of the sewer as a transport mechanism for contaminants.

In response to questions No. 5 and 6 of the PADEPs technical response letter (Appendix D), a further evaluation of the sewer as a preferential migration pathway for light non-aqueous phase liquid (LNAPL) and vapor, was performed by Sunoco in 2009. As part of this evaluation, a review of historic investigations (1993 through 2009) was completed. A summary of the historic sewer investigations is presented below:

- In 1993 and 1995, investigations performed by GES and Sunoco determined the following:
 - Lithology surrounding the sewer consisted of poorly graded sand and gravel with lenses of silts and clays;
 - o Construction of the sewer is brick;
 - o The entire length of sewer intercepts alluvial groundwater;
 - Hydraulic conductivity values of the fill and alluvium ranged from 9.37x10-5 cm/sec to 1.51x10-4 cm/sec;
 - Transmissivity values of 1.49 cm2/sec suggested alluvial groundwater flow is semi-restricted;
 - Storativity value of 2.8x10-3 suggested limited water available for pumping;
 and

- o The highly variable grain size and finer grained; clay and silt lenses may limit the transmissivity and storativity of the unconfined aquifer.
- In 2002 and 2003, investigations performed by Aquaterra and Sunoco determined the following:
 - LNAPL existed in the subsurface proximal to the Jackson Street Sewer;
 - A groundwater remediation system controls the separate phase hydrocarbons plumes proximal to the Jackson Street Sewer;
 - o Oil was present in the North Yard facility sewer system;
 - Sunoco improved operating procedures with regards to sewer system and completed sewer cleaning projects decreasing the presence of oil in the sewer; and
 - Improved operation of the Klondike separator and a higher degree of vigilance in the North Yard mitigated the discharge of oil to the Jackson Street Sewer Outfall.
- From December 2002 through September 2004, PADEP performed inspections in residential neighborhoods to the east of the site boundary. Petroleum odors were reported and PID readings ranged from 0.0 to 239 ppm.
- In February of 2003, PADEP and Philadelphia Water Department (PWD) inspected the interior of the sewer and determined the overall structural condition of the sewer was good. The PADEP and PWD observed evidence of hydrocarbons in the sewer using ultraviolet (UV) light. Increased amounts of hydrocarbons were observed towards the western portion of the sewer closer to the outfall structure.
- In March of 2003, Sunoco and Aquaterra mapped the inside of the sewer and mapped locations of hydrocarbon seep areas by use of ultra violet (UV) light and visual observations. Sunoco and Aquaterra also identified locations of other pipes tying into the sewer.
- In June and September of 2003, Sunoco performed outfall modifications, including the construction of an underflow weir, rerouting the discharge pipe from Klondike separator, automated the skimmer, and installed the water curtain.

- In September 2005, PADEP inspections reported no odors or PID readings present in nearby residential neighborhoods to the east of the site boundary.
- In 2005, Sunoco blanked off a pipe located at the western end of the sewer reducing amount of oil observed at outfall.
- In December of 2008, Sunoco and Stantec investigations reported no PID readings east of the water curtain.

In June 2009, Sunoco and Aquaterra collected 24-hour TO-15 summa air gas samples east and west of the water curtain alongside and inside of sewer (Figure 3). The air gas sampling was performed to evaluate possible vapor migration off-site in the residential neighborhood. The air gas sample results were screened against the PADEP residential indoor air screening criteria. The analytical results of the air gas samples indicated there were no benzene detections east of the water curtain or off-site in the sewer near residential neighborhoods. Chloroform was above its screening criteria west of water curtain (Manhole No. 1) and off-site in sewer (Manhole No. 6). Concentrations of COCs were below criteria in the background ambient air sample. Methane was detected in Manhole No. 3 west of the water curtain and in Manhole No.6 located in the residential neighborhood.

3.0 SITE CHARACTERIZATION ACTIVITIES

The following sections summarize the site characterization activities that were completed in AOI 8 in support of this report. Site characterization activities were performed between May and August 2008, by Aquaterra Technologies, Inc. (Aquaterra) and Langan in coordination with Sunoco. These activities were executed in accordance with the AOI 8 Work Plan for Site Characterization which is included as Appendix L of this report. Additional site characterization activities were performed in 2009 to address PADEP's comments in the technical response letter for AOI 8 dated November 14, 2008 (Appendix D).

3.1 Shallow Soil Borings and Sampling at Non-RCRA SWMU Areas

A total of 66 soil samples were collected for analysis of site COCs from areas within AOI 8 that are outside SWMU 2. The locations of all soil and monitoring well borings are shown on Figures 3 and 8 and the boring logs are provided in Appendix C. Soil samples were collected utilizing split-spoon sampling techniques. Soil borings were

advanced to a maximum depth of two feet below grade at each unpaved location in accordance with the AOI 8 Work Plan.

Soil samples from the soil borings were submitted to Lancaster Laboratories, Inc. (LLI) of Lancaster, Pennsylvania for analysis of site COCs. A summary of the soil analytical results screened against the PADEP non-residential soil MSCs is provided as Table 4 and the results are discussed in Section 4.1. The laboratory analytical reports are provided as Appendix E.

3.2 Shallow Soil Borings and Sampling at SWMU 2

The 1991 RFI identified one SWMU in AOI 8 that required further characterization. This SWMU was identified as SWMU 2 (Storage Leaded Tank Bottoms Sludge Weathering Pad). SWMU 2 was characterized during the 2008 site characterization efforts following the investigative approach outlined in Section 1.2.2 of the AOI 8 Work Plan and summarized below:

- If materials were encountered within the leaded tank bottom areas matching the physical description of the leaded tank bottoms, then Sunoco collected samples for lead.
- If the lead results were above 450 parts per million (ppm) (PADEP's non-residential soil MSC for lead) then samples were analyzed for lead via Toxicity Characteristic Leaching Procedure (TCLP), EPA Test Method 1311.
- Delineated areas that had soils that physically resemble leaded tank bottoms, had lead concentrations greater than 450 ppm and failed the TCLP test for lead would retain the leaded tank bottom designation. If no soils were encountered that meet all three of the above mentioned criteria, then the area would no longer be classified as a leaded tank bottom area.

A detailed description of SWMU 2 and a summary of previous investigation work completed at SWMU 2 are provided in Section 1.2.1 of the AOI 8 Work Plan. To supplement data previously collected during the RCRA RFI, a total of six borings (BH-08-05, BH-08-06, BH-08-19, BH-08-20, BH-08-36, and BH-08-37) were completed in SWMU 2. The locations of these borings are shown on Figures 3 and 9 and the boring logs are provided in Appendix C. Soil samples were collected utilizing split-spoon sampling techniques. Soil borings were advanced to a maximum depth of eight feet

below grade at each location in accordance with the AOI 8 Work Plan. At boring locations BH-08-36 and BH-08-37, the existing sub grade concrete slab was mechanically broken up with a backhoe to advance the soil borings. Locations BH-08-19 and BH-08-20 were located on asphalt which was also removed with a backhoe. No concrete slab was encountered at these two locations. The soils were evaluated to determine if leaded tank bottom materials were present.

Soil samples requiring analysis were submitted to LLI for analysis of lead concentrations. A summary of the soil analytical results is provided as Table 5 and the results are discussed in Section 4.2 below. The laboratory analytical reports are provided as Appendix E.

3.3 Installation of Groundwater Monitoring Wells

Monitoring well installation activities were performed between June and July 2008 by Parrat Wolff, Inc. (PWI) of East Syracuse, New York under direct supervision of Aquaterra and Langan, and in coordination with Sunoco. There were no new wells installed during the additional 2009 site characterization activities. The locations of all monitoring wells installed in 2008 are shown on Figure 3. Monitoring wells were installed to monitor the water table aquifers beneath AOI 8. No deep monitoring wells were installed since adequate characterization data exists from the three existing deep monitoring wells in AOI 8. The monitoring well installation activities are discussed in the following sections.

3.3.1 Fill/Alluvium (Shallow) and Trenton Gravel (Intermediate) Groundwater Monitoring Wells

PWI installed 39 shallow and intermediate monitoring wells which included N-100, N-101, N-102, N-103, N-104, N-105, N-106, N-107, N-108, N-109, N-110, N-111, N-112, N-113, N-114, N-115, N-116, N-117, N-118, N-119, N-120, N-121, N-122, N-123, N-124, N-125, N-126, N-127, N-128, N-129, N-130, N-131, N-132, N-133, N-134, N-135, N-136, N-98, N-99. Monitoring wells were installed and constructed under the direct supervision of Aquaterra and Langan in accordance with the AOI 8 Work Plan. Locations of these monitoring wells are shown on Figure 3. Monitoring well borings were advanced utilizing hollow stem augers and split spoon samplers to record lithology. Locations of these monitoring wells are shown on Figures 3. Boring logs and monitoring well construction

Sunoco, Inc. Philadelphia Refinery

details and lithology are provided in Appendix C. Monitoring wells were constructed with a flush mount manhole cover or with a stickup steel casing for protection. Following construction, the monitoring wells were developed in accordance with the AOI 8 Work Plan. Well construction details are provided in Table 2.

3.3.2 Lower Sand (Deep) Groundwater Monitoring Wells

Eleven deep (Lower Sand) groundwater monitoring wells exist in AOI 8; these monitoring wells included: N-4, N-9, N-13, N-19, N-21, N-27, N-30, N-38D, N-44D, N-46D, and 50D. No additional deep groundwater monitoring wells were installed in AOI 8 as part of the site characterization activities. Four deep soil borings were completed to a maximum depth of 103 feet for further geological characterization of AOI 8. The locations of the deep monitoring wells and deep soil borings are shown on Figure 3. Monitoring well construction details are provided in Table 2 and soil boring/well construction logs are provided in Appendix C. Geologic information obtained from the deep soil borings completed in AOI 8 was used to prepare geologic cross sections provided as Figures 5a through 5c.

3.4 Groundwater Monitoring

In May 2011, Stantec performed monitoring well gauging activities from all accessible monitoring points in AOI 8. Monitoring points were gauged for depth-to-water, and if applicable, depth-to-product in accordance with the AOI 8 Work Plan. The monitoring point gauging readings are summarized in Table 3.

The groundwater monitoring data from Table 3 was used to generate a shallow/intermediate groundwater elevation contours provided as Figure 6. Groundwater gauging data from the deep (Lower Sand) monitoring wells in Table 3 was used to generate a groundwater contour figure for the deep (Lower Sand) zone in AOI 8 (Figure 7).

3.5 Groundwater Sampling

Aquaterra performed a round of groundwater sampling from accessible monitoring wells in AOI 8 in July 2008. A total of 111 groundwater samples were collected during this

groundwater sampling event. Groundwater sampling activities were completed in accordance with the AOI 8 Work Plan. The monitoring well sampling summary data sheets are provided as Appendix F.

Following monitoring well purging activities, groundwater samples were collected by lowering a disposable bailer slowly into the monitoring well to minimize excess agitation. The bailer was filled with water from the top of the water table and retrieved. Samples were then collected in laboratory-prepared bottleware and immediately placed on ice. Samples were submitted to LLI for analysis of site COCs. Once the sample was collected, the bailer, bailer cord, and nitrile gloves used to obtain the sample were discarded. Sample date, time, number, and site name were recorded on the chain-of-custody and in field books. For groundwater samples analyzed for lead, LLI filtered the samples to analyze for dissolved concentrations.

The groundwater analytical results for shallow monitoring wells were screened against the PADEP non-residential groundwater MSCs and are presented in Table 6. The groundwater analytical results for the deep monitoring wells are presented in Table 7. The laboratory analytical reports are included as Appendix E.

3.6 LNAPL Sampling

LNAPL samples for select monitoring wells in AOI 8 were previously characterized as described in the CCR. As part of the 2008 site characterization activities, Aquaterra collected LNAPL samples from a total of eleven existing monitoring wells (N-42, N-47, N-51, N-75, N-76, N-82, N-91, N-503, RW-202, RW-300 and RW-305) in AOI 8 to further characterize LNAPL in AOI 8. Eight LNAPL samples were collected from newly installed monitoring wells (N-107, N-113, N-116, N-125, N-127, N-129, N-130, and N-135). LNAPL samples were collected using a direct sampling method in accordance with the AOI 8 Work Plan. LNAPL samples were packaged in certified hazardous material shipping boxes and shipped to Torkelson Laboratories (Torkelson) of Tulsa, Oklahoma for LNAPL characterization. LNAPL characterization data included product types, density, proportions of product, degree of weathering, and similarities to other LNAPL samples collected at the refinery.

Appendix G summarizes the LNAPL characterization results for samples collected in AOI 8 as well as previous results from the CCR.

3.7 Surveying Activities

Following completion of monitoring well installation and soil boring activities, the newly installed monitoring wells and soil boring locations were surveyed by Langan to establish the location and elevation of the inner and outer casing and ground surface at each point. Well elevations were determined to the nearest 0.01 foot relative to mean sea level. Survey activities were performed by a Pennsylvania-licensed surveyor and tied to the NAVD 88 datum. The new survey data for the monitoring wells is presented in Table 2. This new survey data was used to update the Geographic Information System (GIS) and site wide database for the refinery.

3.8 Vapor Intrusion Assessment Activities

Philadelphia Firehouse Building

Based on the presence of LNAPL in monitoring well MW-7 which is located approximately 150 feet southeast of the Philadelphia Fire Department building, and since there are no monitoring points between MW-7 and the fire department building, further evaluation of the potential vapor intrusion into indoor air pathway for this building was completed in 2009. A total of four soil gas monitoring points (SG-1 through SG-4) were installed around the perimeter of the fire department building in April 2009 by Aquaterra. These soil gas monitoring points were installed adjacent to the northeast and southeast exterior walls of the building. The soil gas monitoring points were left as permanent monitoring points for use in future sampling events. The soil gas monitoring points were sampled on April 23, 2009 by Aquaterra. In addition to the soil gas point samples, on June 5, 2009, two indoor air gas samples (Firehouse Ambient and Firehouse Indoor Air) were collected by Aquaterra. The soil gas sample locations are shown on Figure 3 and the field notes and analytical summary tables are presented in Appendix H. The soil gas sampling activities were completed in accordance with the procedures provided in the AOI 8 Work Plan. The soil gas and indoor air samples were analyzed via EPA Method TO-15 by LCI.

Jackson Street Sewer Vapor Assessment

In response to question No. 5 of the PADEPs technical response letter (Appendix D), a total of four air samples were collected around and in the Jackson Street Sewer on June 5, 2009. Sunoco and Aquaterra collected 24-hour TO-15 summa air samples east

Sunoco, Inc. Philadelphia Refinery

and west of the water curtain alongside and inside of sewer. The locations of these samples are shown in Figure 3. The air samples were analyzed via EPA Method TO-15 by LCI. The following is description of each air sample location:

- One ambient background air sample (Jackson Ambient) was collected east of the water curtain;
- Manhole No.1 collected on the east side of the water curtain;
- Manhole No.2 collected on the west side of the water curtain; and
- Manhole No. 6 collected offsite on the east side of Route 76 in the vicinity of South 29th Street in a residential neighborhood.

The result of this sampling is summarized in Section 5.5.

4.0 QUALITY ASSURANCE/QUALITY CONTROL

The following sections outline the field and laboratory quality assurance/quality control measures that were incorporated into the site characterization activities. All groundwater gauging and sampling activities were completed in accordance with the field sampling procedures presented in the AOI 8 Work Plan. The complete laboratory analytical data packages for the soil and groundwater sampling events are included in Appendix E.

4.1 Equipment Decontamination

All sampling equipment was decontaminated in accordance with the field sampling procedures to prevent cross-contamination. Prior to sampling, the equipment was decontaminated with successive rinses of detergent and potable water and distilled deionized water. All down-hole equipment used in monitoring well purging, such as submersible pumps, was cleaned with an external non-phosphate detergent wash and tap water rinse. This cleaning process was followed by a flush of potable water.

4.2 Equipment Calibration

Prior to each use, the Horiba instrument was calibrated by measuring the parameters using manufacturer-provided buffer solutions, deionized water and zero oxygen solution.

4.3 Sample Preservation

Sunoco, Inc. Philadelphia Refinery

Samples were preserved, where necessary, with the addition of chemical preservatives, and by cooling the samples at 4°C before and during shipment to the laboratory. Chemical additives necessary for sample preservation were added to the sample containers by the analytical laboratory prior to releasing them to sampling personnel.

4.4 Laboratory Quality Assurance/Quality Control

For the purposes of this investigation, sample results were summarized in thirty one sample delivery groups, provided by LLI, and are evaluated in the sections above for usability. Copies of the laboratory reports are provided in Appendix E for your reference.

The laboratory performed quality assurance and quality control (QA/QC) analyses, including laboratory control spikes and laboratory control spike duplicates, matrix spikes and matrix spike duplicates, surrogate spikes, method blanks and QA/QC checks such as GC/MS instrument tuning and mass calibration, as appropriate. Laboratory QA/QC summaries were completed by the laboratory and provided in each data package, attached. The analytical data, data qualifiers, and QC results provided in these reports were evaluated to determine the confidence with which this groundwater, soil and air data could be used in the decision-making process.

Data quality indicators (DQIs) are qualitative and quantitative measures of data quality "attributes," which are descriptors used to express various properties of analytical data. Thus, DQIs are the various measures of the individual data characteristics that collectively comprise the general, all-encompassing term "data quality." Quality attributes used to assess the data usability include:

- Method selectivity/specificity
- Accuracy (bias)
- Precision
- Representativeness
- Comparability
- Completeness

Based on evaluation of these indicators the groundwater, soil and air data collected during this investigation are considered usable for characterizing the site, identifying compounds of concern, and delineating potential impacts, with the exceptions described below.

For compounds analyzed in soil (with exception of ethylene dibromide) greater than 95% percent of the data is considered usable. The remaining 5% is considered unusable because, due to matrix interference, the samples were diluted to the point that the laboratory reporting limits were elevated above the corresponding soil screening criteria (PADEP Soil MSCs) and no concentration was detected. Specifically, MTBE in samples N-109_1.0-2.0 and N-126_1.0-2.0; benzene in samples N-109_1.0-2.0, N-122_1.0-2.0, and N-126_1.0-2.0; and 1,2-dichloroethane in samples N-109_1.0-2.0, N-122_1.0-2.0, and N-126_1.0-2.0 are not considered usable for the purposes of characterization and delineation. Similarly, due to matrix interference, ethylene dibromide is also considered unusable in any sample because the laboratory reporting limits were elevated above the PADEP Soil MSC.

For compounds analyzed in groundwater (with exception of chrysene) greater than 92% percent of the data is considered usable. The remaining 8% is considered unusable because, due to matrix interference, the samples were diluted to the point that the laboratory reporting limits were elevated above the corresponding groundwater screening criteria (PADEP GW MSCs) and no concentration was detected. Specifically, 1,2-dichloroethane in samples N-23, N-34, N-35, N-58, N-61, N-119, N-133 and PZ-506; benzene in samples N-23, N-34, N-35, N-58, N-61 and PZ-506; and naphthalene in sample N-36. Similarly, due to matrix interference, chrysene is also considered unusable in any sample because the laboratory reporting limits were elevated above the PADEP groundwater MSC.

One hundred percent of the air data is considered usable, with select concentrations considered biased and therefore estimated.

Due to the number of samples collected and the high percentage of useable data, the data collected is sufficient for the completed Remedial Investigation activities. In addition, as detailed in Appendix E, few concentrations should be considered as biased because LCS/LCSD, MS/MSD and surrogate recoveries were beyond acceptable control

limits. Reviews of the biased concentrations show that it is unlikely that any of the concentrations would have exceeded the standard had the bias not occurred.

4.5 Documentation

Sunoco, Inc. Philadelphia Refinery

Chain-of-custody forms were maintained throughout the sampling program to document sample acquisition, possession and analysis. Chain-of-custody documentation accompanied all samples from the field to the laboratory. Each sample was assigned a unique number that was recorded on permanent field sheet.

5.0 SITE CHARACTERIZATION ANALYTICAL RESULTS

The following sections discuss the analytical results of the site characterization activities performed in AOI 8.

5.1 Soil Analytical Results at Non-SWMU Areas

A total of 66 soil samples were collected for analysis of site COCs from areas within AOI 8 that are outside SWMU 2. The results of the soil samples collected outside of SWMU 2 are provided in Table 4 and are summarized below. Soil samples were collected between the ground surface and two feet below the ground surface and no saturated soils were observed at these depths. The soil sample results were screened against the PADEP non-residential soil MSCs. Soil sample locations with results above their respective soil MSCs are shown in Figure 8. COCs detected in soil, above their respective non-residential soil MSCs included: benzene, naphthalene, benzo(a)pyrene and lead.

5.2 Soil Results at SWMU 2

The following approved procedures were followed in relation to potential leaded tank bottoms. Soil samples were collected for lead if materials were encountered within the leaded tank bottom sludge weathering pad area during site characterization activities matching the physical description of the leaded tank bottom materials. If the lead results exceeded 450 ppm (the PADEP non-residential MSC for lead), then the samples were analyzed for lead via TCLP, EPA Test Method 1311.

A total of six soil borings/samples (BH-08-05, BH-08-06, BH-08-19, BH-08-20, BH-08-36, and BH-08-37) were completed at SWMU 2. One sample location (BH-08-05) exhibited trace amounts of material with characteristics resembling the physical description of leaded tank bottoms and was submitted for lead analysis. The sample collected from boring BH-08-05 exhibited a lead concentration below the PADEP non-residential MSC (450 ppm) and was therefore not submitted for TCLP analysis. No evidence of leaded tank bottom materials was observed in the remaining five soil borings. The results of the sample analyses are summarized in Table 5, illustrated in Figure 9, and the logs for these borings are provided in Appendix C.

5.3 Groundwater Results

Shallow/Intermediate and Deep (Lower Sand) Monitoring Wells

The results of the groundwater samples collected from monitoring wells in the shallow/intermediate and deep groundwater zones are provided in Tables 6 and 7. The results were screened against the PADEP non-residential used aquifer (TDS<2,500) groundwater MSCs. Locations with concentrations above the groundwater MSCs are illustrated in Figure 10. A summary of the COC concentrations that were above their respective PADEP non-residential groundwater MSCs are presented below.

Shallow/Intermediate Monitoring Wells

- COCs detected in shallow/intermediate monitoring wells at concentrations above their respective non-residential groundwater MSCs included: benzene, pyrene, chrysene, phenanthrene, and naphthalene.
- Cumene, toluene, ethylbenzene, ethylene dibromide, xylenes, fluorene, MTBE, 1,2-dichoroethane and lead were not detected in AOI 8 groundwater at concentrations above their respective non-residential groundwater MSCs.

Deep (Lower Sand) Monitoring Wells

- Benzene was detected in three deep (Lower Sand) monitoring wells (N-9, N-21, N-44D) at concentrations slightly above its respective non-residential PADEP groundwater MSC.
- Toluene, MTBE, 1,2-dichoroethane, xylenes (total), cumene, ethylbenzene, ethylene dibromide, pyrene, phenanthrene, fluorene, naphthalene, and lead were

not detected in deep groundwater in AOI 8 at concentrations above their respective PADEP non-residential groundwater MSCs.

5.4 LNAPL Characterization Results

As a part of the site characterization activities for AOI 8, LNAPL samples were collected from 18 monitoring wells (N-42, N-47, N-51, N-75, N-76, N-82, N-91, N-503, RW-205, RW-300, RW-305, N-107, N-113, N-116, N-125, N-127, N-129, N-130, and N-135). This appendix also includes previous LNAPL characterization data for AOI 8 which was obtained as part of the CCR. As part of the CCR, LNAPL samples were collected from 11 monitoring wells (N-14, N-25, N-31, N-35, N-48, N-52, N-68, N-78, N-79, PZ-204, and PZ-502). The LNAPL samples collected from AOI 8 were submitted to Torkelson Geochemistry, Inc. (Torkelson) of Tulsa, Oklahoma for characterization. The extent of LNAPL, the LNAPL type, as well as the apparent thickness of LNAPL measured during the May 2011 gauging event is illustrated in Figure 11. The LNAPL product typing and characterization results are presented in Appendix G.

As part of the AOI 8 SCR/RIR, LNAPL modeling was performed using the American Petroleum Institute (API) Model. LNAPL modeling procedures, input parameters, and results are included as Appendix G. LNAPL was identified in 43 wells (N-14, N-23, N-25, N-31, N-42, N-45, N-47, N-48, N-49, N-503, N-504, N-51, N-52, N-54, N-68, N-75, N-76, N-79, N-81, N-82, N-91, PZ-204, PZ-502, RW-201, RW-203, RW-204, RW-205, RW-206, RW-300, RW-306, RW-502, N-107, N-112, N-113, N-115, N-116, N-125, N-127, N-128, N-129, N-130, N-135, and P-30) during the May 2011 groundwater gauging activities. LNAPL thicknesses ranged from sheen (0.01 feet) to 3.20 feet.

Based on the LNAPL characterization performed by Torkelson, the LNAPL types present in AOI 8 consist of four different types or mixtures of LNAPL including residual oil, lube oil, lube oil/middle distillate mixture, and middle distillate. All four LNAPL types have a high degree of weathering. The physical properties of these LNAPL types (drawn from literature sources), soil types (AOI 8 boring logs) and recent LNAPL thickness measurements (May 2011) were entered into the API Model to estimate LNAPL specific volume and seepage velocity. The input and output parameters of the updated API Model and seepage velocity calculations is presented in Appendix G.

Sunoco, Inc. Philadelphia Refinery

The distribution of LNAPL, specific volume and seepage velocities derived from the May 2011 data are similar to what was reported in the CCR. Figures depicting the results of the LNAPL modeling are included in Appendix G. Based on the LNAPL types, LNAPL modeling results and recent groundwater gauging activities, LNAPL in these wells is stable and generally immobile.

5.5 Vapor Intrusion Assessment Results

The Philadelphia Fire Department building soil gas and Jackson Street Sewer air sample locations are presented on Figure 3. The vapor intrusion assessment field notes and analytical summary tables are provided in Appendix H. The analytical laboratory reports are presented in Appendix E. Sampling techniques were completed in accordance with the procedures of the AOI 8 Work Plan. Samples were collected via EPA Method TO-15 and analyzed by LCI.

The results of the sampling are summarized below:

Philadelphia Fire Department Building

- Benzene was detected above its respective PADEP indoor air screening criteria in three of the four soil gas sample locations.
- Benzene was not detected above the PADEP indoor air screening criteria in the two indoor air samples collected from inside the fire department building.
- 1,4-dichlorobenzene was detected above the PADEP indoor air screening criteria
 in one of the samples collected inside the building; however, the presence of
 this compound in indoor air is likely attributable to background conditions at the
 time the sampling was completed because concentrations of this compound
 were not detected in the soil gas samples.

Jackson Street Sewer

In June of 2009, Sunoco and Aquaterra collected 24-hour TO-15 summa air samples east and west of the water curtain as background samples and one sample inside of the sewer. Below is a summary of those results:

 Benzene was detected above the PADEP indoor air screening criteria on-site at Manhole No. 3 sample location.

- Benzene was not detected at concentrations above the PADEP indoor air screening criteria east of water curtain or off-site.
- Chloroform was detected above the PADEP indoor air screening criteria west of the water curtain (Manhole No. 1) and off-site in the sewer (Manhole No. 6). This compound is not attributed to site COCs.
- No exceedances of indoor air screening criteria in background ambient air sample.

With the exception of the above-mentioned compounds, all other TO-15 compounds were below their respective PADEP residential indoor air screening criteria. Methane was present in two of the samples collected inside the sewer (Manhole No. 3 and Manhole No. 6); however, there are no screening criteria for this COC. The analytical results indicated that indoor air exceedances were detected west of the water curtain, but not to the east, indicating that the water curtain is effectively controlling vapor migration from the sewer. Although methane was detected east of the water curtain, it is associated with a background source.

6.0 REMEDIAL SYSTEM EVALUATION AND UPDATE

6.1 PGW Border Total Fluids Recovery System

The PGW Total Fluids Recovery System is composed of recovery wells numbered RW-200 through RW-205 and an interceptor trench with a recovery sump (RW-206). The system was installed to help prevent off-site migration of LNAPL. The system recovery network consists of total fluids recovery utilizing electric submersible pumps equipped with individual timers to control the on and off cycle of each pump. Total fluids are extracted from recovery wells RW-201, RW-202, and RW-203. Total fluids produced by the 200 series pumps are routed to the North Yard 10,000-gallon holding tank where a flow meter measures incoming fluids produced by the three recovery wells. Groundwater is passed through the tank and routed to the Point Breeze Processing Area Wastewater Treatment Plant. Accumulated LNAPL is pumped out of the 10,000-gallon holding tank as needed by a vacuum truck. The recovered LNAPL is quantified while being vacuumed from the holding tank.

The PGW Total Fluids Recovery System was taken off-line during in March 2008 due to electrical issues associated with the system and maintenance on the 10,000-gallon holding tank and has remained off-line. Although the system shut down was initiated due to maintenance issues, this shutdown allowed time to evaluate the AOI 8 recovery systems. Based on an evaluation of this system and the dissolved phase concentration in the vicinity of the PGW border, re-initiation of this system is recommended and will be further described in the Clean Up Plan.

6.2 Jackson Street Sewer Total Fluids Recovery System

This section describes activities performed, and information gathered, to address Question No. 3 of the PADEPs technical response letter (Appendix D).

According to the 1995 Brown & Root, Inc. Ground Water Remediation Project Data Book Volumes 1 and 2, the original recovery network was to include a total of nine recovery wells. The original purpose of this system was to control the LNAPL plume in the center of the North Yard and prevent LNAPL migration to the Jackson Street Sewer and Schuylkill River. Installation occurred sometime prior to March 1995 and is reflected in the system "As Builts."

The recovery network originally included a total of nine recovery wells: RW-300 through 308. Total fluids produced from the recovery wells were routed to the North Yard 10,000-gallon holding tank where a flow meter recorded the combined total fluids produced from the recovery well network. Groundwater is passed through the tank and routed to the Point Breeze Processing Area Wastewater Treatment Plant. Accumulated LNAPL is pumped out of the 10,000-gallon holding tank by a vacuum truck quarterly. Since all three AOI-8 recovery systems are routed to the 10,000-gallon holding tank the actual volume of LNAPL recovered from each individual system was not able to be determined.

The Jackson Street Sewer Total Fluids Recovery System was taken offline during the first week in March 2008 due to maintenance issues and has remained offline. Although the system was shut down due to maintenance issues, this allowed time to evaluate the system's performance.

The Jackson Street combined sewer overflow ("CSO") outfall is checked once per shift at low tide and findings are recorded twice daily by Sunoco personnel to determine if a sheen or LNAPL are present. Flow through the sewer during a severe rain storm in August 2005 damaged the outfall structure beyond repair. The outfall structure has since been removed and the installation of a slide boom structure at the outfall was completed in May 2006. An absorbent boom was placed behind the slide boom in response to a slight sheen at the outfall in April 2007. Currently, there is no evidence of oil in the Jackson Street sewer and it outfalls to the river with no controls.

Recovery wells are gauged as part of the quarterly recovery system maintenance and monitoring program to ensure the system is operating as designed. Recovery wells RW-304 and RW-308 were taken off-line in August 1999. Recovery wells RW-303 and RW-305 through RW-308 were taken off-line in August 2004 due to the absence of measurable LNAPL (>0.01 feet). These recovery wells are monitored semi-annually and will be brought back on-line if measurable LNAPL returns.

To evaluate the historical performance of the total fluids recovery system, Langan had compiled data from quarterly reports and other historical documents from 1992 through December 2010. Recovery wells (RW-301 through RW-308) were included as part of the analysis, as well as eight surrounding monitoring wells (N-20, 22, 23, 24, 25, 26, 79, and 87). Trend charts were prepared to compare the corrected groundwater elevation and apparent LNAPL thickness over time. These trend charts are presented as Appendix I. Depicted on the graphs are the dates when the pumps were shut down. If the product thickness is shown to be zero on the graphs, this indicates that either a sheen was observed or there was no measurable LNAPL. If no data point is present on the graphs, then there was no sheen or measurable LNAPL observed. Included in Appendix I, are figures presented in chorological order (by date) that depict apparent LNAPL locations, thickness, and plumes over time. The data analysis, attached graphs and figures indicate a general decreasing trend in apparent LNAPL thickness in the recovery and nearby monitoring wells over time.

Due to lack of LNAPL in the vicinity of the system (Figures 3 and 11), Sunoco intends to keep the system offline. The Jackson Street Sewer outfall will continue to be monitored to confirm lack of LNAPL presence.

6.3 Jackson Street Sewer Water Curtain

Installation of a water curtain in the Jackson Street sewer was completed during the 4th quarter of 2003. The water curtain is designed to reduce hydrocarbon odors potentially migrating from the Jackson Street sewer to the surrounding areas. The water curtain apparatus is located in the first manhole west of the interceptor chamber along 26th Street and consists of a single centrally located nozzle that emits a radial spray pattern. Water is supplied to the water curtain apparatus from the North Yard fire water system. Heat trace equipment was installed along the water feed line allowing winter operation of the water curtain.

The current water curtain system monitoring includes vapor readings from the interceptor chamber and at the manhole of the water curtain. Historically, flowrate/totalizer readings were recorded but the totalizer has been removed due to continuous fouling. Although the clogged totalizer did not restrict flow, the fouling frequently caused inaccurate or no measurements and the totalizer was removed during the 4th Quarter of 2009.

Langan and Sunoco performed field sampling activities to evaluate the effectiveness of the water curtain system with respect to preventing off-site migration of vapors. The results of this evaluation are presented in Section 6.5 of this report.

6.4 North Yard Bulkhead/No. 3 Tank Farm Separator Total Fluids Recovery System

This section describes activities performed, and information gathered, to address Question No. 4 of the PADEPs technical response letter (Appendix D).

The North Yard Bulkhead Total Fluids Recovery System currently consists of a 3,400-feet long interceptor trench with two recovery sumps (RW-500 and RW-501). The No. 3 Tank Farm Separator Total Fluids Recovery System consists of one recovery system RW-502 located in the center of the capped closed separator. These systems addressed potential migration of LNAPL into the Schuylkill River. RW-500, RW-501 and RW-502 utilize electric submersible pumps and are controlled by a timer to recover total fluids. The total fluids from the three recovery wells were pumped to the North Yard 10,000-gallon holding tank where a flow meter measured incoming fluids pumped from the recovery

Sunoco, Inc. Philadelphia Refinery

wells. Groundwater passed through the tank and was routed to the Point Breeze Processing Area Wastewater Treatment Plant. Accumulated LNAPL is pumped out of the 10,000-gallon holding tank as needed by a vacuum truck.

Regarding the systems operation and success, Langan compiled system monitoring data from the quarterly reports and other historical documents from 1992 through December 31, 2010. Recovery wells (RW-500 through RW-502) were included along with eight surrounding monitoring wells (N-55, 57, 58, 59, 61, 64, 72, and 73D). Trend charts were prepared to compare the corrected groundwater elevation and apparent LNAPL thickness over time. These charts are provided in Appendix I. If the product thickness is shown to be zero on the graphs, this indicates that either a sheen was observed or there was no measurable LNAPL. If no data point is present on the graphs, then there was no sheen or measurable LNAPL observed. Included in Appendix I are figures presented in chorological order that depict apparent LNAPL locations, thickness, and plumes over time.

The remedial system evaluation indicated a general decreasing trend in apparent LNAPL thickness in the recovery and nearby monitoring wells overtime. In the 3rd quarter of 2010, the North Yard Bulkhead and No. 3 Tank Farm Separator Total Fluids Recovery Systems were taken offline due to lack of LNAPL in the vicinity of the system. Due to lack of LNAPL in the vicinity of the system offline.

7.0 FATE AND TRANSPORT ANALYSIS

The following sections describe fate and transport modeling activities performed as part of AOI 8 site characterization.

7.1 Soil

No fate and transport modeling was completed for the soil analytical results since the soil-to-groundwater pathway is evaluated through groundwater data. Potential exposure pathways for AOI 8 are discussed in more detail in Sections 9.0 and 10.0 below.

7.2 Groundwater

Fate and transport calculations were completed for groundwater in AOI 8 to evaluate potential migration pathways/potential impacts to receptors.

Five COCs were detected in groundwater during the July 2008 groundwater sampling event at concentrations above their respective MSCs. These COCs are benzene, pyrene, chrysene, phenanthrene and naphthalene. Groundwater samples from 53 monitoring wells in AOI 8 exhibited COC detections above their respective used-aquifer, non-residential groundwater medium specific concentrations (MSCs) for one or more of the above mentioned COCs.

To address the potential future migration of these COCs, a fate and transport analysis was performed using three models developed by PADEP. The Quick Domenico Version 2 (QD) model and the SWLOAD model were used for fate and transport in groundwater. PENTOXSD was used when assessing potential impacts of groundwater on surface water from organic COCs. Site-specific data was used to complete the fate and transport calculations, when available. A detailed summary of the procedures and calculations of the modeling procedures are presented in Appendix J. The approach and results of the modeling are discussed below.

Screening and Approach to Fate and Transport Analysis

Based on groundwater flow directions derived from May 2011 groundwater elevations (Figures 6 and 7) and the locations of potential off-site receptors AOI 8 was divided into three drainage areas for fate and transport analysis. Locations of each of these drainage areas are show on Figure J.1 of Appendix J.

- Drainage Area 1 is located in the eastern portion of AOI 8. The western boundary of Drainage Area 1 was defined as the groundwater divide where groundwater flow is generally east towards the AOI 8 property line. QD modeling was used to address potential off-site impacts along the AOI 8 northeast boundary.
- Drainage Area 2 consists of the central and western portions of AOI 8 where groundwater flow is generally towards the Schuylkill River. To address potential off-site impacts along the Schuylkill River the QD model was used first; then the SWLOAD model; then, as need, PENTOXSD.

 Drainage Area 3 was not defined hydraulically like Drainage Areas 1 and 2 but was used to delineate where active remediation will be conducted. Drainage Area 3 is located along the southern AOI 8 property boundary.

Groundwater concentrations at AOI 8 are assumed to be at or near steady-state for this analysis. A detailed description of the fate and transport modeling is presented below based on the three drainage areas and the July 2008 groundwater analytical results.

Drainage Area 1 Wells

- 1. Wells with exceedences of benzene, chrysene, pyrene and phenanthrene that are located hydraulically up-gradient of wells with non-exceedences of COCs and had stable groundwater trends did not undergo analysis by QD. The Drainage Area 1 wells that fall into this category include: N-11, N-106, N-12, N-102, N-103, N-104, N-20, N-21, and N-97. These wells are located up gradient of northeast property boundary wells N-3, N-4, N-8, N-16, N-17, N-19, N-84, N-85, N-28 and N-134 which do not contain COC concentrations above their respective MSCs.
- 2. N-9, N-12 and N-101, have exceedences of one or more COCs (benzene, pyrene, chrysene and phenanthrene) and are located up gradient of the northeast property boundary where no down gradient monitoring wells exist. To assess potential migration beyond the northeast property boundary for N-12 and N-101, a QD model was constructed. Fate and transport for benzene at deep well N-9 (screened in Lower Sand) was addressed in the AOI 11 report, where it was noted that benzene concentrations at N-9 exhibited decreasing trends to non-detect. Deep monitoring wells down gradient of N-9 also exhibited non-detects and was therefore not modeled.
- 3. As a check on the results of Drainage Area 1 fate and transport evaluation, a QD simulation was created for N-106 which had the highest benzene concentration in Drainage Area 1 (410 ug/l). Benzene is the most mobile of the COCs present therefore its ability to attenuate before it reaches N-98, near the northeast property line and where benzene was not detected, was further evaluated and the modeled results supported the observed groundwater concentrations.
- 4. At all sampled monitoring well locations in Drainage Area 1, laboratory RLs for chrysene were higher than the groundwater MSC of 1.9 ug/l. To ensure that the

potential for chrysene to impact off-site groundwater was evaluated, an additional QD simulation was constructed using site conditions found at N-8 (located about 25 feet from the property boundary) using the most elevated, site-wide chrysene RL of 120 ug/l as the starting concentration.

Drainage Area 2 Wells

1. Benzene detections above the groundwater MSC in Drainage Area 2 wells could be found in two general areas. The first area was at the center of AOI 8 (which includes RW-301, RW-303, RW-304, RW-305, RW-307, RW-308, N-108, N-121, N-118, N-119, N-123, N-44D and PZ-300) and second area was near the Schuylkill River on the west side of Drainage Area 2 (which includes N-59, N-61, N-136, N-133, PZ-503, PZ-504, PZ-505 and RW-500). Fate and transport of benzene groundwater impacts originating in the center of AOI 8 were not modeled because benzene impacts were not detected hydraulically downgradient of this area. Four monitoring well locations (N-23, N-34, N-35 and N-36) at the center of AOI 8 had benzene RLs above the benzene groundwater MSC and were reported not detected. Well locations down-gradient of these four monitoring wells had no benzene detections above the groundwater MCS and therefore were not further evaluated.

Benzene groundwater impacts in wells located along the Schuylkill River were further evaluated with QD. Based on the July 2008 groundwater data, eight wells along the wooden bulkhead had detected benzene concentrations ranging from 13 ug/l to 10,000 ug/l. These eight wells are located along a 1,500 feet stretch of the Schuylkill River within approximately 250 feet from the bulkhead. A benzene isoconcentration map was constructed using the July 2008 data as shown in Figure J.3. The highest benzene concentration detected along the bulkhead was found near monitoring wells N-133 (10,000 ug/L) and N-61 (8,700 ug/L). Benzene concentrations decreased to the north and south of N-133 and N-61. To assess the entire 1,500 feet stretch of benzene impacts, the impacted area was broken into four zones to better define the variation in benzene concentration within the plume. For each zone a QD and SWLOAD model was constructed. If the SWLOAD results still exceeded the benzene surface water quality criteria (SWQC), PENTOXSD was used to derive a site-specific benzene wasteload allocation to re-screen the SWLOAD results.

N-58 and PZ-506 located along the Schuylkill River had elevated benzene RLs but was listed as not detected. QD and SWLOAD simulations for benzene at N-58 and PZ-506 were constructed using the benzene RLs as the starting concentration.

- 2. Naphthalene concentrations were detected above the groundwater MSC at three Drainage Area 2 wells (N-23, N119, and N-123) and evaluated using QD. The naphthalene RL at N-36 was greater than its MSC but listed as a not detect. No modeling was performed for naphthalene at this location because it was located in the center of AOI 8 and naphthalene impacts were not detected down-gradient of this monitoring well.
- 3. Phenanthrene concentrations were detected above the groundwater MSC at two monitoring wells (N-112 and N-128) in Drainage Area 2. Wells located down gradient of N-112 and N-128 were not impacted by phenanthrene, therefore, no fate and transport modeling was performed.
- 4. Chrysene detections above the groundwater MSC are ubiquitous in AOI 8. Due to the low affinity for transport (strong tendency to sorb to aquifer materials) and stable groundwater trends in interior wells potential impacts of chrysene on surface water were assessed at locations along the Schuylkill River only. The wells included in this evaluation included N-111, N-60, PZ-503, PZ-505, PZ-506, PZ-507 and RW-200.

Chrysene impacts in Drainage Area 2 wells located along the Schuylkill River were first screened against the chrysene SWQC found in the PA Code Chapter 93.8c. Neither chronic nor acute SWQC for chrysene have been derived for the PA Code. Therefore additional screening was done with US EPA Lowest Observable Effect Level (LOELs) for acute exposure to chrysene in the marine environment of 300 ug/l. Screening results indicate that chrysene at present concentrations does not exceed the LOEL value along the bulkhead. Groundwater is impacted by chrysene near the Schuylkill River when compared to the human health SWQC of 0.0038 ug/l. Chrysene was assessed using QD and SWLOAD. If the SWLOAD results still exceeded the groundwater quality criteria, PENTOXSD was used to derive a site-specific wasteload allocation to re-screen the SWLOAD results.

Sunoco, Inc. Philadelphia Refinery

Chrysene RLs at all sampled monitoring wells in Drainage Area 2 were higher than the chrysene groundwater MSC of 1.9 ug/l. To ensure chrysene will not impact off-site surface water, a simulation was constructed using site conditions found at PZ-504 (26 feet from the bulkhead) and the site-wide maximum chrysene RL of a 120 ug/l was used as the starting concentration. The result of this simulation was used to evaluate chrysene in Drainage Area 2 near the Schuylkill River.

5. Pyrene has a strong affinity to sorb to aquifer materials and a low affinity for transport. Therefore the assessment of pyrene for potential fate and transport was focused along the Schuylkill River.

Based on the July 2008 groundwater data, pyrene was detected above its groundwater MSC of a 130 ug/l at two monitoring well locations (N-111 and RW-200) along the Schuylkill River. Chronic and acute SWQC for pyrene were not developed in Pennsylvania. The PA Code human health SWQC for pyrene is 830 ug/l. Pyrene concentrations at RW-200 (300 ug/l) and N-111 (160 ug/l) do not exceed the human health SWQC. A screening concentration for chronic exposure to pyrene in fresh water of 0.025 ug/l was derived by Environment Canada which is below the detected pyrene concentration at N-111 and RW-200. Therefore, fate and transport modeling for pyrene was performed.

6. 1,2-dichloroethane RLs were elevated above its groundwater MSC of 5 ug/l at four monitoring well locations (N-58, N-61, N-133 and PZ-506) along the bulkhead, and one location (N-119) in the interior of Drainage Area 2. Wells located down gradient of N-119 did not contain 1,2-dichloroethane above its groundwater MSC and was therefore not modeled. To address the potential for 1,2-dichloroethane to impact surface water QD, SWLOAD and PENTOXSD models were constructed for the four locations along the bulkhead using each RL as the starting concentration.

Drainage Area 3 Wells

Drainage Area 3 wells will be addressed through active remediation and therefore were not modeled.

Sunoco, Inc. Philadelphia Refinery

QD and SWLOAD Modeling Results

Drainage Area 1

N-12

The QD modeling result for benzene, pyrene, chrysene and phenanthrene at N-12 indicates potential transport distances ranging from two to eight feet. N-12 is located 575 feet from the property line. These results indicate that there is little potential for these COCs to migrate beyond the property boundary. Individual QD and SWLOAD modeling spreadsheets can be found in Tables J.2 through J.5.

N-101

QD modeling results for chrysene at N-101 indicates potential transport distances of 4 feet. N-101 is located about 350 feet from the northeast property boundary, therefore groundwater at N-101 impacted with chrysene is not likely to migrate to the AOI 8 northeast property boundary.

N-8

This simulation was constructed to address chrysene RL data quality issues. RLs for chrysene were not met in all AOI 8 groundwater analyzed from the July 2008 groundwater sampling event. RLs for chrysene ranged from 5 ug/l to 120 ug/l while the chrysene groundwater MSC is 1.9 ug/l. To address the potential impact of chrysene at concentrations between the groundwater MSC and the maximum RL, a QD model was constructed for N-8 because of its close proximity (25 feet) to the property boundary with a starting concentration of 120 ug/l (maximum RL for chrysene in July 2008 groundwater results). QD modeling results indicate that chrysene would attenuate to a concentration below its MSC within 11 feet from the source. Based on the distances of other site wells from the property boundary chrysene is not predicted to migrate beyond the property boundary above its respective MSC.

Drainage Area 2

Chrysene

Chrysene starting concentrations used in the QD and SWLOAD modeling ranged from 8 ug/l to 120 ug/l for wells N-60, N-111, PZ-503, PZ-505, PZ-506, PZ-507 and RW-200 (Table J.1). Individual QD and SWLOAD modeling spreadsheets can be found in Tables J.6 through J.40. QD modeling results predicted chrysene transport under current aguifer conditions range from less than one to eleven feet before attenuating to

its groundwater MSC of 1.9 ug/l. This suggests that chrysene at these locations will not impact the Schuylkill River.

To address RL issues with chrysene, the closest well to the Schuylkill River, PZ-504, was modeled with at starting concentration of 120 ug/l. QD modeling predicts that chrysene will attenuate below its groundwater MSC of 1.9 ug/l within eight feet of PZ-504. This suggests that chrysene in groundwater where the RLs were above the groundwater MSC will not impact the Schuylkill River.

Benzene

As discussed, the benzene concentrations in Drainage Area 2 were divided up into four "zones" based on the benzene isoconcentrations. Starting concentration for benzene in Zones 1 through 4 are, respectively, 300 ug/l (RW-500); 8,700 ug/l (N-61); 2,400 ug/l (PZ-504); and 160 ug/l (PZ-505). QD results for benzene in Zones 1 through 4 indicate that groundwater concentrations will attenuate below its groundwater MSC in 23 feet for Zone 1; 90 feet for Zone 2; 134 feet for Zone 3; and 59 feet for Zone 4. The distances to the Schuylkill River from the most down gradient impacted wells in each zone ranges between 26 to 29 feet. These results suggest that benzene in Zones 2 through 4 have the potential to migrate and reach the Schuylkill River at concentrations greater than the groundwater MSC. Benzene in Zone 1 does not have the potential to discharge to the Schuylkill River above its MSC. SWLOAD was then used to predict groundwater benzene concentration at the Schuylkill River for Zones 1 through 4.

SWLOAD modeling results for Zone 1 predicted a benzene concentration of 2.07 ug/l in groundwater at the Schuylkill River. This concentration does not exceed the groundwater MSC, therefore a PENTOXSD model was not needed for Zone 1.

The SWLOAD model predicted groundwater concentration for benzene in Zone 2 is 947.2 ug/l which exceeds the benzene groundwater MSC. This predicted concentration also exceeds the acute fish, chronic fish and human health SWQC. Therefore the groundwater discharge volume calculated by SWLOAD for Zone 2 was used to create a PENTOXSD model to derive acute fish, chronic fish and human health wasteload allocation for Zone 2.

The SWLOAD model predicted groundwater concentration for benzene in Zone 3 is 676.4 ug/l, which is above the benzene groundwater MSC. This value also exceeds the acute fish, chronic fish and human health SWQC. Therefore the groundwater discharge volume calculated by SWLOAD for Zone 3 was used to create a PENTOXSD model to derive acute fish, chronic fish and human health wasteload allocations for Zone 3.

The SWLOAD model predicted groundwater concentration for benzene in Zone 4 is 29.03 ug/l, which is above the benzene groundwater MSC. It does not exceed the acute or chronic fish SWQC, but does exceed the human health SWQC. Therefore the groundwater discharge volume calculated by SWLOAD for Zone 4 was used to create a PENTOXSD model to derive a human health wasteload allocation for Zone 4.

QD and SWLOAD results for benzene RL problems at N-58 and PZ-506 which used the maximum benzene RL of 10 ug/l, indicates that benzene will attenuate below its MSC (Tables J.1) within 41 feet of N-58 and 11 feet of PZ-506. N-58 is about 55 feet from the Schuylkill River and PZ-506 is 130 feet from the river; therefore, potential benzene impacts at N-58 and PZ-506 are not predicted to reach the river. SWLOAD predicted a benzene concentration in groundwater of 3.96 ug/l at N-58 and <0.001 at PZ-506 at the Schuylkill River.

1,2-Dichloroethane

Elevated RLs for 1,2-dichloroethane in Drainage Area 2 were found at N-58, N-61, N-133 and PZ-506. Because these wells are located close to the Schuylkill River, there is a possibility that groundwater could be impacted with a 1,2-dichloroethane concentration below the RL but above the MSC. This possibility was addressed by constructing QD and SWLOAD models with starting 1,2-dichloroethane concentrations equal to the RL for all four locations (10 ug/l). The groundwater MSC for 1,2-dichloroethane is 5 ug/l. QD and SWLOAD results for N-61, N-133 and PZ-506 indicate that 1,2-dichloroethane in groundwater attenuates to a concentration below the MSC before it reaches the Schuylkill River. 1,2-dichloroethane at N-58 required 75 feet to attenuate below the MSC while the distance to the Schuylkill River is 55 feet. SWLOAD calculated the 1,2-dichloroethane concentration in groundwater adjacent to the Schuylkill River at 5.97 ug/l. Therefore a PENTOXSD simulation was constructed using the SWLOAD calculated groundwater discharge rate for 1,2-dichloroethane at N-58.

Pyrene

Pyrene starting concentrations used in the QD and SWLOAD modeling was 160 ug/l at N-111 and 300 ug/l at RW-200. QD modeling results predicted pyrene transport distance under current aquifer conditions would attenuate to its MSC of 130 ug/l at N-111 in <1 foot and nine feet for RW-200 (Table J.1). This suggests that chrysene at these locations will not impact the Schuylkill River.

Potential Impacts to Surface Water (PENTOXSD) Results

Three PENTOXSD simulations were constructed to address benzene groundwater impacts along the Schuylkill River on the west side of AOI 8. PENTOXSD models were constructed for Zone 2 (N-61, PZ-503), Zone 3 (N-133, PZ-504) and Zone 4 (PZ-505) (Figure J.4). Input parameters for PENTOXSD are summarized in Table J.41. As directed by PADEP the Schuylkill River Q_{7-10} flow was entered into PENTOXSD as 10% of the actual Q_{7-10} flow of 101 cubic feet per second (CFS); the harmonic mean flow for the Schuylkill River was entered in PENTOXSD as 10% of the actual harmonic mean flow of 807 CFS. The resulting wasteload allocations for benzene range from a minimum of 417,325 ug/l for human health cancer risk in Zone 3 to a maximum of 11,360,000 ug/l for chronic fish criterion in Zone 2. These results indicate that benzene groundwater concentrations near the bulkhead will not impact the Schuylkill River.

A fifth PENTOXSD model was created to address the elevated RL for 1,2-dichloroethane at N-58 for the July 2008. Flow in the Schuylkill River was identical to the previous PENTOXSD simulations. Input parameters for PENTOXSD are summarized in Table J.41. Wasteload allocations for 1,2-dichloroethane ranged from 165,191.1 ug/l (human health cancer risk level) to 1.04e8 ug/l (chronic fish criterion). PENTOXSD modeling results can be found in Tables J.41 through J.45.

Fate and Transport Modeling Conclusions

Drainage Area 1

Fate and Transport simulations indicate that groundwater concentrations of benzene, chrysene, pyrene and phenanthrene do not pose an unacceptable risk to off-site receptors.

Drainage Area 2

Fate and transport analysis of benzene, chrysene and 1,2-dichloroethane do not pose an unacceptable risk to off-site receptors.

7.3 LNAPL

As described in Appendix G, Sunoco evaluated LNAPL mobility across the site using the API LNAPL model, as a guide for assessing LNAPL volume, mobility, and recoverability across the refinery. Based on the LNAPL types (extremely weathered middle distillates, residual and lubrication oils), updated API Model output results, and recent groundwater gauging activities (May 2011) LNAPL in AOI 8 is stable and immobile.

7.4 Vapor Intrusion into Indoor Air

Occupied areas of AOI 8 include the Boiler House located in the central portion of AOI 8 and the Philadelphia Fire Department building located west of the PGW border. These buildings are shown on Figure B-1 in Appendix B. The Boiler House is operated by Sunoco and regulated by OSHA and there are no known preferential pathways that exist in the immediate area (less than 100 feet) of this occupied building.

Boiler House

The Boiler House building is greater than 100 feet from above mentioned groundwater and soil sample locations which had detections above their respective soil and groundwater MSCs. There are no known preferential pathways connecting these locations to the Boiler House. There is no known LNAPL within 100 feet of the Boiler House. The Boiler House is operated by Sunoco and is included in the indoor air monitoring program and is regulated by OSHA. Indoor air monitoring was performed by Sunoco on September 25, 2008 at the Boiler House for benzene and total VOCs using an Ultra Rae PID. The Ultra Rae is calibrated for benzene and total VOC's using 5 ppm benzene calibration gas and 100 ppm isobutylene calibration gas respectively. The Ultra Rae has a detection limit of 100 parts per billion (ppb) or 0.1 ppm for both benzene and total VOCs. Benzene and total VOCs were not detected in any location during the monitoring event.

Since the site specific standard is being applied, groundwater within some portions of AOI 8 is shallower than 5 feet, underground utilities exist and sampling was not

Sunoco, Inc. Philadelphia Refinery

completed below all areas with impervious covers, Sunoco will place a restriction in the UECA covenant for AOI 8 that will require the evaluation of the need for vapor mitigation systems to be installed for any new occupied buildings that will be constructed within AOI 8 as well as any used buildings.

Philadelphia Fire Department Building

The soil gas and indoor air samples collected at the Fire Department building were screened against the applicable indoor air screening criteria in Appendix H of this report. Based on the results, the vapor intrusion into indoor air pathway is incomplete at the Fire Department building.

Jackson Street Sewer

In response to questions No. 5 and 6 of the PADEPs technical response letter (Appendix D), a further evaluation of the sewer as a preferential migration pathway for LNAPL and vapor, was performed by Sunoco in 2009.

In June 2009 Sunoco and Aquaterra collected 24-hour TO-15 summa air gas samples east and west of the water curtain alongside and inside of sewer (Figure 3). The air gas sampling was performed to evaluate possible vapor migration off-site in the residential neighborhood. The air gas sample results were screened against the PADEP residential indoor air screening criteria. The analytical results of the air gas samples indicated that were no benzene detections east of water curtain or off-site in the sewer near residential neighborhoods. Chloroform was above its screening criteria west of water curtain (Manhole No. 1) and off-site in sewer (Manhole No. 6). Concentrations of COCs were below criteria in the background ambient air sample. Methane was detected in Manhole No. 3 west of the water curtain and in Manhole No.6 located in the residential neighborhood.

Sunoco will place a restriction in the UECA covenant for AOI 8 that will require further vapor site characterization activities and/or installation of a vapor mitigation systems for any new/existing occupied buildings within AOI 8.

8.0 SITE CONCEPTUAL MODEL

A preliminary site conceptual model (SCM) for the refinery, including AOI 8, was presented in the CCR. Data collected from the recent site characterization activities performed in AOI 8 were used to refine the SCM for this area. The revised SCM for AOI 8 is described in the following sections:

8.1 Description and Site Use

AOI 8 is the northern-most area of the refinery and is bound by the PGW plant to the south, the Schuylkill River to the west, industrial properties to the north, and urban streets to the east (Figure 1), and encompasses approximately 250 acres.

AOI 8 was an active refinery process area since the early twentieth century with process areas and ASTs. The area also included the former lube, asphalt, soap, and wax plants. The majority of AOI 8 structures were demolished between 1975 and 1980. Subsequent to decommissioning of most of the process areas, a LTU was operated from 1986 through 2000. Currently, the only remaining active facilities in AOI 8 are the asphalt dock, the boiler house, a storm water separator, fuel oil storage, butane and propane storage areas, and loading and unloading facilities. Much of AOI 8 is unimproved and many of the ASTs have been removed. There is one RCRA SWMU located in AOI 8 that was addressed in various stages of previous RCRA investigations as part of the EPA Corrective Action Process. The current, historic uses/investigations and approximate limits of impervious surfaces are depicted on Figure B-1 provided in Appendix B.

AOI 8 is located within a fenced and secured area to prevent unauthorized access. Prior to any work being completed within AOI 8, appropriate work permits, safety and security measures must be approved by Sunoco Refinery personnel. AOI 8 is under the control of Sunoco's health and safety administrative procedures and is regulated by OSHA. Direct contact to site soils (soils greater than two feet beneath the ground surface) is controlled by Sunoco's on-site permit and personal protective equipment (PPE) procedures. The current and future intended use of AOI 8 is non-residential.

8.2 Geology and Hydrogeology

The following summarizes relevant information concerning geology and hydrogeology in AOI 8:

Geology

- Fill materials are present throughout AOI 8.
- In the western portion of AOI 8, the Pleistocene age formations have been eroded and replaced with alluvium. The alluvium is deposited atop bedrock and extends to the central and northern portions of AOI 8, but is absent in the eastern portion. Along the eroded edge (central portion of AOI 8), the alluvium is in direct contact with Trenton Gravel, Lower/Middle Clay, Lower Sand and/or bedrock.
- Trenton Gravel is present in the northern, central and eastern portions of AOI 8 but is absent in the western portion where it has been eroded and replaced with alluvium. The Lower/Middle Clay is present beneath AOI 8 as a wedge that thickens towards the west and the Schuylkill River but is absent between the central and western portions of AOI 8 where it has been eroded and replaced with alluvium. The Lower Sand overlies bedrock in the eastern and central portions of AOI 8, but is absent in the northwestern and western portions where it has been eroded and replaced with alluvium.
- The depth to bedrock beneath AOI 8 increases towards the south.

<u>Hydrogeology</u>

• A groundwater flow divide, trending northwest to southeast, is present in the central portion of AOI 8 in both the shallow and deep groundwater zones. This divide generally corresponds with the eastern extent of the alluvium materials deposited following the erosion and removal of the Pleistocene age deposits. In shallow and intermediate groundwater zones, groundwater on the east side of the divide flows to the northeast and groundwater on the west side of the divide flows to the southwest. In the deep zone, groundwater on the west side of the divide flows to the east and southeast and groundwater on the west side of the divide flows to the southwest.

- The shallow groundwater gradient in the western portion of AOI 8 is relatively flat with some depressions and mounds at isolated locations. Along the western AOI 8 boundary, shallow groundwater flow is more pronounced towards the bulkheads and River.
- The shallow groundwater gradient in the eastern and southern portions of AOI 8 is relatively flat with some depressions and mounds at isolated locations.
- A downward vertical flow gradient exists between the shallow and deep zone as indicated by the groundwater elevations in the following monitoring well pairs: N-3/N-4, N-12/N-13, N-8/N-9, N-18/N-19, N-20/N-21, N-29/N-30, N-38/N-38D, N-43/N-44D, N-47/N-46D and N-51/N-50D. This is consistent with vertical gradients elsewhere in the refinery.

8.3 Compounds of Concern

The following summarizes relevant information concerning COCs in AOI 8:

Shallow Soil

- COCs detected in shallow soil at concentrations above their respective non-residential soil MSCs included: benzene, naphthalene, benzo(a)pyrene and lead.
- Toluene, ethylbenzene, ethylene dibromide, 1,2-dichloroethane, total xylenes, MTBE, cumene, anthracene, pyrene, benzo(g,h,i)perylene, benzo(b)fluoranthene, chrysene, benzo(a)anthracene, phenanthrene and flourene were not detected in shallow soil samples at concentrations above their respective PADEP nonresidential soil MSCs.

SWMU 2

 Materials resembling leaded tank bottoms were observed in one boring location (BH-08-05) at SWMU 2. Soil from this boring exhibited a lead concentration below the PADEP non-residential MSC (450 ppm) and was therefore not submitted for TCLP analysis. No other evidence of leaded tank bottom materials were observed in all other soil borings advanced in the area of SWMU 2.

Groundwater

Groundwater samples were collected from monitoring wells that did not contain LNAPL and that were accessible. This included monitoring wells that screened both the shallow/intermediate and lower sand units. The results of the groundwater samples are summarized below by corresponding hydrogeologic zone.

Shallow/Intermediate

- COCs detected in shallow groundwater at concentrations above their respective non-residential groundwater MSCs included: benzene, pyrene, chrysene, phenanthrene, and naphthalene.
- Cumene, toluene, ethylbenzene, ethylene dibromide, xylenes (total), fluorene, MTBE, 1,2-dichoroethane and lead were not detected in shallow groundwater at concentrations above their respective PADEP non-residential MSCs.

Deep (Lower Sand)

- Benzene was detected in three deep (Lower Sand) monitoring wells (N-9, N-21, N-44D) at concentrations slightly above its respective non-residential PADEP MSC.
- Toluene, MTBE, 1,2-dichoroethane, xylenes (total), cumene, ethylbenzene, ethylene dibromide, pyrene, chrysene, phenanthrene, fluorine, naphthalene, and lead were not detected in deep groundwater at concentrations above their respective PADEP non-residential MSCs.

The exposure assessment completed for the COCs above the MSCs is discussed in Section 8.0 of this report.

8.4 LNAPL Distribution and LNAPL Mobility

The following summarizes relevant information concerning LNAPL distribution in AOI 8:

- There are four different types or mixtures of LNAPL were identified in AOI 8
 which includes residual oil, lube oil, lube oil/middle distillate mixture, and middle
 distillate.
- Based on LNAPL modeling, the LNAPL type, degree of weathering, groundwater flow/gradients, presence of a sheet pile/bulk head walls, the absence of LNAPL

in the surrounding monitoring wells, and the occurrence of LNAPL in these monitoring wells over time, LNAPL is considered to be stable and immobile.

8.5 Fate and Transport of COCs

No fate and transport modeling was completed for the soil analytical results since the only potential exposure pathway to soil is by direct contact. The soil-to-groundwater pathway is evaluated through groundwater data.

Drainage Area 1

Fate and Transport simulations indicate that groundwater concentrations of benzene, chrysene, pyrene and phenanthrene do not pose an unacceptable risk to off-site receptors.

Drainage Area 2

Fate and transport analysis of benzene, chrysene and 1,2-dichloroethane do not pose an unacceptable risk to off-site receptors.

Drainage Area 3

Drainage Area 3 wells will be addressed through active remediation. The groundwater and surface water modeling is described in detail in Appendix J.

8.6 Potential Migration Pathways and Site Receptors

The following summarizes potential migration pathways and site receptors for AOI 8.

- AOI 8 is situated within a fenced, secured area to prevent unauthorized access.
- The potential direct contact pathway to soil greater than two feet is deemed incomplete based on Sunoco's existing permitting procedures which protect against exposure to soil encountered in excavations. This pathway may be further evaluated based on site redevelopment.
- The potential direct contact pathway to groundwater is deemed incomplete based on Sunoco's existing permitting procedures which prevent exposure to groundwater that may be encountered in excavations.

Sunoco, Inc. Philadelphia Refinery

• The need for further vapor site characterization activities and/or the installation of vapor mitigation systems for future occupied buildings will be evaluated on a case by case basis.

 The water curtain in the Jackson Street sewer effectively reduces hydrocarbon odors and vapors potentially migrating from the Jackson Street sewer to the surrounding areas.

9.0 HUMAN HEALTH EXPOSURE ASSESSMENT/RISK ASSESSMENT

Based on the current and future intended non-residential site use for AOI 8, an exposure assessment was conducted for compounds that were above the non-residential statewide health standards in AOI 8. Potential human health exposures for the refinery are for an industrial worker scenario. The media evaluated included groundwater, shallow soil, and subsurface soil (greater than two feet below grade).

The potential direct contact pathway for soil (greater than two feet), groundwater and LNAPL under the industrial scenario is eliminated through Sunoco's established excavation procedures, PPE requirements and soil handling procedures described in the CCR. However, because direct contact to shallow soils could occur outside of excavation activities, shallow soil samples were collected in non-paved areas of AOI 8 to assess this potential exposure pathway.

The following table serves as a summary of potential human health exposure pathways that can be reasonably expected under the current and intended future non-residential use for AOI 8. The table lists potentially contaminated media, potential receptors for these media, and a summary of whether any potentially complete exposure pathways exist at AOI 8 from the media to these receptors.

Exposure Pathway Evaluation Summary

Contaminated Media	Residents	Workers	Day Care	Construction	Trespassers	Recreation	Food
Groundwater	NA	No ⁽¹⁾	NA	No ⁽²⁾	No	NA	NA
Air (indoor)	NA	No (3)	NA	No ⁽³⁾	No	NA	NA
Soil <2 feet bgs.	NA	Yes	NA	Yes	No	NA	NA
Soil >2 feet bgs.	NA	No ⁽⁴⁾	NA	No ⁽⁴⁾	No	NA	NA
Surface Water	NA	No ⁽⁵⁾	NA	No ⁽⁵⁾	Na	NA	NA
Sediment	NA	NA	NA	NA	Na	NA	NA
LNAPL	NA	No ⁽¹⁾	NA	No ⁽²⁾	Na	NA	NA

Notes:

- (1) No complete groundwater or LNAPL pathways exist for workers that are not addressed through on-site permitting procedures and PPE.
- (2) No complete groundwater or LNAPL pathway exists for construction workers that are not addressed through on-site permitting procedures and PPE.
- (3) No current complete pathway to indoor air exists based on the evaluation described in Section 6.5.
- (4) No complete pathway exists for site soil >2 feet deep that are not addressed through on-site permitting procedures and PPE.
- (5) No complete pathway exists for surface water or sediment that is not addressed through on-site permitting procedures and PPE.

Na - Not applicable

No - No potential complete exposure pathway

Yes - Potential complete exposure pathway

A more detailed evaluation of each of these potential human health exposure pathways is presented in the following sections by media.

9.1 Surface Water

There are no surface water features located within AOI 8. The nearest surface water body to AOI 8 is the Schuylkill River which borders the western site boundary (Figure 2). A sheet pile wall and bulkhead are located along the western boundary of the site. Shallow/intermediate groundwater interaction with surface water is limited by the above referenced sheet pile wall and bulkhead.

Based on the location of the sheet pile wall and bulkhead, groundwater flow, and the results of the groundwater modeling for monitoring wells where groundwater samples were above the groundwater MSCs, none of the constituents detected in groundwater will cause an in-stream violation of surface water quality criteria for the Schuylkill River.

9.2 Shallow Soils (0-2 Feet Below Grade)

The soil-to-groundwater pathway is being addressed through the groundwater pathway discussed in Section 9.3.

Direct Contact Exposure

Shallow soil samples collected and analyzed as part of the AOI 8 characterization activities exhibited concentrations of benzene, benzo(a)pyrene, naphthalene and lead above their respective non-residential direct contact MSCs. In accordance with Section IV of the PADEP's Technical Guidance Manual, site-specific standards for lead and benzene were calculated using PADEP default intake parameters for an onsite worker and a risk level of 10⁻⁴. For calculating a site-specific standard for on-site workers exposed to lead, Sunoco used the Society of Environmental Geochemistry and Health (SEGH) model used by PADEP to develop the non-residential soil MSCs.

The site-specific standards for the organic compounds (calculated in Appendix K, Tables F-1 through F-4) are as follows:

Compound	Calculated Site-Specific Standard (mg/kg)
Benzene	2,160
Naphthalene	56,780
Benzo(a)pyrene	109
Lead	1,708

The site-specific screening level for benzene was calculated for inhalation based on the calculation specified in 25 Pa. Code § 250.307(b), and for naphthalene and benzo(a)pyrene for ingestion based on the calculations specified in 25 Pa. Code § 250.306(b). These calculations used the PADEP's default parameters and an updated target risk level of 1E-4, in consideration of the site-specific conditions (PADEP's default target risk level is 1E-5).

As presented in Table F-1 through F-4, based on the revised target risk level, the derived site-specific standards for benzene, naphthalene and benzo(a)pyrene are calculated for an onsite worker and are consistent with the values used in the previous AOI SCRs prepared for the refinery. Concentrations of benzene, naphthalene and benzo(a)pyrene detected in the shallow soil samples collected in AOI 8 are below the site-specific standards and, therefore, risk to an on-site worker due to exposure is considered to be within the acceptable Act 2 range.

The site-specific standard for lead based on the SEGH model presented in Appendix K was calculated to be 1,708 mg/kg for a worker. The site-specific screening level for lead was calculated for ingestion. As presented in 25 Pa. Code § 250.306(e), Appendix A, Table 7, the non-residential soil screening value for lead is based on the method presented in the report 'The Society for Environmental Geochemistry and Health (SEGH) Task Force Approach to the Assessment of Lead in Soil' (Wixson, 1991). The model used by the PADEP and developed by SEGH was also used to calculate the site specific criterion for the refinery. Based on the SEGH model and PADEP's default parameters, PADEP's non-residential direct contact MSC default value for lead in shallow soil is 1,000 mg/kg. To develop a site-specific criterion for lead, some of the parameters used by the PADEP were updated in consideration of site-specific conditions and updated lead data collected from recent studies.

As presented in Table F-4 of Appendix K, based on the revised parameters, the derived site-specific standard for lead in soil is 1,708 mg/kg for a refinery worker. Concentrations of lead detected in the shallow soil samples collected in AOI 8 are below the site-specific standard and, therefore, risk to an on-site worker due to exposure to lead is considered to be within the acceptable Act 2 range.

In addition to calculating the site-specific standards for benzene, naphthalene, benzo(a)pyrene, and lead, the cumulative risk of exposure was also calculated. Lead exposure is dependent on the blood/lead concentration and not risk based; therefore, lead could not be incorporated into the cumulative risk calculation.

The cumulative hazard index is the combined index for exposure to non-carcinogenic compounds (naphthalene) and should not exceed 1. As presented in Table F-5 of Appendix K, the cumulative hazard index for exposure to the non-carcinogenic compounds is less than the PADEP's requirement of 1.0 and therefore no remedies are required for AOI 8 to address exposure to non-carcinogenic compounds.

The total cumulative risk is the combined risk of exposure to the concentrations of carcinogenic compounds (benzene and benzo(a)pyrene) and, in accordance with the TGM, the total cumulative risk should not exceed 10⁻⁴. As presented in Table F-5, the total cumulative risk of exposure to the carcinogenic compounds in AOI 8 is 1.69^{E-4}, and exceeds the acceptable risk limit. Potential exposure to carcinogenic compounds in the

areas of N-99 and N-134 (which have the highest concentrations of benzo(a)pyrene), will be addressed by Sunoco through implementation of a remedy which will either remediate or eliminate the potential pathway to onsite workers. Once these areas are addressed as will be proposed in the Cleanup Plan, the total cumulative risk will be below 10⁻⁴.

9.3 Groundwater

Sunoco, Inc. Philadelphia Refinery

Results of the groundwater sampling indicated COCs at concentrations above their respective non-residential groundwater MSCs, included benzene, pyrene, chrysene, phenanthrene, and naphthalene. Concentrations of these COCs to impact off-site receptors are limited due to the direction of groundwater flow. In addition, pyrene, chrysene, phenanthrene and naphthalene groundwater impacts do not migrate very far (tens of feet) from their respective sources; this is due primarily to a strong tendency for these compounds to partition to soils during transport. Based on the QD, SWLOAD and PENTOXSD fate and transport analysis, concentrations of the above mentioned COCs are not expected to exceed the groundwater MSCs at the site boundary or have an unacceptable impact on site receptors (Schuylkill River to the west and/or residential areas to the east).

Excavations in AOI 8 are governed by Sunoco's permitting procedures which protect against potential exposures to groundwater that could be encountered in an excavation. Also, there are no complete direct contact exposure pathways for groundwater within AOI 8 because of on-site refinery safety procedures and required PPE. Previous investigations and well searches verified that no wells located within 1.5 miles of the refinery are used for drinking water or agricultural use.

9.4 LNAPL

There are no complete direct contact exposure pathways for LNAPL within AOI 8 because of on-site permitting procedures and required PPE.

9.5 Vapor

Based on the results of the vapor intrusion assessment completed at the Philadelphia Fire Department Building indicated that concentrations of COCs are below the indoor air screening criteria.

Sunoco, Inc. Philadelphia Refinery

Based on the results of the assessment activities completed at the Jackson Street Sewer, the water curtain is successfully reducing hydrocarbon odors and vapors that potentially could migrate from the Jackson Street sewer to the surrounding areas.

Further evaluation (i.e. soil gas samples) will be completed to assess the impact to indoor air or vapor mitigation systems will be installed in any occupied buildings constructed/used at the refinery dependent upon site redevelopment.

10.0 ECOLOGICAL ASSESSMENT

The majority of AOI 8 is covered with soil and gravel. Some areas are covered by impervious surfaces as shown in Appendix B. The soil and gravel-covered portions of AOI 8 are not likely to serve as a breeding area, migratory stopover, or primary habitat for wildlife. In 2011, a survey of endangered, threatened and special concern wildlife was conducted by submitting a request to the Pennsylvania Natural Diversity Inventory (PNDI) data base. No endangered, threatened or special concern wildlife was identified in AOI 8 using these maps or during historical investigations. Based on this information, there are no terrestrial ecological receptors of concern for AOI 8 and no related assessment was necessary.

No surface water features are located in AOI 8. The nearest surface water body to AOI 8 is the Schuylkill River which borders the western boundary. Sheet pile and wooden bulkheads are present between AOI 8 and the Schuylkill River as illustrated in Figure 2. Groundwater interaction with surface water/sediment is limited by the above-referenced walls. Based on QD, SWLOAD and PENTOXSD fate and transport analysis, the presence of impacted groundwater in AOI 8 should not pose a threat to surface water.

11.0 COMMUNITY RELATION ACTIVITIES

A Community Relation Plan (CRP) that includes public involvement with local residents to inform them of the anticipated investigations and remediation activities was completed as part of the NIR submittal in 2006. The purpose of this CRP is to provide a mechanism for the community, government officials, and other interested or affected citizens to be informed of on-site activities related to the investigation activities at the Site. This plan incorporates

aspects of public involvement under both PADEP's Act 2 program and EPA's RCRA Corrective Action program. This report and future Act 2 reports will include the appropriate municipal and public notices in accordance with the provisions of Act 2. Notices will be published in the Pennsylvania Bulletin and a summary of the notice will appear in a local newspaper. As part of the CRP, Sunoco intends to hold an initial public meeting in the city of Philadelphia to present the strategy and give status updates of the project at the CAP meeting on an annual basis.

A copy of the NIR and the Act 2 report notifications for this SCR/RIR are included in Appendix A.

12.0 CONCLUSIONS AND RECOMMENDATIONS

Based on the results of the completed activities, the following conclusions and recommendations have been developed for AOI 8:

Soil Outside of SWMU 2

- Concentrations of benzene, naphthalene, benzo(a)pyrene and lead detected in shallow soil samples collected in AOI 8 were above their respective non-residential soil MSCs; however they were below the calculated site-specific standards. The total cumulative risk of exposure to the carcinogenic compounds in AOI 8 is 1.69E⁻⁴, and exceeds the acceptable risk limit. Potential exposure to carcinogenic compounds in the areas of N-99 and N-134 (which have the highest concentrations of benzo(a)pyrene), will be addressed by Sunoco through implementation of a remedy which will either remediate or eliminate the potential pathway to onsite workers. As part of the Cleanup Plan for AOI 8, these areas will be addressed and the total cumulative risk will be below 10⁻⁴. Selected soil samples of ethylene dibromide will also be collected due to the RLs exceeding the MSCs and the results will be reported in the Cleanup Plan.
- With regard to the potential direct-contact pathway to deeper soil (i.e., greater than 2 feet deep) and the soil-to-groundwater pathway, the direct contact pathway to soil greater than 2 feet beneath the ground surface at the refinery is incomplete because of on-site procedures and PPE requirements that protect onsite workers from exposure. This pathway may be further evaluated under redevelopment scenarios. The soil-to-groundwater pathway was evaluated using shallow groundwater data as is discussed below.

Groundwater

- Five COCs (benzene, pyrene, chrysene, phenanthrene, and naphthalene) were detected in groundwater during the July 2008 groundwater sampling event at concentrations above their respective used-aquifer, non-residential groundwater MSCs. Based on QD, SWLOAD, and PENTOXD fate and transport simulations, the presence of the bulkhead/sheet pile wall, groundwater flow direction and the proposed re-start of remedial activities along the PGW border, concentrations of the above mentioned COCs are not expected to exceed the groundwater MSCs at the site boundary and or affect site receptors (Schuylkill River to the west and/or residential areas to the east).
- Chrysene, 1,2,4-trimethylbenzene, and 1,3,5-trimethylbenzene will be evaluated in select wells and the results will be documented in the Cleanup Plan due to the RL exceedances of the groundwater MSCs. Based on the conservative fate and transport modeling it is not expected that these results will alter the results of this RIR.

Vapor

The results of the vapor intrusion screening evaluation using the PADEP guidance indicated:

- Results of the soil gas and indoor air sampling completed at the Philadelphia Fire
 Department Building indicated that concentrations of COCs are below the indoor air
 screening criteria.
- The Jackson Street Sewer analytical results indicated that indoor air exceedances were
 detected west of the water curtain, but not to the east, indicating that the water curtain
 is effectively controlling vapor migration from the sewer. Although methane was
 detected east of the water curtain, it is associated with a background source.
- The need for further vapor site characterization activities and/or the installation of vapor mitigation systems for future/existing occupied buildings will be performed per the UECA covenant as part of redevelopment activities, as necessary.

LNAPL

• The horizontal extent of the LNAPL plume relative to the site boundaries has been delineated and mobility of the identified LNAPL is low.

- Based on the remedial system evaluations performed on the Jackson Street Sewer and the Bulkhead systems, Sunoco intends to keep the systems offline. The Jackson Street Sewer outfall will continue to be monitored to confirm the lack of LNAPL presence.
- Impacted groundwater and LNAPL (lube oil and residual oil) along the PGW border in Drainage Area 3 will be addressed by the existing PGW Border Total Fluids Recovery System. The effectiveness of the PGW Border Total Fluids Recovery system and the need to expand the system is being further evaluated by Sunoco. Updates and proposed modifications to the existing remediation system will be provided in the quarterly reports or the Cleanup Plan prepared for the refinery.
- There are no complete direct contact exposure pathways for LNAPL within AOI 8 because of on-site permitting procedures and required PPE.

RCRA SWMUs

 No leaded tank bottom materials were identified meeting all of the established criteria in AOI 8. Therefore, Sunoco is requesting a comfort letter for SWMU 2 in AOI 8 from EPA.

13.0 SCHEDULE

The proposed schedule for future Site activities is:

- Submittal of a Cleanup Plan following PADEP approval of the SCR/RIR and in concert with redevelopment plans;
- Submittal of a Final Report; and
- Continue quarterly monitoring activities and reports.

14.0 SIGNATURES

The following parties are participating in the remediation at this time and are seeking relief from liability under Act 2 of 1995:

James Oppenheim

Sunoco Inc. (R&M)

This Act 2 RIR has been prepared in accordance with the final provisions of Act 2 and the June 8, 2002 Land Recycling Program Technical Guidance Manual.

15.0 REFERENCES

Sunoco, Inc. Philadelphia Refinery

Groundwater Resources of the Coastal Plain Area of Southeastern Pennsylvania. Greenman, Topographic and Geologic Survey, Bulletin W-13, 375 pp., David W., Rima, Donald R., Lockwood, William N. and Meisler, Harold. 1961.

Simulation of Ground-Water Flow in the Lower Sand Unit of the Potomac-Raritan-Magothy Aquifer System, Philadelphia, Pennsylvania, U.S. Geological Survey, Water-Resources Investigations Report 86-4055, Sloto, R. A., 1988.

RCRA Facility Investigation Work Plan, Philadelphia Refinery, Sun Refining and Marketing Company, Philadelphia Pennsylvania, CHM2HILL, May 1991.

The Atlantic Lead Weathering Pad Final Closure Report, Sun Refining and marketing Company, Atlantic Refining and marketing Corporation, Philadelphia Refinery, K.W. Brown & Associates, Inc., March 1991.

Comprehensive Remedial Plan, Philadelphia Refinery, Sun Company (R&M), ENSR Consulting and Engineering, September 1993.

Remedial Action Plan for the NO.3 Tank Farm Separator, Sun Company (R&M), Philadelphia Refinery, ENSR Consulting and Engineering, October 1993.

Remedial Action Plan for the North Yard Bulkhead, Sun Company (R&M), Philadelphia Refinery, ENSR Consulting and Engineering, October 1993.

Remedial Action Plan for the North Yard Southern Property Boundary, Sun Company (R&M), Philadelphia Refinery, ENSR Consulting and Engineering, December 1993.

Ground Water Remediation Project Data Book, Volumes 1 and 2, 1995 Brown & Root, Inc.

Corrective Measures Study Work Plan, Sun Company, Inc. (R&M), Philadelphia, PA, ENSR Consulting and Engineering, April 1997.

Landfarm Treatment Unit Closure Activation Report, Philadelphia Refinery Point Breeze

Processing Area, Blazosky Associates Inc, November 2000.

Simulation of Ground-Water Flow in the Potomac-Raritan-Magothy Aquifer System Near the Defense Supply Center Philadelphia, and the Point Breeze Refinery, Southern Philadelphia County, Pennsylvania, Water-Resources Investigations Report 01-4218, 20 pp, Schreffler, C. L., U.S. Department of the Interior, 2001.

Amended Closure Plan, Sunoco, Inc. Philadelphia Refinery, Point Breeze Processing Area, Land Treatment Unit, Blazosky Associates, Inc., November 1988 and amended November 2002 and May 2004.

Consent Order and Agreement by and between the Commonwealth of Pennsylvania, Department of Environmental Protection, Atlantic Refining & Marketing Corporation and Sunoco Company, Inc. (R&M), August 1996, and amended December 2000 and July 2004.

Amended Post-Closure Plan, Sunoco, Inc. Philadelphia Refinery, Point Breeze Processing Area, Land Treatment Unit, Blazosky Associates, Inc., November 1988 and amended June 2003 and May 2004.

U.S. Department of the Interior, Geohydrology and Ground-Water Resources of Philadelphia, Pennsylvania, U.S. Geological Survey, Water-Supply Paper 2346.

Current Conditions Report and Comprehensive Remedial Plan, Sunoco Inc., Philadelphia, PA, prepared by Langan Engineering and Environmental Services June 30, 2004.

Table 1
Compounds of Concern for Soil
AOI 8 Site Characterization/Remedial Investigation Report
Sunoco Philadelphia Refinery
Philadelphia, Pennsylvania

	SOIL
METALS	CAS No.
Lead (total)	7439-92-1
VOLATILE ORGANIC COMPOUNDS	CAS No.
1,2-dichloroethane	107-06-2
Benzene	71-43-2
Cumene	98-82-8
Ethylbenzene	100-41-4
Ethylene dibromide	106-93-4
Methyl tertiary butyl ether	1634-04-4
Toluene	108-88-3
Xylenes (total)	1330-20-7
SEMI-VOLATILE ORGANIC COMPOUNDS	CAS No.
Anthracene	120-12-7
Benzo(a)anthracene	56-55-3
Benzo (g,h,i) perylene	191-24-2
Benzo(a)pyrene	50-32-8
Benzo(b)fluoranthene	205-99-2
Chrysene	218-01-9
Fluorene	86-73-7
Naphthalene	91-20-3
Phenanthrene	85-01-8
Pyrene	129-00-0

Notes:

^{1.} Constituents are from Pennsylvania Corrective Action Process (CAP) Regulation
Amendments effective December 1, 2001; provided in Chapter VI, Section E (pgs. 29-30) of
PADEP Document, Closure Requirements for Underground Storage Tank Systems,
effective April 1, 1998 and the March 18, 2008 revised PADEP Short List.

Table 1 (continued)

Compounds of Concern for Groundwater AOI 8 Site Characterization/Remedial Investigation Report Sunoco Philadelphia Refinery Philadelphia, Pennsylvania

GROU	INDWATER
METALS	CAS No.
Lead (dissolved)	7439-92-1
VOLATILE ORGANIC	CAS No.
COMPOUNDS	0/10/110.
1,2-dichloroethane	107-06-2
Benzene	71-43-2
Cumene	98-82-8
Ethylbenzene	100-41-4
Ethylene dibromide	106-93-4
Methyl tertiary butyl ether	1634-04-4
Toluene	108-88-3
Xylenes (total)	1330-20-7
SEMI-VOLATILE ORGANIC COMPOUNDS	CAS No.
Chrysene	218-01-9
Fluorene	86-73-7
Naphthalene	91-20-3
Phenanthrene	85-01-8
Pyrene	129-00-0

Notes

1. Constituents are from Pennsylvania Corrective Action Process (CAP) Regulation Amendments effective December 1, 2001; provided in Chapter VI, Section E (pgs. 29-30) of PADEP Document, *Closure Requirements for Underground Storage Tank Systems*, effective April 1, 1998.

								0.15	:					Well Construction	Details ²			
AOI#	Well ID	Former Well ID ³	Well Status/ Description	Northing	Easting	Well Type	Well Classification (Shallow, Intermediate, Deep) ⁴	Soil Boring Log Available (Y/N)	Construction Detail Available (Y/N)	Date of Well Completion	Well Completion Depth (ft. bgs)	Well Diameter (in)	Top of Inner Casing Elevation (ft. msl) (NAVD88)	Ground Surface Elevation (ft.) (NAVD88)	Top of Screen Elevation (ft) (NAVD88)	Bottom of Screen Elevation (ft) (NAVD88)	Depth to Screen (ft. bgs)	Screen Length (ft.)
8	River 2	River Gauge 2		224676.427	2682316.050	Staff Gauge								8.17				
8	N-1	B-2, NS-2		228366.226	2682437.196	Monitoring Well	Shallow	Y	N	7/22/85	8	-	24.69	22.57			-	-
8	N-10	B-65		227333.894	2682477.634	Monitoring Well	Shallow	Υ	N	7/29/85	10	-	19.96	17.59	-		-	
8	N-100	-		228209.793	2682716.186	Monitoring Well	Intermediate	Y	Y	6/13/08	20	2	27.01	24.99	14.99	4.99	10	10
8	N-101 N-102			227221.776	2683652.840 2683869.606	Monitoring Well	Intermediate	Y	Y	6/16/08 6/5/08	23 30	2	27.15 33.21	25.43	12.43	2.43	13	10 10
8	N-102 N-103			227035.480 226781.705	2683869.606	Monitoring Well Monitoring Well	Intermediate	Y	Y	6/6/08	27	2 2	29.33	31.59 27.56	11.59 10.56	1.59 0.56	20 17	10
0	N-103			226914.012	2683419.549	Monitoring Well	Intermediate Intermediate	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	6/16/08	25	2	27.64	25.96	10.96	0.96	15	10
8	N-105			226745.373	2683442.708	Monitoring Well	Intermediate	Y	Y	6/18/08	25	2	28.11	26.26	11.26	1.26	15	10
8	N-106	-		227044.243	2682976.538	Monitoring Well	Intermediate	Y	Y	6/5/08	19	2	23.03	21.50	12.50	2.50	9	10
8	N-107	-		226909.904	2683133.246	Monitoring Well	Intermediate	Y	Y	6/20/08	22	2	26.37	24.38	12.38	2.38	12	10
8	N-108			226848.509	2682983.450	Monitoring Well	Intermediate	Y	Y	5/29/08	18	2	22.41	22.97	15.12	5.12	8	10
8	N-109	-		226649.194	2681604.972	Monitoring Well	Intermediate	Y	Y	7/3/08	20	2	18.42	15.54	10.54	-4.46	5	15
8	N-11	B-14		227226.306	2682914.822	Monitoring Well	Intermediate	Y	N	11/13/84	25	-	29.74	27.33	-		-	
8	N-110	-	Destroyed	226640.022	2680765.883	Monitoring Well	Intermediate	Y	Y	5/14/08	15	2	12.11	9.92	4.92	-5.08	5	10
8	N-111	-		226514.002	2680519.261	Monitoring Well	Intermediate	Y	Y	5/14/08	15	2	10.76	-	5.52	-4.48	5	10
8	N-112			226328.461	2681663.567	Monitoring Well	Intermediate	Y	Y	5/14/08	20	2	15.72	13.85	8.86	-6.14	5	15
8	N-113	-		226054.267	2681733.331	Monitoring Well	Intermediate	Y	Y	5/15/08	15	2	14.15	12.32	7.32	-2.68	5	10
8	N-114	-		226224.645	2681510.698	Monitoring Well	Intermediate	Y	Y	5/13/08	25	2	14.37	12.47	2.47	-12.53	10	15
8	N-115 N-116			225824.433 225843.598	2682246.434 2682616.585	Monitoring Well	Intermediate Intermediate	Y	Y	5/28/08 5/20/08	14 12	2	15.33 11.28	13.43 8.49	11.33 6.49	-2.67 -3.51	2	14 10
8	N-116 N-117		Destroved	225843.598	2682818.385	Monitoring Well Monitoring Well	Intermediate	T V	Y	6/4/08	20	2	24.24	22.16	16.24	-3.51	8	20
8	N-117		Destroyeu	226460.505	2683077.266	Monitoring Well	Intermediate	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	5/23/08	20	2	23.45	21.49	11.49	1.49	10	10
8	N-119			226406.087	2683561.624	Monitoring Well	Intermediate	Y	Y	5/29/08	18	2	20.43	18.73	10.73	0.73	8	10
8	N-12	B-15		227099.363	2683393.606	Monitoring Well	Intermediate	Y	N N	11/14/84	20	-	27.19	24.36	-		_	
8	N-120	-		226332.599	2683852.895	Monitoring Well	Intermediate	Y	Y	5/22/08	18	2	22.33	20.18	12.18	2.18	8	10
8	N-121			226380.688	2683357.051	Monitoring Well	Intermediate	Y	Y	6/9/08	20	2	20.77	18.95	8.95	-1.05	10	10
8	N-122			226074.378	2683576.782	Monitoring Well	Intermediate	Υ	Y	5/21/08	18	2	17.05	14.93	8.93	-3.07	6	12
8	N-123			225788.933	2684165.075	Monitoring Well	Intermediate	Y	Y	5/20/08	20	2	21.24	19.42	9.42	-0.58	10	10
8	N-124	-		225963.423	2684525.329	Monitoring Well	Intermediate	Y	Y	5/21/08	25	2	25.67	26.02	16.02	1.02	10	15
8	N-125	-		225653.256	2683530.878	Monitoring Well	Intermediate	Y	Y	6/17/08	25	2	25.94	24.28	9.28	-0.72	15	10
8	N-126			225829.500	2683283.039	Monitoring Well	Shallow	Y	Y	5/29/08	14	2	10.80	8.83	4.83	-5.17	4	10
8	N-127			225192.921	2682768.505	Monitoring Well	Intermediate	Y	Y	5/28/08	34	2	33.45	31.75	14.45	-19.55	19	34
8	N-128			225454.117	2682901.765	Monitoring Well	Intermediate	Y	Y	5/20/08	25	2	28.14	26.50	11.50	1.50	15	10
8	N-129 N-13	 B-16		225469.919 227095.475	2683240.942 2683398.971	Monitoring Well	Intermediate	Y	Y	7/1/08 12/13/84	30 50	2	28.90 26.77	27.12 24.35	13.12	-2.88	14	16
0	N-130	D-10		225087.603	2682501.018	Monitoring Well Monitoring Well	Deep Intermediate	T V	N v	5/16/08	32	2	31.60	30.07	13.60	-16.40	18	30
8	N-131		Unable to Locate	225671.489	2681085.575	Monitoring Well	Shallow	Y	Y	6/10/08	15	2	9.03	7.10	2.10	-7.90	5	10
8	N-132		0.10010 10 200010	225634.140	2681685.292	Monitoring Well	Shallow	Y	Y	5/13/08	25	2	11.11	9.06	-5.94	-15.94	15	10
8	N-133	_		224966.629	2680751.162	Monitoring Well	Shallow	Y	Y	5/15/08	12	2	9.36	7.19	5.19	-4.81	2	10
8	N-134			226063.245	2685261.950	Monitoring Well	Intermediate	Y	Y	5/22/08	20	2	27.49	25.79	15.79	5.79	10	10
8	N-135	-		225141.446	2680687.178	Monitoring Well	Shallow	Y	Υ	5/15/08	12	2	9.92	7.76	5.76	-4.24	2	10
8	N-136			225342.984	2680714.222	Monitoring Well	Shallow	Y	Y	5/15/08	12	2	10.85	8.68	6.68	-3.32	2	10
8	N-137	MW-13		227831.661	2683096.088	Monitoring Well	Intermediate	Y	Y	9/19/11	23	2	25.59	23.87	10.87	0.87	13	10
8	N-138	MW-14		227756.893	2683256.138	Monitoring Well	Intermediate	Y	Y	9/16/11	33	2	35.29	33.29	10.29	0.29	23	10
8	N-139	MW-15		227732.146	2683308.896	Monitoring Well	Intermediate	Y	Y	9/15/11	33	2	35.00	33.00	10.00	0.00	23	10
8	N-14	B-19		227010.933	2683665.271	Monitoring Well	Intermediate	Y	N	11/15/84	25	-	31.99	29.64	-		-	
8	N-15	B-17		226992.660	2684060.447	Monitoring Well	Intermediate	Y N	N	11/15/84	24.5		29.35	29.30			_	
8	N-16 N-17	 B-18		226992.615 226992.700	2684408.639 2684410.420	Monitoring Well Monitoring Well	Intermediate Intermediate	N V	N N	11/15/84	26.8 25.5		32.98 34.42	31.80 31.80	-		-	
8	N-17 N-18	B-18 B-21		226992.700	2684410.420	Monitoring Well	Intermediate	Y	N N	11/15/84	25.5	-	34.42 32.90	31.80	-			-
8	N-19	B-21		226736.819	2684650.605	Monitoring Well	Deep	Y	N N	12/14/84	60		32.78	30.46				-
8	N-2	B-20		228025.225	2682758.321	Monitoring Well	Shallow	Y	N N	11/15/84	25	-	26.42	26.40				-
8	N-20	B-23		226644.836	2683877.900	Monitoring Well	Shallow	Y	N	7/22/85	6	_	28.39	25.12	_			
8	N-21	B-24		226627.765	2683879.135	Monitoring Well	Deep	Y	N	11/30/84	51.5	-	28.01	25.04			-	
8	N-22	B-22	Destroyed	226765.482	2683180.268	Monitoring Well	Intermediate	Y	N	11/16/84	20		-	28.48	-		_	
8	N-23	B-64		226791.399	2682839.371	Monitoring Well	Intermediate	Y	N	7/30/84	20	_	20.88	20.90			_	<u> </u>
													•			•		

Data could not be located or determined based on available reports

NOTES:

AOI - Area of Interest

ft. - feet

bgs - below ground surface

in. - inches

msl - elevation relative to mean sea level

g/cc - grams per cubic centimeter

NA - Data not available

*Product type percentage data not available

- 1. For wells that have not been surveyed by Langan, the pre-existing elevations (in NVGD 29) were converted to NAVD 88 (conversion factor is 1.05 ft).
- 2. Well construction details were taken directly from well boring logs provided by Handex, Secor, Aquaterra or collected from available historic reports. Where no well boring logs exist, no well construction or lithologic data is listed.
- 3. Former well IDs were derived from handwritten notes on the logs themselves or the referenced report.
- 4. Well classification based on the formation in which the well was screened in. Wells screened within the Middle Clay or the Farrington Sand were classified as deep wells.

Well classification for wells screened above the Lower/Middle Clay were based on the following: screened in Fill/Alluvium - Shallow, screened in Trenton Gravel - Intermediate, screened in Fill/Alluvium & Trenton Gravel - Shallow/Intermediate

- 5. Product characterization data obtained from Sunoco's 2004 CCR and 2005 through 2010 Site Characterization Reports for AOIs 1 through 9.
- 6. For wells with no direct LNAPL density measurements, the density value in the nearest well with LNAPL data was used.

Wangan.com/data/DTdsta8/2574801VOffice Data/Reports/Repackaged SCR_RIRNAO/8 VTables/Table 2_AOI 8_Existing Well Summary_012712.xlsx

AOI#	Well ID	Former Well ID ³	Well Status/ Description	Northing	Easting	Well Type	Well Classification (Shallow, Intermediate, Deep) ⁴	Soil Boring Log Available (Y/N)	Construction Detail Available (Y/N)	Date of Well Completion	Well Completion Depth (ft. bgs)	Well Diameter (in)	Top of Inner Casing Elevation (ft. msl) (NAVD88)	Ground Surface Elevation (ft.) (NAVD88)	Top of Screen Elevation (ft) (NAVD88)	Bottom of Screen Elevation (ft) (NAVD88)	Depth to Screen (ft. bgs)	Screen Length (ft.)
8	N-24	B-25		226437.463	2682553.561	Monitoring Well	Shallow	Υ	N	11/15/84	16	-	20.65	18.03	-		-	-
8	N-25	B-26		226322.123	2683073.851	Monitoring Well	Shallow	Y	N	11/16/84	12	-	18.78	18.73	-		_	-
8	N-26	B-27		226231.010	2683594.774	Monitoring Well	Shallow	Y	N	11/16/84	10	-	21.03	18.07	-			-
8	N-27	B-28		226112.946	2684408.569	Monitoring Well	Deep	Y	N	11/29/84	60.5	-	23.26	20.73	-	-	-	
8	N-28 N-29	B-30, NS-30 B-36, NS-36		226330.807 225834.838	2684924.768 2685039.366	Monitoring Well	Shallow	Y	N N	7/22/85 11/19/84	6 30	-	20.45 40.12	18.36 36.96	-	-	-	
8	N-29 N-3	B-36, NS-36 B-5		225834.838	2683124.606	Monitoring Well Monitoring Well	Shallow Shallow	Y	N N	11/19/84	23		40.12 26.66	23.91	-			-
8	N-30	B-37, NS-37		225824.369	2685036.986	Monitoring Well	Deep	Y	N	12/6/84	60	_	39.37	36.35				
8	N-31	B-35		225799.287	2684423.595	Monitoring Well	Shallow	Y	N	11/19/84	20		24.52	13.97	_		_	
8	N-32	B-34, NS-34		226035.860	2683879.671	Monitoring Well	Shallow	Y	N	7/23/85	6	_	16.27	21.20			_	-
8	N-33	PH-83	Destroyed	226174.169	2682934.348	Monitoring Well	_	Y	N	1946	77	10	-	14.95	-45.05	-62.05	60	17
8	N-34	B-33		226258.771	2682271.688	Monitoring Well	Intermediate	Υ	N	11/21/84	14	-	13.59	11.01	-		-	-
8	N-35	B-62		226288.786	2681868.397	Monitoring Well	Shallow	Y	N	7/30/85	20	_	14.08	14.00	-	-	_	
8	N-36	B-32		226219.904	2681731.671	Monitoring Well	Shallow	Υ	N	11/21/84	13		15.16	12.73	-		_	
8	N-37	B-31		226827.511	2681542.987	Monitoring Well	Shallow	Υ	N	11/20/84	17	-	18.22	16.26	-	-	_	-
8	N-38	N-71		226898.645	2680805.008	Monitoring Well	Shallow	Y	Y	8/9/88	17	4	10.09	8.77	9.36	-5.64	2	15
8	N-38D			226897.427	2680792.262	Monitoring Well	Deep	Y	Y	2/25/94	85	2	10.43	8.77	-66.23	-76.23	75	10
8	N-39	B-38		226133.874	2681220.305	Monitoring Well	Shallow	Y	N	11/20/84		-	9.54	9.52	-	-	-	
8	N-4 N-40	B-6 B-39		227944.638 226015.397	2683123.405 2682005.798	Monitoring Well Monitoring Well	Deep Shallow	Y	N	12/12/84 11/20/84	44.5 15	-	26.36 12.10	23.91	-			
8	N-40 N-41	B-40		225981.161	2682417.344	Monitoring Well	Shallow	Y	N N	11/20/84	14	-	10.17	10.19	-			
0	N-42	B-41		225812.913	2682411.559	Monitoring Well	Shallow	· · · · · · · · · · · · · · · · · · ·	N N	11/20/84	15	_	14.90	12.09				-
8	N-43	B-42, NS-42		225594.747	2682491.345	Monitoring Well	Shallow	· ·	N	10/12/84	21	_	30.34	27.70	_			
8	N-44D	B-43		225587.984	2682498.213	Monitoring Well	Deep	N	N	10/12/04	58		30.70	27.17	_			-
8	N-45	B-46		225745.621	2683509.627	Monitoring Well	Intermediate	Y	N	11/19/84	20	-	22.75	21.20	_		_	
8	N-46D	B-60	Destroyed	225495.445	2683945.399	Monitoring Well	Deep	N	N	12/5/84	55	_	32.80	29.70			_	-
8	N-47	B-59	,	225489.329	2683935.877	Monitoring Well	Intermediate	Y	N	11/19/84	25		31.92	29.55	-		_	
8	N-48	B-58		225311.830	2683476.247	Monitoring Well	Intermediate	Y	N	11/19/84	27	_	31.25	28.92	-	-	_	-
8	N-49	B-63		225174.606	2683115.270	Monitoring Well	Intermediate	Y	N	7/29/85	27	-	33.70	30.55	-		-	
8	N-5	-		227645.565	2682201.244	Monitoring Well	Shallow	Υ	N	11/15/84	13		25.96	23.80		-	_	
8	N-503	-		226576.298	2680565.721	Monitoring Well	Shallow	Y	Y	-	-	-	12.40	11.46	-		-	
8	N-504	-		226856.668	2680651.601	Monitoring Well	Intermediate	Υ	Y	_	-	-	12.31	11.36		-	_	
8	N-50D	B-57, NS-57		225249.929	2682949.287	Monitoring Well	Deep	N	N	12/7/84	60	-	32.31	30.53	-	-	-	-
8	N-51	B-56, NS-56		225253.104	2682956.087	Monitoring Well	Intermediate	Y	N	11/21/84	28	-	31.85	30.92	-	-	-	
8	N-52	B-55 B-50		225021.374 225394.959	2682624.237	Monitoring Well	Intermediate	Y	N	11/20/84 11/20/84	25	-	33.50	31.10 12.73	-		-	
8	N-53 N-54	B-50	Unable to Locate	225146.026	2682283.454 2681898.892	Monitoring Well Monitoring Well	Shallow Shallow	Y	N N	11/21/84	25 13	-	29.13 10.88	8.56			-	
0	N-54 N-55	B-52	Unable to Locate	225122.420	2681473.558	Monitoring Well	Shallow	T V	N N	11/21/84	7.6	_	10.88	8.19	-	-		
8	N-56	B-48		225658.872	2681265.721	Monitoring Well	Shallow	Y	N	11/212/84	13	_	13.37	10.68	_			
8	N-57	B-48		226031.486	2680585.797	Monitoring Well	Shallow	Y	N	7/29/85	10	_	10.91	8.80	_		_	
8	N-58	N-70		225832.212	2680454.872	Monitoring Well	Shallow	Y	Y	8/8/88	17	4	9.23	7.21	4.74	-10.26	2	15
8	N-59	N-69		225386.806	2680469.612	Monitoring Well	Shallow	Y	Y	8/8/88	17	4	6.95	6.81	6.56	-8.44	2	15
8	N-6			227533.563	2682704.627	Monitoring Well	Shallow	Y	Υ		-	-	31.05	31.08	-	-	_	-
8	N-60	B-47, NS-47		225507.791	2680804.085	Monitoring Well	Shallow	Y	N	11/21/84	6	-	10.85	8.56	-		-	
8	N-61	N-68		225119.242	2680588.298	Monitoring Well	Shallow	Y	Y	5/8/88	17	4	8.91	6.79	4.34	-10.66	2	15
8	N-62	N-67	Destroyed	-	-	Monitoring Well	-	Y	Y	4/8/88	17	2	-	-			2	15
8	N-63	N-66	Destroyed	-		Monitoring Well	-	Y	Y	4/8/88	17	2	-	-	-		2	15
8	N-64	B-54		224842.035	2682308.564	Monitoring Well	Shallow	Y	N	11/21/84	12	-	11.24	8.99	-		-	-
8	N-65	B-29		226363.780	2684499.095	Monitoring Well	Shallow	Y	N	11/16/84	15	-	23.48	20.43	-		-	
8	N-66	B-44		225636.657	2682973.281	Monitoring Well	Shallow	Y	N	11/20/84	15.33	- 2	17.59	15.75 17.48	-		-	
8	N-67 N-68	 W-3		226940.291 226910.742	2682697.910 2682972.832	Monitoring Well Monitoring Well	Shallow Shallow	 Y	- Y	9/30/80	21	4	18.23 24.22	22.14	-			
8	N-69	VV-3 W-4		227391.604	2682972.832	Monitoring Well	Intermediate	T V	Y	9/30/80	42	12	24.22	22.14	10.57	-9.43	12	20
8	N-7	B-10	Destroyed	227550.215	2683520.135	Monitoring Well	Shallow	· ·	N N	11/14/84	30		20.20	39.59	10.57	-5.45	- 12	
8	N-70	W-5	Destroyed	227135.669	2681744.967	Monitoring Well	Intermediate	Y	Y	11/4/81	38	12	22.17	20.29	10.86	-9.14	10	20
8	N-71	W-6	Destroyed	-	-	Monitoring Well	-	Y	-	11/5/81	35	-		-			12	10
8	N-72	MW-15	.,	226761.053	2680685.868	Monitoring Well	Shallow	N	Y	5/19/93	16.5	4	12.67	9.46	5.60	-4.40	3.2	10
				***						,		•		•				-

Data could not be located or determined based on available reports

NOTES:

AOI - Area of Interest

ft. - feet

bgs - below ground surface

msl - elevation relative to mean sea level

g/cc - grams per cubic centimeter

NA - Data not available

*Product type percentage data not available

- 1. For wells that have not been surveyed by Langan, the pre-existing elevations (in NVGD 29) were converted to NAVD 88 (conversion factor is 1.05 ft).
- 2. Well construction details were taken directly from well boring logs provided by Handex, Secor, Aquaterra or collected from available historic reports. Where no well boring logs exist, no well construction or lithologic data is listed.
- 3. Former well IDs were derived from handwritten notes on the logs themselves or the referenced report.
- 4. Well classification based on the formation in which the well was screened in. Wells screened within the Middle Clay or the Farrington Sand were classified as deep wells.

Well classification for wells screened above the Lower/Middle Clay were based on the following: screened in Fill/Alluvium - Shallow, screened in Trenton Gravel - Intermediate, screened in Fill/Alluvium & Trenton Gravel - Shallow/Intermediate

- 5. Product characterization data obtained from Sunoco's 2004 CCR and 2005 through 2010 Site Characterization Reports for AOIs 1 through 9.
- 6. For wells with no direct LNAPL density measurements, the density value in the nearest well with LNAPL data was used.

Wangan.com\data\DT\data\02574601\Office Data\Reports\Repackaged SCR_RIR\AOI 8\Tables\Table 2_AOI 8_Existing Well Summary_012712.xlsx

No. Company Company															Well Construction				
Record March March Debte Part Debte Part Debte Part Part Debte Part Part Debte Part Part Debte Part Part	\OI #	Well ID	Former Well ID ³		Northing	Easting	Well Type	(Shallow, Intermediate,	Log Available	Detail Available		Completion Depth	Well Diameter (in)	Elevation (ft. msl)	Elevation (ft.)	Elevation (ft)	Bottom of Screen Elevation (ft) (NAVD88)	Depth to Screen (ft. bgs)	Screen Length (ft.)
R. R. R. R. R. R. R. R.	8						_		Υ								-36.16	32.3	10
Fig. N.	8								Υ	· ·	., ., ., .						-6.70	2.7	10
Part	8						_		Y								-38.34	33.5	10
1.00														1			-20.60	15	35
B	8		-	Haabla ta Lasata					Y		., ,		1				-9.35 -7.98	5 5	25 25
Fig. Part	0		-	Unable to Locate			·		T V								-7.98	5	25
Fig. No. Principal Pri	8													1			-0.30	-	
Fig.	8			Destroyed	-				Y						-			15	35
R	8				225644.533	2684343.238		Shallow	Y	Y				28.88	26.65	27.39	12.39	10	15
B	8	N-82	-		225723.348	2684633.659	Monitoring Well	Shallow	Y	Y	6/30/94	30	4	33.49	30.98		-23.88	15	15
8 No.	8	N-83	MW-12, JS-12B		226827.806	2681760.791	Monitoring Well	Intermediate	Y	Y	5/30/02	27	4	21.45	19.27	12.29	-6.71	8	19
No. No.	8	N-84	MW-17, JS-17		226457.117	2684677.455	Monitoring Well	Shallow	Y	Y	5/30/02	23	4	25.88	23.32	5.36	-4.64	13	10
8	_		-,				Monitoring Well	Shallow									-0.68	4	20
S	8						Monitoring Well		Y	Υ	-, ,-						11.30	8	10
B	8								Y	Υ				26.26			6.13	8	10
8 N-9 8-12, NS-12 227374-819 2684007.002 Montoning Well Shallow Y Y 82702 18 4 20.91 19.01	8			Destroyed			_		Y	·							-22.00	2	20
Section Mov20, 15-89 220070.001 2002002.004 Montening Well Shallow Y Y 82/012 18 4 25.71 22.78 13.87 13.87 18 1.97 19.75	8								Y				-	1		-		-	-
8	8						_	'	Y				- 4	1		- 10.07		- 0	 10
8	8						· · · · · · · · · · · · · · · · · · ·							1			3.87 -1.93	5	15
8	8								Y								2.73	3	13
8	0						Ü		T V	T V							5.89	8	10
Neg							· · · · · · · · · · · · · · · · · · ·		· ·	· ·				1			3.83	6	10
8	8			Destroyed					Y								5.80	8	10
8	8			Booksyou		-	_		N	N		-						-	
8	8				227658.440	2683478.923	· · · · · · · · · · · · · · · · · · ·	Intermediate			6/2/08	30	2		32.46	12.46	2.46	20	10
R	8	N-99	-		228875.116	2682854.562		Intermediate	Y	Y	6/19/08	28	2	28.26			-1.74	18	10
R	8	P-20	-	Destroyed	-	-		Shallow	-	-	-	-	-	-	_	-		-	-
R	8	P-21	MW-21		224770.782	268269.189		Shallow	-	-	_	-	-	13.09	11.50	_	-	-	-
R	8	P-28		Destroyed	-	-	Monitoring Well	Shallow	-		-	-	=	=	_	-		-	
8 P-7 MW-7 224848.164 2682983.478 Monitoring Well Shallow - - - - - - 22.94 23.18 -	8	P-5	MW-5		224440.628	2683134.395	Monitoring Well	Shallow		-	-	-	-	34.34	33.36	-		-	-
8 P-8 MW-8 224237.069 2685109.662 Monitoring Well Shallow - - - - - - 30.25 30.59 - 8 P-9 MW-9 224403.524 2683168.441 Monitoring Well -	8			Destroyed			_		-	-	-	-	-			-	-	-	-
8 P-9 MW-9 224403.524 2683168.441 Monitoring Well -	8													1		-	-	-	
8 PH-73 - Destroyed - - Monitoring Well -<	8						-		-						30.59	-		-	-
8 PH-74 - Destroyed - - Monitoring Well -<					224403.524	2683168.441		Shallow	-	-		-	-	32.44	-	-	-	-	
8 PH-75 - Destroyed - - Monitoring Well -<	8		-	-	-		·	-	-	-		-			-	-	-		
8 PH-76 Destroyed Monitoring Well -	8		-	,	-		ů	-	-	-	-		-	-	-			-	
8 PH-77 - Destroyed - - Monitoring Well -<							_												
8 PH-778 Destroyed Monitoring Well								<u> </u>	- -						-	-	-		
8 PH-779 - Destroyed - - Monitoring Well - <td< td=""><td>Ŭ</td><td></td><td>_</td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	Ŭ		_				_												
8 PH-78 - Destroyed - - Monitoring Well -				,			· · · · · · · · · · · · · · · · · · ·												
8 PH-79 - Destroyed - - Monitoring Well -<																	-	-	-
8 PH-82 - Destroyed - - Monitoring Well -	8		-	,	-	-	_	-	-	-	-	-	-	-	_	-		-	
8 PZ-201 - 225409.395 2683718.309 Piezometer Intermediate N N - 23 - 32.28 29.40 -	8	PH-82	_	Destroyed	_	-	Monitoring Well	_	-	-	-	_	=	=	_	_	-	_	
	8	PH-84	-		_	-		_	_	-	_	_	_	_	_		-	-	
0 7700	8	PZ-201			225409.395	2683718.309	Piezometer	Intermediate	N	N		23	-	32.28	29.40		-	_	-
	8	PZ-202	-		225484.370	2683876.463	Piezometer	Intermediate	N	N	-	23	-	33.39	30.45				
8 PZ-203 - 225560.000 2684037.463 Piezometer Intermediate N N - 20.7 - 34.11 31.16 -	8		-								-	20.7	-			-		-	-
8 PZ-204 - 225633.438 2684195.803 Piezometer Intermediate N N 28.88 29.32 -	8		-								-	-	-			-	-	-	
8 PZ-300 - 226640.067 2683295.022 Piezometer Intermediate N N - 26.8 - 26.77 25.11 -																			
8 PZ-500 - 225304.743 2680477.774 Piezometer Shallow N N - 10 - 7.55 6.12 -	8		-								-		-					-	-
8 PZ-501 - 225834.728 2680429.243 Piezometer Shallow N N - 9.5 - 9.00 6.47 -	8		-								-		-			-		-	-
8 PZ-502 - 225561.581 2680433.690 Piezometer Intermediate N N N 7.92 6.14	8												-	1		-	-	-	
8 PZ-503 225084.552 2680589.725 Piezometer Shallow N N - 9 - 8.69 6.34 8 PZ-504 224902.998 2680729.739 Piezometer Shallow N N N - 6 - 7.63 5.16 7.63	o o		-								_		-	1				-	
8 PZ-504 224902.998 2680729.739 Piezometer Shallow N N - 6 - 7.63 5.16 -	σ	PZ-5U4		l	224902.998	2000/29./39	riezometer	PuglioM	IN	N	_	ь	_	7.63	5.16	-		-	

Data could not be located or determined based on available reports

NOTES:

AOI - Area of Interest

ft. - feet

bgs - below ground surface

n. - inches

msl - elevation relative to mean sea level

g/cc - grams per cubic centimeter

NA - Data not available

*Product type percentage data not available

- 1. For wells that have not been surveyed by Langan, the pre-existing elevations (in NVGD 29) were converted to NAVD 88 (conversion factor is 1.05 ft).
- 2. Well construction details were taken directly from well boring logs provided by Handex, Secor, Aquaterra or collected from available historic reports. Where no well boring logs exist, no well construction or lithologic data is listed.
- 3. Former well IDs were derived from handwritten notes on the logs themselves or the referenced report.
- 4. Well classification based on the formation in which the well was screened in. Wells screened within the Middle Clay or the Farrington Sand were classified as deep wells.

Well classification for wells screened above the Lower/Middle Clay were based on the following: screened in Fill/Alluvium - Shallow, screened in Trenton Gravel - Intermediate, screened in Fill/Alluvium & Trenton Gravel - Shallow/Intermediate

- 5. Product characterization data obtained from Sunoco's 2004 CCR and 2005 through 2010 Site Characterization Reports for AOIs 1 through 9.
- 6. For wells with no direct LNAPL density measurements, the density value in the nearest well with LNAPL data was used.

Wangan.com/data/DTdsta8/2574801VOffice Data/Reports/Repackaged SCR_RIRNAOI 8\Tables/\T

		1												Well Construction	Details ²			
AOI#	Well ID	Former Well ID ³	Well Status/ Description	Northing	Easting	Well Type	Well Classification (Shallow, Intermediate, Deep) ⁴	Soil Boring Log Available (Y/N)	Construction Detail Available (Y/N)	Date of Well Completion	Well Completion Depth (ft. bgs)	Well Diameter (in)	Top of Inner Casing Elevation (ft. msl) (NAVD88)	Ground Surface Elevation (ft.) (NAVD88)	Top of Screen Elevation (ft) (NAVD88)	Bottom of Screen Elevation (ft) (NAVD88)	Depth to Screen (ft. bgs)	Screen Length (ft.)
8	PZ-505			224708.210	2681023.814	Piezometer	Shallow	N	N	-	8.5	-	8.46	5.85			-	
8	PZ-506			224742.224	2681823.385	Piezometer	Shallow	N	N	-	10.3	-	11.19	8.77			-	
8	PZ-507	-		224811.796	2682205.934	Piezometer	Shallow	N	N	_	9.6	-	12.68	9.39			_	
8	R-1		Destroyed	-	-	Abandoned		-	-	-		-	-	_	-	-	-	
8	R-3	-	Destroyed	i		Abandoned	-	-	-	-		-	-	-	-		-	
8	RW-200	PH-2		224924.799	2682439.477	Recovery Well - Inactive	Intermediate	Υ	Υ	5/20/94	22	6	12.02	11.63	21.10	11.10	10	10
8	RW-201	PH-12		225059.936	2682703.971	Recovery Well - Active	Intermediate	Υ	Y	5/17/94	37	6	31.99	31.61	10.92	-4.08	20	15
8	RW-202	PH-19		225065.071	2682880.588	Recovery Well - Active	Intermediate	Υ	Y	5/17/94	36	6	29.51	31.04	10.32	-4.68	20	15
8	RW-203	PH-3		225154.073	2683032.076	Recovery Well - Active	Intermediate	Υ	Y	5/18/94	39	6	31.10	31.07	8.55	-6.45	22	15
8	RW-204	PH-18		225163.199	2683189.656	Recovery Well - Inactive	Intermediate	Υ	Y	6/22/94	34	6	28.57	30.34	-		19	15
8	RW-205	-		225250.547	2683342.699	Recovery Well - Inactive	Intermediate	Υ	Y	5/12/94	31	6	29.67	29.30	14.92	-0.08	14	15
8	RW-206	-		225332.300	2683557.050	Recovery Well - Inactive	Intermediate	Υ	Y	5/11/94	31	6	30.94	30.58	13.25	-1.75	16	15
8	RW-26	-		224410.491	2685473.615	Recovery Well		N	N	-	-	-	29.21	30.60		-	-	
8	RW-27	-		224396.009	2685423.426	Recovery Well		N	N	-	-	-	29.71	30.74		-	-	
8	RW-28	-		224377.764	2685357.402	Recovery Well		N	N	-	-	-	29.74	30.10		-	-	
8	RW-29			224360.164	2685285.507	Recovery Well	-	N	N	-	-	-	29.44	30.19		-	-	
8	RW-30	-		224352.411	2685256.623	Recovery Well		N	N	-	-	-	29.39	30.33		-	-	
8	RW-300	-		226710.145	2681809.651	Recovery Well - Active	Intermediate	N	N	-	-	-	21.64	19.83	-		-	
8	RW-301	PH-16		226707.352	2682907.114	Recovery Well - Inactive	Intermediate	Υ	Y	5/12/94	31	6	22.41	21.95	9.92	-5.08	14	15
8	RW-302	PH-5		226687.489	2683040.088	Recovery Well - Inactive	Intermediate	Υ	Y	5/11/94	31	6	24.09	23.92	6.82	-8.18	16	15
8	RW-303	-		226663.398	2683166.980	Recovery Well - Active	Intermediate	Υ	Y	5/12/94	31	6	24.98	24.76			-	
8	RW-304	PH-17		226635.005	2683321.529	Recovery Well - Inactive	Intermediate	Υ	Y	5/13/94	33	6	25.28	24.95	9.27	-5.73	16	15
8	RW-305	PH-4		226614.941	2683458.406	Recovery Well - Active	Intermediate	Υ	Y	5/11/94	33	6	25.27	24.89	7.22	-7.78	16	15
8	RW-306	PH-15		226581.193	2683767.983	Recovery Well - Active	Intermediate	Υ	Y	5/10/94	28	6	23.58	23.22	12.05	-2.95	11	15
8	RW-307	-		226603.861	2683079.555	Recovery Well - Active	Intermediate	-	-	-	-	-	23.26	22.82	-		-	
8	RW-308	-		226622.581	2683240.062	Recovery Well - Active	Intermediate	-	-	-	-	-	25.61	25.27	-		-	
8	RW-309			226602.424	2683373.035	Recovery Well - Inactive	Intermediate		-	-	-	-	25.23	24.81			-	-
8	RW-31	-		224339.191	2685206.135	Recovery Well	-	-	-	-	-	-	29.38	30.31	-	-	-	-
8	RW-32			224324.104	2685149.766	Recovery Well	-	-		-	-	-	29.05	30.05		-	-	
8	RW-500	-		225305.391	2680478.176	Recovery Well - Active	Intermediate	-	-	-	-	-	7.56	6.79	-	-	-	-
8	RW-501	-		224727.458	2681487.009	Recovery Well - Inactive	Intermediate	-	-	-	-	-	9.79	7.98	-	-	-	-
8	RW-502			226713.569	2680606.719	Recovery Well - Active	Intermediate		-	-	-	-	12.47	11.40	-		-	-
8	WP-1	-	Destroyed	215265.302	2682064.502	Temporary Well	Shallow	Y	Y	5/25/93	6.95	1	-	9.92	5.97	2.97	3.95	3
8	WP-2	-		215256.247	2682083.943	Temporary Well	Shallow	Y	Y	6/2/93	6.66	1	-	10.83	7.17	4.17	3.66	3
8	WP-3	-		215256.450	2682128.553	Temporary Well	Shallow	Y	Y	6/2/93	8	1	-	11.72	6.72	3.72	5	3
8	WP-4	-	Destroyed	-	-	Temporary Well	Shallow	Y	Y	6/2/93	8.77	1	-	10.73	4.96	1.96	5.77	3
8	WP-5			215244.767	2682167.862	Temporary Well	Shallow	Υ	Y	6/2/93	7.88	1	-	7.60	2.72	-0.28	4.88	3
8	WP-6			-	-	Temporary Well	Shallow	Y	Y	6/2/93	6.86	1	-	-	-	-	3.86	3
8	WP-7	-		215126.582	2682631.124	Temporary Well	Shallow	Y	Y	6/2/93	7.88	1	-	8.84	3.96	0.96	4.88	3

Data could not be located or determined based on available reports

NOTES:

AOI - Area of Interest ft. - feet

bgs - below ground surface

in. - inches

msl - elevation relative to mean sea level

g/cc - grams per cubic centimeter

NA - Data not available

*Product type percentage data not available

- 1. For wells that have not been surveyed by Langan, the pre-existing elevations (in NVGD 29) were converted to NAVD 88 (conversion factor is 1.05 ft).
- 2. Well construction details were taken directly from well boring logs provided by Handex, Secor, Aquaterra or collected from available historic reports. Where no well boring logs exist, no well construction or lithologic data is listed.
- 3. Former well IDs were derived from handwritten notes on the logs themselves or the referenced report.
- 4. Well classification based on the formation in which the well was screened in. Wells screened within the Middle Clay or the Farrington Sand were classified as deep wells.
- Well classification for wells screened above the Lower/Middle Clay were based on the following: screened in Fill/Alluvium Shallow, screened in Trenton Gravel Intermediate, screened in Fill/Alluvium & Trenton Gravel Shallow/Intermediate
- 5. Product characterization data obtained from Sunoco's 2004 CCR and 2005 through 2010 Site Characterization Reports for AOIs 1 through 9.
- 6. For wells with no direct LNAPL density measurements, the density value in the nearest well with LNAPL data was used.

Wangan.com\data\DT\data\02574601\Office Data\Reports\Repackaged SCR_RIR\AOI 8\Tables\Table 2_AOI 8_Existing Well Summary_012712.xlsx

Table 3 **Summary of Groundwater and LNAPL Elevations** AOI 8 May 2011 Sunoco Philadelphia Refinery Philadelphia, Pennsylvania

Monitoring Point ID	Northing	Easting	Well Type	Well ¹ Classification		ravity (g/cc) Correction	Depth to	Depth to Groundwater ⁴	Apparent LNAPL Thickness	LNAPL Elevation	Groundwater Elevation	Corrected Groundwater Elevation	TIC Elevation (ft amsl)	Notes (May 2011 Gauging Event)
					S.G. ²	Source ³	(ft btic)	(ft btic)	(ft btic)	(ft amsl)	(ft amsl)	(ft amsl)	, ,	,
N-1	228366.226	2682437.196	Monitoring Well	Shallow			NP	11.46			13.23	13.23	24.69	
N-10	227333.894	2682477.634	Monitoring Well	Shallow			NP	4.58			15.38	15.38	19.96	
N-11	227226.306	2682914.822	Monitoring Well	Intermediate			NP	18.29			11.45	11.45	29.74	
N-12	227099.363	2683393.606	Monitoring Well	Intermediate			NP	15.80			11.39	11.39	27.19	
N-13	227095.475	2683398.971	Monitoring Well	Deep			NP	21.46			5.31	5.31	26.77	
N-14	227010.933	2683665.271	Monitoring Well	Intermediate	0.9299	N-14	20.08	20.08	0.01	11.91	11.91	11.92	31.99	
N-15	226992.660	2684060.447	Monitoring Well	Intermediate			NP	21.25			8.10	8.10	29.35	
N-16	226992.615	2684408.639	Monitoring Well	Intermediate			NP	21.22			11.76	11.76	32.98	
N-17	226992.700	2684410.420	Monitoring Well	Intermediate			NP	22.71			11.71	11.71	34.42	
N-18	226744.095	2684649.893	Monitoring Well	Intermediate			NP	21.29			11.61	11.61	32.90	
N-19	226736.819	2684650.605	Monitoring Well	Deep			NP	29.29			3.49	3.49	32.78	
N-20	226644.836	2683877.900	Monitoring Well	Shallow			NP	17.15			11.24	11.24	28.39	
N-21	226627.765	2683879.135	Monitoring Well	Deep			NP	23.77			4.24	4.24	28.01	
N-23	226791.473	2682839.038	Monitoring Well	Intermediate	0.9033	N-107	12.30	12.55	0.25	8.84	8.59	8.82	21.14	
N-24	226437.463	2682553.561	Monitoring Well	Shallow			NP	12.28			8.37	8.37	20.65	
N-25	226322.126	2683073.859	Monitoring Well	Shallow	0.9402	N-25	1.80	2.20	0.40	16.98	16.58	16.96	18.78	
N-26	226231.010	2683594.774	Monitoring Well	Shallow			NP	5.40			15.63	15.63	21.03	
N-27	226112.946	2684408.569	Monitoring Well	Deep			NP	20.15			3.11	3.11	23.26	
N-28	226330.807	2684924.768	Monitoring Well	Shallow			NP	8.95			11.50	11.50	20.45	
N-29	225834.838	2685039.366	Monitoring Well	Shallow			NP	29.75			10.37	10.37	40.12	
N-3	227951.850	2683124.606	Monitoring Well	Shallow			NP	14.93			11.73	11.73	26.66	
N-30	225824.369	2685036.986	Monitoring Well	Deep			NP	36.65			2.72	2.72	39.37	Damaged-Broken at Ground Surface
N-31	225799.287	2684423.595	Monitoring Well	Shallow	0.9132	N-82	12.82	13.27	0.45	11.70	11.25	11.66	24.52	-
N-32	226035.860	2683879.671	Monitoring Well	Shallow			NP	8.00			8.27	8.27	16.27	
N-34	226258.771	2682271.688	Monitoring Well	Intermediate			NP	6.51			7.08	7.08	13.59	
N-35	226288.786	2681868.397	Monitoring Well	Shallow			NP	7.20			6.88	6.88	14.08	Damaged-Broken at Ground Surface
N-36	226219.904	2681731.671	Monitoring Well	Shallow			NP	8.00			7.16	7.16	15.16	
N-37	226827.511	2681542.987	Monitoring Well	Shallow			NP	12.07			6.15	6.15	18.22	
N-38	226898.645	2680805.008	Monitoring Well	Shallow			NP	6.26			3.83	3.83	10.09	
N-38D	226897.427	2680792.262	Monitoring Well	Deep			NP	8.94			1.49	1.49	10.43	
N-39	226133.874	2681220.305	Abandoned	Shallow			NP	4.00			5.54	5.54	9.54	Damaged-Broken at Ground Surface
N-4	227944.638	2683123.405	Monitoring Well	Deep			NP	18.76			7.60	7.60	26.36	
N-40	226015.397	2682005.798	Monitoring Well	Shallow			NP	6.19			5.91	5.91	12.10	
N-41	225981.161	2682417.344	Monitoring Well	Shallow			NP	4.53			5.64	5.64	10.17	Damaged-Broken at Ground Surface
N-42	225812.913	2682411.559	Monitoring Well	Shallow	0.8900	N-42	7.52	7.52	0.01	7.38	7.38	7.39	14.90	
N-43	225594.747	2682491.345	Monitoring Well	Shallow			NP	18.01			12.33	12.33	30.34	
N-44D	225587.984	2682498.213	Monitoring Well	Deep			NP	26.17			4.53	4.53	30.70	
N-45	225745.621	2683509.627	Monitoring Well	Intermediate	0.8922	N-125	13.57	13.61	0.22	9.18	9.14	9.34	22.75	
N-46D	225495.445	2683945.399	Monitoring Well	Deep			NM	NM			NA	NA	32.80	Damaged- Blocked at 3.9' bgs
N-47	225489.329	2683935.877	Monitoring Well	Intermediate	0.8834	N-47	19.40	20.01	0.61	12.52	11.91	12.45	31.92	
N-48	225311.830	2683476.247	Monitoring Well	Intermediate	0.9049	N-48	21.65	21.78	0.13	9.60	9.47	9.59	31.25	
N-49	225174.606	2683115.270	Monitoring Well	Intermediate	0.8995	N-51	24.37	25.78	1.41	9.33	7.92	9.19	33.70	

- Notes:

 1. Well classification based on the formation in which the well was screened in. Wells screened within the Middle Clay or the Farrington Sand were classified as deep wells.
- Well classification for wells screened in Fill/Alluvium & Trenton Gravel Intermediate, screened in Fill/Alluvium & Trenton Gravel Shallow/Intermediate 2. Specific Gravity (S.G.) values were determined from LNAPL samples taken by Aquaterra on February and July 2008 or from samples collected by Stantec in 1999-2000.
- 3. For wells with no direct S.G. measurements, the S.G. value in the nearest well with a direct S.G was used.
- 4. Depth to Water and Depth to LNAPL provided by Stantec. All wells gauged in May 2011 unless otherwise noted.

AOI - Area of Interest LNAPL - Light Non-Aqueous Phase Liquid GW - Groundwater

ft - Feet bgs - Below Ground Surface tic - Top of Inner Casing in - Inches msl - Elevation Relative to Mean Sea Level g/cc - Grams Per cubic centimeter NA - Data Not Available

 $\label{thm:comdataDT} $$ \prod_{x\in \mathbb{Z}^2} \frac{1}{x} C_x^2 C_x^2$ Page 1 of 4

Table 3 **Summary of Groundwater and LNAPL Elevations** AOI 8 May 2011 Sunoco Philadelphia Refinery Philadelphia, Pennsylvania

Monitoring Point ID	Northing	Easting	Well Type	Well ¹ Classification	Used for	ravity (g/cc) Correction	Depth to Product (ft btic)	Depth to Groundwater ⁴	Apparent LNAPL Thickness	LNAPL Elevation (ft amsl)	Groundwater Elevation (ft amsl)	Corrected Groundwater Elevation	TIC Elevation (ft amsl)	Notes (May 2011 Gauging Event)
					S.G. ²	Source ³	(It btic)	(ft btic)	(ft btic)	(it amsi)	(it amsi)	(ft amsl)		
N-1	228366,226	2682437.196	Monitoring Well	Shallow			NP	11.46			13.23	13.23	24.69	
					· L		• • • • • • • • • • • • • • • • • • • •		II.	l.	1 21-2			
N-5	227645.565	2682201.244	Monitoring Well	Shallow			NP	9.49			16.47	16.47	25.96	
N-503	226576.298	2680565.721	Monitoring Well	Shallow	0.9065	N-503	8.15	8.73	0.58	4.25	3.67	4.20	12.40	
N-504	226856.668	2680651.601	Monitoring Well	Intermediate	0.9065	N-503	8.55	8.55	0.01	3.76	3.76	3.77	12.31	
N-50D	225249.929	2682949.287	Monitoring Well	Deep			NP	26.74			5.57	5.57	32.31	
N-51	225253.104	2682956.087	Monitoring Well	Intermediate	0.8995	N-51	22.73	23.77	1.04	9.12	8.08	9.02	31.85	
N-52	225021.374	2682624.237	Monitoring Well	Intermediate	0.8613	N-52	24.45	24.53	0.02	9.05	8.97	8.99	33.50	
N-53	225394.959	2682283.454	Monitoring Well	Shallow			NP	20.19			8.94	8.94	29.13	
N-54	225146.026	2681898.892	Monitoring Well	Shallow	0.7893	N-130	4.05	4.15	0.10	6.83	6.73	6.81	10.88	
N-55	225122.420	2681473.558	Monitoring Well	Shallow			NP	2.53			7.73	7.73	10.26	
N-56	225658.872	2681265.721	Monitoring Well	Shallow			NP	7.28			6.09	6.09	13.37	
N-57	226031.486	2680585.797	Monitoring Well	Shallow			NP	4.99			5.92	5.92	10.91	
N-58	225832.212	2680454.872	Monitoring Well	Shallow			NP	3.37			5.86	5.86	9.23	
N-59	225386.806	2680469.612	Monitoring Well	Shallow			1.6	1.62			5.33	5.33	6.95	Too viscous to accurately measure
N-60	225507.791	2680804.085	Monitoring Well	Shallow			NP	5.86			4.99	4.99	10.85	
N-61	225119.242	2680588.298	Monitoring Well	Shallow			NP	3.33			5.58	5.58	8.91	
N-64	224842.035	2682308.564	Monitoring Well	Shallow			NP	6.56			4.68	4.68	11.24	
N-65	226363.780	2684499.095	Monitoring Well	Shallow			NP	12.41			11.07	11.07	23.48	
N-66	225636.657	2682973.281	Monitoring Well	Shallow			NP	8.08			9.51	9.51	17.59	
N-67	226940.291	2682697.910	Monitoring Well	Shallow			NP	5.65			12.58	12.58	18.23	
N-68	226910.742	2682972.832	Monitoring Well	Shallow	0.9211	N-68	12.5	12.52	0.02	11.72	11.70	11.72	24.22	
N-69	227391.604	2681821.580	Monitoring Well	Intermediate			NP	14.98			8.22	8.22	23.20	
N-70	227135.669	2681744.967	Monitoring Well	Intermediate			NP	14.50			7.67	7.67	22.17	
N-72	226761.053	2680685.868	Monitoring Well	Shallow			NP	8.73			3.94	3.94	12.67	
N-73	225822.483	2680415.328	Monitoring Well	Intermediate			NP	6.65			2.25	2.25	8.90	
N-74	224909.029	2680694.217	Monitoring Well	Shallow			NP	5.74			2.14	2.14	7.88	
N-75	224898.050	2680701.173	Monitoring Well	Intermediate	0.9371	N-75	5.35	6.50	1.15	2.84	1.69	2.77	8.19	
N-76	225362.174	2683610.375	Recovery Well - Inactive	Intermediate	0.8899	N-76	20.97	21.21	2.08	9.50	9.26	11.11	30.47	
N-77	226734.344	2682467.850	Monitoring Well	Shallow			NP NP	7.95			10.66	10.66	18.61	
N-78	226634.702	2683036.636	Monitoring Well	Intermediate	0.0100	N 70	NM	NM	0.01	40.70	NA 10.70	NA 10.77	22.18	Well lost in road stone
N-79	226515.434	2683789.228	Monitoring Well	Intermediate	0.8169	N-79	11.11	11.11	0.01	10.76	10.76	10.77	21.87	
N-8	227375.293	2684091.768	Monitoring Well	Shallow	0.0010	D7 004	NP	25.69	0.00	11.10	11.92	11.92	37.61	
N-81	225644.533	2684343.238	Monitoring Well	Shallow	0.9016	PZ-204	17.78 22.91	17.80 23.04	0.02	11.10 10.58	11.08 10.45	11.10 10.57	28.88	
N-82	225723.348	2684633.659	Monitoring Well	Shallow	0.9132	N-82	22.91 NP		0.13	10.58			33.49	
N-83	226827.806	2681760.791	Monitoring Well	Intermediate			NP NP	15.13 14.44			6.32 11.44	6.32 11.44	21.45 25.88	
N-84	226457.117 226448.228	2684677.455	Monitoring Well	Shallow			NP NP	13.73			11.44	11.44 11.56	25.88 25.29	
N-85 N-86	226448.228	2684734.375 2684118.579	Monitoring Well	Shallow	-	+	NP NP	13.73	+		11.56	11.56	25.29 25.84	
N-86 N-87	226550.229	2683965.423	Monitoring Well	Intermediate		+	NP NP	15.14	+		11.02	11.02	25.84	
N-87 N-89	226550.229	2682823.991	Monitoring Well	Shallow			NP NP	13.96			9.45	9.45	26.26	
N-89 N-9	226/17.413	2682823.991	Monitoring Well Monitoring Well	Intermediate		1	NP NP	32.20			9.45 6.01	9.45 6.01	38.21	
N-90	226679.051	2684097.082	Monitoring Well	Deep Shallow			NP NP	14.76			10.95	10.95	25.71	
N-90 N-91		2682992.994		Shallow	0.9471	N-91	7.72	9.80	2.08	13.18	11.10	13.07	20.90	
N-91 N-92	226270.997 226211.450	2683524.675	Monitoring Well	Shallow	0.3471	18-81	7.72 NP	7.39	2.08	13.10	13.47	13.07	20.90	
IN-92	220211.400	2003300.490	Monitoring Well	Stigilow			INF	7.39			13.47	13.47	20.80	

Notes:

1. Well classification based on the formation in which the well was screened in. Wells screened within the Middle Clay or the Farrington Sand were classified as deep wells.

Well classification for wells screened above the Lower/Middle Clay were based on the following: screened in Fill/Alluvium - Shallow, screened in Trenton Gravel - Intermediate, screened in Fill/Alluvium & Trenton Gravel - Shallow/Intermediate

Specific Gravity (S.G.) values were determined from LNAPL samples taken by Aquaterra on February and July 2008 or from samples collected by Stantec in 1999-2000.

For wells with no direct S.G. measurements, the S.G. value in the nearest well with a direct S.G was used.

Depth to Water and Depth to LNAPL provided by Stantec. All wells gauged in May 2011 unless otherwise noted.

4. Depth to water and Depth to LNAPL
AOI - Area of Interest
LNAPL - Light Non-Aqueous Phase Liquid
GW - Groundwater
ft - Feet
bgs - Below Ground Surface
tic - Top of Inner Casing
in Jeabse.

in - Inches

msl - Elevation Relative to Mean Sea Level g/cc - Grams Per cubic centimeter NA - Data Not Available

Page 2 of 4

Table 3 **Summary of Groundwater and LNAPL Elevations** AOI 8 May 2011 Sunoco Philadelphia Refinery Philadelphia, Pennsylvania

Monitoring Point ID	Northing	Easting	Well Type	Well ¹ Classification		ravity (g/cc) Correction	Depth to Product	Depth to Groundwater ⁴	Apparent LNAPL Thickness	LNAPL Elevation	Groundwater Elevation (ft amsl)	Corrected Groundwater Elevation	TIC Elevation (ft amsl)	Notes (May 2011 Gauging Event)
					S.G. ²	Source ³	(ft btic)	(ft btic)	(ft btic)	(ft amsl)	(it amsi)	(ft amsl)		
N-1	228366.226	2682437.196	Monitoring Well	Shallow			NP	11.46			13.23	13.23	24.69	
N-93	226550.366	2683794.415	Monitoring Well	Shallow			NP	14.58			10.51	10.51	25.09	
N-94	226666.529	2681861.391	Monitoring Well	Shallow			NP	5.40			14.96	14.96	20.36	
N-97	-		Abandoned	Shallow			NP	13.65			9.31	9.31	22.96	
PZ-201	225409.395	2683718.309	Piezometer	Intermediate			NM	NM			NA	NA	32.28	well was dry at 22.10 ft bgs
PZ-202	225484.370	2683876.463	Piezometer	Intermediate			NM	NM			NA	NA	33.39	well was dry at 21.80 ft bgs
PZ-203	225560.000	2684037.463	Piezometer	Intermediate			NP	20.23			13.88	13.88	34.11	, , , , , , , , , , , , , , , , , , , ,
PZ-204	225633.438	2684195.803	Piezometer	Intermediate	0.9016	PZ-204	20.11	21.31	1.20	8.77	7.57	8.65	28.88	
PZ-300	226640.067	2683295.022	Piezometer	Intermediate			NP	16.98			9.79	9.79	26.77	
PZ-500	225304.743	2680477.774	Piezometer	Shallow			NP	2.07			5.48	5.48	7.55	
PZ-501	225834.728	2680429.243	Piezometer	Shallow			NP	3.12			5.88	5.88	9.00	
PZ-502	225561.581	2680433.690	Piezometer	Intermediate	0.9155	PZ-502	1.95	3.49	1.54	5.97	4.43	5.84	7.92	
PZ-503	225084.552	2680589.725	Piezometer	Shallow			NP	2.26			6.43	6.43	8.69	
PZ-504	224902.998	2680729.739	Piezometer	Shallow			NP	2.32			5.31	5.31	7.63	
PZ-505	224708.210	2681023.814	Piezometer	Shallow			NP	3.08			5.38	5.38	8.46	
PZ-506	224742.224	2681823.385	Piezometer	Shallow			NP	5.87			5.32	5.32	11.19	
PZ-507	224811.796	2682205.934	Piezometer	Shallow			NP	7.75			4.93	4.93	12.68	
RW-200	224924.799	2682439.477	Recovery Well - Inactive	Intermediate			NP	5.52			6.50	6.50	12.02	
RW-201	225059.936	2682703.971	Recovery Well - Active	Intermediate	0.8613	N-52	22.81	22.82	0.01	9.18	9.17	9.18	31.99	
RW-202	225065.071	2682880.588	Recovery Well - Active	Intermediate			NP	20.28			9.23	9.23	29.51	
RW-203	225154.073	2683032.076	Recovery Well - Active	Intermediate	0.8995	N-51	22.73	22.75	0.02	8.37	8.35	8.37	31.10	
RW-204	225163.199	2683189.656	Recovery Well - Inactive	Intermediate	0.8995	N-51	19.1	20.22	1.12	9.47	8.35	9.36	28.57	
RW-205	225250.547	2683342.699	Recovery Well - Inactive	Intermediate	0.9112	RW-205	18.96	21.80	2.84	10.71	7.87	10.46	29.67	
RW-206	225332.300	2683557.050	Recovery Well - Inactive	Intermediate	0.9112	RW-205	21.3	21.31	0.01	9.64	9.63	9.64	30.94	
RW-300	226710.145	2681809.651	Recovery Well - Active	Intermediate	0.8358	RW-300	14.1	14.45	0.35	7.54	7.19	7.48	21.64	
RW-301	226707.352	2682907.114	Recovery Well - Inactive	Intermediate			NP	11.90			10.51	10.51	22.41	
RW-302	226687.489	2683040.088	Recovery Well - Inactive	Intermediate			NP	13.11			10.98	10.98	24.09	
RW-303	226663.398	2683166.980	Recovery Well - Active	Intermediate			NP	13.86			11.12	11.12	24.98	
RW-304	226635.005	2683321.529	Recovery Well - Inactive	Intermediate			NP	14.65			10.63	10.63	25.28	
RW-305	226614.941	2683458.406	Recovery Well - Active	Intermediate			NP	14.68			10.59	10.59	25.27	
RW-306	226581.193	2683767.983	Recovery Well - Active	Intermediate	0.8169	N-79	12.8	12.81	0.01	10.78	10.77	10.78	23.58	
RW-307	226603.861	2683079.555	Recovery Well - Active	Intermediate			NP	14.35			8.91	8.91	23.26	

Notes:

1. Well classification based on the formation in which the well was screened in. Wells screened within the Middle Clay or the Farrington Sand were classified as deep wells.

Well classification for wells screened in Fill/Alluvium & Trenton Gravel - Intermediate, screened in Fill/Alluvium & Trenton Gravel - Shallow/Intermediate 2. Specific Gravity (S.G.) values were determined from LNAPL samples taken by Aquaterra on February and July 2008 or from samples collected by Stantec in 1999-2000.

3. For wells with no direct S.G. measurements, the S.G. value in the nearest well with a direct S.G was used.

4. Depth to Water and Depth to LNAPL provided by Stantec. All wells gauged in May 2011 unless otherwise noted.

AOI - Area of Interest

LNAPL - Light Non-Aqueous Phase Liquid GW - Groundwater ft - Feet

bgs - Below Ground Surface tic - Top of Inner Casing

in - Inches

msl - Elevation Relative to Mean Sea Level g/cc - Grams Per cubic centimeter NA - Data Not Available

 $\label{label} $$ \hfill $$ \hfill$ Page 3 of 4

Table 3 **Summary of Groundwater and LNAPL Elevations** AOI 8 May 2011 Sunoco Philadelphia Refinery Philadelphia, Pennsylvania

Monitoring Point ID	Northing	Easting	Well Type	Well ¹ Classification		avity (g/cc) Correction	Depth to Product	Depth to Groundwater ⁴	Apparent LNAPL Thickness	LNAPL Elevation	Groundwater Elevation	Corrected Groundwater Elevation	TIC Elevation (ft amsl)	Notes (May 2011 Gauging Event)
				0.000000	S.G. ²	Source ³	(ft btic)	(ft btic)	(ft btic)	(ft amsl)	(ft amsl)	(ft amsl)	, ,	
N-1	228366.226	2682437.196	Monitoring Well	Shallow			NP	11.46			13.23	13.23	24.69	
RW-308	226622.581	2683240.062	Recovery Well - Active	Intermediate			NP	16.52			9.09	9.09	25.61	
RW-309	226602.424	2683373.035	Recovery Well - Inactive	Intermediate			NP	15.40			9.83	9.83	25.23	
RW-500	225305.391	2680478.176	Recovery Well - Active	Intermediate			NP	2.05			5.51	5.51	7.56	
RW-501	224727.458	2681487.009	Recovery Well - Inactive	Intermediate			NP	4.39			5.40	5.40	9.79	
RW-502	226713.569	2680606.719	Recovery Well - Active	Intermediate	0.9065	N-503	8.38	8.43	0.05	4.09	4.04	4.09	12.47	
N-98	227658.440	2683478.923	Monitoring Well	Intermediate			NP	23.28			11.25	11.25	34.53	
N-99	228875.116	2682854.562	Monitoring Well	Intermediate			NP	19.45			8.81	8.81	28.26	
N-100	228209.793	2682716.186	Monitoring Well	Intermediate			NP	18.25			8.76	8.76	27.01	
N-101	227221.776	2683652.840 2683869.606	Monitoring Well	Intermediate			NP NP	15.75 20.45			11.40 12.76	11.40 12.76	27.15 33.21	
N-102 N-103	227035.480 226781.705	2683660.200	Monitoring Well Monitoring Well	Intermediate Intermediate			NP NP	18.14			11.19	11.19	29.33	
N-103 N-104	226914.012	2683419.549	Monitoring Well	Intermediate			NP NP	16.38			11.19	11.26	27.64	
N-105	226745.373	2683442.708	Monitoring Well	Intermediate			NP	17.06			11.05	11.05	28.11	
N-106	227044.243	2682976.538	Monitoring Well	Intermediate			NP	8.62			14.41	14.41	23.03	
N-107	226909.904	2683133.246	Monitoring Well	Intermediate	0.9033	N-107	15.07	15.07	0.01	11.30	11.30	11.31	26.37	
N-108	226848.509	2682983.450	Monitoring Well	Intermediate			NM	NM			NA	NA	22.41	damaged- crimped over as if hit by vehicle
N-109	226649.194	2681604.972	Monitoring Well	Intermediate			NP	10.70			7.72	7.72	18.42	
N-110	226640.022	2680765.883	Monitoring Well	Intermediate			NM	NM			NA 1.10	NA 140	12.11	Well destroyed
N-111 N-112	226514.002 226328.461	2680519.261 2681663.567	Monitoring Well Monitoring Well	Intermediate Intermediate	0.9167	N-113	NP 8.9	6.30 12.10	3.20	6.82	4.46 3.62	4.46 6.55	10.76 15.72	
N-112 N-113	226054.267	2681733.331	Monitoring Well	Intermediate	0.9167	N-113	8.9	9.70	0.80	5.25	4.45	5.19	14.15	
N-114	226224.645	2681510.698	Monitoring Well	Intermediate	0.0107	14 110	NP	8.01	0.00	0.20	6.36	6.36	14.37	
N-115	225824.433	2682246.434	Monitoring Well	Intermediate	0.8985	N-116	7.66	7.66	0.01	7.67	7.67	7.68	15.33	
N-116	225843.598	2682616.585	Monitoring Well	Intermediate	0.8985	N-116	5.31	6.52	0.73	5.97	4.76	5.41	11.28	
N-117	226416.379	2682828.260	Monitoring Well	Intermediate			NM	NM			NA	NA	24.24	Well destroyed
N-118	226460.505 226406.087	2683077.266	Monitoring Well	Intermediate			NP NP	14.07 9.12			9.38	9.38	23.45	
N-119 N-120	226332.599	2683561.624 2683852.895	Monitoring Well Monitoring Well	Intermediate Intermediate			NP NP	10.82			11.31 11.51	11.31 11.51	20.43 22.33	
N-121	226380.688	2683357.051	Monitoring Well	Intermediate			NP	11.19			9.58	9.58	20.77	
N-122	226074.378	2683576.782	Monitoring Well	Intermediate			NP	9.74			7.31	7.31	17.05	
N-123	225788.933	2684165.075	Monitoring Well	Intermediate			NP	11.21			10.03	10.03	21.24	
N-124	225963.423	2684525.329	Monitoring Well	Intermediate			NP	13.88			11.79	11.79	25.67	
N-125	225653.256	2683530.878	Monitoring Well	Intermediate	0.8922	N-125	16.1	18.99	2.89	9.84	6.95	9.53	25.94	
N-126	225829.500 225192.921	2683283.039	Monitoring Well	Shallow	0.0705	N 107	NP 04.00	4.80	0.40	0.22	6.00	6.00	10.80 33.45	
N-127 N-128	225192.921	2682768.505 2682901.765	Monitoring Well Monitoring Well	Intermediate Intermediate	0.8785 0.8785	N-127 N-127	24.23 18.72	24.72 19.37	0.49 0.65	9.22 9.42	8.73 8.77	9.16 9.34	28.14	
N-129	225469.919	2683240.942	Monitoring Well	Intermediate	0.9017	N-127 N-129	19.39	20.52	1.13	9.51	8.38	9.39	28.90	
N-130	225087.603	2682501.018	Monitoring Well	Intermediate	0.7893	N-130	22.75	22.96	0.21	8.85	8.64	8.80	31.60	
N-131	225671.489	2681085.575	Monitoring Well	Shallow			NP	3.40			5.63	5.63	9.03	
N-132	225634.140	2681685.292	Monitoring Well	Shallow			NP	4.78			6.33	6.33	11.11	
N-133	224966.629	2680751.162	Monitoring Well	Shallow			NP NP	3.61			5.75	5.75	9.36	
N-134 N-135	226063.245 225141.446	2685261.950	Monitoring Well	Intermediate Shallow	0.0140	N 105	NP 4.01	17.20 5.13	1 10	E 04	10.29 4.79	10.29	27.49	
N-135 N-136	225342.984	2680687.178 2680714.222	Monitoring Well Monitoring Well	Shallow	0.9148	N-135	4.01 NP	3.60	1.12	5.91	7.25	5.81 7.25	9.92 10.85	
14-130	ZZUU+Z.3U+	2000714.222	wormorning vven	JIIallUW	1	<u> </u>	Philadelphia Gas		l	l	7.20	1.23	10.00	<u> </u>
P-30	225510.928	2684088.101	Monitoring Well	Shallow	0.9112	RW-205	19.87	22.31	2.44	12.68	10.24	12.46	32.55	
P-42	225555.206	2684361.371	Monitoring Well	Shallow			NP	12.79			20.37	20.37	33.16	
P-44	225647.296	2684648.203	Monitoring Well	Shallow			NP	21.75			10.45	10.45	32.20	
P-45	225230.820	2684147.076	Monitoring Well	Shallow			NP	23.14			10.40	10.40	33.54	
MW-5		-		==			NP	26.80		NA	NA	NA		
MW-7	-	-	-	-	Unknown		15.07	15.58	0.51	NA	NA	NA		
MW-8	_		-	-	-		NP NP	24.15		NA	NA	NA NA		
MW-9	224770 752	2602600 100	- Monitoring Woll	Challow			NP ND	25.29		NA NA	NA NA	NA NA		
MW-21	224770.752	2682698.189	Monitoring Well	Shallow	1		NP	5.16	1	NA	NA	NA		

Notes:

1. Well classification based on the formation in which the well was screened in. Wells screened within the Middle Clay or the Farrington Sand were classified as deep wells.

Well classification for wells screened above the Lower/Middle Clay were based on the following: screened in Fill/Alluvium - Shallow, screened in Trenton Gravel - Intermediate, screened in Fill/Alluvium & Trenton Gravel - Shallow/Intermediate

2. Specific Gravity (S.G.) values were determined from LNAPL samples taken by Aquaterra on February and July 2008 or from samples collected by Stantec in 1999-2000.

3. For wells with no direct S.G. measurements, the S.G. value in the nearest well with a direct S.G was used.

4. Depth to Water and Depth to LNAPL provided by Stantec. All wells gauged in May 2011 unless otherwise noted.

AOI - Area of Interest

LNAPL - Light Non-Aqueous Phase Liquid GW - Groundwater ft - Feet bgs - Below Ground Surface tic - Top of Inner Casing

in - Inches

msl - Elevation Relative to Mean Sea Level

g/cc - Grams Per cubic centimeter NA - Data Not Available

Page 4 of 4

Summary of Soil Sample Analytical Results: Non SWMU Area **AOI 8 Site Characterization Report Sunoco Philadelphia Refinery** Philadelphia, Pennsylvania

			Location ID		BH-08-01			BH-08-02			ВН	1-08-03			BH-08-04			BH-08-07			BH-08	-08			BH-08-0	9
		PADEP Non-	Sample ID	ВІ	I-08-01_1.0-2	2.0	В	H-08-02_1.0-	2.0	E	BH-08-	-03_1.0-2	.0	В	H-08-04_1.0	-2.0	В	H-08-07_1.0-	2.0	В	H-08-08	1.0-2.0		B	H-08-09_1.	.0-2.0
Chemical Name	CAS No	Residential Used	Sample Matrix		Soil			Soil				Soil			Soil			Soil			Soi				Soil	
Chemical Name	CAS NO	Aquifer Soil MSCs	Sample Interval		1.0-2.0			1.0-2.0			1.	.0-2.0			1.0-2.0			1.0-2.0			1.0-2	.0			1.0-2.0	,
		(TDS<2,500)	Sample Date		6/17/2008			5/7/2008			5/7	7/2008			5/8/2008			5/8/2008			5/7/2	800			5/7/200	8
			Unit	Result	Q RL	DF	Result	Q RL	DF	Result	Q	RL	DF	Result	Q RL	DF	Result	Q RL	DF	Result	Q I	RL [DF	Result	Q RL	. DF
Volatile Organic Compounds																										
Methyl Tertiary Butyl Ether	1634-04-4	2.0	mg/kg	ND	U 0.24	43.78	ND	U 0.23	39.81	ND	U	0.22	39.43	ND	U 0.27	43.71	ND	U 0.25	41.12	ND	U 0	38 62	2.19	ND	U 0.4	71.63
Benzene	71-43-2	0.5	mg/kg	ND	U 0.24	43.78	ND	U 0.23	39.81	0.58		0.22	39.43	3.3	0.27	43.71	1.4	0.25	41.12	1.9	0	38 62	2.19	3.2	0.4	1 71.63
1,2-Dichloroethane	107-06-2	0.5	mg/kg	ND	U 0.24	43.78	ND	U 0.23	39.81	ND	U	0.22	39.43	ND	U 0.27	43.71	ND	U 0.25	41.12	ND	U 0	38 62	2.19	ND	U 0.4	1 71.63
Toluene	108-88-3	100	mg/kg	ND	U 0.24	43.78	ND	U 0.23	39.81	0.23		0.22	39.43	0.59	0.27	43.71	0.47	0.25	41.12	ND	U 0	38 62	2.19	0.99	0.4	
Ethylene dibromide (EDB)	106-93-4	0.005	mg/kg	ND	U 0.24	43.78	ND	U 0.23	39.81	ND	U	0.22	39.43	ND	U 0.27	43.71	ND	U 0.25	41.12	ND	U 0	38 62	2.19	ND	U 0.4	71.63
Ethylbenzene	100-41-4	70	mg/kg	ND	U 0.24	43.78	ND	U 0.23	39.81	ND	U	0.22	39.43	8.4	0.27	43.71	8.4	0.25	41.12	ND	U 0	38 62	2.19	ND	U 0.4	71.63
Cumene	98-82-8	2,500	mg/kg	ND	U 0.24	43.78	ND	U 0.23	39.81	0.44		0.22	39.43	2.4	0.27	43.71	3.8	0.25	41.12	ND	U 0	.38 62	2.19	ND	U 0.4	71.63
Xylene (Total)	1330-20-7	1,000	mg/kg	ND	U 0.24	43.78	ND	U 0.23	39.81	0.34		0.22	39.43	32	2.7	437.06	28	2.5	411.18	0.62	0	.38 62	2.19	3.2	0.4	71.63
Semi Volatile Organic Compounds																										
Pyrene	129-00-0	2,200	mg/kg	ND	U 0.18	1	ND	U 0.95	5	ND	U	4.7	5	ND	U 10	5	5.9	5.1	5	ND	U 5	.1	5	8.5	4.7	7 5
Naphthalene	91-20-3	25	mg/kg	ND	U 0.18	1	ND	U 0.95	5	ND	U	4.7	5	12	10	5	15	5.1	5	ND	U 5	.1	5	5.9	4.7	5
Fluorene	86-73-7	3.800	ma/ka	ND	U 0.18	1	ND	U 0.95	5	ND	U	4.7	5	ND	U 10	5	12	5.1	5	ND	U 5	.1	5	ND	U 4.7	
Phenanthrene	85-01-8	10,000	mg/kg	ND	U 0.18	1	ND	U 0.95	5	6.8		4.7	5	20	10	5	34	5.1	5	ND	U 5	.1	5	8.5	4.7	5
Anthracene	120-12-7	350	mg/kg	ND	U 0.18	1	ND	U 0.95	5	ND	U	4.7	5	ND	U 10	5	ND	U 5.1	5	ND	U 5	.1	5	ND	U 4.7	5
Benzo(a)anthracene	56-55-3	320	mg/kg	ND	U 0.18	1	ND	U 0.95	5	ND	U	4.7	5	ND	U 10	5	ND	U 5.1	5	ND	U	.1	5	ND	U 4.7	5
Chrysene	218-01-9	230	mg/kg	ND	U 0.18	1	ND	U 0.95	5	ND	U	4.7	5	ND	U 10	5	ND	U 5.1	5	7.2		.1	5	6.9	4.7	7 5
Benzo(b)fluoranthene	205-99-2	170	mg/kg	ND	U 0.18	1	ND	U 0.95	5	ND	U	4.7	5	ND	U 10	5	ND	U 5.1	5	ND	U	.1	5	6.3	4.7	5
Benzo(a)pyrene	50-32-8	46	mg/kg	ND	U 0.18	1	ND	U 0.95	5	ND	U	4.7	5	ND	U 10	5	ND	U 5.1	5	ND	U !	.1	5	ND	U 4.7	5
Benzo(g,h,i)perylene	191-24-2	180	mg/kg	ND	U 0.18	1	ND	U 0.95	5	ND	U	4.7	5	ND	U 10	5	ND	U 5.1	5	ND	U 5	.1	5	ND	U 4.7	5
Metals																										
Lead (Total)	7439-92-1	450	mg/kg	69.7	1.08	10	138	U 1.11	10	291		291	10	829	2.41	20	519	1.18	10	637	2	41 2	20	262	1.09	9 10

Notes:

PADEP - Pennsylvania Department of Environmental Protection ug/kg - microgram per kilogram mg/kg - milligram per kilogram MSC - PADEP's Medium Specific Concentration for Soil

RL - Reporting Limit ND - Not Detected

NA - Not Analyzed SWMU - Solid Waste Management Unit

All soil samples collected and analyzed were unsaturated

Qualifiers: Q - Qualifier

U - The analyte was analyzed but not detected

N - Spike Amount not within control limits

Summary of Soil Sample Analytical Results: Non SWMU Area **AOI 8 Site Characterization Report Sunoco Philadelphia Refinery** Philadelphia, Pennsylvania

			Location ID		BH-08-10			ВН	I-08-11			ВІ	H-08-12			BH-0	3-13			BH	I-08-14			BH	-08-15			BH-	I-08-16	
		PADEP Non-	Sample ID	В	H-08-10_1.0	-2.0		3H-08-	11_1.0-2	2.0		BH-08	3-12_1.0-2	2.0	E	3H-08-13	_1.0-2.0		В	3H-08	-14_1.0-2	.0	В		15_1.0-2	.0	E		16_1.0-2.	0
Chemical Name	CAS No	Residential Used	Sample Matrix		Soil				Soil				Soil			So	il				Soil				Soil			9	Soil	
Citetilical Name	CAS NO	Aquifer Soil MSCs	Sample Interval		1.0-2.0			1.	.0-2.0			1	1.0-2.0			1.0-	2.0			1	.0-2.0			1	0-2.0			1.0	.0-2.0	
		(TDS<2,500)	Sample Date		5/7/2008			5/7	7/2008			5/	6/2008			5/6/2	800			5/0	6/2008			5/0	6/2008			5/7	7/2008	
			Unit	Result	Q RL	DF	Result	σ	RL	DF	Result	ρ	RL	DF	Result	Q	RL	DF	Result	a	RL	DF	Result	Q	RL	DF	Result	Q	RL	DF
Volatile Organic Compounds																														
Methyl Tertiary Butyl Ether	1634-04-4	2.0	mg/kg	ND	U 0.2	35.92	ND	U	0.24	40.26	ND	\Box	0.27	44.33	ND	U (.19	33.2	ND	U	0.23	41.39	ND	U	0.2	34.44	ND	U	0.26	45.45
Benzene	71-43-2	0.5	mg/kg	ND	U 0.2	35.92	0.31		0.24	40.26	3.1		0.27	44.33	ND	U (.19	33.2	ND	U	0.23	41.39	ND	U	0.2	34.44	3.1		0.26	45.45
1,2-Dichloroethane	107-06-2	0.5	mg/kg	ND	U 0.2	35.92	ND	U	0.24	40.26	ND	U	0.27	44.33	ND	U (.19	33.2	ND	U	0.23	41.39	ND	U	0.2	34.44	ND	U	0.26	45.45
Toluene	108-88-3	100	mg/kg	4.2	0.2	35.92	ND	U	0.24	40.26	0.66		0.27	44.33	ND	U (.19	33.2	ND	U	0.23	41.39	ND	U	0.2	34.44	4.2		0.26	45.45
Ethylene dibromide (EDB)	106-93-4	0.005	mg/kg	ND	U 0.2	35.92	ND	U	0.24	40.26	ND	C	0.27	44.33	ND	U	.19	33.2	ND	U	0.23	41.39	ND	U	0.2	34.44	ND	U	0.26	45.45
Ethylbenzene	100-41-4	70	mg/kg	ND	U 0.2	35.92	ND	U	0.24	40.26	0.74		0.27	44.33	ND	U (.19	33.2	ND	U	0.23	41.39	ND	U	0.2	34.44	6.6		0.26	45.45
Cumene	98-82-8	2,500	mg/kg	ND	U 0.2	35.92	ND	U	0.24	40.26	1.5		0.27	44.33	ND	U (.19	33.2	ND	U	0.23	41.39	ND	U	0.2	34.44	2100		0.26	45.45
Xylene (Total)	1330-20-7	1,000	mg/kg	0.36	0.2	35.92	ND	U	0.24	40.26	5.8		0.27	44.33	ND	U	.19	33.2	ND	U	0.23	41.39	ND	U	0.2	34.44	34		0.26	45.45
Semi Volatile Organic Compounds																														
Pyrene	129-00-0	2,200	mg/kg	2.1	0.94	5	ND	U	4.9	5	2.2		1	1	2.6	(.98	1	0.27		0.19	1	ND	U	0.19	1	15		9.7	5
Naphthalene	91-20-3	25	mg/kg	ND	U 0.94	5	ND	U	4.9	5	2.7		1	1	ND	U (1.98	1	ND	U	0.19	1	ND	U	0.19	1	18		9.7	5
Fluorene	86-73-7	3.800	ma/ka	ND	U 0.94	5	ND	U	4.9	5	2.4		1	1	ND	,	.98	1	ND	U	0.19	1	ND	U	0.19	1	21		9.7	5
Phenanthrene	85-01-8	10,000	mg/kg	1.7	0.94	5	ND	U	4.9	5	6.6		1	1	ND	U (1.98	1	0.33		0.19	1	ND	U	0.19	1	58		9.7	5
Anthracene	120-12-7	350	mg/kg	ND	U 0.94	5	ND	U	4.9	5	1.5		1	1	ND		1.98	1	ND	U	0.19	1	ND	U	0.19	1	11		9.7	5
Benzo(a)anthracene	56-55-3	320	mg/kg	2	0.94	5	ND	U	4.9	5	ND	U	1	1	1.1	(.98	1	ND	U	0.19	1	ND	U	0.19	1	ND	U	9.7	5
Chrysene	218-01-9	230	mg/kg	1.9	0.94	5	ND	U	4.9	5	1.9		1	1	2.7	(.98	1	0.25		0.19	1	ND	U	0.19	1	13		9.7	5
Benzo(b)fluoranthene	205-99-2	170	mg/kg	2.5	0.94	5	ND	U	4.9	5	ND	U	1	1	1.1	(.98	1	ND	U	0.19	1	ND	U	0.19	1	ND	U	9.7	5
Benzo(a)pyrene	50-32-8	46	mg/kg	2.6	0.94	5	ND	U	4.9	5	ND	U	1	1	1.3	(.98	1	ND	U	0.19	1	ND	U	0.19	1	ND	U	9.7	5
Benzo(g,h,i)perylene	191-24-2	180	mg/kg	1.8	0.94	5	ND	U	4.9	5	ND	U	1	1	1.1	(.98	1	ND	U	0.19	1	ND	U	0.19	1	ND	U	9.7	5
Metals																														
Lead (Total)	7439-92-1	450	mg/kg	428	1.1	10	131		1.16	10	1250		11.6	100	314		.14	10	78.8		1.12	10	22.8		1.13	10	1380		5.58	50

Notes:

PADEP - Pennsylvania Department of Environmental Protection ug/kg - microgram per kilogram mg/kg - milligram per kilogram MSC - PADEP's Medium Specific Concentration for Soil

RL - Reporting Limit ND - Not Detected

NA - Not Analyzed SWMU - Solid Waste Management Unit

All soil samples collected and analyzed were unsaturated

Qualifiers: Q - Qualifier

U - The analyte was analyzed but not detected

N - Spike Amount not within control limits

Summary of Soil Sample Analytical Results: Non SWMU Area **AOI 8 Site Characterization Report Sunoco Philadelphia Refinery** Philadelphia, Pennsylvania

			Location ID		BH-08-17			BH-	-08-18			BH	1-08-21			ВН	-08-22			BH	1-08-23			BH	I-08-24			ВН	-08-25	
		PADEP Non-	Sample ID	В	H-08-17_1.0	-2.0		BH-08-	18_1.0-2	2.0	E	3H-08	-21_1.0-2	.0	Е	3H-08-	22_1.0-2.0	0	В	3H-08	-23_1.0-2	.0	E	3H-08	-24_1.0-2	.0		3H-08-	25_1.0-2.	0
Chemical Name	CAS No	Residential Used	Sample Matrix		Soil				Soil				Soil			;	Soil				Soil				Soil				Soil	
Chemical Name	CAS NO	Aquifer Soil MSCs	Sample Interval		1.0-2.0			1.	0-2.0			1	.0-2.0			1.	0-2.0			1	.0-2.0			1	.0-2.0			1./	0-2.0	
		(TDS<2,500)	Sample Date		5/7/2008			5/7	/2008			5/	7/2008			5/7	/2008			5/	7/2008			5/	7/2008			5/7	7/2008	
			Unit	Result	Q RL	DF	Result	a	RL	DF	Result	Q	RL	DF	Result	Q	RL	DF	Result	Q	RL	DF	Result	Q	RL	DF	Result	σ	RL	DF
Volatile Organic Compounds																														
Methyl Tertiary Butyl Ether	1634-04-4	2.0	mg/kg	ND	U 0.24	39.68	ND	U	0.24	42.09	ND	U	0.25	44.01	ND	U	0.26	44.88	ND	U	0.18	30.64	ND	U	0.38	68.87	ND	U	0.46	83.06
Benzene	71-43-2	0.5	mg/kg	ND	U 0.24	39.68	ND	U	0.24	42.09	ND	U	0.25	44.01	ND	U	0.26	44.88	ND	U	0.18	30.64	ND	U	0.38	68.87	ND	U	0.46	83.06
1,2-Dichloroethane	107-06-2	0.5	mg/kg	ND	U 0.24	39.68	ND	U	0.24	42.09	ND	U	0.25	44.01	ND	U	0.26	44.88	ND	U	0.18	30.64	ND	U	0.38	68.87	ND	U	0.46	83.06
Toluene	108-88-3	100	mg/kg	ND	U 0.24	39.68	ND	U	0.24	42.09	ND	U	0.25	44.01	ND	U	0.26	44.88	ND	U	0.18	30.64	ND	U	0.38	68.87	ND	U	0.46	83.06
Ethylene dibromide (EDB)	106-93-4	0.005	mg/kg	ND	U 0.24	39.68	ND	U	0.24	42.09	ND	U	0.25	44.01	ND	U	0.26	44.88	ND	U	0.18	30.64	ND	U	0.38	68.87	ND	U	0.46	83.06
Ethylbenzene	100-41-4	70	mg/kg	ND	U 0.24	39.68	ND	U	0.24	42.09	ND	U	0.25	44.01	ND	U	0.26	44.88	ND	U	0.18	30.64	ND	U	0.38	68.87	ND	U	0.46	83.06
Cumene	98-82-8	2,500	mg/kg	ND	U 0.24	39.68	ND	U	0.24	42.09	ND	U	0.25	44.01	ND	U	0.26	44.88	ND	U	0.18	30.64	1.4		0.38	68.87	ND	U	0.46	83.06
Xylene (Total)	1330-20-7	1,000	mg/kg	ND	U 0.24	39.68	ND	U	0.24	42.09	ND	U	0.25	44.01	ND	U	0.26	44.88	0.2		0.18	30.64	0.6		0.38	68.87	ND	U	0.46	83.06
Semi Volatile Organic Compounds																														
Pyrene	129-00-0	2,200	mg/kg	ND	U 0.99	5	ND	U	0.94	5	ND	U	4.8	5	ND	U	4.8	5	ND	U	5	5	ND	U	4.6	5	ND	U	4.6	5
Naphthalene	91-20-3	25	mg/kg	ND	U 0.99	5	ND	U	0.94	5	ND	U	4.8	5	ND	U	4.8	5	ND	U	5	5	ND	U	4.6	5	ND	U	4.6	5
Fluorene	86-73-7	3.800	ma/ka	ND	U 0.99	5	ND	U	0.94	5	ND	U	4.8	5	ND	U	4.8	5	ND	U	5	5	ND	U	4.6	5	ND	U	4.6	5
Phenanthrene	85-01-8	10,000	mg/kg	ND	U 0.99	5	ND	U	0.94	5	9.7		4.8	5	ND	U	4.8	5	ND	U	5	5	5.9		4.6	5	ND	U	4.6	5
Anthracene	120-12-7	350	mg/kg	ND	U 0.99	5	ND	U	0.94	5	ND	U	4.8	5	ND	U	4.8	5	ND	U	5	5	ND	U	4.6	5	ND	U	4.6	5
Benzo(a)anthracene	56-55-3	320	mg/kg	ND	U 0.99	5	ND	U	0.94	5	ND	U	4.8	5	ND	U	4.8	5	ND	U	5	5	ND	U	4.6	5	ND	U	4.6	5
Chrysene	218-01-9	230	mg/kg	ND	U 0.99	5	ND	U	0.94	5	ND	U	4.8	5	ND	U	4.8	5	ND	U	5	5	ND	U	4.6	5	ND	U	4.6	5
Benzo(b)fluoranthene	205-99-2	170	mg/kg	ND	U 0.99	5	ND	U	0.94	5	ND	U	4.8	5	ND	U	4.8	5	ND	U	5	5	ND	U	4.6	5	ND	U	4.6	5
Benzo(a)pyrene	50-32-8	46	mg/kg	ND	U 0.99	5	ND	U	0.94	5	ND	U	4.8	5	ND	U	4.8	5	ND	U	5	5	ND	U	4.6	5	ND	U	4.6	5
Benzo(g,h,i)perylene	191-24-2	180	mg/kg	ND	U 0.99	5	ND	U	0.94	5	ND		4.8	5	ND	U	4.8	5	ND	U	5	5	ND	U	4.6	5	ND	U	4.6	5
Metals																														
Lead (Total)	7439-92-1	450	mg/kg	102	1.16	10	22.2		1.13	10	540		1.15	10	213		1.13	10	374		1.17	10	172		1.08	10	223		1.11	10

Notes:

PADEP - Pennsylvania Department of Environmental Protection ug/kg - microgram per kilogram mg/kg - milligram per kilogram MSC - PADEP's Medium Specific Concentration for Soil

RL - Reporting Limit ND - Not Detected

NA - Not Analyzed SWMU - Solid Waste Management Unit

All soil samples collected and analyzed were unsaturated

Qualifiers: Q - Qualifier

U - The analyte was analyzed but not detected

N - Spike Amount not within control limits

Summary of Soil Sample Analytical Results: Non SWMU Area **AOI 8 Site Characterization Report Sunoco Philadelphia Refinery** Philadelphia, Pennsylvania

			Location ID		BH-08-26			BH-08-27			BH-	-08-28			BH-08-2	•		BH-08-31			BH-	08-32			BH-08-3	3
		PADEP Non-	Sample ID	Bł	1-08-26_1.0-2	0	В	H-08-27_1.0-	2.0	E	BH-08-2	28_1.0-2.	.0	В	H-08-29_1.	0-2.0	В	H-08-31_1.0	-2.0	E	H-08-3	2_0.0-2.	0	В	H-08-33_1.	.5-2.0
Chemical Name	CAS No	Residential Used	Sample Matrix		Soil			Soil				Soil			Soil			Soil			S	oil			Soil	
Chemical Name	CAS NO	Aquifer Soil MSCs	Sample Interval		1.0-2.0			1.0-2.0			1.0	0-2.0			1.0-2.0			1.0-2.0			0-	2.0			1.5-2.0	į.
		(TDS<2,500)	Sample Date		5/8/2008			5/6/2008			5/6	/2008			5/6/200	3		5/6/2008			7/3/	/2008			5/6/200	8
			Unit	Result	Q RL	DF	Result	Q RL	DF	Result	Q	RL	DF	Result	Q RL	DF	Result	Q RL	DF	Result	Q	RL	DF	Result	Q RL	. DF
Volatile Organic Compounds																										
Methyl Tertiary Butyl Ether	1634-04-4	2.0	mg/kg	ND	U 0.21	35.31	ND	U 0.18	31.57	ND	U	0.27	44.8	ND	U 0.23		ND	U 0.24	44.09	ND	U	0.3	57.34	ND	U 0.28	
Benzene	71-43-2	0.5	mg/kg	9	0.21	35.31	ND	U 0.18	31.57	ND	U	0.27	44.8	ND	U 0.23	40.72	ND	U 0.24	44.09	ND	U	0.3	57.34	ND	U 0.28	
1,2-Dichloroethane	107-06-2	0.5	mg/kg	ND	U 0.21	35.31	ND	U 0.18	31.57	ND	U	0.27	44.8	ND	U 0.23	40.72	ND	U 0.24	44.09	ND	U	0.3	57.34	ND	U 0.28	
Toluene	108-88-3	100	mg/kg	ND	U 0.21	35.31	ND	U 0.18	31.57	ND	U	0.27	44.8	ND	U 0.23	40.72	ND	U 0.24	44.09	ND	U	0.3	57.34	ND	U 0.28	
Ethylene dibromide (EDB)	106-93-4	0.005	mg/kg	ND	U 0.21	35.31	ND	U 0.18	31.57	ND	U	0.27	44.8	ND	U 0.23	40.72	ND	U 0.24	44.09	ND	U	0.3	57.34	ND	U 0.28	
Ethylbenzene	100-41-4	70	mg/kg	ND	U 0.21	35.31	ND	U 0.18	31.57	ND	U	0.27	44.8	ND	U 0.23		ND	U 0.24	44.09	ND	U	0.3	57.34	ND	U 0.28	
Cumene	98-82-8	2,500	mg/kg	0.66	0.21	35.31	ND	U 0.18	31.57	ND	U	0.27	44.8	ND	U 0.23	40.72	ND	U 0.24	44.09	ND	U	0.3	57.34	ND	U 0.28	8 47.53
Xylene (Total)	1330-20-7	1,000	mg/kg	ND	U 0.21	35.31	ND	U 0.18	31.57	0.67		0.27	44.8	ND	U 0.23	40.72	ND	U 0.24	44.09	ND	U	0.3	57.34	ND	U 0.28	8 47.53
Semi Volatile Organic Compounds																										
Pyrene	129-00-0	2,200	mg/kg	ND	U 4.9	5	0.58	0.19	1	1.1		1	1	ND	U 0.19	1	25	4.6	5	1.6		0.17	1	7.5	0.97	7 5
Naphthalene	91-20-3	25	mg/kg	ND	U 4.9	5	ND	U 0.19	1	ND	U	1	1	ND	U 0.19	1	ND	U 0.92	1	ND	U	0.17	1	0.36	0.19	
Fluorene	86-73-7	3.800	ma/ka	ND	U 4.9	5	ND	U 0.19	1	1.1		1	1	ND	U 0.19		2000	0.92	1	ND		0.17	11	0.72	0.19	
Phenanthrene	85-01-8	10,000	mg/kg	ND	U 4.9	5	0.45	0.19	1	2.9		1	1	ND	U 0.19		26	4.6	5	1.4	-	0.17	1	7.2	0.97	
Anthracene	120-12-7	350	mg/kg	ND	U 4.9	5	ND	U 0.19	1	ND	U	1	1	ND	U 0.19) 1	8.1	0.92	1	0.35		0.17	1	1.7	0.19	
Benzo(a)anthracene	56-55-3	320	mg/kg	ND	U 4.9	5	0.37	0.19	1	ND	U	1	1	ND	U 0.19	1	16	0.92	1	0.92		0.17	1	4.6	0.97	7 5
Chrysene	218-01-9	230	mg/kg	ND	U 4.9	5	0.44	0.19	1	1.2		1	1	ND	U 0.19) 1	13	0.92	1	0.95		0.17	1	4.3	0.19	
Benzo(b)fluoranthene	205-99-2	170	mg/kg	ND	U 4.9	5	0.48	0.19	1	ND	U	1	1	ND	U 0.19		12	0.92	1	1.2	-	0.17	1	5.4	0.97	
Benzo(a)pyrene	50-32-8	46	mg/kg	ND	U 4.9	5	0.4	0.19	1	ND	U	1	1	ND	U 0.19) 1	11	0.92	1	0.9	-	0.17	1	3.6	1.9	
Benzo(g,h,i)perylene	191-24-2	180	mg/kg	ND	U 4.9	5	0.37	0.19	1	ND	U	1	1	ND	U 0.19	1	6.9	0.92	1	0.73		0.17	1	2.3	0.19	Э 1
Metals																										
Lead (Total)	7439-92-1	450	ma/ka	261	1.13	10	89.7	1.09	10	132		1.15	10	96.4	1.1	10	1300	10.9	100	128		1.01	10	172	1.15	5 10

Notes:

PADEP - Pennsylvania Department of Environmental Protection ug/kg - microgram per kilogram mg/kg - milligram per kilogram MSC - PADEP's Medium Specific Concentration for Soil

RL - Reporting Limit ND - Not Detected

NA - Not Analyzed SWMU - Solid Waste Management Unit

All soil samples collected and analyzed were unsaturated

Qualifiers: Q - Qualifier

U - The analyte was analyzed but not detected

N - Spike Amount not within control limits

Summary of Soil Sample Analytical Results: Non SWMU Area **AOI 8 Site Characterization Report Sunoco Philadelphia Refinery** Philadelphia, Pennsylvania

			Location ID		BH-08-34			BH-08-35				N-98			N-99			N-100			N	-101			N-102	
		PADEP Non-	Sample ID	ВІ	1-08-34_1.5-2	2.0	В	H-08-35_1.0-	2.0		N-98	3_1.0-2.0			N-99_1.0-2	.0		N-100_0.0-	2.0		N-101	1_1.0-2.0			N-102_1.0-	-2.0
Chemical Name	CAS No	Residential Used	Sample Matrix		Soil			Soil				Soil			Soil			Soil			;	Soil			Soil	
Chemical Name	CAS NO	Aquifer Soil MSCs	Sample Interval		1.5-2.0			1.0-2.0			1.	.0-2.0			1.0-2.0			0.0-2.0			1.	0-2.0			1.0-2.0	
		(TDS<2,500)	Sample Date		5/6/2008			5/6/2008			6/2	2/2008			6/17/200	}		6/11/200	8		6/1	6/2008			6/5/200	8
			Unit	Result	Q RL	DF	Result	Q RL	DF	Result	Q	RL	DF	Result	Q RL	DF	Result	Q RL	DF	Result	Q	RL	DF	Result	Q RL	DF
Volatile Organic Compounds																										
Methyl Tertiary Butyl Ether	1634-04-4	2.0	mg/kg	ND	U 0.26	45.13	ND	U 0.22	40.58	ND	U	0.21	36.23	ND	U 0.27	45.79	ND	U 0.28	51.12	ND	U	0.21	35.87	ND	U 0.25	5 42.44
Benzene	71-43-2	0.5	mg/kg	ND	U 0.26	45.13	ND	U 0.22	40.58	ND	U	0.21	36.23	ND	U 0.27	45.79	ND	U 0.28	51.12	ND	U	0.21	35.87	ND	U 0.25	5 42.44
1,2-Dichloroethane	107-06-2	0.5	mg/kg	ND	U 0.26	45.13	ND	U 0.22	40.58	ND	U	0.21	36.23	ND	U 0.27	45.79	ND	U 0.28	51.12	ND	U	0.21	35.87	ND	U 0.25	5 42.44
Toluene	108-88-3	100	mg/kg	ND	U 0.26	45.13	ND	U 0.22	40.58	ND	U	0.21	36.23	ND	U 0.27	45.79	ND	U 0.28	51.12	ND	U	0.21	35.87	ND	U 0.25	
Ethylene dibromide (EDB)	106-93-4	0.005	mg/kg	ND	U 0.26	45.13	ND	U 0.22	40.58	ND	U	0.21	36.23	ND	U 0.27	45.79	ND	U 0.28	51.12	ND	U	0.21	35.87	ND	U 0.25	5 42.44
Ethylbenzene	100-41-4	70	mg/kg	ND	U 0.26	45.13	ND	U 0.22	40.58	ND	U	0.21	36.23	ND	U 0.27	45.79	ND	U 0.28	51.12	ND	U	0.21	35.87	ND	U 0.25	5 42.44
Cumene	98-82-8	2,500	mg/kg	ND	U 0.26	45.13	ND	U 0.22	40.58	ND	U	0.21	36.23	ND	U 0.27	45.79	ND	U 0.28	51.12	ND	U	0.21	35.87	ND	U 0.25	5 42.44
Xylene (Total)	1330-20-7	1,000	mg/kg	ND	U 0.26	45.13	ND	U 0.22	40.58	ND	U	0.21	36.23	ND	U 0.27	45.79	ND	U 0.28	51.12	ND	U	0.21	35.87	ND	U 0.25	5 42.44
Semi Volatile Organic Compounds																										
Pyrene	129-00-0	2,200	mg/kg	63	9.7	50	ND	U 0.18	1	2.4		0.98	5	140	25	125	1.9	0.19	1	0.44		0.2	1	0.39	0.19	9 1
Naphthalene	91-20-3	25	mg/kg	ND	U 1.9	10	ND	U 0.18	1	1		0.98	5	53	5	25	ND	U 0.19	1	ND	U	0.2	1	ND	U 0.19	Э 1
Fluorene	86-73-7	3.800	ma/ka	8	1.9	10	ND	U 0.18	1	ND	U	0.98	5	78	5	25	ND	U 0.19		0.28		0.2	1	ND	U 0.19	
Phenanthrene	85-01-8	10,000	mg/kg	18	1.9	50	ND	U 0.18	1	4.5		0.98	5	280	2.5	125	1.5	0.19	1	0.53		0.2	1	0.31	0.19	
Anthracene	120-12-7	350	mg/kg	18	1.9	10	ND	U 0.18	1	ND	U	0.98	5	64	5	25	320	0.19	1	0.24		0.2	1	ND	U 0.19	9 1
Benzo(a)anthracene	56-55-3	320	mg/kg	37	1.9	10	ND	U 0.18	1	ND	U	0.98	5	82	5	25	1.1	0.19	1	ND	U	0.2	1	ND	U 0.19	9 1
Chrysene	218-01-9	230	mg/kg	32	1.9	10	ND	U 0.18	1	ND	U	0.98	5	71	5	25	1.1	0.19	1	0.25		0.2	1	0.27	0.19	9 1
Benzo(b)fluoranthene	205-99-2	170	mg/kg	39	1.9	10	ND	U 0.18	1	ND	U	0.98	5	69	5	25	1.2	0.19	1	ND	U	0.2	1	0.32	0.19	9 1
Benzo(a)pyrene	50-32-8	46	mg/kg	29	1.9	10	ND	U 0.18	1	ND	U	0.98	5	61	5	25	ND	U 0.19	1	ND	U	0.2	1	0.2	0.19	9 1
Benzo(g,h,i)perylene	191-24-2	180	mg/kg	18	1.9	10	ND	U 0.18	1	ND	U	0.98	5	29	5	25	0.62	0.19	1	ND	U	0.2	1	ND	U 0.19	9 1
Metals																										
Lead (Total)	7439-92-1	450	mg/kg	354	1.12	10	14.3	1.05	10	94.5		1.14	10	146	1.14	10	135	1.09	10	78.1		1.15	10	24.7	0.11	5 1

Notes:

PADEP - Pennsylvania Department of Environmental Protection ug/kg - microgram per kilogram mg/kg - milligram per kilogram MSC - PADEP's Medium Specific Concentration for Soil

RL - Reporting Limit ND - Not Detected

NA - Not Analyzed SWMU - Solid Waste Management Unit

All soil samples collected and analyzed were unsaturated

Qualifiers: Q - Qualifier

U - The analyte was analyzed but not detected

N - Spike Amount not within control limits

Summary of Soil Sample Analytical Results: Non SWMU Area **AOI 8 Site Characterization Report Sunoco Philadelphia Refinery** Philadelphia, Pennsylvania

			Location ID		N-103			N-104			N	N-105			N-106			N-107			N-10	3		N	-109	
		PADEP Non-	Sample ID	r	N-103_1.0-2.0)		N-104_1.0-2.	.0		N-10	5_1.0-2.0)		N-106_1.0-2	2.0		N-107_1.0-2.	.0		N-108_1.)-2.0		N-109	1.0-2.0	
Chemical Name	CAS No	Residential Used	Sample Matrix		Soil			Soil				Soil			Soil			Soil			Soil				Soil	
Chemical Name	CAS NO	Aquifer Soil MSCs	Sample Interval		1.0-2.0			1.0-2.0			1.	.0-2.0			1.0-2.0			1.0-2.0			1.0-2.	0		1./	0-2.0	
		(TDS<2,500)	Sample Date		6/6/2008			6/17/2008			6/1	7/2008			6/5/2008			6/17/2008			5/29/20	08		6/1	7/2008	
			Unit	Result	Q RL	DF	Result	Q RL	DF	Result	Q	RL	DF	Result	Q RL	DF	Result	Q RL	DF	Result	Q R	_ DF	Result	t Q	RL	DF
Volatile Organic Compounds																										
Methyl Tertiary Butyl Ether	1634-04-4	2.0	mg/kg	ND	U 0.26	45.96	ND	U 0.23	41.19	ND	U	0.24	43.03	ND	U 0.19	34.39	ND	U 0.22	40.19	ND	U 0.2	39.12	ND	U	3.1	539.96
Benzene	71-43-2	0.5	mg/kg	ND	U 0.26	45.96	ND	U 0.23	41.19	ND	U	0.24	43.03	ND	U 0.19	34.39	0.74	0.22	40.19	ND	U 0.2	39.12	ND	U	3.1	539.96
1,2-Dichloroethane	107-06-2	0.5	mg/kg	ND	U 0.26	45.96	ND	U 0.23	41.19	ND	U	0.24	43.03	ND	U 0.19	34.39	ND	U 0.22	40.19	ND	U 0.2	39.12	ND	U	3.1	539.96
Toluene	108-88-3	100	mg/kg	ND	U 0.26	45.96	ND	U 0.23	41.19	ND	U	0.24	43.03	ND	U 0.19	34.39	0.42	0.22	40.19	ND	U 0.2	39.12	ND	U	3.1	539.96
Ethylene dibromide (EDB)	106-93-4	0.005	mg/kg	ND	U 0.26	45.96	ND	U 0.23	41.19	ND	U	0.24	43.03	ND	U 0.19	34.39	ND	U 0.22	40.19	ND	U 0.2	39.12	ND	U	3.1	539.96
Ethylbenzene	100-41-4	70	mg/kg	ND	U 0.26	45.96	ND	U 0.23	41.19	ND	U	0.24	43.03	ND	U 0.19	34.39	1.6	0.22	40.19	ND	U 0.2	39.12	ND	U	3.1	539.96
Cumene	98-82-8	2,500	mg/kg	ND	U 0.26	45.96	ND	U 0.23	41.19	ND	U	0.24	43.03	ND	U 0.19	34.39	360	0.22	40.19	ND	U 0.2	39.12	ND	U	3.1	539.96
Xylene (Total)	1330-20-7	1,000	mg/kg	ND	U 0.26	45.96	ND	U 0.23	41.19	ND	U	0.24	43.03	ND	U 0.19	34.39	2.7	0.22	40.19	ND	U 0.2	39.12	ND	U	3.1	539.96
Semi Volatile Organic Compounds																										
Pyrene	129-00-0	2,200	mg/kg	ND	U 0.95	1	2.2	0.92	5	ND	U	0.92	5	0.27	0.19	1	ND	U 1.8	5	ND	U 1.	9 5	ND	U	0.95	5
Naphthalene	91-20-3	25	mg/kg	ND	U 0.95	1	ND	U 0.92	5	ND	U	0.92	5	ND	U 0.19	1	ND	U 1.8	5	ND	U 1.	9 5	ND	U	0.95	5
Fluorene	86-73-7	3.800	ma/ka	ND	U 0.95	1	ND	U 0.92	5	ND	U	0.92	5	ND	U 0.19	1	ND	U 1.8	5	ND	U 1.	9 5	ND	U	0.95	5
Phenanthrene	85-01-8	10,000	mg/kg	ND	U 0.95	1	1.5	0.92	5	ND	U	0.92	5	ND	U 0.19	1	ND	U 1.8	5	2.1	1.	9 5	ND	U	0.95	5
Anthracene	120-12-7	350	mg/kg	ND	U 0.95	1	ND	U 0.92	5	ND	U	0.92	5	ND	U 0.19	1	ND	U 1.8	5	ND	U 1.	9 5	ND	U	0.95	5
Benzo(a)anthracene	56-55-3	320	mg/kg	ND	U 0.95	1	ND	U 0.92	5	ND	U	0.92	5	ND	U 0.19	1	ND	U 1.8	5	2	1.	9 5	ND	U	0.95	5
Chrysene	218-01-9	230	mg/kg	ND	U 0.95	1	1.2	0.92	5	ND	U	0.92	5	190	0.19	1	ND	U 1.8	5	3.8	1.	9 5	ND	U	0.95	5
Benzo(b)fluoranthene	205-99-2	170	mg/kg	ND	U 0.95	1	ND	U 0.92	5	ND	U	0.92	5	0.3	0.19	1	ND	U 1.8	5	3.3	1.	9 5	ND	U	0.95	5
Benzo(a)pyrene	50-32-8	46	mg/kg	ND	U 0.95	1	ND	U 0.92	5	ND	U	0.92	5	0.19	0.19	1	ND	U 1.8	5	5.4	1.	9 5	ND	U	0.95	5
Benzo(g,h,i)perylene	191-24-2	180	mg/kg	1	0.95	1	ND	U 0.92	5	ND	U	0.92	5	0.22	0.19	1	ND	U 1.8	5	20	1.	9 5	ND	U	0.95	5
Metals																										
Lead (Total)	7439-92-1	450	mg/kg	174	0.567	5	164	1.07	10	36.4		1.08	10	76.7	0.546	5	173	1.07	10	147	1.1	6 10	294		1.13	10

Notes:

PADEP - Pennsylvania Department of Environmental Protection ug/kg - microgram per kilogram mg/kg - milligram per kilogram MSC - PADEP's Medium Specific Concentration for Soil

RL - Reporting Limit ND - Not Detected

NA - Not Analyzed SWMU - Solid Waste Management Unit

All soil samples collected and analyzed were unsaturated

Qualifiers: Q - Qualifier

U - The analyte was analyzed but not detected

N - Spike Amount not within control limits

Summary of Soil Sample Analytical Results: Non SWMU Area **AOI 8 Site Characterization Report Sunoco Philadelphia Refinery** Philadelphia, Pennsylvania

			Location ID		N-110			N-1	111			N	N-112			N-11	13			N	N-114			N	I-115			N-1	16	
		PADEP Non-	Sample ID		N-110_1.0-2.	0		N-111_	1.0-2.0				2_1.0-2.0			N-113_1	.0-2.0				4_1.0-2.0)			5_0.0-2.0	1		N-116_	1.0-2.0	
Chemical Name	CAS No	Residential Used	Sample Matrix		Soil			So	oil				Soil			Soi	l				Soil				Soil			So	ilر	
Chemical Name	OAS NO	Aquifer Soil MSCs	Sample Interval		1.0-2.0			1.0-	2.0			1	.0-2.0			1.0-2	2.0			1.	.0-2.0			0	0-2.0			1.0-	2.0	
		(TDS<2,500)	Sample Date		5/14/2008			5/14/	2008			5/8	8/2008			5/15/2	800			5/8	8/2008			5/2	8/2008			5/20/	2008	
			Unit	Result	Q RL	DF	Result	σ	RL	DF	Result	Q	RL	DF	Result	O E	RL	DF	Result	a	RL	DF	Result	Q	RL	DF	Result	a	RL	DF
Volatile Organic Compounds																														
Methyl Tertiary Butyl Ether	1634-04-4	2.0	mg/kg	ND	U 0.24	43.86	ND	U	0.24	43.1	ND	U	0.44	73.96	ND	U 0	.18	34.72	ND	U	0.24	42.66	ND	U	0.38	61.12	ND	U	0.23	39.12
Benzene	71-43-2	0.5	mg/kg	ND	U 0.24	43.86	ND	U	0.24	43.1	ND	U	0.44	73.96	ND	U 0	.18	34.72	0.51		0.24	42.66	ND	U	0.38	61.12	ND	U		39.12
1,2-Dichloroethane	107-06-2	0.5	mg/kg	ND	U 0.24	43.86	ND	U	0.24	43.1	ND	U	0.44	73.96	ND	U 0	.18	34.72	ND	U	0.24	42.66	ND	U	0.38	61.12	ND	U	0.23	39.12
Toluene	108-88-3	100	mg/kg	ND	U 0.24	43.86	ND	U	0.24	43.1	ND	U	0.44	73.96	ND	U 0	.18	34.72	0.42		0.24	42.66	ND	U	0.38	61.12	ND	U	0.23	39.12
Ethylene dibromide (EDB)	106-93-4	0.005	mg/kg	ND	U 0.24	43.86	ND	U	0.24	43.1	ND	U	0.44	73.96	ND	U 0	.18	34.72	ND	U	0.24	42.66	ND	U	0.38	61.12	ND	U	0.23	39.12
Ethylbenzene	100-41-4	70	mg/kg	ND	U 0.24	43.86	ND	U	0.24	43.1	ND	U	0.44	73.96	ND	U 0	.18	34.72	0.25		0.24	42.66	ND	U	0.38	61.12	ND	U	0.23	39.12
Cumene	98-82-8	2,500	mg/kg	ND	U 0.24	43.86	ND	U	0.24	43.1	ND	U	0.44	73.96	0.32	0	.18	34.72	0.59		0.24	42.66	ND	U	0.38	61.12	0.81	1	0.23	39.12
Xylene (Total)	1330-20-7	1,000	mg/kg	ND	U 0.24	43.86	ND	U	0.24	43.1	ND	U	0.44	73.96	ND	U 0	.18	34.72	0.69		0.24	42.66	ND	U	0.38	61.12	ND	U	0.23	39.12
Semi Volatile Organic Compounds																														
Pyrene	129-00-0	2,200	mg/kg	ND	U 0.18	1	1.4	(0.91	5	ND	U	2	1	ND	U	1.4	5	13		4.7	5	32		5.2	5	1.2	1	0.97	5
Naphthalene	91-20-3	25	mg/kg	ND	U 0.18	1	ND	U	0.91	5	ND	U	2	1	ND	U	1.4	5	ND	U	4.7	5	ND	U	5.2	5	ND	U	0.97	5
Fluorene	86-73-7	3.800	ma/ka	ND	U 0.18	1	ND	U	0.91	5	ND	U	2	1	ND	U	1.4	5	10		4.7	5	ND	U	5.2	5	2.1		0.97	5
Phenanthrene	85-01-8	10,000	mg/kg	ND	U 0.18	1	1.1	(0.91	5	ND	U	2	1	ND	U	1.4	5	26		4.7	5	14		5.2	5	5.9		0.97	5
Anthracene	120-12-7	350	mg/kg	ND	U 0.18	1	ND	U	0.91	5	ND	U	2	1	ND	U 4	1.4	5	ND	U	4.7	5	ND	U	5.2	5	1		0.97	5
Benzo(a)anthracene	56-55-3	320	mg/kg	ND	U 0.18	1	ND	U	0.91	5	ND	U	2	1	ND	U 4	1.4	5	ND	U	4.7	5	10		5.2	5	ND	U	0.97	5
Chrysene	218-01-9	230	mg/kg	ND	U 0.18	1	ND	U	0.91	5	ND	U	2	1	ND	U	1.4	5	6.9		4.7	5	15		5.2	5	ND	U	0.97	5
Benzo(b)fluoranthene	205-99-2	170	mg/kg	ND	U 0.18	1	0.96	(0.91	5	ND	U	2	1	ND	U	1.4	5	ND	U	4.7	5	ND	U	5.2	5	ND	U	0.97	5
Benzo(a)pyrene	50-32-8	46	mg/kg	ND	U 0.18	1	ND	U	0.91	5	ND	U	2	1	ND	U	1.4	5	ND	U	4.7	5	6.5		5.2	5	ND	U	0.97	5
Benzo(g,h,i)perylene	191-24-2	180	mg/kg	ND	U 0.18	1	ND	U	0.91	5	ND	U	2	1	ND	U	1.4	5	ND	U	4.7	5	7.1		5.2	5	ND	U	0.97	5
Metals																														
Lead (Total)	7439-92-1	450	mg/kg	15	1.06	10	117		1.06	10	11.6		1.16	10	77.9	1	.06	10	139		139	10	1250	N	3	25	340		1.16	10

Notes:

PADEP - Pennsylvania Department of Environmental Protection ug/kg - microgram per kilogram mg/kg - milligram per kilogram MSC - PADEP's Medium Specific Concentration for Soil

RL - Reporting Limit ND - Not Detected

NA - Not Analyzed SWMU - Solid Waste Management Unit

All soil samples collected and analyzed were unsaturated

Qualifiers: Q - Qualifier

U - The analyte was analyzed but not detected

N - Spike Amount not within control limits

Summary of Soil Sample Analytical Results: Non SWMU Area **AOI 8 Site Characterization Report Sunoco Philadelphia Refinery** Philadelphia, Pennsylvania

			Location ID		N-117			N	-118			ı	N-119			N-12	0				V-121			N	N-122			N-	-123	
		PADEP Non-	Sample ID		N-117_1.0-2.	0			3_1.0-2.0)			9_1.0-2.0			N-120_1.	0-2.0				1_1.0-2.0)			2_1.0-2.0)			_1.0-2.0	
Chemical Name	CAS No	Residential Used	Sample Matrix		Soil				Soil				Soil			Soil					Soil				Soil				Soil	
Chemical Name	CASINO	Aquifer Soil MSCs	Sample Interval		1.0-2.0			1.0	0-2.0			1	.0-2.0			1.0-2	0			1.	.0-2.0			1	.0-2.0			1.0	0-2.0	
		(TDS<2,500)	Sample Date		6/4/2008			5/23	3/2008			6/1	17/2008			5/22/2	800			6/9	9/2008			5/	7/2008			5/20	/2008	
			Unit	Result	Q RL	DF	Result	α	RL	DF	Result	Q	RL	DF	Result	Q R	L	DF	Result	a	RL	DF	Result	Q	RL	DF	Result	Q	RL	DF
Volatile Organic Compounds																														
Methyl Tertiary Butyl Ether	1634-04-4	2.0	mg/kg	ND	U 0.23	39.81	ND	U	0.22	39.31	ND	U	0.24	40.26	ND	U 0.	17 2	29.1	ND	U	0.23	38.94	ND	U	2	35.06	ND	U	0.24	37.09
Benzene	71-43-2	0.5	mg/kg	ND	U 0.23	39.81	ND	U	0.22	39.31	ND	U	0.24	40.26	ND	U 0.	17 2	29.1	ND	U	0.23	38.94	ND	U	2	35.06	ND	U	0.24	37.09
1,2-Dichloroethane	107-06-2	0.5	mg/kg	ND	U 0.23	39.81	ND	U	0.22	39.31	ND	U	0.24	40.26	ND	U 0.	17 2	29.1	ND	U	0.23	38.94	ND	U	2	35.06	ND	U	0.24	37.09
Toluene	108-88-3	100	mg/kg	ND	U 0.23	39.81	ND	U	0.22	39.31	ND	U	0.24	40.26	ND	U 0.	17 2	29.1	ND	U	0.23	38.94	ND	U	2	35.06	ND	U	0.24	37.09
Ethylene dibromide (EDB)	106-93-4	0.005	mg/kg	ND	U 0.23	39.81	ND	U	0.22	39.31	ND	U	0.24	40.26	ND	U 0.	17 2	29.1	ND	U	0.23	38.94	ND	U	2	35.06	ND	U	0.24	37.09
Ethylbenzene	100-41-4	70	mg/kg	ND	U 0.23	39.81	ND	U	0.22	39.31	ND	U	0.24	40.26	ND	U 0.	17 2	29.1	ND	U	0.23	38.94	ND	U	2	35.06	ND	U	0.24	37.09
Cumene	98-82-8	2,500	mg/kg	ND	U 0.23	39.81	0.47		0.22	39.31	ND	U	0.24	40.26	ND	U 0.	17 2	29.1	ND	U	0.23	38.94	ND	U	2	35.06	ND	U	0.24	37.09
Xylene (Total)	1330-20-7	1,000	mg/kg	ND	U 0.23	39.81	ND	U	0.22	39.31	ND	U	0.24	40.26	ND	U 0.	17 2	29.1	ND	U	0.23	38.94	ND	U	2	35.06	ND	U	0.24	37.09
Semi Volatile Organic Compounds																														
Pyrene	129-00-0	2,200	mg/kg	1.1	0.19	1	1.2		0.94	5	0.56		2	1	ND	U 0.	98	5	2.5		0.99	1	1.2		0.94	5	25		1.1	5
Naphthalene	91-20-3	25	mg/kg	ND	U 0.19	1	ND	U	0.94	5	ND	U	2	1	ND	U 0.	98	5	ND	U	0.99	1	ND	U	0.94	5	ND	U	1.1	5
Fluorene	86-73-7	3.800	ma/ka	ND	U 0.19	1	1.2		0.94	5	ND	U	2	1	ND	U 0.	98	5	ND	U	0.99	1	0.98		0.94	5	ND	U	1.1	5
Phenanthrene	85-01-8	10,000	mg/kg	1.4	0.19	1	3.7		0.94	5	ND	U	2	1	ND	U 0.	98	5	2.5		0.99	1	2.1		0.94	5	16		1.1	5
Anthracene	120-12-7	350	mg/kg	0.35	0.19	1	ND	U	0.94	5	ND	U	2	1	ND	U 0.	98	5	ND	U	0.99	1	2.1		0.94	5	5		1.1	5
Benzo(a)anthracene	56-55-3	320	mg/kg	0.74	0.19	1	ND	U	0.94	5	0.34		2	1	ND	U 0.	98	5	ND	U	0.99	1	ND	U	0.94	5	17		1.1	5
Chrysene	218-01-9	230	mg/kg	0.68	0.19	1	ND	U	0.94	5	0.65		2	1	ND	U 0.	98	5	1.5		0.99	1	ND	U	0.94	5	16		1.1	5
Benzo(b)fluoranthene	205-99-2	170	mg/kg	0.94	0.19	1	ND	U	0.94	5	0.21		2	1	ND	U 0.	98	5	ND	U	0.99	1	ND	U	0.94	5	18		1.1	5
Benzo(a)pyrene	50-32-8	46	mg/kg	0.63	0.19	1	ND	U	0.94	5	0.43		2	1	ND	U 0.	98	5	ND	U	0.99	1	ND	U	0.94	5	13		1.1	5
Benzo(g,h,i)perylene	191-24-2	180	mg/kg	0.42	0.19	1	ND	U	0.94	5	0.33		2	1	ND	U 0.	98	5	ND	U	0.99	1	ND	U	0.94	5	8		1.1	5
Metals																														
Lead (Total)	7439-92-1	450	mg/kg	219	0.565	5	200		1.11	10	101		1.17	10	181	1.	16	10	64		1.17	10	207		1.11	10	254		1.27	10

Notes:

PADEP - Pennsylvania Department of Environmental Protection ug/kg - microgram per kilogram mg/kg - milligram per kilogram MSC - PADEP's Medium Specific Concentration for Soil

RL - Reporting Limit ND - Not Detected

NA - Not Analyzed SWMU - Solid Waste Management Unit

All soil samples collected and analyzed were unsaturated

Qualifiers: Q - Qualifier

U - The analyte was analyzed but not detected

N - Spike Amount not within control limits

Summary of Soil Sample Analytical Results: Non SWMU Area **AOI 8 Site Characterization Report Sunoco Philadelphia Refinery** Philadelphia, Pennsylvania

			Location ID		N-124				N-125			ı	N-126			N-	127			N	N-128			ľ	l-129			N	l-130	
		PADEP Non-	Sample ID		N-124_1.0-	2.0		N-12	25_1.0-2.0	0			26_1.0-2.0	0		N-127_	_1.0-2.0				8_1.0-2.0				9_1.0-2.0			N-130	0_0.0-2.0	
Chemical Name	CAS No	Residential Used	Sample Matrix		Soil				Soil				Soil			S	oil				Soil				Soil				Soil	
Chemical Ivallie	CAS NO	Aquifer Soil MSCs	Sample Interval		1.0-2.0				.0-2.0				1.0-2.0				-2.0				.0-2.0				.0-2.0				0-2.0	
		(TDS<2,500)	Sample Date		5/21/200	3		6/	17/2008			6/1	17/2008			5/22	/2008			5/2	20/2008			6/1	7/2008			5/16	6/2008	
			Unit	Result	Q RL	DF	Result	Q	RL	DF	Result	Q	RL	DF	Result	Q	RL	DF	Result	Q	RL	DF	Result	Q	RL	DF	Result	Q	RL	DF
Volatile Organic Compounds																														
Methyl Tertiary Butyl Ether	1634-04-4	2.0	mg/kg	ND	U 0.37	63.94	ND	U	0.23	41.88	ND	U	3.1	517.6	ND	U	0.19	33.03	ND	U	0.29	48.08	ND	U	0.23	39.31	ND	U	0.22	38.46
Benzene	71-43-2	0.5	mg/kg	ND	U 0.37	63.94	ND	U	0.23	41.88	ND	U	3.1	517.6	ND	U	0.19	33.03	1.9		0.29	48.08	ND	U	0.23	39.31	ND	U	0.22	38.46
1,2-Dichloroethane	107-06-2	0.5	mg/kg	ND	U 0.37	63.94	ND	U	0.23	41.88	ND	U	3.1	517.6	ND	U	0.19	33.03	ND	U	0.29	48.08	ND	U	0.23	39.31	ND	U	0.22	38.46
Toluene	108-88-3	100	mg/kg	ND	U 0.37	63.94	ND	U	0.23	41.88	ND	U	3.1	517.6	ND	U	0.19	33.03	ND	U	0.29	48.08	ND	U	0.23	39.31	ND	U	0.22	38.46
Ethylene dibromide (EDB)	106-93-4	0.005	mg/kg	ND	U 0.37	63.94	ND	U	0.23	41.88	ND	U	3.1	517.6	ND	U	0.19	33.03	ND	U	0.29	48.08	ND	U	0.23	39.31	ND	U	0.22	38.46
Ethylbenzene	100-41-4	70	mg/kg	ND	U 0.37	63.94	ND	U	0.23	41.88	ND	U	3.1	517.6	ND	U	0.19	33.03	0.34		0.29	48.08	ND	U	0.23	39.31	ND	U	0.22	38.46
Cumene	98-82-8	2,500	mg/kg	ND	U 0.37	63.94	ND	U	0.23	41.88	ND	U	3.1	517.6	ND	U	0.19	33.03	ND	U	0.29	48.08	ND	U	0.23	39.31	ND	U	0.22	38.46
Xylene (Total)	1330-20-7	1,000	mg/kg	ND	U 0.37	63.94	ND	U	0.23	41.88	ND	U	3.1	517.6	ND	U	0.19	33.03	0.61		0.29	48.08	ND	U	0.23	39.31	ND	U	0.22	38.46
Semi Volatile Organic Compounds																														
Pyrene	129-00-0	2,200	mg/kg	ND	U 0.19	1	2.5		0.93	5	2.2		1	5	1.4		0.94	5	ND	U	1	5	ND	U	0.97	5	ND	U	0.94	5
Naphthalene	91-20-3	25	mg/kg	ND	U 0.19	1	ND	U	0.93	5	ND	U	1	5	ND	U	0.94	5	2.2		1	5	ND	U	0.97	5	ND	U	0.94	5
Fluorene	86-73-7	3.800	ma/ka	ND	U 0.19	1	ND	U	0.93	5	1.2		1	5	ND	U	0.94	5	ND	U	1	5	ND	U	0.97	5	ND	U	0.94	5
Phenanthrene	85-01-8	10,000	mg/kg	ND	U 0.19	1	1.6		0.93	5	1.1		1	5	1.2		0.94	5	1.9		1	5	ND	U	0.97	5	ND	U	0.94	5
Anthracene	120-12-7	350	mg/kg	ND	U 0.19	1	ND	U	0.93	5	1.1		1	5	ND	U	0.94	5	ND	U	1	5	ND	U	0.97	5	ND	U	0.94	5
Benzo(a)anthracene	56-55-3	320	mg/kg	ND	U 0.19	1	2		0.93	5	ND	U	1	5	ND	U	0.94	5	1.7		1	5	ND	U	0.97	5	ND	U	0.94	5
Chrysene	218-01-9	230	mg/kg	ND	U 0.19	1	2.1		0.93	5	1.4		1	5	ND	U	0.94	5	1.9		1	5	1		0.97	5	ND	U	0.94	5
Benzo(b)fluoranthene	205-99-2	170	mg/kg	ND	U 0.19	1	1.6		0.93	5	ND	U	1	5	ND	U	0.94	5	3.3		1	5	ND	U	0.97	5	ND	U	0.94	5
Benzo(a)pyrene	50-32-8	46	mg/kg	ND	U 0.19	1	1.5		0.93	5	ND	U	1	5	ND	U	0.94	5	6		1	5	ND	U	0.97	5	ND	U	0.94	5
Benzo(g,h,i)perylene	191-24-2	180	mg/kg	ND	U 0.19	1	ND	U	0.93	5	1		1	5	ND	U	0.94	5	20		1	5	1.7		0.97	5	ND	U	0.94	5
Metals																														
Lead (Total)	7439-92-1	450	mg/kg	43.9	1.15	10	150		1.07	10	912		2.36	20	191		1.09	10	61.4		1.18	10	31.3		1.14	10	670		2.25	20

Notes:

PADEP - Pennsylvania Department of Environmental Protection ug/kg - microgram per kilogram mg/kg - milligram per kilogram MSC - PADEP's Medium Specific Concentration for Soil

RL - Reporting Limit ND - Not Detected

NA - Not Analyzed SWMU - Solid Waste Management Unit

All soil samples collected and analyzed were unsaturated

Qualifiers: Q - Qualifier

U - The analyte was analyzed but not detected

N - Spike Amount not within control limits

Summary of Soil Sample Analytical Results: Non SWMU Area **AOI 8 Site Characterization Report Sunoco Philadelphia Refinery** Philadelphia, Pennsylvania

			Location ID		ľ	V-131			N	V-132				N-133			ı	V-134				N-135			ľ	N-136	
		PADEP Non-	Sample ID		N-13	1_1.0-2.0)	ı	V-132	2_1.0-2.0	1		N-13	3_1.0-2.0)		N-13	4_1.0-2.0			N-1	35_1.0-2.0)		N-13	6_1.0-2.0	
Chemical Name	CAS No	Residential Used	Sample Matrix			Soil			,	Soil				Soil				Soil				Soil				Soil	
Chemical Name	CAS NO	Aquifer Soil MSCs	Sample Interval		1	.0-2.0			1.	.0-2.0			1	.0-2.0			1	.0-2.0				1.0-2.0			1	.0-2.0	
		(TDS<2,500)	Sample Date		6/1	7/2008			5/1	3/2008			5/	15/2008			5/2	22/2008			5/	15/2008			5/1	5/2008	
			Unit	Result	σ	RL	DF	Result	Q	RL	DF	Result	Q	RL	DF	Result	σ	RL	DF	Result	Q	RL	DF	Result	σ	RL	DF
Volatile Organic Compounds																											
Methyl Tertiary Butyl Ether	1634-04-4	2.0	mg/kg	ND	U	0.38	61.12	ND	U	0.23	41.39	ND	U	0.3	51.65	ND	U	0.32	53.42	ND	U	0.35	57.47	ND	U	0.21	35.56
Benzene	71-43-2	0.5	mg/kg	ND	U	0.38	61.12	ND	U	0.23	41.39	3.7		0.3	51.65	ND	U	0.32	53.42	ND	U	0.35	57.47	0.7		0.21	35.56
1,2-Dichloroethane	107-06-2	0.5	mg/kg	ND	U	0.38	61.12	ND	U	0.23	41.39	ND	U	0.3	51.65	ND	U	0.32	53.42	ND	U	0.35	57.47	ND	U	0.21	35.56
Toluene	108-88-3	100	mg/kg	ND	U	0.38	61.12	ND	U	0.23	41.39	ND	U	0.3	51.65	ND	U	0.32	53.42	ND	U	0.35	57.47	ND	U	0.21	35.56
Ethylene dibromide (EDB)	106-93-4	0.005	mg/kg	ND	U	0.38	61.12	ND	U	0.23	41.39	ND	U	0.3	51.65	ND	U	0.32	53.42	ND	U	0.35	57.47	ND	U	0.21	35.56
Ethylbenzene	100-41-4	70	mg/kg	ND	U	0.38	61.12	ND	U	0.23	41.39	ND	U	0.3	51.65	ND	U	0.32	53.42	ND	U	0.35	57.47	ND	U	0.21	35.56
Cumene	98-82-8	2,500	mg/kg	ND	U	0.38	61.12	ND	U	0.23	41.39	ND	U	0.3	51.65	ND	U	0.32	53.42	ND	U	0.35	57.47	ND	U	0.21	35.56
Xylene (Total)	1330-20-7	1,000	mg/kg	ND	U	0.38	61.12	ND	U	0.23	41.39	0.48	U	0.3	51.65	ND	U	0.32	53.42	ND	U	0.35	57.47	ND	U	0.21	35.56
Semi Volatile Organic Compounds																											
Pyrene	129-00-0	2,200	mg/kg	ND	U	1	5	ND	U	9.4	10	ND	U	9.8	5	50		4.9	5	4.4		1	5	ND	U	0.19	1
Naphthalene	91-20-3	25	mg/kg	ND	U	1	5	ND	U	9.4	10	ND	U	9.8	5	4.7		9.9	5	2.1		1	5	ND	U	0.19	1
Fluorene	86-73-7	3.800	ma/ka	ND	U	1	5	ND	U	9.4	10	ND	U	9.8	5	3300		9.9	5	ND	U	1	5	ND	U	0.19	1
Phenanthrene	85-01-8	10,000	mg/kg	ND	U	1	5	ND	U	9.4	10	ND	U	9.8	5	48		4.9	5	7.7		1	5	ND	U	0.19	1
Anthracene	120-12-7	350	mg/kg	ND	U	1	5	ND	U	9.4	10	ND	U	9.8	5	11		9.9	5	1.6		1	5	ND	U	0.19	1
Benzo(a)anthracene	56-55-3	320	mg/kg	ND	U	1	5	ND	U	9.4	10	ND	U	9.8	5	41		4.9	5	1.5		1	5	ND	U	0.19	1
Chrysene	218-01-9	230	mg/kg	ND	U	1	5	ND	U	9.4	10	ND	U	9.8	5	35		4.9	5	3		1	5	ND	U	0.19	1
Benzo(b)fluoranthene	205-99-2	170	mg/kg	ND	U	1	5	ND	U	9.4	10	ND	U	9.8	5	44		4.9	5	ND	U	1	5	ND	U	0.19	1
Benzo(a)pyrene	50-32-8	46	mg/kg	ND	U	1	5	ND	U	9.4	10	ND	U	9.8	5	37		4.9	5	1.5		1	5	ND	U	0.19	1
Benzo(g,h,i)perylene	191-24-2	180	mg/kg	ND	U	1	5	ND	U	9.4	10	ND	U	9.8	5	21		9.9	5	2.4		1	5	ND	U	0.19	1
Metals																											
Lead (Total)	7439-92-1	450	mg/kg	88.8		1.23	10	94.9		1.11	10	865		2.36	20	74.6		1.17	10	273		1.21	10	320		1.13	10

Notes:

PADEP - Pennsylvania Department of Environmental Protection ug/kg - microgram per kilogram mg/kg - milligram per kilogram MSC - PADEP's Medium Specific Concentration for Soil

RL - Reporting Limit
ND - Not Detected
NA - Not Analyzed
SWMU - Solid Waste Management Unit

All soil samples collected and analyzed were unsaturated

Qualifiers: Q - Qualifier

U - The analyte was analyzed but not detected

N - Spike Amount not within control limits

| Exceedance Summary: | 10 | - RL exceeds the PADEP Non-Residential Soil MSC | 10 | - Concentration exceeds the PADEP Non-Residential Soil MSC | - Concentration exceeds the PADEP Non-Residential Soil MSC | - Concentration exceeds the PADEP Non-Residential Soil MSC | - Concentration exceeds the PADEP Non-Residential Soil MSC | - Concentration exceeds the PADEP Non-Residential Soil MSC | - Concentration exceeds the PADEP Non-Residential Soil MSC | - Concentration exceeds the PADEP Non-Residential Soil MSC | - Concentration exceeds the PADEP Non-Residential Soil MSC | - Concentration exceeds the PADEP Non-Residential Soil MSC | - Concentration exceeds the PADEP Non-Residential Soil MSC | - Concentration exceeds the PADEP Non-Residential Soil MSC | - Concentration exceeds the PADEP Non-Residential Soil MSC | - Concentration exceeds the PADEP Non-Residential Soil MSC | - Concentration exceeds the PADEP Non-Residential Soil MSC | - Concentration exceeds the PADEP Non-Residential Soil MSC | - Concentration exceeds the PADEP Non-Residential Soil MSC | - Concentration exceeds the PADEP Non-Residential Soil MSC | - Concentration exceeds the PADEP Non-Residential Soil MSC | - Concentration exceeds | - Conc

Summary of Soil Sample Analytical Results: SWMU 2 AOI 8 Site Characterization/Remedial Investigation Report Sunoco Philadelphia Refinery Philadelphia, Pennsylvania

Chemical Name	Analytical Method	CAS No	PADEP Non-Residential Used Aquifer Soil MSCs (TDS<2,500)	Location ID Sample ID Sample Matrix Sample Interval Sample Date SWMU Number Unit	BH Result	BH-08-0 I-08-05_6 Soil 6.0-8.0 5/8/200 2 Q	.0-8.0	DF
Metals								
Lead (Total)	SW846 6010B	7439-92-1	450	mg/kg	63.4		1.35	10

Notes:

PADEP - Pennsylvania Department of Environmental Protection

mg/kg - milligrams per kilogram

MSC - PADEP's Medium Specific Concentration for Soil

RL - Reporting Limit

(1) All soil samples collected and analyzed were unsaturated

SWMU - Solid Waste Management Unit

Qualifiers:

Q - Qualifier

RL - Reporting Limit

DF - Dilution Factor

Exceedance Summary:

10 - RL exceeds the PADEP Non-Residential Soil MSC

10 - Result exceeds the PADEP Non-Residential Soil MSC

Summary of Groundwater Analytical Results AOI 8 Site Characterization/Remedial Investigation Report Fill-Alluvium/Trenton Gravel Wells Sunoco Philadelphia Refinery Philadelphia, Pennsylvania

		DADED Nov. Decidential Head	Location ID		N-1			N-3			N-	5			N-8			N-10			N-1	11			N-12			N-1	15			N-16	-	T	N-17	
Chemical Name	CAS No	PADEP Non-Residential Used Aguifer MSC for Groundwater	Sample ID		N-1			N-3			N-	5			N-8			N-10			N-1	11			N-12			N-1	15			N-16			N-17	
Chemical Name	CAS NO	TDS<2.500	Sample Date		7/15/2008	3		7/15/200	8		7/15/2	2008		7/	16/2008		7	7/15/20	8		7/15/2	2008		7/	23/2008			7/15/	2008		7/	/16/2008			7/16/20	08
		103<2,500	Sample Matrix	G	roundwat	er	G	roundwa	iter		Ground	water		Gro	undwate	r	Gr	oundw	iter	(round	lwater		Gro	undwate	er	G	round	water		Gro	oundwate	r	(Groundw	ater
Volatile Organic Compounds			Unit	Result	Q RL	DF	Result	Q R	L DF	Resi	ılt Q	RL	DF	Result	Q RL	DF	Result	Q R	L DF	Result	Q	RL	DF F	esult	Q RL	DF	Result	Q	RL	DF	Result	Q RL	DF	Result	t Q F	RL DF
Ethylene dibromide (EDB)	106-93-4	0.05	ug/l	ND	U 0.03	3 1	ND	U 0.0	03 1	N) U	0.03	1	ND	U 0.03	1	ND	U 0.	03 1	ND	U	0.03	1	ND	U 0.03	1	ND	U	0.03	1	ND	U 0.03	1	ND	U 0	.03 1
Ethylbenzene	100-41-4	700	ug/l	ND	U 1	1	ND	U 1	1	N) U	5	5	ND	U 1	1	ND	U ·	1	2		1	1	1	1 1	1	ND	U	2	2	ND	U 1	1	ND	U	1 1
1,2-Dichloroethane	107-06-2	5	ug/l	ND	U 1	1	ND	U 1	1	N) U	5	5	ND	U 1	1	ND	U .	1	ND	U	1	1	ND	U 1	1	ND	U	2	2	ND	U 1	1	ND	U	1 1
Toluene	108-88-3	1,000	ug/l	ND	U 1	1	ND	U 1	1	N) U	5	5	ND	U 1	1	ND	U '	1	9		1	1	10	1	1	6		2	2	ND	U 1	1	ND	U	1 1
Xylene (Total)	1330-20-7	10,000	ug/l	ND	U 1	1	ND	U 1	1	N) U	5	5	ND	U 1	1	1		1	13		1	1	14	1	1	10		2	2	ND	U 1	1	ND	U	1 1
Methyl Tertiary Butyl Ether (MTBE)	1634-04-4	20	ug/l	ND	U 1	1	ND	U 1	1	N) U	5	5	ND	U 1	1	ND	U ·	1	ND	U	1	1	ND	U 1	1	ND	U	2	2	ND	U 1	1	ND	U	1 1
Benzene	71-43-2	5	ug/l	ND	U 1	1	ND	U 1	1	N) U	5	5	1	1	1	1		1	6		1	1	6	1	1	3		2	2	ND	U 1	1	ND	U	1 1
Cumene	98-82-8	3,500	ug/l	ND	U 2	1	ND	U 2	. 1	N) U	10	5	ND	U 2	1	ND	U 2	! 1	38	38	2	1	15	15 2	1	230		4	2	ND	U 2	1	ND	U	2 1
Semi Volatile Organic Compounds	;																																			
Pyrene	129-00-0	130	ug/l	ND	U 5	1	ND	U 5	1	N[) U	5	1	ND	U 5	1	ND	U ŧ	1	ND	U	5	1	870	50	1	ND	U	99	10	ND	U 50	1	130	í	50 1
Chrysene	218-01-9	1.9	ug/l	ND	U 5	1	ND	U 5	1	N) U	5	1	ND	U 5	1	ND	U !	1	ND	U	5	1	470	50	1	ND	U	99	10	ND	U 50	1	ND	U !	50 1
Phenanthrene	85-01-8	1,100	ug/l	ND	U 5	1	ND	U 5	1	N) U	5	1	ND	U 5	1	ND	U (i 1	ND	U	5	1	5500	500	10	440		99	10	ND	U 50	1	ND	Uŗ	50 1
Fluorene	86-73-7	1,900	ug/l	ND	U 5	1	ND	U 5	1	N) U	5	1	ND	U 5	1	ND	U 5	i 1	ND	U	5	1	1600	500	10	180		99	10	ND	U 50	1	ND	U i	50 1
Naphthalene	91-20-3	100	ug/l	ND	U 5	1	ND	U 5	1	N) U	5	1	ND	U 5	1	ND	U 5	1	ND	U	5	1	ND	U 50	1	ND	U	99	10	ND	U 50	1	ND	U i	50 1
Metals																																				
Lead (Total)	7439-92-1	5	ug/l	ND	U 0	1	1.1	1	1	1.1	3	1	5	ND	U 1	1	ND	U ·	1	ND	U	1	1	ND	U 1	1	1.1		1	1	ND	U 1	1	ND	U	1 1

Notes:
PADEP - Pennsylvania Department of Environmental Protection

ug/l - micrograms per liter mg/L - milligram per liter RL - Reporting Limit

ND - Not Detected DF - Dilution Factor

NA - Not Analyzed

- Qualifiers: Q Qualifier
- U The analyte was analyzed but not detected
- J The analyte was detected below the RL. The result should be considered an estimate.
- D The sample was diluted.

Summary of Groundwater Analytical Results AOI 8 Site Characterization/Remedial Investigation Report Fill-Alluvium/Trenton Gravel Wells Sunoco Philadelphia Refinery Philadelphia, Pennsylvania

		PADEP Non-Residential Used	Location ID		N-18			N-	20			N-23			N-24			N-26			N-2	8			N-29			N-30		T	N-32	2	\top	N-3	4
Chemical Name	CAS No	Aguifer MSC for Groundwater	Sample ID		N-18			N-	20			N-23			N-24			N-26			N-2	8			N-29			N-30			N-32	2		N-3	4
Chemical Name	CAS NO	TDS<2.500	Sample Date	7	/16/200	8		7/23/	2008		7/	22/2008			7/18/2008			7/17/2008	3		7/16/2	2008		7/	22/2008			7/22/200)8		7/22/2	.008		7/24/2	2008
		103\2,500	Sample Matrix	Gro	oundwa	ter		Ground	dwater		Gro	undwate	r	G	roundwate	r		roundwa	er		Ground	water		Gro	undwate	r	G	oundwa	ater	C	Groundy	water		Ground	water
Volatile Organic Compounds			Unit	Result	Q R	L DF	Result	t Q	RL [OF R	Result	Q RL	DF	Result	Q RL	DF	Result	O RL	DF	Resu	t Q	RL	DF R	esult	Q RL	DF	Result	Q R	L DF	Result	t Q	RL DF	F Resu	ult Q	RL DF
Ethylene dibromide (EDB)	106-93-4	0.05	ug/l	ND	U 0.0	03 1	0.029	U	0.03	1	ND	U 0.03	1	ND	U 0.03	1	ND	U 0.03	3 1	ND	U	0.03	1	ND	U 0.03	1	ND	U 0.0	J3 1	ND	UC	0.03 1	ND) U	0.03 1
Ethylbenzene	100-41-4	700	ug/l	ND	U 1	1	ND	U	1	1	ND	U 10	10	ND	U 1	1	ND	U 1	1	ND	U	1	1	ND	U 1	1	ND	U 1	1	ND	U	1 1	ND) U	10 10
1,2-Dichloroethane	107-06-2	5	ug/l	ND	U 1	1	ND	U	1	1	ND	U 10	10	ND	U 1	1	ND	U 1	1	ND	U	1	1	ND	U 1	1	ND	U 1	1	ND	U	1 1	ND	U	10 10
Toluene	108-88-3	1,000	ug/l	ND	U 1	1	ND	U	1	1	ND	U 10	10	ND	U 1	1	ND	U 1	1	ND	U	1	1	ND	U 1	1	ND	U 1	1	ND	U	1 1	ND) U	10 10
Xylene (Total)	1330-20-7	10,000	ug/l	1	1	1	ND	U	1	1	ND	U 10	10	3	1	1	ND	U 1	1	ND	U	1	1	ND	U 1	1	ND	U 1	1	ND	U	1 1	ND) U	10 10
Methyl Tertiary Butyl Ether (MTBE)	1634-04-4	20	ug/l	ND	U 1	1	ND	U	1	1	ND	U 10	10	ND	U 1	1	ND	U 1	1	ND	U	1	1	ND	U 1	1	ND	U 1	1	ND	U	1 1	ND) U	10 10
Benzene	71-43-2	5	ug/l	3	1	1	ND	U	1	1	ND	U 10	10	3	1	1	ND	U 1	1	ND	U	1	1	ND	U 1	1	ND	U 1	. 1	ND	U	1 1	ND	U	10 10
Cumene	98-82-8	3,500	ug/l	20	20 2	2 1	42		2	1	ND	U 20	10	44	2	1	ND	U 2	1	ND	U	2	1	ND	U 2	1	ND	U 2	2 1	ND	U	2 1	ND) U	20 10
Semi Volatile Organic Compounds	S																																		
Pyrene	129-00-0	130	ug/l	ND	U 2	5 1	90		50	1	1900	120	1	ND	U 47	10	ND	U 5	1	ND	U	5	1	ND	U 5	1	ND	U 5	1 ز	ND	U	5 1	610	0	50 1
Chrysene	218-01-9	1.9	ug/l	ND	U 2	5 1	70		50	1	620	120	1	ND	U 47	10	ND	U 5	1	ND	U	5	1	ND	U 5	1	ND	U 5	1 ز	ND	U	5 1	290	0	50 1
Phenanthrene	85-01-8	1,100	ug/l	ND	U 2	5 1	ND	U	50	1	520	120	1	ND	U 47	10	ND	U 5	1	ND	U	5	1	ND	U 5	1	ND	U 5	1 دُ	ND	U	5 1	200	0	50 1
Fluorene	86-73-7	1,900	ug/l	ND	U 2	5 1	66		50	1	1100	120	1	ND	U 47	10	ND	U 5	1	ND	U	5	1	ND	U 5	1	ND	U 5	1 ز	ND	U	5 1	200	0	50 1
Naphthalene	91-20-3	100	ug/l	ND	U 2	5 1	ND	U	50	1	260	120	1	ND	U 47	10	ND	U 5	1	ND	U	5	1	ND	U 5	1	ND	U 5	1 د	ND	U	5 1	ND) U	50 1
Metals		·																																	
Lead (Total)	7439-92-1	5	ug/l	ND	U 1	1	ND	U	1	1	ND	U 1	1	ND	U 1	1	ND	U 1	1	ND	U	1	1	ND	U 1	1	ND	U 1	1	ND	U	1 1	ND) U	1 1

Notes:
PADEP - Pennsylvania Department of Environmental Protection

ug/l - micrograms per liter mg/L - milligram per liter

RL - Reporting Limit ND - Not Detected

DF - Dilution Factor

NA - Not Analyzed

- Qualifiers: Q Qualifier
- U The analyte was analyzed but not detected
- J The analyte was detected below the RL. The result should be considered an estimate.
- D The sample was diluted.

Summary of Groundwater Analytical Results AOI 8 Site Characterization/Remedial Investigation Report Fill-Alluvium/Trenton Gravel Wells Sunoco Philadelphia Refinery Philadelphia, Pennsylvania

			Location ID		N-35			N-36	ŝ		N-	37			N-38			N-39			N-4	10			N-41			N-53			N-55			N-57	
		PADEP Non-Residential Used	Sample ID		N-35			N-36			N-				N-38			N-39			N-4				N-41			N-53			N-55			N-57	$\overline{}$
Chemical Name	CAS No	Aquifer MSC for Groundwater	Sample Date		24/2008	1	7/	/25/2			7/24/	2008		7	/24/2008		7/	28/200	8		7/25/2	2008		7	/28/2008			7/28/2008			7/28/2008	3		5/2008	-
		TDS<2,500	Sample Matrix	Gro	undwat	er	Gro	oundv	vater		Ground	dwater		Gro	oundwate	r	Gro	undwa	iter	0	round	lwater		Gr	oundwate	er	G	roundwat	er	G	roundwat	er	Grou	ındwateı	r
Volatile Organic Compounds			Unit	Result	Q RL	DF	Result	Q	RL DF	Resi	ult Q	RL	DF	Result	Q RL	DF	Result	Q R	L DF	Result	Q	RL	DF	Result	Q RL	DF	Result	Q RL	DF	Result	Q RL	DF	Result 0	2 RL	DF
Ethylene dibromide (EDB)	106-93-4	0.05	ug/l	ND	U 0.03	1	ND	UC	0.03 1	N	D U	0.03	1	ND	U 0.03	1	ND	U 0.0	03 1	ND	U	0.03	1	ND	U 0.03	1	ND	U 0.03	1	ND	U 0.03	3 1	ND U	0.03	1
Ethylbenzene	100-41-4	700	ug/l	ND	U 10	10	ND	U	1 1	N	D U	1	1	ND	U 1	1	ND	U 1	1	ND	U	1	1	ND	U 1	1	ND	U 1	1	ND	U 1	1	ND U	J 5	5
1,2-Dichloroethane	107-06-2	5	ug/l	ND	U 10	10	ND	U	1 1	NI	D U	1	1	ND	U 1	1	ND	U 1	1	ND	U	1	1	ND	U 1	1	ND	U 1	1	ND	U 1	1	ND U	5	5
Toluene	108-88-3	1,000	ug/l	ND	U 10	10	ND	U	1 1	NI	D U	1	1	ND	U 1	1	ND	U 1	1	ND	U	1	1	ND	U 1	1	1	1	1	ND	U 1	1	ND U	J 5	5
Xylene (Total)	1330-20-7	10,000	ug/l	ND	U 10	10	ND	U	1 1	NI	D U	1	1	ND	U 1	1	3	1	1	1		1	1	ND	U 1	1	11	1	1	ND	U 1	1	120	5	5
Methyl Tertiary Butyl Ether (MTBE)	1634-04-4	20	ug/l	ND	U 10	10	ND	U	1 1	NI	D U	1	1	ND	U 1	1	ND	U 1	1	ND	U	1	1	ND	U 1	1	ND	U 1	1	ND	U 1	1	ND U	J 5	5
Benzene	71-43-2	5	ug/l	ND	U 10	10	ND	U	1 1	NI	D U	1	1	ND	U 1	1	ND	U 1	1	ND	U	1	1	ND	U 1	1	ND	U 1	1	ND	U 1	1	ND U	5	5
Cumene	98-82-8	3,500	ug/l	ND	U 20	10	ND	U	2 1	NI	D U	2	1	ND	U 2	1	24	2	1	7		2	1	8	2	1	17	2	1	ND	U 2	1	ND U	ال 10	5
Semi Volatile Organic Compound	s																																		
Pyrene	129-00-0	130	ug/l	70	47	10	ND	U '	120 5	NI	D U	5	1	ND	U 5	1	25	5	1	ND	U	24	5	390	50	1	220	50	1	ND	U 5	1	ND U	J 24	5
Chrysene	218-01-9	1.9	ug/l	61	47	10	ND	U 1	120 5	N	D U	5	1	ND	U 5	1	41	5	1	ND	U	24	5	280	50	1	180	50	1	ND	U 5	1	ND U	J 24	5
Phenanthrene	85-01-8	1,100	ug/l	ND	U 47	10	ND	U '	120 5	NI	D U	5	1	ND	U 5	1	7	5	1	ND	U	24	5	1100	50	1	610	50	1	ND	U 5	1	ND U	J 24	5
Fluorene	86-73-7	1,900	ug/l	ND	U 47	10	ND	U '	120 5	NI	D U	5	1	ND	U 5	1	9	5	1	ND	U	24	5	450	50	1	360	50	1	ND	U 5	1	ND U	J 24	5
Naphthalene	91-20-3	100	ug/l	ND	U 47	10	ND	U 1	120 5	N	D U	5	1	ND	U 5	1	ND	U 5	1	ND	U	24	5	ND	U 50	1	ND	U 50	1	ND	U 5	1	ND U	J 24	5
Metals																																			
Lead (Total)	7439-92-1	5	ug/l	ND	U 1	1	ND	U	1 1	NI	D U	1	1	ND	U 1	1	ND	U 1	1	ND	U	1	1	ND	U 1	1	ND	U 1	1	ND	U 1	1	ND U	J 1	1

Notes:
PADEP - Pennsylvania Department of Environmental Protection

ug/l - micrograms per liter mg/L - milligram per liter

RL - Reporting Limit

ND - Not Detected

DF - Dilution Factor NA - Not Analyzed

Qualifiers: Q - Qualifier

- U The analyte was analyzed but not detected
- J The analyte was detected below the RL. The result should be considered an estimate.
- D The sample was diluted.

Summary of Groundwater Analytical Results AOI 8 Site Characterization/Remedial Investigation Report Fill-Alluvium/Trenton Gravel Wells Sunoco Philadelphia Refinery Philadelphia, Pennsylvania

		DADED Nov. Double of the st	Location ID		N-58			N-59			N-60			N-61			N-6	4		ı	V-65			N-66			N-6	7	$ \Gamma$		N-69			N-70
Chemical Name	CAS No	PADEP Non-Residential Used Aguifer MSC for Groundwater	Sample ID		N-58			N-59			N-60			N-61			N-6	4		N	V-65			N-66			N-6	7			N-69			N-70
Chemical Name	CAS NO	TDS<2.500	Sample Date	7/	25/2008	}		8/6/2008	}		7/25/2008			7/25/200	8		7/23/2	800		7/1	6/2008		7	/22/2008			7/18/2	2008		7/	/18/2008		7/	18/2008
		103<2,500	Sample Matrix	Gro	undwat	er	G	oundwa	ter	(Groundwate	er	G	roundwa	ter	(Ground	water		Grou	ndwat	er	Gr	oundwate	er	G	round	water		Gro	oundwater	r	Grou	undwater
Volatile Organic Compounds			Unit	Result	Q RL	DF	Result	Q RL	. DF	Result	Q RL	DF	Result	Q R	L D	Result	i Q	RL D	F Resu	ılt Q	RL	DF	Result	Q RL	DF	Result	Q	RL	DF F	Result	Q RL	DF	Result	Q RL DF
Ethylene dibromide (EDB)	106-93-4	0.05	ug/l	ND	U 0.03	3 1	ND	U 0.0	3 1	ND	U 0.03	1	ND	U 0.0	03 1	ND	U	0.03 1	N	U	0.03	1	ND	U 0.03	1	ND	U	0.03	1	ND	U 0.03	1	ND	U 0.03 1
Ethylbenzene	100-41-4	700	ug/l	ND	U 10	10	3	1	1	ND	U 1	1	ND	U 1	0 10) ND	U	1 1	N) U	1	1	ND	U 1	1	ND	U	1	1	ND	U 1	1	1	1 1 1
1,2-Dichloroethane	107-06-2	5	ug/l	ND	U 10	10	ND	U 1	1	ND	U 1	1	ND	U 1	0 10) ND	U	1 1	N) U	1	1	ND	U 1	1	ND	U	1	1	ND	U 1	1	ND	J 1 1
Toluene	108-88-3	1,000	ug/l	ND	U 10	10	ND	U 1	1	ND	U 1	1	ND	U 1	0 10) ND	U	1 1	N	U	1	1	ND	U 1	1	ND	U	1	1	ND	U 1	1	ND	J 1 1
Xylene (Total)	1330-20-7	10,000	ug/l	100	10	10	4	1	1	ND	U 1	1	23	23 1	0 10) ND	U	1 1	N	U	1	1	ND	U 1	1	ND	U	1	1	ND	U 1	1	1	1 1
Methyl Tertiary Butyl Ether (MTBE)	1634-04-4	20	ug/l	ND	U 10	10	ND	U 1	1	ND	U 1	1	ND	U 1	0 10) ND	U	1 1	N	U	1	1	ND	U 1	1	ND	U	1	1	ND	U 1	1	ND	J 1 1
Benzene	71-43-2	5	ug/l	ND	U 10	10	98	1	1	ND	U 1	1	8700	5	0 50) ND	U	1 1	N	U	1	1	ND	U 1	1	ND	U	1	1	ND	U 1	1	ND	J 1 1
Cumene	98-82-8	3,500	ug/l	ND	U 20	10	2	2 2	1	ND	U 2	1	ND	U 2	0 10) ND	U	2 1	N) U	2	1	4	2	1	ND	U	2	1	2	2	1	35	2 1
Semi Volatile Organic Compounds	3																																	
Pyrene	129-00-0	130	ug/l	ND	U 5	1	ND	U 5	1	12	5	1	ND	U 2	4 5	ND	U	5 1	N	U	5	1	19	5	1	ND	U	5	1	ND	U 5	1	ND	J 5 1
Chrysene	218-01-9	1.9	ug/l	ND	U 5	1	ND	U 5	1	14	5	1	ND	U 2	4 5	ND	U	5 1	NE	U	5	1	7	5	1	ND	U	5	1	ND	U 5	1	ND	J 5 1
Phenanthrene	85-01-8	1,100	ug/l	ND	U 5	1	ND	U 5	1	ND	U 5	5	ND	U 2	4 5	ND	U	5 1	N	U	5	1	67	5	1	ND	U	5	1	ND	U 5	1	ND	J 5 1
Fluorene	86-73-7	1,900	ug/l	ND	U 5	1	ND	U 5	1	ND	U 5	1	ND	U 2	4 5	ND	U	5 1	N	U	5	1	31	5	1	ND	U	5	1	ND	U 5	1	ND	J 5 1
Naphthalene	91-20-3	100	ug/l	ND	U 5	1	ND	U 5	1	ND	U 5	1	ND	U 2	4 5	ND	U	5 1	N	U	5	1	48	5	1	ND	U	5	1	ND	U 5	1	ND	J 5 1
Metals																																		
Lead (Total)	7439-92-1	5	ug/l	ND	U 1	1	ND	U 1	1	ND	U 1	1	ND	U 1	1	ND	U	1 1	NE) U	1	1	ND	U 1	1	ND	U	1	1	ND	U 1	1	ND	J 1 1

Notes:
PADEP - Pennsylvania Department of Environmental Protection

ug/l - micrograms per liter mg/L - milligram per liter

RL - Reporting Limit

ND - Not Detected

DF - Dilution Factor

NA - Not Analyzed

- Qualifiers: Q Qualifier
- U The analyte was analyzed but not detected
- J The analyte was detected below the RL. The result should be considered an estimate.
- D The sample was diluted.

Summary of Groundwater Analytical Results AOI 8 Site Characterization/Remedial Investigation Report Fill-Alluvium/Trenton Gravel Wells Sunoco Philadelphia Refinery Philadelphia, Pennsylvania

		DADED Nov. Double of alleys	Location ID		N-73			N-74			N-77			N-84			N-85			N-86			N-87			N-89			N-90		T	N-92	
Chemical Name	CAS No	PADEP Non-Residential Used Aguifer MSC for Groundwater	Sample ID		N-73			N-74			N-77			N-84			N-85			N-86			N-87			N-89			N-90			N-92	
Chemical Name	CAS NO	TDS<2.500	Sample Date	7	7/25/2008			7/25/200	8		7/18/2008	3		7/16/2008			7/16/2008	В	7	/17/2008	3	7	7/17/2008		7	/22/200	В		7/22/2008	8		7/17/2008	3
		103<2,500	Sample Matrix	Gr	oundwate	er	G	roundwa	ter		iroundwat	er	G	iroundwat	er	G	roundwa	ter	Gr	oundwat	er	Gr	oundwate	r	Gr	oundwa	ter	G	roundwat	ter	-	Groundwat	
Volatile Organic Compounds			Unit	Result	Q RL	DF	Result	Q RI	_ DF	Result	Q RL	DF	Result	Q RL	DF	Result	Q RL	. DF	Result	Q RL	DF	Result	Q RL	DF	Result	Q RI	_ DF	Result	Q RL	_ DF	Result	lt Q RL	. DF
Ethylene dibromide (EDB)	106-93-4	0.05	ug/l	ND	U 0.03	1	ND	U 0.0	3 1	ND	U 0.03	3 1	ND	U 0.03	1	ND	U 0.03	3 1	ND	U 0.03	3 1	ND	U 0.03	1	ND	U 0.0	3 1	ND	U 0.0:	3 1	ND	U 0.0	3 1
Ethylbenzene	100-41-4	700	ug/l	ND	U 1	1	ND	U 1	1	ND	U 1	1	ND	U 1	1	ND	U 1	1	ND	U 1	1	ND	U 1	1	ND	U 1	1	ND	U 1	1	ND	U 1	1
1,2-Dichloroethane	107-06-2	5	ug/l	ND	U 1	1	ND	U 1	1	ND	U 1	1	ND	U 1	1	ND	U 1	1	ND	U 1	1	ND	U 1	1	ND	U 1	1	ND	U 1	1	ND	U 1	1
Toluene	108-88-3	1,000	ug/l	ND	U 1	1	ND	U 1	1	ND	U 1	1	ND	U 1	1	ND	U 1	1	ND	U 1	1	ND	U 1	1	2	1	1	4	1	1	ND	U 1	1
Xylene (Total)	1330-20-7	10,000	ug/l	1	1	1	ND	U 1	1	ND	U 1	1	ND	U 1	1	ND	U 1	1	ND	U 1	1	ND	U 1	1	5	1	1	6	1	1	ND	U 1	1
Methyl Tertiary Butyl Ether (MTBE)	1634-04-4	20	ug/l	ND	U 1	1	ND	U 1	1	ND	U 1	1	ND	U 1	1	ND	U 1	1	ND	U 1	1	ND	U 1	1	ND	U 1	1	ND	U 1	1	ND	U 1	1
Benzene	71-43-2	5	ug/l	4	1	1	4	1	1	ND	U 1	1	ND	U 1	1	ND	U 1	1	ND	U 1	1	ND	U 1	1	1	1	1	5	1	1	ND	U 1	1
Cumene	98-82-8	3,500	ug/l	ND	U 2	1	ND	U 2	1	15	2	1	11	2	1	2	2	1	21	2	1	34	2	1	23	23 2	1	8	2	1	ND	U 2	1
Semi Volatile Organic Compounds	s																																
Pyrene	129-00-0	130	ug/l	ND	U 5	1	ND	U 5	1	ND	U 5	1	ND	U 5	1	ND	U 50	1	ND	U 5	1	ND	U 5	1	ND	U 5	1	ND	U 5	1	27	5	1
Chrysene	218-01-9	1.9	ug/l	ND	U 5	1	ND	U 5	1	ND	U 5	1	ND	U 5	1	ND	U 50	1	ND	U 5	1	ND	U 5	1	ND	U 5	1	ND	U 5	1	11	5	1
Phenanthrene	85-01-8	1,100	ug/l	ND	U 5	1	ND	U 5	1	ND	U 5	1	ND	U 5	1	ND	U 50	1	13	5	1	ND	U 5	1	ND	U 5	1	ND	U 5	1	ND	U 5	1
Fluorene	86-73-7	1,900	ug/l	ND	U 5	1	ND	U 5	1	7	5	1	ND	U 5	1	ND	U 50	1	9	5	1	ND	U 5	1	7	5	1	ND	U 5	1	17	5	1
Naphthalene	91-20-3	100	ug/l	ND	U 5	1	ND	U 5	1	ND	U 5	1	ND	U 5	1	ND	U 50	1	ND	U 5	1	ND	U 5	1	ND	U 5	1	ND	U 5	1	ND	U 5	1
Metals		·																															
Lead (Total)	7439-92-1	5	ug/l	ND	U 1	1	ND	U 1	1	ND	U 1	1	ND	U 1	1	ND	U 1	1	ND	U 1	1	ND	U 1	1	ND	U 1	1	ND	U 1	1	ND	U 1	1

PADEP - Pennsylvania Department of Environmental Protection

ug/l - micrograms per liter mg/L - milligram per liter

RL - Reporting Limit

ND - Not Detected

DF - Dilution Factor NA - Not Analyzed

Qualifiers: Q - Qualifier

- U The analyte was analyzed but not detected
- J The analyte was detected below the RL. The result should be considered an estimate.
- D The sample was diluted.

Summary of Groundwater Analytical Results AOI 8 Site Characterization/Remedial Investigation Report Fill-Alluvium/Trenton Gravel Wells Sunoco Philadelphia Refinery Philadelphia, Pennsylvania

		PADEP Non-Residential Used	Location ID		N-93			N-94			ı	N-97			N-98			N-99			N-	100			N-101			N-102		T	N-1	03		,	N-104	
Chemical Name	CAS No	Aguifer MSC for Groundwater	Sample ID		N-93			N-94			ı	N-97			N-98			N-99			N-	100			N-101			N-102			N-1	03		,	N-104	
Chemical Name	CAS NO	TDS<2.500	Sample Date		7/17/2008		7	/18/20	08		8/6	6/2008		7	7/14/20	08		7/23/20	08		7/14	2008		7/	15/200	8		7/15/200	8		7/23/	2008		7/:	23/2008	
		103<2,500	Sample Matrix	G	roundwate	er	Gre	oundw	ater		Grou	ndwater		Gr	oundw	ater		Groundw	ater		Groun	dwater		Gro	undwa	ter	G	iroundwa	iter		Ground	dwater	r	Gro	undwater	r
Volatile Organic Compounds			Unit	Result	Q RL	DF	Result	Q F	RL DF	Resu	ult C	RL	DF	Result	Q R	RL DF	Result	t Q F	RL DI	F Resu	lt Q	RL	DF	Result	Q RI	. DF	Result	Q R	L DF	Result	Q	RL	DF	Result (Q RL	DF
Ethylene dibromide (EDB)	106-93-4	0.05	ug/l	ND	U 0.03	1	ND	U 0.	03 1	NE) (0.03	1	ND	U 0.	03 1	ND	U 0.	03 1	ND	U	0.03	1	ND	U 0.0	3 1	ND	U 0.	03 1	ND	U	0.03	. 1	ND I	U 0.03	1
Ethylbenzene	100-41-4	700	ug/l	ND	U 1	1	ND	U	1 1	NE) L	1 1	1	ND	U	1 1	ND	U	1 1	ND	U	1	1	ND	U 5	1	8		1	ND	U	5	5	2	1	1
1,2-Dichloroethane	107-06-2	5	ug/l	ND	U 1	1	ND	U	1 1	NE) L	1	1	ND	U	1 1	ND	U	1 1	ND	U	1	1	ND	U 5	1	ND	U ·	1	ND	U	5	5	ND I	U 1	1
Toluene	108-88-3	1,000	ug/l	ND	U 1	1	ND	U	1 1	NE) L	1 1	1	ND	U	1 1	ND	U	1 1	ND	U	1	1	ND	U 5	1	4	4 '	1	22		5	5	13	1	1
Xylene (Total)	1330-20-7	10,000	ug/l	ND	U 1	1	ND	U	1 1	NE) L	1 1	1	ND	U	1 1	ND	U	1 1	ND	U	1	1	12	5	1	16		1	47		5	5	30	1	1
Methyl Tertiary Butyl Ether (MTBE)	1634-04-4	20	ug/l	ND	U 1	1	ND	U	1 1	NE) L	1 1	1	ND	U	1 1	ND	U	1 1	ND	U	1	1	ND	U 5	1	ND	U ·	1	ND	U	5	5	ND I	U 1	1
Benzene	71-43-2	5	ug/l	ND	U 1	1	ND	U	1 1	2		1	1	ND	U	1 1	ND	U	1 1	ND	U	1	1	ND	U 5	1	25		1	16		5	5	7	1	1
Cumene	98-82-8	3,500	ug/l	17	2	1	ND	U	2 1	14	0	2	1	ND	U :	2 1	ND	U	2 1	ND	U	2	1	26	10	1	7	7 2	! 1	360		10	5	44	2	1
Semi Volatile Organic Compounds	S																																			
Pyrene	129-00-0	130	ug/l	ND	U 5	1	ND	U	5 1	10)	5	1	ND	U !	5 1	ND	U 5	0 1	ND	U	5	1	9	5	1	9	į	5 1	390		50	1	150	50	1
Chrysene	218-01-9	1.9	ug/l	ND	U 5	1	ND	U	5 1	6		5	1	ND	U :	5 1	ND	U 5	1	ND	U	5	1	8	5	1	15		1	360		50	1	85	50	1
Phenanthrene	85-01-8	1,100	ug/l	ND	U 5	1	ND	U	5 1	45	5	5	1	ND	U !	5 1	ND	U 5	50 1	ND	U	5	1	67	5	1	77	ŧ	5 1	2500		250	5	740	50	1
Fluorene	86-73-7	1,900	ug/l	ND	U 5	1	ND	U	5 1	13	3	5	1	ND	U !	5 1	ND	U 5	0 1	ND	U	5	1	28	5	1	22	į	5 1	740	740	50	1	310	50	1
Naphthalene	91-20-3	100	ug/l	ND	U 5	1	ND	U	5 1	50)	5	1	ND	U !	5 1	ND	U 5	0 1	ND	U	5	1	ND	U 5	1	10	ĺ	i 1	ND	U	50	1	ND I	U 50	1
Metals																																				
Lead (Total)	7439-92-1	5	ug/l	ND	U 1	1	ND	U	1 1	NE) L	1 1	1	ND	U	1 1	ND	U	1 1	ND	U	1	1	ND	U 1	1	ND	U ·	1	ND	U	1	1	ND I	U 1	1

Notes:
PADEP - Pennsylvania Department of Environmental Protection

- ug/l micrograms per liter mg/L milligram per liter RL Reporting Limit

- ND Not Detected
- DF Dilution Factor NA - Not Analyzed

- Qualifiers: Q Qualifier
- U The analyte was analyzed but not detected
- J The analyte was detected below the RL. The result should be considered an estimate.
- D The sample was diluted.

Summary of Groundwater Analytical Results AOI 8 Site Characterization/Remedial Investigation Report Fill-Alluvium/Trenton Gravel Wells Sunoco Philadelphia Refinery Philadelphia, Pennsylvania

		PADEP Non-Residential Used	Location ID	N	I-105		N	l-106			N-108			N-109	9			N-110			N-11	1		N-112			N-114		T	N-115			N-117
Chemical Name	CAS No		Sample ID	N	I-105		N	l-106			N-108			N-109	9			N-110			N-11	1		N-112			N-114			N-115			N-117
Chemical Name	CAS NO	Aquifer MSC for Groundwater TDS<2.500	Sample Date	7/2	3/2008		7/1	4/2008			7/22/2008	3		7/24/20	800		7/	24/2008	}		7/24/2	008		7/24/200	8		7/24/20	8		7/28/2008			7/17/2008
		103<2,500	Sample Matrix	Grou	ndwate	r	Grou	ndwate	er	G	oundwat	er	(Groundw	/ater		Gro	undwat	er	G	roundv	vater	(roundwa	ter	G	roundwa	iter	(Groundwate	ər	G	Groundwater
Volatile Organic Compounds			Unit	Result 0	Ω RL	DF	Result C	RL	DF	Result	Q RL	DF	Result	. Q	RL D	F F	Result	Q RL	DF	Result	Q	RL D	F Result	Q RI	. DF	Result	Q R	L DF	Result	: Q RL	DF	Result	: Q RL DF
Ethylene dibromide (EDB)	106-93-4	0.05	ug/l	ND U	0.03	1	ND L	0.03	2	ND	U 0.03	3 1	ND	UC	0.03	1	ND	U 0.03	3 1	ND	U	0.03 1	ND	U 0.0	3 1	ND	U 0.	03 1	ND	U 0.03	3 1	ND	U 0.03 1
Ethylbenzene	100-41-4	700	ug/l	ND U	J 1	1	22	2	2	ND	U 5	5	ND	U	1 '	1	ND	U 1	1	ND	U	1 1	ND	U 1	1	ND	U 1	1	ND	U 1	1	ND	U 1 1
1,2-Dichloroethane	107-06-2	5	ug/l	ND U	J 1	1	ND L	2	2	ND	U 5	5	ND	U	1 .	1	ND	U 1	1	ND	U	1 1	ND	U 1	1	ND	U '	1	ND	U 1	1	ND	U 1 1
Toluene	108-88-3	1,000	ug/l	3	1	1	60	2	2	11	5	5	ND	U	1 .	1	ND	U 1	1	ND	U	1 1	ND	U 1	1	ND	U ´	1	ND	U 1	1	ND	U 1 1
Xylene (Total)	1330-20-7	10,000	ug/l	7	1	1	120	2	2	15	5	5	ND	U	1 .	1	ND	U 1	1	ND	U	1 1	ND	U 1	1	3		1	ND	U 1	1	ND	U 1 1
Methyl Tertiary Butyl Ether (MTBE)	1634-04-4	20	ug/l	ND U	J 1	1	ND L	J 2	2	ND	U 5	5	ND	U	1	1	ND	U 1	1	ND	U	1 1	ND	U 1	1	ND	U ´	1	ND	U 1	1	ND	U 1 1
Benzene	71-43-2	5	ug/l	ND U	J 1	1	410	20	20	14	5	5	ND	U	1	1	ND	U 1	1	ND	U	1 1	ND	U 1	1	ND	U 1	1	ND	U 1	1	ND	U 1 1
Cumene	98-82-8	3,500	ug/l	9	2	1	57	4	2	28	10	5	11	11	2	1	ND	U 2	1	8		2 1	22	2	1	24	2	1	6	2	1	14	2 1
Semi Volatile Organic Compounds	3																																
Pyrene	129-00-0	130	ug/l	ND U	J 50	1	ND L	J 5	1	13	5	1	63		50	1	ND	U 50	1	160		50 1	760	50) 1	ND	U	1	8	5	1	11	5 1
Chrysene	218-01-9	1.9	ug/l	ND U	50	1	ND L	5	1	8	5	1	ND	U	50	1	ND	U 50	1	110		50 1	290	50	1	ND	U 5	1	7	5	1	11	5 1
Phenanthrene	85-01-8	1,100	ug/l	100	50	1	ND L	J 5	1	47	5	1	230		50	1	ND	U 50	1	380		50 1	1400	25	0 5	7		5	10	10 5	1	71	5 1
Fluorene	86-73-7	1,900	ug/l	72	50	1	ND L	J 5	1	19	5	1	140		50	1	ND	U 50	1	170		50 1	380	50) 1	9	Ę	1	ND	U 5	1	24	5 1
Naphthalene	91-20-3	100	ug/l	ND U	J 50	1	20	5	1	ND	U 5	1	ND	U	50	1	ND	U 50	1	ND	U	50 1	ND	U 50) 1	ND	U	1	ND	U 5	1	ND	U 5 1
Metals																																	
Lead (Total)	7439-92-1	5	ug/l	ND U	J 1	1	ND L	1	1	ND	U 1	1	ND	U	1	1	ND	U 1	1	ND	U	1 1	ND	U 1	1	ND	U	1	ND	U 1	1	ND	U 1 1

Notes:
PADEP - Pennsylvania Department of Environmental Protection

ug/l - micrograms per liter mg/L - milligram per liter RL - Reporting Limit

ND - Not Detected DF - Dilution Factor

NA - Not Analyzed

Qualifiers: Q - Qualifier

- U The analyte was analyzed but not detected
- J The analyte was detected below the RL. The result should be considered an estimate.

Summary of Groundwater Analytical Results AOI 8 Site Characterization/Remedial Investigation Report Fill-Alluvium/Trenton Gravel Wells Sunoco Philadelphia Refinery Philadelphia, Pennsylvania

		DADED Non-Bookley Collins	Location ID	N	-118			N-11	19			N-120			N-12	21			N-122			N-123				N-124			N-1	26	$\neg \tau$		N-128		T	N-131	
Ob and a state of the same	CAS No	PADEP Non-Residential Used	Sample ID	N	-118			N-11	19			N-120			N-12	21			N-122			N-123	}			N-124			N-1	26		l	N-128			N-131	
Chemical Name	CAS NO	Aquifer MSC for Groundwater TDS<2.500	Sample Date	7/22	2/2008		7	7/17/2	800		7/	17/2008			7/17/2	2008		7	/22/2008	3		7/22/20	08		7.	/22/2008	}		7/22/	2008		7/2	23/200	8		7/28/20	08
		103<2,500	Sample Matrix	Grou	ndwate	r	Gr	ound	water		Gro	undwate	r	G	round	water		Gr	oundwat	er		Groundv	ater		Gro	oundwat	er		Ground	lwater		Gro	undwa	ter	1	Groundw	ater
Volatile Organic Compounds			Unit	Result Q	RL	DF	Result	Q	RL D	F Re	esult	Q RL	DF	Result	Q	RL	DF	Result	Q RL	DF	Resul	t Q I	RL D	F R	esult	Q RL	DF	Resul	t Q	RL	DF	Result	Q RI	_ DF	Resul	C R	RL DF
Ethylene dibromide (EDB)	106-93-4	0.05	ug/l	ND U	0.03	1	ND	U (0.03 1		ND	U 0.03	1	ND	U	0.03	1	ND	U 0.03	3 1	ND	U 0	.03	1	ND	U 0.03	1	ND	U	0.03	1	ND	U 0.0	3 1	ND	U 0.	03 1
Ethylbenzene	100-41-4	700	ug/l	3 3	1	1	210		20 2	0	ND	U 1	1	2		1	1	ND	U 1	1	5		1	1	ND	U 1	1	ND	U	1	1	ND	U 1	1	ND	U 2	2 2
1,2-Dichloroethane	107-06-2	5	ug/l	ND U	1	1	ND	U	20 2	0	ND	U 1	1	ND	U	1	1	ND	U 1	1	ND	U	1		ND	U 1	1	ND	U	1	1	ND	U 1	1	ND	U 2	2 2
Toluene	108-88-3	1,000	ug/l	7	1	1	64		20 2	0	ND	U 1	1	11	11	1	1	ND	U 1	1	1		1		ND	U 1	1	ND	U	1	1	ND	U 1	1	ND	U 2	2 2
Xylene (Total)	1330-20-7	10,000	ug/l	18	1	1	570		20 2	0	ND	U 1	1	36		1	1	1	1	1	2		1		ND	U 1	1	2		1	1	ND	U 1	1	ND	U 2	2 2
Methyl Tertiary Butyl Ether (MTBE)	1634-04-4	20	ug/l	ND U	1	1	ND	U	20 2	0	ND	U 1	1	ND	U	1	1	ND	U 1	1	ND	U	1		ND	U 1	1	ND	U	1	1	ND	U 1	1	ND	U 2	2 2
Benzene	71-43-2	5	ug/l	9	1	1	81		20 2	0	ND	U 1	1	27		1	1	ND	U 1	1	6		1	ı	ND	U 1	1	1		1	1	ND	U 1	1	3		2 2
Cumene	98-82-8	3,500	ug/l	97	2	1	520		40 2	0	130	2	1	34		2	1	5	2	1	34		2		ND	U 2	1	3		2	1	30	2	1	370	4	1 2
Semi Volatile Organic Compounds																																					
Pyrene	129-00-0	130	ug/l	9	5	1	6		5 1		7	5	1	ND	U	20	1	16	5	1	110		5		ND	U 5	1	20		5	1	940	10	0 1	ND	U 5	50 1
Chrysene	218-01-9	1.9	ug/l	9	5	1	ND	U	5 1		ND	U 5	1	ND	U	20	1	5	5	1	66		5		ND	U 5	1	30		5	1	470	10	0 1	86	5	50 1
Phenanthrene	85-01-8	1,100	ug/l	70	5	1	63		5 1		21	5	1	ND	U	20	1	250	24	5	170		24	l	ND	U 5	1	45		5	1	4300	50	0 5	ND	U 5	50 1
Fluorene	86-73-7	1,900	ug/l	34	5	1	31		5 1		13	5	1	ND	U	20	1	84	5	1	60		5		ND	U 5	1	13		5	1	ND	U 10	0 1	ND	U 5	50 1
Naphthalene	91-20-3	100	ug/l	ND U	5	1	220		48 1	0	ND	U 5	1	ND	U	20	1	ND	U 5	1	140		24		ND	U 5	1	14		5	1	ND	U 10	0 1	ND	U 5	50 1
Metals																																					
Lead (Total)	7439-92-1	5	ug/l	ND U	1	1	ND	U	1 1		ND	U 1	1	ND	U	1	1	ND	U 1	1	ND	U	1		ND	U 1	1	ND	U	1	1	ND	U 1	1	ND	U	1 1

PADEP - Pennsylvania Department of Environmental Protection

ug/l - micrograms per liter mg/L - milligram per liter

RL - Reporting Limit

ND - Not Detected

DF - Dilution Factor NA - Not Analyzed

Qualifiers: Q - Qualifier

- U The analyte was analyzed but not detected
- J The analyte was detected below the RL. The result should be considered an estimate.
- D The sample was diluted.

Summary of Groundwater Analytical Results AOI 8 Site Characterization/Remedial Investigation Report Fill-Alluvium/Trenton Gravel Wells Sunoco Philadelphia Refinery Philadelphia, Pennsylvania

		PADEP Non-Residential Used	Location ID		N-132			N-133			N-134			N-1	36		ı	PZ-300			PZ-	-503			PZ-504			PZ-50	5			PZ-506			PZ-507	
Chemical Name	CAS No	Aguifer MSC for Groundwater	Sample ID		N-132			N-133			N-134			N-1	36			PZ-300			PZ-	-503			PZ-504			PZ-50	5		T I	PZ-506			PZ-507	
Chemical Name	CAS NO	TDS<2.500	Sample Date	7	/28/2008			7/23/2008	3		7/16/2008			7/25/2	2008		7/	29/200	8		7/25	/2008		7	/25/2008			7/23/20	08		7/	/23/2008			7/23/200	3
		103<2,500	Sample Matrix	Gr	oundwate	r	G	roundwat	er	G	roundwate	er	G	round	lwater		Gro	undwa	ter	-	Groun	dwater		Gr	oundwat	er	G	roundw	ater		Gro	undwate	ər		Groundwa	
Volatile Organic Compounds			Unit	Result	Q RL	DF	Result	Q RL	DF	Result	Q RL	DF	Result	Q	RL	DF	Result	Q RI	L DF	Resul	t Q	RL	DF	Result	Q RL	DF	Result	Q	RL C	DF F	Result	Q RL	DF	Result	Q RL	DF
Ethylene dibromide (EDB)	106-93-4	0.05	ug/l	ND	U 0.03	1	ND	U 0.03	3 1	ND	U 0.03	1	ND	U	0.03	1	ND	U 0.0	3 1	ND	U	0.03	1	ND	U 0.03	1	ND	U 0	.03	1	ND	U 0.03	1	ND	U 0.0	3 1
Ethylbenzene	100-41-4	700	ug/l	ND	U 1	1	11	10	10	ND	U 1	1	ND	U	5	5	9	1	1	ND	U	1	1	ND	U 2	2	ND	U	1	1	ND	U 10	10	ND	U 1	1
1,2-Dichloroethane	107-06-2	5	ug/l	ND	U 1	1	ND	U 10	10	ND	U 1	1	ND	U	5	5	ND	U 1	1	ND	U	1	1	ND	U 2	2	ND	U	1	1	ND	U 10	10	ND	U 1	1
Toluene	108-88-3	1,000	ug/l	ND	U 1	1	ND	U 10	10	ND	U 1	1	ND	U	5	5	1	1	1	ND	U	1	1	ND	U 2	2	ND	U	1	1	ND	U 10	10	ND	U 1	1
Xylene (Total)	1330-20-7	10,000	ug/l	4	1	1	17	10	10	ND	U 1	1	ND	U	5	5	9	1	1	3		1	1	6	2	2	2		1	1	ND	U 10	10	ND	U 1	1
Methyl Tertiary Butyl Ether (MTBE)	1634-04-4	20	ug/l	ND	U 1	1	ND	U 10	10	ND	U 1	1	ND	U	5	5	ND	U 1	1	ND	U	1	1	ND	U 2	2	ND	U	1	1	ND	U 10	10	ND	U 1	1
Benzene	71-43-2	5	ug/l	ND	U 1	1	10000	100	100	ND	U 1	1	110		5	5	110	1	1	13		1	1	2400	20	20	160		1	1	ND	U 10	10	ND	U 1	1
Cumene	98-82-8	3,500	ug/l	ND	U 2	1	ND	U 20	10	ND	U 2	1	ND	U	10	5	6	2	1	6	6	2	1	ND	U 4	2	3	3	2	1	ND	U 20	10	ND	U 2	1
Semi Volatile Organic Compounds	3																																			
Pyrene	129-00-0	130	ug/l	ND	U 5	1	6	5	1	ND	U 50	1	ND	U	24	5	6	5	1	62		50	1	ND	U 5	1	61		10	1	11	5	1	120	50	1
Chrysene	218-01-9	1.9	ug/l	ND	U 5	1	ND	U 5	1	ND	U 50	1	ND	U	24	5	ND	U 5	1	51		50	1	ND	U 5	1	41		10	1	8	5	1	120	50	1
Phenanthrene	85-01-8	1,100	ug/l	ND	U 5	1	9	5	1	ND	U 50	1	ND	U	24	5	ND	U 5	1	ND	U	50	1	ND	U 5	1	ND	U	10	1	ND	U 5	1	ND	U 50	1
Fluorene	86-73-7	1,900	ug/l	ND	U 5	1	ND	U 5	1	ND	U 50	1	ND	U	24	5	ND	U 5	1	ND	U	50	1	ND	U 5	1	11	11	10	1	ND	U 5	1	ND	U 50	1
Naphthalene	91-20-3	100	ug/l	ND	U 5	1	ND	U 40	1	ND	U 50	1	ND	U	24	5	ND	U 5	1	ND	U	50	1	ND	U 5	1	ND	U	10	1	ND	U 5	1	ND	U 50	1
Metals																																				
Lead (Total)	7439-92-1	5	ug/l	ND	U 1	1	ND	U 1	1	ND	U 1	1	ND	U	1	1	ND	U 1	1	ND	U	1	1	ND	U 1	1	ND	U	1	1	ND	U 1	1	ND	U 1	1

PADEP - Pennsylvania Department of Environmental Protection

ug/l - micrograms per liter mg/L - milligram per liter

RL - Reporting Limit

ND - Not Detected

DF - Dilution Factor NA - Not Analyzed

Qualifiers: Q - Qualifier

- U The analyte was analyzed but not detected
- J The analyte was detected below the RL. The result should be considered an estimate.
- D The sample was diluted.

Summary of Groundwater Analytical Results AOI 8 Site Characterization/Remedial Investigation Report Fill-Alluvium/Trenton Gravel Wells Sunoco Philadelphia Refinery Philadelphia, Pennsylvania

		DADED 11	Location ID		RW	-200			RW-2	02		RW	V-301			RW-302			RW-303			RW-304	ı		RW-305			RW-307	7		RW	-308		R۱	W-500		R\	W-501
		PADEP Non-Residential Used	Sample ID		RW-	-200			RW-2	02		RW	V-301			RW-302			RW-303			RW-304	,		RW-305			RW-307	,		RW	-308		R۱	W-500		RV	W-501
Chemical Name	CAS No	Aquifer MSC for Groundwater TDS<2.500	Sample Date		7/23/	/2008			7/29/2	008		7/22	2/2008		7	//23/2008	3		7/25/2008	3		7/22/200	8	7	7/22/200	8	7.	/23/200)8		7/25	/2008		7/2	25/2008		7/2	3/2008
		105<2,500	Sample Matrix	c	Groun	dwater	r	G	round	water		Groun	ndwate	r	Gr	oundwat	er	G	roundwat	ter	(roundwa	iter	Gr	roundwa	ter	Gro	oundwa	ater		Groun	dwater		Grou	undwater		Grou	ındwater
Volatile Organic Compounds			Unit	Result	. Q	RL	DF	Result	Q	RL DF	Res	ult Q	RL	DF	Result	Q RL	DF	F Result	Q RL	DF	Result	Q R	L DF	Result	Q R	L DF	Result	Q R	L DF	Resu	ılt Q	RL	DF Re	sult C	Q RL	DF I	Result Q	RL DF
Ethylene dibromide (EDB)	106-93-4	0.05	ug/l	ND	U	0.03	1	ND	U	0.03 1	NI) U	0.03	1	ND	U 0.03	3 1	ND	U 0.03	3 1	ND	U 0.0	03 1	ND	U 0.0	03 1	ND	U 0.0	03 1	NE) U	0.02	1 1	ND (U 0.03	1	ND U	J 0.03 1
Ethylbenzene	100-41-4	700	ug/l	ND	U	1	1	ND	U	1 1	1		1	1	ND	U 1	1	1	1	1	ND	U 1	1	ND	U 1	1	3	3 1	1	1	1	1	1 1	ND (U 5	5	ND U	J 1 1
1,2-Dichloroethane	107-06-2	5	ug/l	ND	U	1	1	ND	U	1 1	NI) U	1	1	ND	U 1	1	ND	U 1	1	ND	U 1	1	ND	U 1	1	ND	U 1	1	NE) U	1	1 1	ND (U 5	5	ND U	J 1 1
Toluene	108-88-3	1,000	ug/l	ND	U	1	1	1		1 1	16	3	1	1	2	1	1	13	1	1	9	1	1	4	1	1	30	1	1	NE) U	1	1 1	ND (U 5	5	ND U	J 1 1
Xylene (Total)	1330-20-7	10,000	ug/l	ND	U	1	1	1		1 1	2	ı	1	1	4	1	1	21	1	1	15	1	1	10	1	1	34	1	1	NE) U	1	1 1	ND (U 5	5	ND U	J 1 1
Methyl Tertiary Butyl Ether (MTBE)	1634-04-4	20	ug/l	ND	U	1	1	2		1 1	NI)	1	1	ND	U 1	1	ND	U 1	1	ND	U 1	1	ND	U 1	1	ND	U 1	1	NE) U	1	1 1	ND (U 5	5	ND U	J 1 1
Benzene	71-43-2	5	ug/l	ND	U	1	1	ND	U	1 1	10)	1	1	3	1	1	14	1	1	9	1	1	3	1	1	52	1	1	46		1	1 3	00	5	5	3	1 1
Cumene	98-82-8	3,500	ug/l	ND	U	2	1	17		2 1	18	3	2	1	17	2	1	16	2	1	13	2	! 1	18	18 2	! 1	30	2	2 1	5	5	2	1 1	ND (U 10	5	ND U	J 2 1
Semi Volatile Organic Compounds	1																																					
Pyrene	129-00-0	130	ug/l	300		50	1	36		5 1	NI) U	5	1	5	5	1	ND	U 5	1	ND	U 5	i 1	6		i 1	ND	U E	5 1	NE) U	5	1 1	ND (U 5	1	ND U	J 5 1
Chrysene	218-01-9	1.9	ug/l	97		50	1	17		5 1	NI) U	5	1	ND	U 5	1	ND	U 5	1	ND	U 5	1	6	5	1	ND	U 5	1	NE	C	5	1 1	ND (U 5	1	ND U	J 5 1
Phenanthrene	85-01-8	1,100	ug/l	100	100	50	1	33		5 1	NI) U	5	1	ND	U 5	1	ND	U 5	1	ND	U 5	i 1	15		i 1	ND	U 5	5 1	NE) U	5	1 1	ND (U 5	1	ND U	J 5 1
Fluorene	86-73-7	1,900	ug/l	72	72	50	1	19		5 1	NI) U	5	1	8	5	1	ND	U 5	1	ND	U 5	i 1	10	5	5 1	ND	U 5	5 1	NE) U	5	1 1	ND (U 5	1	ND U	J 5 1
Naphthalene	91-20-3	100	ug/l	ND	U	50	1	ND	U	5 1	NI) U	5	1	ND	U 5	1	ND	U 5	1	ND	U 5	i 1	ND	U 5	i 1	ND	U 5	5 1	NE) U	5	1 1	ND (U 5	1	ND U	J 5 1
Metals																																						
Lead (Total)	7439-92-1	5	ug/l	ND	U	1	1	ND	U	1 1	NI) U	1	1	ND	U 1	1	ND	U 1	1	ND	U 1	1	ND	U 1	1	ND	U 1	1	NE) U	1	1 1	ND L	U 1	1	ND U	J 1 1

Notes:
PADEP - Pennsylvania Department of Environmental Protection

ug/l - micrograms per liter mg/L - milligram per liter RL - Reporting Limit ND - Not Detected

DF - Dilution Factor

NA - Not Analyzed

Qualifiers: Q - Qualifier

U - The analyte was analyzed but not detected

J - The analyte was detected below the RL. The result should be considered an estimate.

D - The sample was diluted.

Table 7 Summary of Groundwater Analytical Results: Deep (Lower Sand) Wells AOI 8 Site Characterization/Remedial Investigation Report Sunoco Philadelphia Refinery Philadelphia, Pennsylvania

			Location ID	N-4			N-9 N-9 7/16/2008 Groundwater			N-13 N-13 7/23/2008			N-19 N-19 7/16/2008				N-21 N-21 7/23/2008 Groundwater			N-27 N-27 7/17/2008 Groundwater			N-30 N-30				N-38D		N-44D			N-50D		
Chemical Name	CAS No	Residential Used Aquifer MSC for Groundwater	Sample ID N-4 Sample Date 7/15/2008			N-38D										N-44D										N-50D								
Gileilia i i i i i i i i i i i i i i i i i i						7/22/2008										7/24/2008 Groundwater								7/25/2008 Groundwater		7/23/2008 Groundwater								
,		TDS<2,500	Sample Matrix	Matrix Groundwater		Groundwater				Groundwater			Groundwater										r											
Volatile Organic Compounds			Unit	Unit Result Q RL DF		Result Q RL DF		DF	Result	Result Q RL DF		Result Q RL DF		DF I	Result Q RL DF		Result Q RL DF		DF	Result Q RL D		DF	Result Q RL		DF	DF Result Q RL DF		DF	Result Q RL DF					
Ethylene dibromide (EDB)	106-93-4	0.05	ug/l	ND	U 0.029	1	ND U	0.029	1	ND	U 0.029	1	ND	U 0	.029	1	ND	U 0.029	1	ND	U 0.03	1	ND	U 0.03	1	ND	U 0.029	1	ND	U 0.029	1	ND	U 0.029 1	
Ethylbenzene	100-41-4	700	ug/l	ND	U 1	1	2	1	1	ND	U 1	1	ND	U	1	1	ND	U 1	1	ND	U 1	1	ND	U 1	1	ND	U 1	1	ND	U 1	1	ND	U 1 1	
1,2-Dichloroethane	107-06-2	5	ug/l	ND	U 1	1	ND U	1	1	ND	U 1	1	ND	U	1	1	ND	U 1	1	ND	U 1	1	ND	U 1	1	ND	U 1	1	ND	U 1	1	ND	U 1 1	
Toluene	108-88-3	1,000	ug/l	ND	U 1	1	ND U	1	1	ND	U 1	1	ND	U	1	1	ND	U 1	1	ND	U 1	1	ND	U 1	1	ND	U 1	1	ND	U 1	1	ND	U 1 1	
Xylene (Total)	1330-20-7	10,000	ug/l	2	1	1	6	1	1	ND	U 1	1	ND	U	1	1	ND	U 1	1	ND	U 1	1	ND	U 1	1	ND	U 1	1	4	1	1	ND	U 1 1	
Methyl Tertiary Butyl Ether	1634-04-4	20	ug/l	2	1	1	ND U	1	1	2	1	1	ND	U	1	1	DN	U 1	1	4	1	1	ND	U 1	1	ND	U 1	1	ND	U 1	1	ND	U 1 1	
Benzene	71-43-2	5	ug/l	5	1	1	8	1	1	ND	U 1	1	ND	U	1	1	16	1	1	ND	U 1	1	ND	U 1	1	ND	U 1	1	6	1	1	ND	U 1 1	
Cumene	98-82-8	3,500	ug/l	3	2	1	ND U	2	1	ND	U 2	1	ND	U	2	1	190	2	1	ND	U 2	1	ND	U 2	1	ND	U 2	1	5	2	1	ND	U 2 1	
Semi Volatile Organic Compounds																																		
Pyrene	129-00-0	130	ug/l	ND	U 5	1	ND U	5	1	ND	U 5	1	ND	U	5	1	ND	U 5	1	ND	U 5	1	ND	U 5	1	ND	U 5	1	ND	U 5	1	ND	U 5 1	
Chrysene	218-01-9	1.9	ug/l	ND	U 5	1	ND U	5	1	ND	U 5	1	ND	U	5	1	ND	U 5	1	ND	U 5	1	ND	U 5	1	ND	U 5	1	ND	U 5	1	ND	U 5 1	
Phenanthrene	85-01-8	1,100	ug/l	ND	U 5	1	ND U	5	1	ND	U 5	1	ND	U	5	1	ND	U 5	1	ND	U 5	1	ND	U 5	1	ND	U 5	1	ND	U 5	1	ND	U 5 1	
Fluorene	86-73-7	1,900	ug/l	ND	U 5	1	ND U	5	1	ND	U 5	1	ND	U	5	1	ND	U 5	1	ND	U 5	1	ND	U 5	1	ND	U 5	1	ND	U 5	1	ND	U 5 1	
Naphthalene	91-20-3	100	ug/l	ND	U 5	1	ND U	5	1	ND	U 5	1	ND	U	5	1	ND	U 5	1	ND	U 5	1	ND	U 5	1	ND	U 5	1	ND	U 5	1	ND	U 5 1	
Metals																																		
Lead (Total)	7439-92-1	5	ug/l	ND	U 1	1	ND U	1	1	ND	U 1	1	ND	U	1	1	ND	U 1	1	ND	U 1	1	ND	U 1	1	ND	U 1	1	ND	U 1	1	ND	U 1 1	

Notes:

PADEP - Pennsylvania Department of Environmental Protection ug/l - micrograms per liter mg/L - milligram per liter RL - Reporting Limit ND - Not Detected DF - Dilution Factor NA - Not Analyzed

Qualifiers:
Q - Qualifier
U - The analyte was analyzed but not detected
J - The analyte was detected below the RL. The result should be considered an estimate.
D - The sample was diluted.

Sunoco Inc. 3144 Passyunk Avenue Philadelphia PA 19145-5299 215 339 2000

October 12, 2006

Mr. Robert Day-Lewis Pennsylvania DEP 2 East Main Street Norristown, PA 19401

Mr. Steve O'Neil Pennsylvania DEP 2 East Main Street Norristown, PA 19401

Re:

Sunoco Inc. (R&M) Philadelphia Refinery Philadelphia, Philadelphia County

Dear Mr. Day-Lewis and Mr. O'Neil:

In accordance with the Land Recycling and Environmental Remediation Standards Act (Act 2), enclosed are two copies of a Notice of Intent to Remediate (NIR) for the Sunoco Inc. (R&M) Philadelphia Refinery. This NIR covers remediation being done as part of the 2003 Consent Order and Agreement (CO&A) at Point Breeze, Girard Point and Schuylkill River Tank Farm. Remediation at Belmont Terminal, which is part of the CO&A, is not part of this NIR since this site is not subject to RCRA Corrective Action. Sunoco is considering submitting a separate NIR for this area under the Act 2 program only.

This NIR is being submitted with the intent to enter the Sunoco Philadelphia Refinery into the One Cleanup Program with PaDEP and the USEPA. All remediation work at the Philadelphia refinery will be completed under the 2003 Consent Order & Agreement (CO&A), however, RCRA Corrective Action measures will be addressed concurrently with work performed under the CO&A and within the Act 2 program.

September 21, 2006 Page 2

Please call me at 610-859-1881 or email me at <u>jroppenheim@sunocoinc.com</u> with any questions or comments.

Best Regards,

James Oppenheim, PE

Sr. Environmental Consultant

Cc: Sunoco Legal Dept.

Philadelphia Refinery Environmental Central File

David Burke, PADEP Walter Payne, PADEP

Hon Lee, USEPA Region III Colleen Costello, Langan

2530-FM-BWM0019 Rev. 4/2004

Will remediation be to a site-specific standard oximes or as a special industrial area oximes? If so, the municipality or municipalities must be provided 30-day comment period.

Remediator/Property Owner/Consultant. For each of these recipients of the approval of the final report, complete form below.

Remediator

Contact Person: James R. Oppenheim

Relationship to site (e.g. owner, remediator, participating in cleanup, consultant): Remediation Project Manager

Phone Number: (610) 859-1881

Company Name: Sunoco, Inc. (R&M)

Address (street, city, state, zip): 100 Green St., Marcus Hook, PA 19061

Email Address: jroppenheim@sunocoinc.com

Property Owner

Contact Person: Scott Baker

Relationship to site (e.g. owner, remediator, participating in cleanup, consultant): Environmental Manager

Phone Number: (215) 339-2074

Company Name: Sunoco, Inc. (R&M)

Address (street, city, state, zip): 3144 Passyunk Ave. Philadelphia, PA 19145

Email Address: sabaker@sunocoinc.com

Consultant

Contact Person: Colleen Costello

Relationship to site (e.g. owner, remediator, participating in cleanup, consultant): Consultant

Phone Number: (215) 864-0640

Company Name: Langan Engineering and Environmental Services

Address (street, city, state, zip): 30 South 17th St., Suite 1500, Philadelphia, PA 19103

Email Address: ccostello@langan.com

Preparer of Notice of Intent to Remediate:

Name: James Oppenheim

Title: Project Manager

Address: 100 Green Street

Telephone: (610) 859-1881

Marcus Hook, PA 19061

Email Address: jroppenheim@sunocoinc.com

Email Image File of Site Map showing property lines and general area of site(s) to be remediated to: (landrecycling@state.pa.us)

October 12, 2006

Sunoco Inc. 3144 Passyunk Avenue Philadelphia PA 19145-5299 215 339 2000

Manager
Philadelphia Department of Public Health
Environmental Health Services
321 University Avenue
Philadelphia, PA 19104

Re:

Sunoco, Inc. (R&M) Philadelphia Refinery

Philadelphia, Philadelphia County

Dear Sir/Madam:

The Land Recycling and Environmental Remediation Standards Act (Act 2) requires that a Notice of Intent to Remediate (NIR) be provided to the municipality in which the site is located when a site is being remediated to a site-specific Standard. The municipality is afforded a 30-day comment period. In accordance with this provision of the Act, Sunoco, Inc. (R&M) is formally notifying you of its intent to remediate the subject site under Act 2. A copy of the NIR, which will be sent to the Pennsylvania Department of Environmental Protection (PaDEP), is enclosed. This notice will also be published in the Pennsylvania Bulletin, and a summary of the notice appeared in the Philadelphia Daily News on October 16, 2006.

Publication of this notice in the Philadelphia Daily News initiates the 30-day public and municipal comment period. During the next thirty days, your municipality may request to become involved in the development of the remediation plans for the site. If the municipality wishes to become involved in this project, please send your comments to Sunoco to my attention.

Please call me at (610) 859-1881 if you have any questions concerning the proposed remediation.

Best Regards.

James R. Oppenheim, P.E.

Senior Environmental Consultant

Cc: Sunoco Legal Dept.
Philadelphia Refinery Environmental Central File
Steve O'Neil, PaDEP
Colleen Costello, Langan

2530-FM-BWM0019 Rev. 4/2004

Will remediation be to a site-specific standard \boxtimes or as a special industrial area \square ? If so, the municipality or municipalities must be provided 30-day comment period.

Remediator/Property Owner/Consultant. For each of these recipients of the approval of the final report, complete form below.

Remediator

Contact Person: James R. Oppenheim

Relationship to site (e.g. owner, remediator, participating in cleanup, consultant): Remediation Project Manager

Phone Number: (610) 859-1881

Company Name: Sunoco, Inc. (R&M)

Address (street, city, state, zip): 100 Green St., Marcus Hook, PA 19061

Email Address: jroppenheim@sunocoinc.com

Property Owner:

Contact Person: Scott Baker

Relationship to site (e.g. owner, remediator, participating in cleanup, consultant): Environmental Manager

Phone Number: (215) 339-2074

Company Name: Sunoco, Inc. (R&M)

Address (street, city, state, zip): 3144 Passyunk Ave. Philadelphia, PA 19145

Email Address: sabaker@sunocoinc.com

Consultant

Contact Person: Colleen Costello

Relationship to site (e.g. owner, remediator, participating in cleanup, consultant): Consultant

Phone Number: (215) 864-0640

Company Name: Langan Engineering and Environmental Services

Address (street, city, state, zip): 30 South 17th St., Suite 1500, Philadelphia, PA 19103

Email Address: ccostello@langan.com

Preparer of Notice of Intent to Remediate:

Name: James Oppenheim

Title: Project Manager

Address: 100 Green Street

Telephone: (610) 859-1881

Marcus Hook, PA 19061

Email Address: jroppenheim@sunocoinc.com

Email Image File of Site Map showing property lines and general area of site(s) to be remediated to:

(landrecycling@state.pa.us)

Proof of Publication in The Philadelphia Daily News Under Act. No 587, Approved May 16, 1929

STATE OF PENNSYLVANIA COUNTY OF PHILADELPHIA

Anna Dickerson being duly sworn, deposes and says that **The Philadelphia Daily News** is a newspaper published daily, except Sunday, at Philadelphia, Pennsylvania, and was established in said city in 1925, since which date said newspaper has been regularly issued in said County, and that a copy of the printed notice of publication is attached hereto exactly as the same was printed and published in the regular editions and issues of the said newspaper on the following dates:

October 16, 2006

Affiant further deposes and says that he is an employee of the publisher of said newspaper and has been authorized to verify the foregoing statement and that he is not interested in the subject matter of the aforesaid notice of publication, and that all allegations in the foregoing statement as to time, place and character of publication are true.

Copy of Notice of Publication

Newspaper Notice of Intent to Remediate to a service of Intent to Remediate to Remediate (Sections 302(e)(1)(ii), 303(h)(1)(ii), 304(n)(1)(i), and 305(c)(1))

Pursuant to the Land Recycling and Environmental Remediation Standards Act (Act), the act of May 19, 1995 P.L. 4. No. 1995-2—notice is hereby given that Sunoco Inc. (R&M) has submitted to the Pennsylvania Department of Environmental Protection a Notice of Intent to Remediate a site located at 3144 Passyunk Ave. Philadelphia, Philadelphia, County, Pennsylvania. This Notice of Intent to Remediate states that the site is a petroleum refinery. It has been determined that petroleum compounds have impacted soil and groundwater at the site. Succo. Inc. (R&M) has indicated that peroposed remediation measures will include source reduction and engineered boundary controls. The proposed future use of the property is industrial for continued operation as a petroleum refinery.

Sunoco Inc. (R&M) plans to use the site-specific remediation standard at the site. The Act provides
for a 30-day, public common period for sitespecific standard remediation. The 30-day comment period is initiated with the publication of this
notice. Until November 16, 2005, the City of Philadelphia may submit a request to Sunoco Inc.
(R&M) to be involved in the development of the remediation and reuse plans for the site. The City of
Philadelphia may also submit a request to Sunoco
Inc. (R&M) during this 30-day comment period to
develop and implement a public involvement plan.
Coples of these requests and of any comments
should also be submitted to the Department of Environmental Protection at 2 East Main Street.
Norristown. PA 19401 to the attention of Mr. Walter Payne. All correspondence with Sunoco Inc.
(R&M) should be addressed to the Public Relations
bept. Sunoco Inc. (R&M) at 3144 Passyunk Ave
Philadelphia, PA, 19145.

annadicterson

Sworn to and subscribed before me this 16th day of

October 2006 Mary anne Loyan

My Commission Expires:

NOTARIAL SEAL Mary Anne Logan, Notary Public City of Philadelphia, Phila. County My Commission Expires March 30, 2009

LEGAL NOTICES

Newspaper Notice of Intent to Remediate to an Environmental Standard. (Sections 302(e)(1)(ii), 303(h)(1)(ii), 304(n)(1)(i), and 305(c)(1))

Pursuant to the Land Recycling and Environmental Remediation Standards Act (Act), the act of May 19, 1995, P.L. 4, No. 1995-2., notice is hereby given that Sunoco Inc.(R&M) has submitted to the Pennsylvania Department of Environmental Protection a Notice of Intent to Remediate a site located at 3144 Passyunk Ave., Philadelphia, Philadelphia County, Pennsylvania. This Notice of Intent to Remediate states that the site is a petroleum refinery. It has been determined that petroleum compounds have impacted soil and groundwater at the site. Sunoco Inc. (R&M) has indicated that proposed remediation measures will include source reduction and engineered boundary controls. The proposed future use of the property is industrial for continued operation as a petroleum refinery.

Sunoco Inc. (R&M) plans to use the site-specific remediation standard at the site. The Act provides for a 30-day public comment period for site-specific standard remediation. The 30-day comment period is initiated with the publication of this notice. Until November 16, 2006, the City of Philadelphia may submit a request to Sunoco Inc. (R&M) to be involved in the development of the remediation and reuse plans for the site. The City of Philadelphia may also submit a request to Sunoco Inc. (R&M) during this 30-day comment period to develop and implement a public involvement plan. Copies of these requests and of any comments should also be submitted to the Department of Environmental Protection at 2 East Main Street, Norristown, PA 19401 to the attention of Mr. Walter Payne. All correspondence with Sunoco Inc. (R&M) should be addressed to the Public Relations Dept., Sunoco Inc. (R&M) at 3144 Passyunk Ave, Philadelphia, PA, 19145.

Appeared in: Philadelphia Inquirer & Philadelphia Daily News on Monday, 10/16/2006

Back

May 04, 2011

CERTIFIED MAIL RETURN RECEIPT REQUESTED

Manager
Philadelphia Department of Public Health
Environmental Health Services
321 University Avenue
Philadelphia, Pennsylvania 19104

RE: Notice of Submittal of Site Characterization/

Remedial Investigation Report

Area of Interest (AOI) 8

Sunoco, Inc. (R&M) Philadelphia Refinery

Philadelphia, Philadelphia County, Pennsylvania

Langan Project No.: 2574601

David T. Gockel, P.E., P.P.
George P. Kelley, P.E.
George E. Derrick, P.E.
Michael A. Semeraro, Jr., P.E.
Nicholas De Rose, P.G.
Andrew J. Ciancia, P.E.
George E. Leventis, P.E.
Rudolph P. Frizzi, P.E., G.E.
Ronald A. Fuerst, C.L.A.
Colleen Costello, P.G.
Cristina M. González, P.E.
Gerald J. Zambrella, C.E.M.
Gregory M. Elko, P.E.
Steven Ueland, P.E.

Caryn L. Barnes
Gerard M. Coscia, P.E.
Jason S. Engelhardt, P.E.
Edward H. Geibert, M.S.
Christopher M. Hager, P.E.
John J. McElroy, Jr., Ph.D., P.E.
Michael D. Szura, C.L.A., A.S.L.A.
Stewart H. Abrams, P.E.
Brian M. Conlon, P.E.
Jeffrey A. Smith, P.G.

Dear Sir/Madam:

Notice is hereby given that Sunoco, Inc. (R&M) (Sunoco) is in the process of submitting a Site Characterization/Remedial Investigation Report to the Pennsylvania Department of Environmental Protection for AOI 8 located at the Sunoco Philadelphia Refinery, Philadelphia, Philadelphia County, Pennsylvania. The report indicates that the remediation planned will attain compliance with a combination of site-specific and the statewide health cleanup standards.

This notice is made under the provision of the Land Recycling and Environmental Standards Act, the Act of May 19, 1995, P.L. #4, No. 2.

Sincerely,

Langan Engineering and Environmental Services, Inc.

Colleen Costello, P.G. Senior Principal

cc: Jim Oppenheim, Sunoco Kevin Dunleavy, Sunoco

\\langan.com\\data\\DT\\data6\\2574601\\Office Data\\Reports\\Repackaged SCR_RIR\AOI 8\Appendices\\Appendix A - NIR and Public Notices\\RIR Municipal Notice_042511.DOC

Proof of Publication in The Philadelphia Daily News Under Act. No 587, Approved May 16, 1929

STATE OF PENNSYLVANIA COUNTY OF PHILADELPHIA

Anna Dickerson being duly sworn, deposes and says that **The Philadelphia Daily News** is a newspaper published daily, except Sunday, at Philadelphia, Pennsylvania, and was established in said city in 1925, since which date said newspaper has been regularly issued in said County, and that a copy of the printed notice of publication is attached hereto exactly as the same was printed and published in the regular editions and issues of the said newspaper on the following dates:

May 23, 2011

Affiant further deposes and says that she is an employee of the publisher of said newspaper and has been authorized to verify the foregoing statement and that she is not interested in the subject matter of the aforesaid notice of publication, and that all allegations in the foregoing statement as to time, place and character of publication are true.

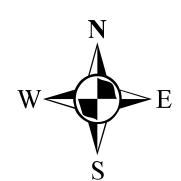
Copy of Notice of Publication

Notification of Receipt of Site Characterization / Remedial Investigation Report Notice is hereby given that Sunoco Inc. (R&M) (Sunoco) is in the process of submitting a Site Characterization / Remedial Investigation Report to the Pennsylvania Department of Environmental Protection (PADEP). Southeast Regional Office for Area of Interest (AOI 3) located at the Sunoco Philadelphia, Pennsylvania. Sunoco Ass indicated in the report that site characterization activities have been completed at AOI 8 in accordance with the Land Recycling and Environmental Remediation Standards Act and the 2004 Memorandum of Agreement between the PADEP and U.S. Environmental Protection Agency (EPA) (e.k.a., the PACEP and U.S. Environmental Remediation Standards Act made and the tand Recycling and Environmental Remediator Standards Act, the ACT of May 19, 1955 P.L. #4, No. 2.

ans Dickerson

Sworn to and subscribed before me this 23rd day of May, 2011.

Mary anne Trass


My Commission Expires:

NOTARIAL SEAL Mary Anne Logan, Notary Public City of Philadelphia, Phila. County My Commission Expires March 30, 2013

SENDER: COMPLETE THIS SECTION	COMPLETE THIS SECTION ON DELIVERY										
 Complete items 1, 2, and 3. Also complete item 4 if Restricted Delivery is desired. Print your name and address on the reverse so that we can return the card to you. Attach this card to the back of the mailpiece, or on the front if space permits. Article Addressed to: 	A. Signature X										
321 ersity Avenue Phila iphia, Pennsylvania 19104	3. Service Type Certified Mail Registered Insured Mail C.O.D. CEXTRE Fee Yes										
2. Article Number 7010 1870 0001 9784 1237											
PS Form 3811, February 2004 Domestic Retu	ırn Receipt 102595-02-M-1540										

Steel Bulkhead

Wooden Bulkhead

Occupied Buildings

AOI Boundary

AOI 8 Site Characterization Report/ Remedial Investigation Report Sunoco Philadelphia Refinery Philadelphia, Pennsylvania

Sunoco, Inc. (R&M)
Philadelphia Refinery
3144 Passyunk Avenue
Philadelphia, PA.
19145

Page 1 of 1

PROJECT: Sunoco Philadelphia Refinery

SITE LOCATION: AOI-8

JOB NO.:

LOGGED BY: Shaun Sykes

DATES DRILLED: 6/17/08

DRILLING CO.:

Parrat Wolff Inc.

DRILLING METHOD

Direct Push

SAMPLING METHOD

Split Spoon

DEPTH (feet)	SAMPLE INTERVAL	PID (ppm)	LITHOLOGY DESCRIPTION	LITH- OLOGY	COMMENTS
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		0.0	Fill - dry gravel and fine sand	^^^^ ^^^^ ^^^^	
		0.0	Same	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	
-	Sample	0.1	Dry brown sandy silt and gravel	^^^^ ^^^^ ^^^^	
	taken from 1-2' for laboratory analysis	0.2	Same	^^^^ ^^^^	Boring complete @ 2'

Page 1 of 1

PROJECT: Sunoco Philadelphia Refinery

SITE LOCATION: AOI-8

JOB NO.:

LOGGED BY: Shaun Sykes

DATES DRILLED: 5/7/08

DRILLING CO.:

Parrat Wolff Inc.

DRILLING METHOD

Direct Push Split Spoon

SAMPLING METHOD

DEPTH (feet)	SAMPLE INTERVAL	PID (ppm)	LITHOLOGY DESCRIPTION	LITH- OLOGY	COMMENTS
0		0.0	Fill - gravel, tan silt	^^^^ ^^^^	
		0.0	Same		
-	Sample	0.0	Fill, stiff brown/gray sandy silt, gravel	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
	taken from 1-2' for laboratory analysis	0.0	Same	^^^^ ^^^^	Boring complete @ 2'

Page 1 of 1

PROJECT: Sunoco Philadelphia Refinery

SITE LOCATION: AOI-8

JOB NO.:

Shaun Sykes LOGGED BY:

DATES DRILLED: 5/7/08

DRILLING CO.:

Parrat Wolff Inc.

DRILLING METHOD

Direct Push

SAMPLING METHOD

Split Spoon

DEPTH (feet)	SAMPLE INTERVAL	PID (ppm)	LITHOLOGY DESCRIPTION	LITH- OLOGY	COMMENTS
0		5.6	Fill - stiff med. brown andy silt, gravel, brick	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
		83	Fill - black/brown silty sand and gravel, dry	^^^^	
_		265		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
	Sample taken from 1-2' for laboratory analysis	142	Same	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Boring complete @ 2'

Page 1 of 1

PROJECT: Sunoco Philadelphia Refinery

SITE LOCATION: AOI-8

JOB NO.:

LOGGED BY: Shaun Sykes

DATES DRILLED: 5/8/08

DRILLING CO.:

Parrat Wolff Inc.

DRILLING METHOD

Direct Push Split Spoon

SAMPLING METHOD

DEPTH (feet)	SAMPLE INTERVAL	PID (ppm)	LITHOLOGY DESCRIPTION	LITH- OLOGY	COMMENTS
٥٦		0.0	Fill - brown sandy silt and gravel, dry	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
		7.9	Same, stiff	\^\^\^\	
_		122	Fill - black sandy silt and gravel	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
	Sample taken from 1-2' for laboratory analysis	179	Same	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Boring complete @ 2'

BOREHOLE NO.BH-08-05

Page 1 of 1

PROJECT: Sunoco Philadelphia Refinery

SITE LOCATION: AOI-8

JOB NO.:

Shaun Sykes LOGGED BY:

DRILLING CO.:

Parrat Wolff Inc.

DRILLING METHOD

Direct Push

Split Spoon SAMPLING METHOD

EPTH (feet)	SAMPLE INTERVAL	PID (ppm)	LITHOLOGY DESCRIPTION	LITH- OLOGY	COMMENTS
0 —		0.0	Fill - gravel, some tan sandy silt, dry	^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^	
		0.0	Same	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	
		1,7	Fill - black/brown sandy silt, brick	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
		5.5	Same	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
		13.8	Same	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
		25.4	Same	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	
		16.7	Same	^^^^	
		7.9	Same	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	
		12.3	Fill - gravel	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
-5 -		14.7	Fill - black sand and gravel	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	
		16.9	Same	\^\^\	
		8.4	Same	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Water at 4.5-5'
		4.4	Fill - brown/black gravel, wet, some metallic objects	\^\^\	
		7.8	Same	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
	Sample taken 6-8' for laboratory	59.3	Same	^^^^	
	analysis	26.7	Same, increased sand content	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Boring complete @ 8'

BOREHOLE NO. BH-08-06

Page 1 of 1

PROJECT: Sunoco Philadelphia Refinery

SITE LOCATION: AOI-8

JOB NO.:

Shaun Sykes LOGGED BY:

DATES DRILLED: 5/8/2008

DRILLING CO.:

Parrat Wolff Inc.

DRILLING METHOD

Direct Push

Split Spoon SAMPLING METHOD

DEPTH (feet)	SAMPLE INTERVAL	PID (ppm)	LITHOLOGY DESCRIPTION	LITH- OLOGY	COMMENTS
		0.0	Fill - tan brown sandy silt, gravel, dry	^^^^	
		0.0	Same	\^\^\	
		0.0	Same	^^^^	
		0.0	Gravel	\^\^\	
		48.8	Black/brown sandy silt and gravel	\^\^\	
		14.4	Same	^^^^	
		20.7	Same	^^^^	
-	No sample taken (no	40.7	Same	\^\^\	
	tank bottom material observed)	43.7 56.8	Same	\^\^\	
-5 -	·	103	Fill - brick, black sandy silt	\^\^\	
		76.5	Same	\^\^\	Water at 5.5-6'
		56.4	Same	^^^^	
		65.5	Fill - black sandy clay, brick	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
		43.4	Same	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
		36.5	Same	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Boring complete @ 8'

Page 1 of 1

PROJECT: Sunoco Philadelphia Refinery

SITE LOCATION: AOI-8

JOB NO.:

Shaun Sykes LOGGED BY:

DATES DRILLED: 5/8/08

DRILLING CO.:

Parrat Wolff Inc.

DRILLING METHOD

Direct Push

SAMPLING METHOD

Split Spoon

TOTAL DEPTH:

2'

DEPTH (feet)	SAMPLE INTERVAL	PID (ppm)	LITHOLOGY DESCRIPTION	LITH- OLOGY	COMMENTS
		0.0	Fill, gravel, tan sandy silt, dry	^^^^	
		35.6	Fill, stiff, brown sandy silt and gravel	^^^^ ^^^^	
-	Sample	163	Fill, black sandy silt and gravel	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
	taken from 1-2' for laboratory analysis	287	Fill, black sandy clay and gravel	^^^^ ^^^^	Boring complete @ 2'

BOREHOLE NO. BH-08-08

Page 1 of 1

PROJECT: Sunoco Philadelphia Refinery

SITE LOCATION: AOI-8

JOB NO.:

Shaun Sykes LOGGED BY:

DATES DRILLED: 5/7/08

DRILLING CO.:

Parrat Wolff Inc.

DRILLING METHOD

Direct Push

Split Spoon SAMPLING METHOD

DEPTH (feet)	SAMPLE INTERVAL	PID (ppm)	LITHOLOGY DESCRIPTION	LITH- OLOGY	COMMENTS
٥		0.0	Fill - gravel, tan sandy silt, dry	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
		0.0	Same	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
-	Sample	0.0	Fill - black/brown sandy silt & gravel	^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^	
	taken from 1-2' for laboratory analysis	0.0	Same, brick	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Boring complete @ 2'

Page 1 of 1

PROJECT: Sunoco Philadelphia Refinery

SITE LOCATION: AOI-8

JOB NO.:

LOGGED BY: Shaun Sykes

DATES DRILLED: 5/7/08

DRILLING CO.:

Parrat Wolff Inc.

DRILLING METHOD

Direct Push Split Spoon

SAMPLING METHOD

DEPTH (feet)	SAMPLE INTERVAL	PID (ppm)	LITHOLOGY DESCRIPTION	LITH- OLOGY	COMMENTS
		0.0		^^^^ ^^^^	
		2.8	Fill - black/brown sandy silt & gravel	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
-	Sample	7.9	Same	^^^^	
	taken from 1-2' for laboratory analysis	8.0	Same, wood	^^^^	Boring complete @ 2'

Page 1 of 1

PROJECT: Sunoco Philadelphia Refinery

SITE LOCATION: AOI-8

JOB NO.:

Shaun Sykes LOGGED BY:

DATES DRILLED: 5/7/08

DRILLING CO.:

Parrat Wolff Inc.

DRILLING METHOD

Direct Push

SAMPLING METHOD

Split Spoon

DEPTH (feet)	SAMPLE INTERVAL	PID (ppm)	LITHOLOGY DESCRIPTION	LITH- OLOGY	COMMENTS
		0.0	Fill, dark brown silt, gravel, dry	^^^^	
		0.0	Same, brick	^^^^	
	Comple	0.0	Same	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
	Sample taken from 1-2' for laboratory analysis	0.0	Same	$\wedge^{\wedge}\wedge^{\wedge}\wedge^{\prime}$	Boring complete @ 2'

Page 1 of 1

PROJECT: Sunoco Philadelphia Refinery

SITE LOCATION: AOI-8

JOB NO.:

LOGGED BY: Shaun Sykes

DATES DRILLED: 5/7/08

DRILLING CO.:

Parrat Wolff Inc.

DRILLING METHOD

Direct Push

SAMPLING METHOD

Split Spoon

DEPTH (feet)	SAMPLE INTERVAL	PID (ppm)	LITHOLOGY DESCRIPTION	LITH- OLOGY	COMMENTS
		0.0	Fill - gravel, cement	^^^^ ^^^^	
		0.0	Same	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
	Sample	6.4	Fill - black/brown sandy silt, fill, gravel	^^^^ ^^^^	
	taken from 1-2' for laboratory analysis	19.1	Same	^^^^ ^^^^	Boring complete @ 2'

Page 1 of 1

PROJECT: Sunoco Philadelphia Refinery

SITE LOCATION: AOI-8

JOB NO.:

Shaun Sykes LOGGED BY:

DATES DRILLED: 5/6/08

DRILLING CO.:

Parrat Wolff Inc.

DRILLING METHOD

Direct Push Split Spoon

SAMPLING METHOD

 EPTH (feet)	SAMPLE INTERVAL	PID (ppm)	LITHOLOGY DESCRIPTION	LITH- OLOGY	COMMENTS
0 —		0.0	Fill - brown sandy silt, gravel	^^^^ ^^^^	
		13.3	Same	^^^^	
	Sample	55.8		^^^^ ^^^^	
	taken from 1-2' for laboratory analysis	95.6	Fill - black silty clay, gravel	^^^^ ^^^^	Boring complete @ 2'

Page 1 of 1

PROJECT: Sunoco Philadelphia Refinery

SITE LOCATION: AOI-8

JOB NO.:

LOGGED BY: Shaun Sykes

DATES DRILLED: 5/6/08

DRILLING CO.:

Parrat Wolff Inc.

DRILLING METHOD

Direct Push

SAMPLING METHOD

Split Spoon

DEPTH (feet)	SAMPLE INTERVAL	PID (ppm)	LITHOLOGY DESCRIPTION	LITH- OLOGY	COMMENTS
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		0.0	Fill - gravel, light brown silt, dry		
		0.0	Same	^^^^	
-	Sample	17.2	Fill - brown/black silty clay, gravel	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
	taken from 1-2' for laboratory analysis	20.7		^^^^ ^^^^	Boring complete @ 2'

Page 1 of 1

PROJECT: Sunoco Philadelphia Refinery

SITE LOCATION: AOI-8

JOB NO.:

LOGGED BY: Shaun Sykes

DATES DRILLED: 5/6/08

DRILLING CO.:

Parrat Wolff Inc.

DRILLING METHOD

Direct Push

SAMPLING METHOD

Split Spoon

DEPTH (feet)	SAMPLE INTERVAL	PID (ppm)	LITHOLOGY DESCRIPTION	LITH- OLOGY	COMMENTS
V -		0.0		^^^^	
		10.4	Black layer, clay	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
-	Sample	0.0		^^^^ ^^^^	
	taken from 1-2' for laboratory analysis	0.0	Fill - brick, dry	^^^^ ^^^^	Boring complete @ 2'

Page 1 of 1

PROJECT: Sunoco Philadelphia Refinery

SITE LOCATION: AOI-8

JOB NO.:

LOGGED BY: Shaun Sykes

DATES DRILLED: 5/6/08

DRILLING CO.:

Parrat Wolff Inc.

DRILLING METHOD

Direct Push

SAMPLING METHOD

Split Spoon

DEPTH (feet)	SAMPLE INTERVAL	PID (ppm)	LITHOLOGY DESCRIPTION	LITH- OLOGY	COMMENTS
υ		0.0	Fill - gravel, brown sandy silt, dry	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
		0.0	Same	^^^^ ^^^^	
_	Sample	0.0	Same	<pre></pre>	
	taken from 1-2' for laboratory analysis	0.0	Fill - brown silty clay		Boring complete @ 2'

BOREHOLE NO.BH-08-16

Page 1 of 1

PROJECT: Sunoco Philadelphia Refinery

SITE LOCATION: AOI-8

JOB NO.:

Shaun Sykes LOGGED BY:

DATES DRILLED: 5/7/08

DRILLING CO.:

Parrat Wolff Inc.

DRILLING METHOD

Direct Push

SAMPLING METHOD

Split Spoon

DEPTH (feet)	SAMPLE INTERVAL	PID (ppm)	LITHOLOGY DESCRIPTION	LITH- OLOGY	COMMENTS
V —		0.0	Fill - gravel, brown sandy silt, dry	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
		193	Same	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
_		215	Plack sitty along group stiff	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
	Sample taken from 1-2' for laboratory analysis	286	Same	^^^^ ^^^^ ^^^^	Boring complete @ 2'

Page 1 of 1

PROJECT: Sunoco Philadelphia Refinery

SITE LOCATION: AOI-8

JOB NO.:

Shaun Sykes LOGGED BY:

DATES DRILLED: 5/7/08

DRILLING CO.:

Parrat Wolff Inc.

DRILLING METHOD

Direct Push

SAMPLING METHOD

Split Spoon

DEPT (feet)		PID (ppm)	LITHOLOGY DESCRIPTION	LITH- OLOGY	COMMENTS
U		0.0	Fill - brown sandy silt, dry	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
		0.0	Same, gravel	^^^^	
_		0.0		^^^^	
	Sample taken from 1-2' for laboratory analysis	0.9	Same, some clay	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Boring complete @ 2'

BOREHOLE NO.BH-08-18

Page 1 of 1

PROJECT: Sunoco Philadelphia Refinery

SITE LOCATION: AOI-8

JOB NO.:

Shaun Sykes LOGGED BY:

DATES DRILLED: 5/7/08

DRILLING CO.:

Parrat Wolff Inc.

DRILLING METHOD

Direct Push

SAMPLING METHOD

Split Spoon

DEPTH (feet)	SAMPLE INTERVAL	PID (ppm)	LITHOLOGY DESCRIPTION	LITH- OLOGY	COMMENTS
V —		0.0	Fill - brown sandy silt, gravel, dry		
		0.0	Same	^^^^	
-	Sample	0.0	Same	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
	taken from 1-2' for laboratory analysis	0.0	Same	^^^^ ^^^^	Boring complete @ 2'

Page 1 of 1

PROJECT: Sunoco Philadelphia Refinery

SITE LOCATION: AOI-8

JOB NO.:

LOGGED BY: DATES DRILLED: 6/19/2008

Shaun Sykes

DRILLING CO.:

Parrat Wolff Inc.

DRILLING METHOD

Direct Push

SAMPLING METHOD

Split Spoon

TOTAL DEPTH:

8'

DEPTH (feet)	SAMPLE INTERVAL	PID (ppm)	LITHOLOGY DESCRIPTION	LITH- OLOGY	COMMENTS
0 —			Fill concrete gravel	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	
			Fill, concrete, gravel		
		105	Black sand, wood, brick, moist		
				\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
		216	Same	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
				\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
-		173	Black sand and gravel, very moist		
				\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
-	No sample	356	Same	^^^^	
	taken (no tank bottom material			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
-5 -	observed)	211	Same	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	
				\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
				\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
		256	Coarse sand and gravel, black, wet	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Water at 6-6.5'
				\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
-		108	Same	^^^^	
				^^^^	Boring complete @ 8'

Page 1 of 1

PROJECT: Sunoco Philadelphia Refinery

SITE LOCATION: AOI-8

JOB NO.:

Shaun Sykes LOGGED BY:

DATES DRILLED: 5/7/08

DRILLING CO.:

Parrat Wolff Inc.

DRILLING METHOD

Direct Push

SAMPLING METHOD

Split Spoon

EPTH (feet)	SAMPLE INTERVAL	PID (ppm)	LITHOLOGY DESCRIPTION	LITH- OLOGY	COMMENTS
		0.0	Fill - brown/orange sandy silt, gravel, dry	^^^^ ^^^^	
		3.6	Same	^^^^ ^^^^	
	Sample	10.4	Same, dark brown/black	^^^^	
	taken from 1-2' for laboratory analysis	0.1	Same	^^^^	Boring complete @ 2'

Page 1 of 1

PROJECT: Sunoco Philadelphia Refinery

SITE LOCATION: AOI-8

JOB NO.:

LOGGED BY: Shaun Sykes

DATES DRILLED: 5/7/08

DRILLING CO.:

Parrat Wolff Inc.

DRILLING METHOD

Direct Push

SAMPLING METHOD

OD Split Spoon

DEPTH (feet)	SAMPLE INTERVAL	PID (ppm)	LITHOLOGY DESCRIPTION	LITH- OLOGY	COMMENTS
V —		0.0	Fill - tan sitly sand, gravel, dry		
		3.5	Fill - stiff brown/black sandy silt, gravel, brick dry	^^^^	
-	Sample	40.0	Sama	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
	taken from 1-2' for laboratory analysis	115	Same	^^^^ ^^^^	Boring complete @ 2'

BOREHOLE NO.BH-08-23

Page 1 of 1

PROJECT: Sunoco Philadelphia Refinery

SITE LOCATION: AOI-8

JOB NO.:

Shaun Sykes LOGGED BY:

DATES DRILLED: 5/7/08

DRILLING CO.:

Parrat Wolff Inc.

DRILLING METHOD

Direct Push Split Spoon

SAMPLING METHOD

DEPTH (feet)	SAMPLE INTERVAL	PID (ppm)	LITHOLOGY DESCRIPTION	LITH- OLOGY	COMMENTS
		0.0	Fill, tan sandy silt, gravel, dry	^^^^ ^^^^	
		75.6	Fill - stiff brown/black sandy silt, gravel, dry	^^^^ ^^^^	
-	Sample	89.8	Same	^^^^	
	taken from 1-2' for laboratory analysis	38.6	Same, dark brown	^^^^ ^^^^	Boring complete @ 2'

BOREHOLE NO.BH-08-24

Page 1 of 1

PROJECT: Sunoco Philadelphia Refinery

SITE LOCATION: AOI-8

JOB NO.:

Shaun Sykes LOGGED BY:

DATES DRILLED: 5/7/08

DRILLING CO.:

Parrat Wolff Inc.

DRILLING METHOD

Direct Push

SAMPLING METHOD

Split Spoon

DEPTH (feet)	SAMPLE INTERVAL	PID (ppm)	LITHOLOGY DESCRIPTION	LITH- OLOGY	COMMENTS
		3.6	Fill, brown sandy silt, gravel, dry	^^^^ ^^^^	
		282	Same	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	
-	Sample	598	Fill, black/brown slity sand, gravel, dry	^^^^	
	taken from 1-2' for laboratory analysis	968	Same	^^^^	Boring complete @ 2'

BOREHOLE NO.BH-08-25

Page 1 of 1

PROJECT: Sunoco Philadelphia Refinery

SITE LOCATION: AOI-8

JOB NO.:

Shaun Sykes LOGGED BY:

DATES DRILLED: 5/7/08

DRILLING CO.:

Parrat Wolff Inc.

DRILLING METHOD

Direct Push

SAMPLING METHOD

Split Spoon

DEPTH (feet)	SAMPLE INTERVAL	PID (ppm)	LITHOLOGY DESCRIPTION	LITH- OLOGY	COMMENTS
		72.4	Fill - brown/black sandy silt, gravel, brick, dry	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
		103	Same	^^^/	
-	Sample	276	Same	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
	taken from 1-2' for laboratory analysis	137	Same	^^^^ ^^^^	Boring complete @ 2'

Page 1 of 1

PROJECT: Sunoco Philadelphia Refinery

SITE LOCATION: AOI-8

JOB NO.:

LOGGED BY: Shaun Sykes

DATES DRILLED: 5/8/08

DRILLING CO.:

Parrat Wolff Inc.

DRILLING METHOD

Direct Push

SAMPLING METHOD

Split Spoon

DEPTH (feet)	SAMPLE INTERVAL	PID (ppm)	LITHOLOGY DESCRIPTION	LITH- OLOGY	COMMENTS
		0.0	Fill, tan/brown sandy silt and gravel, dry	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
		0.0		^^^^ ^^^^	
-	Sample	1.2	Fill brown/block silts and and grovel come clay	^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^	
	taken from 1-2' for laboratory analysis	2.1	Same	^^^^ ^^^^	Boring complete @ 2'

Page 1 of 1

PROJECT: Sunoco Philadelphia Refinery

SITE LOCATION: AOI-8

JOB NO.:

LOGGED BY: Shaun Sykes

DATES DRILLED: 5/6/08

DRILLING CO.:

Parrat Wolff Inc.

DRILLING METHOD

Direct Push Split Spoon

SAMPLING METHOD

DEPTH (feet)	SAMPLE INTERVAL	PID (ppm)	LITHOLOGY DESCRIPTION	LITH- OLOGY	COMMENTS
		0.0	Fill - gravel, brown silt, dry	^^^^ ^^^^ ^^^^	
		0.0	Fill - gravel, brown sandy silt, brick, compact	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
-	Sample	0.0	Same	^^^^	
	taken from 1-2' for laboratory analysis	0.0	Same	^^^^	Boring complete @ 2'

Page 1 of 1

PROJECT: Sunoco Philadelphia Refinery

SITE LOCATION: AOI-8

JOB NO.:

LOGGED BY: Shaun Sykes

DATES DRILLED: 5/6/08

DRILLING CO.:

Parrat Wolff Inc.

DRILLING METHOD

Direct Push

SAMPLING METHOD

Split Spoon

DEPTH (feet)	SAMPLE INTERVAL	PID (ppm)	LITHOLOGY DESCRIPTION	LITH- OLOGY	COMMENTS
		0.0	Fill - gravel, brown sandy silt, dry	^^^^ ^^^^ ^^^^	
		13.3	Fill, brown/black sandy silt, gravel	^^^^ ^^^^	
	Sample	55.8	Same	^^^^	
	taken from 1-2' for laboratory analysis	95.6	Same	^^^^ ^^^^	Boring complete @ 2'

BOREHOLE NO.BH-08-29

Page 1 of 1

PROJECT: Sunoco Philadelphia Refinery

SITE LOCATION: AOI-8

JOB NO.:

Shaun Sykes LOGGED BY:

DATES DRILLED: 5/6/08

DRILLING CO.:

Parrat Wolff Inc.

DRILLING METHOD

Direct Push Split Spoon

SAMPLING METHOD

RIPTION	LITH- OLOGY	COMMENTS

DEPTH (feet)	SAMPLE INTERVAL	PID (ppm)	LITHOLOGY DESCRIPTION	LITH- OLOGY	COMMENTS
		15.1	Fill - gravel, dry	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
		10.0	Fill - gravel, black	^^^^	
-		43.1	Fill - brick, sandy clay, brown/black	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
	Sample taken from 1-2' for laboratory analysis	56.3	Same	^^^/	Boring complete @ 2'

Page 1 of 1

PROJECT: Sunoco Philadelphia Refinery

SITE LOCATION: AOI-8

JOB NO.:

LOGGED BY: Shaun Sykes

DATES DRILLED: 5/6/08

DRILLING CO.:

Parrat Wolff Inc.

DRILLING METHOD

Direct Push

SAMPLING METHOD

Split Spoon

DEPTH (feet)	SAMPLE INTERVAL	PID (ppm)	LITHOLOGY DESCRIPTION	LITH- OLOGY	COMMENTS
		0.0	Grass, fill - dark brown silt, gravel, brick, dry	^^^^ ^^^^ ^^^^	
		0.0	Fill - silt, gravel, brick, dry	^^^^ ^^^^	
		0.0	Same	^^^^ ^^^^	
	Sample taken from 1-2' for laboratory analysis	0.0	Same	$\wedge^{\wedge}\wedge^{\wedge}\wedge^{\prime}$	Boring complete @ 2'

Page 1 of 1

PROJECT: Sunoco Philadelphia Refinery

SITE LOCATION: AOI-8

JOB NO.:

LOGGED BY: Tiffani Doerr

DATES DRILLED: 7/3/08

DRILLING CO.: NA

DRILLING METHOD Hand Auger

SAMPLING METHOD Hand Auger

DEPTH (feet)	SAMPLE INTERVAL	PID (ppm)	LITHOLOGY DESCRIPTION	LITH- OLOGY	COMMENTS
U		0.0	Grass and topsoil top 8"		
		0.0	Dry, medium brown sandy clay with few gravels	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
-		0.0			
	Sample taken from 1-2' for laboratory analysis	0.0		^^^^ ^^^^	Boring complete @ 2'

BOREHOLE NO.BH-08-33

Page 1 of 1

PROJECT: Sunoco Philadelphia Refinery

SITE LOCATION: AOI-8

JOB NO.:

Shaun Sykes LOGGED BY:

DATES DRILLED: 5/6/08

DRILLING CO.:

Parrat Wolff Inc.

DRILLING METHOD

Direct Push

SAMPLING METHOD

Split Spoon

DEPTH (feet)	SAMPLE INTERVAL	PID (ppm)	LITHOLOGY DESCRIPTION	LITH- OLOGY	COMMENTS
υ ¬		0.0	Tim graver, briok, sarray siik, ary	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
		0.0	Same	^^^^	
_	Sample	0.0	Same	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
	taken from 1-2' for laboratory analysis	0.0	Same	^^^	Boring complete @ 2'

Page 1 of 1

PROJECT: Sunoco Philadelphia Refinery

SITE LOCATION: AOI-8

JOB NO.:

LOGGED BY: Shaun Sykes

DATES DRILLED: 5/6/08

DRILLING CO.:

Parrat Wolff Inc.

DRILLING METHOD

Direct Push

SAMPLING METHOD

HOD Split Spoon

DEPTH (feet)	SAMPLE INTERVAL	PID (ppm)	LITHOLOGY DESCRIPTION	LITH- OLOGY	COMMENTS
		0.0	Fill - gravel, brick, sandy silt, dry	^^^^ ^^^^	
		0.0	Same	^^^^ ^^^^	
		0.0	Same		
	Sample taken from 1-2' for laboratory analysis	0.0	Same	$\wedge^{\wedge}\wedge^{\wedge}\wedge^{\prime}$	Boring complete @ 2'

Page 1 of 1

PROJECT: Sunoco Philadelphia Refinery

SITE LOCATION: AOI-8

JOB NO.:

LOGGED BY: Shaun Sykes

DATES DRILLED: 5/6/08

DRILLING CO.:

Parrat Wolff Inc.

DRILLING METHOD

Direct Push Split Spoon

SAMPLING METHOD

DEPTH (feet)	SAMPLE INTERVAL	PID (ppm)	LITHOLOGY DESCRIPTION	LITH- OLOGY	COMMENTS
V —		0.0	Fill - gravel, light brown silt & sand, dry	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
		0.0	Fill - dark brown sandy silt, gravel, brick	^^^^ ^^^^	
-	Sample	0.0	Fill - gravel, light brown sandy silt	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
	taken from 1-2' for laboratory analysis	0.0	Same	^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^	Boring complete @ 2'

BOREHOLE NO.BH-08-36

Page 1 of 1

PROJECT: Sunoco Philadelphia Refinery

SITE LOCATION: AOI-8

JOB NO.:

Shaun Sykes LOGGED BY:

DATES DRILLED: 6/19/2008

DRILLING CO.:

Parrat Wolff Inc.

DRILLING METHOD

Direct Push Split Spoon

SAMPLING METHOD

DEPTH (feet)	SAMPLE INTERVAL	PID (ppm)	LITHOLOGY DESCRIPTION	LITH- OLOGY	COMMENTS
				^^^^	
			Fill, gravel, concrete	\^\^\^\	
			i iii, gravei, concrete	^^^^	
-		177	Black sandy silt, slightly moist	\^\^\^\	
				^^^^	
				^ ^ ^ ^ ^ /	
		242	Black sandy clay and gravel, very moist to wet	^^^^	
				$1 \wedge^{\wedge} \wedge^{\wedge} \wedge'$	
				^^^^	
-		218	Same	^^^^	Water at 3-3.5'
		210	Carne	$\wedge \wedge $	Water at 3-3.3
				^^^^	
_	No sample	81.8	Same, wet	\^\^\^\	
	taken (no tank			^^^^	
	bottom material			$ \wedge$ \wedge \wedge \wedge \wedge	
-5 -	observed)			^^^^	
		101	Same, wet	\^\^\/	
				^^^^	
				^^^^	
-		212	Black sand and gravel, wet	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
				^^^^	
				^^^^	
				^^^^	
1		243	Same	^^^^	
				\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
				^^^^	Davis a secondario (C. C.
				$\wedge^{\wedge}\wedge^{\wedge}\wedge^{\prime}$	Boring complete @ 8'

BOREHOLE NO.BH-08-37

Page 1 of 1

PROJECT: Sunoco Philadelphia Refinery

SITE LOCATION: AOI-8

JOB NO.:

LOGGED BY: Shaun Sykes

DATES DRILLED: 6/19/2008

DRILLING CO.:

Parrat Wolff Inc.

DRILLING METHOD

Direct Push Split Spoon

SAMPLING METHOD

TOTAL DEPTH: 8'

DEPTH (feet)	SAMPLE INTERVAL	PID (ppm)	LITHOLOGY DESCRIPTION	LITH- OLOGY	COMMENTS		
-	No sample	136 252	Fill, gravel, concrete Black sandy silt, slightly moist Same Black sandy clay and gravel, wet		Water at 4-4.5'		
-5 -	taken (no tank bottom material observed)	262	Same	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			
				115	Same	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
		102	Same	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			
				^^^^	Boring complete @ 8'		

PROJECT: Sunoco Philadelphia Refinery DRILLING CO.: Parrat Wolff Inc.

SITE LOCATION: AOI-8 DRILLING METHOD: 6" Hollow Stem Auger

JOB NO.: SAMPLING METHOD: Split Spoon

LOGGED BY: Shaun Sykes SCREEN/RISER DIAMETER: 2"
DATES DRILLED: 6/2/2008 WELLBORE DIAMETER: 6"

TOTAL DEPTH: 30' ELEVATION:

Depth (feet)		USCS	LITHOLOGY	COMMENTS	WELL CONSTRUCTION	WELL DIAGRAM
-	0.3 0.3 2.2 0.6	^^^^	Fill - asphalt, black/brown sandy silt and gravel, dry	Sample taken 1-2' for laboratory analysis		
-5 - - -				Previously cleared to 10', backfilled with sand		
-10 -	0.0		Brown/tan fine sand, slightly moist		20' riser	2 [2 2 [2 1]
-	0.0 0.0 0.3		Medium sand and gravel,			
-15 -	0.2 0.0 0.0		slightly moist			
-20 -	1.1	0 = :0 = :0 0 = :0 = :0 0 = :0 = :0				
-	0.1		trace tan clay, very moist to wet			
-	0.0		gravel, trace clay, wet Tan/brown sand and gravel,			
-25 -	0.0		Fine gray sand, trace clay, wet		10' screen	
-	0.0	0.0000	Brown/gray medium sand and gravel, wet	A		
-3U -	0.0	07070		Auger/boring complete to 30'		

PROJECT: Sunoco Philadelphia Refinery DRILLING CO.: Parrat Wolff Inc.

SITE LOCATION: AOI-8 DRILLING METHOD: 6" Hollow Stem Auger

JOB NO.: SAMPLING METHOD: Split Spoon

LOGGED BY: Shaun Sykes SCREEN/RISER DIAMETER: 2"
DATES DRILLED: 6/19/2008 WELLBORE DIAMETER: 6"

TOTAL DEPTH: 28' ELEVATION:

101	AL DEFIN.	28		VATION.		
Depth (feet)		uscs	LITHOLOGY	COMMENTS	WELL CONSTRUCTION	WELL DIAGRAM
-	0.0 0.0 0.0 0.0	^^^^	Fill - brown fine sand, dry	Sample taken 1-2' for laboratory analysis		
-5 - - -				Previously cleared to 10', backfilled with sand	18' riser	
-10 -	0.8	0.00000 0.00000 0.00000	Coarse sand and gravel, trace gray clay			
-	4.8		Same, no clay			
-	1.2		Fine sand, slightly moist			
-	0.9	0::0::0	Fine sand and gravel, slightly			
-15 -	0.3	0:0:0:0	moist Same, very moist			
-	0.0	0:0:0:0 0:::0:::0	Coarse sand and gravel, very			
-	3.4	07070 07070	moist to wet			
-	0.5	0.70.70				
-	0.0	07070				
-20 -	0.0	0 = 0 = 0	Gray fine sand, wet, trace clay		10' screen	
-	0.0					
-	0.0					
-	0.0	0:0:0	Coarse tan/brown sand and			
-	0.0	07070 07070	gravel, wet			
-25 -	0.0					
-	0.0	07.07.0				
	0.0		Fine sand, trace gray/orange clay	Auger complete to 28'		

Page 1 of 4

SUBSURFACE LOG: N-100 AND WELL CONSTRUCTION: N-100

PROJECT: Sunoco-Philadelphia Refinery DRILLING CO.: Parratt-Wolffe

SITE LOCATION: AOI-8 DRILLING METHOD: Hollow Stem Auger & Mud Rotary

LOGGED BY:Tiffani Doerr/Shaun SykesSAMPLING METHOD:Split SpoonDATES DRILLED:6/11-6/13/08SCREEN/RISER DIAMETER:2-inchTOTAL BORING DEPTH:63WELLBORE DIAMETER:8-inch

BORING ELEVATION TOC (inner) ELEVATION:

NOTE: Well N-100 was drilled within 5 feet of boring N-100. Screen=0.010 slot; "0" sand; 2' stickup finish.

Screen (10'-20'); Riser (2' stickup - 10'); Sand (8'-20'); Bentonite (4'-8'); Grout (surface to 4')

Depth (feet)	Blow Counts	OVM (ppm)	USCS	LITHOLOGY	COMMENTS	WELL DIAGRAM
-	8-4 7-4	0.0	^^^^ ^^^^ ^^^	Fill - dry mixture of brick, gravel, glass, brown sandy clay	Boring location pre- cleared by Mobile Dredge to 10' Sample 1'-2' submitted for laboratory analysis	
-5 —						
-						
-10 -	16-14		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Tan clayey sand, large sandstone cobble in bottom		
-	14-14 14-8 8-10	0.0		Tan medium sand, trace fine gravel, moist, wet at bottom		
-15 —	13-12 10-10	1.3		sand w/ trace gravel Same as above to 15' (mottled plastic sand), Remainder gray gravelly med-coarse sand		

SUBSURFACE LOG: N-100 AND WELL CONSTRUCTION: N-100

Т	Technologies, Inc. AND VVLLL CONSTRUCTION: 11-100					
Dept		OVM	USCS	LITHOLOGY	COMMENTS	WELL
(feet)	Counts	(ppm)	0.5:0.5:	5_55.	2	DIAGRAM
-	5-8	9.6		Saturated at 17', same sand and gravel to 17'		
-	12-9	2.4	0 - :0 - : 0 - :0 - :	17-17.5' Gray coarse sand 17.5-18' Mixed sand and gravel		
-	9-8			Coarse gray sand with few fine gravels (coarser and more frequent gravels @ 19.5'). Fining upward sequence.		
-	9-12			19.5'-20' thin fine sandy clay lense and 3" fine sand, last 3" same coarse sand w/ few small gravels		
-20 —	13-12	4.2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Tan/gray med-coarse sand w/ few gravels (fine to 1") sm. clay plug @ 21.5'	Switch from auger to mud rotary	
-	12-14	3.6				
-	13-14	13.6	0000	Same as above		
	7-14	4.6		Yellow/gray mottled clay w/ some fine sand to 23.8', Moist red-brown clay w/ some fine sand and few fine		
25	9-6	20.3		gravels Brown clayey fine sand w/ few round gravels to 25.5' (granite, red sandstone)		
-25 -	14-28	152		Dark gray coarse sand and gravel, strong petroleum		
-	45-46	615		odors Med-coarse dense gravel w/ sand matrix (red and gray sandstone, white qtz & qtzite). Heterogeneous, up to 2+" gravels.		
	50-50/0'					
	34-29	1286	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Same, large gravel in sand matrix		
-30	29-34					
_	13-30	356		6" Recovery - red/brown/gray sand and gravel (gray sand is gray qtz, fine sand is completely weathered sandstone; gravels are granite, qtzite, sandstone).		
_	33-39	4000		0		
_	47-30	1020		Same, gravels w/ sand		
_	30-24	600		Come on above township was kinkly (do on the		
-35 —	49-35	660		Same as above - formation very tight (does not seem saturated)		
	17-12	21.7				

SUBSURFACE LOG: N-100 AND WELL CONSTRUCTION: N-100

	Technologies, Inc.				\\/	
Depti (feet)		OVM (ppm)	USCS	LITHOLOGY	COMMENTS	WELL DIAGRAM
_	20-22		0707:	Same as above		
-	18-17		0707			
			0.7.0.7			
-	20-20	0.8	0:::0:::	Same but smaller gravels and more sand now with		
			0707	few fines (clay and silt ~5%), saturated		
-	25-25		0			
			O 2 O 2 :			
-40 —	20-25		00	No recovery (cobble in bottom - little recovery likely		
			0707	due to pushing larger gravels)		
-	19-20					
			0000			
-	14-14	7.2	0707	2.0 g. a		
			\bigcirc	(extremely weathered gray & It. gray fine sandstones) and few fine-med gravels (white and		
-	17-23	0.8	0.7.0.7	gray qtz and qtzite)		
			0.70.7			
-	22-10	32.2	00	Lt. brown/gray coarse sand w/ few fine gravels,		
			0.70.7	grades into orange-brown fine sand, last 2" gray clay w/ trace sand		
-45 -	12-6	1.1	00	w/ trace sand		
			00			
-	12-13	46.8		Top 8" coarse gray sand w/ few gravels grade to		
				orange fine sand, 4" It. gray fat clay, 4" layers of gray/yellow and orange fine -med sand w/ coarse		
-	13-18	0.8		sand and fine gravel at bottom of spoon		
			0.70.7			
-	10-14		0.000	No recovery - rock lodged in tip		
			0000			
-	20-32		Q a Q a			
-50 -	12-11	0.1	<u> </u>	Top 1' - laminated gray/orange silty clay and very		
			L	fine sand, Bottom 1' - homogeneous coarse orange sand w/ trace fine gravel		
-	17-18	0.1				
			[
-	10-14	5.8	<u> </u>	Same as above to 53.5, orange brown clayey silt		
			ļ	and fine sand w/ black laminations		
-	18-25	0.3				
			[
-		0.5	<u> </u>	Gray clayey silt and fine sand		
-55 —		0.5		Red/brown fine sand		
			[:::::::::::::::::::::::::::::::::::::			
-		1.9	<u> </u>	Orange-brown fine sand, saturated		
l			1			

SUBSURFACE LOG: N-100

AND WELL CONSTRUCTION: N-100

,,	Technologies, Inc.							
Deptl (feet)		OVM (ppm)	USCS	LITHOLOGY	COMMENTS	WELL DIAGRAM		
-		0.7		Same as above				
-	15	4.3		Red/brown fine sand and clayey silt				
-	22	0.9	-:: -::-	Orange-brown fine sand and weathered rock				
-60 -	50	5.3		Orange-brown sand and weathered rock, micaceous	Borehole complete to 63'			
-	22	7.3						
-		15.3		6" recovery, mica SCHIST in spoon				
-								
-65 —								
_								
-								
-								
-								
-70 <u> </u>								

PROJECT: Sunoco Philadelphia Refinery DRILLING CO.: Parrat Wolff Inc.

SITE LOCATION: AOI-8 DRILLING METHOD: 6" Hollow Stem Auger

JOB NO.: SAMPLING METHOD: Split Spoon

LOGGED BY: Shaun Sykes SCREEN/RISER DIAMETER: 2"

DATES DRILLED: 6/16/2008 WELLBORE DIAMETER: 6"

TOTAL DEPTH: 23' ELEVATION:

Depth (feet)	OVM (ppm)	uscs	LITHOLOGY	COMMENTS	WELL CONSTRUCTION	WELL DIAGRAM
-		^^^^ ^^^^	Fill - gravel, brown silt and sand, dry Fill - dark brown clayey silt, dry	Sample taken 1-2' for laboratory analysis		A
-5 — -				Previously cleared to 10', backfilled with sand	13' riser	
-10 -			, ,			
-15 —			Brown silty coarse and and gravel, moist Same, wet at 14' Coarse sand and gravel, wet, sheen on spoon		10' screen	
- - - -						
-20 -			Gray fine sand, trace clay, very mosit	Auger complete to 23'		

PROJECT: Sunoco Philadelphia Refinery DRILLING CO.: Parrat Wolff Inc.

SITE LOCATION: AOI-8 DRILLING METHOD: 6" Hollow Stem Auger

JOB NO.: SAMPLING METHOD: Split Spoon

LOGGED BY: Shaun Sykes SCREEN/RISER DIAMETER: 2"
DATES DRILLED: 6/5/2008 WELLBORE DIAMETER: 6"

TOTAL DEPTH: 30' ELEVATION:

Depth (feet)	OVM (ppm)	USCS	LITHOLOGY	COMMENTS	WELL CONSTRUCTION	WELL DIAGRAM
- - -	0.0 1.2 2.6 10.3	^^^^	Fill - gravel, silty sand, dry Fill - brown/orange sandy clay, gravel	Sample taken 1-2' for laboratory analysis		787878787 78787
-5 - - - -				Previously cleared to 10', backfilled with sand		
-10 — -	869 1112		Black fine sand, trace clay, very moist		20' riser	
-	1442		Black sand and gravel, very			
-	1283		moist			
-	1515		Same, fine sand			
-15 —	1414	0.7.0.7.0	James, mie sama			
-	1312	0.70.70				
-	1474	0.7.0.7.0				
-	1374		Same, trace clay			
-	1054	0:::0:::0 0:70:70	Tan/light brown fine sand and			
-20 —	871		gravel Black/gray fine sand and gravel,			
-	603		very moist Same, wet			
-	561	0.7.0.7.0	Black/gray coarse sand and			
-	230	0 - : 0 - : 0 0 7 0 7 0 0 - : 0 - : 0	gravel, wet Same, brown clay at 24'			
-	11.8	0-:0-:0	Brown sandy clay, compact,			
-25 -	7.2		very moist Gray/green fine sand and		10' screen	
-	11.7					
-	6.0	17=:17=:10	Brown/red fine sand, slightly			
-	5.6		moist			
-30 -	7.5			Auger/boring complete to 30'		

PROJECT: Sunoco Philadelphia Refinery DRILLING CO.: Parrat Wolff Inc.

SITE LOCATION: AOI-8 DRILLING METHOD: 6" Hollow Stem Auger

JOB NO.: SAMPLING METHOD: Split Spoon

LOGGED BY: Shaun Sykes SCREEN/RISER DIAMETER: 2"
DATES DRILLED: 6/6/2008 WELLBORE DIAMETER: 6"

TOTAL DEPTH: 27' ELEVATION:

101	AL DEFIN.	21		VATION.		
Depth (feet)		USCS	LITHOLOGY	COMMENTS	WELL CONSTRUCTION	WELL DIAGRAM
- - -	0.0 0.0 0.2 10.6	^^^^	Fill -gravel, silty sand, dry with some brick Black/brown silty sand and gravel, dry	Sample taken 1-2' for laboratory analysis		
-5 — - -				Previously cleared to 10', backfilled with sand		
-10 —	6.6		Brown fine sand and some		17' riser	
-	8.8 28.8 32.1					
-15 	252 269					
-	112014321226		Same, wet			
-20 -	1134		Same, black, wet		401	
-	1652 1466		Coarse sand and gravel, wet Same, sheen on spoon		10' screen	
-	1720 321					
- -25 —	9.2		gray/brown clay, wet Fine gray/brown sand, trace clay, moist			
-	6.6 13.3		Orange/gray fine sand, trace	Auger complete to		
-	5.2		clay, moist	27' Boring complete to 28'		

PROJECT: Sunoco Philadelphia Refinery DRILLING CO.: Parrat Wolff Inc.

SITE LOCATION: AOI-8 DRILLING METHOD: 6" Hollow Stem Auger

JOB NO.: SAMPLING METHOD: Split Spoon

LOGGED BY: Shaun Sykes SCREEN/RISER DIAMETER: 2"
DATES DRILLED: 6/18/2008 WELLBORE DIAMETER: 6"

TOTAL DEPTH: 25' ELEVATION:

Depth (feet)	OVM (ppm)	USCS	LITHOLOGY	COMMENTS	WELL CONSTRUCTION	WELL DIAGRAM
- - -	0.0 0.0 0.3 6.1	^^^^ ^^^^	Fill - gravel, fine sand, dry Fill - dark brown/black silty sand and gravel, dry	Sample taken 1-2' for laboratory analysis		MANANANANA -
-5 - -				Previously cleared to 10', backfilled with sand	15' riser	
- -10 —			Sand from clearance Sand from clearance			
-	780 1303		Brown fine sand, slightly moist			
-	860	0.7.0.7.0	Brown/black coarse sand and			
-15 —	927		gravel, wet Same, sheen on spoon			
_	923 1206		Black sand and gravel, wet			
-	525	000 0.y.0.y.0 1000				
-	969					
-20 —	16,1		Brown/orange fine sand, very moist		10' screen	
_	7.4		Brown/orange fine sand, trace clay, moist			
_	362		Brown/orange fine sand, moist			
-25 -	37.6			Auger complete to 25'		

PROJECT: Sunoco Philadelphia Refinery DRILLING CO.: Parrat Wolff Inc.

SITE LOCATION: AOI-8 DRILLING METHOD: 6" Hollow Stem Auger

JOB NO.: SAMPLING METHOD: Split Spoon

LOGGED BY: Shaun Sykes SCREEN/RISER DIAMETER: 2"
DATES DRILLED: 6/18/2008 WELLBORE DIAMETER: 6"

TOTAL DEPTH: 25' ELEVATION:

Depth (feet)	OVM (ppm)	USCS	LITHOLOGY	COMMENTS	WELL CONSTRUCTION	WELL DIAGRAM
-	0.0 0.0 0.2 3.1	^^^^	Fill - gravel, fine sand, dry Dark brown/black sandy silt and gravel, dry	Sample taken 1-2' for laboratory analysis		
-5 - -				Previously cleared to 10', backfilled with sand	15' riser	
- -10 —			Sand from clearance Sand from clearance			
-	478 918		Brown coarse sand and gravel, very moist			
-15 —	1109 738					
-	341 437		Black coarse sand and gravel, wet Same, sheen on spoon			
-	1468 37.7	0.0.0.0 000 0.0.00 000	Same, wet Brown/tan sand and gravel, wet			
-20 -	9.9	07070	Brown/orange fine sand, trace clay, moist		10' screen	
_	3.2 106		Brown/orange sand and clay, moist			
-	5.9		Brown/orange fine sand, slightly moist	Auger complete to 25'		

PROJECT: Sunoco Philadelphia Refinery DRILLING CO.: Parrat Wolff Inc.

SITE LOCATION: AOI-8 DRILLING METHOD: 6" Hollow Stem Auger

JOB NO.: SAMPLING METHOD: Split Spoon

LOGGED BY: Shaun Sykes SCREEN/RISER DIAMETER: 2"
DATES DRILLED: 6/5/2008 WELLBORE DIAMETER: 6"

TOTAL DEPTH: 19' ELEVATION:

Depth (feet)		USCS	LITHOLOGY	COMMENTS	WELL CONSTRUCTION	WELL DIAGRAM
- - -	0.0	^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^	Fill - gravel, silt Concrete Concrete, fill - brown silt and sand	Sample taken 1-2' for laboratory analysis		
-5 - - - -				Previously cleared to 10', backfilled with sand	9' riser	
-10	763		Gray sandy clay and gravel, wet			
-	1793		Coarse sand and gravel, trace black/gray clay, wet			
-	2150					
-	1768	07070	Fine sand and gravel, black/gray, red sand 13.75-14'			
1.5	1376		Coarse sand and gravel, trace clay, wet			
-15	261		Tan/orange clay and sand, slightly moist		10' screen	
	119					
	49.1		Orange/brown sand and clay, compact, slightly moist			
-	163		Same, gravel	Auger complete to 19'		
_20 _	52.1		Fine light brown/orange sand, trace clay	Boring complete to 20'		

PROJECT: Sunoco Philadelphia Refinery DRILLING CO.: Parrat Wolff Inc.

SITE LOCATION: AOI-8 DRILLING METHOD: 6" Hollow Stem Auger

JOB NO.: SAMPLING METHOD: Split Spoon

LOGGED BY: Shaun Sykes SCREEN/RISER DIAMETER: 2"
DATES DRILLED: 6/20/2008 WELLBORE DIAMETER: 6"

TOTAL DEPTH: 22' ELEVATION:

101	AL DEFIN.	22	LLL	VATION.		
Depth (feet)		USCS	LITHOLOGY	COMMENTS	WELL CONSTRUCTION	WELL DIAGRAM
-	0.1 5.2 20.6 28.3	^^^^	Fill - fine sand and gravel, dry Fill - black/brown silty sand and gravel, dry	Sample taken 1-2' for laboratory analysis		0~0~0~0~0~0~0~0~0~0~0~0~0~0~0~0~0~0~0~
-5 — -				Previously cleared to 10', backfilled with sand	12' riser	
-10 			Medium sand, black, very moist			
-	478 918		Coarse sand and gravel, black, wet			
-15 —	1109 738					
-	341				10' screen	
-	437 1468		Fine sand and gravel, wet			
-	37.7		Tan/orange sandy clay, very			
-20 —	9.9	/////	moist Tan fine sand, very moist			
-	3.2			Auger complete to 22'		

PROJECT: Sunoco Philadelphia Refinery DRILLING CO.: Parrat Wolff Inc.

SITE LOCATION: AOI-8 DRILLING METHOD: 6" Hollow Stem Auger

JOB NO.: SAMPLING METHOD: Split Spoon

LOGGED BY: Shaun Sykes SCREEN/RISER DIAMETER: 2"
DATES DRILLED: 5/29/2008 WELLBORE DIAMETER: 6"

TOTAL DEPTH: 18' ELEVATION:

Depth (feet)		USCS	LITHOLOGY	COMMENTS	WELL CONSTRUCTION	WELL DIAGRAM
-	0.0 0.5 123 57.6	^^^^ ^^^^	Fill - gravel, sand, dry Fill - brown/black silty sand, gravel, dry	Sample taken 1-2' for laboratory analysis		Or Or Or Or Or Or Or Or
-5 — -				Previously cleared to 10', backfilled with sand	8' riser	2
-10 —	849	000 0.0.0.0 0.0.0.0	Coarse sand and gravel, gray/black, wet			
-	1248 756 842		Medium to fine sand and gravel, wet		10' screen	
-15 —	756 121		Brown sandy clay and gravel, very moist			
-	42.9		Brown/orange sandy clay and gravel, very moist, stiff			
-	3.7			Auger/boring complete to 18'		

Page 1 of 3

SUBSURFACE LOG: N-109 AND WELL CONSTRUCTION: N-109

PROJECT: Sunoco-Philadelphia Refinery DRILLING CO.: Parratt-Wolff

SITE LOCATION: AOI-8 DRILLING METHOD: Hollow Stem Auger & Mud Rotary

LOGGED BY: Tiffani Doerr/Shaun Sykes SAMPLING METHOD: Split Spoon
DATES DRILLED: 7/2-7/3/08 SCREEN/RISER DIAMETER: 2-inch
TOTAL BORING DEPTH: 42'6" WELLBORE DIAMETER: 8-inch

BORING ELEVATION TOC (inner) ELEVATION:

NOTE: Well N-109 was drilled within 5 feet of boring N-109. Screen=0.010 slot; "0" sand; 2' stickup finish.

Screen (5'-20'); Riser (2' stickup - 5'); Sand (3'-20'); Bentonite (1'-3'); Grout (surface to 1')

Depth (feet)	Blow Counts	OVM (ppm)	USCS	LITHOLOGY	COMMENTS	WELL DIAGRAM
-		0.0	^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^	FILL - dry, brown/black silty sand and gravel with brick.	Boring location pre- cleared by Mobile Dredge to 10' Sample 1'-2' submitted for laboratory analysis	
-5 — -						
-10 -	4-4 6-10	156 139		Moist to wet med brown silty fine sandy CLAY, gray mottling from 11-12', Fine-med gravel in bottom 2"		
-	15-16 32-50/0.			Wet med SAND w/ clay plugs to 13.5, last 6" fine- coarse sand w/ some fine to coarse gravels		
-	18-20	252		Saturated med brown fine to med GRAVELS w/ coarse sand to 15'		

SUBSURFACE LOG: N-109 AND WELL CONSTRUCTION: N-109

	b Blow	6)				WELL
Dept (feet)	I	OVM (ppm)		LITHOLOGY	COMMENTS	DIAGRAM
-15	21-17	176		Med-coarse sand w/ gravel (fine-coarse 1")		
-	20-32	58.4		Grades from lt. brown/gray fine to coarse sand from 16' to 16'10", then grades from coarse sand and fine gravel to heterogenous gravels, fine to 1" with		
-	27-27	322		coarse sand (gravels qtz, qtzite, sandstone)		
-	50/0.2			Crushed gravel in tip, no return		
-20 -				Cobble/boulder from 18'2" to ~19'. Auger through to 20'.		
-20 -	4-7	0.0		Top 8" grading through orange/gray mix to mostly orange at bottom. 60-70% Mica, rest clay and fine sand. Saprolite - original rock structure present	Switch to mud rotary	
-	8-9	0.0		throughout. Overall, fine sandy clay.		
-	6-6	0.0		Only 2" recovery - same as above.		
-	9-8	0.0				
-25 -	5-16	0.0		Same to 25'		
-	15-11	0.0		25-25'10" - Larger mica flakes and qtz. grains, few qtz-mica gravels, last 2" white clay w/ gray fine qtz. gravels		
-	24-25	0.0		12" Recovery - top 2" same as above, 90% mica (up to 0.5" books) w/few fine sands and white clay (not layered)		
-	24-28	1.6		Same to 29'		
-	29-29	0.0		Layered/laminated white/gray coarse mica w/ clay		
-30 —	11-9	0.0		and orange/black mica w/ clay Top 1' - light gray fine - med micaceous clayey sand,		
-	11-19	0.0		next 6" same as above but coarse, last 6" layered alternating lt. gray/orange brown mica w/ little clay		
-	32-24	0.0		Same as above, heavy mica saprolite, gray and		
-	37-47	0.0		clayey to 33' 1" layer of round med-coarse gray qtzite gravel @		
-	15-12	0.0		33', last 1' laminated orange white/gray clay Yellow-gray medium grained qtz-mica sand, 2" white		
			l	clay w/ very fine qtz gravels		

SUBSURFACE LOG: N-109

AND WELL CONSTRUCTION: N-109

Т	Technologies, Inc.						
Depti (feet)		OVM (ppm)	USCS	LITHOLOGY	COMMENTS	WELL DIAGRAM	
-35 -	13-15	0.0					
-	16-19			No recovery			
-	26-32						
-	18-19	0.0		Slight layering orange-yellow gray muscovite-biotite and fine qtz sand. Some yellow-white clay layers w/ coarse qtz gravels			
-	47-50/0.	40.0		osares que gravors			
-40 —	34-45	5.3		Same as above			
-	50/0.3	1.0			Borehole complete to		
-	78/6"	8.2		Extremely weathered bedrock	42'6"		

PROJECT: Sunoco Philadelphia Refinery DRILLING CO.: Parrat Wolff Inc.

SITE LOCATION: AOI-8 DRILLING METHOD: 6" Hollow Stem Auger

JOB NO.: SAMPLING METHOD: Split Spoon

LOGGED BY: Shaun Sykes SCREEN/RISER DIAMETER: 2"
DATES DRILLED: 5/14/2008 WELLBORE DIAMETER: 6"

TOTAL DEPTH: 15' ELEVATION:

Depth (feet)		uscs	LITHOLOGY	COMMENTS	WELL CONSTRUCTION	WELL DIAGRAM
-	0.0 0.1 0.3 0.3	^^^^ ^^^^	Fill - gravel, tan sandy silt, dry Brown sandy silt and gravel, dry	Sample taken 1-2' for laboratory analysis	5' riser	
-5 — -				Previously cleared to 10', backfilled with sand		
- -10 —	27.3		Brown/black sand with clay, wet		10' screen	
-	28.9 52.2 98.9		Black/brown coarse sand, gravel, wet			
-15 —	97.6 89.2	0.7.0.7.0	Black/brown coarse sand and gravel, wet	Auger to 15'		
-	78.5 22.9		Black/brown clay, very moist	Boring complete to		

PROJECT: Sunoco Philadelphia Refinery DRILLING CO.: Parrat Wolff Inc.

SITE LOCATION: AOI-8 DRILLING METHOD: 6" Hollow Stem Auger

JOB NO.: SAMPLING METHOD: Split Spoon

LOGGED BY: Shaun Sykes SCREEN/RISER DIAMETER: 2"
DATES DRILLED: 5/14/2008 WELLBORE DIAMETER: 6"

TOTAL DEPTH: 15' ELEVATION:

Depth (feet)		USCS	LITHOLOGY	COMMENTS	WELL CONSTRUCTION	WELL DIAGRAM
- - -	0.0 1.3 1.7 1.2	^^^^ ^^^^	Fill - brown sandy silt, dry Same with gravel Fill - brown/black silty sand and gravel, dry, some brick	Sample taken 1-2' for laboratory analysis	5' riser	X/X
-5 - -				Previously cleared to 10', backfilled with sand		
-10 -	84.6 92.1		Black/gray sand and gravel, wet, some brick		10' screen	
-	112 59.9		Black sandy clay with gravel, wet			
-	149	0-:0-:0 0-:0-:0	Black coarse sand and gravel, wet	Auger to 15'		
-15 -	46.3		Black clay, very moist to wet			<u>.1—1.</u> 1
-	56.8		Black sandy clay, very moist to wet			
-	38.5			Boring complete to 18'		

PROJECT: Sunoco Philadelphia Refinery DRILLING CO.: Parrat Wolff Inc.

SITE LOCATION: AOI-8 DRILLING METHOD: 6" Hollow Stem Auger

JOB NO.: SAMPLING METHOD: Split Spoon

LOGGED BY: Shaun Sykes SCREEN/RISER DIAMETER: 2"
DATES DRILLED: 5/14/2008 WELLBORE DIAMETER: 6"

TOTAL DEPTH: 20' ELEVATION:

Depth (feet)		OVM (ppm)	USCS	LITHOLOGY	COMMENTS	WELL CONSTRUCTION	WELL DIAGRAM
-	0.0 2.8 6.4 8.5		< < < < < < < < < < < < < < < < < < <	Fill - gravel, brown sandy silt, dry Fill - brown/black silty sand and gravel, dry	Sample taken 1-2' for laboratory analysis	5' riser	
-5 — - - -					Previously cleared to 10', backfilled with sand		
-10 -	89,7 143			Dark brown clayey sand and gravel, wet		15' screen	
-	178						
-	128 193				Visible sheen on		
-15 -	223			wet	spoon at 14'		
-	145						
-	194						
-	9.8						
-20 -	8.7			Sand and gravel, greenish tint, trace clay, very moist	Auger complete to 20'		

PROJECT: Sunoco Philadelphia Refinery DRILLING CO.: Parrat Wolff Inc.

SITE LOCATION: AOI-8 DRILLING METHOD: 6" Hollow Stem Auger

JOB NO.: SAMPLING METHOD: Split Spoon

LOGGED BY: Shaun Sykes SCREEN/RISER DIAMETER: 2"
DATES DRILLED: 5/15/2008 WELLBORE DIAMETER: 6"

TOTAL DEPTH: 15' ELEVATION:

Depth (feet)	OVM (ppm)	USCS	LITHOLOGY	COMMENTS	WELL CONSTRUCTION	WELL DIAGRAM
-	0.0 0.9 7.5 6.6	^^^^ ^^^^ ^^^^	Fill - tar, brown sandy clay and gravel Fill - brown/gray silty clay and gravel	Sample taken 1-2' for laboratory analysis	5'	
-5 - -5 - -				Previously cleared to 10', backfilled with sand		
-10 —	106		Brown sand w/ clay, wet		10' screen	
-	95.6					
-	260					
-	25.8					
- -15 _	5.8		Brown/tan stiff sandy clay, very moist	Auger complete to 15'		

PROJECT: Sunoco Philadelphia Refinery DRILLING CO.: Parrat Wolff Inc.

SITE LOCATION: AOI-8 DRILLING METHOD: 6" Hollow Stem Auger

JOB NO.: SAMPLING METHOD: Split Spoon

LOGGED BY: Shaun Sykes SCREEN/RISER DIAMETER: 2"
DATES DRILLED: 5/13/2008 WELLBORE DIAMETER: 6"

TOTAL DEPTH: 25' ELEVATION:

Depth (feet)		USCS	LITHOLOGY	COMMENTS	WELL CONSTRUCTION	WELL DIAGRAM
-	45.4 288 302 292	^^^^ ^^^^	Fill - gravel, brown sandy silt, dry Fill - brown/black sandy silt and gravel, wood fragments	Sample taken 1-2' for laboratory analysis		
-5 - -				Previously cleared to 10', backfilled with sand	10' riser	
-10 —	349	₩ :₩ :₩	Coarse sand and gravel, very			
-	562		moist Brown sandy clay and gravel,			
-	342	0 - : 0 - : 0 0 - : 0 - : 0 0 - : 0 - : 0	very moist Brown sand and gravel, trace clay, very moist			
-	284					
-15 —	181 240	0.0000 0.0000 0.0000	Sand and coarse gravel, trace brown clay, very moist			
-	249	0-:0-:0	Sand and gravel turning to			
-	7.3					
-	293	0-0-0	Sand and coarse gravel, moist			
-20 -	12.4		Tan clay and micaceous sand			
-20 -	69.6				15' screen	
_	13.2 8.0		Same, trace brown/gray clay			
-	1.8		Jame, nace brown/gray day			
-25 -	1.5	•••••	Micaceous sand	Auger complete to 25'		

Continuous Split Spoon

MONITORING WELL LOG: N-115

PROJECT: DRILLING CO.: Sunoco Philadelphia Refinery Parrat Wolff Inc. SITE LOCATION: AOI-8 DRILLING METHOD: 6" Hollow Stem Auger

JOB NO.: LOGGED BY:

SCREEN/RISER DIAMETER: T. Doerr DATES DRILLED: 5/28/08 WELLBORE DIAMETER: 6"

SAMPLING METHOD:

TOTAL DEPTH: **ELEVATION:**

101	TOTAL DEPTH: 14" ELEVATION:						
Depth (feet)		USCS	LITHOLOGY	COMMENTS	WELL CONSTRUCTION	WELL DIAGRAM	
-	4.6	^^^^ ^^^^	FILL material - dry dark brown to black brick, sandy clay material (few layers), cinders	Sample taken 1-2' for laboratory analysis	~2' stick up 0'-4' riser		
-5 - -5 -				Previously cleared to 10', backfilled with sand			
-10 - -	80.5 3.6 72.2		Gray/black coarse SAND and GRAVEL, petroleum soaked Light brown sl plastic very fine sandy SILT, slightly micaceous, moist Gray/black coarse SAND and GRAVEL to 13'4"		4'-14' screen		
-	0.9		Slightly mottled light brown and gray CLAY with some silt	Auger complete to 14'			
	2.3		14'-14'4" CLAY Gray fine SAND	Saturated at 15'			
-15	1.0		Gray clayey SAND Bottom 1" gray/orange mottled CLAY	Boring complete to 16'			

PROJECT: Sunoco Philadelphia Refinery DRILLING CO.: Parrat Wolff Inc.

SITE LOCATION: AOI-8 DRILLING METHOD: 6" Hollow Stem Auger

JOB NO.: SAMPLING METHOD: Split Spoon

LOGGED BY: Shaun Sykes SCREEN/RISER DIAMETER: 2"
DATES DRILLED: 5/20/2008 WELLBORE DIAMETER: 6"

TOTAL DEPTH: 12' ELEVATION:

101	AL DEFIN.	12		VATION.		
Depth (feet)	OVM (ppm)	USCS	LITHOLOGY	COMMENTS	WELL CONSTRUCTION	WELL DIAGRAM
-	4.9 16.8 182 147	^^^^ ^^^^ ^^^^	Fill - gravel, sand, tan/brown silty sand, dry Fill - brown/black sand and gravel, dry Gray sandy clay, moist, stiff	Sample taken 1-2' for laboratory analysis	2' riser	
-5 - -				Previously cleared to 10', backfilled with sand		
-10 -	98.8		Black/gray sandy clay, very moist, sheen	Auger complete to	10' screen	
	46.5			Auger complete to 12'		
-	87.5			Boring complete to 14'		

Continuous Split Spoon

MONITORING WELL LOG: N-117

PROJECT: DRILLING CO.: Sunoco Philadelphia Refinery Parrat Wolff Inc. SITE LOCATION: AOI-8 DRILLING METHOD: 6" Hollow Stem Auger

JOB NO.: LOGGED BY:

SCREEN/RISER DIAMETER: T. Doerr DATES DRILLED: 6/4/08 WELLBORE DIAMETER: 6"

SAMPLING METHOD:

TOTAL DEPTH: **ELEVATION:** 20'

Depth (feet)	OVM (ppm)	USCS	LITHOLOGY	COMMENTS	WELL CONSTRUCTION	WELL DIAGRAM
-	1.3 2.4	^^^^ ^^^^	FILL - gravel w/ sand to 1.5' Brown moist clayey sand and gravel	Sample taken 1-2' for laboratory analysis	~2' stick up	A C A C A C A C A C A C A C A C A C A C
-5 -				Previously cleared to 10', backfilled with sand	0'-8' riser	
-10 — -	94.8 66.9 251		Very moist dark brown sandy CLAY mottled with black product to 13'	Product present from 10' to 16'	8'-20' screen	
- -15 —	743 480 732		Wet brown to black product laden GRAVEL (sub-angular up to 1.5") with coarse sand			
-	855		Saturated (water) at 16'			
-	282 56.4		Medium brown to red-brown fine SAND Micaceous fine to medium	Auger/boring		
-20	30.2	-7-7-7-	SAND Orange and gray mottled very fine sandy SILT grading to clayey silt (19.5'-20')	complete to 20'		

PROJECT: Sunoco Philadelphia Refinery DRILLING CO.: Parrat Wolff Inc.

SITE LOCATION: AOI-8 DRILLING METHOD: 6" Hollow Stem Auger

JOB NO.: SAMPLING METHOD: Split Spoon

LOGGED BY: Shaun Sykes SCREEN/RISER DIAMETER: 2"
DATES DRILLED: 5/23/2008 WELLBORE DIAMETER: 6"

TOTAL DEPTH: 20' ELEVATION:

Depth (feet)	OVM (ppm)	USCS	LITHOLOGY	COMMENTS	WELL CONSTRUCTION	WELL DIAGRAM
-	0.1 3.6 142 156	^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^	Fill - brown silty sand and gravel, moist Fill - black/brown sitly sand and gravel	Sample taken 1-2' for laboratory analysis		
-5 — - -				Previously cleared to 10', backfilled with sand	10' riser	
-10 -	86.6 225	0.70.70 70.10.10 0.70.70 10.10.10	Coarse sand and gravel, wet			
-	971		Same, trace brown clay			
-	1633		Same, trace brown clay			
-15 -	966	07070				
	781	000 000 000	Coarse sand and gravel. trace clay		10' screen	
	93.5		Red/brown sandy clay and gravel			
	13.7		Tan/orange sandy clay			
	14.7		Tan/orange sand, some clay			
_20 _	22.1			Auger/boring complete to 20'		

PROJECT: Sunoco Philadelphia Refinery DRILLING CO.: Parrat Wolff Inc.

SITE LOCATION: AOI-8 DRILLING METHOD: 6" Hollow Stem Auger

JOB NO.: SAMPLING METHOD: Split Spoon

LOGGED BY: Shaun Sykes SCREEN/RISER DIAMETER: 2"
DATES DRILLED: 5/29/2008 WELLBORE DIAMETER: 6"

TOTAL DEPTH: 18' ELEVATION:

Depth (feet)		USCS	LITHOLOGY	COMMENTS	WELL CONSTRUCTION	WELL DIAGRAM
-	5.9 6.2 7.4 14.1	^^^^ ^^^^	Fill - gravel, sand, dry Fill - orange/brown sandy silt and gravel, dry Brown/black silt and clay, dry	Sample taken 1-2' for laboratory analysis		A Chelle
-5 — -				Previously cleared to 10', backfilled with sand	8' riser	
-10 —	1341	0 = : 0 = : 0 0 = : 0 = : 0	Black coarse sand and gravel, wet			
-	1678 186 35.5		Black/gray medium sand and gravel, trace clay, wet		10' screen	
-15 —	28.7					
-	26.6 7.5		Coarse sand and gravel, wet	Auger complete to 18'		

PROJECT: Sunoco Philadelphia Refinery DRILLING CO.: Parrat Wolff Inc.

SITE LOCATION: AOI-8 DRILLING METHOD: 6" Hollow Stem Auger

JOB NO.: SAMPLING METHOD: Split Spoon

LOGGED BY: Shaun Sykes SCREEN/RISER DIAMETER: 2"
DATES DRILLED: 5/22/2008 WELLBORE DIAMETER: 6"

TOTAL DEPTH: 18' ELEVATION:

- 10	JIALL	/LI III.	18	CLC	VATION.		
De (fe		OVM (ppm)	USCS	LITHOLOGY	COMMENTS	WELL CONSTRUCTION	WELL DIAGRAM
	0.0 - 0.0 0.0 - 0.4		^^^^ ^^^^	Fill - medium brown sandy clay and gravel, dry	Sample taken 1-2' for laboratory analysis		
-5	5 -				Previously cleared to 10', backfilled with sand	8' riser	7.4.C.4.C.4.C.4.C.4.C.4.C.4.C.4.C.4.C.4.
-10	994			Black coarse sand and gravel, wet, sheen			
	983	3		Tan/arango sandy alay yary		10' screen	
-15				Tan/orange sandy clay, very moist			
	43.4	4	/ <u>-/-/-/-/-/</u>	Gray sand and clay, some gravel, very moist			
	28.6	6			Auger/boring complete to 18'		

PROJECT: Sunoco Philadelphia Refinery DRILLING CO.: Parrat Wolff Inc.

SITE LOCATION: AOI-8 DRILLING METHOD: 6" Hollow Stem Auger

JOB NO.: SAMPLING METHOD: Split Spoon

LOGGED BY: Shaun Sykes SCREEN/RISER DIAMETER: 2"

DATES DRILLED: 6/9/2008 WELLBORE DIAMETER: 6"

TOTAL DEPTH: 20' ELEVATION:

Depth (feet)	OVM (ppm)	USCS	LITHOLOGY	COMMENTS	WELL CONSTRUCTION	WELL DIAGRAM
-	0.0 5.3 34.6 40.8	^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^	Fill - gravel, brown silty and sand, dry Dark brown fill, gravel, sandy clay	Sample taken 1-2' for laboratory analysis		0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -
-5 - - - -				Previously cleared to 10', backfilled with sand	10' riser	
-10 - -	1446 1332 1177		Coarse sand and gravel, wet			
	36.1		Gray/orange fine sand and clay, very moist			
-15 -	72.6 39.6		Gray fine sand, trace clay, very moist		10' screen	
-	535	000	Coarse sand and gravel, very moist to wet			
	80.1		Gray/orange fine sand, very moist			
	45.5		Tan/orange fine sand, trace clay, very moist			
-30 -	26.6	/:/:/:/:	Same, increased clay content	Auger/boring complete to 20'		

PROJECT: Sunoco Philadelphia Refinery DRILLING CO.: Parrat Wolff Inc.

SITE LOCATION: AOI-8 DRILLING METHOD: 6" Hollow Stem Auger

JOB NO.: SAMPLING METHOD: Split Spoon

LOGGED BY: Shaun Sykes SCREEN/RISER DIAMETER: 2"
DATES DRILLED: 5/21/2008 WELLBORE DIAMETER: 6"

TOTAL DEPTH: 18' ELEVATION:

Depth (feet)		USCS	LITHOLOGY	COMMENTS	WELL CONSTRUCTION	WELL DIAGRAM
-	0.0 18.8 78.9 15.7	^^^^ ^^^^	Fill - gray/black stiff sandy silt,	Sample taken 1-2' for laboratory analysis		MOROROROROROROROROROROROROROROROROROROR
-5 5				Previously cleared to 10', backfilled with sand	6' riser	
-				Water at 8'		
-10 -	6.6 7.2		Dark brown/gray sand and clay, some gravel, very moist to wet Same, increased clay content			
-	5.3		Brown/gray sand with clay, very moist		12' screen	
-	3.9		Gray sand with clay, very moist			
1	1.3					
-15	1.1		Orange-tan/gray sandy clay, very moist			
	4.3		Same, some gravel			
	2.2		Gray/brown sand and clay, moist	Auger/boring complete to 18'		

PROJECT: Sunoco Philadelphia Refinery DRILLING CO.: Parrat Wolff Inc.

SITE LOCATION: AOI-8 DRILLING METHOD: 6" Hollow Stem Auger

JOB NO.: SAMPLING METHOD: Split Spoon

LOGGED BY: Shaun Sykes SCREEN/RISER DIAMETER: 2"

DATES DRILLED: 5/20/2008 WELLBORE DIAMETER: 6"

TOTAL DEPTH: 20' ELEVATION:

Depth (feet)		USCS	LITHOLOGY	COMMENTS	WELL CONSTRUCTION	WELL DIAGRAM
- - -	0.0 0.5 0.8 1.2	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Fill - gravel, sand, brick Same, trace silt and clay	Sample taken 1-2' for laboratory analysis		
-5 - - -				Previously cleared to 10', backfilled with sand	10' riser	
-10 -	24.5 37.6		Coarse sand and gravel, black, sheen, very moist			
-	116		Same, wet			
_	254236		Same, very moist to wet			
-15 -	117				10' screen	
-	65.2	0.70.70	Same, trace clay			
	20.3	0,0,0 000 0,0,0 000				
	6.5	0.7.0.7.0	Coarse sand and gravel, trace clay			
-20 -	7.9	07070 07.07.0 07.07.0 07.07.0		Auger/boring complete to 20'		

PROJECT: Sunoco Philadelphia Refinery DRILLING CO.: Parrat Wolff Inc.

SITE LOCATION: AOI-8 DRILLING METHOD: 6" Hollow Stem Auger

JOB NO.: SAMPLING METHOD: Split Spoon

LOGGED BY: Shaun Sykes SCREEN/RISER DIAMETER: 2"
DATES DRILLED: 5/21/2008 WELLBORE DIAMETER: 6"

TOTAL DEPTH: 25' ELEVATION:

Depth (feet)		USCS	LITHOLOGY	COMMENTS	WELL CONSTRUCTION	WELL DIAGRAM
-	0.0 0.0 0.4 0.5	^^^^	Fill - sand, gravel, brick, dry	Sample taken 1-2' for laboratory analysis		
-5 -5 -				Previously cleared to 10', backfilled with sand	10' riser	7
-10 -	0.0	^^^^	Fill - sand, gravel, brick, trace brown clay			
-	0.0	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	very moist			
-15 -	0.0		Brown/gray sandy clay and gravel, very moist to wet Orange/brown sandy clay and		15' screen	
-	0.0		gravel, very moist to wet Same, wet			
-20 -	0.0		Light brown sand and clay, some gravel, wet			
-	0.0		Same, very moist			
-25 _	0.0			Auger complete to 25'		

PROJECT: Sunoco Philadelphia Refinery DRILLING CO.: Parrat Wolff Inc.

SITE LOCATION: AOI-8 DRILLING METHOD: 6" Hollow Stem Auger

JOB NO.: SAMPLING METHOD: Split Spoon

LOGGED BY: Shaun Sykes SCREEN/RISER DIAMETER: 2"

DATES DRILLED: 6/17/2008 WELLBORE DIAMETER: 6"

TOTAL DEPTH: 25' ELEVATION:

Depth (feet)		USCS	LITHOLOGY	COMMENTS	WELL CONSTRUCTION	WELL DIAGRAM
- - -	0.0 4.2 3.7 35.2	^^^^	concrete, dry	Sample taken 1-2' for laboratory analysis		~ Cachadada
-5 - - -				Previously cleared to 10', backfilled with sand	15' riser	0.40.4
- -10 —	392 894		Clayey sand and gravel, dry			
-	1065 1225		Brown/tan coarse sand and gravel, moist			
-15 —	770 756	<u> </u>	Brown fine sand, very moist to wet			
-	467		Brown fine sand, very moist (6" recovery)			
-	401 302					
-20 -	483 92	<u> </u>	Same, wet Coarse sand and gravel, wet		10' screen	
-	96.2		·			
-25 _	10.2		Gray fine clayey sand, very moist	Auger complete to 25'		

PROJECT: Sunoco Philadelphia Refinery DRILLING CO.: Parrat Wolff Inc.

SITE LOCATION: AOI-8 DRILLING METHOD: 6" Hollow Stem Auger

JOB NO.: SAMPLING METHOD: Split Spoon

LOGGED BY: Shaun Sykes SCREEN/RISER DIAMETER: 2"
DATES DRILLED: 5/29/2008 WELLBORE DIAMETER: 6"

TOTAL DEPTH: 14' ELEVATION:

101	OTAL DEFTH. 14 ELEVATION.						
Depth (feet)		USCS	LITHOLOGY	COMMENTS	WELL CONSTRUCTION	WELL DIAGRAM	
-	0.8 1.2 120 456	^^^^ ^^^^ ^^^^	brick, dry	Sample taken 1-2' for laboratory analysis	4' riser		
-5 -				Previously cleared to 10', backfilled with sand			
-10 -	348		Fill - black gravel, wood, wet		10' screen		
-	57.4	100 m	Black coarse sand and gravel, wet				
-	409						
-	20.0		Black/brown sandy clay, very moist	Auger/boring complete to 14'			

SUBSURFACE LOG: N-129 **AND WELL CONSTRUCTION:** N-129

PROJECT: Sunoco-Philadelphia Refinery DRILLING CO.: Parratt-Wolff

SITE LOCATION: AOI-8 DRILLING METHOD: Hollow Stem Auger & Mud Rotary

LOGGED BY:Tiffani Doerr/Shaun SykesSAMPLING METHOD:Split SpoonDATES DRILLED:6/24-6/26/08 & 7/1/08SCREEN/RISER DIAMETER:2-inchTOTAL BORING DEPTH:103WELLBORE DIAMETER:8-inch

BORING ELEVATION TOC (inner) ELEVATION:

NOTE: Well N-129 was drilled within 5 feet of boring N-129. Screen=0.010 slot; "0" sand; 2' stickup finish.

Screen (14'-30'); Riser (2' stickup - 14'); Sand (12'-30'); Bentonite (10'-12'); Grout (surface to 10')

Depth (feet)	Blow Counts	OVM (ppm)	USCS	LITHOLOGY	COMMENTS	WELL DIAGRAM
-			^^^^ ^^^^	FILL - brown sandy silt and gravel, dry.	Boring location pre- cleared by Mobile Dredge to 10' Sample 1'-2' submitted for laboratory analysis	
-5 -						
-10	1-7 13-16 12-9	0.0	S.a. S.a. '&:.'&::	No recovery Moist coarse SAND and fine GRAVEL, light brown		
-15 —	12-12 19-22 15-11 12-5	0.1 187		Wet, brown, heterogeneous mix of fine sand to coarse gravel (gravels vary in color and comp: sandstone, quartzite: brn, blk, wht). Strong odors. Wet, brown medium SAND (no gravel) w/1" plug of fine sandy clay at 17'10".	Boring augered to 14', then switched to mud rotary drilling.	

SUBSURFACE LOG: N-129 AND WELL CONSTRUCTION: N-129

WELL Depth Blow OVM **USCS COMMENTS** LITHOLOGY (feet) | Counts (ppm) DIAGRAM 7-8 Sand saturated w/ product at 18'. 11-15 371 17-14 Medium SAND with GRAVELS (brn, blk, red), not -20 prod saturated. 18-15 13-16 Brown, medium coarse SAND w/ few fine gravels. 16-12 114 0.0.0.0 Prod saturated 14-15 5-9 102 Prod. saturated coarse sand & fine gravel to 26.5'. Only few vugs of product at 26.5'. -25 11-9 10-19 11.7 At 26' stong odors, but not petroleum. Pungent, Yellow and gray fine sandy CLAY fruity (like additive or 16-25 13.3 Slightly micaceous, moist tan and gray fine to med. solvent). SAND 17-21 14.6 18-8 -30 3-1 9.9 Moist layered orange/gray SILTY CLAY w/ very fine SAND, color change to dark gray 31.5' 3-4 18.4 17-21 Same as 31.5'-32', moist dark gray micaceious sl. 13.8 plastic very fine SANDY SILT 19-15 28.8 4-4 6.2 -35 5-10 5.0 6-9 1.6 Few sandier layers at 36'. 9-10 1.7 8-9 0.9 8-9 0.7

SUBSURFACE LOG: N-129 AND WELL CONSTRUCTION: N-129

	echnologies, Inc.	1			<u> </u>	\A/E++
Depti (feet)		OVM (ppm)	USCS	LITHOLOGY	COMMENTS	WELL DIAGRAM
-40 -	5-5	0.3		Silty CLAY w/ trace fine sand to 41'10"		
-	5-9	0.3				
-	9-7	0.2	/-/-/-/-	Sat. brown medium SAND, trace fine gravel. At 43', brown slightly plastic silty very fine micaceous sand		
-	9-9	0.2				
-	2-2	0.4		Brown slightly micaceous very fine sandy CLAY		
-45 —	2-3	0.3				
-	2-4	0.5		1" layers of fine sand at 46.5' and 47.5'		
-	5-5	0.4				
-	4-5		7777	No recovery		
-	6-8					
-50 -	12-13	0.0		Alternating layers of brown clayey fine SAND and med sand (1-3" layers)		
-	15-9	0.0				
-	11-9	0.4		Brown medium sand w/ few coarse grains		
-	18-19	0.2		Alternating layers of brown fine clayey sand and brown medium sand with coarse grains		
-	10-4	0.0		Same alternating layers to 57.5'; sand layers only 1" thick and all fine sands, Fine sandy clay layers 6" thick.		
-55 -	6-5	0.0				
-	12-16	3.3	0-0-			
-	18-13	2.2	0 7 0 7 1 0 7 0 7 1	Medium-coarse sand w/ trace fine gravels,		
-	12-18	9.1	0707	Same as lasted; Sandy clay plug at 59.5', orange- brown in color near bottom		
-	19-24	3.1				
-60 -	18-16	12.3		18" Recovery - Top 6" - 3" Brown fine sandy clay, 3" - Brown fine sand, Lower 1' - yellow brown coarse sand with few fine gravels		
-	13-15	3.6	0-0-	Sand with lew file gravers		
-	34-24	18.7		12" Recovery - Top 6" - Lt. brown medium sands, Lower 6" - Coarse sand and fine gravel with medium gravel in bottom 1"		

SUBSURFACE LOG: N-129 AND WELL CONSTRUCTION: N-129

Deptl (feet)		OVM (ppm)	USCS	LITHOLOGY	COMMENTS	WELL DIAGRAN
,	24-17		0-:0-: 00-: 0-:0-:			
-	23-17	2.5	0.70.75	12" Recovery - Red-brown and gray heterogeneous gravel and coarse sand with trace clay		
-65 —	13-15					
-	18-17	13.7		Medium gray/brown med-coarse sand and fine gravel at top grades to coarse sand and fine-med gravel at 67'		
-	19-27	2.0		Mix of coarse sand with fine gravel		
-	27-50/0.	457.2		Brown med-coarse gravels w/ sand		
-		35.4				
·70 —	38-40	9.3		Brown med-coarse gravels w/ sand		
-	50/0.3		0000			
=	50/0.6		0707	Same		
=						
-	48-25	4.6		Same		
75 —	50/0.4					
	45-38	3.6		14" Recovery, gravel and sand to 77.5', 2" layer gray fine sand w/ clay, 3" gray coarse sand w/ few fine gravels, 1" gray fine sand		
	19-26		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			
		4.0	0-:0::	6" gray fine sand, 1' Orange/yellow coarse sand and gravel, 6" compact dark gray clay, trace sand		
80 –		3.2				
υυ -	8-9	0.0		10" recovery, compact dark gray clay, trace fine sand		
Ī	14-20	0.0				
	15-14	1.0		6" recovery, top 2" compact dark gray clay, trace sand, bottom 4" gray/brown med. sand and gravel		
Ī	18-17	0.3				
0.5	7-8	0.0		Compact dark gray clay, trace fine sand		
85 —	9-9	0.0				

76-105

1.6

in bottom of spoon

SUBSURFACE LOG: N-129 AND WELL CONSTRUCTION: N-129

WELL Depth Blow OVM **USCS COMMENTS** LITHOLOGY (feet) Counts (ppm) **DIAGRAM** 7-6 0.0 Same, increase in sand content bottom 4" 7-12 0.0 11-12 0.0 6" recovery, same 7-12 0.0 -90 12-13 0.0 Compact dark gray clay w/ trace fine sand layers 5-7 0.0 7-12 0.0 Compact dark gray clay w/ numerous thin fine sand layers 7-13 0.0 18-18 -95 11-10 0.6 Moist, stiff dark gray silty clay, few thin layers of fine 14-20 0.1 100 17-19 3.6 Moist, fine to medium gray micaceous sand w/ few Borehole complete to 103' fine gravels, clayey sand plugs present 17-10 8.0

Moist, fine to med. gray micaceous sand to 102'10",

bottom 2" - gray qtz. gravels w/ black/white SCHIST

PROJECT: DRILLING CO.: Sunoco Philadelphia Refinery Parrat Wolff Inc. SITE LOCATION: AOI-8 DRILLING METHOD: 6" Hollow Stem Auger

JOB NO.: LOGGED BY:

Continuous Split Spoon SCREEN/RISER DIAMETER:

SAMPLING METHOD:

DATES DRILLED: 5/16/08 WELLBORE DIAMETER: 6"

TOTAL DEPTH: **ELEVATION:**

T. Doerr

	IAL DEPTH	32'	LLL	VATION:		
Dept (feet			LITHOLOGY	COMMENTS	WELL CONSTRUCTION	WELL DIAGRAM
	0.0 0.0 0.1 0.2	^^^^ ^^^^ ^^^^	Med brown moist plastic fine sandy SILT, no gravel	Sample taken 1-2' for laboratory analysis	~2' stick up	0
-5 ·				Previously cleared to 10', backfilled with sand	0'-18' riser	A CACACACACACACACACACACACACACACACACACAC
-10 -	0.4		subround gravel from 1/8" to			722020202020202020202020202020202020202
	0.1	0:::0:::0 0::0::0 0::0::0 0::0::0 0::0::	siltstone gravels). Extends to 19.5'			
	0.1					

	AQUATEITA Technologies, Inc.						
Dept (feet)	U V 1V1	USCS	LITHOLOGY	COMMENTS	WELL CONSTRUCTION	WELL DIAGRAM	
-15 -	0.3						
-	0.4						
-	0.4						
-	45.5		Slightly more orange at 19'				
-	120		Dark gray coarse SAND with fine GRAVEL with fewer and				
-20 -	293		smaller gravel extends from 19.5' to 25'. Heavy petroleum odors start at 19.5'				
-	398		2" layer medium SAND at 20'	Saturated at 21' (sheen)			
-	547		2" layer medium SAND at 21'10"				
-	421						
-	393						
-25 —	126	07070	From 25' to 26' grades to medium-fine SAND with sandstone cobble in bottom of		18'-30' screen		
-	13.7		spoon Brown coarse SAND and fine GRAVELS (yellow & white				
-	6.7		quartz) from 26' to 26.5' 26.5'-28' - Alternating 3" layers of gray med-coarse sand and				
-	22		gray sand and gravels (<1") of qtz and brn-red siltstone Gray med-coarse sand with few				
-	2.9		gravels to 32'	Auger complete to 30'			
-30 —	99.7			Boring complete to 32'			
-	4.1						
١.		10°-10'-10					

Page 1 of 4

SUBSURFACE LOG: N-131 AND WELL CONSTRUCTION: N-131

PROJECT: Sunoco-Philadelphia Refinery DRILLING CO.: Parratt-Wolffe

SITE LOCATION: AOI-8 DRILLING METHOD: Hollow Stem Auger & Mud Rotary

LOGGED BY:Tiffani DoerrSAMPLING METHOD:Split SpoonDATES DRILLED:6/3/08 & 6/10/08SCREEN/RISER DIAMETER:2-inchTOTAL BORING DEPTH:70WELLBORE DIAMETER:8-inch

BORING ELEVATION TOC (inner) ELEVATION:

NOTE: Well N-131 was drilled within 5 feet of boring N-131 on 6/17/2008. Screen=0.010 slot; "0" sand; 2' stickup finish. Screen (5'-15'); Riser (2' stickup - 5'); Sand (3'-15'); Bentonite (1'-3'); Grout (surface to 1')

Depth (feet)	Blow Counts	OVM (ppm)	uscs	LITHOLOGY	COMMENTS	WELL DIAGRAM
-		0.1 15.5 46.5 52.2	^^^^ ^^^^ ^^^ ^^^ ^^ ^^	Brown-black silty sand and gravel. Asphalt layer at	Boring location pre- cleared by Mobile Dredge to 10' Sample 1'-2' submitted for laboratory analysis	
-5 — -						
-10 —	3-6	241	0 2 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Wet, black, medium SAND and GRAVEL.		
_	1/1'	128		Dark brown micaceous silty CLAY, with wood and organic matter.		
-	2-1	70.1				
-	1-2	3.2				

SUBSURFACE LOG: N-131

AND WELL CONSTRUCTION: N-131

	Technologies, Inc. AND WELL CONSTRUCTION: N-131						
Dept (feet)		OVM (ppm)	USCS	LITHOLOGY	COMMENTS	WELL DIAGRAM	
-15 -	3-1	1.9					
-	1-2	0.6					
-	2-1	0.8					
-	1-1	0.9					
-	1-1						
-20 —	1-2	0.0		Same, but becomes gray at 20'.	Augers pulled at 20'. Switch to mud rotary for remainder of drilling.		
-	3-6	0.0			Tomanidor or arming.		
-	2-1	0.0					
-	1-1	0.0					
-	woh/2'	0.0					
-25 -	woh/2'	0.0					
-	woh/1'	0.1		Becomes silty at 26'. Less organic matter.			
-	4-2	0.0					
-	woh/1'	0.0					
-	3-2	0.0					
-30 —	woh/2'	0.0		Dark gray CLAY with trace fine sand and organics.			
-	woh/2'	0.0					
-	woh/2'	0.0					
-	woh/2'	0.0					
-	woh/3'	0.0					

SUBSURFACE LOG: N-131 AND WELL CONSTRUCTION: N-131

Technologies, Inc. AND WELL CONSTITUTION: 11-131						
Depti (feet)		OVM (ppm)	USCS	LITHOLOGY	COMMENTS	WELL DIAGRAM
-35 —	woh/3'	0.0				
_						
	2-2	0.0		36.5' to 37' - Fine clayey sand layer.		
-	2-2	0.0				
-	3-2	0.0		Fine brown/gray slightly micaceous SAND with layers of clay.		
-	3-2	0.0				
-40 —	woh/2'	0.0				
-	woh/2'	0.0		Dark gray CLAY with few fine sands and organics. Some silt.		
-	3-2	0.0				
-	3-2	0.0				
-	3-3	0.0		Dark gray silty CLAY wtih 1" spaced fine sand laminations. Some woody layers.		
-45 -	3-3	0.0				
-	5-6	0.0				
-	5-6	0.0				
-	4-5	0.0		Brown/gray fine SAND, trace clay and organic matter.		
-	4-5	0.0				
-50 —	4-6	0.0				
-	4-6	0.6				
-	7-9	0.3		Sand grains increasing in size.		
-	7-9	1.0		Brown/gray coarse SAND, slight odor, saturated.		
-	2-4	0.0		Moist, gray plastic micaceous SILT to SILTY CLAY to 55.5'. 2" layer of coarse sand at 54.5'.		

SUBSURFACE LOG: N-131 AND WELL CONSTRUCTION: N-131

Depti (feet)	l _	OVM (ppm)	USCS	LITHOLOGY	COMMENTS	WELL DIAGRAM
-55 —	2-8	0.2				
-	3-5	0.3		Gray/brown medium coarse SAND (mostly qtz with mica flakes) with trace fine gravels to 60.5'. 2" clay/silt lenses at 56.5' and 57.5'. Very weathered		
-	6-11	1.2		petroleum odors. Saturated.		
-	5-6	0.3				
	0-2	0.4				
-60 -	2-2	0.0		60.5' to 61' soft clay and sand layer		
-	2-2	0.1		Gray clayey SILT/silty CLAY with very fine sand laminations at 1 cm intervals.		
-	2-2	0.5		Very loose/soft, wet clay/sand mixture to 63'4". 63'4" clayey silt with very fine sand (few irregular laminations). Layer of fine gravel near 64'.		
-	2-2	0.2				
-	7-8	0.0		Finely laminated clayey SILTS and very fine SANDS. 1" wood layer at 64.5'. 1" coarse-grained weathered qtz-mica rock at 65.5'.		
-65 -	2-2	0.2				
-	4-4	1.2		Coarse SAND and fine GRAVEL. Homogeneous with exception of band of larger gravel (~1") at 66.5'. Gravel is variable in color and composition: white,		
-	4-8	0.2		yellow, green, brown, orange, black - qtz, sandstone, qtzite, biotite. Few fines give overall gray appearance. 6" plastic sitly very fine SAND.		
-	8-8	0.1		Gray and red-brown fine to medium SAND grading to coarse sand at 69'4" and into GRAVEL at 69'8".		
-70 -	4-50	0.7	0.	3" of silty CLAY with few gravels. Bottom 1" of last spoon is fine grained black/white qtz-mica SCHIST.	Augered to 70', attempted another spoon 50/0" - schist in tip of spoon.	

PROJECT: Sunoco Philadelphia Refinery DRILLING CO.: Parrat Wolff Inc.

SITE LOCATION: AOI-8 DRILLING METHOD: 6" Hollow Stem Auger

JOB NO.: SAMPLING METHOD: Split Spoon

LOGGED BY: Shaun Sykes SCREEN/RISER DIAMETER: 2"
DATES DRILLED: 5/13/2008 WELLBORE DIAMETER: 6"

TOTAL DEPTH: 25' ELEVATION:

Depth (feet)	OVM (ppm)	USCS	LITHOLOGY	COMMENTS	WELL CONSTRUCTION	WELL DIAGRAM
- - -	0.2 1.2 2.3 3.2	^^^^ ^^^^		Sample taken 1-2' for laboratory analysis		0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -
-5 - - -				Previously cleared to 10', backfilled with sand	15' riser	
-10 —	8.7		Brown/black silty sand, gravel, wet			
-	13.5		Brown/black silty clay, very moist to wet			
-	23.4					
-	30.6		Brown/black silty sand, very moist to wet			
1.5	29.9		Brown/black sandy clay, very moist			
-15 —	30.4					
_	30.2		Brown/black silty sand, moist			
-	2.0		Brown/black clay with organic matter, moist			
	0.9		Brown/black sandy clay, moist			
-20 —	0.8		Dark brown clay, trace sand			
-20 -	1.2		Dark brown clay, trace sand, organic matter, moist		10' screen	
	0.9					
	3.2		Brown/black sand, trace clay, wet			
	1.4		Same, increased clay content			
_25 _	0.9		Brown/black sand and clay, wet	Auger complete to 25'		

PROJECT: Sunoco Philadelphia Refinery DRILLING CO.: Parrat Wolff Inc.

SITE LOCATION: AOI-8 DRILLING METHOD: 6" Hollow Stem Auger

JOB NO.: SAMPLING METHOD: Split Spoon

LOGGED BY: Shaun Sykes SCREEN/RISER DIAMETER: 2"
DATES DRILLED: 5/15/2008 WELLBORE DIAMETER: 6"

TOTAL DEPTH: 12' ELEVATION:

Depth (feet)	OVM (ppm)	USCS	LITHOLOGY	COMMENTS	WELL CONSTRUCTION	WELL DIAGRAM
-	0.1 2.9 6.7 11.9	^^^^ ^^^^ ^^^^	Fill - gravel, tan silty sand, dry Fill - brown/black silty sand, gravel, brick, dry Fill - brown/black silty sand, gravel, wood, dry Same, wet at 2'	Sample taken 1-2' for laboratory analysis	2' riser	
-5				Previously cleared to 10', backfilled with sand		
-10 -	215		Black sand and gravel, wet	Auger complete to 12'	10' screen	

PROJECT: Sunoco Philadelphia Refinery DRILLING CO.: Parrat Wolff Inc.

SITE LOCATION: AOI-8 DRILLING METHOD: 6" Hollow Stem Auger

JOB NO.: SAMPLING METHOD: Split Spoon

LOGGED BY: Shaun Sykes SCREEN/RISER DIAMETER: 2"
DATES DRILLED: 5/22/2008 WELLBORE DIAMETER: 6"

TOTAL DEPTH: 20' ELEVATION:

Depth (feet)		M uscs	LITHOLOGY	COMMENTS	WELL CONSTRUCTION	WELL DIAGRAM
- - -	0.0 0.0 0.0 0.0	^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^	Fill - dark brown silty sand, gravel, brick	Sample taken 1-2' for laboratory analysis		
-5 — - - -				Previously cleared to 10', backfilled with sand	10' riser	
-10 — -	0.0		Tan/orange sandy clay and gravel, very moist to wet			
-	0.0		Reb/brown/orange sand and gravel, trace clay, very moist to wet			
-15 —	0.0	0.0000 0.0000 0.0000 0.0000 0.0000				
-15 -	0.0		Proup/rod/orongs sand and		10' screen	
-	0.0 8.0	0,000 0,000 0,000 0,000 0,000 0,000	Brown/red/orange sand and gravel, trace clay			
-	58.4	0;0;0 0:::0:::0 0::0::0	Gray/red sand and gravel, trace			
-20 -	62.2		clay	Auger/boring complete to 20'		

PROJECT: Sunoco Philadelphia Refinery DRILLING CO.: Parrat Wolff Inc.

SITE LOCATION: AOI-8 DRILLING METHOD: 6" Hollow Stem Auger

JOB NO.: SAMPLING METHOD: Split Spoon

LOGGED BY: Shaun Sykes SCREEN/RISER DIAMETER: 2"
DATES DRILLED: 5/15/2008 WELLBORE DIAMETER: 6"

TOTAL DEPTH: 12' ELEVATION:

101	AL DEFIN.	12	ELE	VATION.		
Depth (feet)		USCS	LITHOLOGY	COMMENTS	WELL CONSTRUCTION	WELL DIAGRAM
-	0.0 0.7 1.2 2.3	^^^^ ^^^^ ^^^^	gravel, dry	Sample taken 1-2' for laboratory analysis	2' riser	
-5 - -				Previously cleared to 10', backfilled with sand		
-10	57.1	^^^^	Fill - gravel, wood, brick		10' screen	
-	69.3	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		Auger complete to 12'		
	115	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\				
	121		Black sandy clay, wet	Boring complete to 14'		

PROJECT: Sunoco Philadelphia Refinery DRILLING CO.: Parrat Wolff Inc.

SITE LOCATION: AOI-8 DRILLING METHOD: 6" Hollow Stem Auger

JOB NO.: SAMPLING METHOD: Split Spoon

LOGGED BY: Shaun Sykes SCREEN/RISER DIAMETER: 2"
DATES DRILLED: 5/15/2008 WELLBORE DIAMETER: 6"

TOTAL DEPTH: 12' ELEVATION:

Depth (feet)		USCS	LITHOLOGY	COMMENTS	WELL CONSTRUCTION	WELL DIAGRAM
-	0.0 0.5 0.6 1.2	^^^^ ^^^^ ^^^	Fill - gravel, brown sandy silt, slightly moist Brown/black silty sand and gravel, very moist	Sample taken 1-2' for laboratory analysis	2' riser	
-5 - -				Previously cleared to 10', backfilled with sand		
- -10 —	75.6 124		Black/gray sand and gravel, trace clay, wet Black/gray sandy clay, wet	Auger complete to	10' screen	
-	89.2		Black/gray sandy clay, very moist	12'		
-	75.6			Boring complete to 15'		
_15 _	64.2					

Pennsylvania Department of Environmental Protection

2 East Main Street Norristown, PA 19401 November 14, 2008

Southeast Regional Office

Phone: 484-250-5960 Fax: 484-250-5961

11-24-2008

Ms. Dina Toto Remediation Engineer Sunoco, Inc. 10 Industrial Highway Lester, PA 19029

Re: ECP - Special Projects

AOI No. 8 Technical Review Comments

Water Quality Consent Order

IW/Operations Sunoco Point Breeze Refinery

NPDES Permit No. PA0012629

Passyunk Avenue City of Philadelphia

Dear Ms. Toto:

The Pennsylvania Department of Environmental Protection (Department) has received and reviewed the Site Characterization Report AOI 8 dated September 30, 2008. This document was prepared by Langan Engineering and Environmental Services on behalf of Sunoco Refining and was received in our Norristown office on September 30, 2008.

The Department's comments are as follows:

- 1. A Site-Specific Standard has been proposed for surface soils in the North Yard. Analytical data collected in the 0.0 to 2.0-foot interval shows contaminants of concern (COCs) to be Benzene, Benzo(a)pyrene, and Naphthalene. Appendix F contains the calculations used to support this Demonstration of Attainment. A closer examination of the data in Table F-5 used to calculate the cumulative risk for Benzo(a)pyrene seems to indicate that the total excess cancer cumulative risks would be 1.67 x 10-4. Unfortunately, this number is outside our Act 2 acceptable risk range. Please revisit this part of the assessment.
- 2. Section 2.4 should include a description of the Jackson Street Sewer, including its dimensions, purpose, and construction. The incidental role of the sewer as a transport mechanism for contaminants from the refinery must not be ignored. The sewer can transport NAPL or contaminated water from AOI-8 to the Schuylkill River, and it can also transport vapor from AOI-8 either to the west (to the River area) or to the east (to the neighborhoods in the vicinity of 29th Street, between Vare Avenue and McKean Street.)

SUNOCO 10:09:34 a.m. 11–24–2008

Ms. Dina Toto

- 2 -

November 14, 2008

2/3 =

- 3. Section 5.2 should include more information about the Jackson Street Sewer Total Fluids Recovery System, including when it was constructed, the original purpose, and some information about its operation and success.
- 4. Section 5.4 should include more information about the North Yard Bulkhead/No. 3 Tank Farm Separator Total Fluids Recovery System, including when it was constructed, the original purpose, and some information about its operation and success.
- 5. Section 6.5 includes a discussion of vapor control efforts in the Jackson Street Sewer using the water curtain, but it includes no analysis of vapor migration and no assessment of whether or not the water curtain is actually effective. The Department continues to receive reports from residents in the neighborhood adjacent to this sewer complaining about petroleum odors that emanate from the sewer. Based on this history of mysterious and chronic petroleum odor, the Department remains concerned about the possibility that the refinery property, AOI-8, is a source of this nuisance odor. The AOI-8 Site Characterization cannot be considered complete unless it contains an evaluation of the migration of nuisance odors and/or vapors from the site via the sewer.
- 6. Section 7.6 is incomplete. It should discuss the Jackson Street Sewer as a pathway for contaminants in groundwater to the Schuylkill River. The observed presence of hydrocarbons in the inside walls of the sewer strongly suggests that some such transport occurs. It also should discuss the role of the sewer as a pathway for vapor migration, particularly into the residential neighborhoods in the vicinity of South 29th Street, between Vare Avenue and McKean Street.

Ms. Dina Toto

- 3 -

November 14, 2008

If you have any questions or need further information regarding this matter, please contact Ayman Ghobrial at 484-250-5781.

Sincerely,

Ayman L. Ghobrial, P.G.

Licensed Professional Geologist

Agman L. Ghebria

Environmental Cleanup

cc: Mr. O'Neil

Mr. Payne, P.G.

Mr. Burke

Mr. Sneath

Ms. Warren

Ms. Costello, P.G. - Langan Engineering

City of Philadelphia

Mr. Herr, P.G. - RT Environmental Services, Inc.

Mr. Brown, P.E. - RT Environmental Services, Inc.

West Chester Borough

Chester County Courthouse

Chester County Health Department

Chester County Planning Commission

Regional File

30 (AR08ECP)318-5

Appendix E: Data Usability Assessment

Data usability is the process of evaluating the laboratory data results and determining the confidence with which any data point may be used. Data usability is evaluated to ensure that the opportunity for incorporating unacceptable and unmanageable error into the decision-making process is minimized to the extent possible. Usability is determined by evaluating the data qualifiers applied by the laboratory or data validator and the project data quality objectives. Reported results may be considered to have a high degree of confidence because the method performance criteria were achieved or, alternatively, the results may be considered estimates and flagged by the lab. These flags include "J" qualifiers to indicate a reported result is estimated below the laboratory reporting limit; "UJ" qualifiers to indicate a reported non-detect result may be biased because the associated detection limits are inaccurate; and "B" qualifiers to indicate a reported result may be biased high due to blank contamination.

For the purposes of this investigation, groundwater, soil and indoor air sample results were summarized in thirty-one laboratory reports, provided by Lancaster Laboratories, and are evaluated in the sections below for usability. These samples were collected between 2008 and 2009 by Aquaterra Tech. on behalf of Sunoco Inc. and analyzed for volatile organic compounds (VOC), polyaromatic hydrocarbons (PAH), ethylene dibromide (EDB), lead, methane and wet chemistry parameters. Copies of the laboratory reports are provided in this appendix for your reference. Any analytical data, data qualifiers, and QC results provided in these reports were evaluated to determine the confidence with which this groundwater data could be used in the decision-making process. The criteria used in the data usability summary are presented in the following sections.

Data Quality Indicators

Data quality indicators (DQIs) are qualitative and quantitative measures of data quality "attributes," which are descriptors used to express various properties of analytical data. Thus, DQIs are the various measures of the individual data characteristics that collectively comprise the general, all encompassing term "data quality." Quality attributes used to assess the data usability include:

- Method selectivity/specificity
- Accuracy (bias)
- Precision
- Representativeness
- Comparability
- Completeness

These indicators, as they relate to the data collected during the site characterization, are described in more detail below.

Method Selectivity/Specificity

Method selectivity/specificity is defined as the compound type or class that can be detected by the instrument or detector. Instruments that are used to detect a compound class (i.e., hydrocarbons) are said to be selective. Instruments that are used to detect a specific element group (e.g., halogens) are said to be specific. Groundwater, soil, and indoor air samples, as well as field QC blanks, were analyzed for the following parameters using the listed selective and specified methods:

- GC/MS Volatiles via EPA Methods SW-846 5030B and SW-846 8260B,
- GC/MS PAHs in water via EPA Method SW-846 8270C,
- Ethylene Dibromide via EPA Method SW-846 8011,
- Lead via EPA Method SW-846 6010B and SW-846 6020,
- Wet Chemistry via EPA Method SM20 2540C and SM20 2540G,
- Volatiles via FPA Method TO-15 and
- Methane via EPA Method 18 modified.

Accuracy (Bias)

Accuracy is defined as the amount of agreement between the laboratory's reported concentration and the true concentration of an analyte in an environmental sample. An evaluation of accuracy provides an estimate of bias. Bias is considered to be high or low, which means that the "actual" concentration is likely lower or higher (respectively) than the laboratory result indicates. While bias direction can be estimated for data quality impacts the degree to which bias impacts the laboratory result cannot be estimated.

Indicators of accuracy include, but are not limited to, surrogate spike recoveries, laboratory control spike recoveries, matrix spike recoveries, and matrix spike duplicate recoveries. The acceptable ranges of accuracy for each of the above listed indicators are method specific and are defined within the published analytical test methods specified in the section above. For the purposes of this assessment, accuracy [or bias] was evaluated by reviewing the following indicators:

- Sample hold times to ensure all samples were analyzed within method specific timeframes. If hold times are exceeded, reported concentrations may be negatively biased.
- Lab and field blank samples to ensure no analytes were detected: if analytes were detected in blank samples, the concentrations of these analytes in the normal environmental samples may be positively biased.
- Percent recovery of surrogate spikes (synthetic compounds injected into each sample) to ensure that these compounds were recovered within the

range deemed acceptable by the analytic method. If surrogates are recovered below this range then concentrations reported for the target analytes may be negatively biased: likewise, if surrogates are recovered above this range then concentrations reported for the target analytes may be positively biased.

 Percent recovery of each compound analyzed in the lab QC samples [Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (LCSD)] and field QC samples [Matrix Spike (MS) and Matrix Spike Duplicate (MSD)].

LCS and LCSD samples are samples of DI water spiked with known concentrations of the target analytes. LCS and LCSD samples are run at a rate of one per sample batch (approximately 20 samples) and are indicators of method performance. If compounds within the LCS or LCSD are recovered above or below the acceptable ranges than concentrations of those compounds may be biased in each of the normal environmental samples within the corresponding batch.

MS and MSD samples are normal environmental samples collected at the project site and spiked with known concentrations of the target analytes. MS and MSD samples are typically run at the same frequency as LCS and LCSD samples but are indicators of potential bias based on the sampling matrix. If compounds within the MS or MSD are recovered above or below the acceptable ranges than concentrations of those compounds may be biased in each of the normal environmental samples within the corresponding batch.

Each laboratory sample delivery group was evaluated for accuracy based on the components listed above. Below is a summary of findings:

Sample Delivery Group 1090076:

- Samples were analyzed within sample hold times.
- Trip and field blanks weren't submitted for analysis and can't be evaluated.
- Target compounds weren't detected above the LOQ in the lab blank.
- Recoveries in LCS/LCSD samples were between acceptable recovery control limits.
- With the exceptions noted below, recoveries in MS/MSD samples were between acceptable recovery control limits.
 - Recoveries were less than the lower limit for fluorene and benzo(ghi)perylene in the MS and fluorene in the MSD for batch 08130SLA026 (corresponding to samples 5353907 5353917).
- With the exceptions noted below, surrogate recoveries were between acceptable recovery control limits.

- o Recoveries of 4-bromofluorobenzene in samples 5353909 and 5353917 were less than the lower control limit.
- o Recoveries of toluene in samples 5353916 and 5353917 were less than the lower control limit.
- o Recovery of 4-bromofluorobenzene in sample 5353916 was greater than the upper control limit.

Sample Delivery Group 1090550:

- Samples were analyzed within sample hold times.
- Trip and field blanks weren't submitted for analysis and can't be evaluated.
- Target compounds weren't detected above the LOQ in the lab blank.
- Recoveries in LCS/LCSD samples were between acceptable recovery control limits.
- Recoveries in MS/MSD samples were between acceptable recovery control limits.
- With the exceptions noted below, surrogate recoveries were between acceptable recovery control limits.
 - o Recoveries of nitrobenzene in samples 5356706, 5356714, 5356716 and 5356718 exceeded the upper control limits.
 - o Recoveries of 2-fluorobiphenyl in samples 5356699, 5356702, 5356705-5356707, 5356714 and 5356718 exceeded the upper control limits.
 - Recoveries of toluene in samples 5356699, 5356701-5356703, 5356709-5356711, 5356714, 5356716 and 5356717 were less than the lower control limit.
 - Recoveries of 1,2-dichloroethane in samples 5356710-5356711, 5356714 and 5356716 were less than the lower control limit.
 - o Recoveries of 4-bromofluorobenzene in samples 5356702 5356703 and 5356709 5356711 and 5356714 5356717 were less than the lower control limit.
 - o Recoveries of dibromofluoromethane in samples 5356711, 5356714 and 5356716 were less than the lower control limit.

Sample Delivery Group 1091319:

- Samples were analyzed within sample hold times.
- Trip and field blanks weren't submitted for analysis and can't be evaluated.
- Target compounds weren't detected above the LOQ in the lab blank.
- Recoveries in LCS/LCSD samples were between acceptable recovery control limits.
- Recoveries in MS/MSD samples, analyzed for lead, VOC and PAH parameters, were between acceptable recovery control limits.
- With the exceptions noted below, surrogate recoveries were between acceptable recovery control limits.
 - o Surrogate recovery for 1,2-dichloroethane, toluene and 4-bromofluorobenzene for sample 5361075 were less than the lower limit.

Sample Delivery Group 1092714:

- Samples were analyzed within sample hold times.
- Trip and field blanks weren't submitted for analysis and can't be evaluated.
- Target compounds weren't detected above the LOQ in the lab blank.
- Recoveries in LCS/LCSD samples were between acceptable recovery control limits.
- Recoveries in MS/MSD samples, analyzed for lead, VOC and PAH parameters, were between acceptable recovery control limits.
- With the exceptions noted below, surrogate recoveries were between acceptable recovery control limits.
 - o Surrogate recovery for dibromofluoromethane in sample 5369568 was less than the lower limit.
 - Surrogate recovery for 1,2-dichloroethane in samples 5369567 and 5369568
 were less than the lower limit.
 - o Surrogate recovery for toluene in samples 5369566-5369569 were less than the lower limit.
 - o Surrogate recovery for 4-bromofluorobenzene in samples 5369567 and 5369568 were less than the lower limit.

Sample Delivery Group 1092715:

- Samples were analyzed within sample hold times.
- Trip and field blanks weren't submitted for analysis and can't be evaluated.
- Target compounds weren't detected above the LOQ in the lab blank.
- Recoveries in LCS/LCSD samples were between acceptable recovery control limits.
- Recoveries in MS/MSD samples, analyzed for lead, VOC and PAH parameters, were between acceptable recovery control limits.
- With the exceptions noted below, surrogate recoveries were between acceptable recovery control limits.
 - Surrogate recovery of toluene in samples 5369573 and 539672 were less than the lower limit.
 - Surrogate recovery of 1,2-dichloroethane in samples 5369571-5369572 were less than the lower limit.
 - o Surrogate recovery of 4-bromofluorobenzene in samples 5369572-5369573 were less than the lower limit.
 - Surrogate recovery of 4-bromofluorobenzene in sample 5369571 was greater than the upper limit.

Sample Delivery Group 1092716:

- Samples were analyzed within sample hold times.
- Trip and field blanks weren't submitted for analysis and can't be evaluated.
- Target compounds weren't detected above the LOQ in the lab blank.
- Recoveries in LCS/LCSD samples were between acceptable recovery control limits.
- Recoveries in MS/MSD samples, analyzed for lead, VOC and PAH parameters, were between acceptable recovery control limits.

• Surrogate recoveries were between acceptable recovery control limits.

Sample Delivery Group 1092862:

- Samples were analyzed within sample hold times.
- Trip and field blanks weren't submitted for analysis and can't be evaluated.
- Target compounds weren't detected above the LOQ in the lab blank.
- Recoveries in LCS/LCSD samples were between acceptable recovery control limits.
- Recoveries in MS/MSD samples, analyzed for lead, VOC and PAH parameters, were between acceptable recovery control limits.
- Surrogate recoveries were between acceptable recovery control limits.
 - Surrogate recovery of 1,2-dichloroethane in samples 5370416-5370417 was less than the lower limit.
 - o Surrogate recovery of toluene in samples 5370416-5370418 was less than the lower limit.
 - o Surrogate recovery of 4-bromofluorobenzene in sample 5370417 was less than the lower limit.

Sample Delivery Group 1093507:

- Samples were analyzed within sample hold times.
- Trip and field blanks weren't submitted for analysis and can't be evaluated.
- Target compounds weren't detected above the LOQ in the lab blank.
- Recoveries in LCS/LCSD samples were between acceptable recovery control limits.
- Recoveries in MS/MSD samples, analyzed for lead, VOC and PAH parameters, were between acceptable recovery control limits.
- Surrogate recoveries were between acceptable recovery control limits with the exceptions below.
 - Surrogate recovery of toluene and 4-bromofluorobenzene in sample 5374123 was less than the lower limit.

Sample Delivery Group 1094202:

- Samples were analyzed within sample hold times.
- Trip and field blanks weren't submitted for analysis and can't be evaluated.
- Target compounds weren't detected above the LOQ in the lab blank.
- Recoveries in LCS/LCSD samples were between acceptable recovery control limits.
- Recoveries in MS/MSD samples, analyzed for lead, VOC and PAH parameters, were between acceptable recovery control limits.
- With the exceptions noted below, surrogate recoveries were between acceptable recovery control limits.
 - o Surrogate recovery of toluene in sample 5378096 was less than the lower limit.
 - Surrogate recovery of 4-bromofluorobenzene in samples 5378095-5378096
 were less than the lower limit.

Sample Delivery Group 1094907:

- Samples were analyzed within sample hold times.
- Trip and field blanks weren't submitted for analysis and can't be evaluated.
- Target compounds weren't detected above the LOQ in the lab blank.
- Recoveries in LCS/LCSD samples were between acceptable recovery control limits.
- Recoveries in MS/MSD samples, analyzed for lead, VOC and PAH parameters, were between acceptable recovery control limits.
- Surrogate recoveries were between acceptable recovery control limits.

Sample Delivery Group 1094908:

- Samples were analyzed within sample hold times.
- Trip and field blanks weren't submitted for analysis and can't be evaluated.
- Target compounds weren't detected above the LOQ in the lab blank.
- Recoveries in LCS/LCSD samples were between acceptable recovery control limits.
- Recoveries in MS/MSD samples, analyzed for lead, VOC and PAH parameters, were between acceptable recovery control limits.
- Surrogate recoveries were between acceptable recovery control limits.

Sample Delivery Group 1095356:

- Samples were analyzed within sample hold times.
- Trip and field blanks weren't submitted for analysis and can't be evaluated.
- Target compounds weren't detected above the LOQ in the lab blank.
- Recoveries in LCS/LCSD samples were between acceptable recovery control limits.
- Recoveries in MS/MSD samples, analyzed for lead, VOC and PAH parameters, were between acceptable recovery control limits.
- Surrogate recoveries were between acceptable recovery control limits.

Sample Delivery Group 1095850:

- Samples were analyzed within sample hold times.
- Trip and field blanks weren't submitted for analysis and can't be evaluated.
- Target compounds weren't detected above the LOQ in the lab blank.
- Recoveries in LCS/LCSD samples were between acceptable recovery control limits.
- Recoveries in MS/MSD samples, analyzed for lead, VOC and PAH parameters, were between acceptable recovery control limits.
- Surrogate recoveries were between acceptable recovery control limits.

Sample Delivery Group 1096046:

- Samples were analyzed within sample hold times.
- Trip and field blanks weren't submitted for analysis and can't be evaluated.
- Target compounds weren't detected above the LOQ in the lab blank.
- Recoveries in LCS/LCSD samples were between acceptable recovery control limits.
- Recoveries in MS/MSD samples, analyzed for lead, VOC and PAH parameters, were between acceptable recovery control limits.

• Surrogate recoveries were between acceptable recovery control limits.

Sample Delivery Group 1096740:

- Samples were analyzed within sample hold times.
- Trip and field blanks weren't submitted for analysis and can't be evaluated.
- Target compounds weren't detected above the LOQ in the lab blank.
- Recoveries in LCS/LCSD samples were between acceptable recovery control limits.
- Recoveries in MS/MSD samples, analyzed for lead, VOC and PAH parameters, were between acceptable recovery control limits.
- Surrogate recoveries were between acceptable recovery control limits.

Sample Delivery Group 1096931:

- Samples were analyzed within sample hold times.
- Trip and field blanks weren't submitted for analysis and can't be evaluated.
- Target compounds weren't detected above the LOQ in the lab blank.
- Recoveries in LCS/LCSD samples were between acceptable recovery control limits.
- Recoveries in MS/MSD samples, analyzed for lead, VOC and PAH parameters, were between acceptable recovery control limits.
- With the exceptions noted below, surrogate recoveries were between acceptable recovery control limits.
 - o Surrogate recovery of dibromofluoromethane in samples 5394558-5394560 were less than the lower limit.
 - o Surrogate recovery of 1,2-dichloroethane in samples 5394558-5394560 were less than the lower limit.
 - Surrogate recovery of toluene in samples 5394558-5394560 were less than the lower limit.
 - Surrogate recovery of 4-bromofluorobenzene in samples 5394557-5394560
 were less than the lower limit.

Sample Delivery Group 1099596:

- Samples were analyzed within sample hold times.
- Trip and field blanks weren't submitted for analysis and can't be evaluated.
- Target compounds weren't detected above the LOQ in the lab blank.
- Recoveries in LCS/LCSD samples were between acceptable recovery control limits.
- With the exceptions noted below, recoveries in MS/MSD samples, analyzed for lead, VOC and PAH parameters, were between acceptable recovery control limits.
 - o Recoveries were greater than the upper limits for pyrene and phenanthrene in the MSD for batch 08191SLB026 (corresponding to sample 5409889.
- Surrogate recoveries were between acceptable recovery control limits.

Sample Delivery Group 1100643:

- Samples were analyzed within sample hold times.
- Trip and field blanks weren't submitted for analysis and can't be evaluated.

- Target compounds weren't detected above the LOQ in the lab blank.
- Recoveries in LCS/LCSD samples were between acceptable recovery control limits.
- Recoveries in MS/MSD samples, analyzed for lead, VOC and PAH parameters, were between acceptable recovery control limits.
- Surrogate recoveries were between acceptable recovery control limits.

Sample Delivery Group 1100865:

- Samples were analyzed within sample hold times.
- Trip and field blanks weren't submitted for analysis and can't be evaluated.
- Target compounds weren't detected above the LOQ in the lab blank.
- Recoveries in LCS/LCSD samples were between acceptable recovery control limits.
- Recoveries in MS/MSD samples, analyzed for EDB, lead, VOC and PAH parameters, were between acceptable recovery control limits.
- With the exceptions noted below, surrogate recoveries were between acceptable recovery control limits.
 - Surrogate recovery of nitrobenzene in sample 5416341 was greater than the upper limit.

Sample Delivery Group 1101087:

- Samples were analyzed within sample hold times.
- Trip and field blanks weren't submitted for analysis and can't be evaluated.
- Target compounds weren't detected above the LOQ in the lab blank.
- Recoveries in LCS/LCSD samples were between acceptable recovery control limits.
- With the exceptions noted below, recoveries in MS/MSD samples, analyzed for EDB, lead, VOC and PAH parameters, were between acceptable recovery control limits.
 - Recoveries were less than the lower limits for toluene, ethylbenzene and xylene in the MS for batch P082053AA (corresponding to samples 5417526 -5415727).
- With the exceptions noted below, surrogate recoveries were between acceptable recovery control limits.
 - Surrogate recovery of 2-fluorobiphenyl in sample 5417522 was greater than the upper limit.

Sample Delivery Group 1101339:

- Samples were analyzed within sample hold times.
- Trip and field blanks weren't submitted for analysis and can't be evaluated.
- Target compounds weren't detected above the LOQ in the lab blank.
- Recoveries in LCS/LCSD samples were between acceptable recovery control limits.
- With the exceptions noted below, recoveries in MS/MSD samples, analyzed for lead, VOC and PAH parameters, were between acceptable recovery control limits.

- Recoveries were less than the lower limits for toluene, ethylbenzene and xylene in the MS for batch P082053AA (corresponding to samples 5418823 – 5418832).
- With the exceptions noted below, surrogate recoveries were between acceptable recovery control limits.
 - Surrogate recovery of 1,1,2,2-tetrachloroethane in samples 5418824 and 5418828 were greater than the upper limit.

Sample Delivery Group 1101473:

- Samples were analyzed within sample hold times.
- Trip and field blanks weren't submitted for analysis and can't be evaluated.
- Target compounds weren't detected above the LOQ in the lab blank.
- Recoveries in LCS/LCSD samples were between acceptable recovery control limits.
- Recoveries in MS/MSD samples, analyzed for lead, VOC and PAH parameters, were between acceptable recovery control limits.
- Surrogate recoveries were between acceptable recovery control limits.

Sample Delivery Group 1102042:

- Samples were analyzed within sample hold times.
- Trip and field blanks weren't submitted for analysis and can't be evaluated.
- Target compounds weren't detected above the LOQ in the lab blank.
- Recoveries in LCS/LCSD samples were between acceptable recovery control limits.
- Recoveries in MS/MSD samples, analyzed for lead, VOC and PAH parameters, were between acceptable recovery control limits.
- With the exceptions noted below, surrogate recoveries were between acceptable recovery control limits.
 - Surrogate recoveries of nitrobenzene and 2-fluorobiphenyl in sample 5422562 were greater than the upper limit.

Sample Delivery Group 1102389:

- Samples were analyzed within sample hold times.
- Trip and field blanks weren't submitted for analysis and can't be evaluated.
- Target compounds weren't detected above the LOQ in the lab blank.
- Recoveries in LCS/LCSD samples were between acceptable recovery control limits.
- With the exceptions noted below, recoveries in MS/MSD samples, analyzed for EDB, lead, VOC and PAH parameters, were between acceptable recovery control limits.
 - o Recoveries were greater than the upper limits for lead in the MSD for batch 082136050003A (corresponding to samples 5424682 5424694).
- With the exceptions noted below, surrogate recoveries were between acceptable recovery control limits.
 - o Surrogate recovery of 1,1,2,2-tetrachloroethane in samples 5424688 and 5424691-5424692 were greater than the upper limit.

Surrogate recoveries of nitrobenzene, 2-fluorobiphenyl and terphenyl for sample
 5424693 are greater than the upper limits.

Sample Delivery Group 1102390:

- Samples were analyzed within sample hold times.
- Trip and field blanks weren't submitted for analysis and can't be evaluated.
- Target compounds weren't detected above the LOQ in the lab blank.
- Recoveries in LCS/LCSD samples were between acceptable recovery control limits.
- Recoveries in MS/MSD samples, analyzed for EDB, lead, VOC and PAH parameters, were between acceptable recovery control limits.
- With the exceptions noted below, surrogate recoveries were between acceptable recovery control limits.
 - Surrogate recovery of nitrobenzene in samples 5424702 and 5424705 were greater than the upper limit.
 - Surrogate recovery of 1,1,2,2-tetrachloroethane in sample 5424713 was greater than the upper limit.

Sample Delivery Group 1102391:

- Samples were analyzed within sample hold times.
- Trip and field blanks weren't submitted for analysis and can't be evaluated.
- Target compounds weren't detected above the LOQ in the lab blank.
- Recoveries in LCS/LCSD samples were between acceptable recovery control limits.
- Recoveries in MS/MSD samples, analyzed for lead, VOC and PAH parameters, were between acceptable recovery control limits.
- Surrogate recoveries were between acceptable recovery control limits.

Sample Delivery Group 1103058:

- Samples were analyzed within sample hold times.
- Trip and field blanks weren't submitted for analysis and can't be evaluated.
- Target compounds weren't detected above the LOQ in the lab blank.
- Recoveries in LCS/LCSD samples were between acceptable recovery control limits.
- Recoveries in MS/MSD samples, analyzed for lead, VOC and PAH parameters, were between acceptable recovery control limits.
- Surrogate recoveries were between acceptable recovery control limits.

Sample Delivery Group 1104407:

- Samples were analyzed within sample hold times.
- Trip and field blanks weren't submitted for analysis and can't be evaluated.
- Target compounds weren't detected above the LOQ in the lab blank.
- With the exceptions noted below, recoveries in LCS/LCSD samples were between acceptable recovery control limits.
 - Recoveries were greater than the upper limits for phenanthrene in the LCSD for batch 08221WAA026 (corresponding to samples 5435927 - 5435928).

- Recoveries in MS/MSD samples, analyzed for EDB, lead, VOC and PAH parameters, were between acceptable recovery control limits.
- Surrogate recoveries were between acceptable recovery control limits.

Sample Delivery Group 1142359:

- Samples were analyzed within sample hold times.
- One trip blank and no field blanks were submitted for analysis. Target compounds weren't detected above the LOQ in the trip blank.
- Target compounds weren't detected above the LOQ in the lab blank.
- Recoveries in LCS/LCSD samples were between acceptable recovery control limits.
- MS/MSD samples were not prepared or analyzed for these air samples.
- Surrogate analyses were not performed on air samples.

Sample Delivery Group 1148395:

- Samples were analyzed within sample hold times.
- Trip and field blanks weren't submitted for analysis and can't be evaluated.
- Target compounds weren't detected above the LOQ in the lab blank.
- With the exceptions noted below, recoveries in LCS/LCSD samples were between acceptable recovery control limits.
 - Recoveries were greater than the upper limits for 1,4-dioxane and 2-hexanone in the LCS/LCSD for batch C0916730AA (corresponding to samples 5695000 -5695001).
 - o Recoveries were less than the lower limits for vinyl acetate in the LCS/LCSD for batch C0916730AA (corresponding to samples 5695000 5695001).
- MS/MSD samples were not prepared or analyzed for these air samples.
- Surrogate analyses were not performed on air samples.

Sample Delivery Group 1148396:

- Samples were analyzed within sample hold times.
- Trip and field blanks weren't submitted for analysis and can't be evaluated.
- Target compounds weren't detected above the LOQ in the lab blank.
- With the exceptions noted below, recoveries in LCS/LCSD samples were between acceptable recovery control limits.
 - Recoveries were greater than the upper limits for 1,4-dioxane and 2-hexanone in the LCS/LCSD for batch C0916730AA (corresponding to samples 5695002 -5695004) and for batch C0916730AB (corresponding to sample 5695005).
 - o Recoveries were less than the lower limits for vinyl acetate in the LCS/LCSD for batch C0916730AB (corresponding to samples 5695005).
- MS/MSD samples were not prepared or analyzed for these air samples.
- Surrogate analyses were not performed on air samples.

Precision

Precision is defined as the ability to reproduce analytical results and is the measure of variability between individual sample measurements under prescribed conditions. Precision is assessed by the analysis of duplicate samples and expressed in terms of relative percent difference (RPD). For this project, analytical variability was measured as the relative percent difference (RPD) between 1) analytical laboratory duplicates (LCS and LCSD), and 2) the matrix spike (MS) and matrix spike duplicate (MSD). Field duplicate samples are not required under the sampling guidelines and were not collected.

Each laboratory sample delivery group was evaluated for precision based on the components listed above. Below is a summary of findings:

Sample Delivery Group 1090076:

- The RPDs calculated and reported by the lab between the LCS/LCSD are within the maximum allowable by the analytical method.
- The RPDs calculated and reported by the lab between the MS/MSD are within the maximum allowable by the analytical method, with the following exceptions:
 - Pyrene, fluorene, phenanthrene, anthracene, benzo(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(a)pyrene and benzo(g,h,i)perylene in batch 08130SLA026 (corresponding to samples 5353907 – 5353917).
 - o Lead in batch 081306150002A (corresponding to samples 5353907 5353917).

Sample Delivery Group 1090550:

- The RPDs calculated and reported by the lab between the LCS/LCSD are within the maximum allowable by the analytical method.
- The RPDs calculated and reported by the lab between the MS/MSD are within the maximum allowable by the analytical method, with the following exceptions:
 - Lead in batch 081356150001A (corresponding to sample 5356718).

Sample Delivery Group 1091319:

- The RPDs calculated and reported by the lab between the LCS/LCSD are within the maximum allowable by the analytical method.
- The RPDs calculated and reported by the lab between the MS/MSD are within the maximum allowable by the analytical method, with the following exceptions:
 - Lead in batch 081376150002A (corresponding to sample 5361075).

Sample Delivery Group 1092714:

• The RPDs calculated and reported by the lab between the LCS/LCSD and MS/MSD are within the maximum allowable by the analytical method.

Sample Delivery Group 1092715:

• The RPDs calculated and reported by the lab between the LCS/LCSD and MS/MSD are within the maximum allowable by the analytical method.

Sample Delivery Group 1092716:

• The RPDs calculated and reported by the lab between the LCS/LCSD and MS/MSD are within the maximum allowable by the analytical method.

Sample Delivery Group 1092862:

- The RPDs calculated and reported by the lab between the LCS/LCSD are within the maximum allowable by the analytical method.
- The RPDs calculated and reported by the lab between the MS/MSD are within the maximum allowable by the analytical method, with the exceptions noted below.
 - Fluorene and phenanthrene in batch 08149SLE026 (corresponding to samples 5370416 – 5370418)

Sample Delivery Group 1093507:

 The RPDs calculated and reported by the lab between the LCS/LCSD and MS/MSD are within the maximum allowable by the analytical method.

Sample Delivery Group 1094202:

- The RPDs calculated and reported by the lab between the LCS/LCSD are within the maximum allowable by the analytical method.
- The RPDs calculated and reported by the lab between the MS/MSD are within the maximum allowable by the analytical method, with the following exceptions:
 - o Lead in batch 081566150002A (corresponding to samples 5378093 5378096).

Sample Delivery Group 1094907:

• The RPDs calculated and reported by the lab between the LCS/LCSD and MS/MSD are within the maximum allowable by the analytical method.

Sample Delivery Group 1094908:

 The RPDs calculated and reported by the lab between the LCS/LCSD and MS/MSD are within the maximum allowable by the analytical method.

Sample Delivery Group 1095356:

• The RPDs calculated and reported by the lab between the LCS/LCSD and MS/MSD are within the maximum allowable by the analytical method.

Sample Delivery Group 1095850:

• The RPDs calculated and reported by the lab between the LCS/LCSD are within the maximum allowable by the analytical method.

- The RPDs calculated and reported by the lab between the MS/MSD are within the maximum allowable by the analytical method, with the following exceptions:
 - Lead in batch 081706150003A (corresponding to sample 5388263).

Sample Delivery Group 1096046:

- The RPDs calculated and reported by the lab between the LCS/LCSD are within the maximum allowable by the analytical method.
- The RPDs calculated and reported by the lab between the MS/MSD are within the maximum allowable by the analytical method with the following exceptions:
 - o Lead in batch 081706150003A (corresponding to sample 5389508).

Sample Delivery Group 1096740:

- The RPDs calculated and reported by the lab between the LCS/LCSD are within the maximum allowable by the analytical method.
- The RPDs calculated and reported by the lab between the MS/MSD are within the maximum allowable by the analytical method, with the following exceptions:
 - o Lead in batch 081716150003A (corresponding to sample 5393378).

Sample Delivery Group 1096931:

• The RPDs calculated and reported by the lab between the LCS/LCSD and MS/MSD are within the maximum allowable by the analytical method.

Sample Delivery Group 1099596:

 The RPDs calculated and reported by the lab between the LCS/LCSD and MS/MSD are within the maximum allowable by the analytical method.

Sample Delivery Group 1100643:

 The RPDs calculated and reported by the lab between the LCS/LCSD and MS/MSD are within the maximum allowable by the analytical method.

Sample Delivery Group 1100865:

 The RPDs calculated and reported by the lab between the LCS/LCSD and MS/MSD are within the maximum allowable by the analytical method.

Sample Delivery Group 1101087:

 The RPDs calculated and reported by the lab between the LCS/LCSD and MS/MSD are within the maximum allowable by the analytical method.

Sample Delivery Group 1101339:

 The RPDs calculated and reported by the lab between the LCS/LCSD and MS/MSD are within the maximum allowable by the analytical method.

Sample Delivery Group 1101473:

• The RPDs calculated and reported by the lab between the LCS/LCSD and MS/MSD are within the maximum allowable by the analytical method.

Sample Delivery Group 1102042:

• The RPDs calculated and reported by the lab between the LCS/LCSD and MS/MSD are within the maximum allowable by the analytical method.

Sample Delivery Group 1102389:

 The RPDs calculated and reported by the lab between the LCS/LCSD and MS/MSD are within the maximum allowable by the analytical method.

Sample Delivery Group 1102309:

 The RPDs calculated and reported by the lab between the LCS/LCSD and MS/MSD are within the maximum allowable by the analytical method.

Sample Delivery Group 1102391:

 The RPDs calculated and reported by the lab between the LCS/LCSD and MS/MSD are within the maximum allowable by the analytical method.

Sample Delivery Group 1103058:

- The RPDs calculated and reported by the lab between the LCS/LCSD are within the maximum allowable by the analytical method.
- The RPDs calculated and reported by the lab between the MS/MSD are within the maximum allowable by the analytical method, with the following exceptions:
 - Lead in batch 082146050002A (corresponding to samples 5428282 5428285).

Sample Delivery Group 1104407:

 The RPDs calculated and reported by the lab between the LCS/LCSD and MS/MSD are within the maximum allowable by the analytical method.

Sample Delivery Group 1142359:

 The RPDs calculated and reported by the lab between the LCS/LCSD and MS/MSD are within the maximum allowable by the analytical method.

Sample Delivery Group 1148395:

• The RPDs calculated and reported by the lab between the LCS/LCSD and MS/MSD are within the maximum allowable by the analytical method.

Sample Delivery Group 1148396:

• The RPDs calculated and reported by the lab between the LCS/LCSD and MS/MSD are within the maximum allowable by the analytical method.

Representativeness

Representativeness is the degree to which data accurately and precisely represents a characteristic of a population, parameter variations at a sampling point, or an environmental condition. Representativeness is a qualitative parameter most concerned with the proper design of the sampling program. The representativeness criteria may be satisfied by making certain the sampling locations are selected properly and that a sufficient number of samples are collected to fulfill program objectives.

Groundwater, surface water and indoor air samples were collected from locations biased to potential source areas and/or sensitive receptors (surface water bodies, occupied buildings, residential properties). The compounds analyzed in groundwater and soil samples include the compounds currently identified in the Pennsylvania Corrective Action Process (CAP) Regulation Amendments effective December 1, 2001; provided in Chapter VI, Section E of PADEP's Closure Requirements for Underground Storage Tank Systems (with exception for the waste oil parameters since waste oil is only stored in small tanks within the facility maintenance garages). These compounds are the same as those listed for groundwater in the Current Conditions Report (Langan, 2004). Air samples were analyzed for volatile compounds using the EPA TO-15 method.

The data collected during this investigation is considered representative of groundwater, soil and air in AOI 8 based on the distribution of the monitoring wells, soil borings and air sampling locations within the sampling program, the frequency of sample collection, and the suite of parameters analyzed.

Comparability

Comparability is the degree to which data from one study can be compared with data from other similar studies, reference values (such as background), reference materials, and screening values. This goal was achieved by using standard techniques to collect and analyze representative samples and reporting analytical results in appropriate units. The sample collection methods used were based on PADEP's guidelines summarized in the Groundwater Monitoring Guidance Manual dated December 1, 2001 and the Groundwater Sampling and Analysis Plan, dated January 17, 2008. The analytical methods used are EPA solid waste methods or Standard Methods.

Based on this data quality analysis the data are considered comparable to other groundwater, soil and air data collected as part of other sampling programs.

Completeness

Completeness is defined as the percentage of usable data in the total data population generated. Completeness was calculated for each compound where data were qualified as estimated or rejected and for compounds that were affected by blank contamination. Completeness is determined as the difference between the total

number of data points and the number of data points qualified divided by the total number of data points.

For compounds analyzed in soil [with exception of ethylene dibromide] greater than 95% percent of the data is considered usable. The remaining 5% is considered unusable because, due to matrix interference, the samples were diluted to the point that the laboratory reporting limits were elevated above the corresponding soil screening criteria (PADEP Soil MSCs) and no concentration was detected. Specifically, MTBE in samples N-109_1.0-2.0 and N-126_1.0-2.0; benzene in samples N-109_1.0-2.0, N-122_1.0-2.0, and N-126_1.0-2.0; and 1,2-dichloroethane in samples N-109_1.0-2.0, N-122_1.0-2.0, and N-126_1.0-2.0 are not considered usable for the purposes of characterization and delineation. Similarly, due to matrix interference, ethylene dibromide is also considered unusable in any sample because the laboratory reporting limits were elevated above the PADEP Soil MSC.

For compounds analyzed in groundwater [with exception of chrysene] greater than 92% percent of the data is considered usable. The remaining 8% is considered unusable because, due to matrix interference, the samples were diluted to the point that the laboratory reporting limits were elevated above the corresponding groundwater screening criteria (PADEP GW MSCs) and no concentration was detected. Specifically, 1,2-dichloroethane in samples N-23, N-34, N-35, N-58, N-61, N-119, N-133 and PZ-506; benzene in samples N-23, N-34, N-35, N-58, N-61 and PZ-506; and naphthalene in sample N-36. Similarly, due to matrix interference, chrysene is also considered unusable in any sample because the laboratory reporting limits were elevated above the PADEP Soil MSC.

One hundred percent of the air data is considered usable, with select concentrations considered biased and, therefore, estimated. The number of samples planned was expected to provide sufficient data to satisfy the objective defined in the Current Conditions Report (Langan, 2004). Had the initial results not met QC requirements the volume of samples collected was sufficient to reanalyze samples as necessary.

Summary and Conclusions

For the purposes of this investigation, sample results were summarized in thirty one sample delivery groups, provided by Lancaster Laboratories, and are evaluated in the sections above for usability. Copies of the laboratory reports are provided in this appendix for your reference.

The laboratory performed quality assurance and quality control (QA/QC) analyses, including laboratory control spikes and laboratory control spike duplicates, matrix spikes and matrix spike duplicates, surrogate spikes, method blanks and QA/QC checks such as GC/MS instrument tuning and mass calibration, as appropriate. Laboratory QA/QC summaries were completed by the laboratory and provided in each data package,

attached. The analytical data, data qualifiers, and QC results provided in these reports were evaluated to determine the confidence with which this groundwater, soil and air data could be used in the decision-making process.

Data quality indicators (DQIs) are qualitative and quantitative measures of data quality "attributes," which are descriptors used to express various properties of analytical data. Thus, DQIs are the various measures of the individual data characteristics that collectively comprise the general, all encompassing term "data quality." Quality attributes used to assess the data usability include:

- Method selectivity/specificity
- Accuracy (bias)
- Precision
- Representativeness
- Comparability
- Completeness

Based on evaluation of these indicators the groundwater, soil and air data collected during this investigation is considered usable with the exception of those described above for characterizing the site, identifying compounds of concern, and delineating potential impacts. As detailed in the sections above, few concentrations should be considered as biased because LCS/LCSD, MS/MSD and surrogate recoveries were beyond acceptable control limits. Reviews of the biased concentrations show that it is unlikely that any of the concentrations would have exceeded the standard had the bias not occurred.

Where the LCS/LCSD and MS/MSD recoveries were less than the lower recovery control limit the reported values should be considered as estimated low. Where the recoveries were greater than the upper recovery control limit the reported values should be considered as estimated high. The corresponding data are considered usable but should be considered slightly higher or lower in concentration than representative of the site and time collected.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

ANALYTICAL RESULTS

Prepared for:

SUN: Aquaterra Tech. PO Box 744 West Chester PA 19381

610-431-5733

Prepared by:

Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425

SAMPLE GROUP

The sample group for this submittal is 1090076. Samples arrived at the laboratory on Wednesday, May 07, 2008. The PO# for this group is PHILADELPHIA.

Client Description	<u>Lancaster Labs Number</u>
BH-08-31_1.0-2.0 Grab Soil	5353907
BH-08-33_1.5-2.0 Grab Soil	5353908
BH-08-34_1.5-2.0 Grab Soil	5353909
BH-08-29_1.0-2.0 Grab Soil	5353910
BH-08-15_1.0-2.0 Grab Soil	5353911
BH-08-35_1.0-2.0 Grab Soil	5353912
BH-08-14_1.0-2.0 Grab Soil	5353913
BH-08-27_1.0-2.0 Grab Soil	5353914
BH-08-13_1.0-2.0 Grab Soil	5353915
BH-08-28_1.0-2.0 Grab Soil	5353916
BH-08-12_1.0-2.0 Grab Soil	5353917

ELECTRONIC	SUN: Aquaterra Tech.	Attn: Tiffani Doerr
COPY TO		
ELECTRONIC	Langan	Attn: Joseph Catricks
COPY TO	-	_
ELECTRONIC	SUN: Aquaterra Tech.	Attn: Kevin Martin
COPY TO	_	

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Questions? Contact your Client Services Representative Jessica A Heun at (717) 656-2300

Respectfully Submitted,

Michele M. Turner

middele M. Turner

Director

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. SW5353907 Group No. 1090076

BH-08-31_1.0-2.0 Grab Soil Philadelphia Refinery A01-8 BH-08-31 1.0-2.0

Collecte \overline{d} :05/06/2008 10:30 by SS Account Number: 10132

Submitted: 05/07/2008 17:25 SUN: Aquaterra Tech.

Reported: 05/19/2008 at 18:53 PO Box 744

Discard: 07/19/2008 West Chester PA 19381

BH831

				Dry		
CAT			Dry	Limit of		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation	Units	Factor
06135	Lead	7439-92-1	1,300.	10.9	mg/kg	100
00111	Moisture	n.a.	9.4	0.50	용	1
	"Moisture" represents the loss 103 - 105 degrees Celsius. The as-received basis.					
07804	PAHs in Soil by GC/MS					
01195	Pyrene	129-00-0	25,000.	4,600.	ug/kg	5
03761	Naphthalene	91-20-3	< 920.	920.	ug/kg	1
03768	Fluorene	86-73-7	2,000.	920.	ug/kg	1
03775	Phenanthrene	85-01-8	26,000.	4,600.	ug/kg	5
03776	Anthracene	120-12-7	8,100.	920.	ug/kg	1
03781	Benzo(a)anthracene	56-55-3	16,000.	920.	ug/kg	1
03782	Chrysene	218-01-9	13,000.	920.	ug/kg	1
03786	Benzo(b)fluoranthene	205-99-2	12,000.	920.	ug/kg	1
03788	Benzo(a)pyrene	50-32-8	11,000.	920.	ug/kg	1
03791	Benzo(g,h,i)perylene	191-24-2	6,900.	920.	ug/kg	1
	Due to sample matrix interfere	ences observed o	during the ext	raction, the		
	normal reporting limits were r	ot attained.				
02308	UST-Leaded Soils by 8260B					
02016	Methyl Tertiary Butyl Ether	1634-04-4	< 240.	240.	ug/kg	44.09
05460	Benzene	71-43-2	< 240.	240.	ug/kg	44.09
05461	1,2-Dichloroethane	107-06-2	< 240.	240.	ug/kg	44.09
05466	Toluene	108-88-3	< 240.	240.	ug/kg	44.09
05471	1,2-Dibromoethane	106-93-4	< 240.	240.	ug/kg	44.09
05474	Ethylbenzene	100-41-4	< 240.	240.	ug/kg	44.09
05479	Isopropylbenzene	98-82-8	< 240.	240.	ug/kg	44.09
06301	Xylene (Total)	1330-20-7	< 240.	240.	ug/kg	44.09

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. SW5353907 Group No. 1090076

BH-08-31_1.0-2.0 Grab Soil Philadelphia Refinery A01-8 BH-08-31 1.0-2.0

Collecte \overline{d} :05/06/2008 10:30 by SS Account Number: 10132

Submitted: 05/07/2008 17:25 SUN: Aquaterra Tech.

Reported: 05/19/2008 at 18:53 PO Box 744

Discard: 07/19/2008 West Chester PA 19381

CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06135	Lead	SW-846 6020	1	05/15/2008 17:34	James R Williams II	100
00111	Moisture	SM20 2540 G	1	05/08/2008 16:23	Scott W Freisher	1
07804	PAHs in Soil by GC/MS	SW-846 8270C	1	05/13/2008 16:06	Timothy J Trees	1
07804	PAHs in Soil by GC/MS	SW-846 8270C	1	05/14/2008 09:59	Linda M Hartenstine	5
02308	UST-Leaded Soils by 8260B	SW-846 8260B	1	05/14/2008 05:29	Stephanie A Selis	44.09
06150	ICP/MS SW-846 Solid digest	SW-846 3050B	1	05/12/2008 20:55	Annamaria Stipkovits	1
06171	GC/MS - Field Preserved MeOH	SW-846 5035	1	05/06/2008 10:30	Client Supplied	1
07806	BNA Soil Extraction	SW-846 3550B	1	05/10/2008 20:20	Patricia L Foreman	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. SW5353908

Group No. 1090076

BH-08-33 1.5-2.0 Grab Soil Philadelphia Refinery A01-8

BH-08-33 1.5-2.0

Collecte \overline{d} : 05/06/2008 10:40 by SS Account Number: 10132

Submitted: 05/07/2008 17:25 SUN: Aquaterra Tech.

Reported: 05/19/2008 at 18:53 PO Box 744

Discard: 07/19/2008 West Chester PA 19381

BH833

				Dry		
CAT			Dry	Limit of		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation	Units	Factor
06135	Lead	7439-92-1	172.	1.15	mg/kg	10
00111	Moisture	n.a.	13.9	0.50	%	1
	"Moisture" represents the loss 103 - 105 degrees Celsius. The as-received basis.					
07804	PAHs in Soil by GC/MS					
01195	Pyrene	129-00-0	7,500.	970.	ug/kg	5
03761	Naphthalene	91-20-3	360.	190.	ug/kg	1
03768	Fluorene	86-73-7	720.	190.	ug/kg	1
03775	Phenanthrene	85-01-8	7,200.	970.	ug/kg	5
03776	Anthracene	120-12-7	1,700.	190.	ug/kg	1
03781	Benzo(a)anthracene	56-55-3	4,600.	970.	ug/kg	5
03782	Chrysene	218-01-9	4,300.	190.	ug/kg	1
03786	Benzo(b)fluoranthene	205-99-2	5,400.	970.	ug/kg	5
03788	Benzo(a)pyrene	50-32-8	3,600.	190.	ug/kg	1
03791	Benzo(g,h,i)perylene	191-24-2	2,300.	190.	ug/kg	1
02308	UST-Leaded Soils by 8260B					
02016	Methyl Tertiary Butyl Ether	1634-04-4	< 280.	280.	ug/kg	47.53
05460	Benzene	71-43-2	< 280.	280.	ug/kg	47.53
05461	1,2-Dichloroethane	107-06-2	< 280.	280.	ug/kg	47.53
05466	Toluene	108-88-3	< 280.	280.	ug/kg	47.53
05471	1,2-Dibromoethane	106-93-4	< 280.	280.	ug/kg	47.53
05474	Ethylbenzene	100-41-4	< 280.	280.	ug/kg	47.53
05479	Isopropylbenzene	98-82-8	< 280.	280.	ug/kg	47.53
06301	Xylene (Total)	1330-20-7	< 280.	280.	ug/kg	47.53

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681• www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. SW5353908 Group No. 1090076

BH-08-33_1.5-2.0 Grab Soil Philadelphia Refinery A01-8 BH-08-33 1.5-2.0

Collecte \overline{d} :05/06/2008 10:40 by SS Account Number: 10132

Submitted: 05/07/2008 17:25 SUN: Aquaterra Tech.

Reported: 05/19/2008 at 18:53 PO Box 744 West Chester PA 19381

Discard: 07/19/2008

BH833	
-------	--

опоээ						
06135	Lead	SW-846 6020	1	05/15/2008 13:05	James R Williams II	10
00111	Moisture	SM20 2540 G	1	05/08/2008 16:23	Scott W Freisher	1
07804	PAHs in Soil by GC/MS	SW-846 8270C	1	05/13/2008 19:13	Timothy J Trees	1
07804	PAHs in Soil by GC/MS	SW-846 8270C	1	05/14/2008 10:22	Linda M Hartenstine	5
02308	UST-Leaded Soils by 8260B	SW-846 8260B	1	05/14/2008 05:52	Stephanie A Selis	47.53
06150	ICP/MS SW-846 Solid digest	SW-846 3050B	1	05/12/2008 20:55	Annamaria Stipkovits	1
06171	GC/MS - Field Preserved	SW-846 5035	1	05/06/2008 10:40	Client Supplied	1
	MeOH					
07806	BNA Soil Extraction	SW-846 3550B	1	05/10/2008 20:20	Patricia L Foreman	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. SW5353909

Group No. 1090076

BH-08-34_1.5-2.0 Grab Soil Philadelphia Refinery A01-8

BH-08-34_1.5-2.0

Collecte \overline{d} :05/06/2008 11:00 by SS Account Number: 10132

Submitted: 05/07/2008 17:25 SUN: Aquaterra Tech.

Reported: 05/19/2008 at 18:53 PO Box 744

Discard: 07/19/2008 West Chester PA 19381

BH834

				Dry		
CAT			Dry	Limit of		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation	Units	Factor
06135	Lead	7439-92-1	354.	1.12	mg/kg	10
00111	Moisture	n.a.	13.7	0.50	%	1
	"Moisture" represents the loss 103 - 105 degrees Celsius. The as-received basis.					
07804	PAHs in Soil by GC/MS					
01195	Pyrene	129-00-0	63,000.	9,700.	ug/kg	50
03761	Naphthalene	91-20-3	< 1,900.	1,900.	ug/kg	10
03768	Fluorene	86-73-7	8,000.	1,900.	ug/kg	10
03775	Phenanthrene	85-01-8	64,000.	9,700.	ug/kg	50
03776	Anthracene	120-12-7	18,000.	1,900.	ug/kg	10
03781	Benzo(a)anthracene	56-55-3	37,000.	1,900.	ug/kg	10
03782	Chrysene	218-01-9	32,000.	1,900.	ug/kg	10
03786	Benzo(b)fluoranthene	205-99-2	39,000.	1,900.	ug/kg	10
03788	Benzo(a)pyrene	50-32-8	29,000.	1,900.	ug/kg	10
03791	Benzo(g,h,i)perylene	191-24-2	18,000.	1,900.	ug/kg	10
02308	UST-Leaded Soils by 8260B					
02016	Methyl Tertiary Butyl Ether	1634-04-4	< 260.	260.	ug/kg	45.13
05460	Benzene	71-43-2	< 260.	260.	ug/kg	45.13
05461	1,2-Dichloroethane	107-06-2	< 260.	260.	ug/kg	45.13
05466	Toluene	108-88-3	< 260.	260.	ug/kg	45.13
05471	1,2-Dibromoethane	106-93-4	< 260.	260.	ug/kg	45.13
05474	Ethylbenzene	100-41-4	< 260.	260.	ug/kg	45.13
05479	Isopropylbenzene	98-82-8	< 260.	260.	ug/kg	45.13
06301	Xylene (Total)	1330-20-7	< 260.	260.	ug/kg	45.13

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681• www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. SW5353909 Group No. 1090076

BH-08-34_1.5-2.0 Grab Soil Philadelphia Refinery A01-8 BH-08-34 1.5-2.0

Collecte \overline{d} :05/06/2008 11:00 by SS Account Number: 10132

Submitted: 05/07/2008 17:25 SUN: Aquaterra Tech.

Reported: 05/19/2008 at 18:53 PO Box 744 West Chester PA 19381

Discard: 07/19/2008

DIIOJI						
06135	Lead	SW-846 6020	1	05/15/2008 13:14	James R Williams II	10
00111	Moisture	SM20 2540 G	1	05/08/2008 16:23	Scott W Freisher	1
07804	PAHs in Soil by GC/MS	SW-846 8270C	1	05/13/2008 21:57	Timothy J Trees	10
07804	PAHs in Soil by GC/MS	SW-846 8270C	1	05/14/2008 10:46	Linda M Hartenstine	50
02308	UST-Leaded Soils by 8260B	SW-846 8260B	1	05/14/2008 06:14	Stephanie A Selis	45.13
06150	ICP/MS SW-846 Solid digest	SW-846 3050B	1	05/12/2008 20:55	Annamaria Stipkovits	1
06171	GC/MS - Field Preserved	SW-846 5035	1	05/06/2008 11:00	Client Supplied	1
	MeOH					
07806	BNA Soil Extraction	SW-846 3550B	1	05/10/2008 20:20	Patricia L Foreman	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. SW5353910

Group No. 1090076

BH-08-29_1.0-2.0 Grab Soil Philadelphia Refinery A01-8

BH-08-29 1.0-2.0

Collecte \overline{d} :05/06/2008 11:10 by SS Account Number: 10132

Submitted: 05/07/2008 17:25 SUN: Aquaterra Tech.

Reported: 05/19/2008 at 18:53 PO Box 744

Discard: 07/19/2008 West Chester PA 19381

BH829

				Dry		
CAT			Dry	Limit of		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation	Units	Factor
06135	Lead	7439-92-1	96.4	1.10	mg/kg	10
00111	Moisture	n.a.	12.4	0.50	%	1
	"Moisture" represents the loss 103 - 105 degrees Celsius. The as-received basis.					
07804	PAHs in Soil by GC/MS					
01195	Pyrene	129-00-0	< 190.	190.	ug/kg	1
03761	Naphthalene	91-20-3	< 190.	190.	ug/kg	1
03768	Fluorene	86-73-7	< 190.	190.	ug/kg	1
03775	Phenanthrene	85-01-8	< 190.	190.	ug/kg	1
03776	Anthracene	120-12-7	< 190.	190.	ug/kg	1
03781	Benzo(a)anthracene	56-55-3	< 190.	190.	ug/kg	1
03782	Chrysene	218-01-9	< 190.	190.	ug/kg	1
03786	Benzo(b)fluoranthene	205-99-2	< 190.	190.	ug/kg	1
03788	Benzo(a)pyrene	50-32-8	< 190.	190.	ug/kg	1
03791	Benzo(g,h,i)perylene	191-24-2	< 190.	190.	ug/kg	1
02308	UST-Leaded Soils by 8260B					
02016	Methyl Tertiary Butyl Ether	1634-04-4	< 230.	230.	ug/kg	40.72
05460	Benzene	71-43-2	< 230.	230.	ug/kg	40.72
05461	1,2-Dichloroethane	107-06-2	< 230.	230.	ug/kg	40.72
05466	Toluene	108-88-3	< 230.	230.	ug/kg	40.72
05471	1,2-Dibromoethane	106-93-4	< 230.	230.	ug/kg	40.72
05474	Ethylbenzene	100-41-4	< 230.	230.	ug/kg	40.72
05479	Isopropylbenzene	98-82-8	< 230.	230.	ug/kg	40.72
06301	Xylene (Total)	1330-20-7	< 230.	230.	ug/kg	40.72

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

West Chester PA 19381

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. SW5353910 Group No. 1090076

BH-08-29_1.0-2.0 Grab Soil Philadelphia Refinery A01-8 BH-08-29 1.0-2.0

Collected: 05/06/2008 11:10 by SS Account Number: 10132

Submitted: 05/07/2008 17:25 SUN: Aquaterra Tech.

Reported: 05/19/2008 at 18:53 PO Box 744

Discard: 07/19/2008

2120d1d: 0,,13,200

BH	82	9
	82	9

111027						
06135	Lead	SW-846 6020	1	05/15/2008 13:17	James R Williams II	10
00111	Moisture	SM20 2540 G	1	05/08/2008 16:23	Scott W Freisher	1
07804	PAHs in Soil by GC/MS	SW-846 8270C	1	05/13/2008 22:20	Timothy J Trees	1
02308	UST-Leaded Soils by 8260B	SW-846 8260B	1	05/14/2008 06:37	Stephanie A Selis	40.72
06150	ICP/MS SW-846 Solid digest	SW-846 3050B	1	05/12/2008 20:55	Annamaria Stipkovits	1
06171	GC/MS - Field Preserved MeOH	SW-846 5035	1	05/06/2008 11:10	Client Supplied	1
07806	BNA Soil Extraction	SW-846 3550B	1	05/10/2008 20:20	Patricia L Foreman	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. SW5353911

Group No. 1090076

BH-08-15 1.0-2.0 Grab Soil Philadelphia Refinery A01-8

BH-08-15 1.0-2.0

Collecte \overline{d} : 05/06/2008 12:25 by SS Account Number: 10132

Submitted: 05/07/2008 17:25 SUN: Aquaterra Tech.

Reported: 05/19/2008 at 18:53 PO Box 744

Discard: 07/19/2008 West Chester PA 19381

BH815

				Dry		
CAT			Dry	Limit of		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation	Units	Factor
06135	Lead	7439-92-1	22.8	1.13	mg/kg	10
00111	Moisture	n.a.	14.0	0.50	%	1
	"Moisture" represents the loss 103 - 105 degrees Celsius. The as-received basis.					
07804	PAHs in Soil by GC/MS					
01195	Pyrene	129-00-0	< 190.	190.	ug/kg	1
03761	Naphthalene	91-20-3	< 190.	190.	ug/kg	1
03768	Fluorene	86-73-7	< 190.	190.	ug/kg	1
03775	Phenanthrene	85-01-8	< 190.	190.	ug/kg	1
03776	Anthracene	120-12-7	< 190.	190.	ug/kg	1
03781	Benzo(a)anthracene	56-55-3	< 190.	190.	ug/kg	1
03782	Chrysene	218-01-9	< 190.	190.	ug/kg	1
03786	Benzo(b)fluoranthene	205-99-2	< 190.	190.	ug/kg	1
03788	Benzo(a)pyrene	50-32-8	< 190.	190.	ug/kg	1
03791	Benzo(g,h,i)perylene	191-24-2	< 190.	190.	ug/kg	1
02308	UST-Leaded Soils by 8260B					
02016	Methyl Tertiary Butyl Ether	1634-04-4	< 200.	200.	ug/kg	34.44
05460	Benzene	71-43-2	< 200.	200.	ug/kg	34.44
05461	1,2-Dichloroethane	107-06-2	< 200.	200.	ug/kg	34.44
05466	Toluene	108-88-3	< 200.	200.	ug/kg	34.44
05471	1,2-Dibromoethane	106-93-4	< 200.	200.	ug/kg	34.44
05474	Ethylbenzene	100-41-4	< 200.	200.	ug/kg	34.44
05479	Isopropylbenzene	98-82-8	< 200.	200.	ug/kg	34.44
06301	Xylene (Total)	1330-20-7	< 200.	200.	ug/kg	34.44

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681• www.lancasterlabs.com

Page 2 of 2

Group No. 1090076 Lancaster Laboratories Sample No. SW5353911

BH-08-15_1.0-2.0 Grab Soil Philadelphia Refinery A01-8 BH-08-15 1.0-2.0

Collecte \overline{d} :05/06/2008 12:25 by SS Account Number: 10132

Submitted: 05/07/2008 17:25 SUN: Aquaterra Tech.

Reported: 05/19/2008 at 18:53 PO Box 744 West Chester PA 19381

Discard: 07/19/2008

риото						
06135	Lead	SW-846 6020	1	05/15/2008 13:20	James R Williams II	10
00111	Moisture	SM20 2540 G	1	05/08/2008 16:23	Scott W Freisher	1
07804	PAHs in Soil by GC/MS	SW-846 8270C	1	05/13/2008 22:44	Timothy J Trees	1
02308	UST-Leaded Soils by 8260B	SW-846 8260B	1	05/15/2008 17:17	Kerri E Koch	34.44
06150	ICP/MS SW-846 Solid digest	SW-846 3050B	1	05/12/2008 20:55	Annamaria Stipkovits	1
06171	GC/MS - Field Preserved	SW-846 5035	1	05/06/2008 12:25	Client Supplied	1
	MeOH					
07806	BNA Soil Extraction	SW-846 3550B	1	05/10/2008 20:20	Patricia L Foreman	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. SW5353912

Group No. 1090076

Dry

BH-08-35 1.0-2.0 Grab Soil Philadelphia Refinery A01-8

BH-08-35 1.0-2.0

Collecte \overline{d} : 05/06/2008 12:50 by SS Account Number: 10132

Submitted: 05/07/2008 17:25 SUN: Aquaterra Tech.

Reported: 05/19/2008 at 18:53 PO Box 744

Discard: 07/19/2008 West Chester PA 19381

BH835

				DLY		
CAT			Dry	Limit of		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation	Units	Factor
06135	Lead	7439-92-1	14.3	1.05	mg/kg	10
00111	Moisture	n.a.	7.3	0.50	%	1
	"Moisture" represents the loss 103 - 105 degrees Celsius. The as-received basis.					
07804	PAHs in Soil by GC/MS					
01195	Pyrene	129-00-0	< 180.	180.	ug/kg	1
03761	Naphthalene	91-20-3	< 180.	180.	ug/kg	1
03768	Fluorene	86-73-7	< 180.	180.	ug/kg	1
03775	Phenanthrene	85-01-8	< 180.	180.	ug/kg	1
03776	Anthracene	120-12-7	< 180.	180.	ug/kg	1
03781	Benzo(a)anthracene	56-55-3	< 180.	180.	ug/kg	1
03782	Chrysene	218-01-9	< 180.	180.	ug/kg	1
03786	Benzo(b)fluoranthene	205-99-2	< 180.	180.	ug/kg	1
03788	Benzo(a)pyrene	50-32-8	< 180.	180.	ug/kg	1
03791	Benzo(g,h,i)perylene	191-24-2	< 180.	180.	ug/kg	1
02308	UST-Leaded Soils by 8260B					
02016	Methyl Tertiary Butyl Ether	1634-04-4	< 220.	220.	ug/kg	40.58
05460	Benzene	71-43-2	< 220.	220.	ug/kg	40.58
05461	1,2-Dichloroethane	107-06-2	< 220.	220.	ug/kg	40.58
05466	Toluene	108-88-3	< 220.	220.	ug/kg	40.58
05471	1,2-Dibromoethane	106-93-4	< 220.	220.	ug/kg	40.58
05474	Ethylbenzene	100-41-4	< 220.	220.	ug/kg	40.58
05479	Isopropylbenzene	98-82-8	< 220.	220.	ug/kg	40.58
06301	Xylene (Total)	1330-20-7	< 220.	220.	ug/kg	40.58

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681• www.lancasterlabs.com

Page 2 of 2

Group No. 1090076 Lancaster Laboratories Sample No. SW5353912

BH-08-35_1.0-2.0 Grab Soil Philadelphia Refinery A01-8 BH-08-35 1.0-2.0

Collecte \overline{d} :05/06/2008 12:50 by SS Account Number: 10132

Submitted: 05/07/2008 17:25 SUN: Aquaterra Tech.

Reported: 05/19/2008 at 18:53 PO Box 744 West Chester PA 19381

Discard: 07/19/2008

06135	Lead	SW-846 6020	1	05/15/2008 13:23	James R Williams II	10
00111	Moisture	SM20 2540 G	1	05/08/2008 16:23	Scott W Freisher	1
07804	PAHs in Soil by GC/MS	SW-846 8270C	1	05/14/2008 11:09	Linda M Hartenstine	1
02308	UST-Leaded Soils by 8260B	SW-846 8260B	1	05/14/2008 07:21	Stephanie A Selis	40.58
06150	ICP/MS SW-846 Solid digest	SW-846 3050B	1	05/12/2008 20:55	Annamaria Stipkovits	1
06171	GC/MS - Field Preserved	SW-846 5035	1	05/06/2008 12:50	Client Supplied	1
	MeOH					
07806	BNA Soil Extraction	SW-846 3550B	1	05/10/2008 20:20	Patricia L Foreman	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. SW5353913

Group No. 1090076

BH-08-14 1.0-2.0 Grab Soil Philadelphia Refinery A01-8

BH-08-14 1.0-2.0

Collecte \overline{d} : 05/06/2008 13:15 by SS Account Number: 10132

Submitted: 05/07/2008 17:25 SUN: Aquaterra Tech.

Reported: 05/19/2008 at 18:53 PO Box 744

Discard: 07/19/2008 West Chester PA 19381

BH814

				Dry		
CAT			Dry	Limit of		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation	Units	Factor
06135	Lead	7439-92-1	78.8	1.12	mg/kg	10
00111	Moisture	n.a.	11.8	0.50	%	1
	"Moisture" represents the loss 103 - 105 degrees Celsius. The as-received basis.					
07804	PAHs in Soil by GC/MS					
01195	Pyrene	129-00-0	270.	190.	ug/kg	1
03761	Naphthalene	91-20-3	< 190.	190.	ug/kg	1
03768	Fluorene	86-73-7	< 190.	190.	ug/kg	1
03775	Phenanthrene	85-01-8	330.	190.	ug/kg	1
03776	Anthracene	120-12-7	< 190.	190.	ug/kg	1
03781	Benzo(a)anthracene	56-55-3	< 190.	190.	ug/kg	1
03782	Chrysene	218-01-9	250.	190.	ug/kg	1
03786	Benzo(b)fluoranthene	205-99-2	< 190.	190.	ug/kg	1
03788	Benzo(a)pyrene	50-32-8	< 190.	190.	ug/kg	1
03791	Benzo(g,h,i)perylene	191-24-2	< 190.	190.	ug/kg	1
02308	UST-Leaded Soils by 8260B					
02016	Methyl Tertiary Butyl Ether	1634-04-4	< 230.	230.	ug/kg	41.39
05460	Benzene	71-43-2	< 230.	230.	ug/kg	41.39
05461	1,2-Dichloroethane	107-06-2	< 230.	230.	ug/kg	41.39
05466	Toluene	108-88-3	< 230.	230.	ug/kg	41.39
05471	1,2-Dibromoethane	106-93-4	< 230.	230.	ug/kg	41.39
05474	Ethylbenzene	100-41-4	< 230.	230.	ug/kg	41.39
05479	Isopropylbenzene	98-82-8	< 230.	230.	ug/kg	41.39
06301	Xylene (Total)	1330-20-7	< 230.	230.	ug/kg	41.39

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681• www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. SW5353913 Group No. 1090076

BH-08-14_1.0-2.0 Grab Soil Philadelphia Refinery A01-8 BH-08-14 1.0-2.0

Collected: 05/06/2008 13:15 by SS Account Number: 10132

Submitted: 05/07/2008 17:25 SUN: Aquaterra Tech.

Reported: 05/19/2008 at 18:53 PO Box 744

Discard: 07/19/2008 West Chester PA 19381

DIIOTT						
06135	Lead	SW-846 6020	1	05/15/2008 13:26	James R Williams II	10
00111	Moisture	SM20 2540 G	1	05/08/2008 16:23	Scott W Freisher	1
07804	PAHs in Soil by GC/MS	SW-846 8270C	1	05/14/2008 11:32	Linda M Hartenstine	1
02308	UST-Leaded Soils by 8260B	SW-846 8260B	1	05/14/2008 07:44	Stephanie A Selis	41.39
06150	ICP/MS SW-846 Solid digest	SW-846 3050B	1	05/12/2008 20:55	Annamaria Stipkovits	1
06171	GC/MS - Field Preserved	SW-846 5035	1	05/06/2008 13:15	Client Supplied	1
	MeOH					
07806	BNA Soil Extraction	SW-846 3550B	1	05/10/2008 20:20	Patricia L Foreman	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. SW5353914

Group No. 1090076

BH-08-27 1.0-2.0 Grab Soil Philadelphia Refinery A01-8

BH-08-27 1.0-2.0

Collecte \overline{d} : 05/06/2008 13:45 by SS Account Number: 10132

Submitted: 05/07/2008 17:25 SUN: Aquaterra Tech.

Reported: 05/19/2008 at 18:53 PO Box 744

Discard: 07/19/2008 West Chester PA 19381

BH827

				Dry		
CAT			Dry	Limit of		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation	Units	Factor
06135	Lead	7439-92-1	89.7	1.09	mg/kg	10
00111	Moisture	n.a.	10.	0.50	%	1
	"Moisture" represents the loss 103 - 105 degrees Celsius. The as-received basis.					
07804	PAHs in Soil by GC/MS					
01195	Pyrene	129-00-0	580.	190.	ug/kg	1
03761	Naphthalene	91-20-3	< 190.	190.	ug/kg	1
03768	Fluorene	86-73-7	< 190.	190.	ug/kg	1
03775	Phenanthrene	85-01-8	450.	190.	ug/kg	1
03776	Anthracene	120-12-7	< 190.	190.	ug/kg	1
03781	Benzo(a)anthracene	56-55-3	370.	190.	ug/kg	1
03782	Chrysene	218-01-9	440.	190.	ug/kg	1
03786	Benzo(b)fluoranthene	205-99-2	480.	190.	ug/kg	1
03788	Benzo(a)pyrene	50-32-8	400.	190.	ug/kg	1
03791	Benzo(g,h,i)perylene	191-24-2	370.	190.	ug/kg	1
02308	UST-Leaded Soils by 8260B					
02016	Methyl Tertiary Butyl Ether	1634-04-4	< 180.	180.	ug/kg	31.57
05460	Benzene	71-43-2	< 180.	180.	ug/kg	31.57
05461	1,2-Dichloroethane	107-06-2	< 180.	180.	ug/kg	31.57
05466	Toluene	108-88-3	< 180.	180.	ug/kg	31.57
05471	1,2-Dibromoethane	106-93-4	< 180.	180.	ug/kg	31.57
05474	Ethylbenzene	100-41-4	< 180.	180.	ug/kg	31.57
05479	Isopropylbenzene	98-82-8	< 180.	180.	ug/kg	31.57
06301	Xylene (Total)	1330-20-7	< 180.	180.	ug/kg	31.57

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681• www.lancasterlabs.com

Page 2 of 2

Group No. 1090076 Lancaster Laboratories Sample No. SW5353914

BH-08-27_1.0-2.0 Grab Soil Philadelphia Refinery A01-8 BH-08-27 1.0-2.0

Collecte \overline{d} :05/06/2008 13:45 by SS Account Number: 10132

Submitted: 05/07/2008 17:25 SUN: Aquaterra Tech.

Reported: 05/19/2008 at 18:53 PO Box 744 West Chester PA 19381

Discard: 07/19/2008

D1102 /							
06135	Lead	SW-846 6020	1	05/15/2008	13:29	James R Williams II	10
00111	Moisture	SM20 2540 G	1	05/08/2008	16:23	Scott W Freisher	1
07804	PAHs in Soil by GC/MS	SW-846 8270C	1	05/14/2008	11:56	Linda M Hartenstine	1
02308	UST-Leaded Soils by 8260B	SW-846 8260B	1	05/14/2008	08:07	Stephanie A Selis	31.57
06150	ICP/MS SW-846 Solid digest	SW-846 3050B	1	05/12/2008	20:55	Annamaria Stipkovits	1
06171	GC/MS - Field Preserved MeOH	SW-846 5035	1	05/06/2008	13:45	Client Supplied	1
07806	BNA Soil Extraction	SW-846 3550B	1	05/10/2008	20:20	Patricia L Foreman	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. SW5353915 Group No. 1090076

BH-08-13_1.0-2.0 Grab Soil Philadelphia Refinery A01-8 BH-08-13 1.0-2.0

Collected: 05/06/2008 14:35

by SS Account Number: 10132

Submitted: 05/07/2008 17:25 SUN: Aquaterra Tech.

Reported: 05/19/2008 at 18:53 PO Box 744

Discard: 07/19/2008 West Chester PA 19381

BH813

				Dry		
CAT			Dry	Limit of		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation	Units	Factor
06135	Lead	7439-92-1	314.	1.14	mg/kg	10
00111	Moisture	n.a.	14.8	0.50	%	1
	"Moisture" represents the loss 103 - 105 degrees Celsius. The as-received basis.					
07804	PAHs in Soil by GC/MS					
01195	Pyrene	129-00-0	2,600.	980.	ug/kg	1
03761	Naphthalene	91-20-3	< 980.	980.	ug/kg	1
03768	Fluorene	86-73-7	< 980.	980.	ug/kg	1
03775	Phenanthrene	85-01-8	< 980.	980.	ug/kg	1
03776	Anthracene	120-12-7	< 980.	980.	ug/kg	1
03781	Benzo(a)anthracene	56-55-3	1,100.	980.	ug/kg	1
03782	Chrysene	218-01-9	2,700.	980.	ug/kg	1
03786	Benzo(b)fluoranthene	205-99-2	1,100.	980.	ug/kg	1
03788	Benzo(a)pyrene	50-32-8	1,300.	980.	ug/kg	1
03791	Benzo(g,h,i)perylene	191-24-2	1,100.	980.	ug/kg	1
	Due to sample matrix interfere	ences observed o	during the ext	raction, the		
	normal reporting limits were r	ot attained.				
02308	UST-Leaded Soils by 8260B					
02016	Methyl Tertiary Butyl Ether	1634-04-4	< 190.	190.	ug/kg	33.2
05460	Benzene	71-43-2	< 190.	190.	ug/kg	33.2
05461	1,2-Dichloroethane	107-06-2	< 190.	190.	ug/kg	33.2
05466	Toluene	108-88-3	< 190.	190.	ug/kg	33.2
05471	1,2-Dibromoethane	106-93-4	< 190.	190.	ug/kg	33.2
05474	Ethylbenzene	100-41-4	< 190.	190.	ug/kg	33.2
05479	Isopropylbenzene	98-82-8	< 190.	190.	ug/kg	33.2
06301	Xylene (Total)	1330-20-7	< 190.	190.	ug/kg	33.2

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Account Number: 10132

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681• www.lancasterlabs.com

Page 2 of 2

Group No. 1090076 Lancaster Laboratories Sample No. SW5353915

BH-08-13_1.0-2.0 Grab Soil Philadelphia Refinery A01-8 BH-08-13 1.0-2.0

Collecte \overline{d} :05/06/2008 14:35 by SS

Submitted: 05/07/2008 17:25 SUN: Aquaterra Tech.

Reported: 05/19/2008 at 18:53 PO Box 744

Discard: 07/19/2008 West Chester PA 19381

CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06135	Lead	SW-846 6020	1	05/15/2008 13:32	James R Williams II	10
00111	Moisture	SM20 2540 G	1	05/08/2008 16:23	Scott W Freisher	1
07804	PAHs in Soil by GC/MS	SW-846 8270C	1	05/15/2008 04:09	Linda M Hartenstine	1
02308	UST-Leaded Soils by 8260B	SW-846 8260B	1	05/14/2008 08:29	Stephanie A Selis	33.2
06150	ICP/MS SW-846 Solid digest	SW-846 3050B	1	05/12/2008 20:55	Annamaria Stipkovits	1
06171	GC/MS - Field Preserved	SW-846 5035	1	05/06/2008 14:35	Client Supplied	1
	MeOH					
07806	BNA Soil Extraction	SW-846 3550B	1	05/10/2008 20:20	Patricia L Foreman	1

Account Number: 10132

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. SW5353916 Group No. 1090076

BH-08-28_1.0-2.0 Grab Soil Philadelphia Refinery A01-8 BH-08-28 1.0-2.0

Collecte \overline{d} : 05/06/2008 14:50 by SS

Submitted: 05/07/2008 17:25 SUN: Aquaterra Tech.

Reported: 05/19/2008 at 18:53 PO Box 744

Discard: 07/19/2008 West Chester PA 19381

BH828

				Dry		
CAT			Dry	Limit of		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation	Units	Factor
06135	Lead	7439-92-1	132.	1.15	mg/kg	10
00111	Moisture	n.a.	16.4	0.50	%	1
	"Moisture" represents the loss 103 - 105 degrees Celsius. The as-received basis.					
07804	PAHs in Soil by GC/MS					
01195	Pyrene	129-00-0	1,100.	1,000.	ug/kg	1
03761	Naphthalene	91-20-3	< 1,000.	1,000.	ug/kg	1
03768	Fluorene	86-73-7	1,100.	1,000.	ug/kg	1
03775	Phenanthrene	85-01-8	2,900.	1,000.	ug/kg	1
03776	Anthracene	120-12-7	< 1,000.	1,000.	ug/kg	1
03781	Benzo(a)anthracene	56-55-3	< 1,000.	1,000.	ug/kg	1
03782	Chrysene	218-01-9	1,200.	1,000.	ug/kg	1
03786	Benzo(b)fluoranthene	205-99-2	< 1,000.	1,000.	ug/kg	1
03788	Benzo(a)pyrene	50-32-8	< 1,000.	1,000.	ug/kg	1
03791	Benzo(g,h,i)perylene	191-24-2	< 1,000.	1,000.	ug/kg	1
	Due to sample matrix interfere	nces observed o	during the extr	action, the		
	normal reporting limits were n	ot attained.				
02308	UST-Leaded Soils by 8260B					
02016	Methyl Tertiary Butyl Ether	1634-04-4	< 270.	270.	ug/kg	44.8
05460	Benzene	71-43-2	< 270.	270.	ug/kg	44.8
05461	1,2-Dichloroethane	107-06-2	< 270.	270.	ug/kg	44.8
05466	Toluene	108-88-3	< 270.	270.	ug/kg	44.8
05471	1,2-Dibromoethane	106-93-4	< 270.	270.	ug/kg	44.8
05474	Ethylbenzene	100-41-4	< 270.	270.	ug/kg	44.8
05479	Isopropylbenzene	98-82-8	< 270.	270.	ug/kg	44.8
06301	Xylene (Total)	1330-20-7	670.	270.	ug/kg	44.8

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681• www.lancasterlabs.com

Page 2 of 2

Group No. 1090076 Lancaster Laboratories Sample No. SW5353916

BH-08-28_1.0-2.0 Grab Soil Philadelphia Refinery A01-8

BH-08-28 1.0-2.0

Collecte \overline{d} :05/06/2008 14:50 by SS Account Number: 10132

Submitted: 05/07/2008 17:25 SUN: Aquaterra Tech.

Reported: 05/19/2008 at 18:53 PO Box 744

Discard: 07/19/2008 West Chester PA 19381

CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06135	Lead	SW-846 6020	1	05/15/2008 13:35	James R Williams II	10
00111	Moisture	SM20 2540 G	1	05/08/2008 16:23	Scott W Freisher	1
07804	PAHs in Soil by GC/MS	SW-846 8270C	1	05/15/2008 04:33	Linda M Hartenstine	1
02308	UST-Leaded Soils by 8260B	SW-846 8260B	1	05/14/2008 09:14	Stephanie A Selis	44.8
06150	ICP/MS SW-846 Solid digest	SW-846 3050B	1	05/12/2008 20:55	Annamaria Stipkovits	1
06171	GC/MS - Field Preserved MeOH	SW-846 5035	1	05/06/2008 14:50	Client Supplied	1
07806	BNA Soil Extraction	SW-846 3550B	1	05/10/2008 20:20	Patricia L Foreman	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. SW5353917 Group No. 1090076

BH-08-12_1.0-2.0 Grab Soil Philadelphia Refinery A01-8 BH-08-12 1.0-2.0

Collecte \overline{d} :05/06/2008 15:10 by SS Account Number: 10132

Submitted: 05/07/2008 17:25 SUN: Aquaterra Tech.

Reported: 05/19/2008 at 18:53 PO Box 744

Discard: 07/19/2008 West Chester PA 19381

BH812

				Dry						
CAT			Dry	Limit of		Dilution				
No.	Analysis Name	CAS Number	Result	Quantitation	Units	Factor				
06135	Lead	7439-92-1	1,250.	11.6	mg/kg	100				
00111	Moisture	n.a.	16.6	0.50	%	1				
	"Moisture" represents the loss 103 - 105 degrees Celsius. The as-received basis.									
07804	PAHs in Soil by GC/MS									
01195	Pyrene	129-00-0	2,200.	1,000.	ug/kg	1				
03761	Naphthalene	91-20-3	2,700.	1,000.	ug/kg	1				
03768	Fluorene	86-73-7	2,400.	1,000.	ug/kg	1				
03775	Phenanthrene	85-01-8	6,600.	1,000.	ug/kg	1				
03776	Anthracene	120-12-7	1,500.	1,000.	ug/kg	1				
03781	Benzo(a)anthracene	56-55-3	< 1,000.	1,000.	ug/kg	1				
03782	Chrysene	218-01-9	1,900.	1,000.	ug/kg	1				
03786	Benzo(b)fluoranthene	205-99-2	< 1,000.	1,000.	ug/kg	1				
03788	Benzo(a)pyrene	50-32-8	< 1,000.	1,000.	ug/kg	1				
03791	Benzo(g,h,i)perylene	191-24-2	< 1,000.	1,000.	ug/kg	1				
	Due to sample matrix interfere	ences observed o	during the extr	action, the						
	normal reporting limits were n	ot attained.								
02308	UST-Leaded Soils by 8260B									
02016	Methyl Tertiary Butyl Ether	1634-04-4	< 270.	270.	ug/kg	44.33				
05460	Benzene	71-43-2	3,100.	270.	ug/kg	44.33				
05461	1,2-Dichloroethane	107-06-2	< 270.	270.	ug/kg	44.33				
05466	Toluene	108-88-3	660.	270.	ug/kg	44.33				
05471	1,2-Dibromoethane	106-93-4	< 270.	270.	ug/kg	44.33				
05474	Ethylbenzene	100-41-4	740.	270.	ug/kg	44.33				
05479	Isopropylbenzene	98-82-8	1,500.	270.	ug/kg	44.33				
06301	Xylene (Total)	1330-20-7	5,800.	270.	ug/kg	44.33				

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Account Number: 10132

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. SW5353917 Group No. 1090076

BH-08-12_1.0-2.0 Grab Soil Philadelphia Refinery A01-8 BH-08-12 1.0-2.0

Collecte \overline{d} :05/06/2008 15:10 by SS

Submitted: 05/07/2008 17:25 SUN: Aquaterra Tech.

Reported: 05/19/2008 at 18:53 PO Box 744

Discard: 07/19/2008 West Chester PA 19381

			Analysis		Dilution
Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
Lead	SW-846 6020	1	05/15/2008 17:36	James R Williams II	100
Moisture	SM20 2540 G	1	05/08/2008 16:23	Scott W Freisher	1
PAHs in Soil by GC/MS	SW-846 8270C	1	05/15/2008 04:56	Linda M Hartenstine	1
UST-Leaded Soils by 8260B	SW-846 8260B	1	05/15/2008 18:02	Kerri E Koch	44.33
ICP/MS SW-846 Solid digest	SW-846 3050B	1	05/12/2008 20:55	Annamaria Stipkovits	1
GC/MS - Field Preserved MeOH	SW-846 5035	1	05/06/2008 15:10	Client Supplied	1
BNA Soil Extraction	SW-846 3550B	1	05/10/2008 20:20	Patricia L Foreman	1
	Lead Moisture PAHs in Soil by GC/MS UST-Leaded Soils by 8260B ICP/MS SW-846 Solid digest GC/MS - Field Preserved MeOH	Lead SW-846 6020 Moisture SM20 2540 G PAHs in Soil by GC/MS SW-846 8270C UST-Leaded Soils by 8260B SW-846 8260B ICP/MS SW-846 Solid digest SW-846 3050B GC/MS - Field Preserved SW-846 5035 MeOH	Lead SW-846 6020 1 Moisture SM20 2540 G 1 PAHs in Soil by GC/MS SW-846 8270C 1 UST-Leaded Soils by 8260B SW-846 8260B 1 ICP/MS SW-846 Solid digest SW-846 3050B 1 GC/MS - Field Preserved SW-846 5035 1 MeOH	Analysis Name Method Trial# Date and Time Lead SW-846 6020 1 05/15/2008 17:36 Moisture SM20 2540 G 1 05/08/2008 16:23 PAHs in Soil by GC/MS SW-846 8270C 1 05/15/2008 04:56 UST-Leaded Soils by 8260B SW-846 8260B 1 05/15/2008 18:02 ICP/MS SW-846 Solid digest SW-846 3050B 1 05/12/2008 20:55 GC/MS - Field Preserved SW-846 5035 1 05/06/2008 15:10 MeOH	Analysis Name Method Trial# Date and Time Analyst Lead SW-846 6020 1 05/15/2008 17:36 James R Williams II Moisture SM20 2540 G 1 05/08/2008 16:23 Scott W Freisher PAHs in Soil by GC/MS SW-846 8270C 1 05/15/2008 04:56 Linda M Hartenstine UST-Leaded Soils by 8260B SW-846 8260B 1 05/15/2008 18:02 Kerri E Koch ICP/MS SW-846 Solid digest SW-846 3050B 1 05/12/2008 20:55 Annamaria Stipkovits GC/MS - Field Preserved SW-846 5035 1 05/06/2008 15:10 Client Supplied MeOH

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 3

Quality Control Summary

Client Name: SUN: Aquaterra Tech. Group Number: 1090076

Reported: 05/19/08 at 06:53 PM

Matrix QC may not be reported if site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the

Laboratory Compliance Quality Control

Analysis Name	Blank <u>Result</u>	Blank <u>LOO</u>	Report <u>Units</u>	LCS %REC	LCSD %REC	LCS/LCSD <u>Limits</u>	RPD	RPD Max
Batch number: 08129820005B Moisture	Sample n	umber(s):	5353907-53	53917 100		99-101		
Batch number: 081306150002A Lead	Sample no	umber(s): 0.100	5353907-53 mg/kg	53917 111		82-118		
Batch number: 08130SLA026 Pyrene Naphthalene Fluorene Phenanthrene Anthracene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(a) pyrene Benzo(g, h, i) perylene	Sample n < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170.	umber(s): 170. 170. 170. 170. 170. 170. 170. 170.	5353907-53 ug/kg	53917 92 89 91 98 93 90 90 86 89 88		75-115 73-106 75-116 77-113 76-112 73-112 76-113 61-127 69-122 65-122		
Batch number: Q081351AA Methyl Tertiary Butyl Ether Benzene 1,2-Dichloroethane Toluene 1,2-Dibromoethane Ethylbenzene Isopropylbenzene Xylene (Total)	Sample n < 250. < 250. < 250. < 250. < 250. < 250. < 250. < 250. < 250. < 250. < 250. < 250. < 250.	umber(s): 250. 250. 250. 250. 250. 250. 250. 250.	5353907-53 ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	53910,53 94 94 98 91 93 90 88 90	53912-5353 94 96 98 93 91 91 88 92	916 72-117 84-115 76-135 81-116 77-114 82-115 82-110 82-117	0 2 1 2 1 1 0	30 30 30 30 30 30 30 30
Batch number: Q081361AA Methyl Tertiary Butyl Ether Benzene 1,2-Dichloroethane Toluene 1,2-Dibromoethane Ethylbenzene Isopropylbenzene Xylene (Total)	Sample n < 250. < 250. < 250. < 250. < 250. < 250. < 250. < 250. < 250. < 250. < 250. < 250. < 250.	umber(s): 250. 250. 250. 250. 250. 250. 250. 250.	5353911,53 ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	53917 102 104 108 96 96 94 90	102 104 109 96 96 95 92 95	72-117 84-115 76-135 81-116 77-114 82-115 82-110 82-117	0 0 1 0 0 2 2 2	30 30 30 30 30 30 30 30 30 30

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

	MS	MSD	MS/MSD		RPD	BKG	DUP	DUP	Dup RPD
Analysis Name	%REC	%REC	<u>Limits</u>	RPD	MAX	Conc	Conc	RPD	Max

*- Outside of specification

- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 2 of 3

Quality Control Summary

Client Name: SUN: Aquaterra Tech. Group Number: 1090076

Reported: 05/19/08 at 06:53 PM

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

Analysis Name	MS % DEC	MSD	MS/MSD	DDD	RPD	BKG	DUP	DUP	Dup RPD
Batch number: 08129820005B	%REC	%REC	<u>Limits</u> : 5353907	<u>RPD</u>	MAX	<u>Conc</u>	Conc	<u>RPD</u>	<u>Max</u>
Moisture	Sample	number (s)	: 5353907	-333391	./ DAG	57.6	57.5	0	15
Batch number: 081306150002A	Sample	number(s)	: 5353907	-535391	.7 UNSPI	K: P357306	BKG: P357306	i	
Lead	-41570 (2)	29412 (2)	75-125	25*	20	4,370.	5,800.	28*	20
Batch number: 08130SLA026	Sample	number(s)	: 5353907	-535391	.7 UNSPI	X: 5353907			
Pyrene	-226 (2)	-688 (2)	19-162	51*	30				
Naphthalene	96	94	29-140	2	30				
Fluorene	69	31*	42-139	24	30				
Phenanthrene	-218 (2)	-715 (2)	1-181	53*	30				
Anthracene	-33 (2)	-173 (2)	34-148	42*	30				
Benzo(a)anthracene	-184 (2)	-427 (2)	20-156	45*	30				
Chrysene	-90 (2)	-343 (2)	19-158	50*	30				
Benzo(b)fluoranthene	-39 (2)	-314 (2)	13-161	55*	30				
Benzo(a)pyrene	-90 (2)	-273 (2)	24-154	42*	30				
Benzo(g,h,i)perylene	-3*	-114*	26-154	35*	30				

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: PAHs in Soil by GC/MS

Batch number: 08130SLA026

er: 08130SLA026 Nitrobenzene-d5	2-Fluorobiphenvl	Terphenyl-d14	
niorezemente de	2 Tracrosspring r	rorphon/r urr	
103	112	107	
83	89	85	
80	84	83	
83	88	81	
77	84	78	
85	88	90	
90	92	87	
89	93	87	
102	104	90	
108	97	86	
104	100	84	
86	89	84	
86	88	86	
94	99	97	
98	107	98	
	Nitrobenzene-d5 103 83 80 83 77 85 90 89 102 108 104 86 86 94	Nitrobenzene-d5 2-Fluorobiphenyl 103 112 83 89 80 84 83 88 77 84 85 88 90 92 89 93 102 104 108 97 104 100 86 89 86 89 86 89	Nitrobenzene-d5 2-Fluorobiphenyl Terphenyl-d14 103 112 107 83 89 85 80 84 83 83 88 81 77 84 78 85 88 90 90 92 87 89 93 87 102 104 90 108 97 86 104 100 84 86 89 84 86 88 86 94 99 97

*- Outside of specification

- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 3 of 3

Quality Control Summary

Client Name: SUN: Aquaterra Tech. Group Number: 1090076

Reported: 05/19/08 at 06:53 PM

Surrogate Quality Control

Limits:	49-120	55-117	43-131		
Analysis Na	ame: UST-Leaded Soils by 8	3260B			
	er: Q081351AA				
	Dibromofluoromethane	1,2-Dichloroethane-d4	hloroethane-d4 Toluene-d8 4-Bromofluorobenzene		
5353907	98	97	88	83	
5353908	94	92	87	83	
5353909	82	79	73	67*	
5353910	86	84	80	75	
5353912	84	81	78	73	
5353913	87	85	78	78	
5353914	82	79	75	70	
5353915	79	77	70	71	
5353916	74	72	68*	124*	
Blank	92	92	86	82	
LCS	98	97	94	94	
LCSD	100	98	97	94	
Limits:	71-114	70-109	70-123	70-111	
Analysis Na	ame: UST-Leaded Soils by 8	3260B			
	er: Q081361AA				
	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene	
5353911	88	84	75	72	
5353917	81	76	58*	63*	
Blank	102	102	92	86	
LCS	99	98	91	91	
LCSD	100	95	92	93	
Limits:	71-114	70-109	70-123	70-111	

^{*-} Outside of specification

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Analysis Request/ Environmental Services Chain of Custody

Lancaster Laboratories

COC # 183722

ب	D Acres base	Del		lease print. Inst	· · · · ·				1	Sila W	(5) 🌶	nalyse	s Requ		FSC:_	b Use Only		_
	Client: Agualwa Project Name/#: Son Ref Project Manager: Tiff Sampler: Shaun Sy	Doen Ao	1-8 PWSID	· · · · · · · · · · · · · · · · · · ·		_ _	Metrix Section Side Metric Section Side Metric Section Side Metric Section Sec	A Company of the Comp		000	Pre Co	SWI	ion Coc	es	SCR#: Preser H=HCI N=HNC S=H ₂ S	D ₃ B =NaOH	ilfate	6 (Page
	Name of state where samples w		PA Date Chillediled	The Scotler	ြတ္တ			Other	00//0	84600	Moist	1 .			Rem	arks		
	BH-08-3] _ 1. BH-08-33_	1.5-2.0	516108	1030	X	ر بر	?	2	1	>	-	X				15 cop		
	BH-08-34_ BH-08-29_ BH-08-15_	1.0-2.0	516108	1100	X X	\(\lambda \) \(\lambda \		2	1	× ×		X				vin n		
		1.0-2.0	5/6/68	1250	X	λ λ		2		X		X			*as	nalises violed	per	Table
	BH-08-27_ BH-08-13_ BH-08-28_	1.0-2.0	5/6/08	1345 1435 1450	X X	X X X	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	2	' 	X X	X	X			* 0	M Tif	fani	Doen
7	Turnaround Time Requested (Rush TAT is subject to Lancaster I Date results are needed:	(TAT) (please ci Laboratories appro	rcle): Norma val and surcha	l Rush	L		uished I	14		/Ac	QU OTER		8 1730	Received I	oy: JATERRA	A FAIRE	Date 5/6/08	
	Rush results requested by (pleat Phone #:	Fax #:		E-mail	F	Relingu	T Fall	400	SE/		/	Date	Time	Received I	Y J			Time ////D Time
8	Type II (Tier II)	circle if required) FX TRRP-13 MA MCP CT R Site-specific QC (M	Ye CP		1	Relinqu	uished t			H	_	5/7/ Date 5/2/1)	<u> </u>	M arwe Received t		White-	77/2 8 Date	Time
	Type IV (CLP SOW)	ff yes, indicate OC sample and submit	t triplicate volume.)				uished t			- •		Date	سند	Received t	~ /	la 5/	Date 7	Time

Analysis Request/ Environmental Services Chain of Custody

For Lancaster Laboratories use only

Acct. # 1013& Group# 1090076 Sample # 5353907-17 COC # 183723

1) Client:	Acct. #:))* 1	latrix		And the second s	(5	A	nalyses servati				For Lab Use Only FSC: SCR#:	
Project Name/#: Project Manager: Sampler: Shown Sykes	PWSID #	#:			9		S PAVE	9	ure	SUJJ9				Preservation Codes H=HCI T=Thiosulfa N=HNO ₃ B=NaOH S=H ₂ SO ₄ O=Other	te (
Name of state where samples were collect Sample identification:	~ A	Tiles Calledia	3) 			State # of Co.	8260B	puat	Moisture	४३ ८५५९				Remarks	
BH -08-12_1.0-2.0	516108	1510	Х	X		2	1	X	Y	X		-			
														Kurn Mar Jasun @1	hin g Lagan
														* analyses of	
-														+omp1.1-1.	3
Turnaround Time Requested (TAT) (ple (Rush TAT is subject to Lancaster Laboratories Date results are needed:	approval and surcha			<u>Q</u>	shed by	2_	/Ac	QUG	TERP	ŀ	173	0 /		FERRA FRIDGE	Date Tim
Rush results requested by (please circle): Phone #:Fax # E-mail address:	Phone Fax	E-mail	A	1	shed by	6 <u>5</u>	7 /	,		Date 5/7/0	8 100	ru 🗷	ceived by ceived by	A Austra	Date Tim
Data Package Options (please circle if requirements of the property of the pro	CT RCP Ye	G Complete?	Reli	ngui	/ (3	1	1	Azu	ten	Date	10	ro/// e Re	, r	W Folliso	Date Tim
Type IV (CLP SOW)	QC (MS/MSD/Dup)? le and submit triplicate volume.) C Required? Yes / No		Reli	inqui	shed b	y: y:		*		Date		L/Ra	ceived by		Date Tim

Lancaster Laboratories Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

N.D.	none detected	BMQL	Below Minimum Quantitation Level
TNTC	Too Numerous To Count	MPN	Most Probable Number
IU	International Units	CP Units	cobalt-chloroplatinate units
umhos/cm	micromhos/cm	NTU	nephelometric turbidity units
С	degrees Celsius	F	degrees Fahrenheit
Cal	(diet) calories	lb.	pound(s)
meq	milliequivalents	kg	kilogram(s)
g	gram(s)	mg	milligram(s)
ug	microgram(s)	I	liter(s)
ml	milliliter(s)	ul	microliter(s)
m3	cubic meter(s)	fib >5 um/ml	fibers greater than 5 microns in length per ml

- < less than The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.
- > greater than
- ppm parts per million One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.

Inorganic Qualifiers

- ppb parts per billion
- **Dry weight**Results printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture.

U.S. EPA data qualifiers:

9	lifier	(uu	9	 u	" 9	•

A B C D E	TIC is a possible aldol-condensation product Analyte was also detected in the blank Pesticide result confirmed by GC/MS Compound quatitated on a diluted sample Concentration exceeds the calibration range of the instrument	B E M N S	Value is <crdl, (msa)="" additions="" amount="" but="" calculation<="" control="" due="" duplicate="" estimated="" for="" injection="" interference="" limits="" met="" method="" not="" of="" precision="" spike="" standard="" th="" to="" used="" within="" ≥idl=""></crdl,>
J	Estimated value	U	Compound was not detected
N	Presumptive evidence of a compound (TICs only)	W	Post digestion spike out of control limits
Р	Concentration difference between primary and	*	Duplicate analysis not within control limits
	confirmation columns >25%	+	Correlation coefficient for MSA < 0.995
U	Compound was not detected		
X,Y,Z	Defined in case narrative		

Analytical test results for methods listed on the laboratories' accreditation scope meet all requirements of NELAC unless otherwise noted under the individual analysis.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

WARRANTY AND LIMITS OF LIABILITY – In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL LANCASTER LABORATORIES BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF LANCASTER LABORATORIES AND (B) WHETHER LANCASTER LABORATORIES HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Lancaster Laboratories which includes any conditions that vary from the Standard Terms and Conditions of Lancaster Laboratories and we hereby object to any conflicting terms contained in any acceptance or order submitted by client.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

ANALYTICAL RESULTS

Prepared for:

SUN: Aquaterra Tech. PO Box 744 West Chester PA 19381

610-431-5733

Prepared by:

Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425

SAMPLE GROUP

The sample group for this submittal is 1090550. Samples arrived at the laboratory on Friday, May 09, 2008. The PO# for this group is PHILADELPHIA.

Client Description	<u>Lancaster Labs Number</u>
BH-08-16_1.0-2.0 Grab Soil	5356699
BH-08-18_1.0-2.0 Grab Soil	5356700
BH-08-17_1.0-2.0 Grab Soil	5356701
BH-08-21_1.0-2.0 Grab Soil	5356702
BH-08-11_1.0-2.0 Grab Soil	5356703
BH-08-25_1.0-2.0 Grab Soil	5356704
BH-08-03_1.0-2.0 Grab Soil	5356705
BH-08-22_1.0-2.0 Grab Soil	5356706
BH-08-24_1.0-2.0 Grab Soil	5356707
BH-08-23_1.0-2.0 Grab Soil	5356708
BH-08-10_1.0-2.0 Grab Soil	5356709
BH-08-09_1.0-2.0 Grab Soil	5356710
BH-08-08_1.0-2.0 Grab Soil	5356711
BH-08-02_1.0-2.0 Grab Soil	5356712
N-122_1.0-2.0 Grab Soil	5356713
BH-08-04_1.0-2.0 Grab Soil	5356714
BH-08-26_1.0-2.0 Grab Soil	5356715
BH-08-07_1.0-2.0 Grab Soil	5356716
N-112_1.0-2.0 Grab Soil	5356717
N-114_1.0-2.0 Grab Soil	5356718
BH-08-05_6.0-8.0 Grab Soil	5356719

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

ELECTRONIC SUN: Aquaterra Tech. Attn: Tiffani Doerr

COPY TO

ELECTRONIC Langan Attn: Joseph Catricks

COPY TO

ELECTRONIC SUN: Aquaterra Tech. Attn: Kevin Martin

COPY TO

Questions? Contact your Client Services Representative Jessica A Heun at (717) 656-2300

Respectfully Submitted,

Michele M. Turner

middele M. Turner

Director

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5356699 SW Group No. 1090550

BH-08-16_1.0-2.0 Grab Soil Philadelphia Refinery AOI-8 COC: 183724 BH-08-16

Collected: 05/07/2008 10:00 by SS Account Number: 10132

Submitted: 05/09/2008 15:20 SUN: Aquaterra Tech.

Reported: 05/22/2008 at 17:49 PO Box 744

Discard: 07/22/2008 West Chester PA 19381

08-16

				Dry	Dry		
CAT			Dry	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06135	Lead	7439-92-1	1,380.	5.58	0.838	mg/kg	50
00111	Moisture	n.a.	13.9	0.50	0.50	%	1
	"Moisture" represents the loss 103 - 105 degrees Celsius. The as-received basis.				at		
07804	PAHs in Soil by GC/MS						
01195	Pyrene	129-00-0	15,000.	9,700.	1,900.	ug/kg	5
03761	Naphthalene	91-20-3	18,000.	9,700.	1,900.	ug/kg	5
03768	Fluorene	86-73-7	21,000.	9,700.	1,900.	ug/kg	5
03775	Phenanthrene	85-01-8	58,000.	9,700.	1,900.	ug/kg	5
03776	Anthracene	120-12-7	11,000.	9,700.	1,900.	ug/kg	5
03781	Benzo(a)anthracene	56-55-3	< 9,700.	9,700.	1,900.	ug/kg	5
03782	Chrysene	218-01-9	13,000.	9,700.	1,900.	ug/kg	5
03786	Benzo(b)fluoranthene	205-99-2	< 9,700.	9,700.	1,900.	ug/kg	5
03788	Benzo(a)pyrene	50-32-8	< 9,700.	9,700.	1,900.	ug/kg	5
03791	Benzo(g,h,i)perylene	191-24-2	< 9,700.	9,700.	1,900.	ug/kg	5
	Due to the sample matrix an initial dilution was necessary to perform the						
	analysis. Therefore, the reporting limits for the GC/MS semivolatile						
	compounds were raised.						
	Due to sample matrix interfere	nces observed	during the ex	traction, the			
	normal reporting limits were n	ot attained.					
02308	UST-Leaded Soils by 8260B						
02016	Methyl Tertiary Butyl Ether	1634-04-4	< 260.	260.	26.	ug/kg	45.45
05460	Benzene	71-43-2	3,100.	260.	26.	ug/kg	45.45
05461	1,2-Dichloroethane	107-06-2	< 260.	260.	53.	ug/kg	45.45
05466	Toluene	108-88-3	4,200.	260.	53.	ug/kg	45.45
05471	1,2-Dibromoethane	106-93-4	< 260.	260.	53.	ug/kg	45.45
05474	Ethylbenzene	100-41-4	6,600.	260.	53.	ug/kg	45.45
05479	Isopropylbenzene	98-82-8	2,100.	260.	53.	ug/kg	45.45
06301	Xylene (Total)	1330-20-7	34,000.	260.	53.	ug/kg	45.45

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5356699 SW Group No. 1090550

BH-08-16_1.0-2.0 Grab Soil Philadelphia Refinery AOI-8 COC: 183724 BH-08-16

COC: 183724 BH-08-16

Collected:05/07/2008 10:00 by SS Account Number: 10132

Submitted: 05/09/2008 15:20 SUN: Aquaterra Tech.

Reported: 05/22/2008 at 17:49 PO Box 744

Discard: 07/22/2008 West Chester PA 19381

08-16

CAT Dry Dry

CAS Number Result Quantitation* Detection Units Factor
Limit

CAT	Analysis						
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor	
06135	Lead	SW-846 6020	1	05/17/2008 09:42	David K Beck	50	
00111	Moisture	SM20 2540 G	1	05/12/2008 17:13	Scott W Freisher	1	
07804	PAHs in Soil by GC/MS	SW-846 8270C	1	05/20/2008 16:09	Joseph M Gambler	5	
02308	UST-Leaded Soils by 8260B	SW-846 8260B	1	05/16/2008 15:44	Kerri E Koch	45.45	
06150	ICP/MS SW-846 Solid digest	SW-846 3050B	1	05/13/2008 20:10	Annamaria Stipkovits	1	
06171	GC/MS - Field Preserved MeOH	SW-846 5035	1	05/07/2008 10:00	Client Supplied	1	
07806	BNA Soil Extraction	SW-846 3550B	1	05/15/2008 02:00	David V Hershev Jr	1	

^{*=}This limit was used in the evaluation of the final result

Dra

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5356700 SW Group No. 1090550

BH-08-18_1.0-2.0 Grab Soil Philadelphia Refinery AOI-8 COC: 183724 BH-08-18

Collected: 05/07/2008 08:45 by SS Account Number: 10132

Submitted: 05/09/2008 15:20 SUN: Aquaterra Tech.

Reported: 05/22/2008 at 17:49 PO Box 744

Discard: 07/22/2008 West Chester PA 19381

08-18

				Dry	Dry			
CAT			Dry	Limit of	Method		Dilution	
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor	
0613	5 Lead	7439-92-1	22.2	1.13	0.169	mg/kg	10	
0011	1 Moisture	n.a.	11.5	0.50	0.50	%	1	
	"Moisture" represents the los 103 - 105 degrees Celsius. The as-received basis.				at			
0780	4 PAHs in Soil by GC/MS							
0119	5 Pyrene	129-00-0	< 940.	940.	190.	ug/kg	5	
0376	1 Naphthalene	91-20-3	< 940.	940.	190.	ug/kg	5	
0376	8 Fluorene	86-73-7	< 940.	940.	190.	ug/kg	5	
0377	5 Phenanthrene	85-01-8	< 940.	940.	190.	ug/kg	5	
0377	6 Anthracene	120-12-7	< 940.	940.	190.	ug/kg	5	
0378	1 Benzo(a)anthracene	56-55-3	< 940.	940.	190.	ug/kg	5	
0378	2 Chrysene	218-01-9	< 940.	940.	190.	ug/kg	5	
0378	6 Benzo(b)fluoranthene	205-99-2	< 940.	940.	190.	ug/kg	5	
0378	8 Benzo(a)pyrene	50-32-8	< 940.	940.	190.	ug/kg	5	
0379	<pre>1 Benzo(g,h,i)perylene</pre>	191-24-2	< 940.	940.	190.	ug/kg	5	
	Due to the sample matrix an initial dilution was necessary to perform the analysis. Therefore, the reporting limits for the GC/MS semivolatile compounds were raised.							
0230	8 UST-Leaded Soils by 8260B							
0201	6 Methyl Tertiary Butyl Ether	1634-04-4	< 240.	240.	24.	ug/kg	42.09	
0546	0 Benzene	71-43-2	< 240.	240.	24.	ug/kg	42.09	
0546	1 1,2-Dichloroethane	107-06-2	< 240.	240.	48.	ug/kg	42.09	
0546	6 Toluene	108-88-3	< 240.	240.	48.	ug/kg	42.09	
0547	1 1,2-Dibromoethane	106-93-4	< 240.	240.	48.	ug/kg	42.09	
0547	4 Ethylbenzene	100-41-4	< 240.	240.	48.	ug/kg	42.09	
0547	9 Isopropylbenzene	98-82-8	< 240.	240.	48.	ug/kg	42.09	
0630	1 Xylene (Total)	1330-20-7	< 240.	240.	48.	ug/kg	42.09	

Drv

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5356700 SW Group No. 1090550

BH-08-18_1.0-2.0 Grab Soil Philadelphia Refinery AOI-8 COC: 183724 BH-08-18

Collected: 05/07/2008 08:45 by SS Account Number: 10132

Submitted: 05/09/2008 15:20 SUN: Aquaterra Tech.

Reported: 05/22/2008 at 17:49 PO Box 744

Discard: 07/22/2008 West Chester PA 19381

08-18

		паротасоту	CIII O.	111010		
CAT		_		Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06135	Lead	SW-846 6020	1	05/15/2008 16:12	James R Williams II	10
00111	Moisture	SM20 2540 G	1	05/12/2008 17:13	Scott W Freisher	1
07804	PAHs in Soil by GC/MS	SW-846 8270C	1	05/20/2008 17:21	Joseph M Gambler	5
02308	UST-Leaded Soils by 8260B	SW-846 8260B	1	05/16/2008 16:28	Kerri E Koch	42.09
06150	ICP/MS SW-846 Solid digest	SW-846 3050B	1	05/13/2008 20:10	Annamaria Stipkovits	1
06171	GC/MS - Field Preserved MeOH	SW-846 5035	1	05/07/2008 08:45	Client Supplied	1
07806	BNA Soil Extraction	SW-846 3550B	1	05/15/2008 02:00	David V Hershey Jr	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5356701 SW Group No. 1090550

BH-08-17_1.0-2.0 Grab Soil Philadelphia Refinery AOI-8 COC: 183724 BH-08-17

Collected: 05/07/2008 09:15 by SS Account Number: 10132

Submitted: 05/09/2008 15:20 SUN: Aquaterra Tech.

Reported: 05/22/2008 at 17:49 PO Box 744

Discard: 07/22/2008 West Chester PA 19381

08-17

				Dry	Dry		
CAT			Dry	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06135	Lead	7439-92-1	102.	1.16	0.174	mg/kg	10
00111	Moisture	n.a.	15.6	0.50	0.50	%	1
	"Moisture" represents the loss 103 - 105 degrees Celsius. The as-received basis.				at		
07804	PAHs in Soil by GC/MS						
01195	Pyrene	129-00-0	< 990.	990.	200.	ug/kg	5
03761	Naphthalene	91-20-3	< 990.	990.	200.	ug/kg	5
03768	Fluorene	86-73-7	< 990.	990.	200.	ug/kg	5
03775	Phenanthrene	85-01-8	< 990.	990.	200.	ug/kg	5
03776	Anthracene	120-12-7	< 990.	990.	200.	ug/kg	5
03781	Benzo(a)anthracene	56-55-3	< 990.	990.	200.	ug/kg	5
03782	Chrysene	218-01-9	< 990.	990.	200.	ug/kg	5
03786	Benzo(b)fluoranthene	205-99-2	< 990.	990.	200.	ug/kg	5
03788	Benzo(a)pyrene	50-32-8	< 990.	990.	200.	ug/kg	5
03791	Benzo(g,h,i)perylene	191-24-2	< 990.	990.	200.	ug/kg	5
	Due to the sample matrix an in	itial dilutior	n was necessary	y to perform the			
	analysis. Therefore, the report	rting limits f	for the GC/MS a	semivolatile			
	compounds were raised.						
02308	UST-Leaded Soils by 8260B						
02016	Methyl Tertiary Butyl Ether	1634-04-4	< 240.	240.	24.	ug/kg	39.68
05460	Benzene	71-43-2	< 240.	240.	24.	ug/kg	39.68
05461	1,2-Dichloroethane	107-06-2	< 240.	240.	47.	ug/kg	39.68
05466	Toluene	108-88-3	< 240.	240.	47.	ug/kg	39.68
05471	1,2-Dibromoethane	106-93-4	< 240.	240.	47.	ug/kg	39.68
05474	Ethylbenzene	100-41-4	< 240.	240.	47.	ug/kg	39.68
05479	Isopropylbenzene	98-82-8	< 240.	240.	47.	ug/kg	39.68
06301	Xylene (Total)	1330-20-7	< 240.	240.	47.	ug/kg	39.68

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5356701 SW Group No. 1090550

BH-08-17_1.0-2.0 Grab Soil Philadelphia Refinery AOI-8 COC: 183724 BH-08-17

Collected: 05/07/2008 09:15 by SS Account Number: 10132

Submitted: 05/09/2008 15:20 SUN: Aquaterra Tech.

Reported: 05/22/2008 at 17:49 PO Box 744

Discard: 07/22/2008 West Chester PA 19381

08-17

			· ·			
CAT		_		Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06135	Lead	SW-846 6020	1	05/15/2008 16:40	James R Williams II	10
00111	Moisture	SM20 2540 G	1	05/12/2008 17:13	Scott W Freisher	1
07804	PAHs in Soil by GC/MS	SW-846 8270C	1	05/20/2008 17:44	Joseph M Gambler	5
02308	UST-Leaded Soils by 8260B	SW-846 8260B	1	05/16/2008 16:51	Kerri E Koch	39.68
06150	ICP/MS SW-846 Solid digest	SW-846 3050B	1	05/13/2008 20:10	Annamaria Stipkovits	1
06171	GC/MS - Field Preserved MeOH	SW-846 5035	1	05/07/2008 09:15	Client Supplied	1
07806	BNA Soil Extraction	SW-846 3550B	1	05/15/2008 02:00	David V Hershey Jr	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5356702 SW Group No. 1090550

BH-08-21_1.0-2.0 Grab Soil Philadelphia Refinery AOI-8 COC: 183724 BH-08-21

Collected: 05/07/2008 09:30 by SS Account Number: 10132

Submitted: 05/09/2008 15:20 SUN: Aquaterra Tech.

Reported: 05/22/2008 at 17:49 PO Box 744

Discard: 07/22/2008 West Chester PA 19381

08-21

			_	Dry	Dry		
CAT		a.a	Dry	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06135	Lead	7439-92-1	540.	1.15	0.172	mg/kg	10
00111	Moisture	n.a.	13.6	0.50	0.50	8	1
	"Moisture" represents the loss 103 - 105 degrees Celsius. The as-received basis.				at		
07804	PAHs in Soil by GC/MS						
01195	Pyrene	129-00-0	< 4,800.	4,800.	960.	ug/kg	5
03761	Naphthalene	91-20-3	< 4,800.	4,800.	960.	ug/kg	5
03768	Fluorene	86-73-7	< 4,800.	4,800.	960.	ug/kg	5
03775	Phenanthrene	85-01-8	9,700.	4,800.	960.	ug/kg	5
03776	Anthracene	120-12-7	< 4,800.	4,800.	960.	ug/kg	5
03781	Benzo(a)anthracene	56-55-3	< 4,800.	4,800.	960.	ug/kg	5
03782	Chrysene	218-01-9	< 4,800.	4,800.	960.	ug/kg	5
03786	Benzo(b)fluoranthene	205-99-2	< 4,800.	4,800.	960.	ug/kg	5
03788	Benzo(a)pyrene	50-32-8	< 4,800.	4,800.	960.	ug/kg	5
03791	Benzo(g,h,i)perylene	191-24-2	< 4,800.	4,800.	960.	ug/kg	5
	Due to the sample matrix an in analysis. Therefore, the repo compounds were raised. Due to sample matrix interfere normal reporting limits were n	rting limits :	for the GC/MS	semivolatile			
02308	UST-Leaded Soils by 8260B						
02016	Methyl Tertiary Butyl Ether	1634-04-4	< 250.	250.	25.	ug/kg	44.01
05460	Benzene	71-43-2	< 250.	250.	25.	ug/kg	44.01
05461	1,2-Dichloroethane	107-06-2	< 250.	250.	51.	ug/kg	44.01
05466	Toluene	108-88-3	< 250.	250.	51.	ug/kg	44.01
05471	1,2-Dibromoethane	106-93-4	< 250.	250.	51.	ug/kg	44.01
05474	Ethylbenzene	100-41-4	< 250.	250.	51.	ug/kg	44.01
05479	Isopropylbenzene	98-82-8	< 250.	250.	51.	ug/kg	44.01
06301	Xylene (Total)	1330-20-7	< 250.	250.	51.	ug/kg	44.01

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5356702 SW Group No. 1090550

BH-08-21 1.0-2.0 Grab Soil Philadelphia Refinery AOI-8

COC: 183724 BH-08-21

by SS Collected:05/07/2008 09:30 Account Number: 10132

Submitted: 05/09/2008 15:20 SUN: Aquaterra Tech.

Reported: 05/22/2008 at 17:49 PO Box 744

Discard: 07/22/2008 West Chester PA 19381

08-21

Dry Dry CAT Dry Limit of Method Dilution No. Analysis Name CAS Number Result Quantitation* Detection Units Factor

			· · · · · ·			
CAT		-		Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06135	Lead	SW-846 6020	1	05/15/2008 16:43	James R Williams II	10
00111	Moisture	SM20 2540 G	1	05/12/2008 17:13	Scott W Freisher	1
07804	PAHs in Soil by GC/MS	SW-846 8270C	1	05/20/2008 18:08	Joseph M Gambler	5
02308	UST-Leaded Soils by 8260B	SW-846 8260B	1	05/16/2008 17:13	Kerri E Koch	44.01
06150	ICP/MS SW-846 Solid digest	SW-846 3050B	1	05/13/2008 20:10	Annamaria Stipkovits	1
06171	GC/MS - Field Preserved MeOH	SW-846 5035	1	05/07/2008 09:30	Client Supplied	1
07806	BNA Soil Extraction	SW-846 3550B	1	05/15/2008 02:00	David V Hershev Jr	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5356703 SW Group No. 1090550

BH-08-11_1.0-2.0 Grab Soil Philadelphia Refinery AOI-8 COC: 183724 BH-08-11

Collected: 05/07/2008 10:15 by SS Account Number: 10132

Submitted: 05/09/2008 15:20 SUN: Aquaterra Tech.

Reported: 05/22/2008 at 17:49 PO Box 744

Discard: 07/22/2008 West Chester PA 19381

08-11

				Dry	Dry		
CAT			Dry	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06135	Lead	7439-92-1	131.	1.16	0.174	mg/kg	10
00111	Moisture	n.a.	15.3	0.50	0.50	%	1
	"Moisture" represents the loss 103 - 105 degrees Celsius. The as-received basis.				at		
07804	PAHs in Soil by GC/MS						
01195	Pyrene	129-00-0	< 4,900.	4,900.	980.	ug/kg	5
03761	Naphthalene	91-20-3	< 4,900.	4,900.	980.	ug/kg	5
03768	Fluorene	86-73-7	< 4,900.	4,900.	980.	ug/kg	5
03775	Phenanthrene	85-01-8	< 4,900.	4,900.	980.	ug/kg	5
03776	Anthracene	120-12-7	< 4,900.	4,900.	980.	ug/kg	5
03781	Benzo(a)anthracene	56-55-3	< 4,900.	4,900.	980.	ug/kg	5
03782	Chrysene	218-01-9	< 4,900.	4,900.	980.	ug/kg	5
03786	Benzo(b)fluoranthene	205-99-2	< 4,900.	4,900.	980.	ug/kg	5
03788	Benzo(a)pyrene	50-32-8	< 4,900.	4,900.	980.	ug/kg	5
03791	Benzo(g,h,i)perylene	191-24-2	< 4,900.	4,900.	980.	ug/kg	5
	Due to the sample matrix an in	nitial dilutio	n was necessa	ry to perform the			
	analysis. Therefore, the repo	orting limits	for the GC/MS	semivolatile			
	compounds were raised.						
	Due to sample matrix interfere	ences observed	during the e	xtraction, the			
	normal reporting limits were r	not attained.					
02308	UST-Leaded Soils by 8260B						
02016	Methyl Tertiary Butyl Ether	1634-04-4	< 240.	240.	24.	ug/kg	40.26
05460	Benzene	71-43-2	310.	240.	24.	ug/kg	40.26
05461	1,2-Dichloroethane	107-06-2	< 240.	240.	48.	ug/kg	40.26
05466	Toluene	108-88-3	< 240.	240.	48.	ug/kg	40.26
05471	1,2-Dibromoethane	106-93-4	< 240.	240.	48.	ug/kg	40.26
05474	Ethylbenzene	100-41-4	< 240.	240.	48.	ug/kg	40.26
05479	Isopropylbenzene	98-82-8	< 240.	240.	48.	ug/kg	40.26
06301	Xylene (Total)	1330-20-7	< 240.	240.	48.	ug/kg	40.26

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5356703 SW Group No. 1090550

BH-08-11 1.0-2.0 Grab Soil Philadelphia Refinery AOI-8

COC: 183724 BH-08-11

by SS Collected:05/07/2008 10:15 Account Number: 10132

Submitted: 05/09/2008 15:20 SUN: Aquaterra Tech.

Reported: 05/22/2008 at 17:49 PO Box 744

Discard: 07/22/2008 West Chester PA 19381

08-11

Dry Dry CAT Dry Limit of Method Dilution No. Analysis Name CAS Number Result Quantitation* Detection Units Factor

CAT		-		Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06135	Lead	SW-846 6020	1	05/15/2008 16:46	James R Williams II	10
00111	Moisture	SM20 2540 G	2	05/13/2008 18:00	Scott W Freisher	1
07804	PAHs in Soil by GC/MS	SW-846 8270C	1	05/20/2008 18:31	Joseph M Gambler	5
02308	UST-Leaded Soils by 8260B	SW-846 8260B	1	05/16/2008 17:35	Kerri E Koch	40.26
06150	ICP/MS SW-846 Solid digest	SW-846 3050B	1	05/13/2008 20:10	Annamaria Stipkovits	1
06171	GC/MS - Field Preserved MeOH	SW-846 5035	1	05/07/2008 10:15	Client Supplied	1
07806	BNA Soil Extraction	SW-846 3550B	1	05/15/2008 02:00	David V Hershev Jr	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5356704 SW Group No. 1090550

BH-08-25_1.0-2.0 Grab Soil Philadelphia Refinery AOI-8 COC: 183724 BH-08-25

Collected: 05/07/2008 10:40 by SS Account Number: 10132

Submitted: 05/09/2008 15:20 SUN: Aquaterra Tech.

Reported: 05/22/2008 at 17:49 PO Box 744

Discard: 07/22/2008 West Chester PA 19381

08-25

				Dry	Dry		
CAT			Dry	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06135	Lead	7439-92-1	223.	1.11	0.167	mg/kg	10
00111	Moisture	n.a.	10.3	0.50	0.50	용	1
	"Moisture" represents the loss 103 - 105 degrees Celsius. The as-received basis.				at		
07804	PAHs in Soil by GC/MS						
01195	Pyrene	129-00-0	< 4,600.	4,600.	930.	ug/kg	5
03761	Naphthalene	91-20-3	< 4,600.	4,600.	930.	ug/kg	5
03768	Fluorene	86-73-7	< 4,600.	4,600.	930.	ug/kg	5
03775	Phenanthrene	85-01-8	< 4,600.	4,600.	930.	ug/kg	5
03776	Anthracene	120-12-7	< 4,600.	4,600.	930.	ug/kg	5
03781	Benzo(a)anthracene	56-55-3	< 4,600.	4,600.	930.	ug/kg	5
03782	Chrysene	218-01-9	< 4,600.	4,600.	930.	ug/kg	5
03786	Benzo(b)fluoranthene	205-99-2	< 4,600.	4,600.	930.	ug/kg	5
03788	Benzo(a)pyrene	50-32-8	< 4,600.	4,600.	930.	ug/kg	5
03791	Benzo(g,h,i)perylene	191-24-2	< 4,600.	4,600.	930.	ug/kg	5
	Due to the sample matrix an in: analysis. Therefore, the report compounds were raised.		_				
	Due to sample matrix interfered normal reporting limits were no		during the ext	traction, the			
02308	UST-Leaded Soils by 8260B						
02016	Methyl Tertiary Butyl Ether	1634-04-4	< 460.	460.	46.	ug/kg	83.06
05460	Benzene	71-43-2	< 460.	460.	46.	ug/kg	83.06
05461	1,2-Dichloroethane	107-06-2	< 460.	460.	93.	ug/kg	83.06
05466	Toluene	108-88-3	< 460.	460.	93.	ug/kg	83.06
05471	1,2-Dibromoethane	106-93-4	< 460.	460.	93.	ug/kg	83.06
05474	Ethylbenzene	100-41-4	< 460.	460.	93.	ug/kg	83.06
05479	Isopropylbenzene	98-82-8	< 460.	460.	93.	ug/kg	83.06
06301	Xylene (Total)	1330-20-7	< 460.	460.	93.	ug/kg	83.06
	The reporting limits for the G	C/MS volatile	compounds were	e raised due to			

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09

the level of non-target compounds.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5356704 SW Group No. 1090550

BH-08-25 1.0-2.0 Grab Soil Philadelphia Refinery AOI-8

COC: 183724 BH-08-25

by SS Collected:05/07/2008 10:40 Account Number: 10132

Submitted: 05/09/2008 15:20 SUN: Aquaterra Tech.

Reported: 05/22/2008 at 17:49 PO Box 744

Discard: 07/22/2008 West Chester PA 19381

08-25

Dry Dry CAT Dry Limit of Method Dilution No. Analysis Name CAS Number Result Quantitation* Detection Units Factor

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT			-	Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06135	Lead	SW-846 6020	1	05/15/2008 16:48	James R Williams II	10
00111	Moisture	SM20 2540 G	1	05/12/2008 17:13	Scott W Freisher	1
07804	PAHs in Soil by GC/MS	SW-846 8270C	1	05/20/2008 18:55	Joseph M Gambler	5
02308	UST-Leaded Soils by 8260B	SW-846 8260B	1	05/16/2008 17:58	Kerri E Koch	83.06
06150	ICP/MS SW-846 Solid digest	SW-846 3050B	1	05/13/2008 20:10	Annamaria Stipkovits	1
06171	GC/MS - Field Preserved MeOH	SW-846 5035	1	05/07/2008 10:40	Client Supplied	1
07806	BNA Soil Extraction	SW-846 3550B	1	05/15/2008 02:00	David V Hershey Jr	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5356705 SW Group No. 1090550

BH-08-03_1.0-2.0 Grab Soil Philadelphia Refinery AOI-8 COC: 183724 BH-08-03

Collected: 05/07/2008 11:00 by SS Account Number: 10132

Submitted: 05/09/2008 15:20 SUN: Aquaterra Tech.

Reported: 05/22/2008 at 17:49 PO Box 744

Discard: 07/22/2008 West Chester PA 19381

B0803

				Dry	Dry		
CAT			Dry	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06135	Lead	7439-92-1	291.	1.09	0.164	mg/kg	10
00111	Moisture	n.a.	11.3	0.50	0.50	%	1
	"Moisture" represents the loss 103 - 105 degrees Celsius. The as-received basis.				at		
07804	PAHs in Soil by GC/MS						
01195	Pyrene	129-00-0	< 4,700.	4,700.	940.	ug/kg	5
03761	Naphthalene	91-20-3	< 4,700.	4,700.	940.	ug/kg	5
03768	Fluorene	86-73-7	< 4,700.	4,700.	940.	ug/kg	5
03775	Phenanthrene	85-01-8	6,800.	4,700.	940.	ug/kg	5
03776	Anthracene	120-12-7	< 4,700.	4,700.	940.	ug/kg	5
03781	Benzo(a)anthracene	56-55-3	< 4,700.	4,700.	940.	ug/kg	5
03782	Chrysene	218-01-9	< 4,700.	4,700.	940.	ug/kg	5
03786	Benzo(b)fluoranthene	205-99-2	< 4,700.	4,700.	940.	ug/kg	5
03788	Benzo(a)pyrene	50-32-8	< 4,700.	4,700.	940.	ug/kg	5
03791	Benzo(g,h,i)perylene	191-24-2	< 4,700.	4,700.	940.	ug/kg	5
	Due to the sample matrix an ir analysis. Therefore, the reportant compounds were raised.						
	Due to sample matrix interference normal reporting limits were r		during the ex	ktraction, the			
02308	UST-Leaded Soils by 8260B						
02016	Methyl Tertiary Butyl Ether	1634-04-4	< 220.	220.	22.	ug/kg	39.43
05460	Benzene	71-43-2	580.	220.	22.	ug/kg	39.43
05461	1,2-Dichloroethane	107-06-2	< 220.	220.	44.	ug/kg	39.43
05466	Toluene	108-88-3	230.	220.	44.	ug/kg	39.43
05471	1,2-Dibromoethane	106-93-4	< 220.	220.	44.	ug/kg	39.43
05474	Ethylbenzene	100-41-4	< 220.	220.	44.	ug/kg	39.43
05479	Isopropylbenzene	98-82-8	440.	220.	44.	ug/kg	39.43
06301	Xylene (Total)	1330-20-7	340.	220.	44.	ug/kg	39.43

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5356705 SW Group No. 1090550

BH-08-03_1.0-2.0 Grab Soil Philadelphia Refinery AOI-8 COC: 183724 BH-08-03

Collected:05/07/2008 11:00 by SS Account Number: 10132

Submitted: 05/09/2008 15:20 SUN: Aquaterra Tech.

Reported: 05/22/2008 at 17:49 PO Box 744

Discard: 07/22/2008 West Chester PA 19381

B0803

CAT Dry Dry

CAT Dry Limit of Method Dilution

No. Analysis Name CAS Number Result Quantitation* Detection Units Factor

CAT		-		Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06135	Lead	SW-846 6020	1	05/15/2008 16:51	James R Williams II	10
00111	Moisture	SM20 2540 G	1	05/12/2008 17:13	Scott W Freisher	1
07804	PAHs in Soil by GC/MS	SW-846 8270C	1	05/20/2008 19:19	Joseph M Gambler	5
02308	UST-Leaded Soils by 8260B	SW-846 8260B	1	05/16/2008 18:43	Kerri E Koch	39.43
06150	ICP/MS SW-846 Solid digest	SW-846 3050B	1	05/13/2008 20:10	Annamaria Stipkovits	1
06171	GC/MS - Field Preserved MeOH	SW-846 5035	1	05/07/2008 11:00	Client Supplied	1
07806	BNA Soil Extraction	SW-846 3550B	1	05/15/2008 02:00	David V Hershev Jr	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5356706 SW Group No. 1090550

BH-08-22_1.0-2.0 Grab Soil Philadelphia Refinery AOI-8 COC: 183724 BH-08-22

Collected: 05/07/2008 11:15 by SS Account Number: 10132

Submitted: 05/09/2008 15:20 SUN: Aquaterra Tech.

Reported: 05/22/2008 at 17:49 PO Box 744

Discard: 07/22/2008 West Chester PA 19381

08-22

				Dry	Dry		
CAT			Dry	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06135	Lead	7439-92-1	213.	1.13	0.169	mg/kg	10
00111	Moisture	n.a.	13.2	0.50	0.50	ક	1
	"Moisture" represents the loss 103 - 105 degrees Celsius. The as-received basis.				at		
07804	PAHs in Soil by GC/MS						
01195	Pyrene	129-00-0	< 4,800.	4,800.	960.	ug/kg	5
03761	Naphthalene	91-20-3	< 4,800.	4,800.	960.	ug/kg	5
03768	Fluorene	86-73-7	< 4,800.	4,800.	960.	ug/kg	5
03775	Phenanthrene	85-01-8	< 4,800.	4,800.	960.	ug/kg	5
03776	Anthracene	120-12-7	< 4,800.	4,800.	960.	ug/kg	5
03781	Benzo(a)anthracene	56-55-3	< 4,800.	4,800.	960.	ug/kg	5
03782	Chrysene	218-01-9	< 4,800.	4,800.	960.	ug/kg	5
03786	Benzo(b)fluoranthene	205-99-2	< 4,800.	4,800.	960.	ug/kg	5
03788	Benzo(a)pyrene	50-32-8	< 4,800.	4,800.	960.	ug/kg	5
03791	Benzo(g,h,i)perylene	191-24-2	< 4,800.	4,800.	960.	ug/kg	5
	Due to the sample matrix an in analysis. Therefore, the report compounds were raised. Due to sample matrix interfere normal reporting limits were re-	ences observed	for the GC/MS	semivolatile			
02308	UST-Leaded Soils by 8260B						
02016	Methyl Tertiary Butyl Ether	1634-04-4	< 260.	260.	26.	ug/kg	44.88
05460	Benzene	71-43-2	< 260.	260.	26.	ug/kg	44.88
05461	1,2-Dichloroethane	107-06-2	< 260.	260.	52.	ug/kg	44.88
05466	Toluene	108-88-3	< 260.	260.	52.	ug/kg	44.88
05471	1,2-Dibromoethane	106-93-4	< 260.	260.	52.	ug/kg	44.88
05474	Ethylbenzene	100-41-4	< 260.	260.	52.	ug/kg	44.88
05479	Isopropylbenzene	98-82-8	< 260.	260.	52.	ug/kg	44.88
06301	Xylene (Total)	1330-20-7	< 260.	260.	52.	ug/kg	44.88

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5356706 SW Group No. 1090550

BH-08-22_1.0-2.0 Grab Soil Philadelphia Refinery AOI-8 COC: 183724 BH-08-22

Collected: 05/07/2008 11:15 by SS Account Number: 10132

Submitted: 05/09/2008 15:20 SUN: Aquaterra Tech.

Reported: 05/22/2008 at 17:49 PO Box 744

Discard: 07/22/2008 West Chester PA 19381

08-22

CAT Dry Dry

CAT Dry Limit of Method Dilution

No. Analysis Name CAS Number Result Quantitation* Detection Units Factor

CAT		-		Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06135	Lead	SW-846 6020	1	05/15/2008 16:54	James R Williams II	10
00111	Moisture	SM20 2540 G	1	05/12/2008 17:13	Scott W Freisher	1
07804	PAHs in Soil by GC/MS	SW-846 8270C	1	05/20/2008 19:43	Joseph M Gambler	5
02308	UST-Leaded Soils by 8260B	SW-846 8260B	1	05/16/2008 19:06	Kerri E Koch	44.88
06150	ICP/MS SW-846 Solid digest	SW-846 3050B	1	05/13/2008 20:10	Annamaria Stipkovits	1
06171	GC/MS - Field Preserved MeOH	SW-846 5035	1	05/07/2008 11:15	Client Supplied	1
07806	BNA Soil Extraction	SW-846 3550B	1	05/15/2008 02:00	David V Hershev Jr	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5356707 SW Group No. 1090550

BH-08-24_1.0-2.0 Grab Soil Philadelphia Refinery AOI-8 COC: 183724 BH-08-24

Collected: 05/07/2008 12:20 by SS Account Number: 10132

Submitted: 05/09/2008 15:20 SUN: Aquaterra Tech.

Reported: 05/22/2008 at 17:49 PO Box 744

Discard: 07/22/2008 West Chester PA 19381

08-24

				Dry	Dry		
CAT			Dry	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06135	Lead	7439-92-1	172.	1.08	0.162	mg/kg	10
00111	Moisture	n.a.	9.4	0.50	0.50	%	1
	"Moisture" represents the loss 103 - 105 degrees Celsius. The as-received basis.				at		
07804	PAHs in Soil by GC/MS						
01195	Pyrene	129-00-0	< 4,600.	4,600.	920.	ug/kg	5
03761	Naphthalene	91-20-3	< 4,600.	4,600.	920.	ug/kg	5
03768	Fluorene	86-73-7	< 4,600.	4,600.	920.	ug/kg	5
03775	Phenanthrene	85-01-8	5,900.	4,600.	920.	ug/kg	5
03776	Anthracene	120-12-7	< 4,600.	4,600.	920.	ug/kg	5
03781	Benzo(a)anthracene	56-55-3	< 4,600.	4,600.	920.	ug/kg	5
03782	Chrysene	218-01-9	< 4,600.	4,600.	920.	ug/kg	5
03786	Benzo(b)fluoranthene	205-99-2	< 4,600.	4,600.	920.	ug/kg	5
03788	Benzo(a)pyrene	50-32-8	< 4,600.	4,600.	920.	ug/kg	5
03791	Benzo(g,h,i)perylene	191-24-2	< 4,600.	4,600.	920.	ug/kg	5
	Due to the sample matrix an in	itial dilutio	n was necessa	ry to perform the			
	analysis. Therefore, the repo	orting limits	for the GC/MS	semivolatile			
	compounds were raised.						
	Due to sample matrix interfere		during the e	xtraction, the			
	normal reporting limits were r	ot attained.					
02308	UST-Leaded Soils by 8260B						
02016	Methyl Tertiary Butyl Ether	1634-04-4	< 380.	380.	38.	ug/kg	68.87
05460	Benzene	71-43-2	< 380.	380.	38.	ug/kg	68.87
05461	1,2-Dichloroethane	107-06-2	< 380.	380.	76.	ug/kg	68.87
05466	Toluene	108-88-3	< 380.	380.	76.	ug/kg	68.87
05471	1,2-Dibromoethane	106-93-4	< 380.	380.	76.	ug/kg	68.87
05474	Ethylbenzene	100-41-4	< 380.	380.	76.	ug/kg	68.87
05479	Isopropylbenzene	98-82-8	1,400.	380.	76.	ug/kg	68.87
06301	Xylene (Total)	1330-20-7	600.	380.	76.	ug/kg	68.87

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5356707 SW Group No. 1090550

BH-08-24 1.0-2.0 Grab Soil Philadelphia Refinery AOI-8

COC: 183724 BH-08-24

by SS Collected:05/07/2008 12:20 Account Number: 10132

Submitted: 05/09/2008 15:20 SUN: Aquaterra Tech.

Reported: 05/22/2008 at 17:49 PO Box 744

Discard: 07/22/2008 West Chester PA 19381

08-24

Dry Dry CAT Dry Limit of Method Dilution No. Analysis Name CAS Number Result Quantitation* Detection Units Factor

CAT		-		Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06135	Lead	SW-846 6020	1	05/15/2008 16:57	James R Williams II	10
00111	Moisture	SM20 2540 G	1	05/12/2008 17:13	Scott W Freisher	1
07804	PAHs in Soil by GC/MS	SW-846 8270C	1	05/20/2008 20:06	Joseph M Gambler	5
02308	UST-Leaded Soils by 8260B	SW-846 8260B	1	05/16/2008 19:28	Kerri E Koch	68.87
06150	ICP/MS SW-846 Solid digest	SW-846 3050B	1	05/13/2008 20:10	Annamaria Stipkovits	1
06171	GC/MS - Field Preserved MeOH	SW-846 5035	1	05/07/2008 12:20	Client Supplied	1
07806	BNA Soil Extraction	SW-846 3550B	1	05/15/2008 02:00	David V Hershev Jr	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5356708 SW Group No. 1090550

BH-08-23_1.0-2.0 Grab Soil Philadelphia Refinery AOI-8 COC: 183724 BH-08-23

Collected: 05/07/2008 12:40 by SS Account Number: 10132

Submitted: 05/09/2008 15:20 SUN: Aquaterra Tech.

Reported: 05/22/2008 at 17:49 PO Box 744

Discard: 07/22/2008 West Chester PA 19381

08-23

				Dry	Dry		
CAT			Dry	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06135	Lead	7439-92-1	374.	1.17	0.175	mg/kg	10
00111	Moisture	n.a.	15.9	0.50	0.50	%	1
	"Moisture" represents the loss 103 - 105 degrees Celsius. The as-received basis.				at		
07804	PAHs in Soil by GC/MS						
01195	Pyrene	129-00-0	< 5,000.	5,000.	990.	ug/kg	5
03761	Naphthalene	91-20-3	< 5,000.	5,000.	990.	ug/kg	5
03768	Fluorene	86-73-7	< 5,000.	5,000.	990.	ug/kg	5
03775	Phenanthrene	85-01-8	< 5,000.	5,000.	990.	ug/kg	5
03776	Anthracene	120-12-7	< 5,000.	5,000.	990.	ug/kg	5
03781	Benzo(a)anthracene	56-55-3	< 5,000.	5,000.	990.	ug/kg	5
03782	Chrysene	218-01-9	< 5,000.	5,000.	990.	ug/kg	5
03786	Benzo(b)fluoranthene	205-99-2	< 5,000.	5,000.	990.	ug/kg	5
03788	Benzo(a)pyrene	50-32-8	< 5,000.	5,000.	990.	ug/kg	5
03791	Benzo(g,h,i)perylene	191-24-2	< 5,000.	5,000.	990.	ug/kg	5
	Due to the sample matrix an in analysis. Therefore, the reporting compounds were raised. Due to sample matrix interfere normal reporting limits were matrix.	ences observed	for the GC/MS	semivolatile			
02308	UST-Leaded Soils by 8260B						
02016	Methyl Tertiary Butyl Ether	1634-04-4	< 180.	180.	18.	ug/kg	30.64
05460	Benzene	71-43-2	< 180.	180.	18.	ug/kg	30.64
05461	1,2-Dichloroethane	107-06-2	< 180.	180.	36.	ug/kg	30.64
05466	Toluene	108-88-3	< 180.	180.	36.	ug/kg	30.64
05471	1,2-Dibromoethane	106-93-4	< 180.	180.	36.	ug/kg	30.64
05474	Ethylbenzene	100-41-4	< 180.	180.	36.	ug/kg	30.64
05479	Isopropylbenzene	98-82-8	< 180.	180.	36.	ug/kg	30.64
06301	Xylene (Total)	1330-20-7	200.	180.	36.	ug/kg	30.64

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5356708 SW Group No. 1090550

BH-08-23 1.0-2.0 Grab Soil Philadelphia Refinery AOI-8

COC: 183724 BH-08-23

by SS Collected: 05/07/2008 12:40 Account Number: 10132

Submitted: 05/09/2008 15:20 SUN: Aquaterra Tech.

Reported: 05/22/2008 at 17:49 PO Box 744

Discard: 07/22/2008 West Chester PA 19381

08-23

Dry Dry CAT Dry Limit of Method Dilution No. Analysis Name CAS Number Result Quantitation* Detection Units Factor

			· ·			
CAT		-		Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06135	Lead	SW-846 6020	1	05/15/2008 17:00	James R Williams II	10
00111	Moisture	SM20 2540 G	1	05/12/2008 17:13	Scott W Freisher	1
07804	PAHs in Soil by GC/MS	SW-846 8270C	1	05/20/2008 20:30	Joseph M Gambler	5
02308	UST-Leaded Soils by 8260B	SW-846 8260B	1	05/16/2008 20:13	Kerri E Koch	30.64
06150	ICP/MS SW-846 Solid digest	SW-846 3050B	1	05/13/2008 20:10	Annamaria Stipkovits	1
06171	GC/MS - Field Preserved MeOH	SW-846 5035	1	05/07/2008 12:40	Client Supplied	1
07806	BNA Soil Extraction	SW-846 3550B	1	05/15/2008 02:00	David V Hershev Jr	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5356709 SW Group No. 1090550

BH-08-10_1.0-2.0 Grab Soil Philadelphia Refinery AOI-8 COC: 183724 BH-08-10

Collected: 05/07/2008 13:15 by SS Account Number: 10132

Submitted: 05/09/2008 15:20 SUN: Aquaterra Tech.

Reported: 05/22/2008 at 17:49 PO Box 744

Discard: 07/22/2008 West Chester PA 19381

08-10

				Dry	Dry		
CAT			Dry	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06135	Lead	7439-92-1	428.	1.10	0.165	mg/kg	10
00111	Moisture	n.a.	11.5	0.50	0.50	%	1
	"Moisture" represents the loss 103 - 105 degrees Celsius. The as-received basis.				at		
07804	PAHs in Soil by GC/MS						
01195	Pyrene	129-00-0	2,100.	940.	190.	ug/kg	5
03761	Naphthalene	91-20-3	< 940.	940.	190.	ug/kg	5
03768	Fluorene	86-73-7	< 940.	940.	190.	ug/kg	5
03775	Phenanthrene	85-01-8	1,700.	940.	190.	ug/kg	5
03776	Anthracene	120-12-7	< 940.	940.	190.	ug/kg	5
03781	Benzo(a)anthracene	56-55-3	2,000.	940.	190.	ug/kg	5
03782	Chrysene	218-01-9	1,900.	940.	190.	ug/kg	5
03786	Benzo(b)fluoranthene	205-99-2	2,500.	940.	190.	ug/kg	5
03788	Benzo(a)pyrene	50-32-8	2,600.	940.	190.	ug/kg	5
03791	Benzo(g,h,i)perylene	191-24-2	1,800.	940.	190.	ug/kg	5
	Due to the sample matrix an in	itial dilutior	n was necessar	y to perform the			
	analysis. Therefore, the repor	rting limits f	for the GC/MS	semivolatile			
	compounds were raised.						
02308	UST-Leaded Soils by 8260B						
02016	Methyl Tertiary Butyl Ether	1634-04-4	< 200.	200.	20.	ug/kg	35.92
05460	Benzene	71-43-2	< 200.	200.	20.	ug/kg	35.92
05461	1,2-Dichloroethane	107-06-2	< 200.	200.	41.	ug/kg	35.92
05466	Toluene	108-88-3	420.	200.	41.	ug/kg	35.92
05471	1,2-Dibromoethane	106-93-4	< 200.	200.	41.	ug/kg	35.92
05474	Ethylbenzene	100-41-4	< 200.	200.	41.	ug/kg	35.92
05479	Isopropylbenzene	98-82-8	< 200.	200.	41.	ug/kg	35.92
06301	Xylene (Total)	1330-20-7	360.	200.	41.	ug/kg	35.92

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5356709 SW Group No. 1090550

BH-08-10_1.0-2.0 Grab Soil Philadelphia Refinery AOI-8 COC: 183724 BH-08-10

Collected: 05/07/2008 13:15 by SS Account Number: 10132

Submitted: 05/09/2008 15:20 SUN: Aquaterra Tech.

Reported: 05/22/2008 at 17:49 PO Box 744

Discard: 07/22/2008 West Chester PA 19381

08-10

			· ·			
CAT		_		Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06135	Lead	SW-846 6020	1	05/15/2008 17:02	James R Williams II	10
00111	Moisture	SM20 2540 G	1	05/12/2008 17:13	Scott W Freisher	1
07804	PAHs in Soil by GC/MS	SW-846 8270C	1	05/20/2008 20:54	Joseph M Gambler	5
02308	UST-Leaded Soils by 8260B	SW-846 8260B	1	05/16/2008 20:36	Kerri E Koch	35.92
06150	ICP/MS SW-846 Solid digest	SW-846 3050B	1	05/13/2008 20:10	Annamaria Stipkovits	1
06171	GC/MS - Field Preserved MeOH	SW-846 5035	1	05/07/2008 13:15	Client Supplied	1
07806	BNA Soil Extraction	SW-846 3550B	1	05/15/2008 02:00	David V Hershey Jr	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5356710 SW Group No. 1090550

BH-08-09_1.0-2.0 Grab Soil Philadelphia Refinery AOI-8 COC: 183724 BH-08-09

Collected: 05/07/2008 14:00 by SS Account Number: 10132

Submitted: 05/09/2008 15:20 SUN: Aquaterra Tech.

Reported: 05/22/2008 at 17:49 PO Box 744

Discard: 07/22/2008 West Chester PA 19381

08-09

G3. TT			D	Dry Limit of	Dry		Dilution
CAT	Amalanda Nama	CAS Number	Dry		Method	77m. i t. n	
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06135	Lead	7439-92-1	262.	1.09	0.163	mg/kg	10
00111	Moisture	n.a.	10.7	0.50	0.50	%	1
	"Moisture" represents the loss 103 - 105 degrees Celsius. The as-received basis.				at		
07804	PAHs in Soil by GC/MS						
01195	Pyrene	129-00-0	8,500.	4,700.	930.	ug/kg	5
03761	Naphthalene	91-20-3	5,900.	4,700.	930.	ug/kg	5
03768	Fluorene	86-73-7	< 4,700.	4,700.	930.	ug/kg	5
03775	Phenanthrene	85-01-8	8,500.	4,700.	930.	ug/kg	5
03776	Anthracene	120-12-7	< 4,700.	4,700.	930.	ug/kg	5
03781	Benzo(a)anthracene	56-55-3	< 4,700.	4,700.	930.	ug/kg	5
03782	Chrysene	218-01-9	6,900.	4,700.	930.	ug/kg	5
03786	Benzo(b)fluoranthene	205-99-2	6,300.	4,700.	930.	ug/kg	5
03788	Benzo(a)pyrene	50-32-8	< 4,700.	4,700.	930.	ug/kg	5
03791	Benzo(g,h,i)perylene	191-24-2	< 4,700.	4,700.	930.	ug/kg	5
	Due to the sample matrix an ir analysis. Therefore, the repo						
	compounds were raised.	ording finites .	ior the GC/MS	semivoracire			
	Due to sample matrix interfere		during the e	xtraction, the			
	normal reporting limits were r	ot attained.					
02308	UST-Leaded Soils by 8260B						
02016	Methyl Tertiary Butyl Ether	1634-04-4	< 400.	400.	40.	ug/kg	71.63
05460	Benzene	71-43-2	3,200.	400.	40.	ug/kg	71.63
05461	1,2-Dichloroethane	107-06-2	< 400.	400.	80.	ug/kg	71.63
05466	Toluene	108-88-3	990.	400.	80.	ug/kg	71.63
05471	1,2-Dibromoethane	106-93-4	< 400.	400.	80.	ug/kg	71.63
05474	Ethylbenzene	100-41-4	< 400.	400.	80.	ug/kg	71.63
05479	Isopropylbenzene	98-82-8	< 400.	400.	80.	ug/kg	71.63
06301	Xylene (Total)	1330-20-7	3,200.	400.	80.	ug/kg	71.63

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09

^{*=}This limit was used in the evaluation of the final result

Account Number: 10132

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5356710 SW Group No. 1090550

BH-08-09 1.0-2.0 Grab Soil Philadelphia Refinery AOI-8 COC: 183724 BH-08-09

Collected:05/07/2008 14:00

by SS

Submitted: 05/09/2008 15:20 SUN: Aquaterra Tech.

Reported: 05/22/2008 at 17:49 PO Box 744

Discard: 07/22/2008 West Chester PA 19381

08-09

Dry Dry CAT Dry Limit of Method Dilution No. Analysis Name CAS Number Result Quantitation* Detection Units Factor

CAT		-		Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06135	Lead	SW-846 6020	1	05/15/2008 17:05	James R Williams II	10
00111	Moisture	SM20 2540 G	1	05/12/2008 17:13	Scott W Freisher	1
07804	PAHs in Soil by GC/MS	SW-846 8270C	1	05/21/2008 05:45	Linda M Hartenstine	5
02308	UST-Leaded Soils by 8260B	SW-846 8260B	1	05/16/2008 20:58	Kerri E Koch	71.63
06150	ICP/MS SW-846 Solid digest	SW-846 3050B	1	05/13/2008 20:10	Annamaria Stipkovits	1
06171	GC/MS - Field Preserved MeOH	SW-846 5035	1	05/07/2008 14:00	Client Supplied	1
07806	BNA Soil Extraction	SW-846 3550B	1	05/15/2008 02:00	David V Hershev Jr	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5356711 SW Group No. 1090550

BH-08-08_1.0-2.0 Grab Soil Philadelphia Refinery AOI-8 COC: 183724 BH-08-08

Collected: 05/07/2008 14:20 by SS Account Number: 10132

Submitted: 05/09/2008 15:20 SUN: Aquaterra Tech.

Reported: 05/22/2008 at 17:49 PO Box 744

Discard: 07/22/2008 West Chester PA 19381

B0808

				Dry	Dry		
CAT			Dry	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06135	Lead	7439-92-1	637.	2.41	0.361	mg/kg	20
00111	Moisture	n.a.	17.7	0.50	0.50	8	1
	"Moisture" represents the loss 103 - 105 degrees Celsius. The as-received basis.				at		
07804	PAHs in Soil by GC/MS						
01195	Pyrene	129-00-0	< 5,100.	5,100.	1,000.	ug/kg	5
03761	Naphthalene	91-20-3	< 5,100.	5,100.	1,000.	ug/kg	5
03768	Fluorene	86-73-7	< 5,100.	5,100.	1,000.	ug/kg	5
03775	Phenanthrene	85-01-8	< 5,100.	5,100.	1,000.	ug/kg	5
03776	Anthracene	120-12-7	< 5,100.	5,100.	1,000.	ug/kg	5
03781	Benzo(a)anthracene	56-55-3	< 5,100.	5,100.	1,000.	ug/kg	5
03782	Chrysene	218-01-9	7,200.	5,100.	1,000.	ug/kg	5
03786	Benzo(b)fluoranthene	205-99-2	< 5,100.	5,100.	1,000.	ug/kg	5
03788	Benzo(a)pyrene	50-32-8	< 5,100.	5,100.	1,000.	ug/kg	5
03791	Benzo(g,h,i)perylene	191-24-2	< 5,100.	5,100.	1,000.	ug/kg	5
	Due to the sample matrix an in analysis. Therefore, the reporting compounds were raised. Due to sample matrix interferencement reporting limits were in	orting limits ences observed	for the GC/MS	s semivolatile			
02308	UST-Leaded Soils by 8260B						
02016	Methyl Tertiary Butyl Ether	1634-04-4	< 380.	380.	38.	ug/kg	62.19
05460	Benzene	71-43-2	1,900.	380.	38.	ug/kg	62.19
05461	1,2-Dichloroethane	107-06-2	< 380.	380.	76.	ug/kg	62.19
05466	Toluene	108-88-3	< 380.	380.	76.	ug/kg	62.19
05471	1,2-Dibromoethane	106-93-4	< 380.	380.	76.	ug/kg	62.19
05474	Ethylbenzene	100-41-4	< 380.	380.	76.	ug/kg	62.19
05479	Isopropylbenzene	98-82-8	< 380.	380.	76.	ug/kg	62.19
06301	Xylene (Total)	1330-20-7	620.	380.	76.	ug/kg	62.19

Surrogate recoveries are outside of QC limits for the GC/MS volatile fraction. The analysis was repeated and the reanalysis surrogate recoveries are also out of specification indicating a matrix effect. An internal standard peak area was also outside the QC limits for the re-analysis.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5356711 SW Group No. 1090550

BH-08-08 1.0-2.0 Grab Soil Philadelphia Refinery AOI-8

COC: 183724 BH-08-08

by SS Collected:05/07/2008 14:20 Account Number: 10132

Submitted: 05/09/2008 15:20 SUN: Aquaterra Tech.

Reported: 05/22/2008 at 17:49 PO Box 744

Discard: 07/22/2008 West Chester PA 19381

B0808

Dry Dry CAT Dry Limit of Method Dilution No. Analysis Name CAS Number Result Quantitation* Detection Units Factor

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT			-	Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06135	Lead	SW-846 6020	1	05/17/2008 09:45	David K Beck	20
00111	Moisture	SM20 2540 G	2	05/13/2008 18:00	Scott W Freisher	1
07804	PAHs in Soil by GC/MS	SW-846 8270C	1	05/21/2008 06:08	Linda M Hartenstine	5
02308	UST-Leaded Soils by 8260B	SW-846 8260B	1	05/16/2008 14:41	Nicholas R Rossi	62.19
06150	ICP/MS SW-846 Solid digest	SW-846 3050B	1	05/13/2008 20:10	Annamaria Stipkovits	1
06171	GC/MS - Field Preserved MeOH	SW-846 5035	1	05/07/2008 14:20	Client Supplied	1
07806	BNA Soil Extraction	SW-846 3550B	1	05/15/2008 02:00	David V Hershey Jr	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5356712 SW Group No. 1090550

BH-08-02_1.0-2.0 Grab Soil Philadelphia Refinery AOI-8 COC: 183724 BH-08-02

Collected: 05/07/2008 14:50 by SS Account Number: 10132

Submitted: 05/09/2008 15:20 SUN: Aquaterra Tech.

Reported: 05/22/2008 at 17:49 PO Box 744

Discard: 07/22/2008 West Chester PA 19381

08-02

				Dry	Dry		
CAT			Dry	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06135	Lead	7439-92-1	138.	1.11	0.167	mg/kg	10
00111	Moisture	n.a.	11.9	0.50	0.50	%	1
	"Moisture" represents the loss 103 - 105 degrees Celsius. The as-received basis.				at		
07804	PAHs in Soil by GC/MS						
01195	Pyrene	129-00-0	< 950.	950.	190.	ug/kg	5
03761	Naphthalene	91-20-3	< 950.	950.	190.	ug/kg	5
03768	Fluorene	86-73-7	< 950.	950.	190.	ug/kg	5
03775	Phenanthrene	85-01-8	< 950.	950.	190.	ug/kg	5
03776	Anthracene	120-12-7	< 950.	950.	190.	ug/kg	5
03781	Benzo(a)anthracene	56-55-3	< 950.	950.	190.	ug/kg	5
03782	Chrysene	218-01-9	< 950.	950.	190.	ug/kg	5
03786	Benzo(b)fluoranthene	205-99-2	< 950.	950.	190.	ug/kg	5
03788	Benzo(a)pyrene	50-32-8	< 950.	950.	190.	ug/kg	5
03791	Benzo(g,h,i)perylene	191-24-2	< 950.	950.	190.	ug/kg	5
	Due to the sample matrix an in	itial dilution	n was necessar	y to perform the			
	analysis. Therefore, the repo	rting limits	for the GC/MS	semivolatile			
	compounds were raised.						
02308	UST-Leaded Soils by 8260B						
02016	Methyl Tertiary Butyl Ether	1634-04-4	< 230.	230.	23.	ug/kg	39.81
05460	Benzene	71-43-2	< 230.	230.	23.	ug/kg	39.81
05461	1,2-Dichloroethane	107-06-2	< 230.	230.	45.	ug/kg	39.81
05466	Toluene	108-88-3	< 230.	230.	45.	ug/kg	39.81
05471	1,2-Dibromoethane	106-93-4	< 230.	230.	45.	ug/kg	39.81
05474	Ethylbenzene	100-41-4	< 230.	230.	45.	ug/kg	39.81
05479	Isopropylbenzene	98-82-8	< 230.	230.	45.	ug/kg	39.81
06301	Xylene (Total)	1330-20-7	< 230.	230.	45.	ug/kg	39.81

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5356712 SW Group No. 1090550

BH-08-02_1.0-2.0 Grab Soil Philadelphia Refinery AOI-8 COC: 183724 BH-08-02

Collected: 05/07/2008 14:50 by SS Account Number: 10132

Submitted: 05/09/2008 15:20 SUN: Aquaterra Tech.

Reported: 05/22/2008 at 17:49 PO Box 744

Discard: 07/22/2008 West Chester PA 19381

08-02

CAT		_		Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06135	Lead	SW-846 6020	1	05/15/2008 17:17	James R Williams II	10
00111	Moisture	SM20 2540 G	1	05/12/2008 17:13	Scott W Freisher	1
07804	PAHs in Soil by GC/MS	SW-846 8270C	1	05/21/2008 06:32	Linda M Hartenstine	5
02308	UST-Leaded Soils by 8260B	SW-846 8260B	1	05/16/2008 15:04	Nicholas R Rossi	39.81
06150	ICP/MS SW-846 Solid digest	SW-846 3050B	1	05/13/2008 20:10	Annamaria Stipkovits	1
06171	GC/MS - Field Preserved MeOH	SW-846 5035	1	05/07/2008 14:50	Client Supplied	1
07806	BNA Soil Extraction	SW-846 3550B	1	05/15/2008 02:00	David V Hershey Jr	1

^{*=}This limit was used in the evaluation of the final result

Account Number: 10132

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5356713 SW Group No. 1090550

N-122 1.0-2.0 Grab Soil Philadelphia Refinery AOI-8 COC: 183724 N-122

Collected:05/07/2008 09:05 by SS

Submitted: 05/09/2008 15:20 SUN: Aquaterra Tech.

Reported: 05/22/2008 at 17:49 PO Box 744

Discard: 07/22/2008 West Chester PA 19381

N-122

				Dry	Dry				
CAT			Dry	Limit of	Method		Dilution		
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor		
06135	Lead	7439-92-1	207.	1.11	0.166	mg/kg	10		
00111	Moisture	n.a.	11.3	0.50	0.50	%	1		
	"Moisture" represents the loss in weight of the sample after oven drying at 103 - 105 degrees Celsius. The moisture result reported above is on an as-received basis.								
07804	PAHs in Soil by GC/MS								
01195	Pyrene	129-00-0	1,200.	940.	190.	ug/kg	5		
03761	Naphthalene	91-20-3	< 940.	940.	190.	ug/kg	5		
03768	Fluorene	86-73-7	980.	940.	190.	ug/kg	5		
03775	Phenanthrene	85-01-8	2,100.	940.	190.	ug/kg	5		
03776	Anthracene	120-12-7	2,100.	940.	190.	ug/kg	5		
03781	Benzo(a)anthracene	56-55-3	< 940.	940.	190.	ug/kg	5		
03782	Chrysene	218-01-9	< 940.	940.	190.	ug/kg	5		
03786	Benzo(b)fluoranthene	205-99-2	< 940.	940.	190.	ug/kg	5		
03788	Benzo(a)pyrene	50-32-8	< 940.	940.	190.	ug/kg	5		
03791	Benzo(g,h,i)perylene	191-24-2	< 940.	940.	190.	ug/kg	5		
	Due to the sample matrix an in	itial dilution	n was necessar	y to perform the					
	analysis. Therefore, the repo	rting limits 1	for the GC/MS	semivolatile					
	compounds were raised.								
02308	UST-Leaded Soils by 8260B								
02016	Methyl Tertiary Butyl Ether	1634-04-4	< 200.	200.	20.	ug/kg	35.06		
05460	Benzene	71-43-2	< 200.	200.	20.	ug/kg	35.06		
05461	1,2-Dichloroethane	107-06-2	< 200.	200.	40.	ug/kg	35.06		
05466	Toluene	108-88-3	< 200.	200.	40.	ug/kg	35.06		
05471	1,2-Dibromoethane	106-93-4	< 200.	200.	40.	ug/kg	35.06		
05474	Ethylbenzene	100-41-4	< 200.	200.	40.	ug/kg	35.06		
05479	Isopropylbenzene	98-82-8	< 200.	200.	40.	ug/kg	35.06		
06301	Xylene (Total)	1330-20-7	< 200.	200.	40.	ug/kg	35.06		

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681• www.lancasterlabs.com

Page 2 of 2

Group No. 1090550 Lancaster Laboratories Sample No. 5356713 SW

N-122_1.0-2.0 Grab Soil Philadelphia Refinery AOI-8

COC: 183724 N-122

Collected:05/07/2008 09:05 by SS Account Number: 10132

Submitted: 05/09/2008 15:20 SUN: Aquaterra Tech.

Reported: 05/22/2008 at 17:49 PO Box 744

Discard: 07/22/2008 West Chester PA 19381

N-122

		<u> </u>	CIII O.	111010		
CAT		_		Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06135	Lead	SW-846 6020	1	05/15/2008 17:19	James R Williams II	10
00111	Moisture	SM20 2540 G	1	05/12/2008 17:13	Scott W Freisher	1
07804	PAHs in Soil by GC/MS	SW-846 8270C	1	05/21/2008 06:56	Linda M Hartenstine	5
02308	UST-Leaded Soils by 8260B	SW-846 8260B	1	05/16/2008 15:26	Nicholas R Rossi	35.06
06150	ICP/MS SW-846 Solid digest	SW-846 3050B	1	05/13/2008 20:10	Annamaria Stipkovits	1
06171	GC/MS - Field Preserved MeOH	SW-846 5035	1	05/07/2008 09:05	Client Supplied	1
07806	BNA Soil Extraction	SW-846 3550B	1	05/15/2008 02:00	David V Hershey Jr	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5356714 SW Group No. 1090550

BH-08-04_1.0-2.0 Grab Soil Philadelphia Refinery AOI-8 COC: 183724 BH-08-04

Collected: 05/08/2008 08:45 by SS Account Number: 10132

Submitted: 05/09/2008 15:20 SUN: Aquaterra Tech.

Reported: 05/22/2008 at 17:49 PO Box 744

Discard: 07/22/2008 West Chester PA 19381

B0804

				Dry	Dry				
CAT			Dry	Limit of	Method		Dilution		
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor		
06135	Lead	7439-92-1	829.	2.41	0.362	mg/kg	20		
00111	Moisture	n.a.	17.9	0.50	0.50	%	1		
	"Moisture" represents the loss 103 - 105 degrees Celsius. The as-received basis.				at				
07804	PAHs in Soil by GC/MS								
01195	Pyrene	129-00-0	< 10,000.	10,000.	2,000.	ug/kg	5		
03761	Naphthalene	91-20-3	12,000.	10,000.	2,000.	ug/kg	5		
03768	Fluorene	86-73-7	< 10,000.	10,000.	2,000.	ug/kg	5		
03775	Phenanthrene	85-01-8	20,000.	10,000.	2,000.	ug/kg	5		
03776	Anthracene	120-12-7	< 10,000.	10,000.	2,000.	ug/kg	5		
03781	Benzo(a)anthracene	56-55-3	< 10,000.	10,000.	2,000.	ug/kg	5		
03782	Chrysene	218-01-9	< 10,000.	10,000.	2,000.	ug/kg	5		
03786	Benzo(b)fluoranthene	205-99-2	< 10,000.	10,000.	2,000.	ug/kg	5		
03788	Benzo(a)pyrene	50-32-8	< 10,000.	10,000.	2,000.	ug/kg	5		
03791	Benzo(g,h,i)perylene	191-24-2	< 10,000.	10,000.	2,000.	ug/kg	5		
	Due to the sample matrix an initial dilution was necessary to perform the analysis. Therefore, the reporting limits for the GC/MS semivolatile compounds were raised. Due to sample matrix interferences observed during the extraction, the normal reporting limits were not attained.								
02308	UST-Leaded Soils by 8260B								
02016	Methyl Tertiary Butyl Ether	1634-04-4	< 270.	270.	27.	ug/kg	43.71		
05460	Benzene	71-43-2	3,300.	270.	27.	ug/kg	43.71		
05461	1,2-Dichloroethane	107-06-2	< 270.	270.	53.	ug/kg	43.71		
05466	Toluene	108-88-3	590.	270.	53.	ug/kg	43.71		
05471	1,2-Dibromoethane	106-93-4	< 270.	270.	53.	ug/kg	43.71		
05474	Ethylbenzene	100-41-4	8,400.	270.	53.	ug/kg	43.71		
05479	Isopropylbenzene	98-82-8	2,400.	270.	53.	ug/kg	43.71		
06301	Xylene (Total)	1330-20-7	32,000.	2,700.	530.	ug/kg	437.06		

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5356714 SW Group No. 1090550

BH-08-04 1.0-2.0 Grab Soil Philadelphia Refinery AOI-8

COC: 183724 BH-08-04

by SS Collected: 05/08/2008 08:45 Account Number: 10132

Submitted: 05/09/2008 15:20 SUN: Aquaterra Tech.

Reported: 05/22/2008 at 17:49 PO Box 744

Discard: 07/22/2008 West Chester PA 19381

B0804

Dry Dry CAT Dry Limit of Method Dilution No. Analysis Name CAS Number Result Quantitation* Detection Units Factor

CAT			-	Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06135	Lead	SW-846 6020	1	05/17/2008 09:55	David K Beck	20
00111	Moisture	SM20 2540 G	2	05/13/2008 16:38	Scott W Freisher	1
07804	PAHs in Soil by GC/MS	SW-846 8270C	1	05/21/2008 07:20	Linda M Hartenstine	5
02308	UST-Leaded Soils by 8260B	SW-846 8260B	1	05/16/2008 16:56	Nicholas R Rossi	43.71
02308	UST-Leaded Soils by 8260B	SW-846 8260B	1	05/16/2008 17:18	Nicholas R Rossi	437.06
06150	ICP/MS SW-846 Solid digest	SW-846 3050B	1	05/13/2008 20:10	Annamaria Stipkovits	1
06171	GC/MS - Field Preserved	SW-846 5035	1	05/08/2008 08:45	Client Supplied	1
	MeOH					
07806	BNA Soil Extraction	SW-846 3550B	1	05/15/2008 02:00	David V Hershey Jr	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5356715 SW Group No. 1090550

BH-08-26_1.0-2.0 Grab Soil Philadelphia Refinery AOI-8 COC: 183724 BH-08-26

Collected: 05/08/2008 09:00 by SS Account Number: 10132

Submitted: 05/09/2008 15:20 SUN: Aquaterra Tech.

Reported: 05/22/2008 at 17:49 PO Box 744

Discard: 07/22/2008 West Chester PA 19381

08-26

				Dry	Dry		
CAT			Dry	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06135	Lead	7439-92-1	261.	1.13	0.170	mg/kg	10
00111	Moisture	n.a.	15.1	0.50	0.50	%	1
	"Moisture" represents the loss 103 - 105 degrees Celsius. The as-received basis.				at		
07804	PAHs in Soil by GC/MS						
01195	Pyrene	129-00-0	< 4,900.	4,900.	980.	ug/kg	5
03761	Naphthalene	91-20-3	< 4,900.	4,900.	980.	ug/kg	5
03768	Fluorene	86-73-7	< 4,900.	4,900.	980.	ug/kg	5
03775	Phenanthrene	85-01-8	< 4,900.	4,900.	980.	ug/kg	5
03776	Anthracene	120-12-7	< 4,900.	4,900.	980.	ug/kg	5
03781	Benzo(a)anthracene	56-55-3	< 4,900.	4,900.	980.	ug/kg	5
03782	Chrysene	218-01-9	< 4,900.	4,900.	980.	ug/kg	5
03786	Benzo(b)fluoranthene	205-99-2	< 4,900.	4,900.	980.	ug/kg	5
03788	Benzo(a)pyrene	50-32-8	< 4,900.	4,900.	980.	ug/kg	5
03791	Benzo(g,h,i)perylene	191-24-2	< 4,900.	4,900.	980.	ug/kg	5
	Due to the sample matrix an ir analysis. Therefore, the reportant compounds were raised.						
	Due to sample matrix interference normal reporting limits were r		during the ex	straction, the			
02308	UST-Leaded Soils by 8260B						
02016	Methyl Tertiary Butyl Ether	1634-04-4	< 210.	210.	21.	ug/kg	35.31
05460	Benzene	71-43-2	9,000.	210.	21.	ug/kg	35.31
05461	1,2-Dichloroethane	107-06-2	< 210.	210.	42.	ug/kg	35.31
05466	Toluene	108-88-3	< 210.	210.	42.	ug/kg	35.31
05471	1,2-Dibromoethane	106-93-4	< 210.	210.	42.	ug/kg	35.31
05474	Ethylbenzene	100-41-4	< 210.	210.	42.	ug/kg	35.31
05479	Isopropylbenzene	98-82-8	660.	210.	42.	ug/kg	35.31
06301	Xylene (Total)	1330-20-7	< 210.	210.	42.	ug/kg	35.31

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5356715 SW Group No. 1090550

BH-08-26 1.0-2.0 Grab Soil Philadelphia Refinery AOI-8

COC: 183724 BH-08-26

by SS Collected:05/08/2008 09:00 Account Number: 10132

Submitted: 05/09/2008 15:20 SUN: Aquaterra Tech.

Reported: 05/22/2008 at 17:49 PO Box 744

Discard: 07/22/2008 West Chester PA 19381

08-26

Dry Dry CAT Dry Limit of Method Dilution No. Analysis Name CAS Number Result Quantitation* Detection Units Factor

CAT	Analysis							
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor		
06135	Lead	SW-846 6020	1	05/15/2008 17:25	James R Williams II	10		
00111	Moisture	SM20 2540 G	1	05/12/2008 17:13	Scott W Freisher	1		
07804	PAHs in Soil by GC/MS	SW-846 8270C	1	05/21/2008 07:44	Linda M Hartenstine	5		
02308	UST-Leaded Soils by 8260B	SW-846 8260B	1	05/16/2008 15:49	Nicholas R Rossi	35.31		
06150	ICP/MS SW-846 Solid digest	SW-846 3050B	1	05/13/2008 20:10	Annamaria Stipkovits	1		
06171	GC/MS - Field Preserved MeOH	SW-846 5035	1	05/08/2008 09:00	Client Supplied	1		
07806	BNA Soil Extraction	SW-846 3550B	1	05/15/2008 02:00	David V Hershev Jr	1		

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5356716 SW Group No. 1090550

BH-08-07_1.0-2.0 Grab Soil Philadelphia Refinery AOI-8 COC: 183724 BH-08-07

Collected: 05/08/2008 09:15 by SS Account Number: 10132

Submitted: 05/09/2008 15:20 SUN: Aquaterra Tech.

Reported: 05/22/2008 at 17:49 PO Box 744

Discard: 07/22/2008 West Chester PA 19381

B0807

			_	Dry	Dry		-17
CAT		a. a	Dry	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06135	Lead	7439-92-1	519.	1.18	0.177	mg/kg	10
00111	Moisture	n.a.	17.6	0.50	0.50	%	1
	"Moisture" represents the loss 103 - 105 degrees Celsius. The as-received basis.				at		
07804	PAHs in Soil by GC/MS						
01195	Pyrene	129-00-0	5,900.	5,100.	1,000.	ug/kg	5
03761	Naphthalene	91-20-3	15,000.	5,100.	1,000.	ug/kg	5
03768	Fluorene	86-73-7	12,000.	5,100.	1,000.	ug/kg	5
03775	Phenanthrene	85-01-8	34,000.	5,100.	1,000.	ug/kg	5
03776	Anthracene	120-12-7	< 5,100.	5,100.	1,000.	ug/kg	5
03781	Benzo(a)anthracene	56-55-3	< 5,100.	5,100.	1,000.	ug/kg	5
03782	Chrysene	218-01-9	< 5,100.	5,100.	1,000.	ug/kg	5
03786	Benzo(b)fluoranthene	205-99-2	< 5,100.	5,100.	1,000.	ug/kg	5
03788	Benzo(a)pyrene	50-32-8	< 5,100.	5,100.	1,000.	ug/kg	5
03791	Benzo(g,h,i)perylene	191-24-2	< 5,100.	5,100.	1,000.	ug/kg	5
	Due to the sample matrix an in	nitial dilution	n was necessa	ry to perform the			
	analysis. Therefore, the repo	orting limits	for the GC/MS	semivolatile			
	compounds were raised.						
	Due to sample matrix interfere	ences observed	during the e	extraction, the			
	normal reporting limits were r	not attained.					
02308	UST-Leaded Soils by 8260B						
02016	Methyl Tertiary Butyl Ether	1634-04-4	< 250.	250.	25.	ug/kg	41.12
05460	Benzene	71-43-2	1,400.	250.	25.	ug/kg	41.12
05461	1,2-Dichloroethane	107-06-2	< 250.	250.	50.	ug/kg	41.12
05466	Toluene	108-88-3	470.	250.	50.	ug/kg	41.12
05471	1,2-Dibromoethane	106-93-4	< 250.	250.	50.	ug/kg	41.12
05474	Ethylbenzene	100-41-4	8,400.	250.	50.	ug/kg	41.12
05479	Isopropylbenzene	98-82-8	3,800.	250.	50.	ug/kg	41.12
06301	Xylene (Total)	1330-20-7	28,000.	2,500.	500.	ug/kg	411.18

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5356716 SW Group No. 1090550

BH-08-07_1.0-2.0 Grab Soil Philadelphia Refinery AOI-8

COC: 183724 BH-08-07

Collected:05/08/2008 09:15 by SS Account Number: 10132

Submitted: 05/09/2008 15:20 SUN: Aquaterra Tech.

Reported: 05/22/2008 at 17:49 PO Box 744

Discard: 07/22/2008 West Chester PA 19381

B0807

CAT Dry Dry

CAT Dry Limit of Method Dilution

No. Analysis Name CAS Number Result Quantitation* Detection Units Factor

CAT			-	Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06135	Lead	SW-846 6020	1	05/15/2008 17:28	James R Williams II	10
00111	Moisture	SM20 2540 G	1	05/12/2008 17:13	Scott W Freisher	1
07804	PAHs in Soil by GC/MS	SW-846 8270C	1	05/21/2008 08:08	Linda M Hartenstine	5
02308	UST-Leaded Soils by 8260B	SW-846 8260B	1	05/16/2008 17:40	Nicholas R Rossi	41.12
02308	UST-Leaded Soils by 8260B	SW-846 8260B	1	05/16/2008 18:03	Nicholas R Rossi	411.18
06150	ICP/MS SW-846 Solid digest	SW-846 3050B	1	05/13/2008 20:10	Annamaria Stipkovits	1
06171	GC/MS - Field Preserved	SW-846 5035	1	05/08/2008 09:15	Client Supplied	1
	MeOH					
07806	BNA Soil Extraction	SW-846 3550B	1	05/15/2008 02:00	David V Hershey Jr	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5356717 SW Group No. 1090550

N-112_1.0-2.0 Grab Soil Philadelphia Refinery AOI-8 COC: 183724 N-112

Collected: 05/08/2008 14:20 by SS Account Number: 10132

Submitted: 05/09/2008 15:20 SUN: Aquaterra Tech.

Reported: 05/22/2008 at 17:49 PO Box 744

Discard: 07/22/2008 West Chester PA 19381

N-112

				Dry	Dry		
CAT			Dry	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06135	Lead	7439-92-1	11.6	1.16	0.173	mg/kg	10
00111	Moisture	n.a.	15.2	0.50	0.50	%	1
	"Moisture" represents the loss 103 - 105 degrees Celsius. The as-received basis.				at		
07804	PAHs in Soil by GC/MS						
01195	Pyrene	129-00-0	< 200.	200.	39.	ug/kg	1
03761	Naphthalene	91-20-3	< 200.	200.	39.	ug/kg	1
03768	Fluorene	86-73-7	< 200.	200.	39.	ug/kg	1
03775	Phenanthrene	85-01-8	< 200.	200.	39.	ug/kg	1
03776	Anthracene	120-12-7	< 200.	200.	39.	ug/kg	1
03781	Benzo(a)anthracene	56-55-3	< 200.	200.	39.	ug/kg	1
03782	Chrysene	218-01-9	< 200.	200.	39.	ug/kg	1
03786	Benzo(b)fluoranthene	205-99-2	< 200.	200.	39.	ug/kg	1
03788	Benzo(a)pyrene	50-32-8	< 200.	200.	39.	ug/kg	1
03791	Benzo(g,h,i)perylene	191-24-2	< 200.	200.	39.	ug/kg	1
02308	UST-Leaded Soils by 8260B						
02016	Methyl Tertiary Butyl Ether	1634-04-4	< 440.	440.	44.	ug/kg	73.96
05460	Benzene	71-43-2	< 440.	440.	44.	ug/kg	73.96
05461	1,2-Dichloroethane	107-06-2	< 440.	440.	87.	ug/kg	73.96
05466	Toluene	108-88-3	< 440.	440.	87.	ug/kg	73.96
05471	1,2-Dibromoethane	106-93-4	< 440.	440.	87.	ug/kg	73.96
05474	Ethylbenzene	100-41-4	< 440.	440.	87.	ug/kg	73.96
05479	Isopropylbenzene	98-82-8	< 440.	440.	87.	ug/kg	73.96
06301	Xylene (Total)	1330-20-7	< 440.	440.	87.	ug/kg	73.96

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681• www.lancasterlabs.com

Page 2 of 2

Group No. 1090550 Lancaster Laboratories Sample No. 5356717 SW

N-112_1.0-2.0 Grab Soil Philadelphia Refinery AOI-8

COC: 183724 N-112

Collected:05/08/2008 14:20 by SS Account Number: 10132

Submitted: 05/09/2008 15:20 SUN: Aquaterra Tech.

Reported: 05/22/2008 at 17:49 PO Box 744

Discard: 07/22/2008 West Chester PA 19381

N-112

CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06135	Lead	SW-846 6020	1	05/15/2008 17:31	James R Williams II	10
00111	Moisture	SM20 2540 G	2	05/13/2008 16:38	Scott W Freisher	1
07804	PAHs in Soil by GC/MS	SW-846 8270C	1	05/21/2008 08:31	Linda M Hartenstine	1
02308	UST-Leaded Soils by 8260B	SW-846 8260B	1	05/16/2008 16:11	Nicholas R Rossi	73.96
06150	ICP/MS SW-846 Solid digest	SW-846 3050B	1	05/13/2008 20:10	Annamaria Stipkovits	1
06171	GC/MS - Field Preserved MeOH	SW-846 5035	1	05/08/2008 14:20	Client Supplied	1
07806	BNA Soil Extraction	SW-846 3550B	1	05/15/2008 02:00	David V Hershey Jr	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5356718 SW Group No. 1090550

N-114_1.0-2.0 Grab Soil Philadelphia Refinery AOI-8 COC: 183724 N-114

Collected: 05/08/2008 14:50 by SS Account Number: 10132

Submitted: 05/09/2008 15:20 SUN: Aquaterra Tech.

Reported: 05/22/2008 at 17:49 PO Box 744

Discard: 07/22/2008 West Chester PA 19381

N-114

			_	Dry	Dry		-12
CAT		a.a	Dry	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06135	Lead	7439-92-1	139.	1.11	0.167	mg/kg	10
00111	Moisture	n.a.	11.0	0.50	0.50	%	1
	"Moisture" represents the loss 103 - 105 degrees Celsius. The as-received basis.				at		
07804	PAHs in Soil by GC/MS						
01195	Pyrene	129-00-0	13,000.	4,700.	940.	ug/kg	5
03761	Naphthalene	91-20-3	< 4,700.	4,700.	940.	ug/kg	5
03768	Fluorene	86-73-7	10,000.	4,700.	940.	ug/kg	5
03775	Phenanthrene	85-01-8	26,000.	4,700.	940.	ug/kg	5
03776	Anthracene	120-12-7	< 4,700.	4,700.	940.	ug/kg	5
03781	Benzo(a)anthracene	56-55-3	< 4,700.	4,700.	940.	ug/kg	5
03782	Chrysene	218-01-9	6,900.	4,700.	940.	ug/kg	5
03786	Benzo(b)fluoranthene	205-99-2	< 4,700.	4,700.	940.	ug/kg	5
03788	Benzo(a)pyrene	50-32-8	< 4,700.	4,700.	940.	ug/kg	5
03791	Benzo(g,h,i)perylene	191-24-2	< 4,700.	4,700.	940.	ug/kg	5
	Due to the sample matrix an in						
	analysis. Therefore, the report compounds were raised.	rting limits i	tor the GC/MS	semivolatile			
	compounds were rarsea.						
	Due to sample matrix interfere	nces observed	during the ex	traction, the			
	normal reporting limits were no			,			
	1 3						
02308	UST-Leaded Soils by 8260B						
02016	Methyl Tertiary Butyl Ether	1634-04-4	< 240.	240.	24.	ug/kg	42.66
05460	Benzene	71-43-2	510.	240.	24.	ug/kg	42.66
05461	1,2-Dichloroethane	107-06-2	< 240.	240.	48.	ug/kg	42.66
05466	Toluene	108-88-3	420.	240.	48.	ug/kg	42.66
05471	1,2-Dibromoethane	106-93-4	< 240.	240.	48.	ug/kg	42.66
05474	Ethylbenzene	100-41-4	250.	240.	48.	ug/kg	42.66
05479	Isopropylbenzene	98-82-8	590.	240.	48.	ug/kg	42.66
06301	Xylene (Total)	1330-20-7	690.	240.	48.	ug/kg	42.66

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5356718 SW Group No. 1090550

N-114_1.0-2.0 Grab Soil Philadelphia Refinery AOI-8

COC: 183724 N-114

Collected: 05/08/2008 14:50 by SS Account Number: 10132

Submitted: 05/09/2008 15:20 SUN: Aquaterra Tech.

Reported: 05/22/2008 at 17:49 PO Box 744

Discard: 07/22/2008 West Chester PA 19381

N-114

CAT Dry Dry

CAT Dry Limit of Method Dilution

No. Analysis Name CAS Number Result Quantitation* Detection Units Factor

CAT		-		Dilution		
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06135	Lead	SW-846 6020	1	05/18/2008 14:34	James R Williams II	10
00111	Moisture	SM20 2540 G	1	05/12/2008 17:13	Scott W Freisher	1
07804	PAHs in Soil by GC/MS	SW-846 8270C	1	05/21/2008 08:55	Linda M Hartenstine	5
02308	UST-Leaded Soils by 8260B	SW-846 8260B	1	05/16/2008 16:33	Nicholas R Rossi	42.66
06150	ICP/MS SW-846 Solid digest	SW-846 3050B	1	05/14/2008 20:40	Annamaria Stipkovits	1
06171	GC/MS - Field Preserved MeOH	SW-846 5035	1	05/08/2008 14:50	Client Supplied	1
07806	BNA Soil Extraction	SW-846 3550B	1	05/15/2008 02:00	David V Hershev Jr	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Lancaster Laboratories Sample No. 5356719 SW Group No. 1090550

BH-08-05 6.0-8.0 Grab Soil Philadelphia Refinery AOI-8

COC: 183724 BH-08-05

Collected: 05/08/2008 13:50 by SS Account Number: 10132

Submitted: 05/09/2008 15:20 SUN: Aquaterra Tech.

Reported: 05/22/2008 at 17:49 PO Box 744

Discard: 07/22/2008 West Chester PA 19381

B0805

				Dry	Dry		
CAT			Dry	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06135	Lead	7439-92-1	63.4	1.35	0.203	mg/kg	10
00111	Moisture	n.a.	27.6	0.50	0.50	%	1

"Moisture" represents the loss in weight of the sample after oven drying at 103 - 105 degrees Celsius. The moisture result reported above is on an as-received basis.

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT			-	Analysis								
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor						
06135	Lead	SW-846 6020	1	05/15/2008 16:28	James R Williams II	10						
00111	Moisture	SM20 2540 G	1	05/12/2008 15:01	Scott W Freisher	1						
06150	ICP/MS SW-846 Solid digest	SW-846 3050B	1	05/13/2008 20:10	Annamaria Stipkovits	1						

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 4

Quality Control Summary

Client Name: SUN: Aquaterra Tech. Group Number: 1090550

Reported: 05/22/08 at 05:49 PM

Matrix QC may not be reported if site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

Laboratory Compliance Quality Control

		_	_		_				
Analysis Name	Blank <u>Result</u>	Blank LOQ**	Blank <u>MDL</u>	Report <u>Units</u>	LCS %REC	LCSD %REC	LCS/LCSD <u>Limits</u>	RPD	RPD Max
Batch number: 08133820005A Moisture	Sample n	number(s):	5356719		100		99-101		
Batch number: 08133820006A Moisture	Sample n	number(s):	5356699-535	6702,5356704	-53567 100	08	99-101		
Batch number: 08133820006B Moisture	Sample n	number(s):	5356709-535	6710,5356712	-53567 100	13,5356	715-5356716 99-101	5,53567	718
Batch number: 081346150002A Lead	Sample n	number(s): 0.100	5356699-535 0.0150	6717,5356719 mg/kg	111		82-118		
Batch number: 08134820002A Moisture	Sample n	number(s):	5356703		100		99-101		
Batch number: 08134820002B Moisture	Sample n	number(s):	5356711		100		99-101		
Batch number: 08134820003A Moisture	Sample n	number(s):	5356714		100		99-101		
Batch number: 08134820003B Moisture	Sample n	number(s):	5356717		100		99-101		
Batch number: 081356150001A Lead	Sample n < 0.100	number(s): 0.100	5356718 0.0150	mg/kg	104		82-118		
Batch number: 08135SLD026 Pyrene Naphthalene Fluorene Phenanthrene Anthracene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(a) pyrene Benzo(g,h,i) perylene	Sample r. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170.	number(s): 170. 170. 170. 170. 170. 170. 170. 170.	5356699-535 33. 33. 33. 33. 33. 33. 33. 33.	6718 ug/kg	104 89 105 108 102 104 101 115 113		75-115 73-106 75-116 77-113 76-112 73-112 76-113 61-127 69-122 65-122		
Batch number: Q081371AA Methyl Tertiary Butyl Ether Benzene 1,2-Dichloroethane Toluene 1,2-Dibromoethane Ethylbenzene Isopropylbenzene	Sample r. < 250. < 250. < 250. < 250. < 250. < 250. < 250. < 250. < 250. < 250. <	number(s): 250. 250. 250. 250. 250. 250. 250.	5356699-535 25. 25. 50. 50. 50. 50.	6710 ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	110 110 116 97 96 94 92	105 105 110 93 94 92 90	72-117 84-115 76-135 81-116 77-114 82-115 82-110	4 4 5 4 2 3 3	30 30 30 30 30 30 30 30

*- Outside of specification

- **-This limit was used in the evaluation of the final result for the blank
- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 2 of 4

Quality Control Summary

Client Name: SUN: Aquaterra Tech. Group Number: 1090550

Reported: 05/22/08 at 05:49 PM

Laboratory Compliance Quality Control

No. of Second or Manua	Blank	Blank	Blank	Report	LCS	LCSD	LCS/LCSD		DDD 14
<u>Analysis Name</u>	<u>Result</u>	<u>LOQ**</u>	<u>MDL</u>	<u>Units</u>	%REC	%REC	<u>Limits</u>	$\underline{\mathtt{RPD}}$	<u>RPD Max</u>
Xylene (Total)	< 250.	250.	50.	ug/kg	95	92	82-117	3	30
Batch number: R081371AA	Sample nu	imber(s): 5	356711-53	56718					
Methyl Tertiary Butyl Ether	< 250.	250.	25.	ug/kg	89	89	72-117	0	30
Benzene	< 250.	250.	25.	ug/kg	95	93	84-115	2	30
1,2-Dichloroethane	< 250.	250.	50.	ug/kg	93	95	76-135	2	30
Toluene	< 250.	250.	50.	ug/kg	100	99	81-116	1	30
1,2-Dibromoethane	< 250.	250.	50.	ug/kg	99	98	77-114	1	30
Ethylbenzene	< 250.	250.	50.	ug/kg	99	98	82-115	1	30
Isopropylbenzene	< 250.	250.	50.	ug/kg	100	98	82-110	2	30
Xvlene (Total)	< 250.	250.	50.	ua/ka	99	98	82-117	1	30

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

Analysis Name	MS MSD %REC %RE		RPD	RPD <u>MAX</u>	BKG Conc	DUP Conc	DUP <u>RPD</u>	Dup RPD <u>Max</u>
Batch number: 08133820005A Moisture	Sample numbe	er(s): 5356719	BKG:	P355918	8 41.0	41.5	1	15
Batch number: 08133820006A Moisture	Sample number	er(s): 5356699	9-535670	02,5356	704-5356708 15.6	BKG: 53567	01 4	15
Batch number: 08133820006B		er(s): 5356709	9-535671	LO,5356	712-5356713	,5356715-535	6716,535671	8 BKG:
Moisture	P356714				14.2	17.1	19*	15
Batch number: 081346150002A Lead	Sample numbe 214 (2) 154	er(s): 5356699 (2) 75-125	9-535671 4	L7,5356 20	719 UNSPK: ! 19.6	5356700 BKG: 20.2	5356700 3	20
Batch number: 08134820002A Moisture	Sample numbe	er(s): 5356703	BKG:	535670	3 15.3	16.8	9	15
Batch number: 08134820002B Moisture	Sample numbe	er(s): 5356711	BKG:	535671	1 17.7	17.5	1	15
Batch number: 08134820003A Moisture	Sample number	er(s): 5356714	BKG:	535671	4 17.9	18.3	2	15
Batch number: 08134820003B Moisture	Sample number	er(s): 5356717	BKG:	535671	7 15.2	15.9	4	15
Batch number: 081356150001A Lead	Sample number-7815 -88	er(s): 5356718 33 75-125	UNSPK: 52*	: P35648 20	81 BKG: P350 155.	5481 31.4	132*	20
Batch number: 08135SLD026 Pyrene Naphthalene Fluorene Phenanthrene	171 (2) 210	, ,	9-535671 4 2 3 3	30 30 30 30 30 30	K: 5356699			

*- Outside of specification

- **-This limit was used in the evaluation of the final result for the blank
- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Quality Control Summary

Client Name: SUN: Aquaterra Tech. Group Number: 1090550

Reported: 05/22/08 at 05:49 PM

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

	MS	MSD	MS/MSD		RPD	BKG	DUP	DUP	Dup RPD
Analysis Name	%REC	%REC	<u>Limits</u>	RPD	MAX	Conc	Conc	RPD	<u>Max</u>
Anthracene	119 (2)	96 (2)	34-148	4	30				
Benzo(a)anthracene	112	150	20-156	8	30				
Chrysene	171 (2)	168 (2)	19-158	0	30				
Benzo(b)fluoranthene	131	147	13-161	5	30				
Benzo(a)pyrene	129	102	24-154	8	30				
Benzo(g,h,i)perylene	129	110	26-154	8	30				

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: PAHs in Soil by GC/MS

Batch number: 08135SLD026

	Nitrobenzene-d5	2-Fluorobiphenyl	Terphenyl-d14	
5356699	110	119*	116	
5356700	96	104	91	
5356701	95	102	90	
5356702	109	120*	102	
5356703	95	101	92	
5356704	114	109	102	
5356705	112	124*	103	
5356706	126*	129*	115	
5356707	109	119*	107	
5356708	119	113	94	
5356709	91	98	85	
5356710	55	61	55	
5356711	100	108	97	
5356712	100	106	96	
5356713	100	103	92	
5356714	132*	126*	117	
5356715	104	113	111	
5356716	139*	102	84	
5356717	90	93	75	
5356718	163*	133*	111	
Blank	93	97	88	
LCS	92	99	90	
MS	112	113	119	
MSD	108	107	107	
Limits:	49-120	55-117	43-131	

Analysis Name: UST-Leaded Soils by 8260B

Batch number: 0081371AA

Bacch Humb	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
5356699	78	76	61*	66*
5356700	89	88	72	71
5356701	87	86	69*	67*

*- Outside of specification

- **-This limit was used in the evaluation of the final result for the blank
- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

Page 3 of 4

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 4 of 4

Quality Control Summary

Client Na	ame: SUN: Aquaterra	Tech.	Group Number:	1090550
Reported	: 05/22/08 at 05:49			
		Surrogate Qu	ality Control	
5356702	84	81	62*	62*
5356703	85	84	69*	61*
5356704	86	86	74	73
5356705	90	87	81	76
5356706	91	88	72	72
5356707	97	93	76	101
5356708	93	90	74	83
5356709	89	79	68*	64*
5356710	79	67*	49*	39*
Blank	106	105	91	87
LCS	106	102	92	92
LCSD	101	99	88	89
Limits:	71-114	70-109	70-123	70-111
Amalanda Ma	ame: UST-Leaded Soils by	0000		
	er: R081371AA	020UB		
Baccii ilumbe	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
5356711	61*	57*	50*	39*
5356712	77	75	77	77
5356713	73	71	74	76
5356714	56*	56*	46*	50*
5356715	72	70	70	68*
5356716	59*	59*	59*	66*
5356717	74	74	48*	21*
5356718		71	78	106
Blank	71	/ 1	/ 0	T00
LCS	71 85	87	88	87
100				
LCSD	85	87	88	87

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

For Lancaster Laboratories use only

Acct. # 1013L Group# 1090550 Sample # 5356699-719 COC # 183724

(1	- FUN-ADISTORA		ease plint. Instit		section.	trix /		esserent Esserent	Seat economic en l'An) Aı	nalyses	Reque		For Lab Use Only FSC:		_
(2	Project Name/#: PHIL REF - AOI - 8 Project Manager: T. DOERR Sampler: S. SYKES Name of state where samples were collected:	PWSID #	Time	3) 48	Pelane Cheric	nor Charles Anneste	thi #'of Confainars	260B PAV6	Lead	Moishre	Hs by 62/ms 822	on God	es	Preservation Codes H=HCl T=Thiosi N=HNO ₃ B=NaOH S=H ₂ SO ₄ O=Other	ulfate I	(a) (passential II) Misconia
	BH-08-16_1.0-2.0 BH-08-18_1.0-2.0 BH-08-17_1.0-2.0 BH-08-21_1.0-2.0 BH-08-25_1.0-2.0 BH-08-03-1.0-2.0 BH-08-22_1.0-2.0 BH-08-22_1.0-2.0 BH-08-24_1.0-2.0	517/08	1000	* * * * * * * * * * * * * * * * * * *	X X X X X X X X X		<u> </u>		X X X X X X X X X	イメメメイススメメ	W Y Y Y Y Y X X X X X X X X X X X X X X			Remarks + My /. 9 + Pls copy Kevin Marki Jason & G Analyses provid	n tonger)
8	Turnaround Time Requested (TAT) (please circle): CRush TAT is subject to Lancaster Laboratories approved Date results are needed: Rush results requested by (please circle): Phone #: E-mail address: Data Package Options (please circle if required) Type I (validation/NJ Reg) Type II (Tier II) Type III (Reduced NJ) Type IV (CLP SOW) Type VI (Raw Data Only) Turnaround Time Requested (TAT) (please circle) Fax #: Fax #: Site-specific QC (MS) Internal COC Require	SDO Ye P/MSD/Dup)?	I Rush rge.) E-mail G Complete? s No	Relin Relin	nquishe	ed by:			WATE		Date	1736 Time 0450 Time 15'1 Time	Received by: Received by:	Callman	5/7/4 Date 94/5 8 Date	Time 9:50 Time Time

For Lancaster Laboratories use only

Acct. # 10132 Group# 1090550 Sample # 5356699-719 COC # 183725

Please print. Instructions on reverse side correspond with circled numbers. For Lab Use Only 5 Analyses Requested FSC: SUN-AQUATERRA Preservation Codes SCR#: Acct. #: Client: **Preservation Codes** Project Name/#: PHIL REF-AOI-8 PWSID #: H=HCI T=Thiosulfate Project Manager: T. DOERR P.O.#: _____ N=HNO₃ B=NaOH S=H₂SO₄ O=Other Sampler: S. SYICES Quote #: Merstur Name of state where samples were collected: ___ Remarks temp1.9-Z.1°C

4 pls copy

(cevin martin + 577108 BH-08-10_1,0-2,0 1315 BH-08-09_ 1.0-2.0 517108 BH-08-08_1,0-2.0 517/08 1420 Jason o Langon BH-08-02_1,0-20 5/7/08 1450 N-122_1.0-2.0 517/08 905 toble provided Turnaround Time Requested (TAT) (please circle): Normal Rush Date Time (9 Time Received by: Relinquished by: Date (Rush TAT is subject to Lancaster Laboratories approval and surcharge.) AQUATERRA FRIDE SMOO 1736 [AQJATZARA 5/7/108 1730] Date results are needed: Time Received by: Date Date Time Rush results requested by (please circle): Phone Fax E-mail 3/9/18 0950 Erma Chillman 19/08 9:50 _____Fax #: _:____ Phone #: Relinquished by: Time Received by: Date E-mail address: 9/08/1520 Erma Chilman Data Package Options (please circle if required) SDG Complete? TX TRRP-13 Yes No Type I (validation/NJ Reg) Relinquished by: Time | Received by: Time Type II (Tier Ii) MA MCP CT RCP Site-specific QC (MS/MSD/Dup)? Yes No Type III (Reduced NJ) Time Received by: Date /Date Time Relinguished by: Type IV (CLP SOW) (If yes, indicate QC sample and submit triplicate volume.) Type VI (Raw Data Only) Internal COC Required? Yes / No

Acct. # 10132

For Lancaster Laboratories use only

Group# 10 90550 Sample # 5856699-719 COC # 183726

Please print. Instructions on reverse side correspond with circled numbers

1)		ease print. Insi					eles viole				es Req	iest	organismi Od icjanismi	For Lab Use Only FSC:		_
Client: SUN-AQUATERRA	Acct. #:			8. M	atrix (4			Pres	serva	tion Co	des		SCR#:		
Project Name/#: PHILA REF - AOT - 8 Project Manager: T. DOERR Sampler: S. SYKES Name of state where samples were collected:	PWSID #P.O.#:Quote #:	#:			L merable check if	f Containting	B PAVS	Noisture	eod	by 46/ms 8770				Preservation Codes H=HCI T=Thiosul N=HNO ₃ B=NaOH S=H ₂ SO ₄ O=Other	fate	of sæmples (If requested)
Saussie Bentincedon — 1	Page 1	Time) que	5 E	3 3 8	California	8260B	\square))	MHB				Remarks		femperature ugun receipt
BH-08-04_1.0-20	518108	845	X	X		2	X	X	X	X				# Pls copy	Cevin	Media
BH -08 -26_ 1.0-2.0	1	900	X	18		2	X	X	X	$\langle \chi \rangle$				& Jason	D (an	600
BH-08-07_1.0-2.0		915	X	-X		2	X	タ	X	X						·
N-112_1.0-2.0		1420	X	13		2	X	X	X	X				A Analyses	per h	1610
N-114-1.0-2.0		1450	x	1		2	X	1	X	X				oro.	rided	-
BH-08-05_6.0-8.0	1	1350	X	X		1			X					KHOW FORTCH	P Am	المحت
														, (BH-09	}- a c)
											- †			templ.9	Z.1	°C
Turnaround Time Requested (TAT) (please circ (Rush TAT is subject to Lancaster Laboratories approve	=		R	elinquis	hed by:	<u>A</u>		1AQ	przeg	Date <i>519</i> 6	Tim	- 1	Received by: Aqua	AERRA FRIDGE	1	Time (9
Date results are needed: Rush results requested by (please circle): Pho	ne Fay	E-mail	R	eling	ed by:					Date	Tim	e F	Received by:		Date	Time
Phone #:Fax #:		all	L	TX		<u>)</u> ,				5/9/0	8 095	2	ima i	Clethnan	19/08	9:50
E-mail address:				17	hed by:					Date	e Tim	e F	Received by:		Date	Time
Data Package Options (please circle if required)	I	G Complete?			. Del	lm	un		,		8 15	-:14	<u>) </u>			
Type I (validation/NJ Reg) TX TRRP-13 Type II (Tier II) MA MCP CT RC	P Ye	s No	[R	elinquis	hed by:					Date	⊋ Tim	e F	Received by:		Date	Time
Type III (Reduced NJ) Site-specific QC (MS		Yes No	<u> </u>									-) (<u> </u>
Type IV (CLP SOW) Type VI (Raw Data Only) Type VI (Raw Data Only) Type VI (Raw Data Only)			IR	elinquis	hed by:					Date	e Tim		eceived by:	- <i> </i>	Date 08	Time
,											l	-1 4	wis		טש	المارا

Lancaster Laboratories Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

N.D.	none detected	BMQL	Below Minimum Quantitation Level
TNTC	Too Numerous To Count	MPN	Most Probable Number
IU	International Units	CP Units	cobalt-chloroplatinate units
umhos/cm	micromhos/cm	NTU	nephelometric turbidity units
С	degrees Celsius	F	degrees Fahrenheit
Cal	(diet) calories	lb.	pound(s)
meq	milliequivalents	kg	kilogram(s)
g	gram(s)	mg	milligram(s)
ug	microgram(s)	1	liter(s)
ml	milliliter(s)	ul	microliter(s)
m3	cubic meter(s)	fib >5 um/ml	fibers greater than 5 microns in length per ml

- < less than The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.
- > greater than
- ppm parts per million One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.

Inorganic Qualifiers

- ppb parts per billion
- **Dry weight**Results printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture.

U.S. EPA data qualifiers:

9	lifier	(uu	9	 u	" 9	•

A B C D E	TIC is a possible aldol-condensation product Analyte was also detected in the blank Pesticide result confirmed by GC/MS Compound quatitated on a diluted sample Concentration exceeds the calibration range of the instrument	B E M N S	Value is <crdl, (msa)="" additions="" amount="" but="" calculation<="" control="" due="" duplicate="" estimated="" for="" injection="" interference="" limits="" met="" method="" not="" of="" precision="" spike="" standard="" th="" to="" used="" within="" ≥idl=""></crdl,>
J	Estimated value	U	Compound was not detected
N	Presumptive evidence of a compound (TICs only)	W	Post digestion spike out of control limits
Р	Concentration difference between primary and	*	Duplicate analysis not within control limits
	confirmation columns >25%	+	Correlation coefficient for MSA < 0.995
U	Compound was not detected		
X,Y,Z	Defined in case narrative		

Analytical test results for methods listed on the laboratories' accreditation scope meet all requirements of NELAC unless otherwise noted under the individual analysis.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

WARRANTY AND LIMITS OF LIABILITY – In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL LANCASTER LABORATORIES BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF LANCASTER LABORATORIES AND (B) WHETHER LANCASTER LABORATORIES HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Lancaster Laboratories which includes any conditions that vary from the Standard Terms and Conditions of Lancaster Laboratories and we hereby object to any conflicting terms contained in any acceptance or order submitted by client.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

ANALYTICAL RESULTS

Prepared for:

SUN: Aquaterra Tech. PO Box 744 West Chester PA 19381

610-431-5733

Prepared by:

Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425

SAMPLE GROUP

The sample group for this submittal is 1091319. Samples arrived at the laboratory on Wednesday, May 14, 2008. The PO# for this group is PHILADELPHIA.

Client DescriptionLancaster Labs NumberN-132_1.0-2.0 Grab Soil5361075

ELECTRONIC Langan Attn: Joseph Catricks

COPY TO

ELECTRONIC SUN: Aquaterra Tech. Attn: Tiffani Doerr

COPY TO

ELECTRONIC LLI Attn: EDD Group

COPY TO

ELECTRONIC SUN: Aquaterra Tech. Attn: Kevin Martin

COPY TO

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Questions? Contact your Client Services Representative Jessica A Heun at (717) 656-2300

Respectfully Submitted,

Michele M. Turner

middele M. Turner

Director

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5361075 SW Group No. 1091319

N-132_1.0-2.0 Grab Soil Philadelphia Refinery AOI-8 COC: 183729 N-132_1.0-2.0

Collected: 05/13/2008 08:00 by SS Account Number: 10132

Submitted: 05/14/2008 16:45 SUN: Aquaterra Tech.

Reported: 05/30/2008 at 11:29 PO Box 744

Discard: 07/30/2008 West Chester PA 19381

N-132

G3. III			D	Dry Limit of	Dry		Dillocki on
CAT	3 1	CAS Number	Dry		Method	*****	Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06135	Lead	7439-92-1	94.9	1.11	0.166	mg/kg	10
00111	Moisture	n.a.	11.6	0.50	0.50	8	1
	"Moisture" represents the loss 103 - 105 degrees Celsius. The as-received basis.				at		
07804	PAHs in Soil by GC/MS						
01195	Pyrene	129-00-0	< 9,400.	9,400.	1,900.	ug/kg	10
03761	Naphthalene	91-20-3	< 9,400.	9,400.	1,900.	ug/kg	10
03768	Fluorene	86-73-7	< 9,400.	9,400.	1,900.	ug/kg	10
03775	Phenanthrene	85-01-8	< 9,400.	9,400.	1,900.	ug/kg	10
03776	Anthracene	120-12-7	< 9,400.	9,400.	1,900.	ug/kg	10
03781	Benzo(a)anthracene	56-55-3	< 9,400.	9,400.	1,900.	ug/kg	10
03782	Chrysene	218-01-9	< 9,400.	9,400.	1,900.	ug/kg	10
03786	Benzo(b)fluoranthene	205-99-2	< 9,400.	9,400.	1,900.	ug/kg	10
03788	Benzo(a)pyrene	50-32-8	< 9,400.	9,400.	1,900.	ug/kg	10
03791	Benzo(g,h,i)perylene	191-24-2	< 9,400.	9,400.	1,900.	ug/kg	10
	Due to the sample matrix an in	itial dilution	n was necessa	ry to perform the			
	analysis. Therefore, the repo	orting limits :	for the GC/MS	semivolatile			
	compounds were raised.						
	Due to sample matrix interfere	ences observed	during the e	xtraction, the			
	normal reporting limits were r	ot attained.					
02308	UST-Leaded Soils by 8260B						
02016	Methyl Tertiary Butyl Ether	1634-04-4	< 230.	230.	23.	ug/kg	41.39
05460	Benzene	71-43-2	< 230.	230.	23.	ug/kg	41.39
05461	1,2-Dichloroethane	107-06-2	< 230.	230.	47.	ug/kg	41.39
05466	Toluene	108-88-3	< 230.	230.	47.	ug/kg	41.39
05471	1,2-Dibromoethane	106-93-4	< 230.	230.	47.	ug/kg	41.39
05474	Ethylbenzene	100-41-4	< 230.	230.	47.	ug/kg	41.39
05479	Isopropylbenzene	98-82-8	< 230.	230.	47.	ug/kg	41.39
06301	Xylene (Total)	1330-20-7	< 230.	230.	47.	ug/kg	41.39

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5361075 SW Group No. 1091319

N-132_1.0-2.0 Grab Soil Philadelphia Refinery AOI-8 COC: 183729 N-132_1.0-2.0

Collected: 05/13/2008 08:00 by SS Account Number: 10132

Submitted: 05/14/2008 16:45 SUN: Aquaterra Tech.

Reported: 05/30/2008 at 11:29 PO Box 744

Discard: 07/30/2008 West Chester PA 19381

N-132

CAT Dry Dry

CAT Dry Limit of Method Dilution

No. Analysis Name CAS Number Result Quantitation* Detection Units Factor
Limit

			· · · · · · ·			
CAT		-		Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06135	Lead	SW-846 6020	1	05/20/2008 14:35	James R Williams II	10
00111	Moisture	SM20 2540 G	1	05/15/2008 18:50	Scott W Freisher	1
07804	PAHs in Soil by GC/MS	SW-846 8270C	1	05/25/2008 19:15	Gregory J Drahovsky	10
02308	UST-Leaded Soils by 8260B	SW-846 8260B	1	05/21/2008 18:09	Lauren C Marzario	41.39
06150	ICP/MS SW-846 Solid digest	SW-846 3050B	1	05/18/2008 20:50	Annamaria Stipkovits	1
06171	GC/MS - Field Preserved MeOH	SW-846 5035	1	05/13/2008 08:00	Client Supplied	1
07806	BNA Soil Extraction	SW-846 3550B	1	05/18/2008 22:00	Patricia L Foreman	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Quality Control Summary

Client Name: SUN: Aquaterra Tech. Group Number: 1091319

Reported: 05/30/08 at 11:29 AM

Matrix QC may not be reported if site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

Laboratory Compliance Quality Control

Analysis Name	Blank <u>Result</u>	Blank LOQ**	Blank <u>MDL</u>	Report <u>Units</u>	LCS %REC	LCSD %REC	LCS/LCSD <u>Limits</u>	RPD	RPD Max
Batch number: 08136820006A Moisture	Sample nu	mber(s):	5361075		100		99-101		
Batch number: 081376150002A Lead	Sample nu < 0.100	mber(s): 0.100	5361075 0.0150	mg/kg	112		82-118		
Batch number: 08138SLA026 Pyrene Naphthalene Fluorene Phenanthrene Anthracene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(a) pyrene Benzo(g,h,i) perylene	Sample nu < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170.	mber(s): 170. 170. 170. 170. 170. 170. 170. 170.	5361075 33. 33. 33. 33. 33. 33. 33. 33	ug/kg	100 92 110 103 99 98 97 103 103		75-115 73-106 75-116 77-113 76-112 73-112 76-113 61-127 69-122 65-122		
Batch number: Q081422AA Methyl Tertiary Butyl Ether Benzene 1,2-Dichloroethane Toluene 1,2-Dibromoethane Ethylbenzene Isopropylbenzene Xylene (Total)	Sample nu < 250. < 250. < 250. < 250. < 250. < 250. < 250. < 250. < 250. < 250. < 250. < 250.	mber(s): 250. 250. 250. 250. 250. 250. 250. 250.	5361075 25. 25. 50. 50. 50. 50. 50.	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	92 90 98 90 91 88 86 89	94 92 99 91 92 90 88 91	72-117 84-115 76-135 81-116 77-114 82-115 82-110 82-117	2 2 1 1 1 3 2	30 30 30 30 30 30 30 30 30

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

Analysis Name	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD <u>MAX</u>	BKG Conc	DUP Conc	DUP RPD	Dup RPD Max
Batch number: 08136820006A Moisture	Sample :	number(s)	: 5361075	BKG:	P361398	34.2	31.3	9	15
Batch number: 081376150002A Lead	Sample : 3039 (2)		: 5361075 75-125		P36065 20	57 BKG: P36 76.2	0657 102.	29*	20
Batch number: 08138SLA026 Pyrene Naphthalene	Sample : 104 93	number(s) 108 98	: 5361075 19-162 29-140	UNSPK: 4 6	P36132 30 30	21			

*- Outside of specification

- **-This limit was used in the evaluation of the final result for the blank
- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Quality Control Summary

Client Name: SUN: Aquaterra Tech. Group Number: 1091319

Reported: 05/30/08 at 11:29 AM

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

	MS	MSD	MS/MSD		RPD	BKG	DUP	DUP	Dup RPD
Analysis Name	%REC	%REC	<u>Limits</u>	RPD	MAX	Conc	Conc	RPD	Max
Fluorene	110	115	42-139	5	30				
Phenanthrene	103	108	1-181	5	30				
Anthracene	101	106	34-148	5	30				
Benzo(a)anthracene	99	104	20-156	5	30				
Chrysene	99	102	19-158	3	30				
Benzo(b)fluoranthene	103	106	13-161	3	30				
Benzo(a)pyrene	105	110	24-154	5	30				
Benzo(g,h,i)perylene	107	113	26-154	5	30				

Surrogate Quality Control

Massachassal 414

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: PAHs in Soil by GC/MS Batch number: 08138SLA026 Nitrobenzene-d5

	Nitropenzene-d5	2-Fluorobiphenyl	Terpneny1-d14	
5361075	95	106	101	
Blank	87	96	93	
LCS	88	98	94	
MS	89	101	100	
MSD	94	106	103	
Limits:	49-120	55-117	43-131	

Analysis Name: UST-Leaded Soils by 8260B Batch number: Q081422AA

Datoli IIani	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
5361075	73	68*	60*	58*
Blank	94	92	87	89
LCS	88	86	85	89
LCSD	91	87	89	92
Limits:	71-114	70-109	70-123	70-111

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Acct. # 10132

For Lancaster Laboratories use only
Group# 1091319 Sample # 5361075

COC # 183729

	Ple	ease print. Instru	uctions	on reve	rse side	e corr	espon	d with	circle	d numb	oers. (ooler ten	WFor Lab Use Only		
1)								(5) Aı	ralyse	s Rec	uested	FSC:		
Client: SUN-AQUATERRA	Acct. #: _			Ma	trix (4			Pre	serva	tion C	des	SCR#:		
Project Name/#: PHILA REF AOT-	PWSID#	:		2	a l (Preservation Codes	;	
Project Manager: T. DOERR	_				Ž.	6							H=HCl T=Thios N=HNO₃ B=NaOl		6
_					enia. Maria	1.2	اما			0			S =H ₂ SO ₄ O =Othe		. B
Sampler: S,SYKRS						他) B	اد		827	l				一樣
Name of state where samples were collected: _	<u>PA</u>	P	⊋		M.	Ę	8260	Moisture	φφ	🔯					8 E
2 Military Chillips and Market Chillips and Chillips	A STATE OF THE STA	and the second		1 17			89	5,0	ૅ	1 4351					港 道
Swinglie Litentifilitäkliseri	Cate Chilesped	Time	218	青门		W	Pave	3)	РАН			Damada		
		***************************************	9 0		Gill Med		<u>.</u>	. /		7			Remarks		
N-132_1.0-2.0	5/13/08	800	X			2	X	X	λ	X					
													to do copy	Kan	mode
													and Joson	Dlan	
															
·													# See to61	e 0ec	<u> </u>
													Cooler	FF	
						\Box							1 dialys	-	
					+	╁┈┨							• .		
	 			+	\dashv	\vdash						+			
	<u> </u>			 -	+	+									
Turnaround Time Requested (TAT) (please of	irolo): Normal	Buch	1	<u> </u>								<u> </u>	<u> </u>		
(Rush TAT is subject to Lancaster Laboratories appn	=			inquishe			111	en	~~~^	Date		e Received by			Time (9)
Date results are needed:		, , 		Sh			/ HC	少付	CRRH				erra fridae	1	1640
Rush results requested by (please circle): Pt		E-mail		inquishe						Date		e Received by		16/1	Time
Phone #:Fax #:			120	inquishe	<u>/S</u>	_				5/14/	08 9:10	Marven	M / OULUSO-		9:0
E-mail address:	1 000		- Reii	nquisne <i>®</i> vv	eaby:	, cl	m(S/J/	l lin	e Received by	": 	Date	-Time
Data Package Options (please circle if required) Type I (validation/NJ Reg) TX TRRP-13	SDG Yes	Complete?				(/0	WW.	<u> </u>						+	<u> </u>
Type II (Tier II) MA MCP CT I	RCP		_ Kell	nquishe	∌a by:					Date		e Received by		Date	Time
Type III (Reduced NJ) Type IV (CLP SOW) Site-specific QC (N (If yes, indicate QC sample and subtr	• •	'es No	Be!	nau ilah s	- d b					Det	T:	Danahad fa		15.	<u> </u>
Type IV (CLP SOW) (If yes, indicate QC sample and subremain the subremain to the subremain terms of the subremain			Rell	nquishe	≠a by:					Date	: IIM	e Received by	^` <u>*</u>	Date よくルル	Time
, , , , , , , , , , , , , , , , , , , ,					-							1 100	ie touton	10117/	70 10 c 1/2

Lancaster Laboratories Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

N.D.	none detected	BMQL	Below Minimum Quantitation Level
TNTC	Too Numerous To Count	MPN	Most Probable Number
IU	International Units	CP Units	cobalt-chloroplatinate units
umhos/cm	micromhos/cm	NTU	nephelometric turbidity units
С	degrees Celsius	F	degrees Fahrenheit
Cal	(diet) calories	lb.	pound(s)
meq	milliequivalents	kg	kilogram(s)
g	gram(s)	mg	milligram(s)
ug	microgram(s)	1	liter(s)
ml	milliliter(s)	ul	microliter(s)
m3	cubic meter(s)	fib >5 um/ml	fibers greater than 5 microns in length per ml

- < less than The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.
- > greater than
- ppm parts per million One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.

Inorganic Qualifiers

- ppb parts per billion
- **Dry weight**Results printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture.

U.S. EPA data qualifiers:

9	lifier	(uu	9	 u	" 9	•

A B C D E	TIC is a possible aldol-condensation product Analyte was also detected in the blank Pesticide result confirmed by GC/MS Compound quatitated on a diluted sample Concentration exceeds the calibration range of the instrument	B E M N S	Value is <crdl, (msa)="" additions="" amount="" but="" calculation<="" control="" due="" duplicate="" estimated="" for="" injection="" interference="" limits="" met="" method="" not="" of="" precision="" spike="" standard="" th="" to="" used="" within="" ≥idl=""></crdl,>
J	Estimated value	U	Compound was not detected
N	Presumptive evidence of a compound (TICs only)	W	Post digestion spike out of control limits
Р	Concentration difference between primary and	*	Duplicate analysis not within control limits
	confirmation columns >25%	+	Correlation coefficient for MSA < 0.995
U	Compound was not detected		
X,Y,Z	Defined in case narrative		

Analytical test results for methods listed on the laboratories' accreditation scope meet all requirements of NELAC unless otherwise noted under the individual analysis.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

WARRANTY AND LIMITS OF LIABILITY – In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL LANCASTER LABORATORIES BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF LANCASTER LABORATORIES AND (B) WHETHER LANCASTER LABORATORIES HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Lancaster Laboratories which includes any conditions that vary from the Standard Terms and Conditions of Lancaster Laboratories and we hereby object to any conflicting terms contained in any acceptance or order submitted by client.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

ANALYTICAL RESULTS

Prepared for:

SUN: Aquaterra Tech. PO Box 744 West Chester PA 19381

610-431-5733

Prepared by:

Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425

SAMPLE GROUP

The sample group for this submittal is 1092714. Samples arrived at the laboratory on Thursday, May 22, 2008. The PO# for this group is PHILADELPHIA.

Client Description	<u>Lancaster Labs Number</u>
N-110_1.0-2.0 Grab Soil	5369564
N-111_1.0-2.0 Grab Soil	5369565
N-113_1.0-2.0 Grab Soil	5369566
N-133_1.0-2.0 Grab Soil	5369567
N-135_1.0-2.0 Grab Soil	5369568
N-136 1.0-2.0 Grab Soil	5369569

ELECTRONIC Langan Attn: Joseph Catricks

COPY TO

ELECTRONIC SUN: Aquaterra Tech. Attn: Tiffani Doerr

COPY TO

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Questions? Contact your Client Services Representative Jessica A Heun at (717) 656-2300

Respectfully Submitted,

Marla S. Lord Senior Specialist

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5369564 SW Group No. 1092714

N-110 1.0-2.0 Grab Soil Philadelphia Refinery AOI-8 COC: 183728 N-110_1.0-2.0

by SS Collected:05/14/2008 09:10 Account Number: 10132

Submitted: 05/22/2008 16:30 SUN: Aquaterra Tech.

Reported: 06/03/2008 at 12:24 PO Box 744

Discard: 08/03/2008 West Chester PA 19381

N110-

CAT No. 06135 00111	Analysis Name Lead Moisture "Moisture" represents the loss 103 - 105 degrees Celsius. The as-received basis.				Dry Method Detection Limit 0.159 0.50	Units mg/kg %	Dilution Factor 10
07804	PAHs in Soil by GC/MS						
01195 03761 03768 03775 03776 03781 03782 03786 03788	Pyrene Naphthalene Fluorene Phenanthrene Anthracene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(a)pyrene Benzo(g,h,i)perylene	129-00-0 91-20-3 86-73-7 85-01-8 120-12-7 56-55-3 218-01-9 205-99-2 50-32-8 191-24-2	< 180. < 180. < 180. < 180. < 180. < 180. < 180. < 180. < 180. < 180.	180. 180. 180. 180. 180. 180. 180. 180. 180.	36. 36. 36. 36. 36. 36. 36. 36. 36.	ug/kg	1 1 1 1 1 1 1 1 1
02308 02016 05460 05461 05466 05471 05474 05479 06301	Methyl Tertiary Butyl Ether Benzene 1,2-Dichloroethane Toluene 1,2-Dibromoethane Ethylbenzene Isopropylbenzene Xylene (Total)	1634-04-4 71-43-2 107-06-2 108-88-3 106-93-4 100-41-4 98-82-8 1330-20-7	< 240. < 240. < 240. < 240. < 240. < 240. < 240. < 240.	240. 240. 240. 240. 240. 240. 240. 240.	24. 24. 47. 47. 47. 47. 47.	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	43.86 43.86 43.86 43.86 43.86 43.86 43.86 43.86

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5369564 SW Group No. 1092714

N-110_1.0-2.0 Grab Soil Philadelphia Refinery AOI-8 COC: 183728 N-110_1.0-2.0

Collected: 05/14/2008 09:10 by SS Account Number: 10132

Submitted: 05/22/2008 16:30 SUN: Aquaterra Tech.

Reported: 06/03/2008 at 12:24 PO Box 744

Discard: 08/03/2008 West Chester PA 19381

N110-

CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06135	Lead	SW-846 6020	1	06/01/2008 06:07	David K Beck	10
00111	Moisture	SM20 2540 G	1	05/23/2008 15:56	Scott W Freisher	1
07804	PAHs in Soil by GC/MS	SW-846 8270C	1	05/27/2008 13:27	Joseph M Gambler	1
02308	UST-Leaded Soils by 8260B	SW-846 8260B	1	05/28/2008 13:51	Kerri E Koch	43.86
06150	ICP/MS SW-846 Solid digest	SW-846 3050B	1	05/26/2008 19:25	Annamaria Stipkovits	1
06171	GC/MS - Field Preserved MeOH	SW-846 5035	1	05/14/2008 09:10	Client Supplied	1
07806	BNA Soil Extraction	SW-846 3550B	1	05/23/2008 13:15	Doreen K Robles	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5369565 SW Group No. 1092714

N-111_1.0-2.0 Grab Soil Philadelphia Refinery AOI-8 COC: 183728 N-111 1.0-2.0

Collected: 05/14/2008 11:00 by SS Account Number: 10132

Submitted: 05/22/2008 16:30 SUN: Aquaterra Tech.

Reported: 06/03/2008 at 12:24 PO Box 744

Discard: 08/03/2008 West Chester PA 19381

N111-

				Dry	Dry		
CAT			Dry	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06135	Lead	7439-92-1	117.	1.06	0.158	mg/kg	10
00111	Moisture	n.a.	8.9	0.50	0.50	%	1
	"Moisture" represents the loss 103 - 105 degrees Celsius. The as-received basis.				at		
07804	PAHs in Soil by GC/MS						
01195	Pyrene	129-00-0	1,400.	910.	180.	ug/kg	5
03761	Naphthalene	91-20-3	< 910.	910.	180.	ug/kg	5
03768	Fluorene	86-73-7	< 910.	910.	180.	ug/kg	5
03775	Phenanthrene	85-01-8	1,100.	910.	180.	ug/kg	5
03776	Anthracene	120-12-7	< 910.	910.	180.	ug/kg	5
03781	Benzo(a)anthracene	56-55-3	< 910.	910.	180.	ug/kg	5
03782	Chrysene	218-01-9	< 910.	910.	180.	ug/kg	5
03786	Benzo(b)fluoranthene	205-99-2	960.	910.	180.	ug/kg	5
03788	Benzo(a)pyrene	50-32-8	< 910.	910.	180.	ug/kg	5
03791	Benzo(g,h,i)perylene	191-24-2	< 910.	910.	180.	ug/kg	5
	Due to the sample matrix an in analysis. Therefore, the repo compounds were raised.						
02308	UST-Leaded Soils by 8260B						
02016	Methyl Tertiary Butyl Ether	1634-04-4	< 240.	240.	24.	ug/kg	43.1
05460	Benzene	71-43-2	< 240.	240.	24.	ug/kg	43.1
05461	1,2-Dichloroethane	107-06-2	< 240.	240.	47.	ug/kg	43.1
05466	Toluene	108-88-3	< 240.	240.	47.	ug/kg	43.1
05471	1,2-Dibromoethane	106-93-4	< 240.	240.	47.	ug/kg	43.1
05474	Ethylbenzene	100-41-4	< 240.	240.	47.	ug/kg	43.1
05479	Isopropylbenzene	98-82-8	< 240.	240.	47.	ug/kg	43.1
06301	Xylene (Total)	1330-20-7	< 240.	240.	47.	ug/kg	43.1

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5369565 SW Group No. 1092714

N-111_1.0-2.0 Grab Soil Philadelphia Refinery AOI-8 COC: 183728 N-111_1.0-2.0

Collected: 05/14/2008 11:00 by SS Account Number: 10132

Submitted: 05/22/2008 16:30 SUN: Aquaterra Tech.

Reported: 06/03/2008 at 12:24 PO Box 744

Discard: 08/03/2008 West Chester PA 19381

N111-

		<u> </u>	CIII O.	111010		
CAT		_		Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06135	Lead	SW-846 6020	1	06/01/2008 06:10	David K Beck	10
00111	Moisture	SM20 2540 G	1	05/23/2008 15:56	Scott W Freisher	1
07804	PAHs in Soil by GC/MS	SW-846 8270C	1	05/27/2008 13:51	Joseph M Gambler	5
02308	UST-Leaded Soils by 8260B	SW-846 8260B	1	05/28/2008 14:14	Kerri E Koch	43.1
06150	ICP/MS SW-846 Solid digest	SW-846 3050B	1	05/26/2008 19:25	Annamaria Stipkovits	1
06171	GC/MS - Field Preserved MeOH	SW-846 5035	1	05/14/2008 11:00	Client Supplied	1
07806	BNA Soil Extraction	SW-846 3550B	1	05/23/2008 13:15	Doreen K Robles	1

^{*=}This limit was used in the evaluation of the final result

Dra

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5369566 SW Group No. 1092714

N-113_1.0-2.0 Grab Soil Philadelphia Refinery AOI-8 COC: 183728 N-113_1.0-2.0

Collected: 05/15/2008 08:00 by SS Account Number: 10132

Submitted: 05/22/2008 16:30 SUN: Aquaterra Tech.

Reported: 06/03/2008 at 12:25 PO Box 744

Discard: 08/03/2008 West Chester PA 19381

N113-

				Dry	Dry		
CAT			Dry	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06135	Lead	7439-92-1	77.9	1.06	0.158	mg/kg	10
00111	Moisture	n.a.	5.3	0.50	0.50	%	1
	"Moisture" represents the loss 103 - 105 degrees Celsius. The as-received basis.				at		
07804	PAHs in Soil by GC/MS						
01195	Pyrene	129-00-0	< 4,400.	4,400.	880.	ug/kg	5
03761	Naphthalene	91-20-3	< 4,400.	4,400.	880.	ug/kg	5
03768	Fluorene	86-73-7	< 4,400.	4,400.	880.	ug/kg	5
03775	Phenanthrene	85-01-8	< 4,400.	4,400.	880.	ug/kg	5
03776	Anthracene	120-12-7	< 4,400.	4,400.	880.	ug/kg	5
03781	Benzo(a)anthracene	56-55-3	< 4,400.	4,400.	880.	ug/kg	5
03782	Chrysene	218-01-9	< 4,400.	4,400.	880.	ug/kg	5
03786	Benzo(b)fluoranthene	205-99-2	< 4,400.	4,400.	880.	ug/kg	5
03788	Benzo(a)pyrene	50-32-8	< 4,400.	4,400.	880.	ug/kg	5
03791	Benzo(g,h,i)perylene	191-24-2	< 4,400.	4,400.	880.	ug/kg	5
	Due to the sample matrix an in:	itial dilutior	n was necessar	y to perform the			
	analysis. Therefore, the report compounds were raised.	rting limits f	For the GC/MS :	semivolatile			
	Due to sample matrix interfered normal reporting limits were no		during the ex	traction, the			
02308	UST-Leaded Soils by 8260B						
02016	Methyl Tertiary Butyl Ether	1634-04-4	< 180.	180.	18.	ug/kg	34.72
05460	Benzene	71-43-2	< 180.	180.	18.	ug/kg	34.72
05461	1,2-Dichloroethane	107-06-2	< 180.	180.	37.	ug/kg	34.72
05466	Toluene	108-88-3	< 180.	180.	37.	ug/kg	34.72
05471	1,2-Dibromoethane	106-93-4	< 180.	180.	37.	ug/kg	34.72
05474	Ethylbenzene	100-41-4	< 180.	180.	37.	ug/kg	34.72
05479	Isopropylbenzene	98-82-8	320.	180.	37.	ug/kg	34.72
06301	Xylene (Total)	1330-20-7	< 180.	180.	37.	ug/kg	34.72

Drv

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5369566 SW Group No. 1092714

N-113_1.0-2.0 Grab Soil Philadelphia Refinery AOI-8 COC: 183728 N-113_1.0-2.0

Collected: 05/15/2008 08:00 by SS Account Number: 10132

Submitted: 05/22/2008 16:30 SUN: Aquaterra Tech.

Reported: 06/03/2008 at 12:25 PO Box 744

Discard: 08/03/2008 West Chester PA 19381

N113-

CAT Dry Dry

CAT Dry Limit of Method Dilution

No. Analysis Name CAS Number Result Quantitation* Detection Units Factor

CAT		-		Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06135	Lead	SW-846 6020	1	06/01/2008 06:14	David K Beck	10
00111	Moisture	SM20 2540 G	1	05/23/2008 15:56	Scott W Freisher	1
07804	PAHs in Soil by GC/MS	SW-846 8270C	1	05/27/2008 14:15	Joseph M Gambler	5
02308	UST-Leaded Soils by 8260B	SW-846 8260B	1	05/29/2008 18:27	Kerri E Koch	34.72
06150	ICP/MS SW-846 Solid digest	SW-846 3050B	1	05/26/2008 19:25	Annamaria Stipkovits	1
06171	GC/MS - Field Preserved MeOH	SW-846 5035	1	05/15/2008 08:00	Client Supplied	1
07806	BNA Soil Extraction	SW-846 3550B	1	05/23/2008 13:15	Doreen K Robles	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5369567 SW Group No. 1092714

N-133_1.0-2.0 Grab Soil Philadelphia Refinery AOI-8 COC: 183728 N-133_1.0-2.0

Collected:05/15/2008 11:00 by SS Account Number: 10132

Submitted: 05/22/2008 16:30 SUN: Aquaterra Tech.

Reported: 06/03/2008 at 12:25 PO Box 744

Discard: 08/03/2008 West Chester PA 19381

N133-

G3. W			D	Dry Limit of	Dry		Dilution
CAT	3 1 d 37	and work or	Dry		Method	****	
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06135	Lead	7439-92-1	865.	2.36	0.353	mg/kg	20
00111	Moisture	n.a.	15.1	0.50	0.50	%	1
	"Moisture" represents the loss 103 - 105 degrees Celsius. The as-received basis.				at		
07804	PAHs in Soil by GC/MS						
01195	Pyrene	129-00-0	< 9,800.	9,800.	2,000.	ug/kg	5
03761	Naphthalene	91-20-3	< 9,800.	9,800.	2,000.	ug/kg	5
03768	Fluorene	86-73-7	< 9,800.	9,800.	2,000.	ug/kg	5
03775	Phenanthrene	85-01-8	< 9,800.	9,800.	2,000.	ug/kg	5
03776	Anthracene	120-12-7	< 9,800.	9,800.	2,000.	ug/kg	5
03781	Benzo(a)anthracene	56-55-3	< 9,800.	9,800.	2,000.	ug/kg	5
03782	Chrysene	218-01-9	< 9,800.	9,800.	2,000.	ug/kg	5
03786	Benzo(b)fluoranthene	205-99-2	< 9,800.	9,800.	2,000.	ug/kg	5
03788	Benzo(a)pyrene	50-32-8	< 9,800.	9,800.	2,000.	ug/kg	5
03791	Benzo(g,h,i)perylene	191-24-2	< 9,800.	9,800.	2,000.	ug/kg	5
	Due to the sample matrix an in analysis. Therefore, the repo compounds were raised.	rting limits :	for the GC/MS	semivolatile			
	Due to sample matrix interfere normal reporting limits were n		during the e	xtraction, the			
02308	UST-Leaded Soils by 8260B						
02016	Methyl Tertiary Butyl Ether	1634-04-4	< 300.	300.	30.	ug/kg	51.65
05460	Benzene	71-43-2	3,700.	300.	30.	ug/kg	51.65
05461	1,2-Dichloroethane	107-06-2	< 300.	300.	61.	ug/kg	51.65
05466	Toluene	108-88-3	< 300.	300.	61.	ug/kg	51.65
05471	1,2-Dibromoethane	106-93-4	< 300.	300.	61.	ug/kg	51.65
05474	Ethylbenzene	100-41-4	< 300.	300.	61.	ug/kg	51.65
05479	Isopropylbenzene	98-82-8	< 300.	300.	61.	ug/kg	51.65
06301	Xylene (Total)	1330-20-7	480.	300.	61.	ug/kg	51.65

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5369567 SW Group No. 1092714

N-133_1.0-2.0 Grab Soil Philadelphia Refinery AOI-8 COC: 183728 N-133_1.0-2.0

Collected: 05/15/2008 11:00 by SS Account Number: 10132

Submitted: 05/22/2008 16:30 SUN: Aquaterra Tech.

Reported: 06/03/2008 at 12:25 PO Box 744

Discard: 08/03/2008 West Chester PA 19381

N133-

CAT Dry Dry

CAT Dry Limit of Method Dilution

No. Analysis Name CAS Number Result Quantitation* Detection Units Factor

CAT		-		Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06135	Lead	SW-846 6020	1	06/01/2008 09:22	David K Beck	20
00111	Moisture	SM20 2540 G	1	05/23/2008 15:56	Scott W Freisher	1
07804	PAHs in Soil by GC/MS	SW-846 8270C	1	05/27/2008 14:39	Joseph M Gambler	5
02308	UST-Leaded Soils by 8260B	SW-846 8260B	1	05/29/2008 18:50	Kerri E Koch	51.65
06150	ICP/MS SW-846 Solid digest	SW-846 3050B	1	05/26/2008 19:25	Annamaria Stipkovits	1
06171	GC/MS - Field Preserved MeOH	SW-846 5035	1	05/15/2008 11:00	Client Supplied	1
07806	BNA Soil Extraction	SW-846 3550B	1	05/23/2008 13:15	Doreen K Robles	1

^{*=}This limit was used in the evaluation of the final result

Dra

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5369568 SW Group No. 1092714

N-135_1.0-2.0 Grab Soil Philadelphia Refinery AOI-8 COC: 183728 N-135_1.0-2.0

Collected: 05/15/2008 14:00 by SS Account Number: 10132

Submitted: 05/22/2008 16:30 SUN: Aquaterra Tech.

Reported: 06/03/2008 at 12:25 PO Box 744

Discard: 08/03/2008 West Chester PA 19381

N135-

				Dry	Dry		
CAT			Dry	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06135	Lead	7439-92-1	273.	1.21	0.181	mg/kg	10
00111	Moisture	n.a.	18.0	0.50	0.50	용	1
	"Moisture" represents the loss 103 - 105 degrees Celsius. The as-received basis.				at		
07804	PAHs in Soil by GC/MS						
01195	Pyrene	129-00-0	4,400.	1,000.	200.	ug/kg	5
03761	Naphthalene	91-20-3	2,100.	1,000.	200.	ug/kg	5
03768	Fluorene	86-73-7	< 1,000.	1,000.	200.	ug/kg	5
03775	Phenanthrene	85-01-8	7,700.	1,000.	200.	ug/kg	5
03776	Anthracene	120-12-7	1,600.	1,000.	200.	ug/kg	5
03781	Benzo(a)anthracene	56-55-3	1,500.	1,000.	200.	ug/kg	5
03782	Chrysene	218-01-9	3,000.	1,000.	200.	ug/kg	5
03786	Benzo(b)fluoranthene	205-99-2	< 1,000.	1,000.	200.	ug/kg	5
03788	Benzo(a)pyrene	50-32-8	1,500.	1,000.	200.	ug/kg	5
03791	Benzo(g,h,i)perylene	191-24-2	2,400.	1,000.	200.	ug/kg	5
	Due to the sample matrix an in	itial dilution	n was necessar	y to perform the			
	analysis. Therefore, the report	rting limits :	for the GC/MS	semivolatile			
	compounds were raised.						
02308	UST-Leaded Soils by 8260B						
02016	Methyl Tertiary Butyl Ether	1634-04-4	< 350.	350.	35.	ug/kg	57.47
05460	Benzene	71-43-2	< 350.	350.	35.	ug/kg	57.47
05461	1,2-Dichloroethane	107-06-2	< 350.	350.	70.	ug/kg	57.47
05466	Toluene	108-88-3	< 350.	350.	70.	ug/kg	57.47
05471	1,2-Dibromoethane	106-93-4	< 350.	350.	70.	ug/kg	57.47
05474	Ethylbenzene	100-41-4	< 350.	350.	70.	ug/kg	57.47
05479	Isopropylbenzene	98-82-8	< 350.	350.	70.	ug/kg	57.47
06301	Xylene (Total)	1330-20-7	< 350.	350.	70.	ug/kg	57.47

Dru

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5369568 SW Group No. 1092714

N-135_1.0-2.0 Grab Soil Philadelphia Refinery AOI-8 COC: 183728 N-135_1.0-2.0

Collected:05/15/2008 14:00 by SS Account Number: 10132

Submitted: 05/22/2008 16:30 SUN: Aquaterra Tech.

Reported: 06/03/2008 at 12:25 PO Box 744

Discard: 08/03/2008 West Chester PA 19381

N135-

		Haberacery	CIII O.	111010		
CAT		-		Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06135	Lead	SW-846 6020	1	06/01/2008 06:29	David K Beck	10
00111	Moisture	SM20 2540 G	1	05/23/2008 15:56	Scott W Freisher	1
07804	PAHs in Soil by GC/MS	SW-846 8270C	1	05/27/2008 15:03	Joseph M Gambler	5
02308	UST-Leaded Soils by 8260B	SW-846 8260B	1	05/29/2008 19:13	Kerri E Koch	57.47
06150	ICP/MS SW-846 Solid digest	SW-846 3050B	1	05/26/2008 19:25	Annamaria Stipkovits	1
06171	GC/MS - Field Preserved MeOH	SW-846 5035	1	05/15/2008 14:00	Client Supplied	1
07806	BNA Soil Extraction	SW-846 3550B	1	05/23/2008 13:15	Doreen K Robles	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5369569 SW Group No. 1092714

N-136_1.0-2.0 Grab Soil Philadelphia Refinery AOI-8 COC: 183728 N-136_1.0-2.0

Collected: 05/15/2008 15:30 by SS Account Number: 10132

Submitted: 05/22/2008 16:30 SUN: Aquaterra Tech.

Reported: 06/03/2008 at 12:25 PO Box 744

Discard: 08/03/2008 West Chester PA 19381

N-136

				Dry	Dry		
CAT			Dry	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06135	Lead	7439-92-1	320.	1.13	0.170	mg/kg	10
00111	Moisture	n.a.	13.6	0.50	0.50	%	1
	"Moisture" represents the loss 103 - 105 degrees Celsius. The as-received basis.				at		
07804	PAHs in Soil by GC/MS						
01195	Pyrene	129-00-0	< 190.	190.	39.	ug/kg	1
03761	Naphthalene	91-20-3	< 190.	190.	39.	ug/kg	1
03768	Fluorene	86-73-7	< 190.	190.	39.	ug/kg	1
03775	Phenanthrene	85-01-8	< 190.	190.	39.	ug/kg	1
03776	Anthracene	120-12-7	< 190.	190.	39.	ug/kg	1
03781	Benzo(a)anthracene	56-55-3	< 190.	190.	39.	ug/kg	1
03782	Chrysene	218-01-9	< 190.	190.	39.	ug/kg	1
03786	Benzo(b)fluoranthene	205-99-2	< 190.	190.	39.	ug/kg	1
03788	Benzo(a)pyrene	50-32-8	< 190.	190.	39.	ug/kg	1
03791	Benzo(g,h,i)perylene	191-24-2	< 190.	190.	39.	ug/kg	1
02308	UST-Leaded Soils by 8260B						
02016	Methyl Tertiary Butyl Ether	1634-04-4	< 210.	210.	21.	ug/kg	35.56
05460	Benzene	71-43-2	700.	210.	21.	ug/kg	35.56
05461	1,2-Dichloroethane	107-06-2	< 210.	210.	41.	ug/kg	35.56
05466	Toluene	108-88-3	< 210.	210.	41.	ug/kg	35.56
05471	1,2-Dibromoethane	106-93-4	< 210.	210.	41.	ug/kg	35.56
05474	Ethylbenzene	100-41-4	< 210.	210.	41.	ug/kg	35.56
05479	Isopropylbenzene	98-82-8	< 210.	210.	41.	ug/kg	35.56
06301	Xylene (Total)	1330-20-7	< 210.	210.	41.	ug/kg	35.56

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5369569 SW Group No. 1092714

N-136_1.0-2.0 Grab Soil Philadelphia Refinery AOI-8 COC: 183728 N-136_1.0-2.0

Collected: 05/15/2008 15:30 by SS Account Number: 10132

Submitted: 05/22/2008 16:30 SUN: Aquaterra Tech.

Reported: 06/03/2008 at 12:25 PO Box 744

Discard: 08/03/2008 West Chester PA 19381

CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06135	Lead	SW-846 6020	1	06/01/2008 06:33	David K Beck	10
00111	Moisture	SM20 2540 G	1	05/23/2008 15:56	Scott W Freisher	1
07804	PAHs in Soil by GC/MS	SW-846 8270C	1	05/27/2008 15:27	Joseph M Gambler	1
02308	UST-Leaded Soils by 8260B	SW-846 8260B	1	05/29/2008 19:36	Kerri E Koch	35.56
06150	ICP/MS SW-846 Solid digest	SW-846 3050B	1	05/26/2008 19:25	Annamaria Stipkovits	1
06171	GC/MS - Field Preserved MeOH	SW-846 5035	1	05/15/2008 15:30	Client Supplied	1
07806	BNA Soil Extraction	SW-846 3550B	1	05/23/2008 13:15	Doreen K Robles	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 3

Quality Control Summary

Client Name: SUN: Aquaterra Tech. Group Number: 1092714

Reported: 06/03/08 at 12:25 PM

Matrix QC may not be reported if site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

Laboratory Compliance Quality Control

Analysis Name	Blank <u>Result</u>	Blank <u>LOO**</u>	Blank <u>MDL</u>	Report <u>Units</u>	LCS %REC	LCSD %REC	LCS/LCSD <u>Limits</u>	RPD	RPD Max
Batch number: 081446150001A Lead	Sample num < 0.100	ber(s): 5	5369564-536 0.0150	9569 mg/kg	84		82-118		
Batch number: 08144820005A Moisture	Sample num	ber(s): 5	5369564-536	9569	100		99-101		
Batch number: 08144SLA026 Pyrene Naphthalene Fluorene Phenanthrene Anthracene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(a) pyrene Benzo(g,h,i) perylene	Sample num < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170.	ber(s): ! 170. 170. 170. 170. 170. 170. 170. 170.	5369564-536 33. 33. 33. 33. 33. 33. 33. 33. 33.	9569 ug/kg	92 81 87 89 83 84 85 80 81 84		75-115 73-106 75-116 77-113 76-112 73-112 76-113 61-127 69-122 65-122		
Batch number: Q081491AA Methyl Tertiary Butyl Ether Benzene 1,2-Dichloroethane Toluene 1,2-Dibromoethane Ethylbenzene Isopropylbenzene Xylene (Total)	Sample num < 250. < 250. < 250. < 250. < 250. < 250. < 250. < 250. < 250.	ber(s): 9 250. 250. 250. 250. 250. 250. 250. 250.	5369564-536 25. 25. 50. 50. 50. 50. 50.	9565 ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	106 106 120 94 96 94 91		72-117 84-115 76-135 81-116 77-114 82-115 82-110 82-117		
Batch number: Q081501AA Methyl Tertiary Butyl Ether Benzene 1,2-Dichloroethane Toluene 1,2-Dibromoethane Ethylbenzene Isopropylbenzene Xylene (Total)	Sample num < 250. < 250. < 250. < 250. < 250. < 250. < 250. < 250. < 250. < 250.	ber(s): 9 250. 250. 250. 250. 250. 250. 250. 250.	5369566-536 25. 25. 50. 50. 50. 50. 50. 50.	9569 ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	112 104 120 90 90 89 86 90	96 90 105 91 93 92 87 91	72-117 84-115 76-135 81-116 77-114 82-115 82-110 82-117	16 14 13 1 4 3 0	30 30 30 30 30 30 30 30 30

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

	MS	MSD	MS/MSD		RPD	BKG	DUP	DUP	Dup RPD
<u>Analysis Name</u>	%REC	%REC	<u>Limits</u>	RPD	<u>MAX</u>	Conc	Conc	RPD	<u>Max</u>

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Quality Control Summary

Client Name: SUN: Aquaterra Tech. Group Number: 1092714

Reported: 06/03/08 at 12:25 PM

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

Analysis Name	MS %REC	MSD %REC	MS/MSD <u>Limits</u>	RPD	RPD <u>MAX</u>	BKG <u>Conc</u>	DUP <u>Conc</u>	DUP <u>RPD</u>	Dup RPD <u>Max</u>
Batch number: 081446150001A							BKG: P368322		
Lead	16 (2)	49 (2)	75-125	4	20	12.5	12.0	4	20
Batch number: 08144820005A	Sample	number(s)	. 5369564	-536956	9 BKG	P368711			
Moisture	bampie	Hamber (b)	. 5505501	330330	DIG.	27.1	25.7	5	15
Batch number: 08144SLA026	Sample	number(s)	: 5369564	-536956	9 UNSP	C: P369443			
Pyrene	87	81	19-162	7	30				
Naphthalene	79	75	29-140	6	30				
Fluorene	83	79	42-139	6	30				
Phenanthrene	83	79	1-181	4	30				
Anthracene	84	78	34-148	7	30				
Benzo(a)anthracene	80	75	20-156	6	30				
Chrysene	81	77	19-158	4	30				
Benzo(b)fluoranthene	75	71	13-161	5	30				
Benzo(a) pyrene	79	76	24-154	5	30				
Benzo(g,h,i)perylene	84	81	26-154	4	30				
	_								
Batch number: Q081491AA		number(s)				C: P363004			
Methyl Tertiary Butyl Ether	109	99	59-119	6	30				
Benzene	103	96	66-112	3	30				
1,2-Dichloroethane	122	114	62-130	3	30				
Toluene	93	87	58-116	3	30				
1,2-Dibromoethane	97	89	66-108	4	30				
Ethylbenzene	95	88	54-116	4	30				
Isopropylbenzene	98	87	54-113	7	30				
Xylene (Total)	97	88	52-117	6	30				

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed $\bar{\ }$ unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: PAHs in Soil by GC/MS

Batch number: 08144SLA026

Datoli IIama	Nitrobenzene-d5	2-Fluorobiphenyl	Terphenyl-d14	
5369564	87	93	101	
5369565	76	78	79	
5369566	89	83	87	
5369567	82	78	80	
5369568	73	69	72	
5369569	95	99	97	
Blank	81	87	94	
LCS	85	90	94	
MS	82	89	94	
MSD	78	86	90	
Limits:	49-120	55-117	43-131	

*- Outside of specification

- **-This limit was used in the evaluation of the final result for the blank
- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

Page 2 of 3

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 3 of 3

Quality Control Summary

Client Name: SUN: Aquaterra Tech. Group Number: 1092714

Reported: 06/03/08 at 12:25 PM

Surrogate Quality Control

Analysis Name: UST-Leaded Soils by 8260B

	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
5369564	93	87	75	74
5369565	95	90	78	74
Blank	106	100	88	85
LCS	112	106	95	94
MS	91	88	75	79
MSD	95	89	80	81
Limits:	71-114	70-109	70-123	70-111

Analysis Name: UST-Leaded Soils by 8260B

Batch numb	per: Q081501AA Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
5369566	81	75	68*	80
5369567	71	67*	56*	53*
5369568	65*	58*	50*	44*
5369569	83	76	69*	76
Blank	112	107	89	85
LCS	112	108	91	94
LCSD	98	93	93	96
Limits:	71-114	70-109	70-123	70-111

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Client: SUN-AQUATERRA Acct.#: Project Name/#: Phila REF AOT-& PWSID#: Project Manager: T. DOERR P.O.#: Sampler: S. SYKES Quote #: Name of state where samples were collected: PA 2 Date Time Sample Sample Samples Samples Collected		For Lab Use Only FSC: SCR#: Preservation Codes H=HCI T=Thiosu N=HNO ₃ B=NaOH S=H ₂ SO ₄ O=Other Remarks	
Project Name/#: PHILA REF AOT-& PWSID#: Project Manager: T. DOERR P.O.#: Sampler: S. SYKES Quote #: Name of state where samples were collected: PA 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	odes	Preservation Codes H=HCI T=Thiosu N=HNO ₃ B=NaOH S=H ₂ SO ₄ O=Other	
Project Manager:		H=HCI T=Thiosu N=HNO ₃ B=NaOH S=H ₂ SO ₄ O=Other	
Project Manager:		N=HNO ₃ B=NaOH S=H ₂ SO ₄ O=Other	
Sampler: S. SYKES Quote #:		S=H ₂ SO ₄ O=Other	
		Romanto	
		Pomorko	
		Domorko	
		Domonko	
Bample Montification Dellected Collected to 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5			
N-110_1.0-2.0 5/14/08 910 X X 2 1 X X X		M Pls Copy .	Je Cath
N-111 _ 1.0-2.0 5/14/08 1100 X X 2 1 X X X		+ Joson @	Locano
N-113_1.0-2.0 515108 800 X X 2 1 X X X			
N-133 _ 1.0-2.0 5/15/08 1100 X X 21 X X		* Analyses	0eC
N-135_1.0-2.0 5/5/08 1400 x x 2 2 1 x x x		table pro	orded
N-136-1.0-2.0 5/15/08 1530 X X 2 21 XXX			,
			-
Turnaround Time Requested (TAT) (please circle): Normal Rush Relinquished by: Date Time	ne Received by		Date Time
(Rush TAT is subject to Lancaster Laboratories approval and surcharge.) Date results are needed: AQUISTERNA 5/15/08 179	5 AQUATE	FRRA FRIDGE	5/15/08 174
Rush results requested by (please circle): Phone Fax F-mail Relinquisted by Date Tin	ne Received by		Delte Time
Phone #: Fax #: Fax #:	24 M comin	whellie	22/08 9:0
I F-mail address:	e Received by	: *	Date Time
Spara : actuage obtains (bisese circle in reduined)			
Type II (Tier II) MA MCP CT RCP	Received by:	: `	Date Time
Type III (Reduced NJ) Site-specific QC (MS/MSD/Dup)? Yes No			
Type IV (CLP SOW) (If yes, Indicate QC sample and submit triplicate volume.) Type VI (Raw Data Only) Internal COC Required? Yes / No	ne Received to		Date Time

Lancaster Laboratories Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

N.D.	none detected	BMQL	Below Minimum Quantitation Level
TNTC	Too Numerous To Count	MPN	Most Probable Number
IU	International Units	CP Units	cobalt-chloroplatinate units
umhos/cm	micromhos/cm	NTU	nephelometric turbidity units
С	degrees Celsius	F	degrees Fahrenheit
Cal	(diet) calories	lb.	pound(s)
meq	milliequivalents	kg	kilogram(s)
g	gram(s)	mg	milligram(s)
ug	microgram(s)	I	liter(s)
ml	milliliter(s)	ul	microliter(s)
m3	cubic meter(s)	fib >5 um/ml	fibers greater than 5 microns in length per ml

- < less than The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.
- > greater than
- ppm parts per million One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.

Inorganic Qualifiers

- ppb parts per billion
- **Dry weight**Results printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture.

U.S. EPA data qualifiers:

9	lifier	(uu	9	 u	" 9	•

A B C D E	TIC is a possible aldol-condensation product Analyte was also detected in the blank Pesticide result confirmed by GC/MS Compound quatitated on a diluted sample Concentration exceeds the calibration range of the instrument	B E M N S	Value is <crdl, (msa)="" additions="" amount="" but="" calculation<="" control="" due="" duplicate="" estimated="" for="" injection="" interference="" limits="" met="" method="" not="" of="" precision="" spike="" standard="" th="" to="" used="" within="" ≥idl=""></crdl,>
J	Estimated value	U	Compound was not detected
N	Presumptive evidence of a compound (TICs only)	W	Post digestion spike out of control limits
Р	Concentration difference between primary and	*	Duplicate analysis not within control limits
	confirmation columns >25%	+	Correlation coefficient for MSA < 0.995
U	Compound was not detected		
X,Y,Z	Defined in case narrative		

Analytical test results for methods listed on the laboratories' accreditation scope meet all requirements of NELAC unless otherwise noted under the individual analysis.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

WARRANTY AND LIMITS OF LIABILITY – In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL LANCASTER LABORATORIES BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF LANCASTER LABORATORIES AND (B) WHETHER LANCASTER LABORATORIES HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Lancaster Laboratories which includes any conditions that vary from the Standard Terms and Conditions of Lancaster Laboratories and we hereby object to any conflicting terms contained in any acceptance or order submitted by client.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

ANALYTICAL RESULTS

Prepared for:

SUN: Aquaterra Tech. PO Box 744 West Chester PA 19381

610-431-5733

Prepared by:

Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425

SAMPLE GROUP

The sample group for this submittal is 1092715. Samples arrived at the laboratory on Thursday, May 22, 2008. The PO# for this group is PHILADELPHIA.

Client Description	<u>Lancaster Labs Number</u>
N-116_1.0-2.0 Grab Soil	5369570
N-128_1.0-2.0 Grab Soil	5369571
N-123_1.0-2.0 Grab Soil	5369572
N-124_1.0-2.0 Grab Soil	5369573

ELECTRONIC Langan Attn: Joseph Catricks
COPY TO
ELECTRONIC SUN: Aquaterra Tech. Attn: Tiffani Doerr
COPY TO
ELECTRONIC SUN: Aquaterra Tech. Attn: Kevin Martin

COPY TO

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Questions? Contact your Client Services Representative Jessica A Heun at (717) 656-2300

Respectfully Submitted,

Marla S. Lord Senior Specialist

Dra

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5369570 SW Group No. 1092715

N-116_1.0-2.0 Grab Soil Philadelphia Refinery AOI-8 COC: 183727 N-116_1.0-2.0

Collected: 05/20/2008 08:00 by SS Account Number: 10132

Submitted: 05/22/2008 16:30 SUN: Aquaterra Tech.

Reported: 06/03/2008 at 12:25 PO Box 744

Discard: 08/03/2008 West Chester PA 19381

N116-

				Dry	Dry		
CAT			Dry	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06135	Lead	7439-92-1	340.	1.16	0.174	mg/kg	10
00111	Moisture	n.a.	14.5	0.50	0.50	%	1
	"Moisture" represents the loss 103 - 105 degrees Celsius. The as-received basis.				at		
07804	PAHs in Soil by GC/MS						
01195	Pyrene	129-00-0	1,200.	970.	190.	ug/kg	5
03761	Naphthalene	91-20-3	< 970.	970.	190.	ug/kg	5
03768	Fluorene	86-73-7	2,100.	970.	190.	ug/kg	5
03775	Phenanthrene	85-01-8	5,900.	970.	190.	ug/kg	5
03776	Anthracene	120-12-7	1,000.	970.	190.	ug/kg	5
03781	Benzo(a)anthracene	56-55-3	< 970.	970.	190.	ug/kg	5
03782	Chrysene	218-01-9	< 970.	970.	190.	ug/kg	5
03786	Benzo(b)fluoranthene	205-99-2	< 970.	970.	190.	ug/kg	5
03788	Benzo(a)pyrene	50-32-8	< 970.	970.	190.	ug/kg	5
03791	Benzo(g,h,i)perylene	191-24-2	< 970.	970.	190.	ug/kg	5
	Due to the sample matrix an in	itial dilution	n was necessar	y to perform the			
	analysis. Therefore, the repor	rting limits	for the GC/MS :	semivolatile			
	compounds were raised.						
02308	UST-Leaded Soils by 8260B						
02300	osi nedded soiis sy ozoos						
02016	Methyl Tertiary Butyl Ether	1634-04-4	< 230.	230.	23.	ug/kg	39.12
05460	Benzene	71-43-2	< 230.	230.	23.	ug/kg	39.12
05461	1,2-Dichloroethane	107-06-2	< 230.	230.	46.	ug/kg	39.12
05466	Toluene	108-88-3	< 230.	230.	46.	ug/kg	39.12
05471	1,2-Dibromoethane	106-93-4	< 230.	230.	46.	ug/kg	39.12
05474	Ethylbenzene	100-41-4	< 230.	230.	46.	ug/kg	39.12
05479	Isopropylbenzene	98-82-8	810.	230.	46.	ug/kg	39.12
06301	Xylene (Total)	1330-20-7	< 230.	230.	46.	ug/kg	39.12

Dru

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5369570 SW Group No. 1092715

N-116_1.0-2.0 Grab Soil Philadelphia Refinery AOI-8 COC: 183727 N-116_1.0-2.0

Collected: 05/20/2008 08:00 by SS Account Number: 10132

Submitted: 05/22/2008 16:30 SUN: Aquaterra Tech.

Reported: 06/03/2008 at 12:25 PO Box 744

Discard: 08/03/2008 West Chester PA 19381

N116-

			· ·			
CAT		-		Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06135	Lead	SW-846 6020	1	06/01/2008 06:37	David K Beck	10
00111	Moisture	SM20 2540 G	1	05/23/2008 15:56	Scott W Freisher	1
07804	PAHs in Soil by GC/MS	SW-846 8270C	1	05/27/2008 15:51	Joseph M Gambler	5
02308	UST-Leaded Soils by 8260B	SW-846 8260B	1	05/30/2008 16:55	Kerri E Koch	39.12
06150	ICP/MS SW-846 Solid digest	SW-846 3050B	1	05/26/2008 19:25	Annamaria Stipkovits	1
06171	GC/MS - Field Preserved MeOH	SW-846 5035	1	05/20/2008 08:00	Client Supplied	1
07806	BNA Soil Extraction	SW-846 3550B	1	05/23/2008 13:15	Doreen K Robles	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5369571 SW Group No. 1092715

N-128_1.0-2.0 Grab Soil Philadelphia Refinery AOI-8 COC: 183727 N-128_1.0-2.0

Collected: 05/20/2008 09:30 by SS Account Number: 10132

Submitted: 05/22/2008 16:30 SUN: Aquaterra Tech.

Reported: 06/03/2008 at 12:25 PO Box 744

Discard: 08/03/2008 West Chester PA 19381

N128-

				Dry	Dry		
CAT			Dry	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06135	Lead	7439-92-1	61.4	1.18	0.178	mg/kg	10
00111	Moisture	n.a.	17.2	0.50	0.50	%	1
	"Moisture" represents the loss 103 - 105 degrees Celsius. The as-received basis.				at		
07804	PAHs in Soil by GC/MS						
01195	Pyrene	129-00-0	< 1,000.	1,000.	200.	ug/kg	5
03761	Naphthalene	91-20-3	2,200.	1,000.	200.	ug/kg	5
03768	Fluorene	86-73-7	< 1,000.	1,000.	200.	ug/kg	5
03775	Phenanthrene	85-01-8	1,900.	1,000.	200.	ug/kg	5
03776	Anthracene	120-12-7	< 1,000.	1,000.	200.	ug/kg	5
03781	Benzo(a)anthracene	56-55-3	1,700.	1,000.	200.	ug/kg	5
03782	Chrysene	218-01-9	1,900.	1,000.	200.	ug/kg	5
03786	Benzo(b)fluoranthene	205-99-2	3,300.	1,000.	200.	ug/kg	5
03788	Benzo(a)pyrene	50-32-8	6,000.	1,000.	200.	ug/kg	5
03791	Benzo(g,h,i)perylene	191-24-2	20,000.	1,000.	200.	ug/kg	5
	Due to the sample matrix an in	itial dilutior	was necessar	y to perform the			
	analysis. Therefore, the repor	rting limits f	for the GC/MS	semivolatile			
	compounds were raised.						
02308	UST-Leaded Soils by 8260B						
02016	Methyl Tertiary Butyl Ether	1634-04-4	< 290.	290.	29.	ug/kg	48.08
05460	Benzene	71-43-2	1,900.	290.	29.	ug/kg	48.08
05461	1,2-Dichloroethane	107-06-2	< 290.	290.	58.	ug/kg	48.08
05466	Toluene	108-88-3	< 290.	290.	58.	ug/kg	48.08
05471	1,2-Dibromoethane	106-93-4	< 290.	290.	58.	ug/kg	48.08
05474	Ethylbenzene	100-41-4	340.	290.	58.	ug/kg	48.08
05479	Isopropylbenzene	98-82-8	< 290.	290.	58.	ug/kg	48.08
06301	Xylene (Total)	1330-20-7	610.	290.	58.	ug/kg	48.08

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5369571 SW Group No. 1092715

N-128_1.0-2.0 Grab Soil Philadelphia Refinery AOI-8 COC: 183727 N-128_1.0-2.0

Collected: 05/20/2008 09:30 by SS Account Number: 10132

Submitted: 05/22/2008 16:30 SUN: Aquaterra Tech.

Reported: 06/03/2008 at 12:25 PO Box 744

Discard: 08/03/2008 West Chester PA 19381

N128-

		паротасоту	CIII O.	111010		
CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06135	Lead	SW-846 6020	1	06/01/2008 06:40	David K Beck	10
00111	Moisture	SM20 2540 G	1	05/23/2008 15:56	Scott W Freisher	1
07804	PAHs in Soil by GC/MS	SW-846 8270C	1	05/27/2008 16:15	Joseph M Gambler	5
02308	UST-Leaded Soils by 8260B	SW-846 8260B	1	05/31/2008 17:00	Kerri E Koch	48.08
06150	ICP/MS SW-846 Solid digest	SW-846 3050B	1	05/26/2008 19:25	Annamaria Stipkovits	1
06171	GC/MS - Field Preserved MeOH	SW-846 5035	1	05/20/2008 09:30	Client Supplied	1
07806	BNA Soil Extraction	SW-846 3550B	1	05/23/2008 13:15	Doreen K Robles	1

^{*=}This limit was used in the evaluation of the final result

Dra

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5369572 SW Group No. 1092715

N-123_1.0-2.0 Grab Soil Philadelphia Refinery AOI-8 COC: 183727 N-123_1.0-2.0

Collected: 05/20/2008 14:45 by SS Account Number: 10132

Submitted: 05/22/2008 16:30 SUN: Aquaterra Tech.

Reported: 06/03/2008 at 12:25 PO Box 744

Discard: 08/03/2008 West Chester PA 19381

N123-

				Dry	Dry		
CAT			Dry	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06135	Lead	7439-92-1	254.	1.27	0.191	mg/kg	10
00111	Moisture	n.a.	22.2	0.50	0.50	%	1
	"Moisture" represents the loss 103 - 105 degrees Celsius. The as-received basis.				at		
07804	PAHs in Soil by GC/MS						
01195	Pyrene	129-00-0	25,000.	1,100.	210.	ug/kg	5
03761	Naphthalene	91-20-3	< 1,100.	1,100.	210.	ug/kg	5
03768	Fluorene	86-73-7	< 1,100.	1,100.	210.	ug/kg	5
03775	Phenanthrene	85-01-8	16,000.	1,100.	210.	ug/kg	5
03776	Anthracene	120-12-7	5,000.	1,100.	210.	ug/kg	5
03781	Benzo(a)anthracene	56-55-3	17,000.	1,100.	210.	ug/kg	5
03782	Chrysene	218-01-9	16,000.	1,100.	210.	ug/kg	5
03786	Benzo(b)fluoranthene	205-99-2	18,000.	1,100.	210.	ug/kg	5
03788	Benzo(a)pyrene	50-32-8	13,000.	1,100.	210.	ug/kg	5
03791	Benzo(g,h,i)perylene	191-24-2	8,000.	1,100.	210.	ug/kg	5
	Due to the sample matrix an in	itial dilution	n was necessar	ry to perform the			
	analysis. Therefore, the repo	rting limits :	for the GC/MS	semivolatile			
	compounds were raised.						
02308	UST-Leaded Soils by 8260B						
02016	Methyl Tertiary Butyl Ether	1634-04-4	< 240.	240.	24.	ug/kg	37.09
05460	Benzene	71-43-2	< 240.	240.	24.	ug/kg	37.09
05461	1,2-Dichloroethane	107-06-2	< 240.	240.	48.	ug/kg	37.09
05466	Toluene	108-88-3	< 240.	240.	48.	ug/kg	37.09
05471	1,2-Dibromoethane	106-93-4	< 240.	240.	48.	ug/kg	37.09
05474	Ethylbenzene	100-41-4	< 240.	240.	48.	ug/kg	37.09
05479	Isopropylbenzene	98-82-8	< 240.	240.	48.	ug/kg	37.09
06301	Xylene (Total)	1330-20-7	< 240.	240.	48.	ug/kg	37.09

Dru

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681• www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5369572 SW Group No. 1092715

N-123_1.0-2.0 Grab Soil Philadelphia Refinery AOI-8 COC: 183727 N-123_1.0-2.0

Collected: 05/20/2008 14:45 by SS Account Number: 10132

Submitted: 05/22/2008 16:30 SUN: Aquaterra Tech.

Reported: 06/03/2008 at 12:25 PO Box 744

Discard: 08/03/2008 West Chester PA 19381

N123-

		<u> </u>	CIII O.	111010		
CAT		_		Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06135	Lead	SW-846 6020	1	06/01/2008 06:44	David K Beck	10
00111	Moisture	SM20 2540 G	1	05/23/2008 15:56	Scott W Freisher	1
07804	PAHs in Soil by GC/MS	SW-846 8270C	1	05/27/2008 16:39	Joseph M Gambler	5
02308	UST-Leaded Soils by 8260B	SW-846 8260B	1	05/31/2008 17:22	Kerri E Koch	37.09
06150	ICP/MS SW-846 Solid digest	SW-846 3050B	1	05/26/2008 19:25	Annamaria Stipkovits	1
06171	GC/MS - Field Preserved MeOH	SW-846 5035	1	05/20/2008 14:45	Client Supplied	1
07806	BNA Soil Extraction	SW-846 3550B	1	05/23/2008 13:15	Doreen K Robles	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5369573 SW Group No. 1092715

N-124_1.0-2.0 Grab Soil Philadelphia Refinery AOI-8 COC: 183727 N-124_1.0-2.0

Collected:05/21/2008 11:30 by SS Account Number: 10132

Submitted: 05/22/2008 16:30 SUN: Aquaterra Tech.

Reported: 06/03/2008 at 12:25 PO Box 744

Discard: 08/03/2008 West Chester PA 19381

N124-

				Dry	Dry		
CAT			Dry	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06135	Lead	7439-92-1	43.9	1.15	0.173	mg/kg	10
00111	Moisture	n.a.	14.2	0.50	0.50	용	1
	"Moisture" represents the loss 103 - 105 degrees Celsius. The as-received basis.				at		
07804	PAHs in Soil by GC/MS						
01195	Pyrene	129-00-0	< 190.	190.	39.	ug/kg	1
03761	Naphthalene	91-20-3	< 190.	190.	39.	ug/kg	1
03768	Fluorene	86-73-7	< 190.	190.	39.	ug/kg	1
03775	Phenanthrene	85-01-8	< 190.	190.	39.	ug/kg	1
03776	Anthracene	120-12-7	< 190.	190.	39.	ug/kg	1
03781	Benzo(a)anthracene	56-55-3	< 190.	190.	39.	ug/kg	1
03782	Chrysene	218-01-9	< 190.	190.	39.	ug/kg	1
03786	Benzo(b)fluoranthene	205-99-2	< 190.	190.	39.	ug/kg	1
03788	Benzo(a)pyrene	50-32-8	< 190.	190.	39.	ug/kg	1
03791	Benzo(g,h,i)perylene	191-24-2	< 190.	190.	39.	ug/kg	1
02308	UST-Leaded Soils by 8260B						
02016	Methyl Tertiary Butyl Ether	1634-04-4	< 370.	370.	37.	ug/kg	63.94
05460	Benzene	71-43-2	< 370.	370.	37.	ug/kg	63.94
05461	1,2-Dichloroethane	107-06-2	< 370.	370.	75.	ug/kg	63.94
05466	Toluene	108-88-3	< 370.	370.	75.	ug/kg	63.94
05471	1,2-Dibromoethane	106-93-4	< 370.	370.	75.	ug/kg	63.94
05474	Ethylbenzene	100-41-4	< 370.	370.	75.	ug/kg	63.94
05479	Isopropylbenzene	98-82-8	< 370.	370.	75.	ug/kg	63.94
06301	Xylene (Total)	1330-20-7	< 370.	370.	75.	ug/kg	63.94

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5369573 SW Group No. 1092715

N-124_1.0-2.0 Grab Soil Philadelphia Refinery AOI-8 COC: 183727 N-124_1.0-2.0

Collected: 05/21/2008 11:30 by SS Account Number: 10132

Submitted: 05/22/2008 16:30 SUN: Aquaterra Tech.

Reported: 06/03/2008 at 12:25 PO Box 744

Discard: 08/03/2008 West Chester PA 19381

N124-

_	N				Analysis		Dilution
1	No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
(06135	Lead	SW-846 6020	1	06/01/2008 06:48	David K Beck	10
(00111	Moisture	SM20 2540 G	1	05/23/2008 15:56	Scott W Freisher	1
(07804	PAHs in Soil by GC/MS	SW-846 8270C	1	05/27/2008 17:03	Joseph M Gambler	1
(02308	UST-Leaded Soils by 8260B	SW-846 8260B	1	05/29/2008 19:59	Kerri E Koch	63.94
(06150	ICP/MS SW-846 Solid digest	SW-846 3050B	1	05/26/2008 19:25	Annamaria Stipkovits	1
(06171	GC/MS - Field Preserved MeOH	SW-846 5035	1	05/21/2008 11:30	Client Supplied	1
(07806	BNA Soil Extraction	SW-846 3550B	1	05/23/2008 13:15	Doreen K Robles	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Quality Control Summary

Client Name: SUN: Aquaterra Tech. Group Number: 1092715

Reported: 06/03/08 at 12:25 PM

Matrix QC may not be reported if site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

Laboratory Compliance Quality Control

Analysis Name	Blank <u>Result</u>	Blank LOQ**	Blank <u>MDL</u>	Report <u>Units</u>	LCS %REC	LCSD %REC	LCS/LCSD <u>Limits</u>	RPD	RPD Max
Batch number: 081446150001A	Sample num	ber(s): 5	369570-536	9573					
Lead	< 0.100	0.100	0.0150	mg/kg	84		82-118		
Batch number: 08144820005A Moisture	Sample num	ber(s): 5	369570-536	9573	100		99-101		
HOISCUIC					100		JJ 101		
Batch number: 08144SLA026	Sample num	ber(s): 5	369570-536	9573					
Pyrene	< 170.	170.	33.	ug/kg	92		75-115		
Naphthalene	< 170.	170.	33.	ug/kg	81		73-106		
Fluorene	< 170.	170.	33.	ug/kg	87		75-116		
Phenanthrene	< 170.	170.	33.	ug/kg	89		77-113		
Anthracene	< 170.	170.	33.	ug/kg	83		76-112		
Benzo(a) anthracene	< 170.	170.	33.	ug/kg	84		73-112		
Chrysene	< 170.	170.	33.	ug/kg	85		76-113		
Benzo(b) fluoranthene	< 170.	170.	33.	ug/kg	80		61-127		
Benzo(a) pyrene	< 170.	170.	33.	ug/kg	81		69-122		
Benzo(g,h,i)perylene	< 170.	170.	33.	ug/kg	84		65-122		
Batch number: 0081501AA	Sample num	ber(s): 5	369573						
Methyl Tertiary Butyl Ether	< 250.	250.	25.	uq/kq	112	96	72-117	16	30
Benzene	< 250.	250.	25.	uq/kq	104	90	84-115	14	30
1,2-Dichloroethane	< 250.	250.	50.	ug/kg	120	105	76-135	13	30
Toluene	< 250.	250.	50.	ug/kg	90	91	81-116	1	30
1,2-Dibromoethane	< 250.	250.	50.	ug/kg	90	93	77-114	4	30
Ethylbenzene	< 250.	250.	50.	ug/kg	89	92	82-115	3	30
Isopropylbenzene	< 250.	250.	50.	ug/kg	86	87	82-110	0	30
Xylene (Total)	< 250.	250.	50.	ug/kg	90	91	82-117	1	30
Batch number: Q081511AA	Sample num	ber(s): 5	369570						
Methyl Tertiary Butyl Ether	< 250.	250.	25.	ug/kg	98	100	72-117	2	30
Benzene	< 250.	250.	25.	ug/kg	95	93	84-115	2	30
1,2-Dichloroethane	< 250.	250.	50.	ug/kg	108	107	76-135	1	30
Toluene	< 250.	250.	50.	ug/kg	94	93	81-116	1	30
1,2-Dibromoethane	< 250.	250.	50.	ug/kg	94	91	77-114	4	30
Ethylbenzene	< 250.	250.	50.	ug/kg	94	91	82-115	3	30
Isopropylbenzene	< 250.	250.	50.	ug/kg	91	90	82-110	1	30
Xylene (Total)	< 250.	250.	50.	ug/kg	93	92	82-117	1	30
Batch number: Q081521AA	Sample num	ber(s): 5	369571-536	9572					
Methyl Tertiary Butyl Ether	< 250.	250.	25.	ug/kg	105	106	72-117	1	30
Benzene	< 250.	250.	25.	ug/kg	97	97	84-115	0	30
1,2-Dichloroethane	< 250.	250.	50.	ug/kg	114	116	76-135	2	30
Toluene	< 250.	250.	50.	ug/kg	91	94	81-116	3	30
1,2-Dibromoethane	< 250.	250.	50.	ug/kg	91	95	77-114	4	30
Ethylbenzene	< 250.	250.	50.	ug/kg	91	93	82-115	2	30
Isopropylbenzene	< 250.	250.	50.	ug/kg	88	91	82-110	3	30
Xylene (Total)	< 250.	250.	50.	ug/kg	90	92	82-117	3	30

^{*-} Outside of specification

Page 1 of 3

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 3

Quality Control Summary

Client Name: SUN: Aquaterra Tech. Group Number: 1092715

Reported: 06/03/08 at 12:25 PM

Laboratory Compliance Quality Control

Blank Blank Blank Report LCS LCSD LCS/LCSD Analysis Name RPD RPD Max Result LOQ** MDL <u>Units</u> %REC %REC Limits

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

Analysis Name	MS %REC	MSD %REC	MS/MSD <u>Limits</u>	RPD	RPD <u>MAX</u>	BKG Conc	DUP <u>Conc</u>	DUP RPD	Dup RPD Max
Batch number: 081446150001A Lead	Sample 16 (2)	number(s) 49 (2)	: 5369570 75-125	-536957 4	73 UNSPI 20	K: P368322 1 12.5	BKG: P368322 12.0	4	20
Batch number: 08144820005A Moisture	Sample	number(s)	: 5369570	-536957	73 BKG	: P368711 27.1	25.7	5	15
Batch number: 08144SLA026	Sample	number(s)	: 5369570	-536957	73 UNSPI	K: P369443			
Pyrene	87	81	19-162	7	30				
Naphthalene	79	75	29-140	6	30				
Fluorene	83	79	42-139	6	30				
Phenanthrene	83	79	1-181	4	30				
Anthracene	84	78	34-148	7	30				
Benzo(a)anthracene	80	75	20-156	6	30				
Chrysene	81	77	19-158	4	30				
Benzo(b) fluoranthene	75	71	13-161	5	30				
Benzo(a) pyrene	79	76	24-154	5	30				
Benzo(g,h,i)perylene	84	81	26-154	4	30				

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: PAHs in Soil by GC/MS

Batch number: 08144SLA026

	Nitrobenzene-d5 2-Fluorobiphenyl		l Terphenyl-d14				
5369570	78	77	83				
5369571	72	71	76				
5369572	80	77	78				
5369573	88	93	87				
Blank	81	87	94				
LCS	85	90	94				
MS	82	89	94				
MSD	78	86	90				
T.imita.	49-120	55-117	43-131				

Analysis Name: UST-Leaded Soils by 8260B

Batth number	Dibromofluoromethane 1,2-Dichloroethane-d4		Toluene-d8	4-Bromofluorobenzene
5369573	82	79	61*	41*

*- Outside of specification

- **-This limit was used in the evaluation of the final result for the blank
- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 3 of 3

Quality Control Summary

	Tame: SUN: Aquaterra 1: 06/03/08 at 12:25		Group Number:	1092715			
Reported	. 00/03/00 ac 12.23		uality Control				
Blank	112	107	89	85			
LCS	112	108	91	94			
LCSD	98	93	93	96			
Limits:	71-114	70-109	70-123 70-111				
	Tame: UST-Leaded Soils by Der: Q081511AA	8260B					
	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene			
5369570	78	73	74	85			
Blank	100	97	92	87			
LCS	100	93	96	97			
LCSD	103	97	97	96			
Limits:	71-114	70-109	70-123	70-111			
	Tame: UST-Leaded Soils by Der: 0081521AA	8260B					
	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene			
5369571	76	61*	70	117*			
5369572	71	63*	56*	60*			
Blank	105	98	90	87			
LCS	103	96	92	91			
LCSD	105	100	94	94			
Limits:	71-114	70-109	70-123	70-111			

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Analysis Request/ Environmental Services Chain of Custody

Lancaster Laboratories

For Lancaster Laboratories use only

Acct. # 10132 Group# 1092715 Sample # 5369570-78 COC # 183727 Please print. Instructions on reverse side correspond with circled numbers. temp1.2°C 1)
| Client: SUN-AQUATERRA For Lab Use Only 5) Analyses Requisited Acct. #: _____ **Preservation Codes** SCR#: Project Name/#: PHILA REF AOJ-8 PWSID #: _____ Preservation Codes Project Manager: T. DOERR P.O.#: _____ H=HCI T=Thiosulfate N=HNO₂ B=NaOH Sampler: S. SYKES Quote #: ___ _ S=H₂SO₄ **0**=Other 5673 2005 Name of state where samples were collected: Date Sample residence by talkieri tulikiki Remarks N-116_1.0-2.0 5/20/08 200 X * Analyses per N-128-1,0-2.0 5/20/08 930 × N-123_1.0-2.0 × table provided 5/20/08 1445 × N-124-1.0-2.0 5/21/08 1130 A Pls Copy Jason a Langer + kevin martin o Aquatema Turnaround Time Requested (TAT) (please circle): Normal Rush Relinquished by: (Rush TAT is subject to Lancaster Laboratories approval and surcharge.) Date Time Received by: Date Time (9 - AQUATERRA Date results are needed: 5/21/08 17 0 d Rush results requested by (please circle): Phone Fax Relinatished by: Time Received by: Date Phone #: Time Fax #: _ ___ 28 09/14 Marsin 2 E-mail address: 9:04 Religiuished by: Time Received by: Data Package Options (please circle if required) Marver on Halli Time SDG Complete? Type I (validation/NJ Reg) \$1662 TX TRRP-13 Yes No Relinquished by: Type II (Tier II) MA MCP _ CT RCP Time | Received by: Date Time Type III (Reduced NJ) Site-specific QC (MS/MSD/Dup)? Yes No Type IV (CLP SOW) (If yes, indicate QC sample and submit triplicate volume.) Relinquished by: Type VI (Raw Data Only) Time Received by: Date internal COC Required? Yes / No_ Date, Time

Lancaster Laboratories Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

N.D.	none detected	BMQL	Below Minimum Quantitation Level
TNTC	Too Numerous To Count	MPN	Most Probable Number
IU	International Units	CP Units	cobalt-chloroplatinate units
umhos/cm	micromhos/cm	NTU	nephelometric turbidity units
С	degrees Celsius	F	degrees Fahrenheit
Cal	(diet) calories	lb.	pound(s)
meq	milliequivalents	kg	kilogram(s)
g	gram(s)	mg	milligram(s)
ug	microgram(s)	I	liter(s)
ml	milliliter(s)	ul	microliter(s)
m3	cubic meter(s)	fib >5 um/ml	fibers greater than 5 microns in length per ml

- < less than The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.
- > greater than
- ppm parts per million One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.

Inorganic Qualifiers

- ppb parts per billion
- **Dry weight**Results printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture.

U.S. EPA data qualifiers:

9	lifier	(uu	9	 u	" 9	•

A B C D E	TIC is a possible aldol-condensation product Analyte was also detected in the blank Pesticide result confirmed by GC/MS Compound quatitated on a diluted sample Concentration exceeds the calibration range of the instrument	B E M N S	Value is <crdl, (msa)="" additions="" amount="" but="" calculation<="" control="" due="" duplicate="" estimated="" for="" injection="" interference="" limits="" met="" method="" not="" of="" precision="" spike="" standard="" th="" to="" used="" within="" ≥idl=""></crdl,>
J	Estimated value	U	Compound was not detected
N	Presumptive evidence of a compound (TICs only)	W	Post digestion spike out of control limits
Р	Concentration difference between primary and	*	Duplicate analysis not within control limits
	confirmation columns >25%	+	Correlation coefficient for MSA < 0.995
U	Compound was not detected		
X,Y,Z	Defined in case narrative		

Analytical test results for methods listed on the laboratories' accreditation scope meet all requirements of NELAC unless otherwise noted under the individual analysis.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

WARRANTY AND LIMITS OF LIABILITY – In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL LANCASTER LABORATORIES BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF LANCASTER LABORATORIES AND (B) WHETHER LANCASTER LABORATORIES HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Lancaster Laboratories which includes any conditions that vary from the Standard Terms and Conditions of Lancaster Laboratories and we hereby object to any conflicting terms contained in any acceptance or order submitted by client.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

ANALYTICAL RESULTS

Prepared for:

SUN: Aquaterra Tech. PO Box 744 West Chester PA 19381

610-431-5733

Prepared by:

Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425

SAMPLE GROUP

The sample group for this submittal is 1092716. Samples arrived at the laboratory on Thursday, May 22, 2008. The PO# for this group is PHILADELPHIA.

Client DescriptionLancaster Labs NumberN-130_0.0-2.0 Grab Soil5369574

ELECTRONIC Langan Attn: Joseph Catricks

COPY TO

ELECTRONIC SUN: Aquaterra Tech. Attn: Tiffani Doerr

COPY TO

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Questions? Contact your Client Services Representative Jessica A Heun at (717) 656-2300

Respectfully Submitted,

Marla S. Lord Senior Specialist

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5369574 SW Group No. 1092716

N-130_0.0-2.0 Grab Soil Philadelphia Refinery AOI-8 COC: 0286 N-130_0.0-2.0

Collected: 05/16/2008 08:30 by TD Account Number: 10132

Submitted: 05/22/2008 16:30 SUN: Aquaterra Tech.

Reported: 06/04/2008 at 13:08 PO Box 744

Discard: 08/04/2008 West Chester PA 19381

NW130

				Dry	Dry						
CAT		a. a	Dry	Limit of	Method		Dilution				
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor				
06135	Lead	7439-92-1	670.	2.25	0.338	mg/kg	20				
00111	Moisture	n.a.	11.2	0.50	0.50	ક	1				
	"Moisture" represents the loss in weight of the sample after oven drying at 103 - 105 degrees Celsius. The moisture result reported above is on an as-received basis.										
07804	PAHs in Soil by GC/MS										
01195	Pyrene	129-00-0	< 940.	940.	190.	ug/kg	5				
03761	Naphthalene	91-20-3	< 940.	940.	190.	ug/kg	5				
03768	Fluorene	86-73-7	< 940.	940.	190.	ug/kg	5				
03775	Phenanthrene	85-01-8	< 940.	940.	190.	ug/kg	5				
03776	Anthracene	120-12-7	< 940.	940.	190.	ug/kg	5				
03781	Benzo(a)anthracene	56-55-3	< 940.	940.	190.	ug/kg	5				
03782	Chrysene	218-01-9	< 940.	940.	190.	ug/kg	5				
03786	Benzo(b) fluoranthene	205-99-2	< 940.	940.	190.	ug/kg	5				
03788	Benzo(a)pyrene	50-32-8	< 940.	940.	190.	ug/kg	5				
03791	Benzo(g,h,i)perylene	191-24-2	< 940.	940.	190.	ug/kg	5				
	Due to the sample matrix an in	itial dilutior	n was necessar	y to perform the							
	analysis. Therefore, the repo	rting limits f	for the GC/MS	semivolatile							
	compounds were raised.										
02308	UST-Leaded Soils by 8260B										
02306	USI-Leaded SOIIS by 6260B										
02016	Methyl Tertiary Butyl Ether	1634-04-4	< 220.	220.	22.	ug/kg	38.46				
05460	Benzene	71-43-2	< 220.	220.	22.	ug/kg	38.46				
05461	1,2-Dichloroethane	107-06-2	< 220.	220.	43.	ug/kg	38.46				
05466	Toluene	108-88-3	< 220.	220.	43.	ug/kg	38.46				
05471	1,2-Dibromoethane	106-93-4	< 220.	220.	43.	ug/kg	38.46				
05474	Ethylbenzene	100-41-4	< 220.	220.	43.	ug/kg	38.46				
05479	Isopropylbenzene	98-82-8	< 220.	220.	43.	ug/kg	38.46				
06301	Xylene (Total)	1330-20-7	< 220.	220.	43.	ug/kg	38.46				

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5369574 SW Group No. 1092716

N-130_0.0-2.0 Grab Soil Philadelphia Refinery AOI-8 COC: 0286 N-130_0.0-2.0

Collected: 05/16/2008 08:30 by TD Account Number: 10132

Submitted: 05/22/2008 16:30 SUN: Aquaterra Tech.

Reported: 06/04/2008 at 13:08 PO Box 744

Discard: 08/04/2008 West Chester PA 19381

NW130

CAT		_		Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06135	Lead	SW-846 6020	1	06/04/2008 08:11	David K Beck	20
00111	Moisture	SM20 2540 G	1	05/23/2008 15:56	Scott W Freisher	1
07804	PAHs in Soil by GC/MS	SW-846 8270C	1	05/27/2008 17:27	Joseph M Gambler	5
02308	UST-Leaded Soils by 8260B	SW-846 8260B	1	05/30/2008 18:27	Kerri E Koch	38.46
06150	ICP/MS SW-846 Solid digest	SW-846 3050B	1	05/29/2008 20:40	Annamaria Stipkovits	1
06171	GC/MS - Field Preserved MeOH	SW-846 5035	1	05/16/2008 08:30	Client Supplied	1
07806	BNA Soil Extraction	SW-846 3550B	1	05/23/2008 13:15	Doreen K Robles	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Quality Control Summary

Client Name: SUN: Aquaterra Tech. Group Number: 1092716

Reported: 06/04/08 at 01:08 PM

Matrix QC may not be reported if site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

Laboratory Compliance Quality Control

Analysis Name	Blank <u>Result</u>	Blank LOQ**	Blank <u>MDL</u>	Report <u>Units</u>	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Max
Batch number: 08144820005A Moisture	Sample num	ber(s): 5	369574		100		99-101		
Batch number: 08144SLA026 Pyrene Naphthalene Fluorene Phenanthrene Anthracene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(a) pyrene Benzo(g,h,i) perylene	Sample num < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170.	mber(s): 5 170. 170. 170. 170. 170. 170. 170. 170.	369574 33. 33. 33. 33. 33. 33. 33. 33. 33.	ug/kg	92 81 87 89 83 84 85 80 81		75-115 73-106 75-116 77-113 76-112 73-112 76-113 61-127 69-122 65-122		
Batch number: 081506150002A Lead	Sample num	0.100	0.0150	mg/kg	85		82-118		
Batch number: Q081511AA Methyl Tertiary Butyl Ether Benzene 1,2-Dichloroethane Toluene 1,2-Dibromoethane Ethylbenzene Isopropylbenzene Xylene (Total)	Sample num < 250. < 250. < 250. < 250. < 250. < 250. < 250. < 250. < 250.	250. 250. 250. 250. 250. 250. 250. 250.	25. 25. 50. 50. 50. 50. 50.	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	98 95 108 94 94 91 93	100 93 107 93 91 91 90	72-117 84-115 76-135 81-116 77-114 82-115 82-110 82-117	2 2 1 1 4 3 1	30 30 30 30 30 30 30 30

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

Analysis Name	MS <u>%REC</u>	MSD %REC	MS/MSD <u>Limits</u>	RPD	RPD <u>MAX</u>	BKG Conc	DUP Conc	DUP <u>RPD</u>	Dup RPD <u>Max</u>
Batch number: 08144820005A	Sample	number(s)	: 5369574	BKG:	P36871	1			
Moisture						27.1	25.7	5	15
Batch number: 08144SLA026	Sample	number(s)	: 5369574	UNSPK:	P3694	43			
Pyrene	87	81	19-162	7	30				
Naphthalene	79	75	29-140	6	30				
Fluorene	83	79	42-139	6	30				
Phenanthrene	83	79	1-181	4	30				
Anthracene	84	78	34-148	7	30				
Benzo(a)anthracene	80	75	20-156	6	30				

*- Outside of specification

- **-This limit was used in the evaluation of the final result for the blank
- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Quality Control Summary

Client Name: SUN: Aquaterra Tech. Group Number: 1092716

Reported: 06/04/08 at 01:08 PM

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

	MS	MSD	MS/MSD		RPD	BKG	DUP	DUP	Dup RPD
<u>Analysis Name</u>	%REC	%REC	<u>Limits</u>	RPD	MAX	Conc	Conc	RPD	Max
Chrysene	81	77	19-158	4	30				
Benzo(b) fluoranthene	75	71	13-161	5	30				
Benzo(a)pyrene	79	76	24-154	5	30				
Benzo(g,h,i)perylene	84	81	26-154	4	30				
Batch number: 081506150002A	Sample	number(s)	: 5369574	UNSPK:	53695	74 BKG:	5369574		
Lead	-10812	-9875	75-125	3	20	595.	612.	3	20
	(2)	(2)							

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: PAHs in Soil by GC/MS

Batch number: 08144SLA026

	Nitrobenzene-d5	2-Fluorobiphenyl	Terphenyl-d14	
5369574	76	76	76	
Blank	81	87	94	
LCS	85	90	94	
MS	82	89	94	
MSD	78	86	90	
Limits:	49-120	55-117	43-131	

Analysis Name: UST-Leaded Soils by 8260B Batch number: Q081511AA

200011 110	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene		
5369574	86	79	74	71		
Blank	100	97	92	87		
LCS	100	93	96	97		
LCSD	103	97	97	96		
Limits:	71-114	70-109	70-123	70-111		

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

PA UST Analysis Request/Chain of Custody

For Lancaster Laboratories use only 0286

Acct. #: 1013 2 Group #: 1592716 Sample #: 531,9574

										-Ca	<u>up</u>	11.	<u>2 ° ⁄</u>	_				CR #	·			
Consultant/Office #: SUN - Aqua	terro		······		Matri	X			1		_				t total i	number c under	of co each	ntainers analyse	s.			
Consultant Prj. Mgr.: T. Doc PV Consultant Phone #:	 Fax #:			\vdash	T	Τ.	_															
Site Name: Philadelphia	Pilm	er A	71-8				iner											İ				
Site Address:	6.	0		'	Potable NPDES		Contr	99	E E			(2)	6					i				
Sampler: T.Doerv					1 2]	er of	Ş	Gasoli	soline	(No. 1	el (No.	2.4.5	ᅙ	8	ᅦ						
			7	Composite		IAir□	Total Number of Containers	er of E	PA Unleaded Gasoline	PA Leaded Gasoline	PA Kerosene (No. 1)	PA Diesel Fuel (No. 2)	PA Fuel Oil No. 4,	PA Used Motor Oil	260	8270C	lead					
Sample identification	Date Collected	Time Collected	Grab	Soil	Water	Oil 🗆	Total	Num	PAU	PALe	PAK	PADi	PA Fu	PA U	M	20	7		Rema			
N-130-0.0-2.0	5/14/08	0830	x	Ţχ			2	-							X	У	×		* 5	pecif	C.	. ,
			\sqcup	_	_						_								15	F 08	anal	yes
			\vdash	+	-	_				-						_	4	_	770	noe	a to	in min to
			\vdash	╁	-	\vdash			Н							\dashv	\dashv	-		hbl	le Lor	m+=
-			-	╁		╁╌			Н	\dashv	-				_	\dashv	+	+	ي عد ا	م بنده	ts au	4
			\vdash	+												\dashv	+	+	1	~ # ~ #	The .	<u>at </u>
				-		T				\dashv	-					-	\dashv	\top	٦ ٣٠	lang	jan,	too.
																	7	1		·	,	
Turnaround Time: \$70 (7-10), RUSH	1	Relinqui	////		~)_		.	_l_i_	Date 16/0		Time 24			ved b		na	Frida		Date S/16/c	Time
Comments:		Relingu	a by	f:	\						Pate		Time	5	eçe	ved b	y:		11 18	0	Derte	Time
Religipus)hed by:						101	_			<u>/</u> رلا تر	72/ <i>0</i> 2016	20 (70 Time	7	/// lecei	wed b	κγ <u>`</u> y:	M)	Yell	you	Date	7:04 Time
		mo	nen	M	Yal	lu	Xv-						610	0/	7			_				
		Relinqui	shed by	r: 						+ "	Date		Time	F	ecer (C	ved b	y: - کر		De.	5	Date	Time 630

Lancaster Laboratories Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

N.D.	none detected	BMQL	Below Minimum Quantitation Level
TNTC	Too Numerous To Count	MPN	Most Probable Number
IU	International Units	CP Units	cobalt-chloroplatinate units
umhos/cm	micromhos/cm	NTU	nephelometric turbidity units
С	degrees Celsius	F	degrees Fahrenheit
Cal	(diet) calories	lb.	pound(s)
meq	milliequivalents	kg	kilogram(s)
g	gram(s)	mg	milligram(s)
ug	microgram(s)	I	liter(s)
ml	milliliter(s)	ul	microliter(s)
m3	cubic meter(s)	fib >5 um/ml	fibers greater than 5 microns in length per ml

- < less than The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.
- > greater than
- ppm parts per million One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.

Inorganic Qualifiers

- ppb parts per billion
- **Dry weight**Results printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture.

U.S. EPA data qualifiers:

9	lifier	(uu	9	 u	" 9	•

A B C D E	TIC is a possible aldol-condensation product Analyte was also detected in the blank Pesticide result confirmed by GC/MS Compound quatitated on a diluted sample Concentration exceeds the calibration range of the instrument	B E M N S	Value is <crdl, (msa)="" additions="" amount="" but="" calculation<="" control="" due="" duplicate="" estimated="" for="" injection="" interference="" limits="" met="" method="" not="" of="" precision="" spike="" standard="" th="" to="" used="" within="" ≥idl=""></crdl,>
J	Estimated value	U	Compound was not detected
N	Presumptive evidence of a compound (TICs only)	W	Post digestion spike out of control limits
Р	Concentration difference between primary and	*	Duplicate analysis not within control limits
	confirmation columns >25%	+	Correlation coefficient for MSA < 0.995
U	Compound was not detected		
X,Y,Z	Defined in case narrative		

Analytical test results for methods listed on the laboratories' accreditation scope meet all requirements of NELAC unless otherwise noted under the individual analysis.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

WARRANTY AND LIMITS OF LIABILITY – In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL LANCASTER LABORATORIES BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF LANCASTER LABORATORIES AND (B) WHETHER LANCASTER LABORATORIES HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Lancaster Laboratories which includes any conditions that vary from the Standard Terms and Conditions of Lancaster Laboratories and we hereby object to any conflicting terms contained in any acceptance or order submitted by client.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

ANALYTICAL RESULTS

Prepared for:

SUN: Aquaterra Tech. PO Box 744 West Chester PA 19381

610-431-5733

Prepared by:

Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425

SAMPLE GROUP

The sample group for this submittal is 1092862. Samples arrived at the laboratory on Friday, May 23, 2008. The PO# for this group is PHILADELPHIA.

Client Description	Lancaster Labs Number
N-127_1.0-2.0 Grab Soil	5370416
N-134_1.0-2.0 Grab Soil	5370417
N-120_1.0-2.0 Grab Soil	5370418

ELECTRONIC COPY TO	SUN: Aquaterra Tech.	Attn: Tiffani Doerr
ELECTRONIC	LLI	Attn: EDD Group
COPY TO ELECTRONIC	SUN: Aquaterra Tech.	Attn: Kevin Martin
COPY TO ELECTRONIC	Langan	Attn: Joseph Catricks
COPY TO		

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Questions? Contact your Client Services Representative Jessica A Heun at (717) 656-2300

Respectfully Submitted,

Christine Dulaney Senior Specialist

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5370416 SW Group No. 1092862

N-127_1.0-2.0 Grab Soil Philadelphia Refinery AOI-8 COC: 0153801 N-127_1.0-2.0

Collected: 05/22/2008 08:00 by SS Account Number: 10132

Submitted: 05/23/2008 15:15 SUN: Aquaterra Tech.

Reported: 06/09/2008 at 00:14 PO Box 744

Discard: 08/09/2008 West Chester PA 19381

N-127

				Dry	Dry		
CAT			Dry	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06135	Lead	7439-92-1	191.	1.09	0.164	mg/kg	10
00111	Moisture	n.a.	11.8	0.50	0.50	ક	1
	"Moisture" represents the loss 103 - 105 degrees Celsius. The as-received basis.				at		
07804	PAHs in Soil by GC/MS						
01195	Pyrene	129-00-0	1,400.	940.	190.	ug/kg	5
03761	Naphthalene	91-20-3	< 940.	940.	190.	ug/kg	5
03768	Fluorene	86-73-7	< 940.	940.	190.	ug/kg	5
03775	Phenanthrene	85-01-8	1,200.	940.	190.	ug/kg	5
03776	Anthracene	120-12-7	< 940.	940.	190.	ug/kg	5
03781	Benzo(a)anthracene	56-55-3	< 940.	940.	190.	ug/kg	5
03782	Chrysene	218-01-9	< 940.	940.	190.	ug/kg	5
03786	Benzo(b)fluoranthene	205-99-2	< 940.	940.	190.	ug/kg	5
03788	Benzo(a)pyrene	50-32-8	< 940.	940.	190.	ug/kg	5
03791	Benzo(g,h,i)perylene	191-24-2	< 940.	940.	190.	ug/kg	5
	Due to the sample matrix an in	itial dilution	n was necessa:	ry to perform the			
	analysis. Therefore, the repo	rting limits	for the GC/MS	semivolatile			
	compounds were raised.						
02308	UST-Leaded Soils by 8260B						
02016	Methyl Tertiary Butyl Ether	1634-04-4	< 190.	190.	19.	ug/kg	33.03
05460	Benzene	71-43-2	< 190.	190.	19.	ug/kg	33.03
05461	1,2-Dichloroethane	107-06-2	< 190.	190.	37.	ug/kg	33.03
05466	Toluene	108-88-3	< 190.	190.	37.	ug/kg	33.03
05471	1,2-Dibromoethane	106-93-4	< 190.	190.	37.	ug/kg	33.03
05474	Ethylbenzene	100-41-4	< 190.	190.	37.	ug/kg	33.03
05479	Isopropylbenzene	98-82-8	< 190.	190.	37.	ug/kg	33.03
06301	Xylene (Total)	1330-20-7	< 190.	190.	37.	ug/kg	33.03

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5370416 SW Group No. 1092862

N-127_1.0-2.0 Grab Soil Philadelphia Refinery AOI-8 COC: 0153801 N-127_1.0-2.0

Collected: 05/22/2008 08:00 by SS Account Number: 10132

Submitted: 05/23/2008 15:15 SUN: Aquaterra Tech.

Reported: 06/09/2008 at 00:14 PO Box 744

Reported: 00/03/2000 at 00:14 FO BOX 744

Discard: 08/09/2008 West Chester PA 19381

N-127

		<u> </u>	CIII O.	111010		
CAT		_		Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06135	Lead	SW-846 6020	1	06/01/2008 08:53	David K Beck	10
00111	Moisture	SM20 2540 G	1	05/27/2008 14:35	Scott W Freisher	1
07804	PAHs in Soil by GC/MS	SW-846 8270C	1	05/31/2008 01:58	Gregory J Drahovsky	5
02308	UST-Leaded Soils by 8260B	SW-846 8260B	1	06/05/2008 03:44	Stephanie A Selis	33.03
06150	ICP/MS SW-846 Solid digest	SW-846 3050B	1	05/29/2008 20:40	Annamaria Stipkovits	1
06171	GC/MS - Field Preserved MeOH	SW-846 5035	1	05/22/2008 08:00	Client Supplied	1
07806	BNA Soil Extraction	SW-846 3550B	1	05/28/2008 23:15	Patricia L Foreman	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5370417 SW Group No. 1092862

N-134 1.0-2.0 Grab Soil Philadelphia Refinery AOI-8 COC: 0153801 N-134_1.0-2.0

Collected: 05/22/2008 10:45 by SS Account Number: 10132

Submitted: 05/23/2008 15:15 SUN: Aquaterra Tech.

Reported: 06/09/2008 at 00:14 PO Box 744

Discard: 08/09/2008 West Chester PA 19381

N-134

CAT	Analysis Name	CAS Number	Dry Result	Dry Limit of Quantitation*	Dry Method Detection	Units	Dilution Factor
					Limit	/2	
06135	Lead	7439-92-1	74.6	1.17	0.176	mg/kg	10
00111	Moisture	n.a.	15.6	0.50	0.50	%	1
	"Moisture" represents the loss 103 - 105 degrees Celsius. The as-received basis.				at		
07804	PAHs in Soil by GC/MS						
01195	Pyrene	129-00-0	50,000.	4,900.	990.	ug/kg	25
03761	Naphthalene	91-20-3	4,700.	990.	200.	ug/kg	5
03768	Fluorene	86-73-7	3,300.	990.	200.	ug/kg	5
03775	Phenanthrene	85-01-8	48,000.	4,900.	990.	ug/kg	25
03776	Anthracene	120-12-7	11,000.	990.	200.	ug/kg	5
03781	Benzo(a)anthracene	56-55-3	41,000.	4,900.	990.	ug/kg	25
03782	Chrysene	218-01-9	35,000.	4,900.	990.	ug/kg	25
03786	Benzo(b)fluoranthene	205-99-2	44,000.	4,900.	990.	ug/kg	25
03788	Benzo(a)pyrene	50-32-8	37,000.	4,900.	990.	ug/kg	25
03791	Benzo(g,h,i)perylene	191-24-2	21,000.	990.	200.	ug/kg	5
02308	UST-Leaded Soils by 8260B						
02016	Methyl Tertiary Butyl Ether	1634-04-4	< 320.	320.	32.	ug/kg	53.42
05460	Benzene	71-43-2	< 320.	320.	32.	ug/kg	53.42
05461	1,2-Dichloroethane	107-06-2	< 320.	320.	63.	ug/kg	53.42
05466	Toluene	108-88-3	< 320.	320.	63.	ug/kg	53.42
05471	1,2-Dibromoethane	106-93-4	< 320.	320.	63.	ug/kg	53.42
05474	Ethylbenzene	100-41-4	< 320.	320.	63.	ug/kg	53.42
05479	Isopropylbenzene	98-82-8	< 320.	320.	63.	ug/kg	53.42
06301	Xylene (Total)	1330-20-7	< 320.	320.	63.	ug/kg	53.42

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5370417 SW Group No. 1092862

N-134_1.0-2.0 Grab Soil Philadelphia Refinery AOI-8 COC: 0153801 N-134_1.0-2.0

Collected: 05/22/2008 10:45 by SS Account Number: 10132

Submitted: 05/23/2008 15:15 SUN: Aquaterra Tech.

Reported: 06/09/2008 at 00:14 PO Box 744

Discard: 08/09/2008 West Chester PA 19381

N-134

CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06135	Lead	SW-846 6020	1	06/01/2008 08:56	David K Beck	10
00111	Moisture	SM20 2540 G	1	05/27/2008 14:35	Scott W Freisher	1
07804	PAHs in Soil by GC/MS	SW-846 8270C	1	05/31/2008 03:10	Gregory J Drahovsky	5
07804	PAHs in Soil by GC/MS	SW-846 8270C	1	05/31/2008 10:49	Joseph M Gambler	25
02308	UST-Leaded Soils by 8260B	SW-846 8260B	1	06/04/2008 20:52	Kerri E Koch	53.42
06150	ICP/MS SW-846 Solid digest	SW-846 3050B	1	05/29/2008 20:40	Annamaria Stipkovits	1
06171	GC/MS - Field Preserved MeOH	SW-846 5035	1	05/22/2008 10:45	Client Supplied	1
07806	BNA Soil Extraction	SW-846 3550B	1	05/28/2008 23:15	Patricia L Foreman	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5370418 SW Group No. 1092862

N-120_1.0-2.0 Grab Soil Philadelphia Refinery AOI-8 COC: 0153801 N-120_1.0-2.0

Collected:05/22/2008 14:30 by SS Account Number: 10132

Submitted: 05/23/2008 15:15 SUN: Aquaterra Tech.

Reported: 06/09/2008 at 00:14 PO Box 744

Discard: 08/09/2008 West Chester PA 19381

N-120

				Dry	Dry		
CAT			Dry	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06135	Lead	7439-92-1	181.	1.16	0.174	mg/kg	10
00111	Moisture	n.a.	14.8	0.50	0.50	%	1
	"Moisture" represents the loss 103 - 105 degrees Celsius. The as-received basis.				at		
07804	PAHs in Soil by GC/MS						
01195	Pyrene	129-00-0	< 980.	980.	200.	ug/kg	5
03761	Naphthalene	91-20-3	< 980.	980.	200.	ug/kg	5
03768	Fluorene	86-73-7	< 980.	980.	200.	ug/kg	5
03775	Phenanthrene	85-01-8	< 980.	980.	200.	ug/kg	5
03776	Anthracene	120-12-7	< 980.	980.	200.	ug/kg	5
03781	Benzo(a)anthracene	56-55-3	< 980.	980.	200.	ug/kg	5
03782	Chrysene	218-01-9	< 980.	980.	200.	ug/kg	5
03786	Benzo(b)fluoranthene	205-99-2	< 980.	980.	200.	ug/kg	5
03788	Benzo(a)pyrene	50-32-8	< 980.	980.	200.	ug/kg	5
03791	Benzo(g,h,i)perylene	191-24-2	< 980.	980.	200.	ug/kg	5
	Due to the sample matrix an in analysis. Therefore, the repo compounds were raised.						
02308	UST-Leaded Soils by 8260B						
02016	Methyl Tertiary Butyl Ether	1634-04-4	< 170.	170.	17.	ug/kg	29.1
05460	Benzene	71-43-2	< 170.	170.	17.	ug/kg	29.1
05461	1,2-Dichloroethane	107-06-2	< 170.	170.	34.	ug/kg	29.1
05466	Toluene	108-88-3	< 170.	170.	34.	ug/kg	29.1
05471	1,2-Dibromoethane	106-93-4	< 170.	170.	34.	ug/kg	29.1
05474	Ethylbenzene	100-41-4	< 170.	170.	34.	ug/kg	29.1
05479	Isopropylbenzene	98-82-8	< 170.	170.	34.	ug/kg	29.1
06301	Xylene (Total)	1330-20-7	< 170.	170.	34.	ug/kg	29.1

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5370418 SW Group No. 1092862

N-120_1.0-2.0 Grab Soil Philadelphia Refinery AOI-8 COC: 0153801 N-120_1.0-2.0

Collected: 05/22/2008 14:30 by SS Account Number: 10132

Submitted: 05/23/2008 15:15 SUN: Aquaterra Tech.

Reported: 06/09/2008 at 00:14 PO Box 744

Discard: 08/09/2008 West Chester PA 19381

N-120

Laboratory chronicit											
CAT		_		Analysis		Dilution					
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor					
06135	Lead	SW-846 6020	1	06/01/2008 09:07	David K Beck	10					
00111	Moisture	SM20 2540 G	1	05/27/2008 14:35	Scott W Freisher	1					
07804	PAHs in Soil by GC/MS	SW-846 8270C	1	05/31/2008 03:34	Gregory J Drahovsky	5					
02308	UST-Leaded Soils by 8260B	SW-846 8260B	1	06/05/2008 04:30	Stephanie A Selis	29.1					
06150	ICP/MS SW-846 Solid digest	SW-846 3050B	1	05/29/2008 20:40	Annamaria Stipkovits	1					
06171	GC/MS - Field Preserved MeOH	SW-846 5035	1	05/22/2008 14:30	Client Supplied	1					
07806	BNA Soil Extraction	SW-846 3550B	1	05/28/2008 23:15	Patricia L Foreman	1					

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 3

Quality Control Summary

Client Name: SUN: Aquaterra Tech. Group Number: 1092862

Reported: 06/09/08 at 12:14 AM

Matrix QC may not be reported if site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

Laboratory Compliance Quality Control

Analysis Name	Blank <u>Result</u>	Blank LOQ**	Blank <u>MDL</u>	Report <u>Units</u>	LCS %REC	LCSD %REC	LCS/LCSD <u>Limits</u>	RPD	RPD Max
Batch number: 08148820001A Moisture	Sample nu	mber(s): 5	370416-537	70418	100		99-101		
Batch number: 08149SLE026 Pyrene Naphthalene Fluorene Phenanthrene Anthracene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(a) pyrene	Sample nu < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170.	mber(s): 5 170. 170. 170. 170. 170. 170. 170. 170.	370416-533 33. 33. 33. 33. 33. 33. 33. 33.	70418 ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	97 87 94 94 88 91 89 89		75-115 73-106 75-116 77-113 76-112 73-112 76-113 61-127 69-122		
Benzo(g, h, i)perylene Batch number: 081506150002A Lead	< 170.	170. mber(s): 5 0.100	33.	ug/kg	84		65-122 82-118		
Batch number: Q081561AA Methyl Tertiary Butyl Ether Benzene 1,2-Dichloroethane Toluene 1,2-Dibromoethane Ethylbenzene Isopropylbenzene Xylene (Total)	Sample nu < 250. < 250. < 250. < 250. < 250. < 250. < 250. < 250. < 250. < 250. < 250. < 250. < 250.	mber(s): 5 250. 250. 250. 250. 250. 250. 250. 250. 250.	370417 25. 25. 50. 50. 50. 50. 50.	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	103 93 109 93 96 93 91 92	101 92 108 89 93 91 89 90	72-117 84-115 76-135 81-116 77-114 82-115 82-110 82-117	2 1 1 4 4 1 3 3	30 30 30 30 30 30 30 30 30
Batch number: Q081563AA Methyl Tertiary Butyl Ether Benzene 1,2-Dichloroethane Toluene 1,2-Dibromoethane Ethylbenzene Isopropylbenzene Xylene (Total)	Sample nu < 250. < 250. < 250. < 250. < 250. < 250. < 250. < 250. < 250. < 250. < 250. < 250. < 250. < 250.	mber(s): 5 250. 250. 250. 250. 250. 250. 250. 250	370416,533 25. 25. 50. 50. 50. 50. 50.	70418 ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	107 98 115 92 93 92 90	109 100 113 92 96 93 91	72-117 84-115 76-135 81-116 77-114 82-115 82-110 82-117	2 2 2 0 3 2 1 2	30 30 30 30 30 30 30 30 30

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

	MS	MSD	MS/MSD		RPD	BKG	DUP	DUP	Dup RPD
<u>Analysis Name</u>	%REC	%REC	<u>Limits</u>	RPD	<u>MAX</u>	Conc	Conc	<u>RPD</u>	Max

^{*-} Outside of specification

- **-This limit was used in the evaluation of the final result for the blank
- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 3

Quality Control Summary

Client Name: SUN: Aquaterra Tech. Group Number: 1092862

Reported: 06/09/08 at 12:14 AM

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

	MS	MSD	MS/MSD		RPD	BKG	DUP	DUP	Dup RPD
Analysis Name	%REC	%REC	<u>Limits</u>	RPD	MAX	Conc	Conc	RPD	Max
Batch number: 08148820001A	Sample	number(s)	: 5370416	-537041	.8 BKG	: P368699			
Moisture						21.9	22.0	0	15
Batch number: 08149SLE026	Sample	number(s)	. 5370416	-537041	8 IINSPI	K: 5370416			
Pyrene	89	113	19-162	13	30	3370110			
Naphthalene	64	84	29-140	27	30				
Fluorene	60	93	42-139	31*	30				
Phenanthrene	41	80	1-181	32*	30				
Anthracene	59	85	34-148	30	30				
Benzo(a)anthracene	74	86	20-156	11	30				
Chrysene	61	91	19-158	25	30				
Benzo(b) fluoranthene	62	77	13-161	14	30				
Benzo(a)pyrene	59	88	24-154	27	30				
Benzo(g,h,i)perylene	55	86	26-154	27	30				
Batch number: 081506150002A	Sample	number(s)	: 5370416	-537041	.8 UNSPI	K: P369574 1	BKG: P369574	1	
Lead	-10812 (2)	-9875 (2)	75-125	3	20	595.	612.	3	20

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: PAHs in Soil by GC/MS Batch number: 08149SLE026

	Nitrobenzene-d5	2-Fluorobiphenyl	Terphenyl-d14	
5370416	75	81	74	
5370417	81	88	100	
5370418	75	79	79	
Blank	82	88	89	
LCS	79	87	89	
MS	56	61	62	
MSD	74	83	83	
Limita	19-120	55_117	13-131	

Analysis Name: UST-Leaded Soils by 8260B

Batch number: Q081561AA

	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
5370417	72	68*	63*	63*
Blank	99	91	91	89
LCS	94	88	87	86
LCSD	95	90	88	87
Limits:	71-114	70-109	70-123	70-111

Analysis Name: UST-Leaded Soils by 8260B

*- Outside of specification

- **-This limit was used in the evaluation of the final result for the blank
- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 3 of 3

Quality Control Summary

Client Name: SUN: Aquaterra Tech. Reported: 06/09/08 at 12:14 AM Group Number: 1092862

Surrogate Quality Control

Batch numl	oer: Q081563AA			
	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
5370416	71	65*	61*	71
5370418	74	70	64*	72
Blank	101	95	89	86
LCS	97	91	87	85
LCSD	101	95	91	89
Limits:	71-114	70-109	70-123	70-111

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Analysis Request/ Environmental Services Chain of Custody

For Lancaster Laboratories use only

(Client: SUN-AQU	ATERRA	Acct.#:				Ma	1			(5		nalyse servati				For Lab Use Only FSC: SCR#:		_
	Project Name/#: PHILA Project Manager: T. C Sampler: S, SY	REF <u>AO</u> I-8 OERR	PWSID ;	#:	-	-	Mills Show#		fallege	9	<u></u>		8270				Preservation Cod H=HCI T=Thi N=HNO ₃ B=Na S=H ₂ SO ₄ O=Ott	osulfate OH	6
	Name of state where samples Sample Identification		PA Data Collected	Elme Collected	Grafe (S	Compresite			South Referen	PAU6 8260	Moisture	Poa7	PAHS 64 64				Remarks	·	Territorial spiritorial sections of the section of
	N-127_1.0-2.	0	5/22/08	800	X		X	37	2		メ	メ	X				A Analyses	per labl	6 /
	N-134_1.0-2.	,0	5722/08		X		X		2		X	X	X				provided		·
	N-120-1.0-2	٥,	5/22/08	1436	X	/2	Y		2	1	X	X	X						
																	# Pls copy	Icevin (norten
	· .	_									,						+ 3ason 00	Langar	2
																	temp3.	O°C	
			_					·									/ /		
7	Turnaround Time Requested (Rush TAT is subject to Lancastel					_	uishe		_				Date			eived b			Time (§
	Date results are needed:		Trail diffe service				_			//Ac	WATE	RPA	í				RRA FRIDGE		1735
	Rush results requested by (ple	•		E-mail	ĮŖ	Reling	mish)	ed by	\mathcal{T}	\			Date	ن ا	L	eived b	•	Date	1
	Phone #:	Fax #:			#	\mathcal{A}	4		_	<u>6</u>			100	1 / /	482	m	a Chilman	23/05	
(8)	E-mail address:	a single if an arrived N	1 00	0.0000010400		ΔI	uishe					,	Date			eived b	y:	Date	Time
Ĭ	Data Package Options (pleas Type I (validation/NJ Reg) Type II (Tier II)	e circle if required) TX TRRP-13 MA MCP CT R	Ye	G Complete? s No			uishe			xou			Date	> <i>15(</i>). Time		ejved t	ny:	Date	Time
	Type III (Reduced NJ) Type IV (CLP SOW)	Site-specific QC (M	• •	Yes No	R	elina	uishe	ed by	<u> </u>	<u> </u>	_		Date	Time	// Red	eived t	v: N	Date	Time
	Type VI (Raw Data Only)	Internal COC Requ				•						- · · ·				Jour	* IX X II .	5/13/1	

Lancaster Laboratories Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

N.D.	none detected	BMQL	Below Minimum Quantitation Level
TNTC	Too Numerous To Count	MPN	Most Probable Number
IU	International Units	CP Units	cobalt-chloroplatinate units
umhos/cm	micromhos/cm	NTU	nephelometric turbidity units
С	degrees Celsius	F	degrees Fahrenheit
Cal	(diet) calories	lb.	pound(s)
meq	milliequivalents	kg	kilogram(s)
g	gram(s)	mg	milligram(s)
ug	microgram(s)	I	liter(s)
ml	milliliter(s)	ul	microliter(s)
m3	cubic meter(s)	fib >5 um/ml	fibers greater than 5 microns in length per ml

- < less than The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.
- > greater than
- ppm parts per million One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.

Inorganic Qualifiers

- ppb parts per billion
- **Dry weight**Results printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture.

U.S. EPA data qualifiers:

9	lifier	(uu	9	 u	" 9	•

A B C D E	TIC is a possible aldol-condensation product Analyte was also detected in the blank Pesticide result confirmed by GC/MS Compound quatitated on a diluted sample Concentration exceeds the calibration range of the instrument	B E M N S	Value is <crdl, (msa)="" additions="" amount="" but="" calculation<="" control="" due="" duplicate="" estimated="" for="" injection="" interference="" limits="" met="" method="" not="" of="" precision="" spike="" standard="" th="" to="" used="" within="" ≥idl=""></crdl,>
J	Estimated value	U	Compound was not detected
N	Presumptive evidence of a compound (TICs only)	W	Post digestion spike out of control limits
Р	Concentration difference between primary and	*	Duplicate analysis not within control limits
	confirmation columns >25%	+	Correlation coefficient for MSA < 0.995
U	Compound was not detected		
X,Y,Z	Defined in case narrative		

Analytical test results for methods listed on the laboratories' accreditation scope meet all requirements of NELAC unless otherwise noted under the individual analysis.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

WARRANTY AND LIMITS OF LIABILITY – In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL LANCASTER LABORATORIES BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF LANCASTER LABORATORIES AND (B) WHETHER LANCASTER LABORATORIES HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Lancaster Laboratories which includes any conditions that vary from the Standard Terms and Conditions of Lancaster Laboratories and we hereby object to any conflicting terms contained in any acceptance or order submitted by client.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

ANALYTICAL RESULTS

Prepared for:

SUN: Aquaterra Tech. PO Box 744 West Chester PA 19381

610-431-5733

Prepared by:

Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425

SAMPLE GROUP

The sample group for this submittal is 1093507. Samples arrived at the laboratory on Thursday, May 29, 2008. The PO# for this group is PHILADELPHIA.

Client Description	Lancaster Labs Number
N-118_1.0-2.0 Grab Soil	5374122
N-115_0.0-2.0 Grab Soil	5374123

ELECTRONIC	SUN: Aquaterra Tech.	Attn: Kevin Martin
COPY TO		
ELECTRONIC	Langan	Attn: Joseph Catricks
COPY TO		
ELECTRONIC	SUN: Aquaterra Tech.	Attn: Tiffani Doerr
COPY TO		
ELECTRONIC	LLI	Attn: EDD Group
COPY TO		
ELECTRONIC	Langan	Attn: Jason Hanna
COPY TO		

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Questions? Contact your Client Services Representative Jessica A Heun at (717) 656-2300

Respectfully Submitted,

Marla S. Lord Senior Specialist

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5374122 SW Group No. 1093507

N-118_1.0-2.0 Grab Soil Philadelphia Refinery AOI-8 DUNS# COC: 0153802 N-118 1.0-2.0

Collected: 05/23/2008 08:30 by SS Account Number: 10132

Submitted: 05/29/2008 16:05 SUN: Aquaterra Tech.

Reported: 06/09/2008 at 19:02 PO Box 744

Discard: 08/09/2008 West Chester PA 19381

N-118

				Dry	Dry		
CAT			Dry	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06135	Lead	7439-92-1	200.	1.11	0.166	mg/kg	10
00111	Moisture	n.a.	11.3	0.50	0.50	%	1
	"Moisture" represents the loss 103 - 105 degrees Celsius. The as-received basis.				at		
07804	PAHs in Soil by GC/MS						
01195	Pyrene	129-00-0	1,200.	940.	190.	ug/kg	5
03761	Naphthalene	91-20-3	< 940.	940.	190.	ug/kg	5
03768	Fluorene	86-73-7	1,200.	940.	190.	ug/kg	5
03775	Phenanthrene	85-01-8	3,700.	940.	190.	ug/kg	5
03776	Anthracene	120-12-7	< 940.	940.	190.	ug/kg	5
03781	Benzo(a)anthracene	56-55-3	< 940.	940.	190.	ug/kg	5
03782	Chrysene	218-01-9	< 940.	940.	190.	ug/kg	5
03786	Benzo(b)fluoranthene	205-99-2	< 940.	940.	190.	ug/kg	5
03788	Benzo(a)pyrene	50-32-8	< 940.	940.	190.	ug/kg	5
03791	Benzo(g,h,i)perylene	191-24-2	< 940.	940.	190.	ug/kg	5
	Due to the sample matrix an in	itial dilution	n was necessary	y to perform the			
	analysis. Therefore, the repor	rting limits f	for the GC/MS s	semivolatile			
	compounds were raised.						
02308	UST-Leaded Soils by 8260B						
02300	OSI-Leaded SOIIS By 0200B						
02016	Methyl Tertiary Butyl Ether	1634-04-4	< 220.	220.	22.	ug/kg	39.31
05460	Benzene	71-43-2	< 220.	220.	22.	ug/kg	39.31
05461	1,2-Dichloroethane	107-06-2	< 220.	220.	44.	ug/kg	39.31
05466	Toluene	108-88-3	< 220.	220.	44.	ug/kg	39.31
05471	1,2-Dibromoethane	106-93-4	< 220.	220.	44.	ug/kg	39.31
05474	Ethylbenzene	100-41-4	< 220.	220.	44.	ug/kg	39.31
05479	Isopropylbenzene	98-82-8	470.	220.	44.	ug/kg	39.31
06301	Xylene (Total)	1330-20-7	< 220.	220.	44.	ug/kg	39.31

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5374122 SW Group No. 1093507

N-118_1.0-2.0 Grab Soil Philadelphia Refinery AOI-8 DUNS# COC: 0153802 N-118_1.0-2.0

Collected: 05/23/2008 08:30 by SS Account Number: 10132

Submitted: 05/29/2008 16:05 SUN: Aquaterra Tech.

Reported: 06/09/2008 at 19:02 PO Box 744

Discard: 08/09/2008 West Chester PA 19381

N-118

Laboratory Chronicle

		паротасоту	CIII O.	111010		
CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06135	Lead	SW-846 6020	1	06/04/2008 08:03	David K Beck	10
00111	Moisture	SM20 2540 G	1	05/30/2008 16:18	Scott W Freisher	1
07804	PAHs in Soil by GC/MS	SW-846 8270C	1	06/04/2008 09:38	Joseph M Gambler	5
02308	UST-Leaded Soils by 8260B	SW-846 8260B	1	06/05/2008 22:30	Lauren C Marzario	39.31
06150	ICP/MS SW-846 Solid digest	SW-846 3050B	1	06/02/2008 20:20	Annamaria Stipkovits	1
06171	GC/MS - Field Preserved MeOH	SW-846 5035	1	05/23/2008 08:30	Client Supplied	1
07806	BNA Soil Extraction	SW-846 3550B	1	05/31/2008 08:25	Adrienne E Fellenbaum	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5374123 SW Group No. 1093507

N-115_0.0-2.0 Grab Soil Philadelphia Refinery AOI-8 DUNS# COC: 0153802 N-115 0.0-2.0

Collected: 05/28/2008 13:30 by TD Account Number: 10132

Submitted: 05/29/2008 16:05 SUN: Aquaterra Tech.

Reported: 06/09/2008 at 19:02 PO Box 744

Discard: 08/09/2008 West Chester PA 19381

N-115

G3. TT			D	Dry Limit of	Dry		Dilution
CAT	Amalanda Nama	CAS Number	Dry Result	Ouantitation*	Method	Units	Factor
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06135	Lead	7439-92-1	1,250.	3.00	0.451	mg/kg	25
00111	Moisture	n.a.	20.0	0.50	0.50	8	1
	"Moisture" represents the loss 103 - 105 degrees Celsius. The as-received basis.				at		
07804	PAHs in Soil by GC/MS						
01195	Pyrene	129-00-0	32,000.	5,200.	1,000.	ug/kg	5
03761	Naphthalene	91-20-3	< 5,200.	5,200.	1,000.	ug/kg	5
03768	Fluorene	86-73-7	< 5,200.	5,200.	1,000.	ug/kg	5
03775	Phenanthrene	85-01-8	14,000.	5,200.	1,000.	ug/kg	5
03776	Anthracene	120-12-7	< 5,200.	5,200.	1,000.	ug/kg	5
03781	Benzo(a)anthracene	56-55-3	10,000.	5,200.	1,000.	ug/kg	5
03782	Chrysene	218-01-9	15,000.	5,200.	1,000.	ug/kg	5
03786	Benzo(b)fluoranthene	205-99-2	< 5,200.	5,200.	1,000.	ug/kg	5
03788	Benzo(a)pyrene	50-32-8	6,500.	5,200.	1,000.	ug/kg	5
03791	Benzo(g,h,i)perylene	191-24-2	7,100.	5,200.	1,000.	ug/kg	5
	Due to the sample matrix an ir analysis. Therefore, the reporting compounds were raised. Due to sample matrix interfered normal reporting limits were reporting limits.	ences observed	for the GC/MS	semivolatile			
02308	UST-Leaded Soils by 8260B						
02016	Methyl Tertiary Butyl Ether	1634-04-4	< 380.	380.	38.	ug/kg	61.12
05460	Benzene	71-43-2	< 380.	380.	38.	ug/kg	61.12
05461	1,2-Dichloroethane	107-06-2	< 380.	380.	76.	ug/kg	61.12
05466	Toluene	108-88-3	< 380.	380.	76.	ug/kg	61.12
05471	1,2-Dibromoethane	106-93-4	< 380.	380.	76.	ug/kg	61.12
05474	Ethylbenzene	100-41-4	< 380.	380.	76.	ug/kg	61.12
05479	Isopropylbenzene	98-82-8	< 380.	380.	76.	ug/kg	61.12
06301	Xylene (Total)	1330-20-7	< 380.	380.	76.	ug/kg	61.12

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5374123 SW Group No. 1093507

N-115_0.0-2.0 Grab Soil Philadelphia Refinery AOI-8 DUNS# COC: 0153802 N-115 0.0-2.0

Collected: 05/28/2008 13:30 by TD Account Number: 10132

Submitted: 05/29/2008 16:05 SUN: Aquaterra Tech.

Reported: 06/09/2008 at 19:02 PO Box 744

Discard: 08/09/2008 West Chester PA 19381

N-115

CAT Dry Dry

CAT Dry Limit of Method Dilution

No. Analysis Name CAS Number Result Quantitation* Detection Units Factor

Laboratory Chronicle

CAT		-		Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06135	Lead	SW-846 6020	1	06/07/2008 07:08	David K Beck	25
00111	Moisture	SM20 2540 G	1	05/30/2008 16:18	Scott W Freisher	1
07804	PAHs in Soil by GC/MS	SW-846 8270C	1	06/04/2008 16:50	Joseph M Gambler	5
02308	UST-Leaded Soils by 8260B	SW-846 8260B	1	06/05/2008 07:59	Stephanie A Selis	61.12
06150	ICP/MS SW-846 Solid digest	SW-846 3050B	1	06/02/2008 20:20	Annamaria Stipkovits	1
06171	GC/MS - Field Preserved MeOH	SW-846 5035	1	05/28/2008 13:30	Client Supplied	1
07806	BNA Soil Extraction	SW-846 3550B	1	05/31/2008 08:25	Adrienne E Fellenbaum	n 1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 3

Quality Control Summary

Client Name: SUN: Aquaterra Tech. Group Number: 1093507

Reported: 06/09/08 at 07:02 PM

Matrix QC may not be reported if site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

Laboratory Compliance Quality Control

Analysis Name	Blank <u>Result</u>	Blank LOQ**	Blank <u>MDL</u>	Report <u>Units</u>	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Max
Batch number: 08151820004A Moisture	Sample nur	mber(s): 5	374122-537	74123	100		99-101		
Batch number: 08151SLC026 Pyrene Naphthalene Fluorene Phenanthrene Anthracene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(a) pyrene	Sample nur < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170.	170. 170. 170. 170. 170. 170. 170. 170. 170.	33. 33. 33. 33. 33. 33. 33.	ug/kg	98 87 83 86 81 89 84 86		75-115 73-106 75-116 77-113 76-112 73-112 76-113 61-127 69-122		
Benzo(g,h,i)perylene Batch number: 081546150001A Lead Batch number: Q081563AA	< 170. Sample nur < 0.100 Sample nur	0.100 mber(s): 5	0.0150 374123	mg/kg	104		65-122 82-118		
Methyl Tertiary Butyl Ether Benzene 1,2-Dichloroethane Toluene 1,2-Dibromoethane Ethylbenzene Isopropylbenzene Xylene (Total)	< 250. < 250. < 250. < 250. < 250. < 250. < 250. < 250.	250. 250. 250. 250. 250. 250. 250. 250.	25. 25. 50. 50. 50. 50.	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	107 98 115 92 93 92 90	109 100 113 92 96 93 91	72-117 84-115 76-135 81-116 77-114 82-115 82-110 82-117	2 2 2 0 3 2 1 2	30 30 30 30 30 30 30 30 30
Batch number: Q081571AA Methyl Tertiary Butyl Ether Benzene 1,2-Dichloroethane Toluene 1,2-Dibromoethane Ethylbenzene Isopropylbenzene Xylene (Total)	Sample nur < 250. < 250. < 250. < 250. < 250. < 250. < 250. < 250.	nber(s): 5 250. 250. 250. 250. 250. 250. 250. 250	374122 25. 25. 50. 50. 50. 50. 50.	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	106 96 110 95 100 95 93 94	103 93 108 91 95 92 89	72-117 84-115 76-135 81-116 77-114 82-115 82-110 82-117	3 3 2 5 5 4 5	30 30 30 30 30 30 30 30 30

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

	MS	MSD	MS/MSD		RPD	BKG	DUP	DUP	Dup RPD
<u>Analysis Name</u>	%REC	%REC	<u>Limits</u>	RPD	<u>MAX</u>	Conc	Conc	<u>RPD</u>	<u>Max</u>

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 3

Quality Control Summary

Client Name: SUN: Aquaterra Tech. Group Number: 1093507

Reported: 06/09/08 at 07:02 PM

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

	MS	MSD	MS/MSD		RPD	BKG	DUP	DUP	Dup RPD
Analysis Name	%REC	%REC	<u>Limits</u>	RPD	MAX	Conc	Conc	RPD	Max
Batch number: 08151820004A	Sample	number(s)	: 5374122	-537412	3 BKG	: P373845			
Moisture						25.8	23.6	9	15
Batch number: 08151SLC026	Sample	number(s)	: 5374122	-537412	3 UNSPI	K: P373847			
Pyrene	99	98	19-162	1	30				
Naphthalene	87	85	29-140	2	30				
Fluorene	90	89	42-139	1	30				
Phenanthrene	93	94	1-181	1	30				
Anthracene	89	90	34-148	1	30				
Benzo(a)anthracene	87	87	20-156	0	30				
Chrysene	90	89	19-158	1	30				
Benzo(b) fluoranthene	74	80	13-161	7	30				
Benzo(a)pyrene	84	85	24-154	1	30				
Benzo(g,h,i)perylene	84	83	26-154	1	30				
Batch number: 081546150001A	Sample	number(s)	: 5374122	-537412	3 UNSPI	K: P374581	BKG: P374583	L	
Lead	95 (2)	225 (2)	75-125	8	20	20.9	23.0	10	20

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: PAHs in Soil by GC/MS Batch number: 08151SLC026

	Nitrobenzene-d5	2-Fluorobiphenyl	Terphenyl-d14	
5374122	83	84	90	
5374123	84	83	92	
Blank	88	89	86	
LCS	87	81	88	
MS	85	91	96	
MSD	84	88	94	
Limits:	49-120	55-117	43-131	

Analysis Name: UST-Leaded Soils by 8260B

Batch number: Q081563AA

	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzen
5374123	82	75	58*	56*
Blank	101	95	89	86
LCS	97	91	87	85
LCSD	101	95	91	89
Limits:	71-114	70-109	70-123	70-111

Analysis Name: UST-Leaded Soils by 8260B

Batch number: Q081571AA

Dibromofluoromethane 1,2-Dichloroethane-d4 Toluene-d8 4-Bromofluorobenzene

*- Outside of specification

- **-This limit was used in the evaluation of the final result for the blank
- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 3 of 3

Quality Control Summary

Client Name: SUN: Aquaterra Tech. Reported: 06/09/08 at 07:02 PM Group Number: 1093507

Surrogate Quality Control

5374122	84	79	73	71
Blank	99	95	92	91
LCS LCSD	95	90	89	88
LCSD	95	89	88	87
Limits:	71-114	70-109	70-123	70-111

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Analysis Request/ Environmental Services Chain of Custody

For Lancaster Laboratories use only

Acct. # 10132 Group# 1093507 Sample # 53 74122-23 COC # 0153802

Please print. Instructions on reverse side correspond with circled numbers. For Lab Use Only 5) Analyses Requested FSC: Client: SUN-AQUATERRA Acct. #: _____ **Preservation Codes** SCR#: **Preservation Codes** Project Name/#: PHICA REF AOI-8 PWSID #: _____ H=HCI T=Thiosulfate Project Manager: T. DOERR N=HNO₃ B=NaOH P.O.#: _____ S=H₂SO₄ O=Other Sampler: S.SYKES Quote #: Name of state where samples were collected: Time Callected | Callected | 2 Sample Identification Remarks 5/23/08 830 N-118_1,0-2,0 # Analyses per table # Pls copy keunmartn

Dason @ Langan temp 4.4°C Turnaround Time Requested (TAT) (please circle): Normal Rush Time Received by: Relinquished by: Date Time (9 5723100 1430 (Rush TAT is subject to Lancaster Laboratories approval and surcharge.) San Sa l'AQUATERRA 5/13/00 1430 AQUATERRA FRIDGE Date results are needed: Time Received by: Relinquished by: Rush results requested by (please circle): Phone Fax E-mail \$ /29/01/30 Kion Ich Phone #: Fax #: Time Received by: E-mail address: 29/08 13:10 5/29/01310 Erma Clelman Data Package Options (please circle if required) SDG Complete? Relinquished by: Time Received by: Type I (validation/NJ Reg) TX TRRP-13 Yes No MA MCP CT RCP Type II (Tier II) 29/02/16:05 Erma Wellman Site-specific QC (MS/MSD/Dup)? Yes No Type III (Reduced NJ) Time Regeived by: Date Time Type IV (CLP SOW) (If yes, indicate QC sample and submit triplicate volume.) The \$29/dr 16:05 Mittod Type VI (Raw Data Only) Internal COC Required? Yes / No

Analysis Request/ Environmental Services Chain of Custody

For Lancaster Laboratories use only

Acct. # 10132 Group# 1093507 Sample # 5874/22-23 COC # 176471

Please print. Instructions on reverse side correspond with circled numbers. For Lab Use Only 5 Analyses Requested ESC: SCR#: 4 **Preservation Codes** Sun-Aguaterra_Acct.#:____ Matrix Preservation Codes Project Name/#: Philly Po favery AOL8 PWSID #: T=Thiosulfate H=HCi N=HNO₃ B=NaOH Project Manager: T. Doerr P.O.#: O=Other S=H₂SO₄ Sampler: T. Docr Quote #: Name of state where samples were collected: Date Time Collected Sample Identification: N-115-0.0-2.0 temp 4.4°C Time Received by Date Date Turnaround Time Requested (TAT) (please circle) Normal Rush Relinfourshed by: 15/8 830 M1/15ths 830 (Rush TAT is subject to Lancaster Laboratories approval and surcharge.) /Date Time Date results are needed: Time | Received by: Relinquished by Rush results requested by (please circle): Phone Fax Fax #: Phone #: Date Time Time | Received by: Religiouished by aquatura-tech. com E-mail address: 5/28/8 1600 SDG Complete? Data Package Options (please circle if required) Date Time Religibulished by: Type I (validation/NJ Reg) TX TRRP-13 MA MCP CT RCP ATRADOC 5/29/12/3/01/ Type II (Tier II) Site-specific QC (MS/MSD/Dup)? Yes Type III (Reduced NJ) Time Received by: Relinquished by (if yes, indicate QC sample and submit triplicate volume.) Type IV (CLP SOW) Internal COC Required? Yes / No. Type VI (Raw Data Only)

Lancaster Laboratories, Inc., 2425 New Holland Pike, Lancaster, PA 7601 (717) 656-2300 Fax: (717) 656-6766 Copies: White and yellow should accompany samples to Lancaster Laboratories. The pink copy should be retained by the client. Special State of State

Lancaster Laboratories Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

N.D.	none detected	BMQL	Below Minimum Quantitation Level
TNTC	Too Numerous To Count	MPN	Most Probable Number
IU	International Units	CP Units	cobalt-chloroplatinate units
umhos/cm	micromhos/cm	NTU	nephelometric turbidity units
С	degrees Celsius	F	degrees Fahrenheit
Cal	(diet) calories	lb.	pound(s)
meq	milliequivalents	kg	kilogram(s)
g	gram(s)	mg	milligram(s)
ug	microgram(s)	I	liter(s)
ml	milliliter(s)	ul	microliter(s)
m3	cubic meter(s)	fib >5 um/ml	fibers greater than 5 microns in length per ml

- < less than The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.
- > greater than
- ppm parts per million One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.

Inorganic Qualifiers

- ppb parts per billion
- **Dry weight**Results printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture.

U.S. EPA data qualifiers:

9	lifier	(uu	9	 u	" 9	•

A B C D E	TIC is a possible aldol-condensation product Analyte was also detected in the blank Pesticide result confirmed by GC/MS Compound quatitated on a diluted sample Concentration exceeds the calibration range of the instrument	B E M N S	Value is <crdl, (msa)="" additions="" amount="" but="" calculation<="" control="" due="" duplicate="" estimated="" for="" injection="" interference="" limits="" met="" method="" not="" of="" precision="" spike="" standard="" th="" to="" used="" within="" ≥idl=""></crdl,>
J	Estimated value	U	Compound was not detected
N	Presumptive evidence of a compound (TICs only)	W	Post digestion spike out of control limits
Р	Concentration difference between primary and	*	Duplicate analysis not within control limits
	confirmation columns >25%	+	Correlation coefficient for MSA < 0.995
U	Compound was not detected		
X,Y,Z	Defined in case narrative		

Analytical test results for methods listed on the laboratories' accreditation scope meet all requirements of NELAC unless otherwise noted under the individual analysis.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

WARRANTY AND LIMITS OF LIABILITY – In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL LANCASTER LABORATORIES BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF LANCASTER LABORATORIES AND (B) WHETHER LANCASTER LABORATORIES HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Lancaster Laboratories which includes any conditions that vary from the Standard Terms and Conditions of Lancaster Laboratories and we hereby object to any conflicting terms contained in any acceptance or order submitted by client.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

ANALYTICAL RESULTS

Prepared for:

SUN: Aquaterra Tech. PO Box 744 West Chester PA 19381

610-431-5733

Prepared by:

Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425

SAMPLE GROUP

The sample group for this submittal is 1094202. Samples arrived at the laboratory on Tuesday, June 03, 2008. The PO# for this group is PHILADELPHIA.

Client Description	<u>Lancaster Labs Number</u>
N-126_1.0-2.0 Grab Soil	5378093
N-119_1.0-2.0 Grab Soil	5378094
N-108_1.0-2.0 Grab Soil	5378095
N-98_1.0-2.0 Grab Soil	5378096

ELECTRONIC COPY TO	SUN: Aquaterra Tech.	Attn: Kevin Martin
ELECTRONIC	Langan	Attn: Joseph Catricks
COPY TO ELECTRONIC	SUN: Aquaterra Tech.	Attn: Tiffani Doerr
COPY TO ELECTRONIC	LLI	Attn: EDD Group
COPY TO		

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Questions? Contact your Client Services Representative Jessica A Heun at (717) 656-2300

Respectfully Submitted,

Christine Dulaney Senior Specialist

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Lancaster Laboratories Sample No. 5378093 SW Group No. 1094202

N-126_1.0-2.0 Grab Soil Philadelphia Refinery AOI-8

DUNS# NA COC: 0153799 N-126 1.0-2.0

Collected: 05/29/2008 08:00 by SS Account Number: 10132

Submitted: 06/03/2008 15:58 SUN: Aquaterra Tech.

Reported: 06/13/2008 at 11:18 PO Box 744

Discard: 08/13/2008 West Chester PA 19381

SA126

				Dry	Dry		
CAT			Dry	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06135	Lead	7439-92-1	1,090.	5.98	0.897	mg/kg	50
00111	Moisture	n.a.	18.0	0.50	0.50	%	1
	"Moisture" represents the loss 103 - 105 degrees Celsius. The as-received basis.				at		
07804	PAHs in Soil by GC/MS						
01195	Pyrene	129-00-0	21,000.	4,100.	810.	ug/kg	10
03761	Naphthalene	91-20-3	50,000.	4,100.	810.	ug/kg	10
03768	Fluorene	86-73-7	21,000.	4,100.	810.	ug/kg	10
03775	Phenanthrene	85-01-8	55,000.	4,100.	810.	ug/kg	10
03776	Anthracene	120-12-7	61,000.	4,100.	810.	ug/kg	10
03781	Benzo(a)anthracene	56-55-3	8,100.	4,100.	810.	ug/kg	10
03782	Chrysene	218-01-9	9,100.	4,100.	810.	ug/kg	10
03786	Benzo(b)fluoranthene	205-99-2	4,100.	4,100.	810.	ug/kg	10
03788	Benzo(a)pyrene	50-32-8	< 4,100.	4,100.	810.	ug/kg	10
03791	Benzo(g,h,i)perylene	191-24-2	< 4,100.	4,100.	810.	ug/kg	10
	Due to sample matrix interfered normal reporting limits were no		during the ext	traction, the			

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Chronicle

CAT		Analysis				
	Amelianda Nome	Wath ad	m1-1#	Date and Time	31	Dilution
No.	Analysis Name	Method	Trial#		Analyst	Factor
06135	Lead	SW-846 6020	1	06/07/2008 12:11	David K Beck	50
00111	Moisture	SM20 2540 G	1	06/04/2008 16:53	Scott W Freisher	1
07804	PAHs in Soil by GC/MS	SW-846 8270C	1	06/10/2008 10:12	Joseph M Gambler	10
06150	ICP/MS SW-846 Solid digest	SW-846 3050B	1	06/04/2008 20:15	Annamaria Stipkovits	1
07806	BNA Soil Extraction	SW-846 3550B	1	06/04/2008 16:55	Adrienne E Fellenbaum	n 1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Lancaster Laboratories Sample No. 5378094 SW Group No. 1094202

N-119_1.0-2.0 Grab Soil Philadelphia Refinery AOI-8

DUNS# NA COC: 0153799 N-119 1.0-2.0

Collected: 05/29/2008 10:30 by SS Account Number: 10132

Submitted: 06/03/2008 15:58 SUN: Aquaterra Tech.

Reported: 06/13/2008 at 11:18 PO Box 744

Discard: 08/13/2008 West Chester PA 19381

SA119

CAT			Dry	Dry Limit of	Dry Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06135	Lead	7439-92-1	68.1	1.16	0.173	mg/kg	10
00111	Moisture	n.a.	13.5	0.50	0.50	8	1
	"Moisture" represents the loss 103 - 105 degrees Celsius. The as-received basis.				at		
07804	PAHs in Soil by GC/MS						
01195	Pyrene	129-00-0	< 190.	190.	39.	ug/kg	1
03761	Naphthalene	91-20-3	< 190.	190.	39.	ug/kg	1
03768	Fluorene	86-73-7	< 190.	190.	39.	ug/kg	1
03775	Phenanthrene	85-01-8	< 190.	190.	39.	ug/kg	1
03776	Anthracene	120-12-7	< 190.	190.	39.	ug/kg	1
03781	Benzo(a)anthracene	56-55-3	< 190.	190.	39.	ug/kg	1
03782	Chrysene	218-01-9	< 190.	190.	39.	ug/kg	1
03786	Benzo(b)fluoranthene	205-99-2	< 190.	190.	39.	ug/kg	1
03788	Benzo(a)pyrene	50-32-8	< 190.	190.	39.	ug/kg	1
03791	Benzo(q,h,i)perylene	191-24-2	< 190.	190.	39.	uq/kq	1

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Chronicle

CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06135	Lead	SW-846 6020	1	06/07/2008 11:05	David K Beck	10
00111	Moisture	SM20 2540 G	1	06/04/2008 16:53	Scott W Freisher	1
07804	PAHs in Soil by GC/MS	SW-846 8270C	1	06/10/2008 10:36	Joseph M Gambler	1
06150	ICP/MS SW-846 Solid digest	SW-846 3050B	1	06/04/2008 20:15	Annamaria Stipkovits	1
07806	BNA Soil Extraction	SW-846 3550B	1	06/04/2008 16:55	Adrienne E Fellenbaum	n 1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5378095 SW Group No. 1094202

N-108_1.0-2.0 Grab Soil Philadelphia Refinery AOI-8

DUNS# NA COC: 0153799 N-108 1.0-2.0

Collected: 05/29/2008 14:30 by SS Account Number: 10132

Submitted: 06/03/2008 15:58 SUN: Aquaterra Tech.

Reported: 06/13/2008 at 11:18 PO Box 744

Discard: 08/13/2008 West Chester PA 19381

SA108

				Dry	Dry				
CAT			Dry	Limit of	Method		Dilution		
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor		
06135	Lead	7439-92-1	147.	1.16	0.174	mg/kg	10		
00111	Moisture	n.a.	14.5	0.50	0.50	%	1		
	"Moisture" represents the loss 103 - 105 degrees Celsius. The as-received basis.				at				
07804	PAHs in Soil by GC/MS								
01195	Pyrene	129-00-0	< 1,900.	1,900.	390.	ug/kg	5		
03761	Naphthalene	91-20-3	< 1,900.	1,900.	390.	ug/kg	5		
03768	Fluorene	86-73-7	< 1,900.	1,900.	390.	ug/kg	5		
03775	Phenanthrene	85-01-8	2,100.	1,900.	390.	ug/kg	5		
03776	Anthracene	120-12-7	< 1,900.	1,900.	390.	ug/kg	5		
03781	Benzo(a)anthracene	56-55-3	2,000.	1,900.	390.	ug/kg	5		
03782	Chrysene	218-01-9	3,800.	1,900.	390.	ug/kg	5		
03786	Benzo(b)fluoranthene	205-99-2	3,300.	1,900.	390.	ug/kg	5		
03788	Benzo(a)pyrene	50-32-8	5,400.	1,900.	390.	ug/kg	5		
03791	Benzo(g,h,i)perylene	191-24-2	20,000.	1,900.	390.	ug/kg	5		
	Due to sample matrix interfere	nces observed	during the e	xtraction, the					
	normal reporting limits were n	ot attained.							
02308	UST-Leaded Soils by 8260B								
02016	Methyl Tertiary Butyl Ether	1634-04-4	< 230.	230.	23.	ug/kg	39.12		
05460	Benzene	71-43-2	< 230.	230.	23.	ug/kg	39.12		
05461	1,2-Dichloroethane	107-06-2	< 230.	230.	46.	ug/kg	39.12		
05466	Toluene	108-88-3	< 230.	230.	46.	ug/kg	39.12		
05471	1,2-Dibromoethane	106-93-4	< 230.	230.	46.	ug/kg	39.12		
05474	Ethylbenzene	100-41-4	< 230.	230.	46.	ug/kg	39.12		
05479	Isopropylbenzene	98-82-8	< 230.	230.	46.	ug/kg	39.12		
06301	Xylene (Total)	1330-20-7	< 230.	230.	46.	ug/kg	39.12		

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5378095 SW Group No. 1094202

N-108_1.0-2.0 Grab Soil Philadelphia Refinery AOI-8

DUNS# NA COC: 0153799 N-108 1.0-2.0

Collected: 05/29/2008 14:30 by SS Account Number: 10132

Submitted: 06/03/2008 15:58 SUN: Aquaterra Tech.

Reported: 06/13/2008 at 11:18 PO Box 744

Discard: 08/13/2008 West Chester PA 19381

SA108

Laboratory Chronicle

		<u> </u>	CIII O.						
CAT		-	Analysis						
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor			
06135	Lead	SW-846 6020	1	06/07/2008 11:09	David K Beck	10			
00111	Moisture	SM20 2540 G	1	06/04/2008 16:53	Scott W Freisher	1			
07804	PAHs in Soil by GC/MS	SW-846 8270C	1	06/10/2008 11:00	Joseph M Gambler	5			
02308	UST-Leaded Soils by 8260B	SW-846 8260B	1	06/09/2008 18:16	Kerri E Koch	39.12			
06150	ICP/MS SW-846 Solid digest	SW-846 3050B	1	06/04/2008 20:15	Annamaria Stipkovits	1			
06171	GC/MS - Field Preserved MeOH	SW-846 5035	1	05/29/2008 14:30	Client Supplied	1			
07806	BNA Soil Extraction	SW-846 3550B	1	06/04/2008 16:55	Adrienne E Fellenbaur	n 1			

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5378096 SW Group No. 1094202

N-98 1.0-2.0 Grab Soil

Philadelphia Refinery AOI-8

DUNS# NA COC: 0153799 N-98 1.0-2.0

Collected:06/02/2008 14:00 by SS Account Number: 10132

Submitted: 06/03/2008 15:58 SUN: Aquaterra Tech.

Reported: 06/13/2008 at 11:18 PO Box 744

Discard: 08/13/2008 West Chester PA 19381

SA098

				Dry	Dry	Dilakia.				
CAT			Dry	Limit of	Method		Dilution			
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor			
06135	Lead	7439-92-1	94.5	1.14	0.171	mg/kg	10			
00111	Moisture	n.a.	14.6	0.50	0.50	왕	1			
	"Moisture" represents the loss 103 - 105 degrees Celsius. The as-received basis.				at					
07804	PAHs in Soil by GC/MS									
01195	Pyrene	129-00-0	2,400.	980.	200.	ug/kg	5			
03761	Naphthalene	91-20-3	1,000.	980.	200.	ug/kg	5			
03768	Fluorene	86-73-7	< 980.	980.	200.	ug/kg	5			
03775	Phenanthrene	85-01-8	4,500.	980.	200.	ug/kg	5			
03776	Anthracene	120-12-7	< 980.	980.	200.	ug/kg	5			
03781	Benzo(a)anthracene	56-55-3	< 980.	980.	200.	ug/kg	5			
03782	Chrysene	218-01-9	< 980.	980.	200.	ug/kg	5			
03786	Benzo(b)fluoranthene	205-99-2	< 980.	980.	200.	ug/kg	5			
03788	Benzo(a)pyrene	50-32-8	< 980.	980.	200.	ug/kg	5			
03791	Benzo(g,h,i)perylene	191-24-2	< 980.	980.	200.	ug/kg	5			
	Due to the sample matrix an in	itial dilution	n was necessa:	ry to perform the						
	analysis. Therefore, the repo	rting limits	for the GC/MS	semivolatile						
	compounds were raised.									
02308	UST-Leaded Soils by 8260B									
02016	Methyl Tertiary Butyl Ether	1634-04-4	< 210.	210.	21.	ug/kg	36.23			
05460	Benzene	71-43-2	< 210.	210.	21.	ug/kg	36.23			
05461	1,2-Dichloroethane	107-06-2	< 210.	210.	42.	ug/kg	36.23			
05466	Toluene	108-88-3	< 210.	210.	42.	ug/kg	36.23			
05471	1,2-Dibromoethane	106-93-4	< 210.	210.	42.	ug/kg	36.23			
05474	Ethylbenzene	100-41-4	< 210.	210.	42.	ug/kg	36.23			
05479	Isopropylbenzene	98-82-8	< 210.	210.	42.	ug/kg	36.23			
06301	Xylene (Total)	1330-20-7	< 210.	210.	42.	ug/kg	36.23			

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5378096 SW Group No. 1094202

N-98_1.0-2.0 Grab Soil

Philadelphia Refinery AOI-8

DUNS# NA COC: 0153799 N-98_1.0-2.0

Collected:06/02/2008 14:00 by SS Account Number: 10132

Submitted: 06/03/2008 15:58 SUN: Aquaterra Tech.

Reported: 06/13/2008 at 11:18 PO Box 744

Discard: 08/13/2008 West Chester PA 19381

SA098

Laboratory Chronicle

			· ·						
CAT		-	- Analysis Di						
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor			
06135	Lead	SW-846 6020	1	06/07/2008 11:13	David K Beck	10			
00111	Moisture	SM20 2540 G	1	06/04/2008 16:53	Scott W Freisher	1			
07804	PAHs in Soil by GC/MS	SW-846 8270C	1	06/10/2008 11:24	Joseph M Gambler	5			
02308	UST-Leaded Soils by 8260B	SW-846 8260B	1	06/09/2008 17:53	Kerri E Koch	36.23			
06150	ICP/MS SW-846 Solid digest	SW-846 3050B	1	06/04/2008 20:15	Annamaria Stipkovits	1			
06171	GC/MS - Field Preserved MeOH	SW-846 5035	1	06/02/2008 14:00	Client Supplied	1			
07806	BNA Soil Extraction	SW-846 3550B	1	06/04/2008 16:55	Adrienne E Fellenbaum	1 1			

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Quality Control Summary

Client Name: SUN: Aquaterra Tech. Group Number: 1094202

Reported: 06/13/08 at 11:18 AM

Matrix QC may not be reported if site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

Laboratory Compliance Quality Control

Analysis Name	Blank <u>Result</u>	Blank LOQ**	Blank Report MDL Units		LCS %REC	LCSD %REC	LCS/LCSD <u>Limits</u>	RPD	RPD Max
Batch number: 081566150002A Lead	Sample numi	ber(s): 0.100	5378093-537 0.0150	8096 mg/kg	104		82-118		
Batch number: 08156820005B Moisture	Sample num	ber(s):	5378093-537	8096	100		99-101		
Batch number: 08156SLC026 Pyrene Naphthalene Fluorene Phenanthrene Anthracene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(a) pyrene Benzo(g,h,i) perylene	Sample num < 170. < 170.	ber(s): 170. 170. 170. 170. 170. 170. 170. 170.	5378093-537 33. 33. 33. 33. 33. 33. 33. 33. 33.	8096 ug/kg	93 83 87 92 87 85 91 75 84 85		75-115 73-106 75-116 77-113 76-112 73-112 76-113 61-127 69-122 65-122		
Batch number: Q081611AA Methyl Tertiary Butyl Ether Benzene 1,2-Dichloroethane Toluene 1,2-Dibromoethane Ethylbenzene Isopropylbenzene Xylene (Total)	Sample num: < 250. < 250. < 250. < 250. < 250. < 250. < 250. < 250. < 250. < 250.	ber(s): 250. 250. 250. 250. 250. 250. 250. 250.	5378095-537 25. 25. 50. 50. 50. 50. 50.	8096 ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	107 95 112 90 94 90 87 88	111 98 116 92 97 93 90	72-117 84-115 76-135 81-116 77-114 82-115 82-110 82-117	4 4 3 2 3 4 4 5	30 30 30 30 30 30 30 30 30

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

Analysis Name	MS %REC	MSD %REC	MS/MSD <u>Limits</u>	RPD	RPD <u>MAX</u>	BKG Conc	DUP Conc	DUP RPD	Dup RPD Max
Batch number: 081566150002A Lead	Sample: -1238 (2)	number(s) -2757 (2)		-537809 14	06 UNSPI 20	K: P377502 : 197.	BKG: P377502 137.	36*	20
Batch number: 08156820005B Moisture	Sample	number(s)	: 5378093	-537809	6 BKG	: P377706 7.4	6.9	8	15
Batch number: 08156SLC026 Pyrene Naphthalene	Sample: 105 87	number(s) 125 83	: 5378093 19-162 29-140	-537809 17 4	30 30 30	K: P375888			

*- Outside of specification

- **-This limit was used in the evaluation of the final result for the blank
- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Quality Control Summary

Client Name: SUN: Aquaterra Tech. Group Number: 1094202

Reported: 06/13/08 at 11:18 AM

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

	MS	MSD	MS/MSD		RPD	BKG	DUP	DUP	Dup RPD
Analysis Name	%REC	%REC	Limits	RPD	MAX	Conc	Conc	RPD	<u>Max</u>
Fluorene	89	87	42-139	3	30				
Phenanthrene	96	114	1-181	17	30				
Anthracene	88	87	34-148	1	30				
Benzo(a)anthracene	86	88	20-156	2	30				
Chrysene	92	100	19-158	9	30				
Benzo(b)fluoranthene	71	80	13-161	12	30				
Benzo(a)pyrene	75	77	24-154	3	30				
Benzo(q,h,i)pervlene	71	74	26-154	4	30				

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: PAHs in Soil by GC/MS Batch number: 08156SLC026

	Nitrobenzene-d5	2-Fluorobiphenyl	Terphenyl-d14	
5378093	103	95	87	
5378094	91	87	93	
5378095	106	86	85	
5378096	92	87	78	
Blank	91	88	97	
LCS	90	85	94	
MS	90	86	102	
MSD	87	83	103	
Limits:	49-120	55-117	43-131	

Analysis Name: UST-Leaded Soils by 8260B

Batch number: Q081611AA

	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
5378095	82	80	71	66*
5378096	84	80	69*	65*
Blank	104	100	91	90
LCS	95	93	87	85
LCSD	103	100	92	92
Limits:	71-114	70-109	70-123	70-111

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Analysis Request/ Environmental Services Chain of Custody

Lancaster Laboratories

For Lancaster Laboratories use only

Acct. # 10132 _Group# <u>1094202_</u>Sample #<u>5378</u>093 **COC** # 0153799 Please print. Instructions on reverse side correspond with circled numbers. For Lab Use Only 5 Analyses Requested FSC: Client: SUN-AQUATERRA Acct. #: ____ Matrix **Preservation Codes** SCR#: Project Name/#: PHILA REF AOI 8 _PWSID #: Preservation Codes **T**=Thiosulfate H=HCi P.O.#: N=HNO₂ B=NaOH Sampler: S. SYKES S=H₂SO₄ O=Other Quote #: nois Luce Name of state where samples were collected: Sample Identification Callected Gallected Remarks N-126_1,0-2,0 5/29/08 800 X X & Analyses per toble 5/24/08 N-108_10-2.0 1430 5/29/08 & Please copy Icevin Morter Turnaround Time Requested (TAT) (please circle): Normal Relinquished by: Date Time Received by: Date |Time (9 (Rush TAT is subject to Lancaster Laboratories approval and surcharge.) Shur Ou 1 ACOUPTERPA | 5/2910 1730 | AQUATERRA FRIDGE 5/29/00 1730 Date results are needed: Relinquished by: Rush results requested by (please circle): Phone Fax Time Received by: Date AT PULLE Phone #: Fax #: E-mail address: Data Package Options (please circle if required) SDG Complete? Type I (validation/NJ Reg) TX TRRP-13 Yes No. Relinquished by: Type II (Tier II) MA MCP CT RCP Type III (Reduced NJ) Site-specific QC (MS/MSD/Dup)? Yes No. Type IV (CLP SOW) (If yes, indicate QC sample and submit triplicate volume,) Relinguished by: ∕Date Time Received by: Date Time Type VI (Raw Data Only) Internal COC Required? Yes / No.

Analysis Request/ Environmental Services Chain of Custody

For Lancaster Laboratories use only

Acct. # 1013Z Group# 109420Z Sample # 5378092

COC # 0154360

Laboratories	Pl	ease print. Ins	structi	ons or	ı rev	erse si	de cor	rrespon	d with	circled	d numb	ers.	4,1	٥ر	For Lab Use Only		
						i i			(5) Ar	ialyse	s Requ	ested		FSC:		
Client: SUN-AQUATERRA	- Acct. #:				M	atrix	(4)			Pres	servat	tion Co	des		SCR#:		<u>.</u>
Project Name/#: PHILA REF AOT-		# :			٠,	- 8	Υ								Preservation Codes		
							۱.				8270				H=HCl T=Thiosu N=HNO ₃ B=NaOH		(6)
Project Manager: T. DOERR	P.O.#: _			- [2 4 g 10	12				×				S=H ₂ SO ₄ O=Other		28
Sampler: S.SYKES	Quote #:			_				Ş			64/29					,	一量
Name of state where samples were collected:	PA	9	(3)		ľ	訊	13	8	3	7	3						8 E
			(3)	7	F			PA16 \$260	Ý	e	3						25
	Date	Time	8	Ê		喜		8	Mousture	1	Parts						1 de 1
Sample Identification	Collected	Collected	Ð		ă L	3							4		Remarks		25
N-98-1.0-2.0	6/2/08	1400	X		χİ	1	2	11	X	X	$ \chi $				# Analyses	nor th	46
7. 10 = 10 210	1		Ī	Ħ	\top			1							oravided	<u> </u>	
					_	-	\top	-	1	1					VIOVI CO		
				\vdash			+	<u> </u>	<u> </u>	 			1		N DI		_
	ļ		├	-	\dashv		+	 	ļ=	<u> </u>	\vdash				# Pls copy	keum)
							_	4	ļ	<u> </u>					Mortin 4	Dosoa.	0_
		<u> </u>													Langar	}	
			1														
	1						ŀ										
			Ť				-						1 1				
	<u> </u>		 	\dagger			\top	-					1				
Turnaround Time Requested (TAT) (please	circle): Norma	l Rush	'	Relin	nuie	hed b	\/·	_l	<u> </u>		Date	e Tim	e Rec	eived by		Date	Time (
(Rush TAT is subject to Lancaster Laboratories app								- /A	QuATA	500A		1			ERRA FRIDE		17/
Date results are needed:			İ			hed b			10,310	<u> </u>	Date		_	eived by	71 / 1		Time
Rush results requested by (please circle): F		E-mail			•	MP	•	-			1 2 7 2	8 1000		say	VIXO	4/3/ar	
Phone #:Fax #:			ŀ		_	Ned b					Date			eived by		1"/	Time
E-mail address:		C-On real at a	\dashv		_	127	٠//	1			43/			Z Z			1000
Data Package Options (please circle if required Type I (validation/NJ Reg) TX TRRP-13) Ye	G Com plete es No	ъ		Mic.			4			Date	•	<u> </u>	eived by	eferre 6,	Date	+
Type II (Tier II) MA MCP CT	RCP C	\leq_{-}	$ \bot $		quiş	hed b		1.		1. 1) /			EMEG DA	<u> </u>	A Date	, iiie
Type III (Reduced NJ) Site-specific QC		Yes No	싀		0		m	4		P	¥	8 15		olived by	\ 1	Defa	Time
Type IV (CLP SOW) (If yes, indicate OC sample and su Type VI (Raw Data Only) Internal COC Re			ŀ	Kelin	quis	hed/b	y:				Date	e ''''	/1	eived-by	1/11.	Date	i ime
	tar Laboratoria												X/z	as s	1 Yell 9	17/ 0 0	// ())

Lancaster Laboratories Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

N.D.	none detected	BMQL	Below Minimum Quantitation Level
TNTC	Too Numerous To Count	MPN	Most Probable Number
IU	International Units	CP Units	cobalt-chloroplatinate units
umhos/cm	micromhos/cm	NTU	nephelometric turbidity units
С	degrees Celsius	F	degrees Fahrenheit
Cal	(diet) calories	lb.	pound(s)
meq	milliequivalents	kg	kilogram(s)
g	gram(s)	mg	milligram(s)
ug	microgram(s)	I	liter(s)
ml	milliliter(s)	ul	microliter(s)
m3	cubic meter(s)	fib >5 um/ml	fibers greater than 5 microns in length per ml

- < less than The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.
- > greater than
- ppm parts per million One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.

Inorganic Qualifiers

- ppb parts per billion
- **Dry weight**Results printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture.

U.S. EPA data qualifiers:

9	lifier	(uu	9	 u	" 9	•

A B C D E	TIC is a possible aldol-condensation product Analyte was also detected in the blank Pesticide result confirmed by GC/MS Compound quatitated on a diluted sample Concentration exceeds the calibration range of the instrument	B E M N S	Value is <crdl, (msa)="" additions="" amount="" but="" calculation<="" control="" due="" duplicate="" estimated="" for="" injection="" interference="" limits="" met="" method="" not="" of="" precision="" spike="" standard="" th="" to="" used="" within="" ≥idl=""></crdl,>
J	Estimated value	U	Compound was not detected
N	Presumptive evidence of a compound (TICs only)	W	Post digestion spike out of control limits
Р	Concentration difference between primary and	*	Duplicate analysis not within control limits
	confirmation columns >25%	+	Correlation coefficient for MSA < 0.995
U	Compound was not detected		
X,Y,Z	Defined in case narrative		

Analytical test results for methods listed on the laboratories' accreditation scope meet all requirements of NELAC unless otherwise noted under the individual analysis.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

WARRANTY AND LIMITS OF LIABILITY – In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL LANCASTER LABORATORIES BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF LANCASTER LABORATORIES AND (B) WHETHER LANCASTER LABORATORIES HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Lancaster Laboratories which includes any conditions that vary from the Standard Terms and Conditions of Lancaster Laboratories and we hereby object to any conflicting terms contained in any acceptance or order submitted by client.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

ANALYTICAL RESULTS

Prepared for:

SUN: Aquaterra Tech. PO Box 744 West Chester PA 19381

610-431-5733

Prepared by:

Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425

SAMPLE GROUP

The sample group for this submittal is 1094907. Samples arrived at the laboratory on Friday, June 06, 2008. The PO# for this group is PHILADELPHIA.

Client DescriptionLancaster Labs NumberN-117-1.0-2.0 Grab Soil5382600

ELECTRONIC SUN: Aquaterra Tech. Attn: Kevin Martin

COPY TO

ELECTRONIC Langan Attn: Joseph Catricks

COPY TO

ELECTRONIC SUN: Aquaterra Tech. Attn: Tiffani Doerr

COPY TO

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Questions? Contact your Client Services Representative Jessica A Heun at (717) 656-2300

Respectfully Submitted,

Dorothy M. Love Group Leader

Doutty M. Love

Dra

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5382600 SW Group No. 1094907

N-117-1.0-2.0 Grab Soil Philadelphia Refinery AOI-8

COC: 0156515 N-117

by TD Collected:06/04/2008 13:20 Account Number: 10132

Submitted: 06/06/2008 14:25 SUN: Aquaterra Tech.

Reported: 06/19/2008 at 12:07 PO Box 744

West Chester PA 19381 Discard: 08/19/2008

PN117

				Dry	Dry		
CAT			Dry	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06135	Lead	7439-92-1	219.	0.565	0.0848	mg/kg	5
00111	Moisture	n.a.	12.4	0.50	0.50	%	1
	"Moisture" represents the loss 103 - 105 degrees Celsius. The as-received basis.				at		
07804	PAHs in Soil by GC/MS						
01195	Pyrene	129-00-0	1,100.	190.	38.	ug/kg	1
03761	Naphthalene	91-20-3	< 190.	190.	38.	ug/kg	1
03768	Fluorene	86-73-7	< 190.	190.	38.	ug/kg	1
03775	Phenanthrene	85-01-8	1,400.	190.	38.	ug/kg	1
03776	Anthracene	120-12-7	350.	190.	38.	ug/kg	1
03781	Benzo(a)anthracene	56-55-3	740.	190.	38.	ug/kg	1
03782	Chrysene	218-01-9	680.	190.	38.	ug/kg	1
03786	Benzo(b)fluoranthene	205-99-2	940.	190.	38.	ug/kg	1
03788	Benzo(a)pyrene	50-32-8	630.	190.	38.	ug/kg	1
03791	Benzo(g,h,i)perylene	191-24-2	420.	190.	38.	ug/kg	1
02308	UST-Leaded Soils by 8260B						
02016	Methyl Tertiary Butyl Ether	1634-04-4	< 230.	230.	23.	ug/kg	39.81
05460	Benzene	71-43-2	< 230.	230.	23.	ug/kg	39.81
05461	1,2-Dichloroethane	107-06-2	< 230.	230.	45.	ug/kg	39.81
05466	Toluene	108-88-3	< 230.	230.	45.	ug/kg	39.81
05471	1,2-Dibromoethane	106-93-4	< 230.	230.	45.	ug/kg	39.81
05474	Ethylbenzene	100-41-4	< 230.	230.	45.	ug/kg	39.81
05479	Isopropylbenzene	98-82-8	< 230.	230.	45.	ug/kg	39.81
06301	Xylene (Total)	1330-20-7	< 230.	230.	45.	ug/kg	39.81

Dru

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Chronicle

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5382600 SW Group No. 1094907

N-117-1.0-2.0 Grab Soil Philadelphia Refinery AOI-8

COC: 0156515 N-117

Collected:06/04/2008 13:20 by TD Account Number: 10132

Submitted: 06/06/2008 14:25 SUN: Aquaterra Tech.

Reported: 06/19/2008 at 12:07 PO Box 744

Discard: 08/19/2008 West Chester PA 19381

PN117

CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06135	Lead	SW-846 6020	1	06/17/2008 11:26	David K Beck	5
00111	Moisture	SM20 2540 G	1	06/09/2008 16:26	Scott W Freisher	1
07804	PAHs in Soil by GC/MS	SW-846 8270C	1	06/17/2008 04:45	Linda M Hartenstine	1
02308	UST-Leaded Soils by 8260B	SW-846 8260B	1	06/12/2008 10:34	Stephanie A Selis	39.81
06150	ICP/MS SW-846 Solid digest	SW-846 3050B	1	06/12/2008 20:45	Annamaria Stipkovits	1
06171	GC/MS - Field Preserved MeOH	SW-846 5035A	1	06/04/2008 13:20	Client Supplied	1
07806	BNA Soil Extraction	SW-846 3550B	1	06/12/2008 07:30	Joseph S Feister	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Quality Control Summary

Client Name: SUN: Aquaterra Tech. Group Number: 1094907

Reported: 06/19/08 at 12:07 PM

Matrix QC may not be reported if site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

Laboratory Compliance Quality Control

Analysis Name	Blank <u>Result</u>	Blank LOQ**	Blank <u>MDL</u>	Report <u>Units</u>	LCS %REC	LCSD %REC	LCS/LCSD <u>Limits</u>	RPD	RPD Max
Batch number: 08161820007A Moisture	Sample num	ber(s): 5	382600		100		99-101		
Batch number: 08163SLF026 Pyrene Naphthalene Fluorene Phenanthrene Anthracene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(a) pyrene Benzo(g, h, i) perylene	Sample num < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170.	ber(s): 5 170. 170. 170. 170. 170. 170. 170. 170. 170. 170.	382600 33. 33. 33. 33. 33. 33. 33. 3	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	84 83 88 90 86 89 87 90 91		75-115 73-106 75-116 77-113 76-112 73-112 76-13 61-127 69-122 65-122		
Batch number: 081646150002A Lead	Sample num < 0.100	ber(s): 5 0.100	382600 0.0150	mg/kg	104		82-118		
Batch number: Q081641AA Methyl Tertiary Butyl Ether Benzene 1,2-Dichloroethane Toluene 1,2-Dibromoethane Ethylbenzene Isopropylbenzene Xylene (Total)	Sample num < 250. < 250. < 250. < 250. < 250. < 250. < 250. < 250. < 250. < 250.	ber(s): 5 250. 250. 250. 250. 250. 250. 250. 250	382600 25. 25. 50. 50. 50. 50.	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	104 96 110 95 94 95 91	101 93 108 92 92 93 90	72-117 84-115 76-135 81-116 77-114 82-115 82-110 82-117	3 4 2 3 2 2 2 2	30 30 30 30 30 30 30 30 30 30

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

Analysis Name	MS %REC	MSD %REC	MS/MSD <u>Limits</u>	RPD	RPD <u>MAX</u>	BKG Conc	DUP Conc	DUP <u>RPD</u>	Dup RPD <u>Max</u>
Batch number: 08161820007A	Sample	number(s)	: 5382600	BKG:	P36419				
Moisture						14.3	14.0	2	15
Batch number: 08163SLF026	Sample	number(s)	: 5382600	UNSPK	: P3831	18			
Pyrene	84	80	19-162	5	30				
Naphthalene	94	93	29-140	0	30				
Fluorene	85	86	42-139	2	30				
Phenanthrene	95	95	1-181	0	30				
Anthracene	91	93	34-148	2	30				
Benzo(a)anthracene	94	93	20-156	1	30				

^{*-} Outside of specification

- **-This limit was used in the evaluation of the final result for the blank
- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Quality Control Summary

Client Name: SUN: Aquaterra Tech. Group Number: 1094907

Reported: 06/19/08 at 12:07 PM

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

	MS	MSD	MS/MSD		RPD	BKG	DUP	DUP	Dup RPD
Analysis Name	%REC	%REC	<u>Limits</u>	RPD	MAX	Conc	Conc	RPD	Max
Chrysene	90	89	19-158	1	30				
Benzo(b)fluoranthene	103	97	13-161	6	30				
Benzo(a)pyrene	93	92	24-154	2	30				
Benzo(g,h,i)perylene	117	122	26-154	4	30				
Batch number: 081646150002A	Sample	number(s): 5382600	UNSPK:	P3856	525 BKG: P	385625		
Lead	-379	-168	75-125	15	20	25.4	21.0	19	20
	(2)	(2)							

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: PAHs in Soil by GC/MS Batch number: 08163SLF026

Batch numi	Nitrobenzene-d5	2-Fluorobiphenyl	Terphenyl-d14	
5382600	85	91	81	
Blank	74	78	70	
LCS	79	81	79	
MS	90	95	82	
MSD	88	92	79	
Limits:	49-120	55-117	43-131	

Analysis Name: UST-Leaded Soils by 8260B

Batch number: Q081641AA

	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
5382600	87	82	78	75
Blank	99	96	94	93
LCS	98	94	94	93
LCSD	98	94	94	93
Limits:	71-114	70-109	70-123	70-111

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Analysis Request/ Environmental Services Chain of Custody

For Lancaster Laboratories use only

Acct. # 10132 Group# 1094907 Sample # 5382600

COC # 0156515

(1) Client: Aquatura		lease print. Ins			Matrix		respo) Aı	nalyse	ers. s Requ ion Cod		For Lab Use Only FSC: SCR#: 4005	()
	Project Name/#: Sun Philly Relinery. Project Manager: T. Doern Sampler: T. Doern		#:			ishe Check I	4)	2608	270c					Preservation Codes H=HCl T=Thios N=HNO ₃ B=NaOl S=H ₂ SO ₄ 0 =Other	uifate 6
(Name of state where samples were collected: _ 2 Sample identification	P4 Date Collected	Time	3	Soft	Mater: D Pa	Other Total # of Com	TA UST 8	PAUST 8	lead			7 7 70 10 10 10 10 10 10 10 10 10 10 10 10 10	Remarks	entice in some designation of
	N-117-1.0-2.0	6/4/68	1320	X	X		2	×	*	×				*Analyle Li previous Jable	st per ly provided
		·												* Copy res Langan	uets to
	Turneround Time Democrated (TAT) (steeper														
(7	Turnaround Time Requested (TAT) (please c (Rush TAT is subject to Lancaster Laboratories appro Date results are needed: Rush results requested by (please circle): Ph	oval and surchar		Re	linqui	shed b	7 = 7	en In	ay	<u>_</u>	Date ///oi Date	Time	Received by: Received by:	ru Falled-	Date Time (9) 7'./5 Date Time
8	Phone #:Fax #:Fax #:Fax #:Fax #:	SD/Ye.	Yes No	Re Re Re		fied b		alli 			Date	Time **Time **Time*** **Time***	Received by: Received by:	Selmon	Date Time

Lancaster Laboratories Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

N.D.	none detected	BMQL	Below Minimum Quantitation Level
TNTC	Too Numerous To Count	MPN	Most Probable Number
IU	International Units	CP Units	cobalt-chloroplatinate units
umhos/cm	micromhos/cm	NTU	nephelometric turbidity units
С	degrees Celsius	F	degrees Fahrenheit
Cal	(diet) calories	lb.	pound(s)
meq	milliequivalents	kg	kilogram(s)
g	gram(s)	mg	milligram(s)
ug	microgram(s)	I	liter(s)
ml	milliliter(s)	ul	microliter(s)
m3	cubic meter(s)	fib >5 um/ml	fibers greater than 5 microns in length per ml

- < less than The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.
- > greater than
- ppm parts per million One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.

Inorganic Qualifiers

- ppb parts per billion
- **Dry weight**Results printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture.

U.S. EPA data qualifiers:

9	lifier	(uu	9	 u	" 9	•

A B C D E	TIC is a possible aldol-condensation product Analyte was also detected in the blank Pesticide result confirmed by GC/MS Compound quatitated on a diluted sample Concentration exceeds the calibration range of the instrument	B E M N S	Value is <crdl, (msa)="" additions="" amount="" but="" calculation<="" control="" due="" duplicate="" estimated="" for="" injection="" interference="" limits="" met="" method="" not="" of="" precision="" spike="" standard="" th="" to="" used="" within="" ≥idl=""></crdl,>
J	Estimated value	U	Compound was not detected
N	Presumptive evidence of a compound (TICs only)	W	Post digestion spike out of control limits
Р	Concentration difference between primary and	*	Duplicate analysis not within control limits
	confirmation columns >25%	+	Correlation coefficient for MSA < 0.995
U	Compound was not detected		
X,Y,Z	Defined in case narrative		

Analytical test results for methods listed on the laboratories' accreditation scope meet all requirements of NELAC unless otherwise noted under the individual analysis.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

WARRANTY AND LIMITS OF LIABILITY – In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL LANCASTER LABORATORIES BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF LANCASTER LABORATORIES AND (B) WHETHER LANCASTER LABORATORIES HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Lancaster Laboratories which includes any conditions that vary from the Standard Terms and Conditions of Lancaster Laboratories and we hereby object to any conflicting terms contained in any acceptance or order submitted by client.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

ANALYTICAL RESULTS

Prepared for:

SUN: Aquaterra Tech. PO Box 744 West Chester PA 19381

610-431-5733

Prepared by:

Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425

SAMPLE GROUP

The sample group for this submittal is 1094908. Samples arrived at the laboratory on Friday, June 06, 2008. The PO# for this group is PHILADELPHIA.

<u>Client Description</u> <u>Lancaster Labs Number</u>

N-106_1.0-2.0 Grab Soil 5382601 N-102_1.0-2.0 Grab Soil 5382602

ELECTRONIC SUN: Aquaterra Tech. Attn: Kevin Martin

COPY TO

ELECTRONIC Langan Attn: Joseph Catricks

COPY TO

ELECTRONIC SUN: Aquaterra Tech. Attn: Tiffani Doerr

COPY TO

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Questions? Contact your Client Services Representative Jessica A Heun at (717) 656-2300

Respectfully Submitted,

Dorothy M. Love Group Leader

Doutty M. Love

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5382601 SW Group No. 1094908

N-106_1.0-2.0 Grab Soil Philadelphia Refinery AOI-8

COC: 178086 N-106

Collected:06/05/2008 09:30 by SS Account Number: 10132

Submitted: 06/06/2008 14:25 SUN: Aquaterra Tech.

Reported: 06/19/2008 at 12:07 PO Box 744

Discard: 08/19/2008 West Chester PA 19381

PN106

CAT No. 06135 00111	Analysis Name Lead Moisture "Moisture" represents the loss 103 - 105 degrees Celsius. The as-received basis.				Dry Method Detection Limit 0.0819 0.50	Units mg/kg %	Dilution Factor 5
07804	PAHs in Soil by GC/MS						
01195 03761 03768 03775 03776 03781 03782 03786 03788	Pyrene Naphthalene Fluorene Phenanthrene Anthracene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(a) pyrene Benzo(g,h,i) perylene	129-00-0 91-20-3 86-73-7 85-01-8 120-12-7 56-55-3 218-01-9 205-99-2 50-32-8 191-24-2	270. < 190. < 190. < 190. < 190. < 190. < 190. 300. 190. 220.	190. 190. 190. 190. 190. 190. 190. 190.	37. 37. 37. 37. 37. 37. 37. 37. 37. 37.	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	1 1 1 1 1 1 1 1 1 1
02308	UST-Leaded Soils by 8260B Methyl Tertiary Butyl Ether	1634-04-4	< 190.	190.	19.	ug/kg	34.39
05460 05461	Benzene 1,2-Dichloroethane	71-43-2 107-06-2	< 190. < 190.	190. 190.	19. 39.	ug/kg ug/kg	34.39 34.39
05461	Toluene	107-08-2	< 190.	190.	39.	ug/kg ug/kg	34.39
05471	1,2-Dibromoethane	106-93-4	< 190.	190.	39.	ug/kg	34.39
05474	Ethylbenzene	100-41-4	< 190.	190.	39.	ug/kg	34.39
05479	Isopropylbenzene	98-82-8	< 190.	190.	39.	ug/kg	34.39
06301	Xylene (Total)	1330-20-7	< 190.	190.	39.	ug/kg	34.39

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Chronicle

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681• www.lancasterlabs.com

Page 2 of 2

Group No. 1094908 Lancaster Laboratories Sample No. 5382601 SW

N-106_1.0-2.0 Grab Soil Philadelphia Refinery AOI-8

COC: 178086 N-106

Collected:06/05/2008 09:30 by SS Account Number: 10132

Submitted: 06/06/2008 14:25 SUN: Aquaterra Tech.

Reported: 06/19/2008 at 12:07 PO Box 744

Discard: 08/19/2008 West Chester PA 19381

PN106

CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06135	Lead	SW-846 6020	1	06/17/2008 11:30	David K Beck	5
00111	Moisture	SM20 2540 G	1	06/09/2008 16:26	Scott W Freisher	1
07804	PAHs in Soil by GC/MS	SW-846 8270C	1	06/17/2008 05:57	Linda M Hartenstine	1
02308	UST-Leaded Soils by 8260B	SW-846 8260B	1	06/12/2008 10:57	Stephanie A Selis	34.39
06150	ICP/MS SW-846 Solid digest	SW-846 3050B	1	06/12/2008 20:45	Annamaria Stipkovits	1
06171	GC/MS - Field Preserved MeOH	SW-846 5035A	1	06/05/2008 09:30	Client Supplied	1
07806	BNA Soil Extraction	SW-846 3550B	1	06/12/2008 07:30	Joseph S Feister	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Lancaster Laboratories Sample No. 5382602 SW Group No. 1094908

N-102 1.0-2.0 Grab Soil Philadelphia Refinery AOI-8 COC: 178086 N-102

Collected:06/05/2008 13:30 by SS Account Number: 10132

Submitted: 06/06/2008 14:25 SUN: Aquaterra Tech.

Reported: 06/19/2008 at 12:07 PO Box 744

Discard: 08/19/2008 West Chester PA 19381

PN102

				Dry	Dry		
CAT			Dry	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06135	Lead	7439-92-1	24.7	0.115	0.0172	mg/kg	1
00111	Moisture	n.a.	13.6	0.50	0.50	%	1
	"Moisture" represents the los 103 - 105 degrees Celsius. Th as-received basis.				at		
07804	PAHs in Soil by GC/MS						
01195	Pyrene	129-00-0	390.	190.	39.	ug/kg	1
03761	Naphthalene	91-20-3	< 190.	190.	39.	ug/kg	1
03768	Fluorene	86-73-7	< 190.	190.	39.	ug/kg	1
03775	Phenanthrene	85-01-8	310.	190.	39.	ug/kg	1
03776	Anthracene	120-12-7	< 190.	190.	39.	ug/kg	1
03781	Benzo(a)anthracene	56-55-3	< 190.	190.	39.	ug/kg	1
03782	Chrysene	218-01-9	270.	190.	39.	ug/kg	1
03786	Benzo(b)fluoranthene	205-99-2	320.	190.	39.	ug/kg	1
03788	Benzo(a)pyrene	50-32-8	200.	190.	39.	ug/kg	1
03791	Benzo(g,h,i)perylene	191-24-2	< 190.	190.	39.	ug/kg	1
02308	UST-Leaded Soils by 8260B						
02016	Methyl Tertiary Butyl Ether	1634-04-4	< 250.	250.	25.	ug/kg	42.44
05460	Benzene	71-43-2	< 250.	250.	25.	ug/kg	42.44
05461	1,2-Dichloroethane	107-06-2	< 250.	250.	49.	ug/kg	42.44
05466	Toluene	108-88-3	< 250.	250.	49.	ug/kg	42.44
05471	1,2-Dibromoethane	106-93-4	< 250.	250.	49.	ug/kg	42.44
05474	Ethylbenzene	100-41-4	< 250.	250.	49.	ug/kg	42.44
05479	Isopropylbenzene	98-82-8	< 250.	250.	49.	ug/kg	42.44
06301	Xylene (Total)	1330-20-7	< 250.	250.	49.	ug/kg	42.44

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Chronicle

Page 1 of 2

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5382602 SW Group No. 1094908

N-102_1.0-2.0 Grab Soil Philadelphia Refinery AOI-8

COC: 178086 N-102

Collected:06/05/2008 13:30 by SS Account Number: 10132

Submitted: 06/06/2008 14:25 SUN: Aquaterra Tech.

Reported: 06/19/2008 at 12:07 PO Box 744

Discard: 08/19/2008 West Chester PA 19381

PN102

CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06135	Lead	SW-846 6020	1	06/16/2008 16:28	David K Beck	1
00111	Moisture	SM20 2540 G	1	06/09/2008 16:26	Scott W Freisher	1
07804	PAHs in Soil by GC/MS	SW-846 8270C	1	06/17/2008 06:21	Linda M Hartenstine	1
02308	UST-Leaded Soils by 8260B	SW-846 8260B	1	06/12/2008 11:20	Stephanie A Selis	42.44
06150	ICP/MS SW-846 Solid digest	SW-846 3050B	1	06/12/2008 20:45	Annamaria Stipkovits	1
06171	GC/MS - Field Preserved MeOH	SW-846 5035A	1	06/05/2008 13:30	Client Supplied	1
07806	BNA Soil Extraction	SW-846 3550B	1	06/12/2008 07:30	Joseph S Feister	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Quality Control Summary

Client Name: SUN: Aquaterra Tech. Group Number: 1094908

Reported: 06/19/08 at 12:07 PM

Matrix QC may not be reported if site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

Laboratory Compliance Quality Control

Analysis Name	Blank <u>Result</u>	Blank LOQ**	Blank <u>MDL</u>	Report <u>Units</u>	LCS %REC	LCSD %REC	LCS/LCSD <u>Limits</u>	RPD	RPD Max
Batch number: 08161820007A Moisture	Sample nur	mber(s): 5	382601-538	32602	100		99-101		
Batch number: 08163SLF026 Pyrene Naphthalene Fluorene Phenanthrene Anthracene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(a) pyrene Benzo(g, h, i) perylene	Sample num < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170.	mber(s): 5 170. 170. 170. 170. 170. 170. 170. 170.	33.2601-538 33. 33. 33. 33. 33. 33. 33. 33. 33.	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	84 83 88 90 86 89 87 90 91		75-115 73-106 75-116 77-113 76-112 73-112 76-113 61-127 69-122 65-122		
Batch number: 081646150002A Lead	Sample nur	mber(s): 5 0.100	382601-538 0.0150	32602 mg/kg	104		82-118		
Batch number: Q081641AA Methyl Tertiary Butyl Ether Benzene 1,2-Dichloroethane Toluene 1,2-Dibromoethane Ethylbenzene Isopropylbenzene Xylene (Total)	Sample num < 250. < 250. < 250. < 250. < 250. < 250. < 250. < 250. < 250. < 250.	mber(s): 5 250. 250. 250. 250. 250. 250. 250. 250	382601-538 25. 25. 50. 50. 50. 50. 50.	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	104 96 110 95 94 95 91	101 93 108 92 92 93 90	72-117 84-115 76-135 81-116 77-114 82-115 82-110 82-117	3 4 2 3 2 2 2 2	30 30 30 30 30 30 30 30 30

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

Analysis Name	MS %REC	MSD %REC	MS/MSD <u>Limits</u>	RPD	RPD <u>MAX</u>	BKG Conc	DUP Conc	DUP <u>RPD</u>	Dup RPD <u>Max</u>
Batch number: 08161820007A Moisture	Sample	number(s)	: 5382601	-538260	02 BKG	: P364193 14.3	14.0	2	15
Batch number: 08163SLF026	Sample	number(s)	: 5382601	-538260	02 UNSP	K: P383118			
Pyrene	84	80	19-162	5	30				
Naphthalene	94	93	29-140	0	30				
Fluorene	85	86	42-139	2	30				
Phenanthrene	95	95	1-181	0	30				
Anthracene	91	93	34-148	2	30				
Benzo(a)anthracene	94	93	20-156	1	30				

*- Outside of specification

- **-This limit was used in the evaluation of the final result for the blank
- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Quality Control Summary

Client Name: SUN: Aquaterra Tech. Group Number: 1094908

Reported: 06/19/08 at 12:07 PM

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

	MS	MSD	MS/MSD		RPD	BKG	DUP	DUP	Dup RPD
Analysis Name	%REC	%REC	<u>Limits</u>	RPD	MAX	Conc	Conc	RPD	Max
Chrysene	90	89	19-158	1	30				
Benzo(b)fluoranthene	103	97	13-161	6	30				
Benzo(a)pyrene	93	92	24-154	2	30				
Benzo(g,h,i)perylene	117	122	26-154	4	30				
Batch number: 081646150002A	Sample	number(s	s): 5382601	L-53826	02 UNS	PK: P38562	5 BKG: P3856	525	
Lead	-379	-168	75-125	15	20	25.4	21.0	19	20
	(2)	(2)							

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: PAHs in Soil by GC/MS

Batch number: 08163SLF026

Dacen nam	Nitrobenzene-d5	2-Fluorobiphenyl	Terphenyl-d14	
5382601	80	87	77	
5382602	79	86	74	
Blank	74	78	70	
LCS	79	81	79	
MS	90	95	82	
MSD	88	92	79	
T.imita.	49-120	55-117	43-131	

Analysis Name: UST-Leaded Soils by 8260B

Batch number: Q081641AA

	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
5382601	88	85	81	78
5382602	85	81	78	75
Blank	99	96	94	93
LCS	98	94	94	93
LCSD	98	94	94	93
Limits:	71-114	70-109	70-123	70-111

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Analysis Request/ Environmental Services Chain of Custod

Lancaster Laboratories

For Lancaster Laboratories use only

Acct. # 10132 Group# 1094908 Sample # 5382601-02 COC # 178086

Please print. Instructions on reverse side correspond with circled numbers

1) Client:_SUN-AQVATERRA	Acct. #:	· · · · · · · · · · · · · · · · · · ·		Ma	trix 4					Reque		For Lab Use Only FSC: SCR#:		_
Project Name/#: PHILA REF AOF-	P.O.#: _	# :		Steak f	Es Acolicable iners	99	0.4		8250			Preservation Codes H=HCl T=Thiosul N=HNO ₃ B=NaOH S=H ₂ SO ₄ O=Other	fate	6 (pa)
Sampler: S. SYICES Name of state where samples were collected:	PA Date	Tine	3) 11/8	atour DI	mer DNPD	PAUG 8260	Moisture	Tead	PATISEY "The	of the first of th				rparature of semble preceipt (if reques
N-106_1.0-2.0 N-102_1.0-2.0	615/08 615/08	930 >		8 i * *	2	X	X	X	X			Remarks A Pls Cop Martin + i	Jason	
					-							As Amlyse table p		00
Turnaround Time Requested (TAT) (please	circle): Norma	l Rush	Polin		ed by:				Date		Received by:		Date	Time (9
(Rush TAT is subject to Lancaster Laboratories app Date results are needed: Rush results requested by (please circle):	roval and surchar	rge.)	L.	quising q a ash	Ca/)	k	1 Aqui		(j/b) Date	1745 Time	Received by:	UA TERRAFROS	6/576% Date	Time
			Relif		ed by:	عا			46/68 Date		Received by:	Willman	74/08 Date	9% Time
_ · · · ·	RCP Ye				<i>Llul</i> ed by:	lme	rn_		4/08 Date		Received by:		Date	Time
Type III (Reduced NJ) Type IV (CLP SOW) Type VI (Raw Data Only) Site-specific QC ((If yes, indicate QC sample and su Internal COC Re-	mit fripficate volume.)		Relin	quishe	ed by:				Date	1 /	Received by:		1 /	Time / 425

Lancaster Laboratories Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

N.D.	none detected	BMQL	Below Minimum Quantitation Level
TNTC	Too Numerous To Count	MPN	Most Probable Number
IU	International Units	CP Units	cobalt-chloroplatinate units
umhos/cm	micromhos/cm	NTU	nephelometric turbidity units
С	degrees Celsius	F	degrees Fahrenheit
Cal	(diet) calories	lb.	pound(s)
meq	milliequivalents	kg	kilogram(s)
g	gram(s)	mg	milligram(s)
ug	microgram(s)	I	liter(s)
ml	milliliter(s)	ul	microliter(s)
m3	cubic meter(s)	fib >5 um/ml	fibers greater than 5 microns in length per ml

- < less than The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.
- > greater than
- ppm parts per million One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.

Inorganic Qualifiers

- ppb parts per billion
- **Dry weight**Results printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture.

U.S. EPA data qualifiers:

9	lifier	(uu	9	 u	" 9	•

A B C D E	TIC is a possible aldol-condensation product Analyte was also detected in the blank Pesticide result confirmed by GC/MS Compound quatitated on a diluted sample Concentration exceeds the calibration range of the instrument	B E M N S	Value is <crdl, (msa)="" additions="" amount="" but="" calculation<="" control="" due="" duplicate="" estimated="" for="" injection="" interference="" limits="" met="" method="" not="" of="" precision="" spike="" standard="" th="" to="" used="" within="" ≥idl=""></crdl,>
J	Estimated value	U	Compound was not detected
N	Presumptive evidence of a compound (TICs only)	W	Post digestion spike out of control limits
Р	Concentration difference between primary and	*	Duplicate analysis not within control limits
	confirmation columns >25%	+	Correlation coefficient for MSA < 0.995
U	Compound was not detected		
X,Y,Z	Defined in case narrative		

Analytical test results for methods listed on the laboratories' accreditation scope meet all requirements of NELAC unless otherwise noted under the individual analysis.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

WARRANTY AND LIMITS OF LIABILITY – In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL LANCASTER LABORATORIES BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF LANCASTER LABORATORIES AND (B) WHETHER LANCASTER LABORATORIES HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Lancaster Laboratories which includes any conditions that vary from the Standard Terms and Conditions of Lancaster Laboratories and we hereby object to any conflicting terms contained in any acceptance or order submitted by client.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

ANALYTICAL RESULTS

Prepared for:

SUN: Aquaterra Tech. PO Box 744 West Chester PA 19381

610-431-5733

Prepared by:

Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425

SAMPLE GROUP

The sample group for this submittal is 1095356. Samples arrived at the laboratory on Tuesday, June 10, 2008. The PO# for this group is PHILADELPHIA.

Client DescriptionLancaster Labs NumberN-103_1.0-2.0 Grab Soil5385262

ELECTRONIC SUN: Aquaterra Tech. Attn: Kevin Martin

COPY TO

ELECTRONIC Langan Attn: Joseph Catricks

COPY TO

ELECTRONIC SUN: Aquaterra Tech. Attn: Tiffani Doerr

COPY TO

ELECTRONIC LLI Attn: EDD Group

COPY TO

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Questions? Contact your Client Services Representative Jessica A Heun at (717) 656-2300

Respectfully Submitted,

Chad Moline

Chad A. Moline Group Leader

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5385262 SW Group No. 1095356

N-103_1.0-2.0 Grab Soil Philadelphia Refinery AOI-8 COC: 178085 N-103_1.0-2.0

Collected:06/06/2008 08:30 by SS Account Number: 10132

Submitted: 06/10/2008 15:55 SUN: Aquaterra Tech.

Reported: 06/20/2008 at 11:10 PO Box 744

Discard: 08/20/2008 West Chester PA 19381

AOI8N

				Dry	Dry						
CAT			Dry	Limit of	Method		Dilution				
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor				
06135	Lead	7439-92-1	174.	0.567	0.0851	mg/kg	5				
00111	Moisture	n.a.	12.7	0.50	0.50	%	1				
	"Moisture" represents the loss 103 - 105 degrees Celsius. The as-received basis.				at						
07804	PAHs in Soil by GC/MS										
01195	Pyrene	129-00-0	< 950.	950.	190.	ug/kg	1				
03761	Naphthalene	91-20-3	< 950.	950.	190.	ug/kg	1				
03768	Fluorene	86-73-7	< 950.	950.	190.	ug/kg	1				
03775	Phenanthrene	85-01-8	< 950.	950.	190.	ug/kg	1				
03776	Anthracene	120-12-7	< 950.	950.	190.	ug/kg	1				
03781	Benzo(a)anthracene	56-55-3	< 950.	950.	190.	ug/kg	1				
03782	Chrysene	218-01-9	< 950.	950.	190.	ug/kg	1				
03786	Benzo(b)fluoranthene	205-99-2	< 950.	950.	190.	ug/kg	1				
03788	Benzo(a)pyrene	50-32-8	< 950.	950.	190.	ug/kg	1				
03791	Benzo(g,h,i)perylene	191-24-2	1,000.	950.	190.	ug/kg	1				
	Due to sample matrix interfere	nces observed	during the ex	traction, the							
	normal reporting limits were n	ot attained.									
02308	UST-Leaded Soils by 8260B										
02016	Methyl Tertiary Butyl Ether	1634-04-4	< 260.	260.	26.	uq/kq	45.96				
05460	Benzene	71-43-2	< 260.	260.	26.	ug/kg	45.96				
05461	1,2-Dichloroethane	107-06-2	< 260.	260.	53.	ug/kg	45.96				
05466	Toluene	108-88-3	< 260.	260.	53.	ug/kg	45.96				
05471	1,2-Dibromoethane	106-93-4	< 260.	260.	53.	ug/kg	45.96				
05474	Ethylbenzene	100-41-4	< 260.	260.	53.	ug/kg	45.96				
05479	Isopropylbenzene	98-82-8	< 260.	260.	53.	ug/kg	45.96				
06301	Xylene (Total)	1330-20-7	< 260.	260.	53.	ug/kg	45.96				

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5385262 SW Group No. 1095356

N-103_1.0-2.0 Grab Soil Philadelphia Refinery AOI-8 COC: 178085 N-103_1.0-2.0

Collected: 06/06/2008 08:30 by SS Account Number: 10132

Submitted: 06/10/2008 15:55 SUN: Aquaterra Tech.

Reported: 06/20/2008 at 11:10 PO Box 744

Discard: 08/20/2008 West Chester PA 19381

AOI8N

Laboratory Chronicle

		<u> </u>	CIII O	111010		
CAT		-		Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06135	Lead	SW-846 6020	1	06/17/2008 11:46	David K Beck	5
00111	Moisture	SM20 2540 G	1	06/11/2008 18:01	Scott W Freisher	1
07804	PAHs in Soil by GC/MS	SW-846 8270C	1	06/19/2008 04:20	William T Parker	1
02308	UST-Leaded Soils by 8260B	SW-846 8260B	1	06/13/2008 04:51	Stephanie A Selis	45.96
06150	ICP/MS SW-846 Solid digest	SW-846 3050B	1	06/12/2008 20:45	Annamaria Stipkovits	1
06171	GC/MS - Field Preserved MeOH	SW-846 5035A	1	06/06/2008 08:30	Client Supplied	1
07806	BNA Soil Extraction	SW-846 3550B	1	06/16/2008 18:40	Doreen K Robles	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Quality Control Summary

Client Name: SUN: Aquaterra Tech. Group Number: 1095356

Reported: 06/20/08 at 11:10 AM

Matrix QC may not be reported if site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

Laboratory Compliance Quality Control

Analysis Name	Blank <u>Result</u>	Blank LOQ**	Blank <u>MDL</u>	Report <u>Units</u>	LCS %REC	LCSD %REC	LCS/LCSD <u>Limits</u>	RPD	RPD Max
Batch number: 08163820009B Moisture	Sample nu	mber(s):	5385262		100		99-101		
Batch number: 081646150002A Lead	Sample nu < 0.100	mber(s): 0.100	5385262 0.0150	mg/kg	104		82-118		
Batch number: 08165SLC026 Pyrene Naphthalene Fluorene Phenanthrene Anthracene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(a) pyrene Benzo(g,h,i) perylene	Sample nu < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170.	mber(s): 170. 170. 170. 170. 170. 170. 170. 170.	5385262 33. 33. 33. 33. 33. 33. 33. 33. 33.	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	91 87 92 95 90 92 88 107 101		75-115 73-106 75-116 77-113 76-112 73-112 76-13 61-127 69-122 65-122		
Batch number: Q081651AA Methyl Tertiary Butyl Ether Benzene 1,2-Dichloroethane Toluene 1,2-Dibromoethane Ethylbenzene Isopropylbenzene Xylene (Total)	Sample nu < 250. < 250. < 250. < 250. < 250. < 250. < 250. < 250. < 250. < 250. < 250. < 250. < 250.	mber(s): 250. 250. 250. 250. 250. 250. 250. 250.	5385262 25. 25. 50. 50. 50. 50. 50.	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	102 93 111 92 96 95 92	102 96 115 96 99 98 95	72-117 84-115 76-135 81-116 77-114 82-115 82-110 82-117	0 3 3 4 3 3 3 3	30 30 30 30 30 30 30 30

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

Analysis Name	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD <u>MAX</u>	BKG Conc	DUP Conc	DUP RPD	Dup RPD Max
Batch number: 08163820009B Moisture	Sample 1	number(s)	: 5385262	BKG:	P383045	5 21.0	17.1	21*	15
Batch number: 081646150002A Lead	Sample 1 -379 (2)	number(s) -168 (2)		UNSPK: 15	P38562 20	25 BKG: P38 25.4	5625 21.0	19	20
Batch number: 08165SLC026 Pyrene Naphthalene	Sample 1 89 83	number(s) 90 86	: 5385262 19-162 29-140	UNSPK: 1 3	P38330 30 30	02			

^{*-} Outside of specification

- **-This limit was used in the evaluation of the final result for the blank
- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Quality Control Summary

Client Name: SUN: Aquaterra Tech. Group Number: 1095356

Reported: 06/20/08 at 11:10 AM

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

	MS	MSD	MS/MSD		RPD	BKG	DUP	DUP	Dup RPD
Analysis Name	%REC	%REC	<u>Limits</u>	RPD	MAX	Conc	Conc	RPD	Max
Fluorene	90	92	42-139	2	30				
Phenanthrene	92	91	1-181	1	30				
Anthracene	88	89	34-148	1	30				
Benzo(a)anthracene	90	92	20-156	2	30				
Chrysene	85	86	19-158	1	30				
Benzo(b)fluoranthene	104	105	13-161	1	30				
Benzo(a)pyrene	98	99	24-154	1	30				
Benzo(g,h,i)perylene	109	106	26-154	2	30				

Surrogate Quality Control

Massachassal 414

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: PAHs in Soil by GC/MS Batch number: 08165SLC026 Nitrobenzene-d5

	Nitropenzene-d5	2-Fluorobiphenyl	Terpneny1-d14	
5385262	99	107	110	
Blank	88	93	98	
LCS	89	94	95	
MS	83	90	92	
MSD	86	91	94	
Limits:	49-120	55-117	43-131	

Analysis Name: UST-Leaded Soils by 8260B Batch number: Q081651AA

200011 110	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
5385262	83	78	79	75
Blank	99	94	92	94
LCS	92	86	88	89
LCSD	98	94	96	101
Limits:	71-114	70-109	70-123	70-111

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Analysis Request/ Environmental Services Chain of Custody

Lancaster Laboratories For Lancaster Laboratories use only

Acct. # 1013Z	_Group#_ <u>1095356_</u> Sample # <u>5385267</u>	 COC#	178085

		lease print. Ins	truction	s on re	everse	side co	rrespor	nd with	circled	1 numb	ers. \	15°C	— Farlah Us- Ou'		
$\stackrel{(1)}{\longrightarrow}$		 -	-	9				(5) Aı	alyse	s Requ	ested	For Lab Use Only	1 -	
Client: SUN-AQUATERRA	Acct. #:			1	Matrix	(4)			Pres	servat	ion Cod	les	- SCR#: 5(0°	192	<u> </u>
Project Name/#: PHVA REF AOI- Project Manager: T, DOERR Sampler: S.SYKES	P.O.#: _	#:		2 and 2 2 3 2 4 3 2 5 4 2 5 4 2 6 5 2 6 6 2 6 6 2 6 6 2 6 6 2 6 6 2 6 2 6 2	Die Oheck /	There	90	a		azz8 ;			Preservation Codes H=HCl T=Thiosi N=HNO ₃ B=NaOl- S=H ₂ SO ₄ O=Other	ulfate I	(6) (8)
Name of state where samples were collected:	PA		3				038 9	1 13	ead	65 CC/m	į				ra ofsany Pr'ifequé
Sample Identification	Cate Galletted	Time Callected	que	180	A LINE	6	PPUG	3	7	9 SHOU			Remarks		Temperak Mari mos
N-103_1.0-2.0	6/6/08	230	X	X		2	X	X	X	4			A Analyses	ser	
				-			ļ						toble p	onge	_ل
													Martin 4	, keuir	
											_		Mactin 4	- آمد	∞[
													1 Lang	9a 1	 -
Turnaround Time Requested (TAT) (please (Rush TAT is subject to Lancaster Laboratories app. Date results are needed:			7		shed (Tt	lS	10		Day,	77.3	Received b	or W Folker		Time (9
Rush results requested by (please circle): P		E-mail		-	shed b دـــــ	•	9	A	$\lambda 4$	Date,		Received b	y:	Date	Гime
Phone #:Fax #: E-mail address:	<u></u>		Pol	Z I (2)	shed b	NM.	de	W.J		170	10%	*/			
Data Package Options (please circle if required)	SDC	G Complete?	_			.y.	0	/ <u>^</u>	,	Date 6/6/08	1	Received b	<i>t</i> .		Γime
Type I (validation/NJ Reg) TX TRRP-13	Yes	•		inquis	shed b		Lay!	Haya	lon.	ଦ/ଧ/ଧୃ Date		Received by	TERRA FRIDE		∫30 5 Γime
Type II (Tier II) MA MCP CT Type III (Reduced NJ) Site-specific QC (Vac. No.	$-\int_{-\infty}^{\infty}$	14,	1	, 	_				1:59	/ /	0/1	10/08	1
Type IV (CLP SOW) (If yos, indicate QC sample and sub		TES INU	Røl	Inquit	h eo tb	y: /				ניי <i>ףיוט</i> Date		Received b	ymay y		Time
Type VI (Raw Data Only) Internal COC Rec				1. 8		fer	er		6/10	,		Sten		Long	\$2 ²
lancac	er Laboratorios I	no. 242E Nov	Llalland	d Dile	1/	D	1 4700	4 /74	Z 050	2000		= 0		72	

Lancaster Laboratories Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

N.D.	none detected	BMQL	Below Minimum Quantitation Level
TNTC	Too Numerous To Count	MPN	Most Probable Number
IU	International Units	CP Units	cobalt-chloroplatinate units
umhos/cm	micromhos/cm	NTU	nephelometric turbidity units
С	degrees Celsius	F	degrees Fahrenheit
Cal	(diet) calories	lb.	pound(s)
meq	milliequivalents	kg	kilogram(s)
g	gram(s)	mg	milligram(s)
ug	microgram(s)	I	liter(s)
ml	milliliter(s)	ul	microliter(s)
m3	cubic meter(s)	fib >5 um/ml	fibers greater than 5 microns in length per ml

- < less than The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.
- > greater than
- ppm parts per million One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.

Inorganic Qualifiers

- ppb parts per billion
- **Dry weight**Results printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture.

U.S. EPA data qualifiers:

9	lifier	(uu	9	 u	" 9	•

A B C D E	TIC is a possible aldol-condensation product Analyte was also detected in the blank Pesticide result confirmed by GC/MS Compound quatitated on a diluted sample Concentration exceeds the calibration range of the instrument	B E M N S	Value is <crdl, (msa)="" additions="" amount="" but="" calculation<="" control="" due="" duplicate="" estimated="" for="" injection="" interference="" limits="" met="" method="" not="" of="" precision="" spike="" standard="" th="" to="" used="" within="" ≥idl=""></crdl,>
J	Estimated value	U	Compound was not detected
N	Presumptive evidence of a compound (TICs only)	W	Post digestion spike out of control limits
Р	Concentration difference between primary and	*	Duplicate analysis not within control limits
	confirmation columns >25%	+	Correlation coefficient for MSA < 0.995
U	Compound was not detected		
X,Y,Z	Defined in case narrative		

Analytical test results for methods listed on the laboratories' accreditation scope meet all requirements of NELAC unless otherwise noted under the individual analysis.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

WARRANTY AND LIMITS OF LIABILITY – In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL LANCASTER LABORATORIES BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF LANCASTER LABORATORIES AND (B) WHETHER LANCASTER LABORATORIES HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Lancaster Laboratories which includes any conditions that vary from the Standard Terms and Conditions of Lancaster Laboratories and we hereby object to any conflicting terms contained in any acceptance or order submitted by client.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

ANALYTICAL RESULTS

Prepared for:

SUN: Aquaterra Tech. PO Box 744 West Chester PA 19381

610-431-5733

Prepared by:

Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425

SAMPLE GROUP

The sample group for this submittal is 1095850. Samples arrived at the laboratory on Thursday, June 12, 2008. The PO# for this group is PHILADELPHIA.

Client DescriptionLancaster Labs NumberN-121_1.0-2.0 Grab Soil5388263

ELECTRONIC SUN: Aquaterra Tech. Attn: Kevin Martin

COPY TO

ELECTRONIC Langan Attn: Joseph Catricks

COPY TO

ELECTRONIC SUN: Aquaterra Tech. Attn: Tiffani Doerr

COPY TO

ELECTRONIC LLI Attn: EDD Group

COPY TO

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Questions? Contact your Client Services Representative Jessica A Heun at (717) 656-2300

Respectfully Submitted,

Dorothy M. Love Group Leader

Doutty M. Love

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5388263 SW Group No. 1095850

N-121_1.0-2.0 Grab Soil Philadelphia Refinery AOI-8 COC: 177767 N-121 1.0-2.0

Collected: 06/09/2008 13:30 by SS Account Number: 10132

Submitted: 06/12/2008 15:15 SUN: Aquaterra Tech.

Reported: 06/27/2008 at 08:30 PO Box 744

Discard: 08/27/2008 West Chester PA 19381

12110

				Dry	Dry		
CAT			Dry	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06135	Lead	7439-92-1	64.0	1.17	0.176	mg/kg	10
00111	Moisture	n.a.	15.6	0.50	0.50	%	1
	"Moisture" represents the loss 103 - 105 degrees Celsius. The as-received basis.				at		
07804	PAHs in Soil by GC/MS						
01195	Pyrene	129-00-0	2,500.	990.	200.	ug/kg	1
03761	Naphthalene	91-20-3	< 990.	990.	200.	ug/kg	1
03768	Fluorene	86-73-7	< 990.	990.	200.	ug/kg	1
03775	Phenanthrene	85-01-8	2,500.	990.	200.	ug/kg	1
03776	Anthracene	120-12-7	< 990.	990.	200.	ug/kg	1
03781	Benzo(a)anthracene	56-55-3	< 990.	990.	200.	ug/kg	1
03782	Chrysene	218-01-9	1,500.	990.	200.	ug/kg	1
03786	Benzo(b)fluoranthene	205-99-2	< 990.	990.	200.	ug/kg	1
03788	Benzo(a)pyrene	50-32-8	< 990.	990.	200.	ug/kg	1
03791	Benzo(g,h,i)perylene	191-24-2	< 990.	990.	200.	ug/kg	1
	Due to sample matrix interfere	nces observed	during the e	xtraction, the			
	normal reporting limits were n	ot attained.					
02308	UST-Leaded Soils by 8260B						
02016	Methyl Tertiary Butyl Ether	1634-04-4	< 230.	230.	23.	ug/kg	38.94
05460	Benzene	71-43-2	< 230.	230.	23.	ug/kg	38.94
05461	1,2-Dichloroethane	107-06-2	< 230.	230.	46.	ug/kg	38.94
05466	Toluene	108-88-3	< 230.	230.	46.	ug/kg	38.94
05471	1,2-Dibromoethane	106-93-4	< 230.	230.	46.	ug/kg	38.94
05474	Ethylbenzene	100-41-4	< 230.	230.	46.	ug/kg	38.94
05479	Isopropylbenzene	98-82-8	< 230.	230.	46.	ug/kg	38.94
06301	Xylene (Total)	1330-20-7	< 230.	230.	46.	ug/kg	38.94

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5388263 SW Group No. 1095850

N-121_1.0-2.0 Grab Soil Philadelphia Refinery AOI-8 COC: 177767 N-121_1.0-2.0

Collected:06/09/2008 13:30 by SS Account Number: 10132

Submitted: 06/12/2008 15:15 SUN: Aquaterra Tech.

Reported: 06/27/2008 at 08:30 PO Box 744

Discard: 08/27/2008 West Chester PA 19381

12110

Laboratory Chronicle

		<u> </u>	CIII O	111010		
CAT		-		Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06135	Lead	SW-846 6020	1	06/26/2008 21:09	David K Beck	10
00111	Moisture	SM20 2540 G	1	06/13/2008 15:39	Scott W Freisher	1
07804	PAHs in Soil by GC/MS	SW-846 8270C	1	06/19/2008 04:43	William T Parker	1
02308	UST-Leaded Soils by 8260B	SW-846 8260B	1	06/18/2008 17:36	Nicholas R Rossi	38.94
06150	ICP/MS SW-846 Solid digest	SW-846 3050B	1	06/18/2008 19:55	Annamaria Stipkovits	1
06171	GC/MS - Field Preserved MeOH	SW-846 5035	1	06/09/2008 13:30	Client Supplied	1
07806	BNA Soil Extraction	SW-846 3550B	1	06/16/2008 18:40	Doreen K Robles	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Quality Control Summary

Client Name: SUN: Aquaterra Tech. Group Number: 1095850

Reported: 06/27/08 at 08:30 AM

Matrix QC may not be reported if site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

Laboratory Compliance Quality Control

Analysis Name	Blank <u>Result</u>	Blank LOQ**	Blank <u>MDL</u>	Report <u>Units</u>	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Max
Batch number: 08165820003B Moisture	Sample num	ber(s): 5	388263		100		99-101		
Batch number: 08165SLC026 Pyrene Naphthalene Fluorene Phenanthrene Anthracene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(a) pyrene Benzo(g,h,i) perylene	Sample num < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170.	ber(s): 5 170. 170. 170. 170. 170. 170. 170. 170. 170. 170.	388263 33. 33. 33. 33. 33. 33. 33. 3	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	91 87 92 95 90 92 88 107 101		75-115 73-106 75-116 77-113 76-112 73-112 76-113 61-127 69-122 65-122		
Batch number: 081706150003A Lead Batch number: Q081701AA	Sample num < 0.100 Sample num	0.100	0.0150	mg/kg	103		82-118		
Methyl Tertiary Butyl Ether Benzene 1,2-Dichloroethane Toluene 1,2-Dibromoethane Ethylbenzene Isopropylbenzene Xylene (Total)	< 250. < 250. < 250. < 250. < 250. < 250. < 250. < 250. < 250.	250. 250. 250. 250. 250. 250. 250. 250.	25. 25. 50. 50. 50. 50.	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	109 97 122 98 101 100 96 97	106 96 116 94 97 95 94	72-117 84-115 76-135 81-116 77-114 82-115 82-110 82-117	2 2 5 4 4 5 2	30 30 30 30 30 30 30 30

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

Analysis Name	MS %REC	MSD %REC	MS/MSD <u>Limits</u>	RPD	RPD <u>MAX</u>	BKG Conc	DUP <u>Conc</u>	DUP <u>RPD</u>	Dup RPD <u>Max</u>
Batch number: 08165820003B	Sample	number(s)	: 5388263	BKG:	P38734	7			
Moisture						11.0	10.7	3	15
Batch number: 08165SLC026	Sample	number(s)	: 5388263	UNSPK	: P3833	02			
Pyrene	89	90	19-162	1	30				
Naphthalene	83	86	29-140	3	30				
Fluorene	90	92	42-139	2	30				
Phenanthrene	92	91	1-181	1	30				
Anthracene	88	89	34-148	1	30				
Benzo(a) anthracene	90	92	20-156	2	30				

*- Outside of specification

- **-This limit was used in the evaluation of the final result for the blank
- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Quality Control Summary

Client Name: SUN: Aquaterra Tech. Group Number: 1095850

Reported: 06/27/08 at 08:30 AM

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

	MS	MSD	MS/MSD		RPD	BKG	DUP	DUP	Dup RPD
Analysis Name	%REC	%REC	<u>Limits</u>	RPD	MAX	Conc	Conc	RPD	Max
Chrysene	85	86	19-158	1	30				
Benzo(b)fluoranthene	104	105	13-161	1	30				
Benzo(a)pyrene	98	99	24-154	1	30				
Benzo(g,h,i)perylene	109	106	26-154	2	30				
Batch number: 081706150003A	Sample	number(s)	: 5388263	UNSPK:	P3776	558 BKG: P3	77658		
Lead	-266426	-166027	75-125	11	20	16,800.	13,000.	25*	20
	(2)	(2)							

Surrogate Quality Control

Massachassal 414

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: PAHs in Soil by GC/MS Batch number: 08165SLC026 Nitrobenzene-d5

	Nitropenzene-d5	2-Fluorobiphenyl	Terpneny1-d14	
5388263	112	117	112	
Blank	88	93	98	
LCS	89	94	95	
MS	83	90	92	
MSD	86	91	94	
Limits:	49-120	55-117	43-131	

Analysis Name: UST-Leaded Soils by 8260B Batch number: Q081701AA

200011 110	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
5388263	86	80	79	86
Blank	82	76	75	74
LCS	106	97	101	100
LCSD	103	96	97	95
Limits:	71-114	70-109	70-123	70-111

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Analysis Request/ Environmental Services Chain of Custody

For Lancaster Laboratories use only

Group# 1095850 Sample # 5 388 263

COC # 177767

Please print. Instructions on reverse side correspond with circled numbers.

1) Client: SUN-AQ VATERA	Acct #			And the second s	latrix		Children Control of Co	(5		CERROR ELTICION	Reques		For Lab Use Only FSC: SCR#: 5(34)	ĵγ	-
Project Name/#: Phila REF AOF: Project Manager: T. DOERR Sampler: Sylves Name of state where samples were collected:	P.O.#: Quote #:			And the second s	☐ Potable Check if ☐ NPDES Applicable	Other Total # of Confainers	200 B	nestre	င်ဝ၁	55 8270 W			Preservation Codes H=HCI T=Thiosul N=HNO ₃ B=NaOH S=H ₂ SO ₄ O=Other	ate	(e of samples (g) (fi requested)
2 Sample Identification	Date Collected		Grab (Compos	8 - 8 2 3 1 1 1 1 3	cricitaties	Other Total # o	PAVE	Ü	7	Pierrs	;		Remarks		Temperatur upon receip
N-121_1.0-2.0	619108	1330	X	X		2	X	X	X	X			& Andyres	per wides)
													A Pls Cos	1	
													Joseph Mari	Lan	997
Turnaround Time Requested (TAT) (please continued (Rush TAT) is subject to Lancaster Laboratories approximately 1997).			Re	むフ	shed t	//	Vov	٠	٤	Date	Time	Received by:	mhalla	Date	Time (9
Date results are needed: Rush results requested by (please circle): Phone #:Fax #:			2	1100		16/	talle	2		Date 3	Time	Received by:	and the second s	Date	Time
8 Data Package Options (please circle if required)	SDC	G Complete			ished l		ارد	Aqui	atern		11me 2 1700	Received by:	ATERRA FRIDA		
Type I (validation/NJ Reg) TX TRRP-13 Type II (Tier II) MA MCP CT II Type III (Reduced NJ) Site-specific QC (II	Yes	No No	Re	elinqui	ished I	by:				Date	Time	Received by:	Slellman	Date	Time ///47
Type IV (CLP SOW) (If yes, indicate QC sample and subtr Type VI (Raw Data Only) Internal COC Req	nit tripticate volume.)		Re	elinqui Emu	ished l	by: Uln	uau	·		Date (2/0)	Time 8 /5//5	Received by:	D Cos 6,	Date 13/08	

Lancaster Laboratories Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

N.D.	none detected	BMQL	Below Minimum Quantitation Level
TNTC	Too Numerous To Count	MPN	Most Probable Number
IU	International Units	CP Units	cobalt-chloroplatinate units
umhos/cm	micromhos/cm	NTU	nephelometric turbidity units
С	degrees Celsius	F	degrees Fahrenheit
Cal	(diet) calories	lb.	pound(s)
meq	milliequivalents	kg	kilogram(s)
g	gram(s)	mg	milligram(s)
ug	microgram(s)	I	liter(s)
ml	milliliter(s)	ul	microliter(s)
m3	cubic meter(s)	fib >5 um/ml	fibers greater than 5 microns in length per ml

- < less than The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.
- > greater than
- ppm parts per million One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.

Inorganic Qualifiers

- ppb parts per billion
- **Dry weight**Results printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture.

U.S. EPA data qualifiers:

9	lifier	(uu	9	 u	" 9	•

A B C D E	TIC is a possible aldol-condensation product Analyte was also detected in the blank Pesticide result confirmed by GC/MS Compound quatitated on a diluted sample Concentration exceeds the calibration range of the instrument	B E M N S	Value is <crdl, (msa)="" additions="" amount="" but="" calculation<="" control="" due="" duplicate="" estimated="" for="" injection="" interference="" limits="" met="" method="" not="" of="" precision="" spike="" standard="" th="" to="" used="" within="" ≥idl=""></crdl,>
J	Estimated value	U	Compound was not detected
N	Presumptive evidence of a compound (TICs only)	W	Post digestion spike out of control limits
Р	Concentration difference between primary and	*	Duplicate analysis not within control limits
	confirmation columns >25%	+	Correlation coefficient for MSA < 0.995
U	Compound was not detected		
X,Y,Z	Defined in case narrative		

Analytical test results for methods listed on the laboratories' accreditation scope meet all requirements of NELAC unless otherwise noted under the individual analysis.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

WARRANTY AND LIMITS OF LIABILITY – In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL LANCASTER LABORATORIES BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF LANCASTER LABORATORIES AND (B) WHETHER LANCASTER LABORATORIES HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Lancaster Laboratories which includes any conditions that vary from the Standard Terms and Conditions of Lancaster Laboratories and we hereby object to any conflicting terms contained in any acceptance or order submitted by client.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

ANALYTICAL RESULTS

Prepared for:

SUN: Aquaterra Tech. PO Box 744 West Chester PA 19381

610-431-5733

Prepared by:

Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425

SAMPLE GROUP

The sample group for this submittal is 1096046. Samples arrived at the laboratory on Friday, June 13, 2008. The PO# for this group is PHILADELPHIA.

Client DescriptionLancaster Labs NumberN-100_0.0-2.0 Grab Soil5389508

ELECTRONIC SUN: Aquaterra Tech. Attn: Kevin Martin

COPY TO

ELECTRONIC Langan Attn: Joseph Catricks

COPY TO

ELECTRONIC SUN: Aquaterra Tech. Attn: Tiffani Doerr

COPY TO

ELECTRONIC LLI Attn: EDD Group

COPY TO

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Questions? Contact your Client Services Representative Jessica A Heun at (717) 656-2300

Respectfully Submitted,

Dorothy M. Love Group Leader

Doutty M. Love

Dra

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5389508 SW Group No. 1096046

N-100_0.0-2.0 Grab Soil Philadelphia Refinery AOI-8 DUNS# COC: 177179 N-100 0.0-2.0

Collected:06/11/2008 08:30 by TD Account Number: 10132

Submitted: 06/13/2008 15:30 SUN: Aquaterra Tech.

Reported: 06/27/2008 at 08:35 PO Box 744

Discard: 08/27/2008 West Chester PA 19381

AQ100

				Dry	Dry		
CAT			Dry	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06135	Lead	7439-92-1	135.	1.09	0.164	mg/kg	10
00111	Moisture	n.a.	10.3	0.50	0.50	%	1
	"Moisture" represents the loss 103 - 105 degrees Celsius. The as-received basis.				at		
07804	PAHs in Soil by GC/MS						
01195	Pyrene	129-00-0	1,900.	190.	37.	ug/kg	1
03761	Naphthalene	91-20-3	< 190.	190.	37.	ug/kg	1
03768	Fluorene	86-73-7	< 190.	190.	37.	ug/kg	1
03775	Phenanthrene	85-01-8	1,500.	190.	37.	ug/kg	1
03776	Anthracene	120-12-7	320.	190.	37.	ug/kg	1
03781	Benzo(a)anthracene	56-55-3	1,100.	190.	37.	ug/kg	1
03782	Chrysene	218-01-9	1,100.	190.	37.	ug/kg	1
03786	Benzo(b)fluoranthene	205-99-2	1,200.	190.	37.	ug/kg	1
03788	Benzo(a)pyrene	50-32-8	920.	190.	37.	ug/kg	1
03791	Benzo(g,h,i)perylene	191-24-2	620.	190.	37.	ug/kg	1
02308	UST-Leaded Soils by 8260B						
02016	Methyl Tertiary Butyl Ether	1634-04-4	< 280.	280.	28.	ug/kg	51.12
05460	Benzene	71-43-2	< 280.	280.	28.	ug/kg	51.12
05461	1,2-Dichloroethane	107-06-2	< 280.	280.	57.	ug/kg	51.12
05466	Toluene	108-88-3	< 280.	280.	57.	ug/kg	51.12
05471	1,2-Dibromoethane	106-93-4	< 280.	280.	57.	ug/kg	51.12
05474	Ethylbenzene	100-41-4	< 280.	280.	57.	ug/kg	51.12
05479	Isopropylbenzene	98-82-8	< 280.	280.	57.	ug/kg	51.12
06301	Xylene (Total)	1330-20-7	< 280.	280.	57.	ug/kg	51.12

Drv

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Chronicle

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5389508 SW Group No. 1096046

N-100_0.0-2.0 Grab Soil Philadelphia Refinery AOI-8 DUNS# COC: 177179 N-100_0.0-2.0

Collected:06/11/2008 08:30 by TD Account Number: 10132

Submitted: 06/13/2008 15:30 SUN: Aquaterra Tech.

Reported: 06/27/2008 at 08:35 PO Box 744

Discard: 08/27/2008 West Chester PA 19381

AQ100

CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06135	Lead	SW-846 6020	1	06/26/2008 21:11	David K Beck	10
00111	Moisture	SM20 2540 G	1	06/13/2008 20:10	Scott W Freisher	1
07804	PAHs in Soil by GC/MS	SW-846 8270C	1	06/19/2008 07:00	William T Parker	1
02308	UST-Leaded Soils by 8260B	SW-846 8260B	1	06/18/2008 17:59	Nicholas R Rossi	51.12
06150	ICP/MS SW-846 Solid digest	SW-846 3050B	1	06/18/2008 19:55	Annamaria Stipkovits	1
06171	GC/MS - Field Preserved MeOH	SW-846 5035	1	06/11/2008 08:30	Client Supplied	1
07806	BNA Soil Extraction	SW-846 3550B	1	06/17/2008 23:30	Patricia L Foreman	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Quality Control Summary

Client Name: SUN: Aquaterra Tech. Group Number: 1096046

Reported: 06/27/08 at 08:35 AM

Matrix QC may not be reported if site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

Laboratory Compliance Quality Control

Analysis Name	Blank <u>Result</u>	Blank LOQ**	Blank <u>MDL</u>	Report <u>Units</u>	LCS %REC	LCSD %REC	LCS/LCSD <u>Limits</u>	RPD	RPD Max
Batch number: 08165820006A Moisture	Sample num	ber(s): 5	389508		100		99-101		
Batch number: 08169SLD026 Pyrene Naphthalene Fluorene Phenanthrene Anthracene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(a) pyrene Benzo(g,h,i) perylene	Sample num < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170.	ber(s): 5 170. 170. 170. 170. 170. 170. 170. 170. 170. 170.	389508 33. 33. 33. 33. 33. 33. 33. 33	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	98 87 95 101 95 94 92 89 86 81		75-115 73-106 75-116 77-113 76-112 73-112 76-113 61-127 69-122 65-122		
Batch number: 081706150003A Lead	Sample num	0.100	0.0150	mg/kg	103		82-118		
Batch number: Q081701AA Methyl Tertiary Butyl Ether Benzene 1,2-Dichloroethane Toluene 1,2-Dibromoethane Ethylbenzene Isopropylbenzene Xylene (Total)	Sample num < 250. < 250. < 250. < 250. < 250. < 250. < 250. < 250. < 250.	ber(s): 5 250. 250. 250. 250. 250. 250. 250. 250	389508 25. 25. 50. 50. 50. 50. 50.	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	109 97 122 98 101 100 96 97	106 96 116 94 97 95 94 93	72-117 84-115 76-135 81-116 77-114 82-115 82-110 82-117	2 2 5 4 4 5 2	30 30 30 30 30 30 30 30 30

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

Analysis Name	MS %REC	MSD %REC	MS/MSD <u>Limits</u>	RPD	RPD <u>MAX</u>	BKG Conc	DUP <u>Conc</u>	DUP <u>RPD</u>	Dup RPD <u>Max</u>
Batch number: 08165820006A Moisture	Sample	number(s)	: 5389508	BKG:	P38957	2 24.5	22.7	8	15
Batch number: 08169SLD026	Sample	number(s)	: 5389508	UNSPK	: P3897	04			
Pyrene	92	95	19-162	3	30				
Naphthalene	87	90	29-140	3	30				
Fluorene	90	97	42-139	8	30				
Phenanthrene	94	99	1-181	5	30				
Anthracene	90	94	34-148	5	30				
Benzo(a)anthracene	89	93	20-156	4	30				

*- Outside of specification

- **-This limit was used in the evaluation of the final result for the blank
- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Quality Control Summary

Client Name: SUN: Aquaterra Tech. Group Number: 1096046

Reported: 06/27/08 at 08:35 AM

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

	MS	MSD	MS/MSD		RPD	BKG	DUP	DUP	Dup RPD
Analysis Name	%REC	%REC	<u>Limits</u>	RPD	MAX	Conc	Conc	RPD	Max
Chrysene	86	89	19-158	3	30				
Benzo(b)fluoranthene	83	82	13-161	1	30				
Benzo(a)pyrene	79	84	24-154	6	30				
Benzo(g,h,i)perylene	81	87	26-154	7	30				
Batch number: 081706150003A	Sample	number(s)	: 5389508	UNSPK:	P3776	58 BKG: P37	7658		
Lead	-266426	-166027	75-125	11	20	16,800.	13,000.	25*	20
	(2)	(2)							

Surrogate Quality Control

Massachassal 414

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: PAHs in Soil by GC/MS Batch number: 08169SLD026 Nitrobenzene-d5

	Nitropenzene-as	2-Fluorobiphenyl	Terpneny1-d14	
5389508	83	87	82	
Blank	88	89	91	
LCS	88	93	95	
MS	90	94	94	
MSD	90	96	92	
Limits:	49-120	55-117	43-131	

Analysis Name: UST-Leaded Soils by 8260B

Batch number: Q081701AA

	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
5389508	91	83	83	88
Blank	82	76	75	74
LCS	106	97	101	100
LCSD	103	96	97	95
Limits:	71-114	70-109	70-123	70-111

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Analysis Request/ Environmental Services Chain of Custody

Lancaster Laboratories

For Lancaster Laboratories use only

Acct. #	10132	Group# 1094046	_Sample #_ <u>5389508</u>
---------	-------	----------------	---------------------------

COC # 177179

	1 Laboratories	P	lease print. Ins	tructions	on reverse	side con	respon	d with	circled a	number	s .	3,5°C _				
(1) Client: Aquatura (Sun) Acct #			Matri			(5	A	200000000000000000000000000000000000000	Reque in Code		For Lab Use FSC: SCR#:	Only 5696	7,	-
,	Project Name #: Philly-Polmery Project Manager: Tiber Sampler: Tib		#:		able Check if 3ES Abbilcable	Airers (Preservation H=HCI N=HNO ₃			ested)
	Name of state where samples were collected: _2 Sample Identification		Time Callseged	Grab (©) Composite	Soil Water	Ojher Total # of Com	8260 B		Lead				Remarks			emperature of samp
	N-100-0.0-2.0	6/11/08	0830		X	2	Х	Х	×				& Ano loch r	ed v	1	Z bae
										-			* CC (to	
													Lar	gan		
7	Turnaround Time Requested (TAT) (please of (Rush TAT is subject to Lancaster Laboratories approximate results are needed: Rush results requested by (please circle): Phone #: Fax #:	oval and surcha	,		nauished nauished	Ze)	tora	ye	3/2	Date	800	Received by	esever	_ 3/2	Date 4/8 Date	
8	E-mail address: Data Package Options (please circle if required) Type I (validation/NJ Reg) TX TRRP-13	SD SD	G Complete?	72	ncylshed	<u> </u>			- 4	Pate 92/8	Time	Received by:	Lua Krit	dar 6	Date //2/08	1500
	Type II (Tier II) Type III (Reduced NJ) Type IV (CLP SOW) Type VI (Raw Data Only) TX TRRP-13 MA MCP CT F Site-specific QC (N (If yes, indicate OC sample and subm	RCP MS/MSD/Dup)? it tripicate volume.)	Yes 160	Ref	nguished	by:) Ima			Date	/6 3 5 Time	Received by: Received by:	Sliftm	an 1	Date 13/08 Date	10:30

Lancaster Laboratories Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

N.D.	none detected	BMQL	Below Minimum Quantitation Level
TNTC	Too Numerous To Count	MPN	Most Probable Number
IU	International Units	CP Units	cobalt-chloroplatinate units
umhos/cm	micromhos/cm	NTU	nephelometric turbidity units
С	degrees Celsius	F	degrees Fahrenheit
Cal	(diet) calories	lb.	pound(s)
meq	milliequivalents	kg	kilogram(s)
g	gram(s)	mg	milligram(s)
ug	microgram(s)	I	liter(s)
ml	milliliter(s)	ul	microliter(s)
m3	cubic meter(s)	fib >5 um/ml	fibers greater than 5 microns in length per ml

- < less than The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.
- > greater than
- ppm parts per million One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.

Inorganic Qualifiers

- ppb parts per billion
- **Dry weight**Results printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture.

U.S. EPA data qualifiers:

9	lifier	(uu	9	 u	" 9	•

A B C D E	TIC is a possible aldol-condensation product Analyte was also detected in the blank Pesticide result confirmed by GC/MS Compound quatitated on a diluted sample Concentration exceeds the calibration range of the instrument	B E M N S	Value is <crdl, (msa)="" additions="" amount="" but="" calculation<="" control="" due="" duplicate="" estimated="" for="" injection="" interference="" limits="" met="" method="" not="" of="" precision="" spike="" standard="" th="" to="" used="" within="" ≥idl=""></crdl,>
J	Estimated value	U	Compound was not detected
N	Presumptive evidence of a compound (TICs only)	W	Post digestion spike out of control limits
Р	Concentration difference between primary and	*	Duplicate analysis not within control limits
	confirmation columns >25%	+	Correlation coefficient for MSA < 0.995
U	Compound was not detected		
X,Y,Z	Defined in case narrative		

Analytical test results for methods listed on the laboratories' accreditation scope meet all requirements of NELAC unless otherwise noted under the individual analysis.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

WARRANTY AND LIMITS OF LIABILITY – In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL LANCASTER LABORATORIES BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF LANCASTER LABORATORIES AND (B) WHETHER LANCASTER LABORATORIES HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Lancaster Laboratories which includes any conditions that vary from the Standard Terms and Conditions of Lancaster Laboratories and we hereby object to any conflicting terms contained in any acceptance or order submitted by client.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

ANALYTICAL RESULTS

Prepared for:

SUN: Aquaterra Tech. PO Box 744 West Chester PA 19381

610-431-5733

Prepared by:

Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425

SAMPLE GROUP

The sample group for this submittal is 1096740. Samples arrived at the laboratory on Wednesday, June 18, 2008. The PO# for this group is PHILADELPHIA.

Client DescriptionLancaster Labs NumberN-101_1.0-2.0 Grab Soil5393378

ELECTRONIC SUN: Aquaterra Tech. Attn: Kevin Martin

COPY TO

ELECTRONIC Langan Attn: Joseph Catricks

COPY TO

ELECTRONIC SUN: Aquaterra Tech. Attn: Tiffani Doerr

COPY TO

ELECTRONIC LLI Attn: EDD Group

COPY TO

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Questions? Contact your Client Services Representative Jessica A Heun at (717) 656-2300

Respectfully Submitted,

Michele M. Turner

middele M. Turner

Director

West Chester PA 19381

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Lancaster Laboratories Sample No. 5393378 SW Group No. 1096740

N-101 1.0-2.0 Grab Soil Philadelphia Refinery AOI-8 DUNS# COC: 0330 N-101 1.0-2.0

Collected:06/16/2008 13:30 by SS Account Number: 10132

Submitted: 06/18/2008 17:40 SUN: Aquaterra Tech.

Reported: 06/26/2008 at 14:38 PO Box 744

Discard: 08/26/2008

A8101

				Dry	Dry		
CAT			Dry	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06135	Lead	7439-92-1	78.1	1.15	0.173	mg/kg	10
00111	Moisture	n.a.	14.9	0.50	0.50	용	1
	"Moisture" represents the loss 103 - 105 degrees Celsius. The as-received basis.				at		
07804	PAHs in Soil by GC/MS						
01195	Pyrene	129-00-0	440.	200.	39.	ug/kg	1
03761	Naphthalene	91-20-3	< 200.	200.	39.	ug/kg	1
03768	Fluorene	86-73-7	280.	200.	39.	ug/kg	1
03775	Phenanthrene	85-01-8	530.	200.	39.	ug/kg	1
03776	Anthracene	120-12-7	240.	200.	39.	ug/kg	1
03781	Benzo(a)anthracene	56-55-3	< 200.	200.	39.	ug/kg	1
03782	Chrysene	218-01-9	250.	200.	39.	ug/kg	1
03786	Benzo(b)fluoranthene	205-99-2	< 200.	200.	39.	ug/kg	1
03788	Benzo(a)pyrene	50-32-8	< 200.	200.	39.	ug/kg	1
03791	Benzo(g,h,i)perylene	191-24-2	< 200.	200.	39.	ug/kg	1
02308	UST-Leaded Soils by 8260B						
02016	Methyl Tertiary Butyl Ether	1634-04-4	< 210.	210.	21.	ug/kg	35.87
05460	Benzene	71-43-2	< 210.	210.	21.	ug/kg	35.87
05461	1,2-Dichloroethane	107-06-2	< 210.	210.	42.	ug/kg	35.87
05466	Toluene	108-88-3	< 210.	210.	42.	ug/kg	35.87
05471	1,2-Dibromoethane	106-93-4	< 210.	210.	42.	ug/kg	35.87
05474	Ethylbenzene	100-41-4	< 210.	210.	42.	ug/kg	35.87
05479	Isopropylbenzene	98-82-8	< 210.	210.	42.	ug/kg	35.87
06301	Xylene (Total)	1330-20-7	< 210.	210.	42.	ug/kg	35.87

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Chronicle

Page 1 of 2

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5393378 SW Group No. 1096740

N-101_1.0-2.0 Grab Soil Philadelphia Refinery AOI-8 DUNS# COC: 0330 N-101_1.0-2.0

Collected:06/16/2008 13:30 by SS Account Number: 10132

Submitted: 06/18/2008 17:40 SUN: Aquaterra Tech.

Reported: 06/26/2008 at 14:38 PO Box 744

Discard: 08/26/2008 West Chester PA 19381

A8101

CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06135	Lead	SW-846 6020	1	06/25/2008 03:27	David K Beck	10
00111	Moisture	SM20 2540 G	1	06/19/2008 15:57	Scott W Freisher	1
07804	PAHs in Soil by GC/MS	SW-846 8270C	1	06/20/2008 17:20	Linda M Hartenstine	1
02308	UST-Leaded Soils by 8260B	SW-846 8260B	1	06/20/2008 16:30	Nicholas R Rossi	35.87
06150	ICP/MS SW-846 Solid digest	SW-846 3050B	1	06/19/2008 19:35	Annamaria Stipkovits	1
06171	GC/MS - Field Preserved MeOH	SW-846 5035A	1	06/16/2008 13:30	Client Supplied	1
07806	BNA Soil Extraction	SW-846 3550B	1	06/19/2008 23:15	Patricia L Foreman	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Quality Control Summary

Client Name: SUN: Aquaterra Tech. Group Number: 1096740

Reported: 06/26/08 at 02:38 PM

Matrix QC may not be reported if site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

Laboratory Compliance Quality Control

Analysis Name	Blank <u>Result</u>	Blank <u>LOQ**</u>	Blank <u>MDL</u>	Report <u>Units</u>	LCS %REC	LCSD %REC	LCS/LCSD <u>Limits</u>	RPD	RPD Max
Batch number: 081716150003A Lead	Sample num	ber(s): 0.100	5393378 0.0150	mg/kg	107		82-118		
Batch number: 08171820004A Moisture	Sample num	ber(s):	5393378		100		99-101		
Batch number: 08171SLD026 Pyrene Naphthalene Fluorene Phenanthrene Anthracene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(a) pyrene Benzo(g,h,i) perylene	Sample num < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170. < 170.	ber(s): 170. 170. 170. 170. 170. 170. 170. 170.	5393378 33. 33. 33. 33. 33. 33. 33. 33	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	81 78 88 90 87 83 85 75 76		75-115 73-106 75-116 77-113 76-112 73-112 76-13 61-127 69-122 65-122		
Batch number: Q081721AA Methyl Tertiary Butyl Ether Benzene 1,2-Dichloroethane Toluene 1,2-Dibromoethane Ethylbenzene Isopropylbenzene Xylene (Total)	Sample num < 250. < 250. < 250. < 250. < 250. < 250. < 250. < 250. < 250. < 250.	ber(s): 250. 250. 250. 250. 250. 250. 250. 250.	5393378 25. 25. 50. 50. 50. 50. 50.	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	103 93 117 95 96 96 95 94	106 94 120 95 100 98 96 95	72-117 84-115 76-135 81-116 77-114 82-115 82-110 82-117	3 1 3 1 4 2 1 2	30 30 30 30 30 30 30 30 30

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

Analysis Name	MS %REC	MSD %REC	MS/MSD <u>Limits</u>	RPD	RPD <u>MAX</u>	BKG Conc	DUP Conc	DUP RPD	Dup RPD <u>Max</u>
Batch number: 081716150003A Lead	Sample: -414 (2)	number(s) -185 (2)		UNSPK:	P39140 20	09 BKG: P39	1409 70.4	33*	20
Batch number: 08171820004A Moisture	Sample	number(s)	: 5393378	BKG:	P39341	3 61.5	61.4	0	15
Batch number: 08171SLD026 Pyrene Naphthalene	Sample: 75 82	number(s) 82 89	: 5393378 19-162 29-140	UNSPK: 7 8	53933' 30 30	78			

*- Outside of specification

- **-This limit was used in the evaluation of the final result for the blank
- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Quality Control Summary

Client Name: SUN: Aquaterra Tech. Group Number: 1096740

Reported: 06/26/08 at 02:38 PM

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

	MS	MSD	MS/MSD		RPD	BKG	DUP	DUP	Dup RPD
Analysis Name	%REC	%REC	Limits	RPD	MAX	Conc	Conc	RPD	Max
Fluorene	77	86	42-139	9	30				
Phenanthrene	95	106	1-181	8	30				
Anthracene	90	98	34-148	8	30				
Benzo(a)anthracene	83	89	20-156	6	30				
Chrysene	81	86	19-158	6	30				
Benzo(b)fluoranthene	73	75	13-161	2	30				
Benzo(a)pyrene	74	77	24-154	4	30				
Benzo(g,h,i)perylene	82	85	26-154	4	30				

Surrogate Quality Control

Massachassal 414

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: PAHs in Soil by GC/MS Batch number: 08171SLD026 Nitrobenzene-d5

	Nitropenzene-d5	2-Fluoropiphenyl	Terpneny1-d14	
5393378	103	96	79	
Blank	86	84	84	
LCS	79	80	78	
MS	89	85	73	
MSD	99	94	82	
Limits:	49-120	55-117	43-131	

Analysis Name: UST-Leaded Soils by 8260B

Batch number: Q081721AA

	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
5393378	86	80	78	85
Blank	81	77	76	75
LCS	101	93	96	97
LCSD	103	94	99	100
Limits:	71-114	70-109	70-123	70-111

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

PA UST Analysis Request/Chain of Custody

For Lancaster Laboratories use only Group #: 1096740 Sample #: 5393378

SCR #: _

Consultant/Office #: Huature	e (S	un)			Matrix An			An	inalyses Requested List total number of containers in the box under each analyses.						IS SAS							
Consultant Prj. Mgr.: 0 1.Doe	200										Γ		Γ									
Consultant Phone #: (010-431-9733	_ Fax #:			▗▐▔	L		و						i ,									,
Site Name: Philly Pelmany of							of Containers												ı			
Site Address:					Potable NPDFS		Sort	:es	2			(2)	မ		:							
Sampler: S				-	-	rof	Number of EnCores	PA Unleaded Gasoline	PA Leaded Gasoline	PA Kerosene (No. 1)	PA Diesel Fuel (No.	. 4, 5,	ē	506	00							
			\Box	g g		Air	Total Number	of E) pap	8	ene (Fue	PA Fuel Oil No. 4,	PA Used Motor Oil	3	7	7					
	Date	Time	ام	Soil	ē	ă	Ž	nber	Unles	pe	Keros	Diese	Je Je	Used	22	$\frac{8}{2}$	9		ł			
Sample Identification	Collected	Collected	gg (S S	Water	Ö	Tot	Ž	ΡA	Æ	Ą	PA	A	ΡA	Ĭ					Remarks		
N-10) - 1.0-2.0	6/16/08	1330	X	X			2								X	X	X			w.C.al) n	
																				* Special provide	5/1.	124
																				analy	14	"57
																			٦	Previbi	-514	
																				Provit	sed.	
																		İ		,		
																		Ī				
						\Box										┪			٦			
						П										\neg	\dashv		ᅦ			
				オ		\Box						- 			\dashv		_	\dashv	ᅦ			
Turnaround Time: SRD (7-10) RUSH	<u> </u>	Relinqui	sp ort	, ,		eg					Date	T	Time	R	900r	(e) t	y://		,—		Date	Time
Turnaround Time. S to (7-10) Rosh			X)	<u> </u>	J	را	_	_	_	4	8/8	8/	142	z (\bigcirc^{t}	'n	Ze	fe	'n	re 6/1	8/68	1740
Comments:		Relinqui	specific	- "	,						Date	_1 .	Time	"	ecei	/ed b	y: /	/			Date	Time
		Relinqui	shed by		ve	<u>'</u>			6	1/8	Pate		<u>74/</u> Time			المدر		_	_			
		1.500,7420	l	7						17	-al4		i irrae	"	ecei	/ea	4				Date	Time
		Relinquis	shed by	<u>'</u>	—					╁	Date	+	Time	₽ 	eçei	ed b	ry:	1 -	_		Date	Time
															\checkmark	11	$\tilde{1}0$	1	M	uttone of	18/18	7:4

Lancaster Laboratories Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

N.D.	none detected	BMQL	Below Minimum Quantitation Level
TNTC	Too Numerous To Count	MPN	Most Probable Number
IU	International Units	CP Units	cobalt-chloroplatinate units
umhos/cm	micromhos/cm	NTU	nephelometric turbidity units
С	degrees Celsius	F	degrees Fahrenheit
Cal	(diet) calories	lb.	pound(s)
meq	milliequivalents	kg	kilogram(s)
g	gram(s)	mg	milligram(s)
ug	microgram(s)	I	liter(s)
ml	milliliter(s)	ul	microliter(s)
m3	cubic meter(s)	fib >5 um/ml	fibers greater than 5 microns in length per ml

- < less than The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.
- > greater than
- ppm parts per million One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.

Inorganic Qualifiers

- ppb parts per billion
- **Dry weight**Results printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture.

U.S. EPA data qualifiers:

9	lifier	(uu	9	 u	" 9	•

A B C D E	TIC is a possible aldol-condensation product Analyte was also detected in the blank Pesticide result confirmed by GC/MS Compound quatitated on a diluted sample Concentration exceeds the calibration range of the instrument	B E M N S	Value is <crdl, (msa)="" additions="" amount="" but="" calculation<="" control="" due="" duplicate="" estimated="" for="" injection="" interference="" limits="" met="" method="" not="" of="" precision="" spike="" standard="" th="" to="" used="" within="" ≥idl=""></crdl,>
J	Estimated value	U	Compound was not detected
N	Presumptive evidence of a compound (TICs only)	W	Post digestion spike out of control limits
Р	Concentration difference between primary and	*	Duplicate analysis not within control limits
	confirmation columns >25%	+	Correlation coefficient for MSA < 0.995
U	Compound was not detected		
X,Y,Z	Defined in case narrative		

Analytical test results for methods listed on the laboratories' accreditation scope meet all requirements of NELAC unless otherwise noted under the individual analysis.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

WARRANTY AND LIMITS OF LIABILITY – In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL LANCASTER LABORATORIES BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF LANCASTER LABORATORIES AND (B) WHETHER LANCASTER LABORATORIES HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Lancaster Laboratories which includes any conditions that vary from the Standard Terms and Conditions of Lancaster Laboratories and we hereby object to any conflicting terms contained in any acceptance or order submitted by client.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

ANALYTICAL RESULTS

Prepared for:

SUN: Aquaterra Tech. PO Box 744 West Chester PA 19381

610-431-5733

Prepared by:

Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425

SAMPLE GROUP

The sample group for this submittal is 1096931. Samples arrived at the laboratory on Thursday, June 19, 2008. The PO# for this group is PHILADELPHIA.

Client Description	<u>Lancaster Labs Number</u>
N-129_1.0-2.0 Grab Soil	5394557
N-126_1.0-2.0 Grab Soil	5394558
N-109_1.0-2.0 Grab Soil	5394559
N-131_1.0-2.0 Grab Soil	5394560
N-119_1.0-2.0 Grab Soil	5394561
BH-08-01_1.0-2.0 Grab Soil	5394562
N-104_1.0-2.0 Grab Soil	5394563
N-105_1.0-2.0 Grab Soil	5394564
N-107_1.0-2.0 Grab Soil	5394565
N-99_1.0-2.0 Grab Soil	5394566
N-125_1.0-2.0 Grab Soil	5394567

ELECTRONIC	SUN: Aquaterra Tech.	Attn: Kevin Martin
COPY TO		
ELECTRONIC	Langan	Attn: Joseph Catricks
COPY TO		
ELECTRONIC	SUN: Aquaterra Tech.	Attn: Tiffani Doerr
COPY TO		
222011101110	LLI	Attn: EDD Group
COPY TO		

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Questions? Contact your Client Services Representative Jessica A Heun at (717) 656-2300

Respectfully Submitted,

Chad Moline

Chad A. Moline Group Leader

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5394557 SW Group No. 1096931

N-129 1.0-2.0 Grab Soil Philadelphia Refinery AOI-8

DUNS# COC: 0153804 N-129 1.0-2.0

Collected:06/17/2008 08:00 by SS Account Number: 10132

Submitted: 06/19/2008 16:15 SUN: Aquaterra Tech.

Reported: 07/08/2008 at 08:53 PO Box 744

Discard: 09/07/2008 West Chester PA 19381

N-129

				Dry	Dry		
CAT			Dry	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06135	Lead	7439-92-1	31.3	1.14	0.171	mg/kg	10
00111	Moisture	n.a.	14.0	0.50	0.50	용	1
	"Moisture" represents the loss 103 - 105 degrees Celsius. The as-received basis.				at		
07804	PAHs in Soil by GC/MS						
01195	Pyrene	129-00-0	< 970.	970.	190.	ug/kg	5
03761	Naphthalene	91-20-3	< 970.	970.	190.	ug/kg	5
03768	Fluorene	86-73-7	< 970.	970.	190.	ug/kg	5
03775	Phenanthrene	85-01-8	< 970.	970.	190.	ug/kg	5
03776	Anthracene	120-12-7	< 970.	970.	190.	ug/kg	5
03781	Benzo(a)anthracene	56-55-3	< 970.	970.	190.	ug/kg	5
03782	Chrysene	218-01-9	1,000.	970.	190.	ug/kg	5
03786	Benzo(b)fluoranthene	205-99-2	< 970.	970.	190.	ug/kg	5
03788	Benzo(a)pyrene	50-32-8	< 970.	970.	190.	ug/kg	5
03791	Benzo(g,h,i)perylene	191-24-2	1,700.	970.	190.	ug/kg	5
	Due to the sample matrix an in	itial dilution	n was necessar	y to perform the			
	analysis. Therefore, the report	rting limits 1	for the GC/MS	semivolatile			
	compounds were raised.						
02308	UST-Leaded Soils by 8260B						
02016	Methyl Tertiary Butyl Ether	1634-04-4	< 230.	230.	23.	uq/kq	39.31
05460	Benzene	71-43-2	< 230.	230.	23.	ug/kg ug/kg	39.31
05461	1.2-Dichloroethane	107-06-2	< 230.	230.	46.	ug/kg ug/kg	39.31
05466	Toluene	108-88-3	< 230.	230.	46.	ug/kg ug/kg	39.31
05471	1,2-Dibromoethane	106-93-4	< 230.	230.	46.	ug/kg ug/kg	39.31
05471	Ethylbenzene	100-33-4	< 230.	230.	46.	ug/kg ug/kg	39.31
05474	Isopropylbenzene	98-82-8	< 230.	230.	46.	ug/kg ug/kg	39.31
06301	Xylene (Total)	1330-20-7	< 230.	230.	46.	ug/kg ug/kg	39.31
00001	Myrchic (locar)	1330-20-7	< 23U.	250.	TU .	ug/ng	J J . J L

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5394557 SW Group No. 1096931

N-129_1.0-2.0 Grab Soil

Philadelphia Refinery AOI-8

DUNS# COC: 0153804 N-129_1.0-2.0

Collected:06/17/2008 08:00 by SS Account Number: 10132

Submitted: 06/19/2008 16:15 SUN: Aquaterra Tech.

Reported: 07/08/2008 at 08:53 PO Box 744

Discard: 09/07/2008 West Chester PA 19381

N-129

		паротасоту	CIII O.	111010		
CAT		_		Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06135	Lead	SW-846 6020	1	06/29/2008 14:18	James R Williams II	10
00111	Moisture	SM20 2540 G	1	06/23/2008 16:35	Scott W Freisher	1
07804	PAHs in Soil by GC/MS	SW-846 8270C	1	06/24/2008 07:30	Joseph M Gambler	5
02308	UST-Leaded Soils by 8260B	SW-846 8260B	1	06/23/2008 19:51	Kelly E Brickley	39.31
06150	ICP/MS SW-846 Solid digest	SW-846 3050B	1	06/22/2008 14:30	Mirit S Shenouda	1
06171	GC/MS - Field Preserved MeOH	SW-846 5035	1	06/17/2008 08:00	Client Supplied	1
07806	BNA Soil Extraction	SW-846 3550B	1	06/22/2008 07:55	Doreen K Robles	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5394558 SW Group No. 1096931

N-126_1.0-2.0 Grab Soil

Philadelphia Refinery AOI-8 DUNS# COC: 0153804 N-126 1.0-2.0

Collected:06/17/2008 08:10 by SS Account Number: 10132

Submitted: 06/19/2008 16:15 SUN: Aquaterra Tech.

Reported: 07/08/2008 at 08:53 PO Box 744

Discard: 09/07/2008 West Chester PA 19381

N-126

				Dry	Dry		
CAT			Dry	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06135	Lead	7439-92-1	912.	2.36	0.354	mg/kg	20
00111	Moisture	n.a.	17.7	0.50	0.50	용	1
	"Moisture" represents the loss 103 - 105 degrees Celsius. The as-received basis.				at		
07804	PAHs in Soil by GC/MS						
01195	Pyrene	129-00-0	2,200.	1,000.	200.	ug/kg	5
03761	Naphthalene	91-20-3	< 1,000.	1,000.	200.	ug/kg	5
03768	Fluorene	86-73-7	1,200.	1,000.	200.	ug/kg	5
03775	Phenanthrene	85-01-8	1,100.	1,000.	200.	ug/kg	5
03776	Anthracene	120-12-7	1,100.	1,000.	200.	ug/kg	5
03781	Benzo(a)anthracene	56-55-3	< 1,000.	1,000.	200.	ug/kg	5
03782	Chrysene	218-01-9	1,400.	1,000.	200.	ug/kg	5
03786	Benzo(b)fluoranthene	205-99-2	< 1,000.	1,000.	200.	ug/kg	5
03788	Benzo(a)pyrene	50-32-8	< 1,000.	1,000.	200.	ug/kg	5
03791	Benzo(g,h,i)perylene	191-24-2	1,000.	1,000.	200.	ug/kg	5
	Due to the sample matrix an in	itial dilution	n was necessar	y to perform the			
	analysis. Therefore, the repor	rting limits :	for the GC/MS	semivolatile			
	compounds were raised.						
02308	UST-Leaded Soils by 8260B						
02016	Methyl Tertiary Butyl Ether	1634-04-4	< 3,100.	3,100.	310.	ug/kg	517.6
05460	Benzene	71-43-2	< 3,100.	3,100.	310.	ug/kg	517.6
05461	1,2-Dichloroethane	107-06-2	< 3,100.	3,100.	630.	ug/kg	517.6
05466	Toluene	108-88-3	< 3,100.	3,100.	630.	ug/kg	517.6
05471	1,2-Dibromoethane	106-93-4	< 3,100.	3,100.	630.	ug/kg	517.6
05474	Ethylbenzene	100-41-4	< 3,100.	3,100.	630.	ug/kg	517.6
05479	Isopropylbenzene	98-82-8	< 3,100.	3,100.	630.	ug/kg	517.6
06301	Xylene (Total)	1330-20-7	< 3,100.	3,100.	630.	ug/kg	517.6
	The reporting limits for the G	C/MS volatile	compounds wer	e raised due to			

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

sample foaming.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5394558 SW Group No. 1096931

N-126 1.0-2.0 Grab Soil

Philadelphia Refinery AOI-8 DUNS# COC: 0153804 N-126 1.0-2.0

Collected:06/17/2008 08:10 by SS Account Number: 10132

Submitted: 06/19/2008 16:15 SUN: Aquaterra Tech.

Reported: 07/08/2008 at 08:53 PO Box 744

Discard: 09/07/2008 West Chester PA 19381

N-126

Dry Dry CAT Dry Limit of Method Dilution No. Analysis Name CAS Number Result Quantitation* Detection Units Factor

CAT			4	Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06135	Lead	SW-846 6020	1	07/07/2008 06:58	David K Beck	20
00111	Moisture	SM20 2540 G	1	06/23/2008 16:35	Scott W Freisher	1
07804	PAHs in Soil by GC/MS	SW-846 8270C	1	06/24/2008 08:42	Joseph M Gambler	5
02308	UST-Leaded Soils by 8260B	SW-846 8260B	1	06/23/2008 20:13	Kelly E Brickley	517.6
06150	ICP/MS SW-846 Solid digest	SW-846 3050B	1	06/22/2008 14:30	Mirit S Shenouda	1
06171	GC/MS - Field Preserved MeOH	SW-846 5035	1	06/17/2008 08:10	Client Supplied	1
07806	BNA Soil Extraction	SW-846 3550B	1	06/22/2008 07:55	Doreen K Robles	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Lancaster Laboratories Sample No. 5394559 SW Group No. 1096931

N-109 1.0-2.0 Grab Soil Philadelphia Refinery AOI-8

DUNS# COC: 0153804 N-109 1.0-2.0

Collected:06/17/2008 08:20 by SS Account Number: 10132

Submitted: 06/19/2008 16:15 SUN: Aquaterra Tech.

Reported: 07/08/2008 at 08:53 PO Box 744

West Chester PA 19381 Discard: 09/07/2008

N-109

				Dry	Dry		
CAT			Dry	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06135	Lead	7439-92-1	294.	1.13	0.169	mg/kg	10
00111	Moisture	n.a.	12.2	0.50	0.50	8	1
	"Moisture" represents the loss 103 - 105 degrees Celsius. The as-received basis.				at		
07804	PAHs in Soil by GC/MS						
01195	Pyrene	129-00-0	< 950.	950.	190.	ug/kg	5
03761	Naphthalene	91-20-3	< 950.	950.	190.	ug/kg	5
03768	Fluorene	86-73-7	< 950.	950.	190.	ug/kg	5
03775	Phenanthrene	85-01-8	< 950.	950.	190.	ug/kg	5
03776	Anthracene	120-12-7	< 950.	950.	190.	ug/kg	5
03781	Benzo(a)anthracene	56-55-3	< 950.	950.	190.	ug/kg	5
03782	Chrysene	218-01-9	< 950.	950.	190.	ug/kg	5
03786	Benzo(b)fluoranthene	205-99-2	< 950.	950.	190.	ug/kg	5
03788	Benzo(a)pyrene	50-32-8	< 950.	950.	190.	ug/kg	5
03791	Benzo(g,h,i)perylene	191-24-2	< 950.	950.	190.	ug/kg	5
	Due to the sample matrix an in analysis. Therefore, the reportant compounds were raised.						
02308	UST-Leaded Soils by 8260B						
02016	Methyl Tertiary Butyl Ether	1634-04-4	< 3,100.	3,100.	310.	ug/kg	539.96
05460	Benzene	71-43-2	< 3,100.	3,100.	310.	ug/kg	539.96
05461	1,2-Dichloroethane	107-06-2	< 3,100.	3,100.	610.	ug/kg	539.96
05466	Toluene	108-88-3	< 3,100.	3,100.	610.	ug/kg	539.96
05471	1,2-Dibromoethane	106-93-4	< 3,100.	3,100.	610.	ug/kg	539.96
05474	Ethylbenzene	100-41-4	< 3,100.	3,100.	610.	ug/kg	539.96
05479	Isopropylbenzene	98-82-8	< 3,100.	3,100.	610.	ug/kg	539.96
06301	Xylene (Total)	1330-20-7	< 3,100.	3,100.	610.	ug/kg	539.96
	The reporting limits for the (GC/MS volatile	compounds we	ere raised due to			

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

sample foaming.

Page 1 of 2

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5394559 SW Group No. 1096931

N-109_1.0-2.0 Grab Soil

Philadelphia Refinery AOI-8

DUNS# COC: 0153804 N-109_1.0-2.0

Collected:06/17/2008 08:20 by SS Account Number: 10132

Submitted: 06/19/2008 16:15 SUN: Aquaterra Tech.

Reported: 07/08/2008 at 08:53 PO Box 744

Discard: 09/07/2008 West Chester PA 19381

N-109

CAT Dry Dry

CAT Dry Limit of Method Dilution

No. Analysis Name CAS Number Result Quantitation* Detection Units Factor

CAT		-		Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06135	Lead	SW-846 6020	1	06/29/2008 14:33	James R Williams II	10
00111	Moisture	SM20 2540 G	1	06/23/2008 16:35	Scott W Freisher	1
07804	PAHs in Soil by GC/MS	SW-846 8270C	1	06/30/2008 23:54	Gregory J Drahovsky	5
02308	UST-Leaded Soils by 8260B	SW-846 8260B	1	06/23/2008 20:35	Kelly E Brickley	539.96
06150	ICP/MS SW-846 Solid digest	SW-846 3050B	1	06/22/2008 14:30	Mirit S Shenouda	1
06171	GC/MS - Field Preserved MeOH	SW-846 5035	1	06/17/2008 08:20	Client Supplied	1
07806	BNA Soil Extraction	SW-846 3550B	2	06/27/2008 14:55	Adrienne E Fellenbaum	n 1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5394560 SW Group No. 1096931

N-131_1.0-2.0 Grab Soil Philadelphia Refinery AOI-8

DUNS# COC: 0153804 N-131 1.0-2.0

Collected:06/17/2008 08:40 by SS Account Number: 10132

Submitted: 06/19/2008 16:15 SUN: Aquaterra Tech.

Reported: 07/08/2008 at 08:53 PO Box 744

Discard: 09/07/2008 West Chester PA 19381

N-131

CAT No.	Analysis Name	CAS Number	Dry Result	Dry Limit of Quantitation*	Dry Method Detection Limit	Units	Dilution Factor			
06135	Lead	7439-92-1	88.8	1.23	0.185	mg/kg	10			
00111	Moisture	n.a.	19.7	0.50	0.50	%	1			
	"Moisture" represents the loss in weight of the sample after oven drying at 103 - 105 degrees Celsius. The moisture result reported above is on an as-received basis.									
07804	PAHs in Soil by GC/MS									
01195	Pyrene	129-00-0	< 1,000.	1,000.	210.	ug/kg	5			
03761	Naphthalene	91-20-3	< 1,000.	1,000.	210.	ug/kg	5			
03768	Fluorene	86-73-7	< 1,000.	1,000.	210.	ug/kg	5			
03775	Phenanthrene	85-01-8	< 1,000.	1,000.	210.	ug/kg	5			
03776	Anthracene	120-12-7	< 1,000.	1,000.	210.	ug/kg	5			
03781	Benzo(a)anthracene	56-55-3	< 1,000.	1,000.	210.	ug/kg	5			
03782	Chrysene	218-01-9	< 1,000.	1,000.	210.	ug/kg	5			
03786	Benzo(b)fluoranthene	205-99-2	< 1,000.	1,000.	210.	ug/kg	5			
03788	Benzo(a)pyrene	50-32-8	< 1,000.	1,000.	210.	ug/kg	5			
03791	Benzo(g,h,i)perylene	191-24-2	< 1,000.	1,000.	210.	ug/kg	5			
	Due to the sample matrix an in:	itial dilutior	n was necessary	y to perform the						
	analysis. Therefore, the repor	rting limits f	for the GC/MS s	semivolatile						
	compounds were raised.									
02308	UST-Leaded Soils by 8260B									
02016	Methyl Tertiary Butyl Ether	1634-04-4	< 380.	380.	38.	ug/kg	61.12			
05460	Benzene	71-43-2	< 380.	380.	38.	ug/kg	61.12			
05461	1,2-Dichloroethane	107-06-2	< 380.	380.	76.	ug/kg	61.12			
05466	Toluene	108-88-3	< 380.	380.	76.	ug/kg	61.12			
05471	1,2-Dibromoethane	106-93-4	< 380.	380.	76.	ug/kg	61.12			
05474	Ethylbenzene	100-41-4	< 380.	380.	76.	ug/kg	61.12			
05479	Isopropylbenzene	98-82-8	< 380.	380.	76.	ug/kg	61.12			
06301	Xylene (Total)	1330-20-7	< 380.	380.	76.	ug/kg	61.12			

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5394560 SW Group No. 1096931

N-131_1.0-2.0 Grab Soil Philadelphia Refinery AOI-8

DUNS# COC: 0153804 N-131_1.0-2.0

Collected:06/17/2008 08:40 by SS Account Number: 10132

Submitted: 06/19/2008 16:15 SUN: Aquaterra Tech.

Reported: 07/08/2008 at 08:53 PO Box 744

Discard: 09/07/2008 West Chester PA 19381

N-131

		<u> </u>	CIII O.	111010		
CAT		_		Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06135	Lead	SW-846 6020	1	06/29/2008 14:37	James R Williams II	10
00111	Moisture	SM20 2540 G	1	06/23/2008 16:35	Scott W Freisher	1
07804	PAHs in Soil by GC/MS	SW-846 8270C	1	06/24/2008 09:30	Joseph M Gambler	5
02308	UST-Leaded Soils by 8260B	SW-846 8260B	1	06/23/2008 20:58	Kelly E Brickley	61.12
06150	ICP/MS SW-846 Solid digest	SW-846 3050B	1	06/22/2008 14:30	Mirit S Shenouda	1
06171	GC/MS - Field Preserved MeOH	SW-846 5035	1	06/17/2008 08:40	Client Supplied	1
07806	BNA Soil Extraction	SW-846 3550B	1	06/22/2008 07:55	Doreen K Robles	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5394561 SW Group No. 1096931

N-119 1.0-2.0 Grab Soil Philadelphia Refinery AOI-8

DUNS# COC: 0153804 N-119 1.0-2.0

Collected:06/17/2008 09:00 by SS Account Number: 10132

Submitted: 06/19/2008 16:15 SUN: Aquaterra Tech.

Reported: 07/08/2008 at 08:53 PO Box 744

Discard: 09/07/2008 West Chester PA 19381

N-119

CAT No. 06135 00111	Analysis Name Lead Moisture "Moisture" represents the loss 103 - 105 degrees Celsius. The as-received basis.				Dry Method Detection Limit 0.176 0.50	Units mg/kg %	Dilution Factor 10
07804	PAHs in Soil by GC/MS						
01195 03761 03768 03775 03776 03781 03782 03786 03788	Pyrene Naphthalene Fluorene Phenanthrene Anthracene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(a) pyrene Benzo(g,h,i) perylene	129-00-0 91-20-3 86-73-7 85-01-8 120-12-7 56-55-3 218-01-9 205-99-2 50-32-8 191-24-2	560. < 200. < 200. < 200. < 200. < 200. 340. 650. 210. 430.	200. 200. 200. 200. 200. 200. 200. 200. 200.	40. 40. 40. 40. 40. 40. 40. 40.	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	1 1 1 1 1 1 1 1 1
02308	UST-Leaded Soils by 8260B						
02016 05460 05461 05466 05471 05474 05479	Methyl Tertiary Butyl Ether Benzene 1,2-Dichloroethane Toluene 1,2-Dibromoethane Ethylbenzene Isopropylbenzene Xylene (Total)	1634-04-4 71-43-2 107-06-2 108-88-3 106-93-4 100-41-4 98-82-8 1330-20-7	< 240. < 240. < 240. < 240. < 240. < 240. < 240. < 240.	240. 240. 240. 240. 240. 240. 240.	24. 24. 48. 48. 48. 48. 48.	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	40.26 40.26 40.26 40.26 40.26 40.26 40.26 40.26

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5394561 SW Group No. 1096931

N-119_1.0-2.0 Grab Soil Philadelphia Refinery AOI-8

DUNS# COC: 0153804 N-119_1.0-2.0

Collected:06/17/2008 09:00 by SS Account Number: 10132

Submitted: 06/19/2008 16:15 SUN: Aquaterra Tech.

Reported: 07/08/2008 at 08:53 PO Box 744

Discard: 09/07/2008 West Chester PA 19381

N-119

	CAT				Analysis		Dilution
1	No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
	06135	Lead	SW-846 6020	1	06/29/2008 14:41	James R Williams II	10
	00111	Moisture	SM20 2540 G	1	06/23/2008 16:35	Scott W Freisher	1
	07804	PAHs in Soil by GC/MS	SW-846 8270C	1	06/24/2008 09:54	Joseph M Gambler	1
	02308	UST-Leaded Soils by 8260B	SW-846 8260B	1	06/23/2008 21:42	Kelly E Brickley	40.26
	06150	ICP/MS SW-846 Solid digest	SW-846 3050B	1	06/22/2008 14:30	Mirit S Shenouda	1
	06171	GC/MS - Field Preserved MeOH	SW-846 5035	1	06/17/2008 09:00	Client Supplied	1
	07806	BNA Soil Extraction	SW-846 3550B	1	06/22/2008 07:55	Doreen K Robles	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5394562 SW Group No. 1096931

BH-08-01_1.0-2.0 Grab Soil Philadelphia Refinery AOI-8

DUNS# COC: 0153804 BH-08-01_1.0-2.0

Collected:06/17/2008 09:30 by SS Account Number: 10132

Submitted: 06/19/2008 16:15 SUN: Aquaterra Tech.

Reported: 07/08/2008 at 08:53 PO Box 744

Discard: 09/07/2008 West Chester PA 19381

BH081

				Dry	Dry		
CAT			Dry	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06135	Lead	7439-92-1	69.7	1.08	0.162	mg/kg	10
00111	Moisture	n.a.	9.5	0.50	0.50	%	1
	"Moisture" represents the loss 103 - 105 degrees Celsius. The as-received basis.				at		
07804	PAHs in Soil by GC/MS						
01195	Pyrene	129-00-0	< 180.	180.	37.	ug/kg	1
03761	Naphthalene	91-20-3	< 180.	180.	37.	ug/kg	1
03768	Fluorene	86-73-7	< 180.	180.	37.	ug/kg	1
03775	Phenanthrene	85-01-8	< 180.	180.	37.	ug/kg	1
03776	Anthracene	120-12-7	< 180.	180.	37.	ug/kg	1
03781	Benzo(a)anthracene	56-55-3	< 180.	180.	37.	ug/kg	1
03782	Chrysene	218-01-9	< 180.	180.	37.	ug/kg	1
03786	Benzo(b)fluoranthene	205-99-2	< 180.	180.	37.	ug/kg	1
03788	Benzo(a)pyrene	50-32-8	< 180.	180.	37.	ug/kg	1
03791	Benzo(g,h,i)perylene	191-24-2	< 180.	180.	37.	ug/kg	1
02308	UST-Leaded Soils by 8260B						
02016	Methyl Tertiary Butyl Ether	1634-04-4	< 240.	240.	24.	ug/kg	43.78
05460	Benzene	71-43-2	< 240.	240.	24.	ug/kg	43.78
05461	1,2-Dichloroethane	107-06-2	< 240.	240.	48.	ug/kg	43.78
05466	Toluene	108-88-3	< 240.	240.	48.	ug/kg	43.78
05471	1,2-Dibromoethane	106-93-4	< 240.	240.	48.	ug/kg	43.78
05474	Ethylbenzene	100-41-4	< 240.	240.	48.	ug/kg	43.78
05479	Isopropylbenzene	98-82-8	< 240.	240.	48.	ug/kg	43.78
06301	Xylene (Total)	1330-20-7	< 240.	240.	48.	ug/kg	43.78

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5394562 SW Group No. 1096931

BH-08-01_1.0-2.0 Grab Soil Philadelphia Refinery AOI-8

DUNS# COC: 0153804 BH-08-01 1.0-2.0

Collected:06/17/2008 09:30 by SS Account Number: 10132

Submitted: 06/19/2008 16:15 SUN: Aquaterra Tech.

Reported: 07/08/2008 at 08:53 PO Box 744

Discard: 09/07/2008 West Chester PA 19381

BH081

CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06135	Lead	SW-846 6020	1	06/29/2008 14:44	James R Williams II	10
00111	Moisture	SM20 2540 G	1	06/23/2008 16:35	Scott W Freisher	1
07804	PAHs in Soil by GC/MS	SW-846 8270C	1	06/24/2008 10:18	Joseph M Gambler	1
02308	UST-Leaded Soils by 8260B	SW-846 8260B	1	06/23/2008 22:05	Kelly E Brickley	43.78
06150	ICP/MS SW-846 Solid digest	SW-846 3050B	1	06/22/2008 14:30	Mirit S Shenouda	1
06171	GC/MS - Field Preserved MeOH	SW-846 5035	1	06/17/2008 09:30	Client Supplied	1
07806	BNA Soil Extraction	SW-846 3550B	1	06/22/2008 07:55	Doreen K Robles	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5394563 SW Group No. 1096931

N-104_1.0-2.0 Grab Soil Philadelphia Refinery AOI-8

DUNS# COC: 0153804 N-104 1.0-2.0

Collected:06/17/2008 09:45 by SS Account Number: 10132

Submitted: 06/19/2008 16:15 SUN: Aquaterra Tech.

Reported: 07/08/2008 at 08:53 PO Box 744

Discard: 09/07/2008 West Chester PA 19381

N-104

CAT No.	Analysis Name	CAS Number	Dry Result	Dry Limit of Quantitation*	Dry Method Detection Limit	Units	Dilution Factor				
06135	Lead	7439-92-1	164.	1.07	0.161	mg/kg	10				
00111	Moisture	n.a.	9.3	0.50	0.50	%	1				
	"Moisture" represents the loss in weight of the sample after oven drying at 103 - 105 degrees Celsius. The moisture result reported above is on an as-received basis.										
07804	PAHs in Soil by GC/MS										
01195	Pyrene	129-00-0	2,200.	920.	180.	ug/kg	5				
03761	Naphthalene	91-20-3	< 920.	920.	180.	ug/kg	5				
03768	Fluorene	86-73-7	< 920.	920.	180.	ug/kg	5				
03775	Phenanthrene	85-01-8	1,500.	920.	180.	ug/kg	5				
03776	Anthracene	120-12-7	< 920.	920.	180.	ug/kg	5				
03781	Benzo(a)anthracene	56-55-3	< 920.	920.	180.	ug/kg	5				
03782	Chrysene	218-01-9	1,200.	920.	180.	ug/kg	5				
03786	Benzo(b)fluoranthene	205-99-2	< 920.	920.	180.	ug/kg	5				
03788	Benzo(a)pyrene	50-32-8	< 920.	920.	180.	ug/kg	5				
03791	Benzo(g,h,i)perylene	191-24-2	< 920.	920.	180.	ug/kg	5				
	Due to the sample matrix an in	itial dilutior	n was necessary	y to perform the							
	analysis. Therefore, the repor	rting limits f	for the GC/MS s	semivolatile							
	compounds were raised.										
02308	UST-Leaded Soils by 8260B										
02016	Methyl Tertiary Butyl Ether	1634-04-4	< 230.	230.	23.	ug/kg	41.19				
05460	Benzene	71-43-2	< 230.	230.	23.	ug/kg	41.19				
05461	1,2-Dichloroethane	107-06-2	< 230.	230.	45.	ug/kg	41.19				
05466	Toluene	108-88-3	< 230.	230.	45.	ug/kg	41.19				
05471	1,2-Dibromoethane	106-93-4	< 230.	230.	45.	ug/kg	41.19				
05474	Ethylbenzene	100-41-4	< 230.	230.	45.	ug/kg	41.19				
05479	Isopropylbenzene	98-82-8	< 230.	230.	45.	ug/kg	41.19				
06301	Xylene (Total)	1330-20-7	< 230.	230.	45.	ug/kg	41.19				

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5394563 SW Group No. 1096931

N-104_1.0-2.0 Grab Soil Philadelphia Refinery AOI-8

DUNS# COC: 0153804 N-104_1.0-2.0

Collected:06/17/2008 09:45 by SS Account Number: 10132

Submitted: 06/19/2008 16:15 SUN: Aquaterra Tech.

Reported: 07/08/2008 at 08:53 PO Box 744

Discard: 09/07/2008 West Chester PA 19381

N-104

		Haboracory	CIII O	111010		
CAT		_		Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06135	Lead	SW-846 6020	1	06/29/2008 14:48	James R Williams II	10
00111	Moisture	SM20 2540 G	1	06/23/2008 16:35	Scott W Freisher	1
07804	PAHs in Soil by GC/MS	SW-846 8270C	1	06/24/2008 10:42	Joseph M Gambler	5
02308	UST-Leaded Soils by 8260B	SW-846 8260B	1	06/23/2008 22:27	Kelly E Brickley	41.19
06150	ICP/MS SW-846 Solid digest	SW-846 3050B	1	06/22/2008 14:30	Mirit S Shenouda	1
06171	GC/MS - Field Preserved MeOH	SW-846 5035	1	06/17/2008 09:45	Client Supplied	1
07806	BNA Soil Extraction	SW-846 3550B	1	06/22/2008 07:55	Doreen K Robles	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5394564 SW Group No. 1096931

N-105_1.0-2.0 Grab Soil Philadelphia Refinery AOI-8

DUNS# COC: 0153804 N-105 1.0-2.0

Collected:06/17/2008 10:00 by SS Account Number: 10132

Submitted: 06/19/2008 16:15 SUN: Aquaterra Tech.

Reported: 07/08/2008 at 08:53 PO Box 744

Discard: 09/07/2008 West Chester PA 19381

N-105

				Dry	Dry		
CAT			Dry	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06135	Lead	7439-92-1	36.4	1.08	0.162	mg/kg	10
00111	Moisture	n.a.	9.0	0.50	0.50	%	1
	"Moisture" represents the loss 103 - 105 degrees Celsius. The as-received basis.				at		
07804	PAHs in Soil by GC/MS						
01195	Pyrene	129-00-0	< 920.	920.	180.	ug/kg	5
03761	Naphthalene	91-20-3	< 920.	920.	180.	ug/kg	5
03768	Fluorene	86-73-7	< 920.	920.	180.	ug/kg	5
03775	Phenanthrene	85-01-8	< 920.	920.	180.	ug/kg	5
03776	Anthracene	120-12-7	< 920.	920.	180.	ug/kg	5
03781	Benzo(a)anthracene	56-55-3	< 920.	920.	180.	ug/kg	5
03782	Chrysene	218-01-9	< 920.	920.	180.	ug/kg	5
03786	Benzo(b)fluoranthene	205-99-2	< 920.	920.	180.	ug/kg	5
03788	Benzo(a)pyrene	50-32-8	< 920.	920.	180.	ug/kg	5
03791	Benzo(g,h,i)perylene	191-24-2	< 920.	920.	180.	ug/kg	5
	Due to the sample matrix an in analysis. Therefore, the report compounds were raised.		-				
02308	UST-Leaded Soils by 8260B						
02016	Methyl Tertiary Butyl Ether	1634-04-4	< 240.	240.	24.	ug/kg	43.03
05460	Benzene	71-43-2	< 240.	240.	24.	ug/kg	43.03
05461	1,2-Dichloroethane	107-06-2	< 240.	240.	47.	ug/kg	43.03
05466	Toluene	108-88-3	< 240.	240.	47.	ug/kg	43.03
05471	1,2-Dibromoethane	106-93-4	< 240.	240.	47.	ug/kg	43.03
05474	Ethylbenzene	100-41-4	< 240.	240.	47.	ug/kg	43.03
05479	Isopropylbenzene	98-82-8	< 240.	240.	47.	ug/kg	43.03
06301	Xylene (Total)	1330-20-7	< 240.	240.	47.	ug/kg	43.03

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5394564 SW Group No. 1096931

N-105_1.0-2.0 Grab Soil Philadelphia Refinery AOI-8

DUNS# COC: 0153804 N-105_1.0-2.0

Collected:06/17/2008 10:00 by SS Account Number: 10132

Submitted: 06/19/2008 16:15 SUN: Aquaterra Tech.

Reported: 07/08/2008 at 08:53 PO Box 744

Discard: 09/07/2008 West Chester PA 19381

N-105

		<u> </u>	CIII O.	111010		
CAT		-		Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06135	Lead	SW-846 6020	1	06/29/2008 14:52	James R Williams II	10
00111	Moisture	SM20 2540 G	1	06/23/2008 16:35	Scott W Freisher	1
07804	PAHs in Soil by GC/MS	SW-846 8270C	1	06/24/2008 11:06	Joseph M Gambler	5
02308	UST-Leaded Soils by 8260B	SW-846 8260B	1	06/23/2008 22:49	Kelly E Brickley	43.03
06150	ICP/MS SW-846 Solid digest	SW-846 3050B	1	06/22/2008 14:30	Mirit S Shenouda	1
06171	GC/MS - Field Preserved MeOH	SW-846 5035	1	06/17/2008 10:00	Client Supplied	1
07806	BNA Soil Extraction	SW-846 3550B	1	06/22/2008 07:55	Doreen K Robles	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5394565 SW Group No. 1096931

N-107_1.0-2.0 Grab Soil Philadelphia Refinery AOI-8

DUNS# COC: 0153804 N-107_1.0-2.0

Collected:06/17/2008 10:15 by SS Account Number: 10132

Submitted: 06/19/2008 16:15 SUN: Aquaterra Tech.

Reported: 07/08/2008 at 08:53 PO Box 744

Discard: 09/07/2008 West Chester PA 19381

N-107

G3. TT			D	Dry Limit of	Dry		Dilantin
CAT	3 3	ana washara	Dry		Method	*****	Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06135	Lead	7439-92-1	173.	1.07	0.161	mg/kg	10
00111	Moisture	n.a.	7.7	0.50	0.50	%	1
	"Moisture" represents the loss 103 - 105 degrees Celsius. The as-received basis.				at		
07804	PAHs in Soil by GC/MS						
01195	Pyrene	129-00-0	< 1,800.	1,800.	360.	ug/kg	5
03761	Naphthalene	91-20-3	< 1,800.	1,800.	360.	ug/kg	5
03768	Fluorene	86-73-7	< 1,800.	1,800.	360.	ug/kg	5
03775	Phenanthrene	85-01-8	< 1,800.	1,800.	360.	ug/kg	5
03776	Anthracene	120-12-7	< 1,800.	1,800.	360.	ug/kg	5
03781	Benzo(a)anthracene	56-55-3	< 1,800.	1,800.	360.	ug/kg	5
03782	Chrysene	218-01-9	< 1,800.	1,800.	360.	ug/kg	5
03786	Benzo(b)fluoranthene	205-99-2	< 1,800.	1,800.	360.	ug/kg	5
03788	Benzo(a)pyrene	50-32-8	< 1,800.	1,800.	360.	ug/kg	5
03791	Benzo(g,h,i)perylene	191-24-2	< 1,800.	1,800.	360.	ug/kg	5
	Due to sample matrix interfere normal reporting limits were n		during the e	xtraction, the			
	Due to the sample matrix an in analysis. Therefore, the repo						
02308	UST-Leaded Soils by 8260B						
02016	Methyl Tertiary Butyl Ether	1634-04-4	< 220.	220.	22.	ug/kg	40.19
05460	Benzene	71-43-2	740.	220.	22.	ug/kg	40.19
05461	1,2-Dichloroethane	107-06-2	< 220.	220.	44.	ug/kg	40.19
05466	Toluene	108-88-3	420.	220.	44.	ug/kg	40.19
05471	1,2-Dibromoethane	106-93-4	< 220.	220.	44.	ug/kg	40.19
05474	Ethylbenzene	100-41-4	1,600.	220.	44.	ug/kg	40.19
05479	Isopropylbenzene	98-82-8	360.	220.	44.	ug/kg	40.19
06301	Xylene (Total)	1330-20-7	2,700.	220.	44.	ug/kg	40.19

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5394565 SW Group No. 1096931

N-107_1.0-2.0 Grab Soil

Philadelphia Refinery AOI-8

DUNS# COC: 0153804 N-107_1.0-2.0

Collected:06/17/2008 10:15 by SS Account Number: 10132

Submitted: 06/19/2008 16:15 SUN: Aquaterra Tech.

Reported: 07/08/2008 at 08:53 PO Box 744

Discard: 09/07/2008 West Chester PA 19381

N-107

CAT Dry Dry

CAT Dry Limit of Method Dilution

No. Analysis Name CAS Number Result Quantitation* Detection Units Factor
Limit

CAT		-		Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06135	Lead	SW-846 6020	1	06/29/2008 14:56	James R Williams II	10
00111	Moisture	SM20 2540 G	1	06/23/2008 16:35	Scott W Freisher	1
07804	PAHs in Soil by GC/MS	SW-846 8270C	1	06/24/2008 11:31	Joseph M Gambler	5
02308	UST-Leaded Soils by 8260B	SW-846 8260B	1	06/23/2008 23:12	Kelly E Brickley	40.19
06150	ICP/MS SW-846 Solid digest	SW-846 3050B	1	06/22/2008 14:30	Mirit S Shenouda	1
06171	GC/MS - Field Preserved MeOH	SW-846 5035	1	06/17/2008 10:15	Client Supplied	1
07806	BNA Soil Extraction	SW-846 3550B	1	06/22/2008 07:55	Doreen K Robles	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5394566 SW Group No. 1096931

N-99 1.0-2.0 Grab Soil

Philadelphia Refinery AOI-8

DUNS# COC: 0153804 N-99 1.0-2.0

Collected:06/17/2008 10:30 by SS Account Number: 10132

Submitted: 06/19/2008 16:15 SUN: Aquaterra Tech.

Reported: 07/08/2008 at 08:53 PO Box 744

Discard: 09/07/2008 West Chester PA 19381

N-99-

CAT No.	Analysis Name	CAS Number	Dry Result	Dry Limit of Quantitation*	Dry Method Detection Limit	Units	Dilution Factor
06135	Lead	7439-92-1	146.	1.14	0.170	mg/kg	10
00111	Moisture	n.a.	16.2	0.50	0.50	용	1
	"Moisture" represents the loss 103 - 105 degrees Celsius. The as-received basis.				at		
07804	PAHs in Soil by GC/MS						
01195	Pyrene	129-00-0	140,000.	25,000.	5,000.	ug/kg	125
03761	Naphthalene	91-20-3	53,000.	5,000.	990.	ug/kg	25
03768	Fluorene	86-73-7	78,000.	5,000.	990.	ug/kg	25
03775	Phenanthrene	85-01-8	280,000.	25,000.	5,000.	ug/kg	125
03776	Anthracene	120-12-7	64,000.	5,000.	990.	ug/kg	25
03781	Benzo(a)anthracene	56-55-3	82,000.	5,000.	990.	ug/kg	25
03782	Chrysene	218-01-9	71,000.	5,000.	990.	ug/kg	25
03786	Benzo(b)fluoranthene	205-99-2	69,000.	5,000.	990.	ug/kg	25
03788	Benzo(a)pyrene	50-32-8	61,000.	5,000.	990.	ug/kg	25
03791	Benzo(g,h,i)perylene	191-24-2	29,000.	5,000.	990.	ug/kg	25
02308	UST-Leaded Soils by 8260B						
02016	Methyl Tertiary Butyl Ether	1634-04-4	< 270.	270.	27.	ug/kg	45.79
05460	Benzene	71-43-2	< 270.	270.	27.	ug/kg	45.79
05461	1,2-Dichloroethane	107-06-2	< 270.	270.	55.	ug/kg	45.79
05466	Toluene	108-88-3	< 270.	270.	55.	ug/kg	45.79
05471	1,2-Dibromoethane	106-93-4	< 270.	270.	55.	ug/kg	45.79
05474	Ethylbenzene	100-41-4	< 270.	270.	55.	ug/kg	45.79
05479	Isopropylbenzene	98-82-8	< 270.	270.	55.	ug/kg	45.79
06301	Xylene (Total)	1330-20-7	< 270.	270.	55.	ug/kg	45.79

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5394566 SW Group No. 1096931

N-99_1.0-2.0 Grab Soil

Philadelphia Refinery AOI-8

DUNS# COC: 0153804 N-99_1.0-2.0

Collected:06/17/2008 10:30 by SS Account Number: 10132

Submitted: 06/19/2008 16:15 SUN: Aquaterra Tech.

Reported: 07/08/2008 at 08:53 PO Box 744

Discard: 09/07/2008 West Chester PA 19381

N-99-

N-99- CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06135	Lead	SW-846 6020	1	06/29/2008 14:59	James R Williams II	10
00111	Moisture	SM20 2540 G	1	06/23/2008 16:35	Scott W Freisher	1
07804	PAHs in Soil by GC/MS	SW-846 8270C	1	06/24/2008 15:33	Joseph M Gambler	25
07804	PAHs in Soil by GC/MS	SW-846 8270C	1	06/24/2008 15:57	Joseph M Gambler	125
02308	UST-Leaded Soils by 8260B	SW-846 8260B	1	06/23/2008 23:34	Kelly E Brickley	45.79
06150	ICP/MS SW-846 Solid digest	SW-846 3050B	1	06/22/2008 14:30	Mirit S Shenouda	1
06171	GC/MS - Field Preserved MeOH	SW-846 5035	1	06/17/2008 10:30	Client Supplied	1
07806	BNA Soil Extraction	SW-846 3550B	1	06/22/2008 07:55	Doreen K Robles	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5394567 SW Group No. 1096931

N-125_1.0-2.0 Grab Soil Philadelphia Refinery AOI-8

DUNS# COC: 0153804 N-125 1.0-2.0

Collected:06/17/2008 15:00 by SS Account Number: 10132

Submitted: 06/19/2008 16:15 SUN: Aquaterra Tech.

Reported: 07/08/2008 at 08:53 PO Box 744

Discard: 09/07/2008 West Chester PA 19381

N-125

				Dry	Dry		
CAT			Dry	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06135	Lead	7439-92-1	150.	1.07	0.160	mg/kg	10
00111	Moisture	n.a.	10.7	0.50	0.50	%	1
	"Moisture" represents the loss 103 - 105 degrees Celsius. The as-received basis.				at		
07804	PAHs in Soil by GC/MS						
01195	Pyrene	129-00-0	2,500.	930.	190.	ug/kg	5
03761	Naphthalene	91-20-3	< 930.	930.	190.	ug/kg	5
03768	Fluorene	86-73-7	< 930.	930.	190.	ug/kg	5
03775	Phenanthrene	85-01-8	1,600.	930.	190.	ug/kg	5
03776	Anthracene	120-12-7	< 930.	930.	190.	ug/kg	5
03781	Benzo(a)anthracene	56-55-3	2,000.	930.	190.	ug/kg	5
03782	Chrysene	218-01-9	2,100.	930.	190.	ug/kg	5
03786	Benzo(b)fluoranthene	205-99-2	1,600.	930.	190.	ug/kg	5
03788	Benzo(a)pyrene	50-32-8	1,500.	930.	190.	ug/kg	5
03791	Benzo(g,h,i)perylene	191-24-2	< 930.	930.	190.	ug/kg	5
	Due to the sample matrix an in	itial dilution	n was necessar	y to perform the			
	analysis. Therefore, the report	rting limits 1	for the GC/MS	semivolatile			
	compounds were raised.						
02308	UST-Leaded Soils by 8260B						
02016	Methyl Tertiary Butyl Ether	1634-04-4	< 230.	230.	23.	ug/kg	41.88
05460	Benzene	71-43-2	< 230.	230.	23.	ug/kg	41.88
05461	1,2-Dichloroethane	107-06-2	< 230.	230.	47.	ug/kg	41.88
05466	Toluene	108-88-3	< 230.	230.	47.	ug/kg	41.88
05471	1,2-Dibromoethane	106-93-4	< 230.	230.	47.	ug/kg	41.88
05474	Ethylbenzene	100-41-4	< 230.	230.	47.	ug/kg	41.88
05479	Isopropylbenzene	98-82-8	< 230.	230.	47.	ug/kg	41.88
06301	Xylene (Total)	1330-20-7	< 230.	230.	47.	ug/kg	41.88

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5394567 SW Group No. 1096931

N-125_1.0-2.0 Grab Soil

Philadelphia Refinery AOI-8

DUNS# COC: 0153804 N-125_1.0-2.0

Collected:06/17/2008 15:00 by SS Account Number: 10132

Submitted: 06/19/2008 16:15 SUN: Aquaterra Tech.

Reported: 07/08/2008 at 08:53 PO Box 744

Discard: 09/07/2008 West Chester PA 19381

N-125

			· ·			
CAT		-		Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06135	Lead	SW-846 6020	1	06/29/2008 15:03	James R Williams II	10
00111	Moisture	SM20 2540 G	1	06/23/2008 16:35	Scott W Freisher	1
07804	PAHs in Soil by GC/MS	SW-846 8270C	1	06/26/2008 10:38	Joseph M Gambler	5
02308	UST-Leaded Soils by 8260B	SW-846 8260B	1	06/23/2008 23:56	Kelly E Brickley	41.88
06150	ICP/MS SW-846 Solid digest	SW-846 3050B	1	06/22/2008 14:30	Mirit S Shenouda	1
06171	GC/MS - Field Preserved MeOH	SW-846 5035	1	06/17/2008 15:00	Client Supplied	1
07806	BNA Soil Extraction	SW-846 3550B	1	06/25/2008 14:45	Doreen K Robles	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 4

Quality Control Summary

Client Name: SUN: Aquaterra Tech. Group Number: 1096931

Reported: 07/08/08 at 08:53 AM

Matrix QC may not be reported if site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

Laboratory Compliance Quality Control

Analysis Name	Blank Result	Blank LOQ**	Blank MDL	Report Units	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Max
					<u> </u>			· <u></u>	
Batch number: 081726150001A Lead	<pre>Sample num < 0.100</pre>	0.100	5394557-539 0.0150	4567 mg/kg	111		82-118		
пеац	< 0.100	0.100	0.0150	ilig/ kg	TTT		02-110		
Batch number: 08173SLA026	Sample num	ber(s):	5394557-539	4558,539456	0-53945	66			
Pyrene	< 170.	170.	33.	ug/kg	101		75-115		
Naphthalene	< 170.	170.	33.	ug/kg	93		73-106		
Fluorene	< 170.	170.	33.	ug/kg	101		75-116		
Phenanthrene	< 170.	170.	33.	ug/kg	103		77-113		
Anthracene	< 170.	170.	33.	ug/kg	98		76-112		
Benzo(a) anthracene	< 170.	170.	33.	ug/kg	94		73-112		
Chrysene	< 170.	170.	33.	ug/kg	100		76-113		
Benzo(b) fluoranthene	< 170. < 170.	170. 170.	33. 33.	ug/kg	88 98		61-127		
Benzo(a)pyrene Benzo(q,h,i)perylene	< 170.	170.	33.	ug/kg ug/kg	98 98		69-122 65-122		
Belizo (g, ii, i) peryrelle	< 170.	170.	33.	ug/kg	20		65-122		
Batch number: 08175820005A	Sample num	ber(s):	5394557-539	4567					
Moisture					100		99-101		
Data da	G]	1 ()	E204E6E						
Batch number: 08177SLA026	Sample num			/1	104		75 115		
Pyrene	< 170. < 170.	170. 170.	33. 33.	ug/kg ug/kg	104 95		75-115 73-106		
Naphthalene Fluorene	< 170.	170.	33.	ug/kg ug/kg	95 107		75-116		
Phenanthrene	< 170.	170.	33.	ug/kg ug/kg	107		77-113		
Anthracene	< 170.	170.	33.	ug/kg ug/kg	98		76-112		
Benzo(a)anthracene	< 170.	170.	33.	ug/kg	96		73-112		
Chrysene	< 170.	170.	33.	ug/kg	100		76-113		
Benzo(b) fluoranthene	< 170.	170.	33.	uq/kq	84		61-127		
Benzo(a) pyrene	< 170.	170.	33.	uq/kq	95		69-122		
Benzo(g,h,i)perylene	< 170.	170.	33.	ug/kg	90		65-122		
Database 001E00ED00C	G]	1 ()	E204EE0						
Batch number: 08179SLB026	Sample num < 170.	per(s):	33.	uq/kq	104		75-115		
Pyrene Naphthalene	< 170.	170.	33.	ug/kg ug/kg	96		73-115		
Fluorene	< 170.	170.	33.	ug/kg ug/kg	107		75-116		
Phenanthrene	< 170.	170.	33.	ug/kg ug/kg	104		77-113		
Anthracene	< 170.	170.	33.	ug/kg ug/kg	100		76-112		
Benzo(a)anthracene	< 170.	170.	33.	ug/kg	97		73-112		
Chrysene	< 170.	170.	33.	ug/kg	101		76-113		
Benzo(b) fluoranthene	< 170.	170.	33.	uq/kq	84		61-127		
Benzo(a) pyrene	< 170.	170.	33.	ug/kg	93		69-122		
Benzo(g,h,i)perylene	< 170.	170.	33.	ug/kg	89		65-122		
Datab		la a sa / a \	E204EE7 E20	4567					
Batch number: R081751AA Methyl Tertiary Butyl Ether	< 250.	per(s): 250.	5394557-539- 25.	uq/kq	93	94	72-117	1	30
Benzene	< 250.	250.	25.	ug/kg ug/kg	93 97	96	84-115	1	30
1,2-Dichloroethane	< 250.	250.	50.	ug/kg ug/kg	103	103	76-135	1	30
Toluene	< 250.	250.	50.	ug/kg	102	102	81-116	0	30

^{*-} Outside of specification

- **-This limit was used in the evaluation of the final result for the blank
- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 4

Quality Control Summary

Client Name: SUN: Aquaterra Tech. Group Number: 1096931

Reported: 07/08/08 at 08:53 AM

Laboratory Compliance Quality Control

	Blank	Blank	Blank	Report	LCS	LCSD	LCS/LCSD		
Analysis Name	<u>Result</u>	LOQ * *	MDL	<u>Units</u>	%REC	%REC	<u>Limits</u>	RPD	RPD Max
1,2-Dibromoethane	< 250.	250.	50.	ug/kg	100	99	77-114	2	30
Ethylbenzene	< 250.	250.	50.	ug/kg	101	100	82-115	1	30
Isopropylbenzene	< 250.	250.	50.	ug/kg	96	95	82-110	1	30
Xvlene (Total)	< 250.	250.	50.	ua/ka	101	99	82-117	1	3.0

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

		-		-					
Analysis Name	MS %REC	MSD %REC	MS/MSD <u>Limits</u>	RPD	RPD <u>MAX</u>	BKG Conc	DUP <u>Conc</u>	DUP <u>RPD</u>	Dup RPD
Batch number: 081726150001A	Sample	number(s)	: 5394557	-539456	7 UNSP	K: P393503	BKG: P39350	3	
Lead	-29 (2)	190 (2)	75-125	7	20	44.6	45.7	2	20
Batch number: 08173SLA026	Sample	number(s)	: 5394557	-539455	8,5394	560-5394566	UNSPK: 539	4557	
Pyrene	88	111	19-162	19	30				
Naphthalene	78	91	29-140	16	30				
Fluorene	82	97	42-139	17	30				
Phenanthrene	91	106	1-181	15	30				
Anthracene	82	99	34-148	19	30				
Benzo(a)anthracene	83	111	20-156	22	30				
Chrysene	95	120	19-158	15	3.0				
Benzo(b)fluoranthene	77	99	13-161	19	30				
Benzo(a) pyrene	84	113	24-154	20	30				
Benzo(g,h,i)perylene	105	123	26-154	9	30				
Batch number: 08175820005A	Sample	number(s)	: 5394557	-539456	7 BKG	· D395348			
Moisture	Dampie	Hambel (b)	. 3331337	333130	, Dito	17.9	17.0	5	15
Batch number: 08177SLA026	Sample	number(s)	: 5394567	UNSPK:	P77LA	US			
Pyrene	64	74	19-162	6	30				
Naphthalene	74	79	29-140	6	30				
Fluorene	76	81	42-139	7	30				
Phenanthrene	67	77	1-181	9	30				
Anthracene	69	77	34-148	10	3.0				
Benzo(a) anthracene	55	67	20-156	9	30				
Chrysene	60	63	19-158	2	30				
Benzo(b) fluoranthene	48	52	13-161	2	30				
Benzo(a) pyrene	53	61	24-154	6	30				
Benzo(g,h,i)perylene	52	62	26-154	10	30				
Delizo (g, ii, i) peryrene	32	02	20 134	10	30				
Batch number: 08179SLB026	_		: 5394559			44			
Pyrene	81	63	19-162	13	30				
Naphthalene	64 (2)	60 (2)	29-140	1	30				
Fluorene	95	77	42-139	17	30				
Phenanthrene	92	74	1-181	11	30				
Anthracene	111	96	34-148	15	30				
Benzo(a)anthracene	99	80	20-156	16	30				
Chrysene	66	57	19-158	6	30				
Benzo(b)fluoranthene	82	74	13-161	11	30				
Benzo(a)pyrene	103	82	24-154	23	30				
Benzo(g,h,i)perylene	95	75	26-154	24	30				

^{*-} Outside of specification

- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

^{**-}This limit was used in the evaluation of the final result for the blank

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 3 of 4

Quality Control Summary

Client Name: SUN: Aquaterra Tech. Group Number: 1096931

Reported: 07/08/08 at 08:53 AM

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

MS MS/MSD BKG DUP Dup RPD Analysis Name %REC %REC <u>Limits</u> RPD MAX Conc Conc RPD Max

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: PAHs in Soil by GC/MS

Batch number: 08173SLA026

Nitrobenzene-d5		2-Fluorobiphenyl	Terphenyl-d14				
5394557	81	90	89				
5394558	69	75	74				
5394560	75	80	76				
5394561	87	91	95				
5394562	83	88	86				
5394563	86	91	91				
5394564	77	84	82				
5394565	78	84	81				
5394566	77	88	91				
Blank	85	90	92				
LCS	93	98	97				
MS	79	84	83				
MSD	91	94	95				
Limits:	49-120	55-117	43-131				

Analysis Name: PAHs in Soil by GC/MS Batch number: 08177SLA026

	Nitrobenzene-d5	2-Fluorobiphenyl	Terphenyl-d14	
5394567	87	95	95	
Blank	89	91	95	
LCS	95	93	98	
MS	74	77	75	
MSD	75	78	78	
Limits:	49-120	55-117	43-131	

Analysis Name: PAHs in Soil by GC/MS

Batch number: 08179SLB026

	Nitrobenzene-d5	2-Fluorobiphenyl	Terphenyl-d14	
5394559	71	72	69	—
Blank	102	100	102	
LCS	98	95	97	
MS	95	93	91	
MSD	84	83	79	
Limits:	49-120	55-117	43-131	—

*- Outside of specification

- **-This limit was used in the evaluation of the final result for the blank
- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 4 of 4

Quality Control Summary

Client Name: SUN: Aquaterra Tech. Group Number: 1096931

Reported: 07/08/08 at 08:53 AM

Surrogate Quality Control

Analysis Name: UST-Leaded Soils by 8260B Batch number: R081751AA

	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzen
5394557	73	72	75	66*
5394558	58*	58*	48*	49*
5394559	65*	68*	64*	60*
5394560	68*	67*	68*	63*
5394561	75	76	78	74
5394562	79	79	80	73
5394563	82	84	85	78
5394564	77	77	79	72
5394565	76	76	74	71
5394566	74	74	75	70
5394567	78	78	79	75
Blank	97	98	100	94
LCS	92	90	96	91
LCSD	90	90	94	90
Limits:	71-114	70-109	70-123	70-111

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Analysis Request/ Environmental Services Chain of Custody

For Lancaster Laboratories use only

Acct. # 10132 Group# 1096931 Sample # 5394557-67 COC # 0153804

Please print. Instructions on reverse side correspond with circled numbers

`-(1) Client: SUN-AQUATERRA					Mateix		respond w	(5) /	inalyses	Requ			For Lab Use Only FSC:		
	_			. <u> </u>	_		-(4)		Pro	eservation	on Coo	les		SCR#:		
	Project Name/#: PHILA REF ACT-	-8pwsid	#:			2.00			-		-	 		Preservation Code:	5	
	Project Manager: T. DOERR		·		1000			33						H=HCl T=Thios		(6)
					- [244	. 2	£2						N=HNO ₃ B=NaO S=H ₂ SO ₄ O=Othe		3
	Sampler: S.SYKES	Quote #	#:		_		9	<u>)</u>					1 1			- 11
	Name of state where samples were collected	:PA		Share &	10		13		İ		İ	1		+ PER T. DO		2 3
0				(3)	8		13	ţ						LANCASTER WI		(
1	4) Francisco	Date .	Time	4		3	8 8	75						FOLLOW ANAL TABLE.	15ES 0	h [3]
	Sarupte Identification	. Collecter	Collected	16	8		E .	916					1 1	Remarks 75	6-20-0	හි
	N-129_1.0-2.0	6/17/08	800	×	X			×				 				0.000
	N-126-1.0-2.0	0111108		12	ļ	-	_ 2		<u> </u>	 			<u> </u>	* Analyses	pec to	16b
			810	X	\(\chi_{\text{\chi}} \)	1	2	ン	<u> </u>					provide	a l	, j
	N-109-1.0-2.0		820	X		1	2	$ \chi $						7.0		
	N-131-1.0-2.0	1 1	240	X	X	1	2	X						w Plc Co	- <u> </u>	
	N-119_1,0-2,0		900	X		1			-	+	+		+	# Pls Copy	Kevi	19
						-	2	7		+			1 1	Martin &	2050	1 O_
	BH-08-01_1.0-2.0		930_	7	X		2	X	1					Langen		
	N-104_1,0-2.0		945	X			72	8								
ŀ	N-105_1,0-2,0	· 	1000	1	X		2	X						+0m04.70	20	
	N-107-1,0-2.0		1015	5	<u>ر</u> ا		2		 	 	+-	L		TV1194.1.	<u>U</u>	
	N-99 _ 1.0-2.0		1030	3	-13	-	-	3 -					1		·	
6	Turnaround Time Requested (TAT) (please	circle) Norma	1 Duch					X	<u>.l</u>	<u> </u>						
Ч	(Rush TAT is subject to Lancaster Laboratories ap	proval and sturbe	RUSII.	_ [F	Relinqui			1_		Date	1	Receive	d by:		Date	Time (9
	Date results are needed:	provide dita davorid	·go.)	-	<u> </u>	, 32 m	<u> </u>	GUATER	RA	6/18/08	1730	AQ	MIE	ARA FRIDGE	6/18/0	1730
ı	Rush results requested by (please circle):	Phone Fax	E-mail	F	Relinqui	shed by	y:	_		Date	Time	Receive	by://	/ ///	Data	
	Phone #: Fax #:				ATA	PUl	KE	Λ		499	-1500	Kisa	M	1 Styles	relato	/300
\prec	E-mail address:			F	Relingui			// 		Date		Receive	ud hv:/1		Date	Time
(8)	Data Package Options (please circle if required	d) SD	G Complete?	╌┼	Don	Xi	1 2	LA	l-	[6/c/.	1300		٧,	LV in 1	1 1	; [
	Type I (validation/NJ Reg) TX TRRP-13	Ye		- 1-/	Reli nqui	L) [/L shed b		THU	Lyrva	Date	<u></u>	V 10	~~	The G	1/	1300
		RCP			4		. //	_	11	4 / I		Receive	o Da		Date	Time
	T D / /OLD COLIN	(MS/MSD/Dup)?	Yes No	-	<u>ر</u>		fer	ec	6//	9/08						
	() yes made as sample and	submit triplicate volume.) equired? Yes / No			Relinqui	snea by	/: 			/Date	Time	Receive	d by:	dia Una.	Date	Time
L		ster Laboratories.										T)0	tte	. Wartane o	119108	16:15

Analysis Request/Environmental Services Chain of Custody

For Lancaster Laboratories use only Acct. # 10137 Group# 1096931 Sample # 5394557-67 COC # 0153803

Please print. Instructions on reverse side correspond with circled numbers. For Lab Use Only (5) Analyses Requested FSC: Client: SUN- AQUATERRA Acct. #: **Preservation Codes** SCR#: Project Name/#: PHILA REF AODER PWSID #: Preservation Codes H=HCI T=Thiosulfate Project Manager: T. POERR P.O.#: _____ N=HNO₃ B=NaOH S=H₂SO₄ O=Other Sampler: S. SYKES Quote #: Name of state where samples were collected: Sample kientification Collected Remarks N-125_1,0-2,0 6117/08 1500 # Analyses per toble & Pls copy Keuin Turnaround Time Requested (TAT) (please circle). Normal Relinquished by: Date Time Received by: |Time (9 Date (Rush TAT is subject to Lancaster Laboratories approval and surcharge.) Sen Day /ADVATIGABLE 6/18/08 AQUATERRA FRIDGE 6/18/102 1730 Date results are needed: Relinquished by: Rush results requested by (please circle): Phone Fax Date E-mail 1300 Phone #: Fax #: E-mail address: Time Data Package Options (please circle if required) SDG Complete? Type I (validation/NJ Reg) TX TRRP-13 Yes Relinauished by Type II (Tier II) MA MCP CT RCP 19/08/16/5 Type III (Reduced NJ) Site-specific QC (MS/MSD/Dup)? Yes No. Type IV (CLP SOW) Nate Time Received by: Relinguished by: (If yes, indicate QC sample and submit triplicate volume.) Date Time Type VI (Raw Data Only) internal COC Required? Yes / No. Atte XI 6/19/08/14

Lancaster Laboratories Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

N.D.	none detected	BMQL	Below Minimum Quantitation Level
TNTC	Too Numerous To Count	MPN	Most Probable Number
IU	International Units	CP Units	cobalt-chloroplatinate units
umhos/cm	micromhos/cm	NTU	nephelometric turbidity units
С	degrees Celsius	F	degrees Fahrenheit
Cal	(diet) calories	lb.	pound(s)
meq	milliequivalents	kg	kilogram(s)
g	gram(s)	mg	milligram(s)
ug	microgram(s)	I	liter(s)
ml	milliliter(s)	ul	microliter(s)
m3	cubic meter(s)	fib >5 um/ml	fibers greater than 5 microns in length per ml

- < less than The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.
- > greater than
- ppm parts per million One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.

Inorganic Qualifiers

- ppb parts per billion
- **Dry weight**Results printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture.

U.S. EPA data qualifiers:

•	lifier	(uu	9	 u	, ı ç	٠,

A B C D E	TIC is a possible aldol-condensation product Analyte was also detected in the blank Pesticide result confirmed by GC/MS Compound quatitated on a diluted sample Concentration exceeds the calibration range of the instrument	B E M N S	Value is <crdl, (msa)="" additions="" amount="" but="" calculation<="" control="" due="" duplicate="" estimated="" for="" injection="" interference="" limits="" met="" method="" not="" of="" precision="" spike="" standard="" th="" to="" used="" within="" ≥idl=""></crdl,>
J	Estimated value	U	Compound was not detected
N	Presumptive evidence of a compound (TICs only)	W	Post digestion spike out of control limits
Р	Concentration difference between primary and	*	Duplicate analysis not within control limits
	confirmation columns >25%	+	Correlation coefficient for MSA < 0.995
U	Compound was not detected		
X,Y,Z	Defined in case narrative		

Analytical test results for methods listed on the laboratories' accreditation scope meet all requirements of NELAC unless otherwise noted under the individual analysis.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

WARRANTY AND LIMITS OF LIABILITY – In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL LANCASTER LABORATORIES BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF LANCASTER LABORATORIES AND (B) WHETHER LANCASTER LABORATORIES HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Lancaster Laboratories which includes any conditions that vary from the Standard Terms and Conditions of Lancaster Laboratories and we hereby object to any conflicting terms contained in any acceptance or order submitted by client.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

ANALYTICAL RESULTS

Prepared for:

SUN: Aquaterra Tech. PO Box 744 West Chester PA 19381

610-431-5733

Prepared by:

Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425

SAMPLE GROUP

The sample group for this submittal is 1099596. Samples arrived at the laboratory on Tuesday, July 08, 2008. The PO# for this group is PHILADELPHIA.

Client DescriptionLancaster Labs NumberBH-08-32_0.0-2.0 Grab Soil5409889

ELECTRONIC SUN: Aquaterra Tech. Attn: Kevin Martin

COPY TO

ELECTRONIC Langan Attn: Joseph Catricks

COPY TO

ELECTRONIC SUN: Aquaterra Tech. Attn: Tiffani Doerr

COPY TO

ELECTRONIC LLI Attn: EDD Group

COPY TO

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Questions? Contact your Client Services Representative Jessica A Heun at (717) 656-2300

Respectfully Submitted,

Robert Strocko Jr.
Manager

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5409889 SW Group No. 1099596

BH-08-32_0.0-2.0 Grab Soil Philadelphia Refinery AOI-8 DUNS# COC: 0334 BH-08-32_0.0-2.0

Collected: 07/03/2008 11:00 by TD Account Number: 10132

Submitted: 07/08/2008 18:15 SUN: Aquaterra Tech.

Reported: 07/16/2008 at 17:26 PO Box 744

Discard: 09/15/2008 West Chester PA 19381

AOI08

				Dry	Dry		
CAT			Dry	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06135	Lead	7439-92-1	128.	1.01	0.152	mg/kg	10
00111	Moisture	n.a.	3.2	0.50	0.50	%	1
	"Moisture" represents the loss 103 - 105 degrees Celsius. The as-received basis.				at		
07804	PAHs in Soil by GC/MS						
01195	Pyrene	129-00-0	1,600.	170.	34.	ug/kg	1
03761	Naphthalene	91-20-3	< 170.	170.	34.	ug/kg	1
03768	Fluorene	86-73-7	< 170.	170.	34.	ug/kg	1
03775	Phenanthrene	85-01-8	1,400.	170.	34.	ug/kg	1
03776	Anthracene	120-12-7	350.	170.	34.	ug/kg	1
03781	Benzo(a)anthracene	56-55-3	920.	170.	34.	ug/kg	1
03782	Chrysene	218-01-9	950.	170.	34.	ug/kg	1
03786	Benzo(b)fluoranthene	205-99-2	1,200.	170.	34.	ug/kg	1
03788	Benzo(a)pyrene	50-32-8	900.	170.	34.	ug/kg	1
03791	Benzo(g,h,i)perylene	191-24-2	730.	170.	34.	ug/kg	1
02308	UST-Leaded Soils by 8260B						
02016	Methyl Tertiary Butyl Ether	1634-04-4	< 300.	300.	30.	ug/kg	57.34
05460	Benzene	71-43-2	< 300.	300.	30.	ug/kg	57.34
05461	1,2-Dichloroethane	107-06-2	< 300.	300.	59.	ug/kg	57.34
05466	Toluene	108-88-3	< 300.	300.	59.	ug/kg	57.34
05471	1,2-Dibromoethane	106-93-4	< 300.	300.	59.	ug/kg	57.34
05474	Ethylbenzene	100-41-4	< 300.	300.	59.	ug/kg	57.34
05479	Isopropylbenzene	98-82-8	< 300.	300.	59.	ug/kg	57.34
06301	Xylene (Total)	1330-20-7	< 300.	300.	59.	ug/kg	57.34

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

^{*=}This limit was used in the evaluation of the final result

West Chester PA 19381

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681• www.lancasterlabs.com

Page 2 of 2

Group No. 1099596 Lancaster Laboratories Sample No. 5409889 SW

BH-08-32_0.0-2.0 Grab Soil Philadelphia Refinery AOI-8 DUNS# COC: 0334 BH-08-32_0.0-2.0

Collected:07/03/2008 11:00 by TD Account Number: 10132

Submitted: 07/08/2008 18:15 SUN: Aquaterra Tech.

Reported: 07/16/2008 at 17:26 PO Box 744

Discard: 09/15/2008

 $\Lambda \cap T \cap Q$

CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06135	Lead	SW-846 6020	1	07/14/2008 08:31	David K Beck	10
00111	Moisture	SM20 2540 G	1	07/10/2008 15:35	Scott W Freisher	1
07804	PAHs in Soil by GC/MS	SW-846 8270C	1	07/10/2008 16:52	Joseph M Gambler	1
02308	UST-Leaded Soils by 8260B	SW-846 8260B	1	07/15/2008 15:07	Nicholas R Rossi	57.34
06150	ICP/MS SW-846 Solid digest	SW-846 3050B	1	07/13/2008 20:45	Annamaria Stipkovits	1
06171	GC/MS - Field Preserved MeOH	SW-846 5035A	1	07/03/2008 11:00	Client Supplied	1
07806	BNA Soil Extraction	SW-846 3550B	1	07/09/2008 15:20	Doreen K Robles	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Quality Control Summary

Client Name: SUN: Aquaterra Tech. Group Number: 1099596

Reported: 07/16/08 at 05:26 PM

Matrix QC may not be reported if site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

Laboratory Compliance Quality Control

Analysis Name	Blank <u>Result</u>	Blank <u>LOQ**</u>	Blank <u>MDL</u>	Report <u>Units</u>	LCS %REC	LCSD %REC	LCS/LCSD <u>Limits</u>	RPD	RPD Max
Batch number: 08191SLB026	Sample num								
Pyrene	< 170.	170.	33.	ug/kg	96		75-115		
Naphthalene	< 170.	170.	33.	ug/kg	84		73-106		
Fluorene	< 170.	170.	33.	ug/kg	85		75-116		
Phenanthrene	< 170.	170.	33.	ug/kg	92		77-113		
Anthracene	< 170.	170.	33.	ug/kg	88		76-112		
Benzo(a) anthracene	< 170.	170.	33.	ug/kg	87		73-112		
Chrysene	< 170.	170.	33.	ug/kg	89		76-113		
Benzo(b) fluoranthene	< 170.	170.	33.	ug/kg	80		61-127		
Benzo(a) pyrene	< 170. < 170.	170. 170.	33. 33.	ug/kg	86 83		69-122 65-122		
Benzo(g,h,i)perylene	< 170.	170.	33.	ug/kg	83		65-122		
Batch number: 08192820006A	Sample numi	ber(s): 54	109889						
Moisture	-				100		99-101		
Batch number: 081936150001A	Sample numi	her(s)· 54	109889						
Lead	< 0.100	0.100	0.0150	mg/kg	105		82-118		
Batch number: R081971AA		h (-)	100000						
Methyl Tertiary Butyl Ether	Sample numi	250.	25.	ug/kg	95	95	72-117	1	30
Benzene	< 250.	250.	25.	ug/kg ug/kg	98	98	84-115	0	30
1,2-Dichloroethane	< 250.	250.	50.	ug/kg ug/kg	106	106	76-135	0	30
Toluene	< 250.	250.	50.	ug/kg ug/kg	101	99	81-116	2	30
1,2-Dibromoethane	< 250.	250.	50.	ug/kg ug/kg	98	98	77-114	1	30
Ethylbenzene	< 250.	250.	50.	ug/kg	99	97	82-115	2	30
Isopropylbenzene	< 250.	250.	50.	ug/kg	94	92	82-110	2	30
Xylene (Total)	< 250.	250.	50.	ug/kg	99	97	82-117	2	30
11/10110 (10001)	. 255.	250.	50.	49/119	22	٠,	02 117	_	50

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

Analysis Name	MS %REC	MSD %REC	MS/MSD <u>Limits</u>	RPD	RPD <u>MAX</u>	BKG Conc	DUP Conc	DUP <u>RPD</u>	Dup RPD <u>Max</u>
Batch number: 08191SLB026	Sample	number(s)	: 5409889	UNSPK:	54098	39			
Pyrene	102	253*	19-162	56*	30				
Naphthalene	85	94	29-140	9	30				
Fluorene	87	102	42-139	14	30				
Phenanthrene	105	270*	1-181	62*	30				
Anthracene	91	125	34-148	27	30				
Benzo(a)anthracene	90	153	20-156	36*	30				
Chrysene	84	145	19-158	36*	30				
Benzo(b)fluoranthene	66	145	13-161	45*	30				
Benzo(a)pyrene	89	140	24-154	31*	30				

- *- Outside of specification
- **-This limit was used in the evaluation of the final result for the blank
- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Quality Control Summary

Client Name: SUN: Aquaterra Tech. Group Number: 1099596

Reported: 07/16/08 at 05:26 PM

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

Analysis Name Benzo(g,h,i)perylene	MS <u>%REC</u> 85	MSD %REC 121	MS/MSD Limits 26-154	<u>RPD</u> 25	RPD <u>MAX</u> 30	BKG <u>Conc</u>	DUP <u>Conc</u>	DUP <u>RPD</u>	Dup RPD <u>Max</u>
Batch number: 08192820006A Moisture	Sample	number(s)	: 5409889	BKG:	P41043	5 27.3	27.4	1	15
Batch number: 081936150001A Lead	Sample -279 (2)		: 5409889 75-125		: P4111 20	78 BKG: P 67.1	411178 61.8	8	20

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: PAHs in Soil by GC/MS Batch number: 08191SLB026 Nitrobenzene-d5

200011 110	Nitrobenzene-d5	2-Fluorobiphenyl	Terphenyl-d14	
5409889	92	95	99	
Blank	89	88	101	
LCS	92	91	97	
MS	88	91	96	
MSD	98	99	106	
Limits	49-120	55-117	43-131	

Analysis Name: UST-Leaded Soils by 8260B Batch number: R081971AA

	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
5409889	86	88	83	78
Blank	93	96	94	87
LCS	96	95	98	92
LCSD	96	96	95	90
Limits:	71-114	70-109	70-123	70-111

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

PA UST Analysis Request/Chain of Custody

Acct. #: 16187	For Lancaster Laboratories use only Group #: 1099596 Sample #:_	<u> 5429889</u>
	SCR #:	

Consultant/Office #: Aquatera			Matri	x		,	Ana	lyse	s Re	ques	ted	List tota	number	of containe	ers	
Consultant Prj. Mgr.: UTDECC					l	ŀ	T	T		Ī	1	T	T T	sa ca i aariaa.iy	363	
Consultant Phone #: (11)-431-4733 Fax #:				П	w	ľ										
Site Name: Sun Philly Polymony Site Address:	-ACI-8	-			ainer	۱	+					+-				
Site Address:			Potable NPDES		Contr	Se l	<u>.</u>		_ {	(7)	١,					
Sampler:				1	r of	ပ္နီ	Saso	Solin		N A	ř	5				
		osite		Air	Total Number of Containers	Number of EnCores	PA Unleaded Gasoline	PA Leaded Gasoline	PA Kerosene (No. 1)	PA Flied Oil No. 4 & 6.		SZ CC		20		
Sample identification Date Collected	Time g Collected O	Soil	Water	□ ō	Total		PA	PALe	PA Ker	PA Fig	1 40		8-	7		Remarks
BH-08-32 _ 0.0-2.0 1/3/08	1100 X	$\exists \lambda$			2		T			┪		TX	ХIX	7	7	X) Specific
						T		Ť			—					analyte 18st
					7	Ī	1	\top	1		┪,	\top		1		prortaged to
		1				T	1	\top		\top	+-			1		Lancaster
								1	7	+-	\top			+ 1	\dashv	(Fessica now)
						Ť	\top	\top	+	\top	+	1				,
						7	1	\top		+	\top		7	11	- .	8) Specific analyte that provided to Lancaster (Justia Huen)
						1	┪	+	+	\top	\dagger	+-		† †	\dashv	1x1/1g/1
						1	\top			1	1				-	
	1					1		+	+	\top	+		-		_	
Turnaround Time: STD (7-10) RUSH	Relinquis ed b	r.)		7			1	Da	yte,	Tim	1e	Recei	ved by:	<u></u>		Date Time
The state of the s		<u> </u>	<u>[</u>						30	13	CO	A	101	Ju	<i>y-</i> a	Arida 13/08 1300
Comments:	Relinquished by	,	- 1	\sim				_ Pa	#e	Tim	ne	Recei	ved by:	VI	1	Date Time
	Relipquished by	17	H	/-				//3/ Da		/ <u>ሃ</u> ቦ Tim		Recei	ved by:	M	4	7/8/01/90
	NO21	XA	Z/S	, 2./)			7/8/	101	1400	ا د	19	7. C	X	14	Batt Time
	Relinquished by	}	Ke	X	~	7		D	18	STIT.	3		ved by:		ŽΥ	16 706

Lancaster Laboratories, Inc., 2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 (717) 656-2300 Copies: White and yellow should accompany samples to Lancaster Laboratories. The pink copy should be retained by the client.

4400 Rev. 4/26/05

Lancaster Laboratories Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

N.D.	none detected	BMQL	Below Minimum Quantitation Level
TNTC	Too Numerous To Count	MPN	Most Probable Number
IU	International Units	CP Units	cobalt-chloroplatinate units
umhos/cm	micromhos/cm	NTU	nephelometric turbidity units
С	degrees Celsius	F	degrees Fahrenheit
Cal	(diet) calories	lb.	pound(s)
meq	milliequivalents	kg	kilogram(s)
g	gram(s)	mg	milligram(s)
ug	microgram(s)	1	liter(s)
ml	milliliter(s)	ul	microliter(s)
m3	cubic meter(s)	fib >5 um/ml	fibers greater than 5 microns in length per ml

- < less than The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.
- > greater than
- ppm parts per million One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.

Inorganic Qualifiers

- ppb parts per billion
- **Dry weight**Results printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture.

U.S. EPA data qualifiers:

9	lifier	(uu	9	 u	" 9	•

A B C D E	TIC is a possible aldol-condensation product Analyte was also detected in the blank Pesticide result confirmed by GC/MS Compound quatitated on a diluted sample Concentration exceeds the calibration range of the instrument	B E M N S	Value is <crdl, (msa)="" additions="" amount="" but="" calculation<="" control="" due="" duplicate="" estimated="" for="" injection="" interference="" limits="" met="" method="" not="" of="" precision="" spike="" standard="" th="" to="" used="" within="" ≥idl=""></crdl,>
J	Estimated value	U	Compound was not detected
N	Presumptive evidence of a compound (TICs only)	W	Post digestion spike out of control limits
Р	Concentration difference between primary and	*	Duplicate analysis not within control limits
	confirmation columns >25%	+	Correlation coefficient for MSA < 0.995
U	Compound was not detected		
X,Y,Z	Defined in case narrative		

Analytical test results for methods listed on the laboratories' accreditation scope meet all requirements of NELAC unless otherwise noted under the individual analysis.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

WARRANTY AND LIMITS OF LIABILITY – In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL LANCASTER LABORATORIES BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF LANCASTER LABORATORIES AND (B) WHETHER LANCASTER LABORATORIES HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Lancaster Laboratories which includes any conditions that vary from the Standard Terms and Conditions of Lancaster Laboratories and we hereby object to any conflicting terms contained in any acceptance or order submitted by client.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

ANALYTICAL RESULTS

Prepared for:

SUN: Aquaterra Tech. PO Box 744 West Chester PA 19381

610-431-5733

Prepared by:

Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425

SAMPLE GROUP

The sample group for this submittal is 1100643. Samples arrived at the laboratory on Tuesday, July 15, 2008. The PO# for this group is PHILADELPHIA.

Client Description	Lancaster Labs Number
N-100 Grab Water	5415095
N-98 Grab Water	5415096
N-106 Grab Water	5415097

ELECTRONIC SUN: Aquaterra Tech. Attn: Kevin Martin

COPY TO

ELECTRONIC Langan Attn: Joseph Catricks

COPY TO

ELECTRONIC SUN: Aquaterra Tech. Attn: Tiffani Doerr

COPY TO

ELECTRONIC LLI Attn: EDD Group

COPY TO

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Questions? Contact your Client Services Representative Jessica A Heun at (717) 656-2300

Respectfully Submitted,

Marla S. Lord Senior Specialist

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5415095 WW Group No. 1100643

N-100 Grab Water

Philadelphia Refinery AOI-8

DUNS# COC: 336 N-100

Collected: 07/14/2008 11:30 by TD Account Number: 10132

Submitted: 07/15/2008 16:20 SUN: Aquaterra Tech.

Reported: 07/24/2008 at 08:49 PO Box 744

Discard: 09/23/2008 West Chester PA 19381

N-100

				As Received	As Received		
CAT			As Received	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06035	Lead	7439-92-1	< 0.0010	0.0010	0.000050	mg/l	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.029	0.029	0.0098	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	< 5.	5.	1.	ug/l	1
03956	Fluorene	86-73-7	< 5.	5.	1.	ug/l	1
03963	Phenanthrene	85-01-8	< 5.	5.	1.	ug/l	1
03967	Pyrene	129-00-0	< 5.	5.	1.	ug/l	1
03971	Chrysene	218-01-9	< 5.	5.	1.	ug/l	1
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 1.	1.	0.5	ug/l	1
05401	Benzene	71-43-2	< 1.	1.	0.5	ug/l	1
05402	1,2-Dichloroethane	107-06-2	< 1.	1.	0.5	ug/l	1
05407	Toluene	108-88-3	< 1.	1.	0.5	ug/l	1
05415	Ethylbenzene	100-41-4	< 1.	1.	0.5	ug/l	1
05420	Isopropylbenzene	98-82-8	< 2.	2.	0.5	ug/l	1
06310	Xylene (Total)	1330-20-7	< 1.	1.	0.5	ug/l	1

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09 This sample was filtered in the lab for dissolved metals. Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5415095 WW Group No. 1100643

N-100 Grab Water

Philadelphia Refinery AOI-8

DUNS# COC: 336 N-100

Collected: 07/14/2008 11:30 by TD Account Number: 10132

Submitted: 07/15/2008 16:20 SUN: Aquaterra Tech.

Reported: 07/24/2008 at 08:49 PO Box 744

Discard: 09/23/2008 West Chester PA 19381

N-1	L O O
-----	-------

CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06035	Lead	SW-846 6020	1	07/18/2008 19:04	James R Williams II	1
07879	EDB in Wastewater	SW-846 8011	1	07/18/2008 01:59	James H Place	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	07/18/2008 22:08	Ryan P Byrne	1
02302	UST-Waters by 8260B	SW-846 8260B	1	07/18/2008 23:16	Kelly E Brickley	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	07/18/2008 23:16	Kelly E Brickley	1
06050	ICP/MS SW-846 Water	SW-846 3010A modified	1	07/17/2008 07:45	Suzette L Lehman	1
07786	EDB Extraction	SW-846 8011	1	07/17/2008 10:00	Deborah M Zimmerman	1
07807	BNA Water Extraction	SW-846 3510C	1	07/17/2008 09:20	Cynthia J Stoltzfus	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5415096 WW Group No. 1100643

N-98 Grab Water

Philadelphia Refinery AOI-8

DUNS# COC: 336 N-98

Collected: 07/14/2008 12:30 by TD Account Number: 10132

Submitted: 07/15/2008 16:20 SUN: Aquaterra Tech.

Reported: 07/24/2008 at 08:49 PO Box 744

Discard: 09/23/2008 West Chester PA 19381

N--98

				As Received	As Received		
CAT			As Received	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06035	Lead	7439-92-1	< 0.0010	0.0010	0.000050	mg/l	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.030	0.030	0.0099	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	< 5.	5.	0.9	ug/l	1
03956	Fluorene	86-73-7	< 5.	5.	0.9	ug/l	1
03963	Phenanthrene	85-01-8	< 5.	5.	0.9	ug/l	1
03967	Pyrene	129-00-0	< 5.	5.	0.9	ug/l	1
03971	Chrysene	218-01-9	< 5.	5.	0.9	ug/l	1
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 1.	1.	0.5	ug/l	1
05401	Benzene	71-43-2	< 1.	1.	0.5	ug/l	1
05402	1,2-Dichloroethane	107-06-2	< 1.	1.	0.5	ug/l	1
05407	Toluene	108-88-3	< 1.	1.	0.5	ug/l	1
05415	Ethylbenzene	100-41-4	< 1.	1.	0.5	ug/l	1
05420	Isopropylbenzene	98-82-8	< 2.	2.	0.5	ug/l	1
06310	Xylene (Total)	1330-20-7	< 1.	1.	0.5	ug/l	1

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09 This sample was filtered in the lab for dissolved metals. Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5415096 WW Group No. 1100643

N-98 Grab Water

Philadelphia Refinery AOI-8

DUNS# COC: 336 N-98

Collected: 07/14/2008 12:30 by TD Account Number: 10132

Submitted: 07/15/2008 16:20 SUN: Aquaterra Tech.

Reported: 07/24/2008 at 08:49 PO Box 744

Discard: 09/23/2008 West Chester PA 19381

N98 CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06035	Lead	SW-846 6020	1	07/18/2008 19:13	James R Williams II	1
07879	EDB in Wastewater	SW-846 8011	1	07/18/2008 02:59	James H Place	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	07/18/2008 22:31	Ryan P Byrne	1
02302	UST-Waters by 8260B	SW-846 8260B	1	07/18/2008 23:43	Kelly E Brickley	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	07/18/2008 23:43	Kelly E Brickley	1
06050	ICP/MS SW-846 Water	SW-846 3010A modified	d 1	07/17/2008 07:45	Suzette L Lehman	1
07786	EDB Extraction	SW-846 8011	1	07/17/2008 10:00	Deborah M Zimmerman	1
07807	BNA Water Extraction	SW-846 3510C	1	07/17/2008 09:20	Cynthia J Stoltzfus	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5415097 WW Group No. 1100643

N-106 Grab Water

Philadelphia Refinery AOI-8

DUNS# COC: 336 N-106

Collected: 07/14/2008 13:00 by TD Account Number: 10132

Submitted: 07/15/2008 16:20 SUN: Aquaterra Tech.

Reported: 07/24/2008 at 08:49 PO Box 744

Discard: 09/23/2008 West Chester PA 19381

N-106

				As Received	As Received		
CAT			As Received	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06035	Lead	7439-92-1	< 0.0010	0.0010	0.000050	mg/l	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.029	0.029	0.0098	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	20.	5.	1.	ug/l	1
03956	Fluorene	86-73-7	< 5.	5.	1.	ug/l	1
03963	Phenanthrene	85-01-8	< 5.	5.	1.	ug/l	1
03967	Pyrene	129-00-0	< 5.	5.	1.	ug/l	1
03971	Chrysene	218-01-9	< 5.	5.	1.	ug/l	1
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 2.	2.	1.	ug/l	2
05401	Benzene	71-43-2	410.	20.	10.	ug/l	20
05402	1,2-Dichloroethane	107-06-2	< 2.	2.	1.	ug/l	2
05407	Toluene	108-88-3	60.	2.	1.	ug/l	2
05415	Ethylbenzene	100-41-4	22.	2.	1.	ug/l	2
05420	Isopropylbenzene	98-82-8	57.	4.	1.	ug/l	2
06310	Xylene (Total)	1330-20-7	120.	2.	1.	ug/l	2

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09 This sample was filtered in the lab for dissolved metals. Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5415097 WW Group No. 1100643

N-106 Grab Water

Philadelphia Refinery AOI-8

DUNS# COC: 336 N-106

Collected: 07/14/2008 13:00 by TD Account Number: 10132

Submitted: 07/15/2008 16:20 SUN: Aquaterra Tech.

Reported: 07/24/2008 at 08:49 PO Box 744

Discard: 09/23/2008 West Chester PA 19381

N-106 CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06035	Lead	SW-846 6020	1	07/18/2008 19:16	James R Williams II	1
07879	EDB in Wastewater	SW-846 8011	1	07/18/2008 03:29	James H Place	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	07/18/2008 22:55	Ryan P Byrne	1
02302	UST-Waters by 8260B	SW-846 8260B	1	07/19/2008 00:36	Kelly E Brickley	2
02302	UST-Waters by 8260B	SW-846 8260B	1	07/19/2008 01:03	Kelly E Brickley	20
01163	GC/MS VOA Water Prep	SW-846 5030B	1	07/19/2008 00:36	Kelly E Brickley	2
01163	GC/MS VOA Water Prep	SW-846 5030B	2	07/19/2008 01:03	Kelly E Brickley	20
06050	ICP/MS SW-846 Water	SW-846 3010A modified	l 1	07/17/2008 07:45	Suzette L Lehman	1
07786	EDB Extraction	SW-846 8011	1	07/17/2008 10:00	Deborah M Zimmerman	1
07807	BNA Water Extraction	SW-846 3510C	1	07/17/2008 09:20	Cynthia J Stoltzfus	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Quality Control Summary

Client Name: SUN: Aquaterra Tech. Group Number: 1100643

Reported: 07/24/08 at 08:49 AM

Matrix QC may not be reported if site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

Laboratory Compliance Quality Control

Analysis Name	Blank <u>Result</u>	Blank LOQ**	Blank <u>MDL</u>	Report <u>Units</u>	LCS %REC	LCSD %REC	LCS/LCSD <u>Limits</u>	RPD	RPD Max
Batch number: 081980022A Ethylene dibromide	Sample number 0.030	oer(s): 54 0.030	15095-541 0.010	5097 ug/l	92	92	60-140	0	20
Batch number: 081986050001A Lead	Sample number 0.0010	oer(s): 54 0.0010	0.00005 0	5097 mg/l	110		90-115		
Batch number: 08198WAJ026	Sample numb	ber(s): 54	15095-541	5097					
Naphthalene	< 5.	5.	1.	uq/l	100	94	77-107	6	30
Fluorene	< 5.	5.	1.	ug/l	106	107	82-113	1	30
Phenanthrene	< 5.	5.	1.	ug/l	106	102	83-112	4	30
Pyrene	< 5.	5.	1.	ug/l	97	94	80-115	3	30
Chrysene	< 5.	5.	1.	ug/l	106	106	82-112	0	30
Batch number: P082003AA	Sample numb	ber(s): 54	15095-541	5097					
Methyl Tertiary Butyl Ether	< 1.	1.	0.5	ug/l	91	95	73-119	4	30
Benzene	< 1.	1.	0.5	ug/l	90	92	78-119	2	30
1,2-Dichloroethane	< 1.	1.	0.5	ug/l	91	94	69-135	3	30
Toluene	< 1.	1.	0.5	ug/l	89	92	85-115	4	30
Ethylbenzene	< 1.	1.	0.5	ug/l	88	90	82-119	3	30
Isopropylbenzene	< 2.	2.	0.5	ug/l	87	90	80-113	3	30
Xylene (Total)	< 1.	1.	0.5	ug/l	88	92	83-113	4	30

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

Analysis Name	MS <u>%REC</u>	MSD %REC	MS/MSD <u>Limits</u>	RPD	RPD <u>MAX</u>	BKG Conc	DUP Conc	DUP RPD	Dup RPD <u>Max</u>
Batch number: 081980022A Ethylene dibromide	Sample 83	number(s)	: 5415095 65-135	-541509	7 UNSP	K: 5415095 < 0.029	BKG: P415064 < 0.030	0 (1)	30
Batch number: 081986050001A Lead	Sample 108	number(s) 106		-541509 1	7 UNSP	K: P414402 0.0049	BKG: P414402 0.0052	6 (1)	20
Batch number: P082003AA Methyl Tertiary Butyl Ether Benzene 1,2-Dichloroethane Toluene Ethylbenzene Isopropylbenzene Xylene (Total)	Sample 94 93 92 94 92 93	number(s)	: 5415095 69-127 83-128 70-143 83-127 82-129 81-130 82-130	-541509	7 UNSP	K: 5415096			

*- Outside of specification

- **-This limit was used in the evaluation of the final result for the blank
- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Quality Control Summary

Client Name: SUN: Aquaterra Tech. Group Number: 1100643

Reported: 07/24/08 at 08:49 AM

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: EDB in Wastewater

Batch number: 081980022A

1,1,2,2-

Tetrachloroethane

5415095	84	
5415096	91	
5415097	83	
Blank	97	
DUP	92	
LCS	96	
LCSD	99	
MS	80	

Limits: 46-136

Analysis Name: PAHs in Water by GC/MS

Batch number: 08198WAJ026

	Nitrobenzene-d5	2-Fluorobiphenyl	Terphenyl-d14	
5415095	107	113	102	
5415096	100	107	93	
5415097	102	96	75	
Blank	103	109	92	
LCS	101	107	91	
LCSD	96	105	89	
Limits	44-127	63-114	30-126	

Analysis Name: UST-Waters by 8260B

Batch number: P082003AA

Dibromofluoromethane		1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
5415095	86	84	84	85
5415096	87	87	85	83
5415097	86	83	85	87
Blank	87	86	84	82
LCS	87	86	84	85
LCSD	87	85	84	84
MS	85	85	84	85
Limits:	80-116	77-113	80-113	78-113

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

PA UST Analysis Request/Chain of Custody

412	Lancaster	
1	Lancaster Laboratories	,

3,0°0

	For Lancaster Laboratorie	es use oniv	0330
Acat. #: 10132		Sample #: 5415075-	77

Consultant/Office #: Aguature	a (Sun)			Matri	x			Ana	alys	es R	tequ	este	d Lis	t total i	numbe cunde	r of co	ntaine analys	rs 385.			
Consultant Prj. Mgr.: U T. Doe	rr ·																-			ı		
Consultant Phone #:	_ Fax #:						ē.											ľ		ı		
Site Name: Sun - Philly	- Reli	rery	<u> 201-</u>	8	e 8		of Containers													ı .		
Site Address:	0	<u> </u>		.	Potable NPDES		Co	res	¥ine	g.	₽	0.2)	5,6					ł		ı		
Sampler: TIDOEN		 				1	ero	Enc	Gasc	asolir	8	Ž)		ğ.						ı		
				osite	:	Air	Nemb	erof	PA Unleaded Gasoline	PA Leaded Gasoline	PA Kerosene (No. 1)	PA Diesel Fuel (No.	PA Fuel Oil No. 4,	PA Used Motor Oil	Q	2	2					
Sample Identification	Date Collected	Time Collected	Grab	Composite	Water	□ Iō	Total Number	Number of EnCores	PA Un	PALex	PA Ke	PADie	PA Fu	PA Us	82	\mathcal{Z}	7			Remarks		
N-100	7/14/08	1130	V		V	Ť	8	_							X	χ	V		┪	See all	- chad	1
1-98	7/14/08	1230	À		X		Я								У	X	Ŷ		\dashv	Jahl	acres.	
N-106	7/14/08	1300	Я		一タ	_	Ż								X	X	χ		┪	See all Table Spec anal	Hic	1
							"												ಠ	anal	de 15	:
						П														ı	•	
						П														ı		
						П																
						П					-									ı		
X																				ı		
																				ı		
Turnaround Time: STD (7-10) RUSH	1	Relingu	sygu y	y:)	7	$\overline{}$				- 1 - 4	Date	- 1	Time	F	lecei	ved l	by:				Date	Time
Turnaround Time. STUTTED ROSI	•		ĽΧ	4	\	<u> </u>	_	_		_	14/0		500	_			e	d_{\angle}	F	day	7/14/8	1500
Comments:		Relinqui	shape A) ()	it/	7 _					Date		Time ///Ĉ		lecei	vegi/l Ka	by: (ıl		\mathcal{K}°	Date 7/00	Time //[0
	167	Relinqui	shed by	cI	7/1/	7					Pate	Ť	Time	1	Hocei	ved I			٦		Date	Time
	Self Su	1 1943	M2	3/h	W	<u> </u>					18/		<u>// l</u>		4			رىد	KAN,	<u></u>		11:10
	<u>.</u>	Relinqui	sned by	y: v B	ewl	<u>ئ</u>			`		Date 08		Time 6-1	. I	y	ved I	•		1	20 7h	Pate 100	Time (620)

Lancaster Laboratories, Inc., 2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 (717) 656-2300 Copies: White and yellow should accompany samples to Lancaster Laboratories. The pink copy should be retained by the client.

4400 Rev. 4/26/05

10132 11100643 | 5415095-87

Table 1
Constituents of Concern for Groundwater
AOI 8 Work Plan for Site Characterization
Sunoco Philadelphia Refinery
Philadelphia, Pennsylvania

Lead (dissolved)	METALS
7439-92-1	CAS No.

VOLATILE ORGANIC	
COMPOUNDS	CAS No.
1,2-dichloroethane	107-06-2
Benzene	71-43-2
Cumene	98-82-8
Ethylbenzene	100-41-4
Ethylene dibromide	106-93-4
Methyl tertiary butyl ether	. 1634-04-4
Toluene	108-88-3
Xylenes (total)	1330-20-7

20000	
85-01-8	Phenanthrene
91-20-3	Naphthalene
86-73-7	Fluorene
218-01-9	Chrysene
	ORGANIC COMPOUNDS
CAS No.	SEMI-VOLATILE

Notes:

^{1.} Constituents are from Pennsylvania Corrective Action Process (CAP) Regulation Amendments effective December 1, 2001; provided in Chapter VI. Section E (pgs. 29-30) of PADEP Document, Closure Requirements for Underground Storage Tank Systems, effective April 1, 1998.

Lancaster Laboratories Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

N.D.	none detected	BMQL	Below Minimum Quantitation Level
TNTC	Too Numerous To Count	MPN	Most Probable Number
IU	International Units	CP Units	cobalt-chloroplatinate units
umhos/cm	micromhos/cm	NTU	nephelometric turbidity units
С	degrees Celsius	F	degrees Fahrenheit
Cal	(diet) calories	lb.	pound(s)
meq	milliequivalents	kg	kilogram(s)
g	gram(s)	mg	milligram(s)
ug	microgram(s)	1	liter(s)
ml	milliliter(s)	ul	microliter(s)
m3	cubic meter(s)	fib >5 um/ml	fibers greater than 5 microns in length per ml

- < less than The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.
- > greater than
- ppm parts per million One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.

Inorganic Qualifiers

- ppb parts per billion
- **Dry weight**Results printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture.

U.S. EPA data qualifiers:

9	lifier	(uu	9	 u	" 9	•

A B C D E	TIC is a possible aldol-condensation product Analyte was also detected in the blank Pesticide result confirmed by GC/MS Compound quatitated on a diluted sample Concentration exceeds the calibration range of the instrument	B E M N S	Value is <crdl, (msa)="" additions="" amount="" but="" calculation<="" control="" due="" duplicate="" estimated="" for="" injection="" interference="" limits="" met="" method="" not="" of="" precision="" spike="" standard="" th="" to="" used="" within="" ≥idl=""></crdl,>
J	Estimated value	U	Compound was not detected
N	Presumptive evidence of a compound (TICs only)	W	Post digestion spike out of control limits
Р	Concentration difference between primary and	*	Duplicate analysis not within control limits
	confirmation columns >25%	+	Correlation coefficient for MSA < 0.995
U	Compound was not detected		
X,Y,Z	Defined in case narrative		

Analytical test results for methods listed on the laboratories' accreditation scope meet all requirements of NELAC unless otherwise noted under the individual analysis.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

WARRANTY AND LIMITS OF LIABILITY – In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL LANCASTER LABORATORIES BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF LANCASTER LABORATORIES AND (B) WHETHER LANCASTER LABORATORIES HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Lancaster Laboratories which includes any conditions that vary from the Standard Terms and Conditions of Lancaster Laboratories and we hereby object to any conflicting terms contained in any acceptance or order submitted by client.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

ANALYTICAL RESULTS

Prepared for:

SUN: Aquaterra Tech. PO Box 744 West Chester PA 19381

610-431-5733

Prepared by:

Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425

SAMPLE GROUP

The sample group for this submittal is 1100865. Samples arrived at the laboratory on Wednesday, July 16, 2008. The PO# for this group is PHILADELPHIA.

<u>Lancaster Labs Number</u>
5416333
5416334
5416335
5416336
5416337
5416338
5416339
5416340
5416341

ELECTRONIC Langan Attn: Joseph Catricks COPY TO

ELECTRONIC Attn: Tiffani Doerr SUN: Aquaterra Tech.

COPY TO

ELECTRONIC Attn: Kevin Martin SUN: Aquaterra Tech.

COPY TO

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Questions? Contact your Client Services Representative Jessica A Heun at (717) 656-2300

Respectfully Submitted,

Chad Moline

Chad A. Moline Group Leader

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5416333 WW Group No. 1100865

N-1 Grab Water

Philadelphia Refinery AOI-8

COC: 187456 N-1

Collected: 07/15/2008 10:00 by SS Account Number: 10132

Submitted: 07/16/2008 15:15 SUN: Aquaterra Tech.

Reported: 07/25/2008 at 08:50 PO Box 744

Discard: 09/24/2008 West Chester PA 19381

PRA01

				As Received	As Received		
CAT			As Received	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06035	Lead	7439-92-1	< 0.0010	0.0010	0.000050	mg/l	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.029	0.029	0.0098	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	< 5.	5.	1.	ug/l	1
03956	Fluorene	86-73-7	< 5.	5.	1.	ug/l	1
03963	Phenanthrene	85-01-8	< 5.	5.	1.	ug/l	1
03967	Pyrene	129-00-0	< 5.	5.	1.	ug/l	1
03971	Chrysene	218-01-9	< 5.	5.	1.	ug/l	1
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 1.	1.	0.5	ug/l	1
05401	Benzene	71-43-2	< 1.	1.	0.5	ug/l	1
05402	1,2-Dichloroethane	107-06-2	< 1.	1.	0.5	ug/l	1
05407	Toluene	108-88-3	< 1.	1.	0.5	ug/l	1
05415	Ethylbenzene	100-41-4	< 1.	1.	0.5	ug/l	1
05420	Isopropylbenzene	98-82-8	< 2.	2.	0.5	ug/l	1
06310	Xylene (Total)	1330-20-7	< 1.	1.	0.5	ug/l	1

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09 This sample was filtered in the lab for dissolved metals. Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5416333 WW Group No. 1100865

N-1 Grab Water

Philadelphia Refinery AOI-8

COC: 187456 N-1

Collected: 07/15/2008 10:00 by SS Account Number: 10132

Submitted: 07/16/2008 15:15 SUN: Aquaterra Tech.

Reported: 07/25/2008 at 08:50 PO Box 744

Discard: 09/24/2008 West Chester PA 19381

PRA01

CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06035	Lead	SW-846 6020	1	07/24/2008 23:09	David K Beck	1
07879	EDB in Wastewater	SW-846 8011	1	07/19/2008 03:55	James H Place	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	07/19/2008 00:28	Ryan P Byrne	1
02302	UST-Waters by 8260B	SW-846 8260B	1	07/22/2008 03:34	Florida A Cimino	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	07/22/2008 03:34	Florida A Cimino	1
06050	ICP/MS SW-846 Water	SW-846 3010A modifie	d 1	07/21/2008 19:45	James L Mertz	1
07786	EDB Extraction	SW-846 8011	1	07/18/2008 10:00	Deborah M Zimmerman	1
07807	BNA Water Extraction	SW-846 3510C	1	07/18/2008 09:30	Cynthia J Stoltzfus	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5416334 WW Group No. 1100865

N-3 Grab Water

Philadelphia Refinery AOI-8

COC: 187456 N-3

Collected: 07/15/2008 10:40 by SS Account Number: 10132

Submitted: 07/16/2008 15:15 SUN: Aquaterra Tech.

Reported: 07/25/2008 at 08:50 PO Box 744

Discard: 09/24/2008 West Chester PA 19381

PRA03

				As Received	As Received		
CAT			As Received	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06035	Lead	7439-92-1	0.0011	0.0010	0.000050	mg/l	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.029	0.029	0.0098	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	< 5.	5.	1.	ug/l	1
03956	Fluorene	86-73-7	< 5.	5.	1.	ug/l	1
03963	Phenanthrene	85-01-8	< 5.	5.	1.	ug/l	1
03967	Pyrene	129-00-0	< 5.	5.	1.	ug/l	1
03971	Chrysene	218-01-9	< 5.	5.	1.	ug/l	1
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 1.	1.	0.5	ug/l	1
05401	Benzene	71-43-2	< 1.	1.	0.5	ug/l	1
05402	1,2-Dichloroethane	107-06-2	< 1.	1.	0.5	ug/l	1
05407	Toluene	108-88-3	< 1.	1.	0.5	ug/l	1
05415	Ethylbenzene	100-41-4	< 1.	1.	0.5	ug/l	1
05420	Isopropylbenzene	98-82-8	< 2.	2.	0.5	ug/l	1
06310	Xylene (Total)	1330-20-7	< 1.	1.	0.5	ug/l	1

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09 This sample was filtered in the lab for dissolved metals. Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5416334 WW Group No. 1100865

N-3 Grab Water

Philadelphia Refinery AOI-8

COC: 187456 N-3

Collected: 07/15/2008 10:40 by SS Account Number: 10132

Submitted: 07/16/2008 15:15 SUN: Aquaterra Tech.

Reported: 07/25/2008 at 08:50 PO Box 744

Discard: 09/24/2008 West Chester PA 19381

PRA03

CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06035	Lead	SW-846 6020	1	07/24/2008 23:11	David K Beck	1
07879	EDB in Wastewater	SW-846 8011	1	07/19/2008 04:55	James H Place	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	07/19/2008 00:52	Ryan P Byrne	1
02302	UST-Waters by 8260B	SW-846 8260B	1	07/22/2008 04:01	Florida A Cimino	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	07/22/2008 04:01	Florida A Cimino	1
06050	ICP/MS SW-846 Water	SW-846 3010A modified	l 1	07/21/2008 19:45	James L Mertz	1
07786	EDB Extraction	SW-846 8011	1	07/18/2008 10:00	Deborah M Zimmerman	1
07807	BNA Water Extraction	SW-846 3510C	1	07/18/2008 09:30	Cynthia J Stoltzfus	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5416335 WW Group No. 1100865

N-4 Grab Water

Philadelphia Refinery AOI-8

COC: 187456 N-4

Collected: 07/15/2008 10:55 by SS Account Number: 10132

Submitted: 07/16/2008 15:15 SUN: Aquaterra Tech.

Reported: 07/25/2008 at 08:50 PO Box 744

Discard: 09/24/2008 West Chester PA 19381

PRA04

				As Received	As Received		
CAT			As Received	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06035	Lead	7439-92-1	< 0.0010	0.0010	0.000050	mg/l	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.029	0.029	0.0096	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	< 5.	5.	1.	ug/l	1
03956	Fluorene	86-73-7	< 5.	5.	1.	ug/l	1
03963	Phenanthrene	85-01-8	< 5.	5.	1.	ug/l	1
03967	Pyrene	129-00-0	< 5.	5.	1.	ug/l	1
03971	Chrysene	218-01-9	< 5.	5.	1.	ug/l	1
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	2.	1.	0.5	ug/l	1
05401	Benzene	71-43-2	5.	1.	0.5	ug/l	1
05402	1,2-Dichloroethane	107-06-2	< 1.	1.	0.5	ug/l	1
05407	Toluene	108-88-3	< 1.	1.	0.5	ug/l	1
05415	Ethylbenzene	100-41-4	< 1.	1.	0.5	ug/l	1
05420	Isopropylbenzene	98-82-8	3.	2.	0.5	ug/l	1
06310	Xylene (Total)	1330-20-7	2.	1.	0.5	ug/l	1

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09 This sample was filtered in the lab for dissolved metals. Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5416335 WW Group No. 1100865

N-4 Grab Water

Philadelphia Refinery AOI-8

COC: 187456 N-4

Collected: 07/15/2008 10:55 by SS Account Number: 10132

Submitted: 07/16/2008 15:15 SUN: Aquaterra Tech.

Reported: 07/25/2008 at 08:50 PO Box 744

Discard: 09/24/2008 West Chester PA 19381

PRA04

CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06035	Lead	SW-846 6020	1	07/24/2008 23:18	David K Beck	1
07879	EDB in Wastewater	SW-846 8011	1	07/19/2008 06:25	James H Place	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	07/19/2008 01:15	Ryan P Byrne	1
02302	UST-Waters by 8260B	SW-846 8260B	1	07/22/2008 04:28	Florida A Cimino	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	07/22/2008 04:28	Florida A Cimino	1
06050	ICP/MS SW-846 Water	SW-846 3010A modified	d 1	07/21/2008 19:45	James L Mertz	1
07786	EDB Extraction	SW-846 8011	1	07/18/2008 10:00	Deborah M Zimmerman	1
07807	BNA Water Extraction	SW-846 3510C	1	07/18/2008 09:30	Cynthia J Stoltzfus	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5416336 WW Group No. 1100865

N-101 Grab Water

Philadelphia Refinery AOI-8

COC: 187456 N-101

Collected: 07/15/2008 11:40 by SS Account Number: 10132

Submitted: 07/16/2008 15:15 SUN: Aquaterra Tech.

Reported: 07/25/2008 at 08:50 PO Box 744

Discard: 09/24/2008 West Chester PA 19381

PR101

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Limit of Quantitation*	As Received Method Detection	Units	Dilution Factor
NO.	Analysis Name	CAS NUMBEL	Result	Quantitation"	Limit	UIIICS	Factor
06035	Lead	7439-92-1	< 0.0010	0.0010	0.000050	mg/1	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.029	0.029	0.0096	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	< 5.	5.	1.	ug/l	1
03956	Fluorene	86-73-7	28.	5.	1.	ug/l	1
03963	Phenanthrene	85-01-8	67.	5.	1.	ug/l	1
03967	Pyrene	129-00-0	9.	5.	1.	ug/l	1
03971	Chrysene	218-01-9	8.	5.	1.	ug/l	1
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 5.	5.	3.	ug/l	5
05401	Benzene	71-43-2	< 5.	5.	3.	ug/l	5
05402	1,2-Dichloroethane	107-06-2	< 5.	5.	3.	ug/l	5
05407	Toluene	108-88-3	< 5.	5.	3.	ug/l	5
05415	Ethylbenzene	100-41-4	< 5.	5.	3.	ug/l	5
05420	Isopropylbenzene	98-82-8	26.	10.	3.	ug/l	5
06310	Xylene (Total)	1330-20-7	12.	5.	3.	ug/l	5
	mb	0/340 1 1 -					

The reporting limits for the GC/MS volatile compounds were raised due to the level of non-target compounds.

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09 This sample was filtered in the lab for dissolved metals. Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5416336 WW Group No. 1100865

N-101 Grab Water

Philadelphia Refinery AOI-8

COC: 187456 N-101

Collected: 07/15/2008 11:40 by SS Account Number: 10132

Submitted: 07/16/2008 15:15 SUN: Aquaterra Tech.

Reported: 07/25/2008 at 08:50 PO Box 744

Discard: 09/24/2008 West Chester PA 19381

PR101

CAT		1		Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06035	Lead	SW-846 6020	1	07/24/2008 23:21	David K Beck	1
07879	EDB in Wastewater	SW-846 8011	1	07/19/2008 06:55	James H Place	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	07/19/2008 01:38	Ryan P Byrne	1
02302	UST-Waters by 8260B	SW-846 8260B	1	07/22/2008 04:55	Florida A Cimino	5
01163	GC/MS VOA Water Prep	SW-846 5030B	1	07/22/2008 04:55	Florida A Cimino	5
06050	ICP/MS SW-846 Water	SW-846 3010A modified	1	07/21/2008 19:45	James L Mertz	1
07786	EDB Extraction	SW-846 8011	1	07/18/2008 10:00	Deborah M Zimmerman	1
07807	BNA Water Extraction	SW-846 3510C	1	07/18/2008 09:30	Cynthia J Stoltzfus	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5416337 WW Group No. 1100865

N-11 Grab Water

Philadelphia Refinery AOI-8

COC: 187456 N-11

Collected: 07/15/2008 12:10 by SS Account Number: 10132

Submitted: 07/16/2008 15:15 SUN: Aquaterra Tech.

Reported: 07/25/2008 at 08:50 PO Box 744

Discard: 09/24/2008 West Chester PA 19381

PRA11

CAT			As Received	As Received Limit of	As Received Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06035	Lead	7439-92-1	< 0.0010	0.0010	0.000050	mg/l	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.029	0.029	0.0096	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	< 5.	5.	1.	ug/l	1
03956	Fluorene	86-73-7	< 5.	5.	1.	ug/l	1
03963	Phenanthrene	85-01-8	< 5.	5.	1.	ug/l	1
03967	Pyrene	129-00-0	< 5.	5.	1.	ug/l	1
03971	Chrysene	218-01-9	< 5.	5.	1.	ug/l	1
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 1.	1.	0.5	ug/l	1
05401	Benzene	71-43-2	6.	1.	0.5	ug/l	1
05402	1,2-Dichloroethane	107-06-2	< 1.	1.	0.5	ug/l	1
05407	Toluene	108-88-3	9.	1.	0.5	ug/l	1
05415	Ethylbenzene	100-41-4	2.	1.	0.5	ug/l	1
05420	Isopropylbenzene	98-82-8	38.	2.	0.5	ug/l	1
06310	Xylene (Total)	1330-20-7	13.	1.	0.5	ug/l	1

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09 This sample was filtered in the lab for dissolved metals. Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681• www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5416337 WW Group No. 1100865

N-11 Grab Water

Philadelphia Refinery AOI-8

COC: 187456 N-11

Collected: 07/15/2008 12:10 by SS Account Number: 10132

Submitted: 07/16/2008 15:15 SUN: Aquaterra Tech.

Reported: 07/25/2008 at 08:50 PO Box 744

Discard: 09/24/2008 West Chester PA 19381

PRA11

CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06035	Lead	SW-846 6020	1	07/23/2008 12:33	James R Williams II	1
07879	EDB in Wastewater	SW-846 8011	1	07/19/2008 07:25	James H Place	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	07/22/2008 03:27	Linda M Hartenstine	1
02302	UST-Waters by 8260B	SW-846 8260B	1	07/22/2008 05:21	Florida A Cimino	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	07/22/2008 05:21	Florida A Cimino	1
06050	ICP/MS SW-846 Water	SW-846 3010A modified	l 1	07/18/2008 09:23	Denise K Conners	1
07786	EDB Extraction	SW-846 8011	1	07/18/2008 10:00	Deborah M Zimmerman	1
07807	BNA Water Extraction	SW-846 3510C	1	07/18/2008 09:30	Cynthia J Stoltzfus	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5416338 WW Group No. 1100865

N-10 Grab Water

Philadelphia Refinery AOI-8

COC: 187456 N-10

Collected: 07/15/2008 12:40 by SS Account Number: 10132

Submitted: 07/16/2008 15:15 SUN: Aquaterra Tech.

Reported: 07/25/2008 at 08:50 PO Box 744

Discard: 09/24/2008 West Chester PA 19381

PRA10

CAT			As Received	As Received Limit of	As Received Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06035	Lead	7439-92-1	< 0.0010	0.0010	0.000050	mg/l	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.029	0.029	0.0096	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	< 5.	5.	1.	ug/l	1
03956	Fluorene	86-73-7	< 5.	5.	1.	ug/l	1
03963	Phenanthrene	85-01-8	< 5.	5.	1.	ug/l	1
03967	Pyrene	129-00-0	< 5.	5.	1.	ug/l	1
03971	Chrysene	218-01-9	< 5.	5.	1.	ug/l	1
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 1.	1.	0.5	ug/l	1
05401	Benzene	71-43-2	1.	1.	0.5	ug/l	1
05402	1,2-Dichloroethane	107-06-2	< 1.	1.	0.5	ug/l	1
05407	Toluene	108-88-3	< 1.	1.	0.5	ug/l	1
05415	Ethylbenzene	100-41-4	< 1.	1.	0.5	ug/l	1
05420	Isopropylbenzene	98-82-8	< 2.	2.	0.5	ug/l	1
06310	Xylene (Total)	1330-20-7	1.	1.	0.5	ug/l	1

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09 This sample was filtered in the lab for dissolved metals. Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5416338 WW Group No. 1100865

N-10 Grab Water

Philadelphia Refinery AOI-8

COC: 187456 N-10

Collected: 07/15/2008 12:40 by SS Account Number: 10132

Submitted: 07/16/2008 15:15 SUN: Aquaterra Tech.

Reported: 07/25/2008 at 08:50 PO Box 744

Discard: 09/24/2008 West Chester PA 19381

PRA10

CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06035	Lead	SW-846 6020	1	07/23/2008 12:36	James R Williams II	1
07879	EDB in Wastewater	SW-846 8011	1	07/19/2008 07:55	James H Place	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	07/22/2008 03:50	Linda M Hartenstine	1
02302	UST-Waters by 8260B	SW-846 8260B	1	07/22/2008 05:48	Florida A Cimino	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	07/22/2008 05:48	Florida A Cimino	1
06050	ICP/MS SW-846 Water	SW-846 3010A modified	d 1	07/18/2008 09:23	Denise K Conners	1
07786	EDB Extraction	SW-846 8011	1	07/18/2008 10:00	Deborah M Zimmerman	1
07807	BNA Water Extraction	SW-846 3510C	1	07/18/2008 09:30	Cynthia J Stoltzfus	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5416339 WW Group No. 1100865

N-5 Grab Water

Philadelphia Refinery AOI-8

COC: 187456 N-5

Collected: 07/15/2008 13:15 by SS Account Number: 10132

Submitted: 07/16/2008 15:15 SUN: Aquaterra Tech.

Reported: 07/25/2008 at 08:50 PO Box 744

Discard: 09/24/2008 West Chester PA 19381

PRA05

				As Received	As Received		
CAT			As Received	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06035	Lead	7439-92-1	1.13	0.0050	0.00025	mg/l	5
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.029	0.029	0.0097	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	< 5.	5.	0.9	ug/l	1
03956	Fluorene	86-73-7	< 5.	5.	0.9	ug/l	1
03963	Phenanthrene	85-01-8	< 5.	5.	0.9	ug/l	1
03967	Pyrene	129-00-0	< 5.	5.	0.9	ug/l	1
03971	Chrysene	218-01-9	< 5.	5.	0.9	ug/l	1
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 5.	5.	3.	ug/l	5
05401	Benzene	71-43-2	< 5.	5.	3.	ug/l	5
05402	1,2-Dichloroethane	107-06-2	< 5.	5.	3.	ug/l	5
05407	Toluene	108-88-3	< 5.	5.	3.	ug/l	5
05415	Ethylbenzene	100-41-4	< 5.	5.	3.	ug/l	5
05420	Isopropylbenzene	98-82-8	< 10.	10.	3.	ug/l	5
06310	Xylene (Total)	1330-20-7	< 5.	5.	3.	ug/l	5
	The reporting limits for the (C/MC TOTALIO	gompounda wor	a raiged due to			

The reporting limits for the GC/MS volatile compounds were raised due to sample foaming.

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09 This sample was filtered in the lab for dissolved metals. Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5416339 WW Group No. 1100865

N-5 Grab Water

Philadelphia Refinery AOI-8

COC: 187456 N-5

Collected: 07/15/2008 13:15 by SS Account Number: 10132

Submitted: 07/16/2008 15:15 SUN: Aquaterra Tech.

Reported: 07/25/2008 at 08:50 PO Box 744

Discard: 09/24/2008 West Chester PA 19381

PRA05

CAT		-		Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06035	Lead	SW-846 6020	1	07/24/2008 15:23	James R Williams II	5
07879	EDB in Wastewater	SW-846 8011	1	07/19/2008 08:25	James H Place	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	07/22/2008 04:14	Linda M Hartenstine	1
02302	UST-Waters by 8260B	SW-846 8260B	1	07/22/2008 06:15	Florida A Cimino	5
01163	GC/MS VOA Water Prep	SW-846 5030B	1	07/22/2008 06:15	Florida A Cimino	5
06050	ICP/MS SW-846 Water	SW-846 3010A modified	l 1	07/18/2008 09:23	Denise K Conners	1
07786	EDB Extraction	SW-846 8011	1	07/18/2008 10:00	Deborah M Zimmerman	1
07807	BNA Water Extraction	SW-846 3510C	1	07/18/2008 09:30	Cynthia J Stoltzfus	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5416340 WW Group No. 1100865

N-102 Grab Water

Philadelphia Refinery AOI-8

COC: 187456 N-102

Collected: 07/15/2008 13:45 by SS Account Number: 10132

Submitted: 07/16/2008 15:15 SUN: Aquaterra Tech.

Reported: 07/25/2008 at 08:50 PO Box 744

Discard: 09/24/2008 West Chester PA 19381

PR102

				As Received	As Received		
CAT			As Received	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06035	Lead	7439-92-1	< 0.0010	0.0010	0.000050	mg/l	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.029	0.029	0.0097	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	10.	5.	1.	ug/l	1
03956	Fluorene	86-73-7	22.	5.	1.	ug/l	1
03963	Phenanthrene	85-01-8	77.	5.	1.	ug/l	1
03967	Pyrene	129-00-0	9.	5.	1.	ug/l	1
03971	Chrysene	218-01-9	15.	5.	1.	ug/l	1
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 1.	1.	0.5	ug/l	1
05401	Benzene	71-43-2	25.	1.	0.5	ug/l	1
05402	1,2-Dichloroethane	107-06-2	< 1.	1.	0.5	ug/l	1
05407	Toluene	108-88-3	4.	1.	0.5	ug/l	1
05415	Ethylbenzene	100-41-4	8.	1.	0.5	ug/l	1
05420	Isopropylbenzene	98-82-8	7.	2.	0.5	ug/l	1
06310	Xylene (Total)	1330-20-7	16.	1.	0.5	ug/l	1

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09 This sample was filtered in the lab for dissolved metals. Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5416340 WW Group No. 1100865

N-102 Grab Water

Philadelphia Refinery AOI-8

COC: 187456 N-102

Collected: 07/15/2008 13:45 by SS Account Number: 10132

Submitted: 07/16/2008 15:15 SUN: Aquaterra Tech.

Reported: 07/25/2008 at 08:50 PO Box 744

Discard: 09/24/2008 West Chester PA 19381

PR102

CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06035	Lead	SW-846 6020	1	07/23/2008 12:45	James R Williams II	1
07879	EDB in Wastewater	SW-846 8011	1	07/19/2008 08:55	James H Place	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	07/22/2008 04:37	Linda M Hartenstine	1
02302	UST-Waters by 8260B	SW-846 8260B	1	07/22/2008 06:41	Florida A Cimino	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	07/22/2008 06:41	Florida A Cimino	1
06050	ICP/MS SW-846 Water	SW-846 3010A modified	1	07/18/2008 09:23	Denise K Conners	1
07786	EDB Extraction	SW-846 8011	1	07/18/2008 10:00	Deborah M Zimmerman	1
07807	BNA Water Extraction	SW-846 3510C	1	07/18/2008 09:30	Cynthia J Stoltzfus	1

^{*=}This limit was used in the evaluation of the final result

As Received

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5416341 WW Group No. 1100865

N-15 Grab Water

Philadelphia Refinery AOI-8

COC: 187456 N-15

Collected: 07/15/2008 14:15 by SS Account Number: 10132

Submitted: 07/16/2008 15:15 SUN: Aquaterra Tech.

Reported: 07/25/2008 at 08:50 PO Box 744

Discard: 09/24/2008 West Chester PA 19381

PRA15

				As Received As Received				
CAT			As Received	Limit of	Method		Dilution	
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor	
06035	Lead	7439-92-1	0.0011	0.0010	0.000050	mg/1	1	
07879	EDB in Wastewater							
07075	EDB III Wastewater							
01087	Ethylene dibromide	106-93-4	< 0.029	0.029	0.0098	ug/l	1	
07805	PAHs in Water by GC/MS							
03947	Naphthalene	91-20-3	< 99.	99.	20.	ug/l	10	
03956	Fluorene	86-73-7	180.	99.	20.	ug/l	10	
03963	Phenanthrene	85-01-8	440.	99.	20.	ug/l	10	
03967	Pyrene	129-00-0	< 99.	99.	20.	ug/l	10	
03971	Chrysene	218-01-9	< 99.	99.	20.	ug/l	10	
	Due to the sample matrix an in analysis. Therefore, the report compounds were raised.		•					
	Due to sample matrix interfere normal reporting limits were n		during the ex	traction, the				
02302	UST-Waters by 8260B							
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 2.	2.	1.	ug/l	2	
05401	Benzene	71-43-2	3.	2.	1.	ug/l	2	
05402	1,2-Dichloroethane	107-06-2	< 2.	2.	1.	ug/l	2	
05407	Toluene	108-88-3	6.	2.	1.	ug/l	2	
05415	Ethylbenzene	100-41-4	< 2.	2.	1.	ug/l	2	
05420	Isopropylbenzene	98-82-8	230.	4.	1.	ug/l	2	
06310	Xylene (Total)	1330-20-7	10.	2.	1.	ug/l	2	

As Received

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09 This sample was filtered in the lab for dissolved metals. Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5416341 WW Group No. 1100865

N-15 Grab Water

Philadelphia Refinery AOI-8

COC: 187456 N-15

Collected: 07/15/2008 14:15 by SS Account Number: 10132

Submitted: 07/16/2008 15:15 SUN: Aquaterra Tech.

Reported: 07/25/2008 at 08:50 PO Box 744

Discard: 09/24/2008 West Chester PA 19381

PRA15

CAT As Received As Received

One of the control of

CAT		Analysis							
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor			
06035	Lead	SW-846 6020	1	07/23/2008 12:47	James R Williams II	1			
07879	EDB in Wastewater	SW-846 8011	1	07/19/2008 09:25	James H Place	1			
07805	PAHs in Water by GC/MS	SW-846 8270C	1	07/22/2008 06:34	Linda M Hartenstine	10			
02302	UST-Waters by 8260B	SW-846 8260B	1	07/23/2008 04:06	Florida A Cimino	2			
01163	GC/MS VOA Water Prep	SW-846 5030B	1	07/23/2008 04:06	Florida A Cimino	2			
06050	ICP/MS SW-846 Water	SW-846 3010A modified	l 1	07/18/2008 09:23	Denise K Conners	1			
07786	EDB Extraction	SW-846 8011	1	07/18/2008 10:00	Deborah M Zimmerman	1			
07807	BNA Water Extraction	SW-846 3510C	1	07/18/2008 09:30	Cynthia J Stoltzfus	1			

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Quality Control Summary

Client Name: SUN: Aquaterra Tech. Group Number: 1100865

Reported: 07/25/08 at 08:50 AM

Matrix QC may not be reported if site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

Laboratory Compliance Quality Control

Analysis Name	Blank <u>Result</u>	Blank LOQ**	Blank <u>MDL</u>	Report <u>Units</u>	LCS %REC	LCSD %REC	LCS/LCSD <u>Limits</u>	RPD	RPD Max
Batch number: 081990023A Ethylene dibromide	Sample numi	ber(s): 54 0.030	16333-541 0.010	6341 ug/l	100	100	60-140	0	20
Batch number: 081996050004A Lead	Sample numi	ber(s): 54 0.0010	16337-541 0.00005 0	6341 mg/l	105		90-115		
Batch number: 08199WAI026 Naphthalene Fluorene Phenanthrene Pyrene Chrysene	Sample num < 5. < 5. < 5. < 5. < 5.	ber(s): 54 5. 5. 5. 5. 5.	16333-541 1. 1. 1. 1.	6341 ug/l ug/l ug/l ug/l ug/l	93 100 98 86 104	98 102 102 92 109	77-107 82-113 83-112 80-115 82-112	6 3 4 7 5	30 30 30 30 30
Batch number: 082036050002A Lead	Sample num < 0.0010	ber(s): 54 0.0010	16333-541 0.00005 0	6336 mg/l	103		90-115		
Batch number: P082034AA Methyl Tertiary Butyl Ether Benzene 1,2-Dichloroethane Toluene Ethylbenzene Isopropylbenzene Xylene (Total)	Sample num < 1. < 1. < 1. < 1. < 1. < 1. < 1.	ber(s): 54 1. 1. 1. 1. 1. 2.	16333-541 0.5 0.5 0.5 0.5 0.5 0.5	6340 ug/l ug/l ug/l ug/l ug/l ug/l ug/l	93 86 94 87 87 86	93 88 94 88 89 90	73-119 78-119 69-135 85-115 82-119 80-113 83-113	0 1 0 1 3 4 4	30 30 30 30 30 30 30 30
Batch number: P082043AA Methyl Tertiary Butyl Ether Benzene 1,2-Dichloroethane Toluene Ethylbenzene Isopropylbenzene Xylene (Total)	<pre>Sample num < 1. < 1. < 1. < 1. < 1. < 1. < 1. < 1.</pre>	ber(s): 54 1. 1. 1. 1. 1. 2.	0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/l ug/l ug/l ug/l ug/l ug/l	92 88 93 85 85 84	95 90 92 87 87 87	73-119 78-119 69-135 85-115 82-119 80-113 83-113	3 2 0 3 2 4 3	30 30 30 30 30 30 30 30

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

Analysis Name	MS %REC	MSD %REC	MS/MSD <u>Limits</u>	RPD	RPD <u>MAX</u>	BKG Conc	DUP Conc	DUP <u>RPD</u>	Dup RPD Max
Batch number: 081990023A Ethylene dibromide	Sample 87	number(s)	5416333 65-135	-54163	41 UNSF	PK: 541633	3 BKG: 541633 < 0.030	4 0 (1)	3.0

^{*-} Outside of specification

Page 1 of 3

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 3

Quality Control Summary

Client Name: SUN: Aquaterra Tech. Group Number: 1100865

Reported: 07/25/08 at 08:50 AM

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

Analysis Name	MS %REC	MSD %REC	MS/MSD <u>Limits</u>	RPD	RPD <u>MAX</u>	BKG Conc	DUP <u>Conc</u>	DUP RPD	Dup RPD <u>Max</u>
Batch number: 081996050004A Lead	Sample 103	number(s)		-541634 1	1 UNSPK 20	C: P416638 0.0090	BKG: P416638 0.0090	0	20
Batch number: 082036050002A Lead	Sample 98	number(s)	: 5416333 75-125	-541633 2	6 UNSPK 20	<pre>X: P417253 < 0.0010</pre>	BKG: P417253 < 0.0010	0 (1)	20
Batch number: P082034AA Methyl Tertiary Butyl Ether Benzene 1,2-Dichloroethane Toluene Ethylbenzene Isopropylbenzene Xylene (Total)	Sample 96 93 98 93 93 94 93	number(s)	: 5416333 69-127 83-128 70-143 83-127 82-129 81-130 82-130	-541634	0 UNSPK	C: P415066			
Batch number: P082043AA Methyl Tertiary Butyl Ether Benzene 1,2-Dichloroethane Toluene Ethylbenzene Isopropylbenzene Xylene (Total)	Sample 96 95 95 95 95 95	number(s)	: 5416341 69-127 83-128 70-143 83-127 82-129 81-130 82-130	UNSPK:	P41752	22			

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: EDB in Wastewater Batch number: 081990023A

1,1,2,2-

Tetrachloroethane

5416333	84
5416334	77
5416335	81
5416336	79
5416337	84
5416338	80
5416339	80
5416340	81
5416341	66
Blank	100
DUP	82
LCS	99
LCSD	100
MS	83

*- Outside of specification

- **-This limit was used in the evaluation of the final result for the blank
- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

78-113

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Page 3 of 3

Quality Control Summary

Client Name: SUN: Aquaterra Tech. Group Number: 1100865

Reported: 07/25/08 at 08:50 AM

Surrogate Quality Control

Limits: 46-136

Analysis Name: PAHs in Water by GC/MS

	per: 08199WAI026 Nitrobenzene-d5	2-Fluorobiphenyl	Terphenyl-d14	
5416333	96	104	87	
5416334	101	109	85	
5416335	97	101	84	
5416336	119	91	66	
5416337	97	99	93	
5416338	98	102	90	
5416339	94	104	85	
5416340	100	87	60	
5416341	239*	105	91	
Blank	98	105	88	
LCS	98	104	81	
LCSD	99	103	88	
Limits:	44-127	63-114	30-126	
	Name: UST-Waters by 8260B Der: P082034AA			
batti iiulik	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
	DIDIOMOTIUOTOMECHANE	1,2-Dichioloechane-d4	TOTUETIE-U8	4-BIOMOTIUOTODENZEN
5416333	93	90	89	86
5416334	92	92	88	87
5416335	92	88	89	91
5416336	92	90	90	90
5416337	92	90	89	89
5416338	91	91	91	89
5416339	93	92	89	86
5416340	92	90	89	89
Blank	93	91	89	86
LCS	91	91	89	89
LCSD	91	93	89	88
MS	92	94	89	88
Limits:	80-116	77-113	80-113	78-113
	I 110E H 1 00.60D			
	Name: UST-Waters by 8260B			
	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
Batch numb 5416341	per: P082043AA Dibromofluoromethane	86	84	88
	per: P082043AA Dibromofluoromethane	,		

82

80-113

87

80-116

LCSD

Limits:

88

77-113

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Analysis Request/ Environmental Services Chain of Custody

Acct. # 10139

For Lancaster Laboratories use only Group#1100865 Sample # 5416333-41

COC # 187456

	- Laboratorics	P	Please print. In:	structi	ons on	reverse si	ide cor	теѕроі	nd with	circle	ed numbe	ers. (1	ook	cler	MP 1.9-	5.600) -	
(1) Suu A				66 138			200 a 100 200 a 100 200 a 100			nalyse				For Lab Us	e Only		
I	Client: SUN-AQUATERRA					Matrix	(4)			Pre	servati	on Cod	des		SCR#:	 		
	Project Name/#: PHILA REF AOI-	PWSID	#:		245	# de /	T					- 	+		Preservation			
	Project Manager: T. DOERR				200	Check if Applicable	2	6	}		35				H=HCl N=HNO ₃	T=Thiosul B=NaOH	lfate	(6)
l	Sampler: S, SYKES		:		_	Potable NPDES	ane	\$0.40R			66/4				S =H ₂ SO ₄			13
	Name of state where samples were collected:	PA"	•		•	層	Containers		تے ا	, _~	4					-		
) (2		Date	property of the second	$\binom{3}{2}$	He et		5 #	(Land 1.)	7	ENR	H 2							ature o
	Sample Identification	Collected	Time Collected	Graf	8 3	a a		P. C.		<u> </u>	PAH.				Remarks			Pemper port re
	N-1	7/15/08	1000	X		X	8		1	2	2				* One	Aml	مور	for
	<i>N</i> -3		1040	X		X	8	3	1	2	2				N-10	2 6	You	00
	N-4		1055	X		X	8	3	1	2	2				atu	me	2	-
ı	N-101		1140	X		$ \chi $	8	3	1	2	2				0,0K	-10	,	
	<u>N-11</u>		1210	X		X	8	3	1	2	2		1 1		170	. 7		
	N-10		1240	X		X	8	3	1	2	2					<u></u>		
	N-5		135	X		M	8	3	1	2	2							
	N-102		1345	X		X	8	3	1	2	2			-				 -
	N-15		1415	X		X	8	3	1	2	2							
\bigcirc	Turnaround Time Requested (TAT) (please ci (Rush TAT is subject to Lancaster Laboratories appro			F		uished by		. 1/	rocia	TERRO	Date		Rece	ived by:			Date	Time (9
	Date results are needed:			F		ng d by	-		<u>~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ </u>	1			Rece	ived by:			Date	Time
	Phone #:Fax #:	one rax (E-mail			(/	_/	رکی		_	1/16/3		1		Sewly	7	16/08	
$ \bot $	E-mail address:			Į,	Relinqu	nstee by					Date			ived by:			Date	
(8)	Data Package Options (please circle if required)		G Complete?			Y P.	كعب	lez		7	14/08	1515	-		_			
	Type I (validation/NJ Reg) TX TRRP-13 Type II (Tier II) MA MCP CT R		s) No	F	Relinqu	ished by	:				Date			ived by:			Date	Time
	Type III (Reduced NJ) Site-specific QC (M	IS/MSD/Dup)?	Yes (No)	亡										•	` ,			<u> </u>
	Type IV (CLP SOW) (№ yes, indicate QC sample and submit	t triplicate volume.}	_	F	Relinqu	ished by	:				Date	Time	Rece	ived by:	N		Date	Time
L	,, ,	r Laboratories												nex	of Ma	<u> 7//</u>	6/49	1519

Lancaster Laboratories Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

N.D.	none detected	BMQL	Below Minimum Quantitation Level
TNTC	Too Numerous To Count	MPN	Most Probable Number
IU	International Units	CP Units	cobalt-chloroplatinate units
umhos/cm	micromhos/cm	NTU	nephelometric turbidity units
С	degrees Celsius	F	degrees Fahrenheit
Cal	(diet) calories	lb.	pound(s)
meq	milliequivalents	kg	kilogram(s)
g	gram(s)	mg	milligram(s)
ug	microgram(s)	I	liter(s)
ml	milliliter(s)	ul	microliter(s)
m3	cubic meter(s)	fib >5 um/ml	fibers greater than 5 microns in length per ml

- < less than The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.
- > greater than
- ppm parts per million One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.

Inorganic Qualifiers

- ppb parts per billion
- **Dry weight**Results printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture.

U.S. EPA data qualifiers:

9	lifier	(uu	9	 u	" 9	•

A B C D E	TIC is a possible aldol-condensation product Analyte was also detected in the blank Pesticide result confirmed by GC/MS Compound quatitated on a diluted sample Concentration exceeds the calibration range of the instrument	B E M N S	Value is <crdl, (msa)="" additions="" amount="" but="" calculation<="" control="" due="" duplicate="" estimated="" for="" injection="" interference="" limits="" met="" method="" not="" of="" precision="" spike="" standard="" th="" to="" used="" within="" ≥idl=""></crdl,>
J	Estimated value	U	Compound was not detected
N	Presumptive evidence of a compound (TICs only)	W	Post digestion spike out of control limits
Р	Concentration difference between primary and	*	Duplicate analysis not within control limits
	confirmation columns >25%	+	Correlation coefficient for MSA < 0.995
U	Compound was not detected		
X,Y,Z	Defined in case narrative		

Analytical test results for methods listed on the laboratories' accreditation scope meet all requirements of NELAC unless otherwise noted under the individual analysis.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

WARRANTY AND LIMITS OF LIABILITY – In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL LANCASTER LABORATORIES BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF LANCASTER LABORATORIES AND (B) WHETHER LANCASTER LABORATORIES HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Lancaster Laboratories which includes any conditions that vary from the Standard Terms and Conditions of Lancaster Laboratories and we hereby object to any conflicting terms contained in any acceptance or order submitted by client.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

ANALYTICAL RESULTS

Prepared for:

SUN: Aquaterra Tech. PO Box 744 West Chester PA 19381

610-431-5733

Prepared by:

Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425

SAMPLE GROUP

The sample group for this submittal is 1101087. Samples arrived at the laboratory on Thursday, July 17, 2008. The PO# for this group is PHILADELPHIA.

Client Description	Lancaster Labs Number
N-8 Grab Water	5417522
N-9 Grab Water	5417523
N-16 Grab Water	5417524
N-17 Grab Water	5417525
N-18 Grab Water	5417526
N-19 Grab Water	5417527
N-85 Grab Water	5417528
N-84 Grab Water	5417529
N-28 Grab Water	5417530
N-134 Grab Water	5417531
N-65 Grab Water	5417532

ELECTRONIC	Langan	Attn: Joseph Catricks
COPY TO	GYDY A	THE CO. L. D.
ELECTRONIC COPY TO	SUN: Aquaterra Tech.	Attn: Tiffani Doerr
ELECTRONIC	SUN: Aquaterra Tech.	Attn: Kevin Martin
COPY TO	5011. Aquaterra Teen.	Attii. Keviii Waitiii
ELECTRONIC	LLI	Attn: EDD Group
COPY TO		•

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Questions? Contact your Client Services Representative Jessica A Heun at (717) 656-2300

Respectfully Submitted,

Valerie L. Tomayko Group Leader

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5417522 WW Group No. 1101087

N-8 Grab Water

Philadelphia Refinery AOI-8

COC: 187458 N-8

Collected: 07/16/2008 09:30 by SS Account Number: 10132

Submitted: 07/17/2008 13:30 SUN: Aquaterra Tech.

Reported: 07/28/2008 at 12:58 PO Box 744

Discard: 09/27/2008 West Chester PA 19381

PR808

				As Received	As Received		
CAT			As Received	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06035	Lead	7439-92-1	< 0.0010	0.0010	0.000050	mg/l	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.030	0.030	0.0098	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	< 5.	5.	1.	ug/l	1
03956	Fluorene	86-73-7	< 5.	5.	1.	ug/l	1
03963	Phenanthrene	85-01-8	< 5.	5.	1.	ug/l	1
03967	Pyrene	129-00-0	< 5.	5.	1.	ug/l	1
03971	Chrysene	218-01-9	< 5.	5.	1.	ug/l	1
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 1.	1.	0.5	ug/l	1
05401	Benzene	71-43-2	1.	1.	0.5	ug/l	1
05402	1,2-Dichloroethane	107-06-2	< 1.	1.	0.5	ug/l	1
05407	Toluene	108-88-3	< 1.	1.	0.5	ug/l	1
05415	Ethylbenzene	100-41-4	< 1.	1.	0.5	ug/l	1
05420	Isopropylbenzene	98-82-8	< 2.	2.	0.5	ug/l	1
06310	Xylene (Total)	1330-20-7	< 1.	1.	0.5	ug/l	1

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09 This sample was filtered in the lab for dissolved metals. Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5417522 WW Group No. 1101087

N-8 Grab Water

Philadelphia Refinery AOI-8

COC: 187458 N-8

Collected: 07/16/2008 09:30 by SS Account Number: 10132

Submitted: 07/17/2008 13:30 SUN: Aquaterra Tech.

Reported: 07/28/2008 at 12:58 PO Box 744

Discard: 09/27/2008 West Chester PA 19381

PR808

CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06035	Lead	SW-846 6020	1	07/23/2008 03:19	David K Beck	1
07879	EDB in Wastewater	SW-846 8011	1	07/21/2008 23:09	James H Place	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	07/22/2008 05:24	Linda M Hartenstine	1
02302	UST-Waters by 8260B	SW-846 8260B	1	07/22/2008 22:17	Florida A Cimino	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	07/22/2008 22:17	Florida A Cimino	1
06050	ICP/MS SW-846 Water	SW-846 3010A modifie	d 1	07/21/2008 06:40	Denise K Conners	1
07786	EDB Extraction	SW-846 8011	1	07/19/2008 10:45	Deborah M Zimmerman	1
07807	BNA Water Extraction	SW-846 3510C	1	07/21/2008 04:30	Tracy L Schickel	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5417523 WW Group No. 1101087

N-9 Grab Water

Philadelphia Refinery AOI-8

COC: 187458 N-9

Collected: 07/16/2008 09:45 by SS Account Number: 10132

Submitted: 07/17/2008 13:30 SUN: Aquaterra Tech.

Reported: 07/28/2008 at 12:58 PO Box 744

Discard: 09/27/2008 West Chester PA 19381

PR809

				As Received	As Received		
CAT			As Received	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06035	Lead	7439-92-1	< 0.0010	0.0010	0.000050	mg/l	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.029	0.029	0.0097	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	< 5.	5.	0.9	ug/l	1
03956	Fluorene	86-73-7	< 5.	5.	0.9	ug/l	1
03963	Phenanthrene	85-01-8	< 5.	5.	0.9	ug/l	1
03967	Pyrene	129-00-0	< 5.	5.	0.9	ug/l	1
03971	Chrysene	218-01-9	< 5.	5.	0.9	ug/l	1
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 1.	1.	0.5	ug/l	1
05401	Benzene	71-43-2	8.	1.	0.5	ug/l	1
05402	1,2-Dichloroethane	107-06-2	< 1.	1.	0.5	ug/l	1
05407	Toluene	108-88-3	1.	1.	0.5	ug/l	1
05415	Ethylbenzene	100-41-4	2.	1.	0.5	ug/l	1
05420	Isopropylbenzene	98-82-8	< 2.	2.	0.5	ug/l	1
06310	Xylene (Total)	1330-20-7	6.	1.	0.5	ug/l	1

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09 This sample was filtered in the lab for dissolved metals. Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5417523 WW Group No. 1101087

N-9 Grab Water

Philadelphia Refinery AOI-8

COC: 187458 N-9

Collected: 07/16/2008 09:45 by SS Account Number: 10132

Submitted: 07/17/2008 13:30 SUN: Aquaterra Tech.

Reported: 07/28/2008 at 12:58 PO Box 744

Discard: 09/27/2008 West Chester PA 19381

PR809

CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06035	Lead	SW-846 6020	1	07/23/2008 03:22	David K Beck	1
07879	EDB in Wastewater	SW-846 8011	1	07/22/2008 00:09	James H Place	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	07/22/2008 05:47	Linda M Hartenstine	1
02302	UST-Waters by 8260B	SW-846 8260B	1	07/22/2008 21:50	Florida A Cimino	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	07/22/2008 21:50	Florida A Cimino	1
06050	ICP/MS SW-846 Water	SW-846 3010A modified	l 1	07/21/2008 06:40	Denise K Conners	1
07786	EDB Extraction	SW-846 8011	1	07/19/2008 10:45	Deborah M Zimmerman	1
07807	BNA Water Extraction	SW-846 3510C	1	07/21/2008 04:30	Tracy L Schickel	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5417524 WW Group No. 1101087

N-16 Grab Water

Philadelphia Refinery AOI-8

COC: 187458 N-16

Collected: 07/16/2008 10:30 by SS Account Number: 10132

Submitted: 07/17/2008 13:30 SUN: Aquaterra Tech.

Reported: 07/28/2008 at 12:58 PO Box 744

Discard: 09/27/2008 West Chester PA 19381

PR816

				As Received	As Received		
CAT			As Received	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06035	Lead	7439-92-1	< 0.0010	0.0010	0.000050	mg/1	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.029	0.029	0.0097	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	< 50.	50.	10.	ug/l	1
03956	Fluorene	86-73-7	< 50.	50.	10.	ug/l	1
03963	Phenanthrene	85-01-8	< 50.	50.	10.	ug/l	1
03967	Pyrene	129-00-0	< 50.	50.	10.	ug/l	1
03971	Chrysene	218-01-9	< 50.	50.	10.	ug/l	1
	Due to the nature of the sample analysis. The reporting limits	•	-	was used for			
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 1.	1.	0.5	ug/l	1
05401	Benzene	71-43-2	< 1.	1.	0.5	ug/l	1
05402	1,2-Dichloroethane	107-06-2	< 1.	1.	0.5	ug/l	1
05407	Toluene	108-88-3	< 1.	1.	0.5	ug/l	1
05415	Ethylbenzene	100-41-4	< 1.	1.	0.5	ug/l	1
05420	Isopropylbenzene	98-82-8	< 2.	2.	0.5	ug/l	1
06310	Xylene (Total)	1330-20-7	< 1.	1.	0.5	ug/l	1

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09 This sample was filtered in the lab for dissolved metals. Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5417524 WW Group No. 1101087

N-16 Grab Water

Philadelphia Refinery AOI-8

COC: 187458 N-16

Collected: 07/16/2008 10:30 by SS Account Number: 10132

Submitted: 07/17/2008 13:30 SUN: Aquaterra Tech.

Reported: 07/28/2008 at 12:58 PO Box 744

Discard: 09/27/2008 West Chester PA 19381

PR816

		паротасоту	CIII O.	111010		
CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06035	Lead	SW-846 6020	1	07/23/2008 03:25	David K Beck	1
07879	EDB in Wastewater	SW-846 8011	1	07/22/2008 00:39	James H Place	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	07/22/2008 06:11	Linda M Hartenstine	1
02302	UST-Waters by 8260B	SW-846 8260B	1	07/22/2008 23:11	Florida A Cimino	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	07/22/2008 23:11	Florida A Cimino	1
06050	ICP/MS SW-846 Water	SW-846 3010A modified	l 1	07/21/2008 06:40	Denise K Conners	1
07786	EDB Extraction	SW-846 8011	1	07/19/2008 10:45	Deborah M Zimmerman	1
07807	BNA Water Extraction	SW-846 3510C	1	07/21/2008 04:30	Tracy L Schickel	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5417525 WW Group No. 1101087

N-17 Grab Water

Philadelphia Refinery AOI-8

COC: 187458 N-17

Collected: 07/16/2008 10:45 by SS Account Number: 10132

Submitted: 07/17/2008 13:30 SUN: Aquaterra Tech.

Reported: 07/28/2008 at 12:58 PO Box 744

Discard: 09/27/2008 West Chester PA 19381

PR817

				As Received	As Received		
CAT			As Received	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06035	Lead	7439-92-1	< 0.0010	0.0010	0.000050	mg/l	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.030	0.030	0.010	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	< 50.	50.	10.	ug/l	1
03956	Fluorene	86-73-7	< 50.	50.	10.	ug/l	1
03963	Phenanthrene	85-01-8	< 50.	50.	10.	ug/l	1
03967	Pyrene	129-00-0	130.	50.	10.	ug/l	1
03971	Chrysene	218-01-9	< 50.	50.	10.	ug/l	1
	Due to the nature of the sample		-	was used for			
	analysis. The reporting limits	were raised	accordingly.				
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 1.	1.	0.5	ug/l	1
05401	Benzene	71-43-2	< 1.	1.	0.5	ug/l	1
05402	1,2-Dichloroethane	107-06-2	< 1.	1.	0.5	ug/l	1
05407	Toluene	108-88-3	< 1.	1.	0.5	ug/l	1
05415	Ethylbenzene	100-41-4	< 1.	1.	0.5	ug/l	1
05420	Isopropylbenzene	98-82-8	< 2.	2.	0.5	ug/l	1
06310	Xylene (Total)	1330-20-7	< 1.	1.	0.5	ug/l	1

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09 This sample was filtered in the lab for dissolved metals. Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5417525 WW Group No. 1101087

N-17 Grab Water

Philadelphia Refinery AOI-8

COC: 187458 N-17

Collected: 07/16/2008 10:45 by SS Account Number: 10132

Submitted: 07/17/2008 13:30 SUN: Aquaterra Tech.

Reported: 07/28/2008 at 12:58 PO Box 744

Discard: 09/27/2008 West Chester PA 19381

PR817

		<u> </u>	O111 O.			
CAT		_		Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
0603	5 Lead	SW-846 6020	1	07/23/2008 03:28	David K Beck	1
0787	9 EDB in Wastewater	SW-846 8011	1	07/22/2008 01:09	James H Place	1
0780	5 PAHs in Water by GC/MS	SW-846 8270C	1	07/22/2008 06:57	Linda M Hartenstine	1
0230	2 UST-Waters by 8260B	SW-846 8260B	1	07/22/2008 23:37	Florida A Cimino	1
0116	3 GC/MS VOA Water Prep	SW-846 5030B	1	07/22/2008 23:37	Florida A Cimino	1
0605	0 ICP/MS SW-846 Water	SW-846 3010A modified	l 1	07/21/2008 06:40	Denise K Conners	1
0778	6 EDB Extraction	SW-846 8011	1	07/19/2008 10:45	Deborah M Zimmerman	1
0780	7 BNA Water Extraction	SW-846 3510C	1	07/21/2008 04:30	Tracy L Schickel	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5417526 WW Group No. 1101087

N-18 Grab Water

Philadelphia Refinery AOI-8

COC: 187458 N-18

Collected: 07/16/2008 11:25 by SS Account Number: 10132

Submitted: 07/17/2008 13:30 SUN: Aquaterra Tech.

Reported: 07/28/2008 at 12:58 PO Box 744

Discard: 09/27/2008 West Chester PA 19381

PR818

				As Received	As Received		
CAT			As Received	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06035	Lead	7439-92-1	< 0.0010	0.0010	0.000050	mg/l	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.030	0.030	0.0099	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	< 25.	25.	5.	ug/l	1
03956	Fluorene	86-73-7	< 25.	25.	5.	ug/l	1
03963	Phenanthrene	85-01-8	< 25.	25.	5.	ug/l	1
03967	Pyrene	129-00-0	< 25.	25.	5.	ug/l	1
03971	Chrysene	218-01-9	< 25.	25.	5.	ug/l	1
	Due to the nature of the sample	e matrix, a re	educed aliquot	was used for			
	analysis. The reporting limits	s were raised	accordingly.				
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 1.	1.	0.5	ug/l	1
05401	Benzene	71-43-2	3.	1.	0.5	ug/l	1
05402	1,2-Dichloroethane	107-06-2	< 1.	1.	0.5	ug/l	1
05407	Toluene	108-88-3	< 1.	1.	0.5	ug/l	1
05415	Ethylbenzene	100-41-4	< 1.	1.	0.5	ug/l	1
05420	Isopropylbenzene	98-82-8	20.	2.	0.5	ug/l	1
06310	Xylene (Total)	1330-20-7	1.	1.	0.5	ug/l	1

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09 This sample was filtered in the lab for dissolved metals. Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5417526 WW Group No. 1101087

N-18 Grab Water

Philadelphia Refinery AOI-8

COC: 187458 N-18

Collected: 07/16/2008 11:25 by SS Account Number: 10132

Submitted: 07/17/2008 13:30 SUN: Aquaterra Tech.

Reported: 07/28/2008 at 12:58 PO Box 744

Discard: 09/27/2008 West Chester PA 19381

PR818

	habotacory chronicic									
CAT				Analysis		Dilution				
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor				
06035	Lead	SW-846 6020	1	07/23/2008 03:31	David K Beck	1				
07879	EDB in Wastewater	SW-846 8011	1	07/22/2008 01:39	James H Place	1				
07805	PAHs in Water by GC/MS	SW-846 8270C	1	07/22/2008 07:21	Linda M Hartenstine	1				
02302	UST-Waters by 8260B	SW-846 8260B	1	07/24/2008 03:35	Kelly E Brickley	1				
01163	GC/MS VOA Water Prep	SW-846 5030B	1	07/24/2008 03:35	Kelly E Brickley	1				
06050	ICP/MS SW-846 Water	SW-846 3010A modified	1	07/21/2008 06:40	Denise K Conners	1				
07786	EDB Extraction	SW-846 8011	1	07/19/2008 10:45	Deborah M Zimmerman	1				
07807	BNA Water Extraction	SW-846 3510C	1	07/21/2008 04:30	Tracy L Schickel	1				

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5417527 WW Group No. 1101087

N-19 Grab Water

Philadelphia Refinery AOI-8

COC: 187458 N-19

Collected: 07/16/2008 11:45 by SS Account Number: 10132

Submitted: 07/17/2008 13:30 SUN: Aquaterra Tech.

Reported: 07/28/2008 at 12:58 PO Box 744

Discard: 09/27/2008 West Chester PA 19381

PR819

				As Received	As Received		
CAT			As Received	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06035	Lead	7439-92-1	< 0.0010	0.0010	0.000050	mg/l	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.029	0.029	0.0096	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	< 5.	5.	1.	ug/l	1
03956	Fluorene	86-73-7	< 5.	5.	1.	ug/l	1
03963	Phenanthrene	85-01-8	< 5.	5.	1.	ug/l	1
03967	Pyrene	129-00-0	< 5.	5.	1.	ug/l	1
03971	Chrysene	218-01-9	< 5.	5.	1.	ug/l	1
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 1.	1.	0.5	ug/l	1
05401	Benzene	71-43-2	< 1.	1.	0.5	ug/l	1
05402	1,2-Dichloroethane	107-06-2	< 1.	1.	0.5	ug/l	1
05407	Toluene	108-88-3	< 1.	1.	0.5	ug/l	1
05415	Ethylbenzene	100-41-4	< 1.	1.	0.5	ug/l	1
05420	Isopropylbenzene	98-82-8	< 2.	2.	0.5	ug/l	1
06310	Xylene (Total)	1330-20-7	< 1.	1.	0.5	ug/l	1

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09 This sample was filtered in the lab for dissolved metals. Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5417527 WW Group No. 1101087

N-19 Grab Water

Philadelphia Refinery AOI-8

COC: 187458 N-19

Collected: 07/16/2008 11:45 by SS Account Number: 10132

Submitted: 07/17/2008 13:30 SUN: Aquaterra Tech.

Reported: 07/28/2008 at 12:58 PO Box 744

Discard: 09/27/2008 West Chester PA 19381

PR819

CAT Analysis	Dilution
No. Analysis Name Method Trial# Date and Time Analyst	Factor
06035 Lead SW-846 6020 1 07/23/2008 03:34 David K Beck	1
07879 EDB in Wastewater SW-846 8011 1 07/22/2008 02:09 James H Place	1
07805 PAHs in Water by GC/MS SW-846 8270C 1 07/22/2008 07:44 Linda M Hartenstine	1
02302 UST-Waters by 8260B SW-846 8260B 1 07/24/2008 03:56 Kelly E Brickley	1
01163 GC/MS VOA Water Prep SW-846 5030B 1 07/24/2008 03:56 Kelly E Brickley	1
06050 ICP/MS SW-846 Water SW-846 3010A modified 1 07/21/2008 06:40 Denise K Conners	1
07786 EDB Extraction SW-846 8011 1 07/19/2008 10:45 Deborah M Zimmerman	1
07807 BNA Water Extraction SW-846 3510C 1 07/21/2008 04:30 Tracy L Schickel	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5417528 WW Group No. 1101087

N-85 Grab Water

Philadelphia Refinery AOI-8

COC: 187458 N-85

Collected: 07/16/2008 12:35 by SS Account Number: 10132

Submitted: 07/17/2008 13:30 SUN: Aquaterra Tech.

Reported: 07/28/2008 at 12:58 PO Box 744

Discard: 09/27/2008 West Chester PA 19381

PR885

				As Received	As Received		
CAT			As Received	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06035	Lead	7439-92-1	< 0.0010	0.0010	0.000050	mg/l	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.030	0.030	0.0099	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	< 50.	50.	10.	ug/l	1
03956	Fluorene	86-73-7	< 50.	50.	10.	ug/l	1
03963	Phenanthrene	85-01-8	< 50.	50.	10.	ug/l	1
03967	Pyrene	129-00-0	< 50.	50.	10.	ug/l	1
03971	Chrysene	218-01-9	< 50.	50.	10.	ug/l	1
	Due to the nature of the sample	e matrix, a re	educed aliquot	was used for			
	analysis. The reporting limits	s were raised	accordingly.				
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 1.	1.	0.5	ug/l	1
05401	Benzene	71-43-2	< 1.	1.	0.5	ug/l	1
05402	1,2-Dichloroethane	107-06-2	< 1.	1.	0.5	ug/l	1
05407	Toluene	108-88-3	< 1.	1.	0.5	ug/l	1
05415	Ethylbenzene	100-41-4	< 1.	1.	0.5	ug/l	1
05420	Isopropylbenzene	98-82-8	2.	2.	0.5	ug/l	1
06310	Xylene (Total)	1330-20-7	< 1.	1.	0.5	ug/l	1

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09 This sample was filtered in the lab for dissolved metals. Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5417528 WW Group No. 1101087

N-85 Grab Water

Philadelphia Refinery AOI-8

COC: 187458 N-85

Collected: 07/16/2008 12:35 by SS Account Number: 10132

Submitted: 07/17/2008 13:30 SUN: Aquaterra Tech.

Reported: 07/28/2008 at 12:58 PO Box 744

Discard: 09/27/2008 West Chester PA 19381

PR885

		<u> </u>	O111 O.			
CAT		_		Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
0603	5 Lead	SW-846 6020	1	07/23/2008 03:37	David K Beck	1
0787	9 EDB in Wastewater	SW-846 8011	1	07/22/2008 03:09	James H Place	1
0780	5 PAHs in Water by GC/MS	SW-846 8270C	1	07/22/2008 08:08	Linda M Hartenstine	1
0230	2 UST-Waters by 8260B	SW-846 8260B	1	07/23/2008 01:25	Florida A Cimino	1
0116	3 GC/MS VOA Water Prep	SW-846 5030B	1	07/23/2008 01:25	Florida A Cimino	1
0605	0 ICP/MS SW-846 Water	SW-846 3010A modified	l 1	07/21/2008 06:40	Denise K Conners	1
0778	6 EDB Extraction	SW-846 8011	1	07/19/2008 10:45	Deborah M Zimmerman	1
0780	7 BNA Water Extraction	SW-846 3510C	1	07/21/2008 04:30	Tracy L Schickel	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5417529 WW Group No. 1101087

N-84 Grab Water

Philadelphia Refinery AOI-8

COC: 187458 N-84

Collected: 07/16/2008 12:55 by SS Account Number: 10132

Submitted: 07/17/2008 13:30 SUN: Aquaterra Tech.

Reported: 07/28/2008 at 12:58 PO Box 744

Discard: 09/27/2008 West Chester PA 19381

PR884

				As Received	As Received		
CAT			As Received	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06035	Lead	7439-92-1	< 0.0010	0.0010	0.000050	mg/l	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.029	0.029	0.0096	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	< 5.	5.	1.	ug/l	1
03956	Fluorene	86-73-7	< 5.	5.	1.	ug/l	1
03963	Phenanthrene	85-01-8	< 5.	5.	1.	ug/l	1
03967	Pyrene	129-00-0	< 5.	5.	1.	ug/l	1
03971	Chrysene	218-01-9	< 5.	5.	1.	ug/l	1
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 1.	1.	0.5	ug/l	1
05401	Benzene	71-43-2	< 1.	1.	0.5	ug/l	1
05402	1,2-Dichloroethane	107-06-2	< 1.	1.	0.5	ug/l	1
05407	Toluene	108-88-3	< 1.	1.	0.5	ug/l	1
05415	Ethylbenzene	100-41-4	< 1.	1.	0.5	ug/l	1
05420	Isopropylbenzene	98-82-8	11.	2.	0.5	ug/l	1
06310	Xylene (Total)	1330-20-7	< 1.	1.	0.5	ug/l	1

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09 This sample was filtered in the lab for dissolved metals. Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5417529 WW Group No. 1101087

N-84 Grab Water

Philadelphia Refinery AOI-8

COC: 187458 N-84

Collected: 07/16/2008 12:55 by SS Account Number: 10132

Submitted: 07/17/2008 13:30 SUN: Aquaterra Tech.

Reported: 07/28/2008 at 12:58 PO Box 744

Discard: 09/27/2008 West Chester PA 19381

PR884

CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06035	Lead	SW-846 6020	1	07/23/2008 03:40	David K Beck	1
07879	EDB in Wastewater	SW-846 8011	1	07/22/2008 03:39	James H Place	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	07/22/2008 08:31	Linda M Hartenstine	1
02302	UST-Waters by 8260B	SW-846 8260B	1	07/23/2008 01:52	Florida A Cimino	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	07/23/2008 01:52	Florida A Cimino	1
06050	ICP/MS SW-846 Water	SW-846 3010A modified	l 1	07/21/2008 06:40	Denise K Conners	1
07786	EDB Extraction	SW-846 8011	1	07/19/2008 10:45	Deborah M Zimmerman	1
07807	BNA Water Extraction	SW-846 3510C	1	07/21/2008 04:30	Tracy L Schickel	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5417530 WW Group No. 1101087

N-28 Grab Water

Philadelphia Refinery AOI-8

COC: 187458 N-28

Collected: 07/16/2008 13:20 by SS Account Number: 10132

Submitted: 07/17/2008 13:30 SUN: Aquaterra Tech.

Reported: 07/28/2008 at 12:58 PO Box 744

Discard: 09/27/2008 West Chester PA 19381

PR828

				As Received	As Received		
CAT			As Received	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06035	Lead	7439-92-1	0.0010	0.0010	0.000050	mg/l	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.029	0.029	0.0097	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	< 5.	5.	1.	ug/l	1
03956	Fluorene	86-73-7	< 5.	5.	1.	ug/l	1
03963	Phenanthrene	85-01-8	< 5.	5.	1.	ug/l	1
03967	Pyrene	129-00-0	< 5.	5.	1.	ug/l	1
03971	Chrysene	218-01-9	< 5.	5.	1.	ug/l	1
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 1.	1.	0.5	ug/l	1
05401	Benzene	71-43-2	< 1.	1.	0.5	ug/l	1
05402	1,2-Dichloroethane	107-06-2	< 1.	1.	0.5	ug/l	1
05407	Toluene	108-88-3	< 1.	1.	0.5	ug/l	1
05415	Ethylbenzene	100-41-4	< 1.	1.	0.5	ug/l	1
05420	Isopropylbenzene	98-82-8	< 2.	2.	0.5	ug/l	1
06310	Xylene (Total)	1330-20-7	< 1.	1.	0.5	ug/l	1

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09 This sample was filtered in the lab for dissolved metals. Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5417530 WW Group No. 1101087

N-28 Grab Water

Philadelphia Refinery AOI-8

COC: 187458 N-28

Collected: 07/16/2008 13:20 by SS Account Number: 10132

Submitted: 07/17/2008 13:30 SUN: Aquaterra Tech.

Reported: 07/28/2008 at 12:58 PO Box 744

Discard: 09/27/2008 West Chester PA 19381

PR828

CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06035	Lead	SW-846 6020	1	07/23/2008 03:49	David K Beck	1
07879	EDB in Wastewater	SW-846 8011	1	07/22/2008 04:09	James H Place	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	07/22/2008 08:55	Linda M Hartenstine	1
02302	UST-Waters by 8260B	SW-846 8260B	1	07/23/2008 02:19	Florida A Cimino	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	07/23/2008 02:19	Florida A Cimino	1
06050	ICP/MS SW-846 Water	SW-846 3010A modified	l 1	07/21/2008 06:40	Denise K Conners	1
07786	EDB Extraction	SW-846 8011	1	07/19/2008 10:45	Deborah M Zimmerman	1
07807	BNA Water Extraction	SW-846 3510C	1	07/21/2008 04:30	Tracy L Schickel	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5417531 WW Group No. 1101087

N-134 Grab Water

Philadelphia Refinery AOI-8

COC: 187458 N-134

Collected: 07/16/2008 13:45 by SS Account Number: 10132

Submitted: 07/17/2008 13:30 SUN: Aquaterra Tech.

Reported: 07/28/2008 at 12:58 PO Box 744

Discard: 09/27/2008 West Chester PA 19381

PR134

				As Received	As Received		
CAT			As Received	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06035	Lead	7439-92-1	< 0.0010	0.0010	0.000050	mg/l	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.030	0.030	0.0099	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	< 50.	50.	10.	ug/l	1
03956	Fluorene	86-73-7	< 50.	50.	10.	ug/l	1
03963	Phenanthrene	85-01-8	< 50.	50.	10.	ug/l	1
03967	Pyrene	129-00-0	< 50.	50.	10.	ug/l	1
03971	Chrysene	218-01-9	< 50.	50.	10.	ug/l	1
	Due to the nature of the sample	e matrix, a re	educed aliquot	was used for			
	analysis. The reporting limits	s were raised	accordingly.				
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 1.	1.	0.5	ug/l	1
05401	Benzene	71-43-2	< 1.	1.	0.5	ug/l	1
05402	1,2-Dichloroethane	107-06-2	< 1.	1.	0.5	ug/l	1
05407	Toluene	108-88-3	< 1.	1.	0.5	ug/l	1
05415	Ethylbenzene	100-41-4	< 1.	1.	0.5	ug/l	1
05420	Isopropylbenzene	98-82-8	< 2.	2.	0.5	ug/l	1
06310	Xylene (Total)	1330-20-7	< 1.	1.	0.5	ug/l	1

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09 This sample was filtered in the lab for dissolved metals. Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5417531 WW Group No. 1101087

N-134 Grab Water

Philadelphia Refinery AOI-8

COC: 187458 N-134

Collected: 07/16/2008 13:45 by SS Account Number: 10132

Submitted: 07/17/2008 13:30 SUN: Aquaterra Tech.

Reported: 07/28/2008 at 12:58 PO Box 744

Discard: 09/27/2008 West Chester PA 19381

PR134

	habotacory chronitere								
CAT				Analysis		Dilution			
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor			
06035	Lead	SW-846 6020	1	07/23/2008 03:52	David K Beck	1			
07879	EDB in Wastewater	SW-846 8011	1	07/22/2008 04:39	James H Place	1			
07805	PAHs in Water by GC/MS	SW-846 8270C	1	07/22/2008 09:18	Linda M Hartenstine	1			
02302	UST-Waters by 8260B	SW-846 8260B	1	07/23/2008 02:45	Florida A Cimino	1			
01163	GC/MS VOA Water Prep	SW-846 5030B	1	07/23/2008 02:45	Florida A Cimino	1			
06050	ICP/MS SW-846 Water	SW-846 3010A modified	1	07/21/2008 06:40	Denise K Conners	1			
07786	EDB Extraction	SW-846 8011	1	07/19/2008 10:45	Deborah M Zimmerman	1			
07807	BNA Water Extraction	SW-846 3510C	1	07/21/2008 04:30	Tracy L Schickel	1			

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5417532 WW Group No. 1101087

N-65 Grab Water

Philadelphia Refinery AOI-8

COC: 187458 N-65

Collected: 07/16/2008 14:30 by SS Account Number: 10132

Submitted: 07/17/2008 13:30 SUN: Aquaterra Tech.

Reported: 07/28/2008 at 12:58 PO Box 744

Discard: 09/27/2008 West Chester PA 19381

PR865

CAT			As Received	As Received Limit of	As Received Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06035	Lead	7439-92-1	< 0.0010	0.0010	0.000050	mg/l	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.029	0.029	0.0097	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	< 5.	5.	1.	ug/l	1
03956	Fluorene	86-73-7	< 5.	5.	1.	ug/l	1
03963	Phenanthrene	85-01-8	< 5.	5.	1.	ug/l	1
03967	Pyrene	129-00-0	< 5.	5.	1.	ug/l	1
03971	Chrysene	218-01-9	< 5.	5.	1.	ug/l	1
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 1.	1.	0.5	ug/l	1
05401	Benzene	71-43-2	< 1.	1.	0.5	ug/l	1
05402	1,2-Dichloroethane	107-06-2	< 1.	1.	0.5	ug/l	1
05407	Toluene	108-88-3	< 1.	1.	0.5	ug/l	1
05415	Ethylbenzene	100-41-4	< 1.	1.	0.5	ug/l	1
05420	Isopropylbenzene	98-82-8	< 2.	2.	0.5	ug/l	1
06310	Xylene (Total)	1330-20-7	< 1.	1.	0.5	ug/l	1

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09 This sample was filtered in the lab for dissolved metals. Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5417532 WW Group No. 1101087

N-65 Grab Water

Philadelphia Refinery AOI-8

COC: 187458 N-65

Collected: 07/16/2008 14:30 by SS Account Number: 10132

Submitted: 07/17/2008 13:30 SUN: Aquaterra Tech.

Reported: 07/28/2008 at 12:58 PO Box 744

Discard: 09/27/2008 West Chester PA 19381

PR865

No. Analysis Name Method Trial# Date and Time Analyst Fact 06035 Lead SW-846 6020 1 07/23/2008 03:55 David K Beck 1	tion
06035 Lead SW-846 6020 1 07/23/2008 03:55 David K Beck 1	tor
11111	
07879 EDB in Wastewater SW-846 8011 1 07/22/2008 05:09 James H Place 1	
07805 PAHs in Water by GC/MS SW-846 8270C 1 07/22/2008 09:41 Linda M Hartenstine 1	
02302 UST-Waters by 8260B SW-846 8260B 1 07/23/2008 03:12 Florida A Cimino 1	
01163 GC/MS VOA Water Prep SW-846 5030B 1 07/23/2008 03:12 Florida A Cimino 1	
06050 ICP/MS SW-846 Water SW-846 3010A modified 1 07/21/2008 06:40 Denise K Conners 1	
07786 EDB Extraction SW-846 8011 1 07/19/2008 10:45 Deborah M Zimmerman 1	
07807 BNA Water Extraction SW-846 3510C 1 07/21/2008 04:30 Tracy L Schickel 1	

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 3

Quality Control Summary

Client Name: SUN: Aquaterra Tech. Group Number: 1101087

Reported: 07/28/08 at 12:58 PM

Matrix QC may not be reported if site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

Laboratory Compliance Quality Control

Analysis Name	Blank <u>Result</u>	Blank LOQ**	Blank <u>MDL</u>	Report <u>Units</u>	LCS %REC	LCSD %REC	LCS/LCSD <u>Limits</u>	RPD	RPD Max
Batch number: 082000009A Ethylene dibromide	Sample num < 0.030	ber(s): 54 0.030	117522-541 0.010	7532 ug/l	104	104	60-140	0	20
Batch number: 082006050004A Lead	Sample num < 0.0010	ber(s): 54 0.0010	117522-541 0.00005 0	7532 mg/l	105		90-115		
Batch number: 08201WAH026	Sample num	ber(s): 54	17522-541	7532					
Naphthalene	< 5.	5.	1.	uq/l	96	97	77-107	1	30
Fluorene	< 5.	5.	1.	ug/l	101	99	82-113	1	30
Phenanthrene	< 5.	5.	1.	ug/l	106	108	83-112	2	30
Pyrene	< 5.	5.	1.	ug/l	105	107	80-115	2	30
Chrysene	< 5.	5.	1.	ug/l	104	108	82-112	4	30
Batch number: P082043AA	Sample num	ber(s): 54	17522-541	7525,541752	8-54175	32			
Methyl Tertiary Butyl Ether	< 1.	1.	0.5	ug/l	92	95	73-119	3	30
Benzene	< 1.	1.	0.5	ug/l	88	90	78-119	2	30
1,2-Dichloroethane	< 1.	1.	0.5	ug/l	93	92	69-135	0	30
Toluene	< 1.	1.	0.5	ug/l	85	87	85-115	3	30
Ethylbenzene	< 1.	1.	0.5	ug/l	85	87	82-119	2	30
Isopropylbenzene	< 2.	2.	0.5	ug/l	84	87	80-113	4	30
Xylene (Total)	< 1.	1.	0.5	ug/l	86	88	83-113	3	30
Batch number: P082053AA	Sample num	ber(s): 54	17526-541	7527					
Methyl Tertiary Butyl Ether	< 1.	1.	0.5	ug/l	92	93	73-119	1	30
Benzene	< 1.	1.	0.5	ug/l	89	89	78-119	0	30
1,2-Dichloroethane	< 1.	1.	0.5	ug/l	93	91	69-135	2	30
Toluene	< 1.	1.	0.5	ug/l	86	88	85-115	1	30
Ethylbenzene	< 1.	1.	0.5	ug/l	84	85	82-119	2	30
Isopropylbenzene	< 2.	2.	0.5	ug/l	85	85	80-113	0	30
Xylene (Total)	< 1.	1.	0.5	ug/l	85	86	83-113	1	30

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

Analysis Name	MS %REC	MSD %REC	MS/MSD <u>Limits</u>	RPD	RPD <u>MAX</u>	BKG Conc	DUP <u>Conc</u>	DUP <u>RPD</u>	Dup RPD <u>Max</u>
Batch number: 082000009A Ethylene dibromide	Sample n	number(s)	: 5417522 65-135	-541753	2 UNSPI	K: 5417522 : < 0.029	BKG: P417548 < 0.029	0 (1)	30
Batch number: 082006050004A Lead	Sample n		: 5417522 75-125		2 UNSPI 20	K: P416579 : 0.0174	BKG: P416579 0.0178	2	20

^{*-} Outside of specification

- **-This limit was used in the evaluation of the final result for the blank
- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Quality Control Summary

Client Name: SUN: Aquaterra Tech. Group Number: 1101087

Reported: 07/28/08 at 12:58 PM

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

MS	MSD	MS/MSD		RPD	BKG	DUP	DUP	Dup RPD
%REC	%REC	<u>Limits</u>	RPD	MAX	Conc	Conc	RPD	Max
Sample	number(s)	: 5417522	-54175	25,541	7528-5417532	UNSPK:	5417522	
96		69-127						
96		83-128						
95		70-143						
95		83-127						
95		82-129						
95		81-130						
94		82-130						
Sample	number(s)	: 5417526	-54175	27 UNS	PK: P418824			
96		69-127						
94		83-128						
95		70-143						
82*		83-127						
65*		82-129						
67 (2)		81-130						
64*		82-130						
	Sample 96 95 95 95 94 Sample 96 94 95 82* 65* 67 (2)	<pre>%REC %REC Sample number(s) 96 96 95 95 95 95 94 Sample number(s) 96 94 95 82* 65* 67 (2)</pre>	%REC %REC Limits Sample number(s): 5417522 96 69-127 96 83-128 95 70-143 95 83-127 95 82-129 95 81-130 94 82-130 Sample number(s): 5417526 96 69-127 94 83-128 95 70-143 82* 83-127 65* 82-129 67 (2) 81-130	%REC %REC Limits RPD Sample number(s): 5417522-54175 96 69-127 96 83-128 95 95 70-143 95 95 82-129 95 94 82-130 Sample number(s): 5417526-54175 96 69-127 94 83-128 95 70-143 82* 83-127 65* 82-129 67 (2) 81-130	%REC %REC Limits RPD MAX Sample number(s): 5417522-5417525,541796 96 69-127 96 83-128 95 70-143 95 82-129 95 81-130 94 82-130 Sample number(s): 5417526-5417527 UNSI 96 69-127 94 83-128 95 70-143 82* 83-127 65* 82-129 67 (2) 81-130	%REC %REC Limits RPD MAX Conc Sample number(s): 5417522-5417525,5417528-5417532 96 69-127 96 83-128 95 70-143 95 83-127 95 82-129 95 82-129 95 81-130 94 82-130 82-130 NSPK: P418824 96 69-127 94 83-128 95 70-143 83-128 95 70-143 82* 83-127 65* 82-129 67 (2) 81-130	%REC %REC Limits RPD MAX Conc Conc Sample number(s): 5417522-5417525,5417528-5417532 UNSPK: 96 69-127 96 83-128 95 70-143 95 83-127 95 82-129 95 81-130 94 82-130 94 82-130 Sample number(s): 5417526-5417527 UNSPK: P418824 96 69-127 94 83-128 95 70-143 83-127 65* 82-129 81-130 67 (2) 81-130	%REC %REC Limits RPD MAX Conc Conc RPD Sample number(s): 5417522-5417525,5417528-5417532 UNSPK: 5417522 96 69-127 96 83-128 95 70-143 95 82-129 95 81-130 94 82-130 Sample number(s): 5417526-5417527 UNSPK: P418824 96 69-127 94 83-128 95 70-143 82* 83-127 65* 82-129 67 (2) 81-130

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: EDB in Wastewater Batch number: 082000009A 1,1,2,2-Tetrachloroethane

5417522	92	 	 	
5417523	87			
5417524	88			
5417525	91			
5417526	77			
5417527	124			
5417528	101			
5417529	135			
5417530	91			
5417531	86			
5417532	79			
Blank	100			
DUP	90			
LCS	100			
LCSD	100			
MS	92			
Timita	46 126	 	 	

Limits: 46-136

Analysis Name: PAHs in Water by GC/MS Batch number: 08201WAH026

Nitrobenzene-d5 2-Fluorobiphenyl Terphenyl-d14

- *- Outside of specification
- **-This limit was used in the evaluation of the final result for the blank
- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

Page 2 of 3

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 3 of 3

Quality Control Summary

Client Name: SUN: Aquaterra Tech. Group Number: 1101087

Reported: 07/28/08 at 12:58 PM

Surrogate Quality Control

		_	_	
5417522	100	127*	96	
5417523	92	100	97	
5417524	94	100	96	
5417525	101	107	94	
5417526	110	102	93	
5417527	92	98	96	
5417528	98	105	96	
5417529	88	94	105	
5417530	91	97	111	
5417531	101	109	82	
5417532	94	101	89	
Blank	98	104	101	
LCS	100	103	101	
LCSD	101	102	102	
Limits:	44-127	63-114	30-126	· · · · · · · · · · · · · · · · · · ·
	Name: UST-Waters by 8260B			
	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
5417522	88	85	82	82
5417523	87	84	83	83
5417524	87	85	83	82
E 4 4 D E 6 E	0.0	0.4	0.4	0.0

5417522	88	85	82	82
5417523	87	84	83	83
5417524	87	85	83	82
5417525	88	84	84	82
5417528	87	83	84	83
5417529	87	83	83	85
5417530	87	85	82	82
5417531	88	85	83	82
5417532	89	84	83	82
Blank	88	84	83	82
LCS	87	87	82	84
LCSD	87	88	82	83
MS	87	85	83	85

78-113 Limits: 80-116 77-113 80-113

Analysis Name: UST-Waters by 8260B

Batch numb	per: P082053AA Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
5417526	87	84	82	86
5417527	88	87	82	83
Blank	88	85	83	83
LCS	87	87	81	84
LCSD	87	86	82	83
MS	87	85	83	85
Limits:	80-116	77-113	80-113	78-113

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Analysis Request/ Environmental Services Chain of Custody

For Lancaster Laboratories use only

Acct. # 10132 Group#1101087 Sample # 5417522-32 COC # 187458

2102.03

	F	Please print. In	struction	s on re	verse s	ide co	rrespor	nd with	circle	d numb	pers. (*C	oler te	mD	2.1-6	7.5°C		
								(:	A (c	nalyse	s Requ	ested		For Lab U	se Only		
Client: SUN-AQUATERRA	Acct. #:				Vlatrix	4					tion Co			SCR#:			_
Project Name/#: PHILA REF AC		#·		na esta	appe :	Υ		ļ						Preservat	ion Codes		
Project Manager: T. DOERR						· ·	1 4		8270		İ			H=HCI	T=Thiosul	lfate	(6
					Β Ω		1 8	Ř						N=HNO ₃ S=H ₂ SO ₄	B=NaOH O=Other		
Sampler: S, SYKES	_	:		10.00	Pota	1	%		64,0				 				- 4
Name of state where samples were collecte	#:PA		3			၂ဦ	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	3									10 To
	are the	4.		21.0 20.0	-		90	Ĭ	, 6	EDB							atra
Sample Identification	Date Collected	Time Collected		98	a s		4		Parts, 64					Remark	s		Jaguar Land
N-8	7/16/08	930	X	1/8	X	8	3	1	2	2						· · · · · ·	-
N-9	1	945	X	14	\checkmark	8		 	2	2							-
N-16			1	16	☆	8			2	2	-				_		
		1030	X	14	 		+ -			-		 					
<u>N-17</u>		1045	X	#	1	8	3	1	2	2							
<u> </u>		1125	X	1/4	X	8	3		2	2							
N-19		1145	X		X	8	3	1	2	2							
N - 85		1235	X		X	8	3		2	2							
N-84		1255	[X]		X	8	3		2	2							
N-28		1320	X		X	8	3	١	2	2							
N-134		1345	X		X	Q	3	1	2	2					<u> </u>	·	
Turnaround Time Requested (TAT) (pleas			Rei	inquis	hed by	/: <u> </u>				Date	Time	Received	bv:/		.	Date	Time
(Rush TAT is subject to Lancaster Laboratories a	oproval and surcha	rge.)	` L.	2	lu	In	ر/ سرم	AGU!	TERRA	7/16/0	8 1630	for	1/2	l		146	
Date results are needed:	Phone Fav	E-mail			shed by		,_/			Date		Reseived	l by			Date,	
Phone #: Fax #:				5_	/(7	B		_	TILLE		17 2	Les	ener	1 7/	17/0	
E-mail address:			Rel	inquis	hed b	7.1				Date		Received	by.	<u> </u>		Date	
Data Package Options (please circle if requir	ed) SD	G Complete?	· Γ	J.0	Lef	// ·	40	_	7/	7/08	133	h	V				
Type I (validation/NJ Reg) TX TRRP-13		es No	Rel	inquis	hed by	/:			"	Date		Received	by:			Date	Time
	T RCP C (MS/MSD/Dup)?	Yes No			U				_								
Type IV (CLP SOW) (Hyes, indicate CC sample an	submit iriplicate volume.)		Rel	inquis	hed by					Date	Time	Received	by:	191		Date	Time
Type VI (Raw Data Only) Internal COC I	Required? Yes / No		1	-		_						/	-			7.17.28	1

Analysis Request/ Environmental Services Chain of Custody

For Lancaster Laboratories use only

Acct. # 10139 Group# 1101087 Sample # 5417539-39 COC # 187459

2102.03

<u> </u>			ease print. Ins					7				eropropere es	çeque	and f	SSS	or Lab Us SC:	- 3 .5°(e Only		_
) Client:SUN-Ad	QUATER RA	Acct #				Ma tr i)	· 👍	١Ī		Р	eserv	ation	Code	s	S	CR#:			<u> </u>
Project Name#: PHILA R Project Manager: T. (Sampler: S. SY)	EF AOI-8 DOERR	PWSID #	<i>‡</i> :			Potable Checkif NRDES: Appleable		ainers	90928		2 8270				H: N:	reservation =HCl =HNO ₃ =H ₂ SO ₄	T=Thiosulf B=NaOH	ate	ples. (9)
lame of state where samples v	vere collected:	PA Date	Time	3 4	omposite	ater Det	100	Mai # of Com	ia Uneaded	Per.	Fifth by Th				i 	Daws and rea			mperature of sam
emple Identification N-65		7/16/08	Collected 1430	X		X			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2	_		\Box			Remarks	i		- 0
77 00																			
								_	-	+-									
						1					<u> </u>	-			-			<u> </u>	
										1									
					\blacksquare	-		+						.					
urnaround Time Requested Rush TAT is subject to Lancaster				R	elinqu	ished	by:		100					Received	1 35			Date //84	Time
eate results are needed:	Laboratories approv	al alla salona	·90.)	⊢	<u> </u>	h/	15	_/_	/ 140	HIER	- 1	16/08	1630	119	<u> </u>				1
Rush results requested by (ple			E-mail	R	elinqu	ished	by	\angle	1		101	ate	Time UM5	Received	92),) מפרים	71	Date 7/08	
Phone #:	Fax #:			Ł		isheet	D/A							Received	77		- 	Date	Time.
-mail address:	. I. (Co., and and A		G Complete	<u> </u>			ת אה	1		4	- 1		1330		<i>D</i> ° .				
Data Package Options (please Type I (validation/NJ Reg) Type II (Tier II)	circle if required) TX TRRP-13 MA MCP — CT RO	/Ŷ	s No		lelinqu	iished	by:		<u> </u>	-/ /				Received	by:			Date	Time
) F = ()	Site-specific QC (MS	S/MSD/Dup)?	Yes No	- R	telina	ished	سنبلاط				Da	ate	Time	Received	by:	1/11		Date	Time
Type VI (Raw Data Only)	Internal COC Requi						, .						•			/ //		111.0	1

Lancaster Laboratories Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

N.D.	none detected	BMQL	Below Minimum Quantitation Level
TNTC	Too Numerous To Count	MPN	Most Probable Number
IU	International Units	CP Units	cobalt-chloroplatinate units
umhos/cm	micromhos/cm	NTU	nephelometric turbidity units
С	degrees Celsius	F	degrees Fahrenheit
Cal	(diet) calories	lb.	pound(s)
meq	milliequivalents	kg	kilogram(s)
g	gram(s)	mg	milligram(s)
ug	microgram(s)	1	liter(s)
ml	milliliter(s)	ul	microliter(s)
m3	cubic meter(s)	fib >5 um/ml	fibers greater than 5 microns in length per ml

- < less than The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.
- > greater than
- ppm parts per million One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.

Inorganic Qualifiers

- ppb parts per billion
- **Dry weight**Results printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture.

U.S. EPA data qualifiers:

9	lifier	(uu	9	 u	" 9	•

A B C D E	TIC is a possible aldol-condensation product Analyte was also detected in the blank Pesticide result confirmed by GC/MS Compound quatitated on a diluted sample Concentration exceeds the calibration range of the instrument	B E M N S	Value is <crdl, (msa)="" additions="" amount="" but="" calculation<="" control="" due="" duplicate="" estimated="" for="" injection="" interference="" limits="" met="" method="" not="" of="" precision="" spike="" standard="" th="" to="" used="" within="" ≥idl=""></crdl,>
J	Estimated value	U	Compound was not detected
N	Presumptive evidence of a compound (TICs only)	W	Post digestion spike out of control limits
Р	Concentration difference between primary and	*	Duplicate analysis not within control limits
	confirmation columns >25%	+	Correlation coefficient for MSA < 0.995
U	Compound was not detected		
X,Y,Z	Defined in case narrative		

Analytical test results for methods listed on the laboratories' accreditation scope meet all requirements of NELAC unless otherwise noted under the individual analysis.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

WARRANTY AND LIMITS OF LIABILITY – In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL LANCASTER LABORATORIES BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF LANCASTER LABORATORIES AND (B) WHETHER LANCASTER LABORATORIES HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Lancaster Laboratories which includes any conditions that vary from the Standard Terms and Conditions of Lancaster Laboratories and we hereby object to any conflicting terms contained in any acceptance or order submitted by client.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

ANALYTICAL RESULTS

Prepared for:

SUN: Aquaterra Tech. PO Box 744 West Chester PA 19381

610-431-5733

Prepared by:

Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425

SAMPLE GROUP

The sample group for this submittal is 1101339. Samples arrived at the laboratory on Friday, July 18, 2008. The PO# for this group is PHILADELPHIA.

Client Description	<u>Lancaster Labs Number</u>
N-27 Grab Water	5418823
N-120 Grab Water	5418824
N-26 Grab Water	5418825
N-92 Grab Water	5418826
N-93 Grab Water	5418827
N-87 Grab Water	5418828
N-86 Grab Water	5418829
N-119 Grab Water	5418830
N-121 Grab Water	5418831
N-117 Grab Water	5418832

ELECTRONIC COPY TO	SUN: Aquaterra Tech.	Attn: Kevin Martin
ELECTRONIC	Langan	Attn: Joseph Catricks
COPY TO ELECTRONIC	SUN: Aquaterra Tech.	Attn: Tiffani Doerr
COPY TO ELECTRONIC	LLI	Attn: EDD Group
COPY TO		•

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681• www.lancasterlabs.com

Questions? Contact your Client Services Representative Jessica A Heun at (717) 656-2300

Respectfully Submitted,

Valerie L. Tomayko Group Leader

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5418823 WW Group No. 1101339

N-27 Grab Water

Philadelphia Refinery AOI-8

COC: 187468 N-27

Collected: 07/17/2008 09:35 by SS Account Number: 10132

Submitted: 07/18/2008 13:20 SUN: Aquaterra Tech.

Reported: 07/29/2008 at 12:28 PO Box 744

Discard: 09/28/2008 West Chester PA 19381

PR027

				As Received	As Received		
CAT			As Received	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06035	Lead	7439-92-1	< 0.0010	0.0010	0.000050	mg/l	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.030	0.030	0.0099	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	< 5.	5.	0.9	ug/l	1
03956	Fluorene	86-73-7	< 5.	5.	0.9	ug/l	1
03963	Phenanthrene	85-01-8	< 5.	5.	0.9	ug/l	1
03967	Pyrene	129-00-0	< 5.	5.	0.9	ug/l	1
03971	Chrysene	218-01-9	< 5.	5.	0.9	ug/l	1
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	4.	1.	0.5	ug/l	1
05401	Benzene	71-43-2	< 1.	1.	0.5	ug/l	1
05402	1,2-Dichloroethane	107-06-2	< 1.	1.	0.5	ug/l	1
05407	Toluene	108-88-3	< 1.	1.	0.5	ug/l	1
05415	Ethylbenzene	100-41-4	< 1.	1.	0.5	ug/l	1
05420	Isopropylbenzene	98-82-8	< 2.	2.	0.5	ug/l	1
06310	Xylene (Total)	1330-20-7	< 1.	1.	0.5	ug/l	1

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09 This sample was filtered in the lab for dissolved metals. Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5418823 WW Group No. 1101339

N-27 Grab Water

Philadelphia Refinery AOI-8

COC: 187468 N-27

Collected:07/17/2008 09:35 by SS Account Number: 10132

Submitted: 07/18/2008 13:20 SUN: Aquaterra Tech.

Reported: 07/29/2008 at 12:28 PO Box 744

Discard: 09/28/2008 West Chester PA 19381

CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06035	Lead	SW-846 6020	1	07/24/2008 11:47	James R Williams II	1
07879	EDB in Wastewater	SW-846 8011	1	07/24/2008 00:59	Jamie L Brillhart	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	07/22/2008 12:13	Brian K Graham	1
02302	UST-Waters by 8260B	SW-846 8260B	1	07/23/2008 23:07	Kelly E Brickley	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	07/23/2008 23:07	Kelly E Brickley	1
06050	ICP/MS SW-846 Water	SW-846 3010A modified	l 1	07/23/2008 06:45	Denise K Conners	1
07786	EDB Extraction	SW-846 8011	1	07/22/2008 12:15	Deborah M Zimmerman	1
07807	BNA Water Extraction	SW-846 3510C	1	07/21/2008 14:15	Kevin P Love	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5418824 WW Group No. 1101339

N-120 Grab Water

Philadelphia Refinery AOI-8

COC: 187468 N-120

Collected: 07/17/2008 09:50 by SS Account Number: 10132

Submitted: 07/18/2008 13:20 SUN: Aquaterra Tech.

Reported: 07/29/2008 at 12:28 PO Box 744

Discard: 09/28/2008 West Chester PA 19381

PR120

				As Received	As Received		
CAT			As Received	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06035	Lead	7439-92-1	< 0.0010	0.0010	0.000050	mg/l	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.029	0.029	0.0096	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	< 5.	5.	1.	ug/l	1
03956	Fluorene	86-73-7	13.	5.	1.	ug/l	1
03963	Phenanthrene	85-01-8	21.	5.	1.	ug/l	1
03967	Pyrene	129-00-0	7.	5.	1.	ug/l	1
03971	Chrysene	218-01-9	< 5.	5.	1.	ug/l	1
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 1.	1.	0.5	ug/l	1
05401	Benzene	71-43-2	< 1.	1.	0.5	ug/l	1
05402	1,2-Dichloroethane	107-06-2	< 1.	1.	0.5	ug/l	1
05407	Toluene	108-88-3	< 1.	1.	0.5	ug/l	1
05415	Ethylbenzene	100-41-4	< 1.	1.	0.5	ug/l	1
05420	Isopropylbenzene	98-82-8	130.	2.	0.5	ug/l	1
06310	Xylene (Total)	1330-20-7	< 1.	1.	0.5	ug/l	1

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09 This sample was filtered in the lab for dissolved metals. Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5418824 WW Group No. 1101339

N-120 Grab Water

Philadelphia Refinery AOI-8

COC: 187468 N-120

Collected:07/17/2008 09:50 by SS Account Number: 10132

Submitted: 07/18/2008 13:20 SUN: Aquaterra Tech.

Reported: 07/29/2008 at 12:28 PO Box 744

Discard: 09/28/2008 West Chester PA 19381

CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06035	Lead	SW-846 6020	1	07/24/2008 11:50	James R Williams II	1
07879	EDB in Wastewater	SW-846 8011	1	07/24/2008 01:59	Jamie L Brillhart	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	07/22/2008 12:36	Brian K Graham	1
02302	UST-Waters by 8260B	SW-846 8260B	1	07/23/2008 23:27	Kelly E Brickley	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	07/23/2008 23:27	Kelly E Brickley	1
06050	ICP/MS SW-846 Water	SW-846 3010A modified	l 1	07/23/2008 06:45	Denise K Conners	1
07786	EDB Extraction	SW-846 8011	1	07/22/2008 12:15	Deborah M Zimmerman	1
07807	BNA Water Extraction	SW-846 3510C	1	07/21/2008 14:15	Kevin P Love	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5418825 WW Group No. 1101339

N-26 Grab Water

Philadelphia Refinery AOI-8

COC: 187468 N-26

Collected: 07/17/2008 10:20 by SS Account Number: 10132

Submitted: 07/18/2008 13:20 SUN: Aquaterra Tech.

Reported: 07/29/2008 at 12:28 PO Box 744

Discard: 09/28/2008 West Chester PA 19381

PR026

				As Received	As Received		
CAT			As Received	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06035	Lead	7439-92-1	< 0.0010	0.0010	0.000050	mg/l	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.029	0.029	0.0097	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	< 5.	5.	1.	ug/l	1
03956	Fluorene	86-73-7	< 5.	5.	1.	ug/l	1
03963	Phenanthrene	85-01-8	< 5.	5.	1.	ug/l	1
03967	Pyrene	129-00-0	< 5.	5.	1.	ug/l	1
03971	Chrysene	218-01-9	< 5.	5.	1.	ug/l	1
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 1.	1.	0.5	ug/l	1
05401	Benzene	71-43-2	< 1.	1.	0.5	ug/l	1
05402	1,2-Dichloroethane	107-06-2	< 1.	1.	0.5	ug/l	1
05407	Toluene	108-88-3	< 1.	1.	0.5	ug/l	1
05415	Ethylbenzene	100-41-4	< 1.	1.	0.5	ug/l	1
05420	Isopropylbenzene	98-82-8	< 2.	2.	0.5	ug/l	1
06310	Xylene (Total)	1330-20-7	< 1.	1.	0.5	ug/l	1

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09 This sample was filtered in the lab for dissolved metals. Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5418825 WW Group No. 1101339

N-26 Grab Water

Philadelphia Refinery AOI-8

COC: 187468 N-26

Collected:07/17/2008 10:20 by SS Account Number: 10132

Submitted: 07/18/2008 13:20 SUN: Aquaterra Tech.

Reported: 07/29/2008 at 12:28 PO Box 744

Discard: 09/28/2008 West Chester PA 19381

CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06035	Lead	SW-846 6020	1	07/24/2008 11:57	James R Williams II	1
07879	EDB in Wastewater	SW-846 8011	1	07/24/2008 02:29	Jamie L Brillhart	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	07/22/2008 13:00	Brian K Graham	1
02302	UST-Waters by 8260B	SW-846 8260B	1	07/24/2008 00:09	Kelly E Brickley	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	07/24/2008 00:09	Kelly E Brickley	1
06050	ICP/MS SW-846 Water	SW-846 3010A modified	1	07/23/2008 06:45	Denise K Conners	1
07786	EDB Extraction	SW-846 8011	1	07/22/2008 12:15	Deborah M Zimmerman	1
07807	BNA Water Extraction	SW-846 3510C	1	07/21/2008 14:15	Kevin P Love	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5418826 WW Group No. 1101339

N-92 Grab Water

Philadelphia Refinery AOI-8

COC: 187468 N-92

Collected: 07/17/2008 11:00 by SS Account Number: 10132

Submitted: 07/18/2008 13:20 SUN: Aquaterra Tech.

Reported: 07/29/2008 at 12:28 PO Box 744

Discard: 09/28/2008 West Chester PA 19381

PR092

				As Received	As Received		
CAT			As Received	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06035	Lead	7439-92-1	< 0.0010	0.0010	0.000050	mg/l	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.029	0.029	0.0096	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	< 5.	5.	0.9	ug/l	1
03956	Fluorene	86-73-7	17.	5.	0.9	ug/l	1
03963	Phenanthrene	85-01-8	< 5.	5.	0.9	ug/l	1
03967	Pyrene	129-00-0	27.	5.	0.9	ug/l	1
03971	Chrysene	218-01-9	11.	5.	0.9	ug/l	1
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 1.	1.	0.5	ug/l	1
05401	Benzene	71-43-2	< 1.	1.	0.5	ug/l	1
05402	1,2-Dichloroethane	107-06-2	< 1.	1.	0.5	ug/l	1
05407	Toluene	108-88-3	< 1.	1.	0.5	ug/l	1
05415	Ethylbenzene	100-41-4	< 1.	1.	0.5	ug/l	1
05420	Isopropylbenzene	98-82-8	< 2.	2.	0.5	ug/l	1
06310	Xylene (Total)	1330-20-7	< 1.	1.	0.5	ug/l	1

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09 This sample was filtered in the lab for dissolved metals. Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5418826 WW Group No. 1101339

N-92 Grab Water

Philadelphia Refinery AOI-8

COC: 187468 N-92

Collected: 07/17/2008 11:00 by SS Account Number: 10132

Submitted: 07/18/2008 13:20 SUN: Aquaterra Tech.

Reported: 07/29/2008 at 12:28 PO Box 744

Discard: 09/28/2008 West Chester PA 19381

CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06035	Lead	SW-846 6020	1	07/24/2008 11:59	James R Williams II	1
07879	EDB in Wastewater	SW-846 8011	1	07/24/2008 02:59	Jamie L Brillhart	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	07/22/2008 13:24	Brian K Graham	1
02302	UST-Waters by 8260B	SW-846 8260B	1	07/24/2008 00:29	Kelly E Brickley	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	07/24/2008 00:29	Kelly E Brickley	1
06050	ICP/MS SW-846 Water	SW-846 3010A modified	d 1	07/23/2008 06:45	Denise K Conners	1
07786	EDB Extraction	SW-846 8011	1	07/22/2008 12:15	Deborah M Zimmerman	1
07807	BNA Water Extraction	SW-846 3510C	1	07/21/2008 14:15	Kevin P Love	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5418827 WW Group No. 1101339

N-93 Grab Water

Philadelphia Refinery AOI-8

COC: 187468 N-93

Collected: 07/17/2008 11:40 by SS Account Number: 10132

Submitted: 07/18/2008 13:20 SUN: Aquaterra Tech.

Reported: 07/29/2008 at 12:28 PO Box 744

Discard: 09/28/2008 West Chester PA 19381

PR093

				As Received	As Received		
CAT			As Received	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06035	Lead	7439-92-1	< 0.0010	0.0010	0.000050	mg/l	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.029	0.029	0.0097	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	< 5.	5.	1.	ug/l	1
03956	Fluorene	86-73-7	< 5.	5.	1.	ug/l	1
03963	Phenanthrene	85-01-8	< 5.	5.	1.	ug/l	1
03967	Pyrene	129-00-0	< 5.	5.	1.	ug/l	1
03971	Chrysene	218-01-9	< 5.	5.	1.	ug/l	1
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 1.	1.	0.5	ug/l	1
05401	Benzene	71-43-2	< 1.	1.	0.5	ug/l	1
05402	1,2-Dichloroethane	107-06-2	< 1.	1.	0.5	ug/l	1
05407	Toluene	108-88-3	< 1.	1.	0.5	ug/l	1
05415	Ethylbenzene	100-41-4	< 1.	1.	0.5	ug/l	1
05420	Isopropylbenzene	98-82-8	17.	2.	0.5	ug/l	1
06310	Xylene (Total)	1330-20-7	< 1.	1.	0.5	ug/l	1

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09 This sample was filtered in the lab for dissolved metals. Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5418827 WW Group No. 1101339

N-93 Grab Water

Philadelphia Refinery AOI-8

COC: 187468 N-93

Collected:07/17/2008 11:40 by SS Account Number: 10132

Submitted: 07/18/2008 13:20 SUN: Aquaterra Tech.

Reported: 07/29/2008 at 12:28 PO Box 744

Discard: 09/28/2008 West Chester PA 19381

CAT	3			Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06035	Lead	SW-846 6020	1	07/24/2008 12:01	James R Williams II	1
07879	EDB in Wastewater	SW-846 8011	1	07/24/2008 03:29	Jamie L Brillhart	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	07/22/2008 13:47	Brian K Graham	1
02302	UST-Waters by 8260B	SW-846 8260B	1	07/24/2008 00:50	Kelly E Brickley	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	07/24/2008 00:50	Kelly E Brickley	1
06050	ICP/MS SW-846 Water	SW-846 3010A modified	i 1	07/23/2008 06:45	Denise K Conners	1
07786	EDB Extraction	SW-846 8011	1	07/22/2008 12:15	Deborah M Zimmerman	1
07807	BNA Water Extraction	SW-846 3510C	1	07/21/2008 14:15	Kevin P Love	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5418828 WW Group No. 1101339

N-87 Grab Water

Philadelphia Refinery AOI-8

COC: 187468 N-87

Collected: 07/17/2008 12:45 by SS Account Number: 10132

Submitted: 07/18/2008 13:20 SUN: Aquaterra Tech.

Reported: 07/29/2008 at 12:28 PO Box 744

Discard: 09/28/2008 West Chester PA 19381

PR087

				As Received	As Received		
CAT			As Received	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06035	Lead	7439-92-1	< 0.0010	0.0010	0.000050	mg/l	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.030	0.030	0.0099	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	< 5.	5.	0.9	ug/l	1
03956	Fluorene	86-73-7	< 5.	5.	0.9	ug/l	1
03963	Phenanthrene	85-01-8	< 5.	5.	0.9	ug/l	1
03967	Pyrene	129-00-0	< 5.	5.	0.9	ug/l	1
03971	Chrysene	218-01-9	< 5.	5.	0.9	ug/l	1
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 1.	1.	0.5	ug/l	1
05401	Benzene	71-43-2	< 1.	1.	0.5	ug/l	1
05402	1,2-Dichloroethane	107-06-2	< 1.	1.	0.5	ug/l	1
05407	Toluene	108-88-3	< 1.	1.	0.5	ug/l	1
05415	Ethylbenzene	100-41-4	< 1.	1.	0.5	ug/l	1
05420	Isopropylbenzene	98-82-8	34.	2.	0.5	ug/l	1
06310	Xylene (Total)	1330-20-7	< 1.	1.	0.5	ug/l	1

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09 This sample was filtered in the lab for dissolved metals. Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5418828 WW Group No. 1101339

N-87 Grab Water

Philadelphia Refinery AOI-8

COC: 187468 N-87

Collected: 07/17/2008 12:45 by SS Account Number: 10132

Submitted: 07/18/2008 13:20 SUN: Aquaterra Tech.

Reported: 07/29/2008 at 12:28 PO Box 744

Discard: 09/28/2008 West Chester PA 19381

CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06035	Lead	SW-846 6020	1	07/24/2008 12:04	James R Williams II	1
07879	EDB in Wastewater	SW-846 8011	1	07/24/2008 05:32	Jamie L Brillhart	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	07/22/2008 14:11	Brian K Graham	1
02302	UST-Waters by 8260B	SW-846 8260B	1	07/24/2008 01:11	Kelly E Brickley	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	07/24/2008 01:11	Kelly E Brickley	1
06050	ICP/MS SW-846 Water	SW-846 3010A modified	l 1	07/23/2008 06:45	Denise K Conners	1
07786	EDB Extraction	SW-846 8011	1	07/23/2008 10:15	Deborah M Zimmerman	1
07807	BNA Water Extraction	SW-846 3510C	1	07/21/2008 14:15	Kevin P Love	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5418829 WW Group No. 1101339

N-86 Grab Water

Philadelphia Refinery AOI-8

COC: 187468 N-86

Collected: 07/17/2008 13:15 by SS Account Number: 10132

Submitted: 07/18/2008 13:20 SUN: Aquaterra Tech.

Reported: 07/29/2008 at 12:28 PO Box 744

Discard: 09/28/2008 West Chester PA 19381

PR086

				As Received	As Received		
CAT			As Received	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06035	Lead	7439-92-1	< 0.0010	0.0010	0.000050	mg/l	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.029	0.029	0.0097	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	< 5.	5.	0.9	ug/l	1
03956	Fluorene	86-73-7	9.	5.	0.9	ug/l	1
03963	Phenanthrene	85-01-8	13.	5.	0.9	ug/l	1
03967	Pyrene	129-00-0	< 5.	5.	0.9	ug/l	1
03971	Chrysene	218-01-9	< 5.	5.	0.9	ug/l	1
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 1.	1.	0.5	ug/l	1
05401	Benzene	71-43-2	< 1.	1.	0.5	ug/l	1
05402	1,2-Dichloroethane	107-06-2	< 1.	1.	0.5	ug/l	1
05407	Toluene	108-88-3	< 1.	1.	0.5	ug/l	1
05415	Ethylbenzene	100-41-4	< 1.	1.	0.5	ug/l	1
05420	Isopropylbenzene	98-82-8	21.	2.	0.5	ug/l	1
06310	Xylene (Total)	1330-20-7	< 1.	1.	0.5	ug/l	1

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09 This sample was filtered in the lab for dissolved metals. Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5418829 WW Group No. 1101339

N-86 Grab Water

Philadelphia Refinery AOI-8

COC: 187468 N-86

Collected: 07/17/2008 13:15 by SS Account Number: 10132

Submitted: 07/18/2008 13:20 SUN: Aquaterra Tech.

Reported: 07/29/2008 at 12:28 PO Box 744

Discard: 09/28/2008 West Chester PA 19381

CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06035	Lead	SW-846 6020	1	07/24/2008 12:06	James R Williams II	1
07879	EDB in Wastewater	SW-846 8011	1	07/24/2008 07:02	Jamie L Brillhart	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	07/22/2008 14:34	Brian K Graham	1
02302	UST-Waters by 8260B	SW-846 8260B	1	07/24/2008 01:31	Kelly E Brickley	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	07/24/2008 01:31	Kelly E Brickley	1
06050	ICP/MS SW-846 Water	SW-846 3010A modified	l 1	07/23/2008 06:45	Denise K Conners	1
07786	EDB Extraction	SW-846 8011	1	07/23/2008 10:15	Deborah M Zimmerman	1
07807	BNA Water Extraction	SW-846 3510C	1	07/21/2008 14:15	Kevin P Love	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5418830 WW Group No. 1101339

N-119 Grab Water

Philadelphia Refinery AOI-8

COC: 187468 N-119

Collected: 07/17/2008 13:35 by SS Account Number: 10132

Submitted: 07/18/2008 13:20 SUN: Aquaterra Tech.

Reported: 07/29/2008 at 12:28 PO Box 744

Discard: 09/28/2008 West Chester PA 19381

PR119

				As Received	As Received		
CAT			As Received	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06035	Lead	7439-92-1	< 0.0010	0.0010	0.000050	mg/l	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.029	0.029	0.0097	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	220.	48.	10.	ug/l	10
03956	Fluorene	86-73-7	31.	5.	1.	ug/l	1
03963	Phenanthrene	85-01-8	63.	5.	1.	ug/l	1
03967	Pyrene	129-00-0	6.	5.	1.	ug/l	1
03971	Chrysene	218-01-9	< 5.	5.	1.	ug/l	1
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 20.	20.	10.	ug/l	20
05401	Benzene	71-43-2	81.	20.	10.	ug/l	20
05402	1,2-Dichloroethane	107-06-2	< 20.	20.	10.	ug/l	20
05407	Toluene	108-88-3	64.	20.	10.	ug/l	20
05415	Ethylbenzene	100-41-4	210.	20.	10.	ug/l	20
05420	Isopropylbenzene	98-82-8	520.	40.	10.	ug/l	20
06310	Xylene (Total)	1330-20-7	570.	20.	10.	ug/l	20

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09 This sample was filtered in the lab for dissolved metals. Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681• www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5418830 WW Group No. 1101339

N-119 Grab Water

Philadelphia Refinery AOI-8

COC: 187468 N-119

Collected: 07/17/2008 13:35 by SS Account Number: 10132

Submitted: 07/18/2008 13:20 SUN: Aquaterra Tech.

Reported: 07/29/2008 at 12:28 PO Box 744

Discard: 09/28/2008 West Chester PA 19381

CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06035	Lead	SW-846 6020	1	07/24/2008 12:08	James R Williams II	1
07879	EDB in Wastewater	SW-846 8011	1	07/24/2008 07:32	Jamie L Brillhart	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	07/22/2008 19:48	William T Parker	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	07/23/2008 00:30	William T Parker	10
02302	UST-Waters by 8260B	SW-846 8260B	1	07/24/2008 01:52	Kelly E Brickley	20
01163	GC/MS VOA Water Prep	SW-846 5030B	1	07/24/2008 01:52	Kelly E Brickley	20
06050	ICP/MS SW-846 Water	SW-846 3010A modified	l 1	07/23/2008 06:45	Denise K Conners	1
07786	EDB Extraction	SW-846 8011	1	07/23/2008 10:15	Deborah M Zimmerman	1
07807	BNA Water Extraction	SW-846 3510C	1	07/21/2008 14:15	Kevin P Love	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5418831 WW Group No. 1101339

N-121 Grab Water

Philadelphia Refinery AOI-8

COC: 187468 N-121

Collected: 07/17/2008 14:10 by SS Account Number: 10132

Submitted: 07/18/2008 13:20 SUN: Aquaterra Tech.

Reported: 07/29/2008 at 12:28 PO Box 744

Discard: 09/28/2008 West Chester PA 19381

PR121

				As Received	As Received		
CAT			As Received	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06035	Lead	7439-92-1	< 0.0010	0.0010	0.000050	mg/l	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.028	0.028	0.0095	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	< 20.	20.	4.	ug/l	1
03956	Fluorene	86-73-7	< 20.	20.	4.	ug/l	1
03963	Phenanthrene	85-01-8	< 20.	20.	4.	ug/l	1
03967	Pyrene	129-00-0	< 20.	20.	4.	ug/l	1
03971	Chrysene	218-01-9	< 20.	20.	4.	ug/l	1
	Due to the nature of the sample analysis. The reporting limits	•	-	was used for			
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 1.	1.	0.5	ug/l	1
05401	Benzene	71-43-2	27.	1.	0.5	ug/l	1
05402	1,2-Dichloroethane	107-06-2	< 1.	1.	0.5	ug/l	1
05407	Toluene	108-88-3	11.	1.	0.5	ug/l	1
05415	Ethylbenzene	100-41-4	2.	1.	0.5	ug/l	1
05420	Isopropylbenzene	98-82-8	34.	2.	0.5	ug/l	1
06310	Xylene (Total)	1330-20-7	36.	1.	0.5	ug/l	1

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09 This sample was filtered in the lab for dissolved metals. Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5418831 WW Group No. 1101339

N-121 Grab Water

Philadelphia Refinery AOI-8

COC: 187468 N-121

Collected: 07/17/2008 14:10 by SS Account Number: 10132

Submitted: 07/18/2008 13:20 SUN: Aquaterra Tech.

Reported: 07/29/2008 at 12:28 PO Box 744

Discard: 09/28/2008 West Chester PA 19381

PR121

		паротасот у	CIII O	111010		
CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06035	Lead	SW-846 6020	1	07/24/2008 12:11	James R Williams II	1
07879	EDB in Wastewater	SW-846 8011	1	07/24/2008 08:02	Jamie L Brillhart	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	07/22/2008 20:12	William T Parker	1
02302	UST-Waters by 8260B	SW-846 8260B	1	07/24/2008 02:33	Kelly E Brickley	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	07/24/2008 02:33	Kelly E Brickley	1
06050	ICP/MS SW-846 Water	SW-846 3010A modified	1	07/23/2008 06:45	Denise K Conners	1
07786	EDB Extraction	SW-846 8011	1	07/23/2008 10:15	Deborah M Zimmerman	1
07807	BNA Water Extraction	SW-846 3510C	1	07/21/2008 14:15	Kevin P Love	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5418832 WW Group No. 1101339

N-117 Grab Water

Philadelphia Refinery AOI-8

COC: 187468 N-117

Collected: 07/17/2008 14:45 by SS Account Number: 10132

Submitted: 07/18/2008 13:20 SUN: Aquaterra Tech.

Reported: 07/29/2008 at 12:28 PO Box 744

Discard: 09/28/2008 West Chester PA 19381

PR117

				As Received	As Received		
CAT			As Received	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06035	Lead	7439-92-1	< 0.0010	0.0010	0.000050	mg/l	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.030	0.030	0.0099	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	< 5.	5.	1.	ug/l	1
03956	Fluorene	86-73-7	24.	5.	1.	ug/l	1
03963	Phenanthrene	85-01-8	71.	5.	1.	ug/l	1
03967	Pyrene	129-00-0	11.	5.	1.	ug/l	1
03971	Chrysene	218-01-9	11.	5.	1.	ug/l	1
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 1.	1.	0.5	ug/l	1
05401	Benzene	71-43-2	< 1.	1.	0.5	ug/l	1
05402	1,2-Dichloroethane	107-06-2	< 1.	1.	0.5	ug/l	1
05407	Toluene	108-88-3	< 1.	1.	0.5	ug/l	1
05415	Ethylbenzene	100-41-4	< 1.	1.	0.5	ug/l	1
05420	Isopropylbenzene	98-82-8	14.	2.	0.5	ug/l	1
06310	Xylene (Total)	1330-20-7	< 1.	1.	0.5	ug/l	1

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09 This sample was filtered in the lab for dissolved metals. Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5418832 WW Group No. 1101339

N-117 Grab Water

Philadelphia Refinery AOI-8

COC: 187468 N-117

Collected: 07/17/2008 14:45 by SS Account Number: 10132

Submitted: 07/18/2008 13:20 SUN: Aquaterra Tech.

Reported: 07/29/2008 at 12:28 PO Box 744

Discard: 09/28/2008 West Chester PA 19381

CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06035	Lead	SW-846 6020	1	07/24/2008 12:13	James R Williams II	1
07879	EDB in Wastewater	SW-846 8011	1	07/24/2008 08:32	Jamie L Brillhart	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	07/22/2008 20:35	William T Parker	1
02302	UST-Waters by 8260B	SW-846 8260B	1	07/24/2008 02:54	Kelly E Brickley	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	07/24/2008 02:54	Kelly E Brickley	1
06050	ICP/MS SW-846 Water	SW-846 3010A modifie	d 1	07/23/2008 06:45	Denise K Conners	1
07786	EDB Extraction	SW-846 8011	1	07/23/2008 10:15	Deborah M Zimmerman	1
07807	BNA Water Extraction	SW-846 3510C	1	07/21/2008 14:15	Kevin P Love	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 3

Quality Control Summary

Client Name: SUN: Aquaterra Tech. Group Number: 1101339

Reported: 07/29/08 at 12:28 PM

Matrix QC may not be reported if site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

Laboratory Compliance Quality Control

Analysis Name	Blank <u>Result</u>	Blank LOQ**	Blank <u>MDL</u>	Report <u>Units</u>	LCS %REC	LCSD %REC	LCS/LCSD <u>Limits</u>	RPD	RPD Max
Batch number: 082030022A Ethylene dibromide	Sample number 0.030	oer(s): 54 0.030	18823-541 0.010	8827 ug/l	104	108	60-140	4	20
Batch number: 08203WAB026 Naphthalene Fluorene Phenanthrene Pyrene Chrysene	Sample numl < 5. < 5. < 5. < 5. < 5.	per(s): 54 5. 5. 5. 5. 5.	18823-541 1. 1. 1. 1.	8832 ug/1 ug/1 ug/1 ug/1	99 104 105 96 99	89 93 96 91 91	77-107 82-113 83-112 80-115 82-112	11 11 9 6 9	30 30 30 30 30
Batch number: 082040017A Ethylene dibromide	<pre>Sample numb < 0.030</pre>	oer(s): 54 0.030	18828-541 0.010	8832 ug/l	100	113	60-140	12	20
Batch number: 082046050002A Lead	Sample number 0.0010	ber(s): 54 0.0010	18823-541 0.00005 0	8832 mg/l	105		90-115		
Batch number: P082053AA Methyl Tertiary Butyl Ether Benzene 1,2-Dichloroethane Toluene Ethylbenzene Isopropylbenzene Xylene (Total)	Sample numl < 1. < 1. < 1. < 1. < 1. < 1. < 1. < 1.	<pre>ber(s): 54 1. 1. 1. 1. 1. 2. 1.</pre>	18823-541 0.5 0.5 0.5 0.5 0.5 0.5	8832 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	92 89 93 86 84 85	93 89 91 88 85 85	73-119 78-119 69-135 85-115 82-119 80-113 83-113	1 0 2 1 2 0	30 30 30 30 30 30 30

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

Analysis Name	MS MSD %REC %REC	MS/MSD Limits RPD	RPD BKG <u>MAX</u> <u>Conc</u>	DUP <u>Conc</u>	DUP <u>RPD</u>	Dup RPD <u>Max</u>
Batch number: 082030022A Ethylene dibromide	Sample numbe	r(s): 5418823-5418 65-135	827 UNSPK: P416213 < 0.030	BKG: 5418823 < 0.029	0 (1)	30
Batch number: 082040017A Ethylene dibromide	Sample numbe	r(s): 5418828-5418 65-135	832 UNSPK: 5418828 < 0.029	BKG: P420233 < 0.029	0 (1)	30
Batch number: 082046050002A Lead	Sample numbe	r(s): 5418823-5418 75-125 2	832 UNSPK: P417553 20 < 0.0010		0 (1)	20
Batch number: P082053AA Methyl Tertiary Butyl Ether Benzene	Sample numbe 96 94	r(s): 5418823-5418 69-127 83-128	832 UNSPK: 5418824			

*- Outside of specification

- **-This limit was used in the evaluation of the final result for the blank
- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 3

Quality Control Summary

Client Name: SUN: Aquaterra Tech. Group Number: 1101339

Reported: 07/29/08 at 12:28 PM

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

	MS	MSD	MS/MSD		RPD	BKG	DUP	DUP	Dup RPD
Analysis Name	%REC	%REC	<u>Limits</u>	RPD	MAX	Conc	Conc	RPD	Max
1,2-Dichloroethane	95		70-143						
Toluene	82*		83-127						
Ethylbenzene	65*		82-129						
Isopropylbenzene	67 (2)		81-130						
Xylene (Total)	64*		82-130						

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: EDB in Wastewater

Batch number: 082030022A

1,1,2,2-

Tetrachloroethane

5418823	9.7	
5418824	222*	
5418825	95	
5418826	92	
5418827	135	
Blank	100	
DUP	84	
LCS	99	
LCSD	102	
MS	97	

46-136 Limits:

Analysis Name: PAHs in Water by GC/MS

Batch number: 08203WAB026

	Nitrobenzene-d5	2-Fluorobiphenyl	Terphenyl-d14	
5418823	103	99	98	
5418824	98	82	69	
5418825	103	97	91	
5418826	125	98	91	
5418827	94	92	92	
5418828	92	88	85	
5418829	97	96	89	
5418830	100	89	79	
5418831	103	98	79	
5418832	93	72	65	
Blank	103	97	89	
LCS	103	100	91	
LCSD	92	90	85	
Limits:	44-127	63-114	30-126	

Analysis Name: EDB in Wastewater

*- Outside of specification

- **-This limit was used in the evaluation of the final result for the blank
- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 3 of 3

Quality Control Summary

Client Name: SUN: Aquaterra Tech. Group Number: 1101339

Reported: 07/29/08 at 12:28 PM

Surrogate Quality Control

Batch number: 082040017A 1,1,2,2-

Tetrachloroethane

5418828	T28.
5418829	130
5418830	86
5418831	98
5418832	87
Blank	106
DUP	86
LCS	91
LCSD	108
MS	161*

F410000

Limits:

Analysis Name: UST-Waters by 8260B Batch number: P082053AA

Daceir Halla	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzen
5418823	88	84	83	83
5418824	88	85	81	85
5418825	87	84	82	83
5418826	88	86	82	84
5418827	88	85	82	84
5418828	87	85	83	86
5418829	87	85	81	84
5418830	87	84	82	86
5418831	88	86	86	85
5418832	88	84	83	83
Blank	88	85	83	83
LCS	87	87	81	84
LCSD	87	86	82	83
MS	87	85	83	85
Limits:	80-116	77-113	80-113	78-113

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Analysis Request/ Environmental Services Chain of Custody

For Lancaster Laboratories use only

Acct. # 10132 Group# 1101339 Sample # 5418823-32 COC # 187468

Please print. Instructions on reverse side correspond with circled numbers. (00 er Homes 0.9-2.6°C (5) Analyses Requested FSC: SUN-AQUATERRA Acct. #: Matrix SCR#: **Preservation Codes** Project Name/#: PHILA REF AOI-8 PWSID#: **Preservation Codes** 8 H=HCL T=Thiosulfate Project Manager: TODERR P.O.#: N=HNO₃ B=NaOH ¥ 9€ S=H₂SO₄ O=Other Quote #: ______ Sampler: Name of state where samples were collected: Date Time Sample Identification Collected Collected Remarks 7/17/08 Turnaround Time Requested (TAT) (please circle): Normal Relinquished by: Date Time Received by: Date Time (9 (Rush TAT is subject to Lancaster Laboratories approval and surcharge.) 7 |ixləx| |n'50 ARIATERRA 7/17/02 Date results are needed: Time Received by: Relinquished by: Date Date Rush results requested by (please circle): Phone Fax Phone #: Fax #: E-mail address: Relinquished by: Date Time | Received by: Date Time Data Package Options (please circle if required) SDG Complete? Type I (validation/NJ Reg) TX TRRP-13 Yes No Relinquished by: Date Time Received by: Date Time Type II (Tier II) MA MCP CT RCP Type III (Reduced NJ) Site-specific QC (MS/MSD/Dup)? Yes No Type IV (CLP SOW) Time Received by Relinquished by Date (If yes, indicate QC sample and submit triplicate volume.) Date Time Type VI (Raw Data Only) Internal COC Required? Yes / No

Lancaster Laboratories Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

N.D.	none detected	BMQL	Below Minimum Quantitation Level
TNTC	Too Numerous To Count	MPN	Most Probable Number
IU	International Units	CP Units	cobalt-chloroplatinate units
umhos/cm	micromhos/cm	NTU	nephelometric turbidity units
С	degrees Celsius	F	degrees Fahrenheit
Cal	(diet) calories	lb.	pound(s)
meq	milliequivalents	kg	kilogram(s)
g	gram(s)	mg	milligram(s)
ug	microgram(s)	1	liter(s)
ml	milliliter(s)	ul	microliter(s)
m3	cubic meter(s)	fib >5 um/ml	fibers greater than 5 microns in length per ml

- < less than The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.
- > greater than
- ppm parts per million One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.

Inorganic Qualifiers

- ppb parts per billion
- **Dry weight**Results printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture.

U.S. EPA data qualifiers:

9	lifier	(uu	9	 u	" 9	•

A B C D E	TIC is a possible aldol-condensation product Analyte was also detected in the blank Pesticide result confirmed by GC/MS Compound quatitated on a diluted sample Concentration exceeds the calibration range of the instrument	B E M N S	Value is <crdl, (msa)="" additions="" amount="" but="" calculation<="" control="" due="" duplicate="" estimated="" for="" injection="" interference="" limits="" met="" method="" not="" of="" precision="" spike="" standard="" th="" to="" used="" within="" ≥idl=""></crdl,>
J	Estimated value	U	Compound was not detected
N	Presumptive evidence of a compound (TICs only)	W	Post digestion spike out of control limits
Р	Concentration difference between primary and	*	Duplicate analysis not within control limits
	confirmation columns >25%	+	Correlation coefficient for MSA < 0.995
U	Compound was not detected		
X,Y,Z	Defined in case narrative		

Analytical test results for methods listed on the laboratories' accreditation scope meet all requirements of NELAC unless otherwise noted under the individual analysis.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

WARRANTY AND LIMITS OF LIABILITY – In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL LANCASTER LABORATORIES BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF LANCASTER LABORATORIES AND (B) WHETHER LANCASTER LABORATORIES HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Lancaster Laboratories which includes any conditions that vary from the Standard Terms and Conditions of Lancaster Laboratories and we hereby object to any conflicting terms contained in any acceptance or order submitted by client.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

ANALYTICAL RESULTS

Prepared for:

SUN: Aquaterra Tech. PO Box 744 West Chester PA 19381

610-431-5733

Prepared by:

Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425

SAMPLE GROUP

The sample group for this submittal is 1101473. Samples arrived at the laboratory on Saturday, July 19, 2008. The PO# for this group is PHILADELPHIA.

Client Description	<u>Lancaster Labs Number</u>
N-69 Grab Water	5419603
N-70 Grab Water	5419604
N-24 Grab Water	5419605
N-94 Grab Water	5419606
N-67 Grab Water	5419607
N-77 Grab Water	5419608

ELECTRONIC COPY TO	SUN: Aquaterra Tech.	Attn: Kevin Martin
ELECTRONIC	Langan	Attn: Joseph Catricks
COPY TO ELECTRONIC	SUN: Aquaterra Tech.	Attn: Tiffani Doerr
COPY TO ELECTRONIC	LLI	Attn: EDD Group
COPY TO		1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Questions? Contact your Client Services Representative Jessica A Heun at (717) 656-2300

Respectfully Submitted,

Valerie L. Tomayko Group Leader

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5419603 WW Group No. 1101473

N-69 Grab Water

Philadelphia Refinery AOI-8

COC: 187460 N-69

Collected: 07/18/2008 10:10 by SS Account Number: 10132

Submitted: 07/19/2008 10:10 SUN: Aquaterra Tech.

Reported: 07/29/2008 at 08:31 PO Box 744

Discard: 09/28/2008 West Chester PA 19381

PRF69

				As Received	As Received		
CAT			As Received	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06035	Lead	7439-92-1	< 0.0010	0.0010	0.000050	mg/l	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.030	0.030	0.0099	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	< 5.	5.	1.	ug/l	1
03956	Fluorene	86-73-7	< 5.	5.	1.	ug/l	1
03963	Phenanthrene	85-01-8	< 5.	5.	1.	ug/l	1
03967	Pyrene	129-00-0	< 5.	5.	1.	ug/l	1
03971	Chrysene	218-01-9	< 5.	5.	1.	ug/l	1
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 1.	1.	0.5	ug/l	1
05401	Benzene	71-43-2	< 1.	1.	0.5	ug/l	1
05402	1,2-Dichloroethane	107-06-2	< 1.	1.	0.5	ug/l	1
05407	Toluene	108-88-3	< 1.	1.	0.5	ug/l	1
05415	Ethylbenzene	100-41-4	< 1.	1.	0.5	ug/l	1
05420	Isopropylbenzene	98-82-8	2.	2.	0.5	ug/l	1
06310	Xylene (Total)	1330-20-7	< 1.	1.	0.5	ug/l	1

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09 This sample was filtered in the lab for dissolved metals. Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5419603 WW Group No. 1101473

N-69 Grab Water

Philadelphia Refinery AOI-8

COC: 187460 N-69

Collected: 07/18/2008 10:10 by SS Account Number: 10132

Submitted: 07/19/2008 10:10 SUN: Aquaterra Tech.

Reported: 07/29/2008 at 08:31 PO Box 744

Discard: 09/28/2008 West Chester PA 19381

PRF69

CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06035	Lead	SW-846 6020	1	07/24/2008 12:25	James R Williams II	1
07879	EDB in Wastewater	SW-846 8011	1	07/24/2008 09:02	Jamie L Brillhart	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	07/22/2008 23:08	Gregory J Drahovsky	1
02302	UST-Waters by 8260B	SW-846 8260B	1	07/24/2008 22:03	Kelly E Brickley	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	07/24/2008 22:03	Kelly E Brickley	1
06050	ICP/MS SW-846 Water	SW-846 3010A modified	d 1	07/23/2008 06:45	Denise K Conners	1
07786	EDB Extraction	SW-846 8011	1	07/23/2008 10:15	Deborah M Zimmerman	1
07807	BNA Water Extraction	SW-846 3510C	1	07/22/2008 10:15	Cynthia J Stoltzfus	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5419604 WW Group No. 1101473

N-70 Grab Water

Philadelphia Refinery AOI-8

COC: 187460 N-70

Collected: 07/18/2008 11:20 by SS Account Number: 10132

Submitted: 07/19/2008 10:10 SUN: Aquaterra Tech.

Reported: 07/29/2008 at 08:31 PO Box 744

Discard: 09/28/2008 West Chester PA 19381

PRF70

				As Received	As Received		
CAT			As Received	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06035	Lead	7439-92-1	< 0.0010	0.0010	0.000050	mg/l	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.029	0.029	0.0098	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	< 5.	5.	1.	ug/l	1
03956	Fluorene	86-73-7	< 5.	5.	1.	ug/l	1
03963	Phenanthrene	85-01-8	< 5.	5.	1.	ug/l	1
03967	Pyrene	129-00-0	< 5.	5.	1.	ug/l	1
03971	Chrysene	218-01-9	< 5.	5.	1.	ug/l	1
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 1.	1.	0.5	ug/l	1
05401	Benzene	71-43-2	< 1.	1.	0.5	ug/l	1
05402	1,2-Dichloroethane	107-06-2	< 1.	1.	0.5	ug/l	1
05407	Toluene	108-88-3	< 1.	1.	0.5	ug/l	1
05415	Ethylbenzene	100-41-4	1.	1.	0.5	ug/l	1
05420	Isopropylbenzene	98-82-8	35.	2.	0.5	ug/l	1
06310	Xylene (Total)	1330-20-7	1.	1.	0.5	ug/l	1

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09 This sample was filtered in the lab for dissolved metals. Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5419604 WW Group No. 1101473

N-70 Grab Water

Philadelphia Refinery AOI-8

COC: 187460 N-70

Collected: 07/18/2008 11:20 by SS Account Number: 10132

Submitted: 07/19/2008 10:10 SUN: Aquaterra Tech.

Reported: 07/29/2008 at 08:31 PO Box 744

Discard: 09/28/2008 West Chester PA 19381

PRF70

CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06035	Lead	SW-846 6020	1	07/24/2008 12:27	James R Williams II	1
07879	EDB in Wastewater	SW-846 8011	1	07/24/2008 09:32	Jamie L Brillhart	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	07/22/2008 23:31	Gregory J Drahovsky	1
02302	UST-Waters by 8260B	SW-846 8260B	1	07/24/2008 22:30	Kelly E Brickley	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	07/24/2008 22:30	Kelly E Brickley	1
06050	ICP/MS SW-846 Water	SW-846 3010A modified	i 1	07/23/2008 06:45	Denise K Conners	1
07786	EDB Extraction	SW-846 8011	1	07/23/2008 10:15	Deborah M Zimmerman	1
07807	BNA Water Extraction	SW-846 3510C	1	07/22/2008 10:15	Cynthia J Stoltzfus	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5419605 WW Group No. 1101473

N-24 Grab Water

Philadelphia Refinery AOI-8

COC: 187460 N-24

Collected: 07/18/2008 12:25 by SS Account Number: 10132

Submitted: 07/19/2008 10:10 SUN: Aquaterra Tech.

Reported: 07/29/2008 at 08:31 PO Box 744

Discard: 09/28/2008 West Chester PA 19381

PRF24

				As Received	As Received		
CAT			As Received	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06035	Lead	7439-92-1	< 0.0010	0.0010	0.000050	mg/l	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.029	0.029	0.0097	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	< 47.	47.	9.	ug/l	10
03956	Fluorene	86-73-7	< 47.	47.	9.	ug/l	10
03963	Phenanthrene	85-01-8	< 47.	47.	9.	ug/l	10
03967	Pyrene	129-00-0	< 47.	47.	9.	ug/l	10
03971	Chrysene	218-01-9	< 47.	47.	9.	ug/l	10
	Due to the sample matrix an in	itial dilution	n was necessar	y to perform the			
	analysis. Therefore, the repo	rting limits	for the GC/MS :	semivolatile			
	compounds were raised.						
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 1.	1.	0.5	ug/l	1
05401	Benzene	71-43-2	3.	1.	0.5	ug/l	1
05402	1,2-Dichloroethane	107-06-2	< 1.	1.	0.5	ug/l	1
05407	Toluene	108-88-3	< 1.	1.	0.5	ug/l	1
05415	Ethylbenzene	100-41-4	< 1.	1.	0.5	ug/l	1
05420	Isopropylbenzene	98-82-8	44.	2.	0.5	ug/l	1
06310	Xylene (Total)	1330-20-7	3.	1.	0.5	ug/l	1

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09 This sample was filtered in the lab for dissolved metals. Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5419605 WW Group No. 1101473

N-24 Grab Water

Philadelphia Refinery AOI-8

COC: 187460 N-24

Collected: 07/18/2008 12:25 by SS Account Number: 10132

Submitted: 07/19/2008 10:10 SUN: Aquaterra Tech.

Reported: 07/29/2008 at 08:31 PO Box 744

Discard: 09/28/2008 West Chester PA 19381

PRF24

		_000_0_,	·			
CAT		<u>-</u>		Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06035	Lead	SW-846 6020	1	07/24/2008 12:29	James R Williams II	1
07879	EDB in Wastewater	SW-846 8011	1	07/24/2008 10:02	Jamie L Brillhart	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	07/23/2008 01:07	Gregory J Drahovsky	10
02302	UST-Waters by 8260B	SW-846 8260B	1	07/24/2008 23:23	Kelly E Brickley	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	07/24/2008 23:23	Kelly E Brickley	1
06050	ICP/MS SW-846 Water	SW-846 3010A modified	l 1	07/23/2008 06:45	Denise K Conners	1
07786	EDB Extraction	SW-846 8011	1	07/23/2008 10:15	Deborah M Zimmerman	1
07807	BNA Water Extraction	SW-846 3510C	1	07/22/2008 10:15	Cynthia J Stoltzfus	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5419606 WW Group No. 1101473

N-94 Grab Water

Philadelphia Refinery AOI-8

COC: 187460 N-94

Collected: 07/18/2008 12:00 by SS Account Number: 10132

Submitted: 07/19/2008 10:10 SUN: Aquaterra Tech.

Reported: 07/29/2008 at 08:31 PO Box 744

Discard: 09/28/2008 West Chester PA 19381

PRF94

				As Received	As Received		
CAT			As Received	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06035	Lead	7439-92-1	< 0.0010	0.0010	0.000050	mg/l	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.030	0.030	0.010	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	< 5.	5.	1.	ug/l	1
03956	Fluorene	86-73-7	< 5.	5.	1.	ug/l	1
03963	Phenanthrene	85-01-8	< 5.	5.	1.	ug/l	1
03967	Pyrene	129-00-0	< 5.	5.	1.	ug/l	1
03971	Chrysene	218-01-9	< 5.	5.	1.	ug/l	1
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 1.	1.	0.5	ug/l	1
05401	Benzene	71-43-2	< 1.	1.	0.5	ug/l	1
05402	1,2-Dichloroethane	107-06-2	< 1.	1.	0.5	ug/l	1
05407	Toluene	108-88-3	< 1.	1.	0.5	ug/l	1
05415	Ethylbenzene	100-41-4	< 1.	1.	0.5	ug/l	1
05420	Isopropylbenzene	98-82-8	< 2.	2.	0.5	ug/l	1
06310	Xylene (Total)	1330-20-7	< 1.	1.	0.5	ug/l	1

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09 This sample was filtered in the lab for dissolved metals. Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5419606 WW Group No. 1101473

N-94 Grab Water

Philadelphia Refinery AOI-8

COC: 187460 N-94

Collected: 07/18/2008 12:00 by SS Account Number: 10132

Submitted: 07/19/2008 10:10 SUN: Aquaterra Tech.

Reported: 07/29/2008 at 08:31 PO Box 744

Discard: 09/28/2008 West Chester PA 19381

PRF94

CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06035	Lead	SW-846 6020	1	07/24/2008 12:32	James R Williams II	1
07879	EDB in Wastewater	SW-846 8011	1	07/24/2008 10:32	Jamie L Brillhart	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	07/22/2008 23:55	Gregory J Drahovsky	1
02302	UST-Waters by 8260B	SW-846 8260B	1	07/24/2008 23:50	Kelly E Brickley	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	07/24/2008 23:50	Kelly E Brickley	1
06050	ICP/MS SW-846 Water	SW-846 3010A modified	d 1	07/23/2008 06:45	Denise K Conners	1
07786	EDB Extraction	SW-846 8011	1	07/23/2008 10:15	Deborah M Zimmerman	1
07807	BNA Water Extraction	SW-846 3510C	1	07/22/2008 10:15	Cynthia J Stoltzfus	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5419607 WW Group No. 1101473

N-67 Grab Water

Philadelphia Refinery AOI-8

COC: 187460 N-67

Collected: 07/18/2008 13:10 by SS Account Number: 10132

Submitted: 07/19/2008 10:10 SUN: Aquaterra Tech.

Reported: 07/29/2008 at 08:31 PO Box 744

Discard: 09/28/2008 West Chester PA 19381

PRF67

				As Received	As Received		
CAT			As Received	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06035	Lead	7439-92-1	< 0.0010	0.0010	0.000050	mg/l	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.029	0.029	0.0098	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	< 5.	5.	1.	ug/l	1
03956	Fluorene	86-73-7	< 5.	5.	1.	ug/l	1
03963	Phenanthrene	85-01-8	< 5.	5.	1.	ug/l	1
03967	Pyrene	129-00-0	< 5.	5.	1.	ug/l	1
03971	Chrysene	218-01-9	< 5.	5.	1.	ug/l	1
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 1.	1.	0.5	ug/l	1
05401	Benzene	71-43-2	< 1.	1.	0.5	ug/l	1
05402	1,2-Dichloroethane	107-06-2	< 1.	1.	0.5	ug/l	1
05407	Toluene	108-88-3	< 1.	1.	0.5	ug/l	1
05415	Ethylbenzene	100-41-4	< 1.	1.	0.5	ug/l	1
05420	Isopropylbenzene	98-82-8	< 2.	2.	0.5	ug/l	1
06310	Xylene (Total)	1330-20-7	< 1.	1.	0.5	ug/l	1

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09 This sample was filtered in the lab for dissolved metals. Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681• www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5419607 WW Group No. 1101473

N-67 Grab Water

Philadelphia Refinery AOI-8

COC: 187460 N-67

Collected: 07/18/2008 13:10 by SS Account Number: 10132

Submitted: 07/19/2008 10:10 SUN: Aquaterra Tech.

Reported: 07/29/2008 at 08:31 PO Box 744

Discard: 09/28/2008 West Chester PA 19381

PRF67

CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06035	Lead	SW-846 6020	1	07/24/2008 12:34	James R Williams II	1
07879	EDB in Wastewater	SW-846 8011	1	07/24/2008 11:02	Jamie L Brillhart	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	07/23/2008 00:19	Gregory J Drahovsky	1
02302	UST-Waters by 8260B	SW-846 8260B	1	07/25/2008 00:17	Kelly E Brickley	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	07/25/2008 00:17	Kelly E Brickley	1
06050	ICP/MS SW-846 Water	SW-846 3010A modified	i 1	07/23/2008 06:45	Denise K Conners	1
07786	EDB Extraction	SW-846 8011	1	07/23/2008 10:15	Deborah M Zimmerman	1
07807	BNA Water Extraction	SW-846 3510C	1	07/22/2008 10:15	Cynthia J Stoltzfus	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5419608 WW Group No. 1101473

N-77 Grab Water

Philadelphia Refinery AOI-8

COC: 187460 N-77

Collected: 07/18/2008 14:15 by SS Account Number: 10132

Submitted: 07/19/2008 10:10 SUN: Aquaterra Tech.

Reported: 07/29/2008 at 08:31 PO Box 744

Discard: 09/28/2008 West Chester PA 19381

PRF77

				As Received	As Received		
CAT			As Received	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06035	Lead	7439-92-1	< 0.0010	0.0010	0.000050	mg/l	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.030	0.030	0.0099	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	< 5.	5.	1.	ug/l	1
03956	Fluorene	86-73-7	7.	5.	1.	ug/l	1
03963	Phenanthrene	85-01-8	< 5.	5.	1.	ug/l	1
03967	Pyrene	129-00-0	< 5.	5.	1.	ug/l	1
03971	Chrysene	218-01-9	< 5.	5.	1.	ug/l	1
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 1.	1.	0.5	ug/l	1
05401	Benzene	71-43-2	< 1.	1.	0.5	ug/l	1
05402	1,2-Dichloroethane	107-06-2	< 1.	1.	0.5	ug/l	1
05407	Toluene	108-88-3	< 1.	1.	0.5	ug/l	1
05415	Ethylbenzene	100-41-4	< 1.	1.	0.5	ug/l	1
05420	Isopropylbenzene	98-82-8	15.	2.	0.5	ug/l	1
06310	Xylene (Total)	1330-20-7	< 1.	1.	0.5	ug/l	1

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09 This sample was filtered in the lab for dissolved metals. Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5419608 WW Group No. 1101473

N-77 Grab Water

Philadelphia Refinery AOI-8

COC: 187460 N-77

Collected: 07/18/2008 14:15 by SS Account Number: 10132

Submitted: 07/19/2008 10:10 SUN: Aquaterra Tech.

Reported: 07/29/2008 at 08:31 PO Box 744

Discard: 09/28/2008 West Chester PA 19381

PRF77

CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06035	Lead	SW-846 6020	1	07/24/2008 12:37	James R Williams II	1
07879	EDB in Wastewater	SW-846 8011	1	07/24/2008 12:02	Jamie L Brillhart	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	07/23/2008 00:43	Gregory J Drahovsky	1
02302	UST-Waters by 8260B	SW-846 8260B	1	07/25/2008 00:44	Kelly E Brickley	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	07/25/2008 00:44	Kelly E Brickley	1
06050	ICP/MS SW-846 Water	SW-846 3010A modified	l 1	07/23/2008 06:45	Denise K Conners	1
07786	EDB Extraction	SW-846 8011	1	07/23/2008 10:15	Deborah M Zimmerman	1
07807	BNA Water Extraction	SW-846 3510C	1	07/22/2008 10:15	Cynthia J Stoltzfus	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Quality Control Summary

Client Name: SUN: Aquaterra Tech. Group Number: 1101473

Reported: 07/29/08 at 08:31 AM

Matrix QC may not be reported if site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

Laboratory Compliance Quality Control

Analysis Name	Blank <u>Result</u>	Blank LOQ**	Blank <u>MDL</u>	Report <u>Units</u>	LCS %REC	LCSD %REC	LCS/LCSD <u>Limits</u>	RPD	RPD Max
Batch number: 08203WAK026	Sample num	ber(s): 54	19603-541	9608					
Naphthalene	< 5.	5.	1.	ug/l	100	98	77-107	1	30
Fluorene	< 5.	5.	1.	ug/l	102	102	82-113	0	30
Phenanthrene	< 5.	5.	1.	ug/l	108	105	83-112	3	30
Pyrene	< 5.	5.	1.	ug/l	108	109	80-115	2	30
Chrysene	< 5.	5.	1.	ug/l	103	102	82-112	1	30
Batch number: 082040017A	Sample number(s): 5419603-5419608								
Ethylene dibromide	< 0.030	0.030	0.010	ug/l	100	113	60-140	12	20
Batch number: 082046050002A	Sample num	ber(s): 54	19603-541	9608					
Lead	< 0.0010	0.0010	0.00005 0	mg/l	105		90-115		
Batch number: P082062AA	Sample num	ber(s): 54	19603-541	9608					
Methyl Tertiary Butyl Ether	< 1.	1.	0.5	uq/l	98	91	73-119	7	30
Benzene	< 1.	1.	0.5	ug/l	87	85	78-119	2	30
1,2-Dichloroethane	< 1.	1.	0.5	ug/l	96	93	69-135	3	30
Toluene	< 1.	1.	0.5	ug/l	85	85	85-115	1	30
Ethylbenzene	< 1.	1.	0.5	ug/l	87	86	82-119	1	30
Isopropylbenzene	< 2.	2.	0.5	ug/l	86	85	80-113	1	30
Xylene (Total)	< 1.	1.	0.5	ug/l	87	86	83-113	1	30

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

Analysis Name	MS <u>%REC</u>	MSD %REC	MS/MSD <u>Limits</u>	RPD	RPD <u>MAX</u>	BKG Conc	DUP Conc	DUP RPD	Dup RPD
Batch number: 082040017A Ethylene dibromide	Sample:	number(s)	: 5419603 65-135	-541960	08 UNSP	K: P418828 < 0.029	BKG: P420233 < 0.029	0 (1)	30
Batch number: 082046050002A Lead	Sample:	number(s) 104	: 5419603 75-125	-541960 2	08 UNSP: 20	K: P417553 < 0.0010	BKG: P417553 < 0.0010	0 (1)	20
Batch number: P082062AA Methyl Tertiary Butyl Ether Benzene 1,2-Dichloroethane Toluene Ethylbenzene Isopropylbenzene Xylene (Total)	Sample: 97 93 96 92 90 88	number(s)	: 5419603 69-127 83-128 70-143 83-127 82-129 81-130 82-130	-541960)8 UNSP	K: 5419604			

*- Outside of specification

- **-This limit was used in the evaluation of the final result for the blank
- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

Page 1 of 3

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 2 of 3

Quality Control Summary

Client Name: SUN: Aquaterra Tech. Group Number: 1101473

Reported: 07/29/08 at 08:31 AM

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: PAHs in Water by GC/MS

Batch number: 08203WAK026

Baccii Iianii	Nitrobenzene-d5	2-Fluorobiphenyl	Terphenyl-d14	
5419603	103	105	117	
5419604	108	104	120	
5419605	84	85	88	
5419606	105	104	116	
5419607	106	105	110	
5419608	106	105	117	
Blank	110	106	118	
LCS	111	105	113	
LCSD	108	104	115	
Limits:	44-127	63-114	30-126	

Analysis Name: EDB in Wastewater

Batch number: 082040017A

70

1,1,2,2-

Tetrachloroethane

	, .
5419604	67
5419605	124
5419606	74
5419607	88
5419608	102
Blank	106
DUP	86
LCS	91
LCSD	108
MS	161*

5419603

Limits: 46-136

Analysis Name: UST-Waters by 8260B Batch number: P082062AA

	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
5419603	92	89	91	94
5419604	92	89	87	97
5419605	92	91	89	90
5419606	93	91	89	87
5419607	93	89	89	87
5419608	92	90	88	86
Blank	92	89	89	85
LCS	92	92	88	87
LCSD	91	92	88	88
MS	91	90	97	97
Limits:	80-116	77-113	80-113	78-113

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 3 of 3

Quality Control Summary

Client Name: SUN: Aquaterra Tech. Reported: 07/29/08 at 08:31 AM

Group Number: 1101473

Surrogate Quality Control

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Analysis Request/ Environmental Services Chain of Custody

For Lancaster Laboratories use only

Acct. # 10133 Group# 1101473 Sample # 54 19603-08 COC # 187460

Please print. Instructions on reverse side correspond with circled numbers. COOLET FEM. 2.7-3.6°C (5) Analyses Requested FSC: Client: SUN-AQUATERRA Acct. #: **Preservation Codes** SCR# **Preservation Codes** PWSID #: _____ Project Name/#: PHLA REF AOT-8 H=HCI T=Thiosulfate Project Manager: T. DOERR P.O.#: _____ 82 N=HNO₃ B=NaOH S=H₂SO₄ O=Other PAHS by 64ms Sampler: S, SYKES Quote #: _____ Name of state where samples were collected: Time Sample Identification Collected : Collected Remarks 7/18/08 1010 1120 2 1225 1200 2 1310 1415 Turnaround Time Requested (TAT) (please circle): Normal Rush Relinquished by: |Time (9 Date Time | Received by: Date (Rush TAT is subject to Lancaster Laboratories approval and surcharge.) Shi las /AQUATERRA 7/18/08/1700 Date results are needed: Time Received by: Relinquished by: Date Date Time Rush results requested by (please circle): Phone Fax Phone #: Fax #: Relinquished by: Date Time | Received by: Date Time E-mail address: Data Package Options (please circle if required) SDG Complete? Type I (validation/NJ Reg) TX TRRP-13 Yes No Time Received by: Date Relinquished by: Date Time Type II (Tier II) MA MCP CT RCP Type III (Reduced NJ) Site-specific QC (MS/MSD/Dup)? Yes No Time | Received by: Date Type IV (CLP SOW) Relinquished by: Date Time (If yes, indicate QC sample and submit triplicate volume.) Mighologo MINOIM Type VI (Raw Data Only) Internal COC Required? Yes / No

Lancaster Laboratories Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

N.D.	none detected	BMQL	Below Minimum Quantitation Level
TNTC	Too Numerous To Count	MPN	Most Probable Number
IU	International Units	CP Units	cobalt-chloroplatinate units
umhos/cm	micromhos/cm	NTU	nephelometric turbidity units
С	degrees Celsius	F	degrees Fahrenheit
Cal	(diet) calories	lb.	pound(s)
meq	milliequivalents	kg	kilogram(s)
g	gram(s)	mg	milligram(s)
ug	microgram(s)	I	liter(s)
ml	milliliter(s)	ul	microliter(s)
m3	cubic meter(s)	fib >5 um/ml	fibers greater than 5 microns in length per ml

- < less than The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.
- > greater than
- ppm parts per million One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.

Inorganic Qualifiers

- ppb parts per billion
- **Dry weight**Results printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture.

U.S. EPA data qualifiers:

9	lifier	(uu	9	 u	" 9	•

A B C D E	TIC is a possible aldol-condensation product Analyte was also detected in the blank Pesticide result confirmed by GC/MS Compound quatitated on a diluted sample Concentration exceeds the calibration range of the instrument	B E M N S	Value is <crdl, (msa)="" additions="" amount="" but="" calculation<="" control="" due="" duplicate="" estimated="" for="" injection="" interference="" limits="" met="" method="" not="" of="" precision="" spike="" standard="" th="" to="" used="" within="" ≥idl=""></crdl,>
J	Estimated value	U	Compound was not detected
N	Presumptive evidence of a compound (TICs only)	W	Post digestion spike out of control limits
Р	Concentration difference between primary and	*	Duplicate analysis not within control limits
	confirmation columns >25%	+	Correlation coefficient for MSA < 0.995
U	Compound was not detected		
X,Y,Z	Defined in case narrative		

Analytical test results for methods listed on the laboratories' accreditation scope meet all requirements of NELAC unless otherwise noted under the individual analysis.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

WARRANTY AND LIMITS OF LIABILITY – In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL LANCASTER LABORATORIES BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF LANCASTER LABORATORIES AND (B) WHETHER LANCASTER LABORATORIES HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Lancaster Laboratories which includes any conditions that vary from the Standard Terms and Conditions of Lancaster Laboratories and we hereby object to any conflicting terms contained in any acceptance or order submitted by client.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

ANALYTICAL RESULTS

Prepared for:

SUN: Aquaterra Tech. PO Box 744 West Chester PA 19381

610-431-5733

Prepared by:

Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425

SAMPLE GROUP

The sample group for this submittal is 1102042. Samples arrived at the laboratory on Wednesday, July 23, 2008. The PO# for this group is PHILADELPHIA.

Client Description	Lancaster Labs Number
N-124 Grab Water	5422552
N-29 Grab Water	5422553
N-30 Grab Water	5422554
N-123 Grab Water	5422555
N-32 Grab Water	5422556
N-122 Grab Water	5422557
N-126 Grab Water	5422558
N-66 Grab Water	5422559
N-118 Grab Water	5422560
N-89 Grab Water	5422561
N-23 Grab Water	5422562
N-90 Grab Water	5422563
RW-301 Grab Water	5422564
N-108 Grab Water	5422565
RW-305 Grab Water	5422566
RW-304 Grab Water	5422567

ELECTRONIC SUN: Aquaterra Tech. Attn: Kevin Martin

COPY TO

ELECTRONIC Langan Attn: Joseph Catricks

COPY TO

ELECTRONIC SUN: Aquaterra Tech. Attn: Tiffani Doerr

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

COPY TO
ELECTRONIC LLI
COPY TO

Attn: EDD Group

Questions? Contact your Client Services Representative Jessica A Heun at (717) 656-2300

Respectfully Submitted,

Sarah Snyder

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5422552 WW Group No. 1102042

N-124 Grab Water

Philadelphia Refinery AOI-8

COC: 187462 N-124

Collected: 07/22/2008 08:30 by MH Account Number: 10132

Submitted: 07/23/2008 16:20 SUN: Aquaterra Tech.

Reported: 08/01/2008 at 14:14 PO Box 744

Discard: 10/01/2008 West Chester PA 19381

PR124

				As Received	As Received		
CAT			As Received	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06035	Lead	7439-92-1	< 0.0010	0.0010	0.000050	mg/l	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.029	0.029	0.0097	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	< 5.	5.	1.	ug/l	1
03956	Fluorene	86-73-7	< 5.	5.	1.	ug/l	1
03963	Phenanthrene	85-01-8	< 5.	5.	1.	ug/l	1
03967	Pyrene	129-00-0	< 5.	5.	1.	ug/l	1
03971	Chrysene	218-01-9	< 5.	5.	1.	ug/l	1
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 1.	1.	0.5	ug/l	1
05401	Benzene	71-43-2	< 1.	1.	0.5	ug/l	1
05402	1,2-Dichloroethane	107-06-2	< 1.	1.	0.5	ug/l	1
05407	Toluene	108-88-3	< 1.	1.	0.5	ug/l	1
05415	Ethylbenzene	100-41-4	< 1.	1.	0.5	ug/l	1
05420	Isopropylbenzene	98-82-8	< 2.	2.	0.5	ug/l	1
06310	Xylene (Total)	1330-20-7	< 1.	1.	0.5	ug/l	1

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09 This sample was filtered in the lab for dissolved metals. Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5422552 WW Group No. 1102042

N-124 Grab Water

Philadelphia Refinery AOI-8

COC: 187462 N-124

Collected:07/22/2008 08:30 by MH Account Number: 10132

Submitted: 07/23/2008 16:20 SUN: Aquaterra Tech.

Reported: 08/01/2008 at 14:14 PO Box 744

Discard: 10/01/2008 West Chester PA 19381

CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06035	Lead	SW-846 6020	1	07/27/2008 16:22	James R Williams II	1
07879	EDB in Wastewater	SW-846 8011	1	07/25/2008 03:35	James H Place	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	07/25/2008 12:58	Joseph M Gambler	1
02302	UST-Waters by 8260B	SW-846 8260B	1	07/28/2008 11:57	Anita M Dale	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	07/28/2008 11:57	Anita M Dale	1
06050	ICP/MS SW-846 Water	SW-846 3010A modified	l 1	07/25/2008 09:32	Denise K Conners	1
07786	EDB Extraction	SW-846 8011	1	07/24/2008 11:00	Deborah M Zimmerman	1
07807	BNA Water Extraction	SW-846 3510C	1	07/24/2008 16:45	JoElla L Rice	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5422553 WW Group No. 1102042

N-29 Grab Water

Philadelphia Refinery AOI-8

COC: 187462 N-29

Collected: 07/22/2008 09:45 by MH Account Number: 10132

Submitted: 07/23/2008 16:20 SUN: Aquaterra Tech.

Reported: 08/01/2008 at 14:14 PO Box 744

Discard: 10/01/2008 West Chester PA 19381

PR029

				As Received	As Received		
CAT			As Received	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06035	Lead	7439-92-1	< 0.0010	0.0010	0.000050	mg/l	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.029	0.029	0.0098	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	< 5.	5.	0.9	ug/l	1
03956	Fluorene	86-73-7	< 5.	5.	0.9	ug/l	1
03963	Phenanthrene	85-01-8	< 5.	5.	0.9	ug/l	1
03967	Pyrene	129-00-0	< 5.	5.	0.9	ug/l	1
03971	Chrysene	218-01-9	< 5.	5.	0.9	ug/l	1
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 1.	1.	0.5	ug/l	1
05401	Benzene	71-43-2	< 1.	1.	0.5	ug/l	1
05402	1,2-Dichloroethane	107-06-2	< 1.	1.	0.5	ug/l	1
05407	Toluene	108-88-3	< 1.	1.	0.5	ug/l	1
05415	Ethylbenzene	100-41-4	< 1.	1.	0.5	ug/l	1
05420	Isopropylbenzene	98-82-8	< 2.	2.	0.5	ug/l	1
06310	Xylene (Total)	1330-20-7	< 1.	1.	0.5	ug/l	1

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09 This sample was filtered in the lab for dissolved metals. Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5422553 WW Group No. 1102042

N-29 Grab Water

Philadelphia Refinery AOI-8

COC: 187462 N-29

Collected:07/22/2008 09:45 by MH Account Number: 10132

Submitted: 07/23/2008 16:20 SUN: Aquaterra Tech.

Reported: 08/01/2008 at 14:14 PO Box 744

Discard: 10/01/2008 West Chester PA 19381

CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06035	Lead	SW-846 6020	1	07/27/2008 16:25	James R Williams II	1
07879	EDB in Wastewater	SW-846 8011	1	07/25/2008 04:05	James H Place	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	07/25/2008 13:22	Joseph M Gambler	1
02302	UST-Waters by 8260B	SW-846 8260B	1	07/28/2008 12:18	Anita M Dale	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	07/28/2008 12:18	Anita M Dale	1
06050	ICP/MS SW-846 Water	SW-846 3010A modified	1	07/25/2008 09:32	Denise K Conners	1
07786	EDB Extraction	SW-846 8011	1	07/24/2008 11:00	Deborah M Zimmerman	1
07807	BNA Water Extraction	SW-846 3510C	1	07/24/2008 16:45	JoElla L Rice	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5422554 WW Group No. 1102042

N-30 Grab Water

Philadelphia Refinery AOI-8

COC: 187462 N-30

Collected: 07/22/2008 09:30 by MH Account Number: 10132

Submitted: 07/23/2008 16:20 SUN: Aquaterra Tech.

Reported: 08/01/2008 at 14:14 PO Box 744

Discard: 10/01/2008 West Chester PA 19381

PR030

				As Received	As Received		
CAT			As Received	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06035	Lead	7439-92-1	< 0.0010	0.0010	0.000050	mg/l	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.030	0.030	0.0098	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	< 5.	5.	1.	ug/l	1
03956	Fluorene	86-73-7	< 5.	5.	1.	ug/l	1
03963	Phenanthrene	85-01-8	< 5.	5.	1.	ug/l	1
03967	Pyrene	129-00-0	< 5.	5.	1.	ug/l	1
03971	Chrysene	218-01-9	< 5.	5.	1.	ug/l	1
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 1.	1.	0.5	ug/l	1
05401	Benzene	71-43-2	< 1.	1.	0.5	ug/l	1
05402	1,2-Dichloroethane	107-06-2	< 1.	1.	0.5	ug/l	1
05407	Toluene	108-88-3	< 1.	1.	0.5	ug/l	1
05415	Ethylbenzene	100-41-4	< 1.	1.	0.5	ug/l	1
05420	Isopropylbenzene	98-82-8	< 2.	2.	0.5	ug/l	1
06310	Xylene (Total)	1330-20-7	< 1.	1.	0.5	ug/l	1

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09 This sample was filtered in the lab for dissolved metals. Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5422554 WW Group No. 1102042

N-30 Grab Water

Philadelphia Refinery AOI-8

COC: 187462 N-30

Collected:07/22/2008 09:30 by MH Account Number: 10132

Submitted: 07/23/2008 16:20 SUN: Aquaterra Tech.

Reported: 08/01/2008 at 14:14 PO Box 744

Discard: 10/01/2008 West Chester PA 19381

CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06035	Lead	SW-846 6020	1	07/27/2008 16:27	James R Williams II	1
07879	EDB in Wastewater	SW-846 8011	1	07/25/2008 17:01	James H Place	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	07/25/2008 13:46	Joseph M Gambler	1
02302	UST-Waters by 8260B	SW-846 8260B	1	07/28/2008 12:39	Anita M Dale	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	07/28/2008 12:39	Anita M Dale	1
06050	ICP/MS SW-846 Water	SW-846 3010A modified	d 1	07/25/2008 09:32	Denise K Conners	1
07786	EDB Extraction	SW-846 8011	1	07/24/2008 17:40	Kelli M Barto	1
07807	BNA Water Extraction	SW-846 3510C	1	07/24/2008 16:45	JoElla L Rice	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5422555 WW Group No. 1102042

N-123 Grab Water

Philadelphia Refinery AOI-8

COC: 187462 N-123

Collected: 07/22/2008 10:35 by MH Account Number: 10132

Submitted: 07/23/2008 16:20 SUN: Aquaterra Tech.

Reported: 08/01/2008 at 14:14 PO Box 744

Discard: 10/01/2008 West Chester PA 19381

PR123

				As Received	As Received		
CAT			As Received	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06035	Lead	7439-92-1	< 0.0010	0.0010	0.000050	mg/l	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.029	0.029	0.0096	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	140.	24.	5.	ug/l	5
03956	Fluorene	86-73-7	60.	5.	1.	ug/l	1
03963	Phenanthrene	85-01-8	170.	24.	5.	ug/l	5
03967	Pyrene	129-00-0	110.	5.	1.	ug/l	1
03971	Chrysene	218-01-9	66.	5.	1.	ug/l	1
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 1.	1.	0.5	ug/l	1
05401	Benzene	71-43-2	6.	1.	0.5	ug/l	1
05402	1,2-Dichloroethane	107-06-2	< 1.	1.	0.5	ug/l	1
05407	Toluene	108-88-3	1.	1.	0.5	ug/l	1
05415	Ethylbenzene	100-41-4	5.	1.	0.5	ug/l	1
05420	Isopropylbenzene	98-82-8	34.	2.	0.5	ug/l	1
06310	Xylene (Total)	1330-20-7	2.	1.	0.5	ug/l	1

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09 This sample was filtered in the lab for dissolved metals. Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5422555 WW Group No. 1102042

N-123 Grab Water

Philadelphia Refinery AOI-8

COC: 187462 N-123

Collected: 07/22/2008 10:35 by MH Account Number: 10132

Submitted: 07/23/2008 16:20 SUN: Aquaterra Tech.

Reported: 08/01/2008 at 14:14 PO Box 744

Discard: 10/01/2008 West Chester PA 19381

CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06035	Lead	SW-846 6020	1	07/27/2008 16:34	James R Williams II	1
07879	EDB in Wastewater	SW-846 8011	1	07/25/2008 18:31	James H Place	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	07/25/2008 14:09	Joseph M Gambler	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	07/25/2008 22:31	Gregory J Drahovsky	5
02302	UST-Waters by 8260B	SW-846 8260B	1	07/28/2008 12:59	Anita M Dale	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	07/28/2008 12:59	Anita M Dale	1
06050	ICP/MS SW-846 Water	SW-846 3010A modified	1	07/25/2008 09:32	Denise K Conners	1
07786	EDB Extraction	SW-846 8011	1	07/24/2008 17:40	Kelli M Barto	1
07807	BNA Water Extraction	SW-846 3510C	1	07/24/2008 16:45	JoElla L Rice	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5422556 WW Group No. 1102042

N-32 Grab Water

Philadelphia Refinery AOI-8

COC: 187462 N-32

Collected: 07/22/2008 11:10 by MH Account Number: 10132

Submitted: 07/23/2008 16:20 SUN: Aquaterra Tech.

Reported: 08/01/2008 at 14:14 PO Box 744

Discard: 10/01/2008 West Chester PA 19381

PR032

				As Received	As Received		
CAT			As Received	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06035	Lead	7439-92-1	< 0.0010	0.0010	0.000050	mg/l	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.029	0.029	0.0096	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	< 5.	5.	1.	ug/l	1
03956	Fluorene	86-73-7	< 5.	5.	1.	ug/l	1
03963	Phenanthrene	85-01-8	< 5.	5.	1.	ug/l	1
03967	Pyrene	129-00-0	< 5.	5.	1.	ug/l	1
03971	Chrysene	218-01-9	< 5.	5.	1.	ug/l	1
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 1.	1.	0.5	ug/l	1
05401	Benzene	71-43-2	< 1.	1.	0.5	ug/l	1
05402	1,2-Dichloroethane	107-06-2	< 1.	1.	0.5	ug/l	1
05407	Toluene	108-88-3	< 1.	1.	0.5	ug/l	1
05415	Ethylbenzene	100-41-4	< 1.	1.	0.5	ug/l	1
05420	Isopropylbenzene	98-82-8	< 2.	2.	0.5	ug/l	1
06310	Xylene (Total)	1330-20-7	< 1.	1.	0.5	ug/l	1

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09 This sample was filtered in the lab for dissolved metals. Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5422556 WW Group No. 1102042

N-32 Grab Water

Philadelphia Refinery AOI-8

COC: 187462 N-32

Collected: 07/22/2008 11:10 by MH Account Number: 10132

Submitted: 07/23/2008 16:20 SUN: Aquaterra Tech.

Reported: 08/01/2008 at 14:14 PO Box 744

Discard: 10/01/2008 West Chester PA 19381

CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06035	Lead	SW-846 6020	1	07/27/2008 16:36	James R Williams II	1
07879	EDB in Wastewater	SW-846 8011	1	07/25/2008 19:01	James H Place	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	07/25/2008 14:33	Joseph M Gambler	1
02302	UST-Waters by 8260B	SW-846 8260B	1	07/28/2008 13:20	Anita M Dale	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	07/28/2008 13:20	Anita M Dale	1
06050	ICP/MS SW-846 Water	SW-846 3010A modified	1	07/25/2008 09:32	Denise K Conners	1
07786	EDB Extraction	SW-846 8011	1	07/24/2008 17:40	Kelli M Barto	1
07807	BNA Water Extraction	SW-846 3510C	1	07/24/2008 16:45	JoElla L Rice	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5422557 WW Group No. 1102042

N-122 Grab Water

Philadelphia Refinery AOI-8

COC: 187462 N-122

Collected: 07/22/2008 12:15 by MH Account Number: 10132

Submitted: 07/23/2008 16:20 SUN: Aquaterra Tech.

Reported: 08/01/2008 at 14:14 PO Box 744

Discard: 10/01/2008 West Chester PA 19381

PR122

CAT			As Received	As Received Limit of	As Received Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06035	Lead	7439-92-1	< 0.0010	0.0010	0.000050	mg/l	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.029	0.029	0.0096	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	< 5.	5.	1.	ug/l	1
03956	Fluorene	86-73-7	84.	5.	1.	ug/l	1
03963	Phenanthrene	85-01-8	250.	24.	5.	ug/l	5
03967	Pyrene	129-00-0	16.	5.	1.	ug/l	1
03971	Chrysene	218-01-9	5.	5.	1.	ug/l	1
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 1.	1.	0.5	ug/l	1
05401	Benzene	71-43-2	< 1.	1.	0.5	ug/l	1
05402	1,2-Dichloroethane	107-06-2	< 1.	1.	0.5	ug/l	1
05407	Toluene	108-88-3	< 1.	1.	0.5	ug/l	1
05415	Ethylbenzene	100-41-4	< 1.	1.	0.5	ug/l	1
05420	Isopropylbenzene	98-82-8	5.	2.	0.5	ug/l	1
06310	Xylene (Total)	1330-20-7	1.	1.	0.5	ug/l	1

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09 This sample was filtered in the lab for dissolved metals. Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5422557 WW Group No. 1102042

N-122 Grab Water

Philadelphia Refinery AOI-8

COC: 187462 N-122

Collected: 07/22/2008 12:15 by MH Account Number: 10132

Submitted: 07/23/2008 16:20 SUN: Aquaterra Tech.

Reported: 08/01/2008 at 14:14 PO Box 744

Discard: 10/01/2008 West Chester PA 19381

CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06035	Lead	SW-846 6020	1	07/27/2008 16:39	James R Williams II	1
07879	EDB in Wastewater	SW-846 8011	1	07/25/2008 19:31	James H Place	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	07/25/2008 14:57	Joseph M Gambler	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	07/25/2008 22:55	Gregory J Drahovsky	5
02302	UST-Waters by 8260B	SW-846 8260B	1	07/28/2008 14:01	Anita M Dale	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	07/28/2008 14:01	Anita M Dale	1
06050	ICP/MS SW-846 Water	SW-846 3010A modified	1	07/25/2008 09:32	Denise K Conners	1
07786	EDB Extraction	SW-846 8011	1	07/24/2008 17:40	Kelli M Barto	1
07807	BNA Water Extraction	SW-846 3510C	1	07/24/2008 16:45	JoElla L Rice	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5422558 WW Group No. 1102042

N-126 Grab Water

Philadelphia Refinery AOI-8

COC: 187462 N-126

Collected: 07/22/2008 12:40 by MH Account Number: 10132

Submitted: 07/23/2008 16:20 SUN: Aquaterra Tech.

Reported: 08/01/2008 at 14:15 PO Box 744

Discard: 10/01/2008 West Chester PA 19381

PR126

				As Received	As Received		
CAT			As Received	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06035	Lead	7439-92-1	< 0.0010	0.0010	0.000050	mg/l	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.029	0.029	0.0097	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	14.	5.	1.	ug/l	1
03956	Fluorene	86-73-7	13.	5.	1.	ug/l	1
03963	Phenanthrene	85-01-8	45.	5.	1.	ug/l	1
03967	Pyrene	129-00-0	20.	5.	1.	ug/l	1
03971	Chrysene	218-01-9	30.	5.	1.	ug/l	1
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 1.	1.	0.5	ug/l	1
05401	Benzene	71-43-2	1.	1.	0.5	ug/l	1
05402	1,2-Dichloroethane	107-06-2	< 1.	1.	0.5	ug/l	1
05407	Toluene	108-88-3	< 1.	1.	0.5	ug/l	1
05415	Ethylbenzene	100-41-4	< 1.	1.	0.5	ug/l	1
05420	Isopropylbenzene	98-82-8	3.	2.	0.5	ug/l	1
06310	Xylene (Total)	1330-20-7	2.	1.	0.5	ug/l	1

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09 This sample was filtered in the lab for dissolved metals. Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5422558 WW Group No. 1102042

N-126 Grab Water

Philadelphia Refinery AOI-8

COC: 187462 N-126

Collected: 07/22/2008 12:40 by MH Account Number: 10132

Submitted: 07/23/2008 16:20 SUN: Aquaterra Tech.

Reported: 08/01/2008 at 14:15 PO Box 744

Discard: 10/01/2008 West Chester PA 19381

CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06035	Lead	SW-846 6020	1	07/27/2008 16:41	James R Williams II	1
07879	EDB in Wastewater	SW-846 8011	1	07/25/2008 20:31	James H Place	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	07/25/2008 15:21	Joseph M Gambler	1
02302	UST-Waters by 8260B	SW-846 8260B	1	07/28/2008 14:21	Anita M Dale	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	07/28/2008 14:21	Anita M Dale	1
06050	ICP/MS SW-846 Water	SW-846 3010A modifie	d 1	07/25/2008 09:32	Denise K Conners	1
07786	EDB Extraction	SW-846 8011	1	07/24/2008 17:40	Kelli M Barto	1
07807	BNA Water Extraction	SW-846 3510C	1	07/24/2008 16:45	JoElla L Rice	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5422559 WW Group No. 1102042

N-66 Grab Water

Philadelphia Refinery AOI-8

COC: 187462 N-66

Collected: 07/22/2008 13:15 by MH Account Number: 10132

Submitted: 07/23/2008 16:20 SUN: Aquaterra Tech.

Reported: 08/01/2008 at 14:15 PO Box 744

Discard: 10/01/2008 West Chester PA 19381

PR066

				As Received	As Received		
CAT			As Received	Limit of	Method		Dilutio
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06035	Lead	7439-92-1	< 0.0010	0.0010	0.000050	mg/l	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.029	0.029	0.0098	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	48.	5.	1.	ug/l	1
03956	Fluorene	86-73-7	31.	5.	1.	ug/l	1
03963	Phenanthrene	85-01-8	67.	5.	1.	ug/l	1
03967	Pyrene	129-00-0	19.	5.	1.	ug/l	1
03971	Chrysene	218-01-9	7.	5.	1.	ug/l	1
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 1.	1.	0.5	ug/l	1
05401	Benzene	71-43-2	< 1.	1.	0.5	ug/l	1
05402	1,2-Dichloroethane	107-06-2	< 1.	1.	0.5	ug/l	1
05407	Toluene	108-88-3	< 1.	1.	0.5	ug/l	1
05415	Ethylbenzene	100-41-4	< 1.	1.	0.5	ug/l	1
05420	Isopropylbenzene	98-82-8	4.	2.	0.5	ug/l	1
06310	Xylene (Total)	1330-20-7	< 1.	1.	0.5	ug/l	1

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09 This sample was filtered in the lab for dissolved metals. Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5422559 WW Group No. 1102042

N-66 Grab Water

Philadelphia Refinery AOI-8

COC: 187462 N-66

Collected: 07/22/2008 13:15 by MH Account Number: 10132

Submitted: 07/23/2008 16:20 SUN: Aquaterra Tech.

Reported: 08/01/2008 at 14:15 PO Box 744

Discard: 10/01/2008 West Chester PA 19381

CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06035	Lead	SW-846 6020	1	07/27/2008 16:43	James R Williams II	1
07879	EDB in Wastewater	SW-846 8011	1	07/25/2008 21:01	James H Place	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	07/25/2008 15:45	Joseph M Gambler	1
02302	UST-Waters by 8260B	SW-846 8260B	1	07/28/2008 14:42	Anita M Dale	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	07/28/2008 14:42	Anita M Dale	1
06050	ICP/MS SW-846 Water	SW-846 3010A modified	1	07/25/2008 09:32	Denise K Conners	1
07786	EDB Extraction	SW-846 8011	1	07/24/2008 17:40	Kelli M Barto	1
07807	BNA Water Extraction	SW-846 3510C	1	07/24/2008 16:45	JoElla L Rice	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5422560 WW Group No. 1102042

N-118 Grab Water

Philadelphia Refinery AOI-8

COC: 187462 N-118

Collected: 07/22/2008 08:30 by SS Account Number: 10132

Submitted: 07/23/2008 16:20 SUN: Aquaterra Tech.

Reported: 08/01/2008 at 14:15 PO Box 744

Discard: 10/01/2008 West Chester PA 19381

PR118

				As Received	As Received		
CAT			As Received	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06035	Lead	7439-92-1	< 0.0010	0.0010	0.000050	mg/l	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.029	0.029	0.0098	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	< 5.	5.	1.	ug/l	1
03956	Fluorene	86-73-7	34.	5.	1.	ug/l	1
03963	Phenanthrene	85-01-8	70.	5.	1.	ug/l	1
03967	Pyrene	129-00-0	9.	5.	1.	ug/l	1
03971	Chrysene	218-01-9	9.	5.	1.	ug/l	1
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 1.	1.	0.5	ug/l	1
05401	Benzene	71-43-2	9.	1.	0.5	ug/l	1
05402	1,2-Dichloroethane	107-06-2	< 1.	1.	0.5	ug/l	1
05407	Toluene	108-88-3	7.	1.	0.5	ug/l	1
05415	Ethylbenzene	100-41-4	3.	1.	0.5	ug/l	1
05420	Isopropylbenzene	98-82-8	97.	2.	0.5	ug/l	1
06310	Xylene (Total)	1330-20-7	18.	1.	0.5	ug/l	1

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09 This sample was filtered in the lab for dissolved metals. Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5422560 WW Group No. 1102042

N-118 Grab Water

Philadelphia Refinery AOI-8

COC: 187462 N-118

Collected: 07/22/2008 08:30 by SS Account Number: 10132

Submitted: 07/23/2008 16:20 SUN: Aquaterra Tech.

Reported: 08/01/2008 at 14:15 PO Box 744

Discard: 10/01/2008 West Chester PA 19381

CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06035	Lead	SW-846 6020	1	07/27/2008 16:46	James R Williams II	1
07879	EDB in Wastewater	SW-846 8011	1	07/25/2008 21:31	James H Place	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	07/25/2008 16:09	Joseph M Gambler	1
02302	UST-Waters by 8260B	SW-846 8260B	1	07/31/2008 06:18	Kelly E Brickley	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	07/31/2008 06:18	Kelly E Brickley	1
06050	ICP/MS SW-846 Water	SW-846 3010A modified	i 1	07/25/2008 09:32	Denise K Conners	1
07786	EDB Extraction	SW-846 8011	1	07/24/2008 17:40	Kelli M Barto	1
07807	BNA Water Extraction	SW-846 3510C	1	07/24/2008 16:45	JoElla L Rice	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5422561 WW Group No. 1102042

N-89 Grab Water

Philadelphia Refinery AOI-8

COC: 187462 N-89

Collected: 07/22/2008 09:20 by SS Account Number: 10132

Submitted: 07/23/2008 16:20 SUN: Aquaterra Tech.

Reported: 08/01/2008 at 14:15 PO Box 744

Discard: 10/01/2008 West Chester PA 19381

PR089

				As Received	As Received		
CAT			As Received	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06035	Lead	7439-92-1	< 0.0010	0.0010	0.000050	mg/l	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.029	0.029	0.0096	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	< 5.	5.	0.9	ug/l	1
03956	Fluorene	86-73-7	7.	5.	0.9	ug/l	1
03963	Phenanthrene	85-01-8	< 5.	5.	0.9	ug/l	1
03967	Pyrene	129-00-0	< 5.	5.	0.9	ug/l	1
03971	Chrysene	218-01-9	< 5.	5.	0.9	ug/l	1
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 1.	1.	0.5	ug/l	1
05401	Benzene	71-43-2	1.	1.	0.5	ug/l	1
05402	1,2-Dichloroethane	107-06-2	< 1.	1.	0.5	ug/l	1
05407	Toluene	108-88-3	2.	1.	0.5	ug/l	1
05415	Ethylbenzene	100-41-4	< 1.	1.	0.5	ug/l	1
05420	Isopropylbenzene	98-82-8	23.	2.	0.5	ug/l	1
06310	Xylene (Total)	1330-20-7	5.	1.	0.5	ug/l	1

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09 This sample was filtered in the lab for dissolved metals. Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681• www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5422561 WW Group No. 1102042

N-89 Grab Water

Philadelphia Refinery AOI-8

COC: 187462 N-89

Collected: 07/22/2008 09:20 by SS Account Number: 10132

Submitted: 07/23/2008 16:20 SUN: Aquaterra Tech.

Reported: 08/01/2008 at 14:15 PO Box 744

Discard: 10/01/2008 West Chester PA 19381

CAT			Analysis			
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06035	Lead	SW-846 6020	1	07/27/2008 16:48	James R Williams II	1
07879	EDB in Wastewater	SW-846 8011	1	07/25/2008 22:01	James H Place	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	07/25/2008 16:32	Joseph M Gambler	1
02302	UST-Waters by 8260B	SW-846 8260B	1	07/28/2008 15:45	Anita M Dale	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	07/28/2008 15:45	Anita M Dale	1
06050	ICP/MS SW-846 Water	SW-846 3010A modified	1	07/25/2008 09:32	Denise K Conners	1
07786	EDB Extraction	SW-846 8011	1	07/24/2008 17:40	Kelli M Barto	1
07807	BNA Water Extraction	SW-846 3510C	1	07/24/2008 16:45	JoElla L Rice	1

^{*=}This limit was used in the evaluation of the final result

As Peceived

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5422562 WW Group No. 1102042

N-23 Grab Water

Philadelphia Refinery AOI-8

COC: 187462 N-23

Collected: 07/22/2008 09:45 by SS Account Number: 10132

Submitted: 07/23/2008 16:20 SUN: Aquaterra Tech.

Reported: 08/01/2008 at 14:15 PO Box 744

Discard: 10/01/2008 West Chester PA 19381

PR023

				As Received	As Received					
CAT			As Received	Limit of	Method		Dilution			
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor			
06035	Lead	7439-92-1	< 0.0010	0.0010	0.000050	mg/l	1			
07879	EDB in Wastewater									
01087	Ethylene dibromide	106-93-4	< 0.029	0.029	0.013	uq/l	1			
01007	-					ug/ I	_			
	Due to interfering peaks on the chromatogram, the values reported represent the lowest reporting limits attainable.									
	the lowest reporting rimites act	carnabic.								
07805	PAHs in Water by GC/MS									
	•									
03947	Naphthalene	91-20-3	260.	120.	24.	ug/l	1			
03956	Fluorene	86-73-7	1,100.	120.	24.	ug/l	1			
03963	Phenanthrene	85-01-8	520.	120.	24.	ug/l	1			
03967	Pyrene	129-00-0	1,900.	120.	24.	ug/l	1			
03971	Chrysene	218-01-9	620.	120.	24.	ug/l	1			
	Due to sample matrix interferences observed during the extraction, the									
	normal reporting limits were not attained.									
02302	UST-Waters by 8260B									
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 10.	10.	5.	uq/l	10			
05401	Benzene	71-43-2	< 10.	10.	5.	uq/l	10			
05402	1,2-Dichloroethane	107-06-2	< 10.	10.	5.	uq/l	10			
05407	Toluene	108-88-3	< 10.	10.	5.	ug/l	10			
05415	Ethylbenzene	100-41-4	< 10.	10.	5.	ug/l	10			
05420	Isopropylbenzene	98-82-8	< 20.	20.	5.	ug/l	10			
06310	Xylene (Total)	1330-20-7	< 10.	10.	5.	ug/l	10			
	The usual reporting limits were not attained due to the matrix of									

As Pessived

The usual reporting limits were not attained due to the matrix of the sample in the GC/MS volatile analysis.

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09 This sample was filtered in the lab for dissolved metals. Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5422562 WW Group No. 1102042

N-23 Grab Water

Philadelphia Refinery AOI-8

COC: 187462 N-23

Collected: 07/22/2008 09:45 by SS Account Number: 10132

Submitted: 07/23/2008 16:20 SUN: Aquaterra Tech.

Reported: 08/01/2008 at 14:15 PO Box 744

Discard: 10/01/2008 West Chester PA 19381

PR023

CAT As Received As Received

One of the control of

	паротасоту	CIII O	111010		
			Analysis		Dilution
Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
Lead	SW-846 6020	1	07/31/2008 06:55	David K Beck	1
EDB in Wastewater	SW-846 8011	1	07/25/2008 22:31	James H Place	1
PAHs in Water by GC/MS	SW-846 8270C	1	07/25/2008 19:44	Gregory J Drahovsky	1
UST-Waters by 8260B	SW-846 8260B	1	07/28/2008 16:06	Anita M Dale	10
GC/MS VOA Water Prep	SW-846 5030B	1	07/28/2008 16:06	Anita M Dale	10
ICP/MS SW-846 Water	SW-846 3010A modified	1	07/30/2008 18:45	James L Mertz	1
EDB Extraction	SW-846 8011	1	07/24/2008 17:40	Kelli M Barto	1
BNA Water Extraction	SW-846 3510C	1	07/25/2008 09:15	Kevin P Love	1
	Lead EDB in Wastewater PAHs in Water by GC/MS UST-Waters by 8260B GC/MS VOA Water Prep ICP/MS SW-846 Water EDB Extraction	Analysis Name Lead SW-846 6020 EDB in Wastewater SW-846 8011 PAHs in Water by GC/MS SW-846 8270C UST-Waters by 8260B SW-846 8260B GC/MS VOA Water Prep SW-846 5030B ICP/MS SW-846 Water SW-846 3010A modified EDB Extraction SW-846 8011	Analysis Name Method Trial# Lead SW-846 6020 1 EDB in Wastewater SW-846 8011 1 PAHs in Water by GC/MS SW-846 8270C 1 UST-Waters by 8260B SW-846 8260B 1 GC/MS VOA Water Prep SW-846 5030B 1 ICP/MS SW-846 Water SW-846 3010A modified 1 EDB Extraction SW-846 8011 1	Analysis Name Method Trial# Date and Time Lead SW-846 6020 1 07/31/2008 06:55 EDB in Wastewater SW-846 8011 1 07/25/2008 22:31 PAHs in Water by GC/MS SW-846 8270C 1 07/25/2008 19:44 UST-Waters by 8260B SW-846 8260B 1 07/28/2008 16:06 GC/MS VOA Water Prep SW-846 5030B 1 07/28/2008 16:06 ICP/MS SW-846 Water SW-846 3010A modified 1 07/30/2008 18:45 EDB Extraction SW-846 8011 1 07/24/2008 17:40	Analysis Name Method Trial# Date and Time Analyst Lead SW-846 6020 1 07/31/2008 06:55 David K Beck EDB in Wastewater SW-846 8011 1 07/25/2008 22:31 James H Place PAHs in Water by GC/MS SW-846 8270C 1 07/25/2008 19:44 Gregory J Drahovsky UST-Waters by 8260B SW-846 8260B 1 07/28/2008 16:06 Anita M Dale GC/MS VOA Water Prep SW-846 5030B 1 07/28/2008 16:06 Anita M Dale ICP/MS SW-846 Water SW-846 3010A modified 1 07/30/2008 18:45 James L Mertz EDB Extraction SW-846 8011 1 07/24/2008 17:40 Kelli M Barto

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5422563 WW Group No. 1102042

N-90 Grab Water

Philadelphia Refinery AOI-8

COC: 187462 N-90

Collected: 07/22/2008 10:20 by SS Account Number: 10132

Submitted: 07/23/2008 16:20 SUN: Aquaterra Tech.

Reported: 08/01/2008 at 14:15 PO Box 744

Discard: 10/01/2008 West Chester PA 19381

PR090

				As Received	As Received		
CAT			As Received	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06035	Lead	7439-92-1	< 0.0010	0.0010	0.000050	mg/l	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.029	0.029	0.0097	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	< 5.	5.	0.9	ug/l	1
03956	Fluorene	86-73-7	< 5.	5.	0.9	ug/l	1
03963	Phenanthrene	85-01-8	< 5.	5.	0.9	ug/l	1
03967	Pyrene	129-00-0	< 5.	5.	0.9	ug/l	1
03971	Chrysene	218-01-9	< 5.	5.	0.9	ug/l	1
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 1.	1.	0.5	ug/l	1
05401	Benzene	71-43-2	5.	1.	0.5	ug/l	1
05402	1,2-Dichloroethane	107-06-2	< 1.	1.	0.5	ug/l	1
05407	Toluene	108-88-3	4.	1.	0.5	ug/l	1
05415	Ethylbenzene	100-41-4	< 1.	1.	0.5	ug/l	1
05420	Isopropylbenzene	98-82-8	8.	2.	0.5	ug/l	1
06310	Xylene (Total)	1330-20-7	6.	1.	0.5	ug/l	1

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09 This sample was filtered in the lab for dissolved metals. Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5422563 WW Group No. 1102042

N-90 Grab Water

Philadelphia Refinery AOI-8

COC: 187462 N-90

Collected: 07/22/2008 10:20 by SS Account Number: 10132

Submitted: 07/23/2008 16:20 SUN: Aquaterra Tech.

Reported: 08/01/2008 at 14:15 PO Box 744

Discard: 10/01/2008 West Chester PA 19381

CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06035	Lead	SW-846 6020	1	07/31/2008 07:05	David K Beck	1
07879	EDB in Wastewater	SW-846 8011	1	07/25/2008 23:01	James H Place	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	07/25/2008 20:08	Gregory J Drahovsky	1
02302	UST-Waters by 8260B	SW-846 8260B	1	07/28/2008 16:26	Anita M Dale	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	07/28/2008 16:26	Anita M Dale	1
06050	ICP/MS SW-846 Water	SW-846 3010A modified	l 1	07/30/2008 18:45	James L Mertz	1
07786	EDB Extraction	SW-846 8011	1	07/24/2008 17:40	Kelli M Barto	1
07807	BNA Water Extraction	SW-846 3510C	1	07/25/2008 09:15	Kevin P Love	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5422564 WW Group No. 1102042

RW-301 Grab Water

Philadelphia Refinery AOI-8

COC: 187462 RW-301

Collected: 07/22/2008 11:15 by SS Account Number: 10132

Submitted: 07/23/2008 16:20 SUN: Aquaterra Tech.

Reported: 08/01/2008 at 14:15 PO Box 744

Discard: 10/01/2008 West Chester PA 19381

PR301

				As Received	As Received		
CAT			As Received	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06035	Lead	7439-92-1	< 0.0010	0.0010	0.000050	mg/l	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.029	0.029	0.0098	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	< 5.	5.	1.	ug/l	1
03956	Fluorene	86-73-7	< 5.	5.	1.	ug/l	1
03963	Phenanthrene	85-01-8	< 5.	5.	1.	ug/l	1
03967	Pyrene	129-00-0	< 5.	5.	1.	ug/l	1
03971	Chrysene	218-01-9	< 5.	5.	1.	ug/l	1
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 1.	1.	0.5	ug/l	1
05401	Benzene	71-43-2	10.	1.	0.5	ug/l	1
05402	1,2-Dichloroethane	107-06-2	< 1.	1.	0.5	ug/l	1
05407	Toluene	108-88-3	16.	1.	0.5	ug/l	1
05415	Ethylbenzene	100-41-4	1.	1.	0.5	ug/l	1
05420	Isopropylbenzene	98-82-8	18.	2.	0.5	ug/l	1
06310	Xylene (Total)	1330-20-7	21.	1.	0.5	ug/l	1

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09 This sample was filtered in the lab for dissolved metals. Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5422564 WW Group No. 1102042

RW-301 Grab Water

Philadelphia Refinery AOI-8

COC: 187462 RW-301

Collected: 07/22/2008 11:15 by SS Account Number: 10132

Submitted: 07/23/2008 16:20 SUN: Aquaterra Tech.

Reported: 08/01/2008 at 14:15 PO Box 744

Discard: 10/01/2008 West Chester PA 19381

CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06035	Lead	SW-846 6020	1	07/31/2008 07:07	David K Beck	1
07879	EDB in Wastewater	SW-846 8011	1	07/25/2008 23:31	James H Place	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	07/25/2008 20:32	Gregory J Drahovsky	1
02302	UST-Waters by 8260B	SW-846 8260B	1	07/28/2008 16:47	Anita M Dale	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	07/28/2008 16:47	Anita M Dale	1
06050	ICP/MS SW-846 Water	SW-846 3010A modifie	d 1	07/30/2008 18:45	James L Mertz	1
07786	EDB Extraction	SW-846 8011	1	07/24/2008 17:40	Kelli M Barto	1
07807	BNA Water Extraction	SW-846 3510C	1	07/25/2008 09:15	Kevin P Love	1

^{*=}This limit was used in the evaluation of the final result

As Received

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5422565 WW Group No. 1102042

N-108 Grab Water

Philadelphia Refinery AOI-8

COC: 187462 N-108

Collected: 07/22/2008 11:35 by SS Account Number: 10132

Submitted: 07/23/2008 16:20 SUN: Aquaterra Tech.

Reported: 08/01/2008 at 14:15 PO Box 744

Discard: 10/01/2008 West Chester PA 19381

PR108

				As Received	As Received		
CAT			As Received	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06035	Lead	7439-92-1	< 0.0010	0.0010	0.000050	mg/l	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.029	0.029	0.0096	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	< 5.	5.	1.	ug/l	1
03956	Fluorene	86-73-7	19.	5.	1.	ug/l	1
03963	Phenanthrene	85-01-8	47.	5.	1.	ug/l	1
03967	Pyrene	129-00-0	13.	5.	1.	ug/l	1
03971	Chrysene	218-01-9	8.	5.	1.	ug/l	1
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 5.	5.	3.	ug/l	5
05401	Benzene	71-43-2	14.	5.	3.	ug/l	5
05402	1,2-Dichloroethane	107-06-2	< 5.	5.	3.	ug/l	5
05407	Toluene	108-88-3	11.	5.	3.	ug/l	5
05415	Ethylbenzene	100-41-4	< 5.	5.	3.	ug/l	5
05420	Isopropylbenzene	98-82-8	28.	10.	3.	ug/l	5
06310	Xylene (Total)	1330-20-7	15.	5.	3.	ug/l	5
			_				

As Received

The reporting limits for the GC/MS volatile compounds were raised due to the level of non-target compounds.

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09 This sample was filtered in the lab for dissolved metals. Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5422565 WW Group No. 1102042

N-108 Grab Water

Philadelphia Refinery AOI-8

COC: 187462 N-108

Collected: 07/22/2008 11:35 by SS Account Number: 10132

Submitted: 07/23/2008 16:20 SUN: Aquaterra Tech.

Reported: 08/01/2008 at 14:15 PO Box 744

Discard: 10/01/2008 West Chester PA 19381

PR108

CAT		-		Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06035	Lead	SW-846 6020	1	07/31/2008 07:12	David K Beck	1
07879	EDB in Wastewater	SW-846 8011	1	07/26/2008 00:01	James H Place	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	07/25/2008 20:56	Gregory J Drahovsky	1
02302	UST-Waters by 8260B	SW-846 8260B	1	07/28/2008 17:08	Anita M Dale	5
01163	GC/MS VOA Water Prep	SW-846 5030B	1	07/28/2008 17:08	Anita M Dale	5
06050	ICP/MS SW-846 Water	SW-846 3010A modified	l 1	07/30/2008 18:45	James L Mertz	1
07786	EDB Extraction	SW-846 8011	1	07/24/2008 17:40	Kelli M Barto	1
07807	BNA Water Extraction	SW-846 3510C	1	07/25/2008 09:15	Kevin P Love	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5422566 WW Group No. 1102042

RW-305 Grab Water

Philadelphia Refinery AOI-8

COC: 187462 RW-305

Collected: 07/22/2008 12:20 by SS Account Number: 10132

Submitted: 07/23/2008 16:20 SUN: Aquaterra Tech.

Reported: 08/01/2008 at 14:15 PO Box 744

Discard: 10/01/2008 West Chester PA 19381

PR305

				As Received	As Received		
CAT			As Received	Limit of	Method		Dilutio
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06035	Lead	7439-92-1	< 0.0010	0.0010	0.000050	mg/l	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.029	0.029	0.0096	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	< 5.	5.	0.9	ug/l	1
03956	Fluorene	86-73-7	10.	5.	0.9	ug/l	1
03963	Phenanthrene	85-01-8	15.	5.	0.9	ug/l	1
03967	Pyrene	129-00-0	6.	5.	0.9	ug/l	1
03971	Chrysene	218-01-9	6.	5.	0.9	ug/l	1
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 1.	1.	0.5	ug/l	1
05401	Benzene	71-43-2	3.	1.	0.5	ug/l	1
05402	1,2-Dichloroethane	107-06-2	< 1.	1.	0.5	ug/l	1
05407	Toluene	108-88-3	4.	1.	0.5	ug/l	1
05415	Ethylbenzene	100-41-4	< 1.	1.	0.5	ug/l	1
05420	Isopropylbenzene	98-82-8	18.	2.	0.5	ug/l	1
06310	Xylene (Total)	1330-20-7	10.	1.	0.5	ug/l	1

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09 This sample was filtered in the lab for dissolved metals. Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5422566 WW Group No. 1102042

RW-305 Grab Water

Philadelphia Refinery AOI-8

COC: 187462 RW-305

Collected: 07/22/2008 12:20 by SS Account Number: 10132

Submitted: 07/23/2008 16:20 SUN: Aquaterra Tech.

Reported: 08/01/2008 at 14:15 PO Box 744

Discard: 10/01/2008 West Chester PA 19381

CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06035	Lead	SW-846 6020	1	07/31/2008 07:14	David K Beck	1
07879	EDB in Wastewater	SW-846 8011	1	07/26/2008 00:32	James H Place	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	07/25/2008 21:20	Gregory J Drahovsky	1
02302	UST-Waters by 8260B	SW-846 8260B	1	07/31/2008 05:51	Kelly E Brickley	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	07/31/2008 05:51	Kelly E Brickley	1
06050	ICP/MS SW-846 Water	SW-846 3010A modified	d 1	07/30/2008 18:45	James L Mertz	1
07786	EDB Extraction	SW-846 8011	1	07/24/2008 17:40	Kelli M Barto	1
07807	BNA Water Extraction	SW-846 3510C	1	07/25/2008 09:15	Kevin P Love	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5422567 WW Group No. 1102042

RW-304 Grab Water

Philadelphia Refinery AOI-8

COC: 187462 RW-304

Collected: 07/22/2008 13:30 by SS Account Number: 10132

Submitted: 07/23/2008 16:20 SUN: Aquaterra Tech.

Reported: 08/01/2008 at 14:15 PO Box 744

Discard: 10/01/2008 West Chester PA 19381

PR304

				As Received	As Received		
CAT			As Received	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06035	Lead	7439-92-1	< 0.0010	0.0010	0.000050	mg/l	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.029	0.029	0.0097	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	< 5.	5.	0.9	ug/l	1
03956	Fluorene	86-73-7	< 5.	5.	0.9	ug/l	1
03963	Phenanthrene	85-01-8	< 5.	5.	0.9	ug/l	1
03967	Pyrene	129-00-0	< 5.	5.	0.9	ug/l	1
03971	Chrysene	218-01-9	< 5.	5.	0.9	ug/l	1
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 1.	1.	0.5	ug/l	1
05401	Benzene	71-43-2	9.	1.	0.5	ug/l	1
05402	1,2-Dichloroethane	107-06-2	< 1.	1.	0.5	ug/l	1
05407	Toluene	108-88-3	9.	1.	0.5	ug/l	1
05415	Ethylbenzene	100-41-4	< 1.	1.	0.5	ug/l	1
05420	Isopropylbenzene	98-82-8	13.	2.	0.5	ug/l	1
06310	Xylene (Total)	1330-20-7	15.	1.	0.5	ug/l	1

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09 This sample was filtered in the lab for dissolved metals. Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5422567 WW Group No. 1102042

RW-304 Grab Water

Philadelphia Refinery AOI-8

COC: 187462 RW-304

Collected: 07/22/2008 13:30 by SS Account Number: 10132

Submitted: 07/23/2008 16:20 SUN: Aquaterra Tech.

Reported: 08/01/2008 at 14:15 PO Box 744

Discard: 10/01/2008 West Chester PA 19381

CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06035	Lead	SW-846 6020	1	07/31/2008 07:15	David K Beck	1
07879	EDB in Wastewater	SW-846 8011	1	07/26/2008 01:02	James H Place	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	07/25/2008 21:44	Gregory J Drahovsky	1
02302	UST-Waters by 8260B	SW-846 8260B	1	07/28/2008 17:49	Anita M Dale	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	07/28/2008 17:49	Anita M Dale	1
06050	ICP/MS SW-846 Water	SW-846 3010A modified	l 1	07/30/2008 18:45	James L Mertz	1
07786	EDB Extraction	SW-846 8011	1	07/24/2008 17:40	Kelli M Barto	1
07807	BNA Water Extraction	SW-846 3510C	1	07/25/2008 09:15	Kevin P Love	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Quality Control Summary

Client Name: SUN: Aquaterra Tech. Group Number: 1102042

Reported: 08/01/08 at 02:15 PM

Matrix QC may not be reported if site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

Laboratory Compliance Quality Control

Analysis Name	Blank <u>Result</u>	Blank LOQ**	Blank <u>MDL</u>	Report <u>Units</u>	LCS %REC	LCSD %REC	LCS/LCSD <u>Limits</u>	RPD	RPD Max
Batch number: 082060000A Ethylene dibromide	Sample numb < 0.030	per(s): 5 0.030	422552-5422 0.010	2553 ug/l	113	113	60-140	0	20
Batch number: 082060014A Ethylene dibromide	Sample numb	per(s): 5 0.030	422554-5422 0.010	2567 ug/l	100	100	60-140	0	20
Batch number: 082066050003A Lead	Sample numb	per(s): 5 0.0010	422552-5422 0.00005 0	2561 mg/l	109		90-115		
Batch number: 08206WAD026 Naphthalene Fluorene Phenanthrene Pyrene Chrysene	<pre>Sample numb < 5. < 5. < 5. < 5. < 5.</pre>	per(s): 5 5. 5. 5. 5. 5.	422552-5422 1. 1. 1. 1.	2561 ug/l ug/l ug/l ug/l ug/l	90 90 97 103 95	92 94 102 106 97	77-107 82-113 83-112 80-115 82-112	2 5 5 3 2	30 30 30 30 30
Batch number: 08206WAK026 Naphthalene Fluorene Phenanthrene Pyrene Chrysene	Sample numb < 5. < 5. < 5. < 5. < 5.	per(s): 5 5. 5. 5. 5. 5.	422562-5422 1. 1. 1. 1.	2567 ug/l ug/l ug/l ug/l ug/l	98 106 108 106 102	100 104 109 106 100	77-107 82-113 83-112 80-115 82-112	2 2 1 1	30 30 30 30 30
Batch number: 082116050002A Lead	Sample numb	per(s): 5 0.0010	422562-5422 0.00005 0	2567 mg/l	105		90-115		
Batch number: F082102AA Methyl Tertiary Butyl Ether Benzene 1,2-Dichloroethane Toluene Ethylbenzene Isopropylbenzene Xylene (Total)	Sample numk < 1. < 1. < 1. < 1. < 1. < 1. < 1. < 1.	per(s): 5 1. 1. 1. 1. 2.	422552-5422 0.5 0.5 0.5 0.5 0.5 0.5 0.5	2559,5422561 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	-54225 85 94 90 93 93 92 91	65,5422 85 92 93 92 90 91	73-119 78-119 69-135 85-115 82-119 80-113 83-113	1 1 2 1 2 1	30 30 30 30 30 30 30 30
Batch number: P082122AA Methyl Tertiary Butyl Ether Benzene 1,2-Dichloroethane Toluene Ethylbenzene Isopropylbenzene Xylene (Total)	Sample numk < 1. < 1. < 1. < 1. < 1. < 1. < 1. < 1.	per(s): 5 1. 1. 1. 1. 2.	422560,5422 0.5 0.5 0.5 0.5 0.5 0.5	2566 ug/l ug/l ug/l ug/l ug/l ug/l ug/l	103 100 99 98 98 98	100 99 97 98 98 100	73-119 78-119 69-135 85-115 82-119 80-113 83-113	3 1 1 0 0 2 1	30 30 30 30 30 30 30 30

^{*-} Outside of specification

Page 1 of 4

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 2 of 4

Quality Control Summary

Client Name: SUN: Aquaterra Tech. Group Number: 1102042

Reported: 08/01/08 at 02:15 PM

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

Analysis Name	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD <u>MAX</u>	BKG Conc	DUP Conc	DUP RPD	Dup RPD <u>Max</u>
Batch number: 082060000A Ethylene dibromide	Sample 87	number(s)	: 5422552 65-135	-542255	3 UNSPR	<pre>C: P422319 < 0.029</pre>	BKG: P422318 < 0.029	0 (1)	30
Batch number: 082060014A Ethylene dibromide	Sample 96	number(s)	: 5422554 65-135	-542256	7 UNSPE	<pre><: 5422554 < 0.029</pre>	BKG: 5422555 < 0.029	0 (1)	30
Batch number: 082066050003A Lead	Sample 104	number(s) 105	: 5422552 75-125	-542256 0	1 UNSPF 20	C: P421516 0.0257	BKG: P421516 0.0265	3	20
Batch number: 082116050002A Lead	Sample 98	number(s) 96	: 5422562 75-125	-542256 2	7 UNSPE 20	<pre><: 5422562 < 0.0010</pre>	BKG: 5422562 < 0.0010	0 (1)	20
Batch number: F082102AA Methyl Tertiary Butyl Ether Benzene 1,2-Dichloroethane Toluene Ethylbenzene Isopropylbenzene Xylene (Total)	Sample 89 99 98 99 98 98 96	number(s)	: 5422552 69-127 83-128 70-143 83-127 82-129 81-130 82-130	-542255	9,54225	661-5422569	5,5422567 UNS	PK: 5422556	
Batch number: P082122AA Methyl Tertiary Butyl Ether Benzene 1,2-Dichloroethane Toluene Ethylbenzene Isopropylbenzene Xylene (Total)	Sample 100 101 98 102 101 101	number(s)	: 5422560 69-127 83-128 70-143 83-127 82-129 81-130 82-130	, 542256	6 UNSPP	K: P422377			

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: EDB in Wastewater

Batch number: 082060000A 1,1,2,2-

Tetrachloroethane

5422552	96
5422553	100
Blank	107
DUP	66
LCS	106
LCSD	104
MS	61

*- Outside of specification

- **-This limit was used in the evaluation of the final result for the blank
- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 3 of 4

Quality Control Summary

Client Name: SUN: Aquaterra Tech. Group Number: 1102042

Reported: 08/01/08 at 02:15 PM

Surrogate Quality Control

Limits: 46-136

Analysis Name: EDB in Wastewater

Batch number: 082060014A 1,1,2,2-

Tetrachloroethane

Limits: 46-136

Analysis Name: PAHs in Water by GC/MS

Batch number: 08206WAD026
Nitrobenzene-d5

	Nitrobenzene-d5	2-Fluorobiphenyl	Terphenyl-d14	
5422552	90	90	83	
5422553	92	97	89	
5422554	88	92	97	
5422555	90	90	91	
5422556	90	89	63	
5422557	85	89	77	
5422558	81	75	86	
5422559	86	89	98	
5422560	78	88	85	
5422561	89	98	104	
Blank	96	91	113	
LCS	95	94	111	
LCSD	98	96	116	
Timits:	44-127	63-114	30-126	

Analysis Name: PAHs in Water by GC/MS

Batch number: 08206WAK026

Daceir Hulle	Nitrobenzene-d5	2-Fluorobiphenyl	Terphenyl-d14	
5422562	148*	154*	111	
5422563	94	101	113	
5422564	74	80	94	
5422565	96	112	115	
5422566	99	113	122	

*- Outside of specification

- **-This limit was used in the evaluation of the final result for the blank
- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 4 of 4

Quality Control Summary

Client Na Reported:	me: SUN: Aquaterra T 08/01/08 at 02:15 P	ech. M	Group Number:	1102042
		Surrogate Qu	ality Control	
5422567 Blank LCS LCSD	96 106 100 99	107 109 108 102	117 126 117 114	
Limits:	44-127	63-114	30-126	
	me: UST-Waters by 8260B r: F082102AA Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
5422552	87	90	88	87
5422553	87	94	87	87
5422554	86	90	88	87
5422555	88	92	87	95
5422556	87	94	88	89
5422557	85	92	88	93
5422558	91	91	89	92
5422556	86	91	87	91
5422561	86	91	88	92
5422562	8.9	92	86	89
5422563	88	91	88	90
5422564	90	90	87	90
5422565	87	94	89	100
5422567	90	95	91	101
Blank	88	93	87	86
LCS	89	93	88	89
LCSD	90	93	89	90
MS	90	94	88	88
Limits:	80-116	77-113	80-113	78-113
	me: UST-Waters by 8260B r: P082122AA			
	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
5422560	98	99	98	103
5422566	98	98	103	103
Blank	98	97	99	93
LCS	99	99	98	93
LCSD	98	98	99	95
MS	99	101	98	94
Limits:	80-116	77-113	80-113	78-113

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Analysis Request/ Environmental Services Chain of Custody

For Lancaster Laboratories use only

Acct. # 10132 Group# 1102042 Sample # 5432552-67 COC # 187462

'U' Laburatures	P	lease print. In:	struction	s on r	everse s	ide co	respon	d with	circle	i numbe	rs. <i>(</i> 0	olerte	M	For Lab Use Only) -	
1)						ae 167 111.71		(5) Ar	alyses	Requ	ested	10111111	For Lab Use Only	f	
Client: SUNOCO, AquaTerra	Acct. #:				Matrix	4	40.000		Pres	servatio	on Cod	es		SCR#:		
Client: SUNOCO , Açua Terro Project Name/#: AOI-8				2000000	eck ff olicable	Ĭ	H	0		D					des iosulfate	6
Project Manager: Tiffani Doerr					lo ₹	50								N =HNO ₃ B =Na S =H ₂ SO ₄ O =Ot		
Sampler: Mike Hinterling	Quote #	:											 	3-H ₂ SO ₄ 0 -O ₁	nei	
Name of state where samples were collected:	PA		(3)		E Z	of Co.				8370						t in Tay
Sample identification	Date Collected	Time Collected	ايرا	LIOS Sollinon	Water	Officer Total #	8260	1102	P6	PAHS S				Remarks		Temperatur upon receip
N-124	7/22/08	830	X		X	8	X	×	×	X						
N-29	7/22/08	945	X		14	8	1	ャ	と	ャ						
N-30	7/22/08	930	X		X	8	ン	X	×	X						
N-123	7/22/08	1035	X		X	8	X	X	X	7						
N-32	7/22/09	1110	X		4	8	X	X	X	X						
N-122	7/22/08		X		4	8	X	X	X	X						
N- 126	7/22/08		X		X	8	X	×	X	×			·			
N-66	7/22/08	1315	X	1	X	8	X	×	X	×						
			Ш													
Turnaround Time Requested (TAT) (please (Rush TAT is subject to Lancaster Laboratories app Date results are needed:					ished b		2		-	Date	Time <u> </u> 400	Receive Aqua	d by:	a Fridge	Date - 7/22/03	Time (9
Rush results requested by (please circle): Phone #: Fax #:		E-mail			ished b	-	0			Date 723/9	1145		1	Uf		Time
E-mail address:				//	rished	y: /				Date	1	Receive		10	Date	Time
Data Package Options (please circle if required		G Complete		M		<u> </u>	1			1/23/08		1.0		lever	7/ 23 /08	
Type I (validation/NJ Reg) TX TRRP-13 Type II (Tier II) MA MCP CT	RCP / 20	No No	Ř.	1	ished b		$\int_{-\infty}^{\infty}$		/	Date		Receive	d RA		/ Date	Time
Type III (Reduced NJ) Site-specific QC (Yes No	7		, Te		řez		7/2	3/08						<u> </u>
Type IV (CLP SOW) (If yes, indicate QC sample and su Type VI (Raw Data Only) Internal COC Rev		.	Re	elinqu	ished	y:			/_/	Date	Time	Receive	d by:	11. Hor	€ .	Time
Type VI (Naw Data Only)	quireur res / Nu	' 											<u>uc</u>	Harrier	7/230	¥16.2

Analysis Request/ Environmental Services Chain of Custody

For Lancaster Laboratories use only Acct. # 10132 Group# 1102042 Sample # 5422552-67 COC # 187469

	F	Please print. Ins	tructions	on re	verse s	ide co	rrespo	nd with	circle	d numbe	ers. (^0	olertem	Por Lab Use Only	-	
1)				1111				(!) A	nalyses	Requ	ested	For Lab Use Only FSC:		
Client: SUN-AQUATERRA	Acct. #:				Vatrix	(4)			Pre	servati	on Cod	es	SCR#:		<u> </u>
Project Name/#: PHILA REF AOT-					# # Geo	Υ			<u></u>		<u> </u>		Preservation Code	-	
Project Manager: T. DOERR				and a	Apple	١,			8270				H=HCI T=Thios N=HNO ₃ B=NaO	-	6
Sampler: S. SYKES					8 S			3					S=H₂SO₄ O=Othe		s e
					88		1 6	3	GC/AS						amp
Name of state where samples were collected:	PA		(3)					Lead	₹.	9					e of s
2	Date	Time	9	ا_ا	ie.	# # To To	PA 144 1 1 8010A	7	PAHS	Ш					aragua decem
Sample Identification	Collected	Collected	5 5	S	7,4	8 3	25		\$				Remarks		Diod.
N-118	7/22/08	830	χ	П	X	8	3	١	2	2					
N-89	١	920	1	al.		1	1		1	i					
N-23		945					11	1							
N-90		1020				11	11								
		1115	1	1		+				+	1				
N-108		1135		1		$\dashv \uparrow$	11	† †		-					
RW-305		1220	11	1		-	11	11		1	_				
RW-304	1	1330		T	11	+	† †	+		1					
1111 301		,000	-	\dagger		+		\	<u> </u>		<u> </u>				
				1		-	1	ļ							
Turnaround Time Requested (TAT) (please of	*		Rel	inquis	shed b	——— V:		<u> </u>		Date	Time	Received by:		Date	Time (9
(Rush TAT is subject to Lancaster Laboratories appr	oval and surcha	rge.)		<u>ક્રા</u>	n,	les	- 1A	QUATE	RRA	7/22/02	1530	Aguati	ma Fridge		1530
Date results are needed: Rush results requested by (please circle): Pt	one Fax	E-mail			shed b					Date	Time	Received by	A	Date,	
Phone #: Fax #:					AR		ر بر د			7230r	1145	than Hi	hle	7/23/08	1145
E-mail address:			Reli	inquis	sheet b	y: //	1 //-	_		Date,		Received by		Date	
Data Package Options (please circle if required)	1	G Complete?	#/ ٧	VU	3	rh	10	<u>'</u>		7/23/9	1145	F. Ley	lever 7/	23/08	1185
Type I (validation/NJ Reg) TX TRRP-13 Type Ii (Tier II) MA MCP CT II	RCP Ye	es No	Reli	nquis	shed b		Y			Date		Received by:	· · ·	7	Time
Type III (Reduced NJ) Site-specific QC (N		Yes No	7	tic			er		74		1620				
Type IV (CLP SOW) Type VI (Raw Data Only) Type VI (Raw Data Only) Internal COC Req			Reli	nquis	hed b	y: 			-4	Date	Time	Received by:	Ala Ua	Date	Time
montal doo kee	unou: 103/140		_									Kati	ellaria	e7/23/c	2/6:3

Lancaster Laboratories Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

N.D.	none detected	BMQL	Below Minimum Quantitation Level
TNTC	Too Numerous To Count	MPN	Most Probable Number
IU	International Units	CP Units	cobalt-chloroplatinate units
umhos/cm	micromhos/cm	NTU	nephelometric turbidity units
С	degrees Celsius	F	degrees Fahrenheit
Cal	(diet) calories	lb.	pound(s)
meq	milliequivalents	kg	kilogram(s)
g	gram(s)	mg	milligram(s)
ug	microgram(s)	I	liter(s)
ml	milliliter(s)	ul	microliter(s)
m3	cubic meter(s)	fib >5 um/ml	fibers greater than 5 microns in length per ml

- < less than The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.
- > greater than
- ppm parts per million One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.

Inorganic Qualifiers

- ppb parts per billion
- **Dry weight**Results printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture.

U.S. EPA data qualifiers:

9	lifier	(uu	9	 u	" 9	•

A B C D E	TIC is a possible aldol-condensation product Analyte was also detected in the blank Pesticide result confirmed by GC/MS Compound quatitated on a diluted sample Concentration exceeds the calibration range of the instrument	B E M N S	Value is <crdl, (msa)="" additions="" amount="" but="" calculation<="" control="" due="" duplicate="" estimated="" for="" injection="" interference="" limits="" met="" method="" not="" of="" precision="" spike="" standard="" th="" to="" used="" within="" ≥idl=""></crdl,>
J	Estimated value	U	Compound was not detected
N	Presumptive evidence of a compound (TICs only)	W	Post digestion spike out of control limits
Р	Concentration difference between primary and	*	Duplicate analysis not within control limits
	confirmation columns >25%	+	Correlation coefficient for MSA < 0.995
U	Compound was not detected		
X,Y,Z	Defined in case narrative		

Analytical test results for methods listed on the laboratories' accreditation scope meet all requirements of NELAC unless otherwise noted under the individual analysis.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

WARRANTY AND LIMITS OF LIABILITY – In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL LANCASTER LABORATORIES BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF LANCASTER LABORATORIES AND (B) WHETHER LANCASTER LABORATORIES HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Lancaster Laboratories which includes any conditions that vary from the Standard Terms and Conditions of Lancaster Laboratories and we hereby object to any conflicting terms contained in any acceptance or order submitted by client.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

ANALYTICAL RESULTS

Prepared for:

SUN: Aquaterra Tech. PO Box 744 West Chester PA 19381

610-431-5733

Prepared by:

Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425

SAMPLE GROUP

The sample group for this submittal is 1102389. Samples arrived at the laboratory on Friday, July 25, 2008. The PO# for this group is PHILADELPHIA.

Client Description	Lancaster Labs Number
PZ-504 Grab Water	5424682
N-74 Grab Water	5424683
PZ-503 Grab Water	5424684
N-61 Grab Water	5424685
RW-500 Grab Water	5424686
N-73 Grab Water	5424687
N-58 Grab Water	5424688
N-57 Grab Water	5424689
N-136 Grab Water	5424690
RW-308 Grab Water	5424691
RW-303 Grab Water	5424692
N-36 Grab Water	5424693
N-40 Grab Water	5424694

ELECTRONIC COPY TO	SUN: Aquaterra Tech.	Attn: Kevin Martin
ELECTRONIC	Langan	Attn: Joseph Catricks
COPY TO	CUNI. A sustains Tool.	Attan Tiffoni Dona
ELECTRONIC COPY TO	SUN: Aquaterra Tech.	Attn: Tiffani Doerr
ELECTRONIC	LLI	Attn: EDD Group
COPY TO		

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Questions? Contact your Client Services Representative Jessica A Heun at (717) 656-2300

Respectfully Submitted,

Marla S. Lord Senior Specialist

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5424682 WW Group No. 1102389

PZ-504 Grab Water

Philadelphia Refinery AOI-8

COC: 187465 PZ-504

Collected: 07/25/2008 07:30 by MH Account Number: 10132

Submitted: 07/25/2008 14:40 SUN: Aquaterra Tech.

Reported: 08/06/2008 at 16:46 PO Box 744

Discard: 10/06/2008 West Chester PA 19381

PR504

				As Received	As Received		
CAT			As Received	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06035	Lead	7439-92-1	< 0.0010	0.0010	0.000050	mg/l	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.029	0.029	0.0098	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	< 5.	5.	1.	ug/l	1
03956	Fluorene	86-73-7	< 5.	5.	1.	ug/l	1
03963	Phenanthrene	85-01-8	< 5.	5.	1.	ug/l	1
03967	Pyrene	129-00-0	< 5.	5.	1.	ug/l	1
03971	Chrysene	218-01-9	< 5.	5.	1.	ug/l	1
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 2.	2.	1.	ug/l	2
05401	Benzene	71-43-2	2,400.	20.	10.	ug/l	20
05402	1,2-Dichloroethane	107-06-2	< 2.	2.	1.	ug/l	2
05407	Toluene	108-88-3	< 2.	2.	1.	ug/l	2
05415	Ethylbenzene	100-41-4	< 2.	2.	1.	ug/l	2
05420	Isopropylbenzene	98-82-8	< 4.	4.	1.	ug/l	2
06310	Xylene (Total)	1330-20-7	6.	2.	1.	ug/l	2

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09 This sample was filtered in the lab for dissolved metals. Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5424682 WW Group No. 1102389

PZ-504 Grab Water

Philadelphia Refinery AOI-8

COC: 187465 PZ-504

Collected: 07/25/2008 07:30 by MH Account Number: 10132

Submitted: 07/25/2008 14:40 SUN: Aquaterra Tech.

Reported: 08/06/2008 at 16:46 PO Box 744

Discard: 10/06/2008 West Chester PA 19381

FV204						
CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06035	Lead	SW-846 6020	1	08/01/2008 10:43	James R Williams II	1
07879	EDB in Wastewater	SW-846 8011	1	07/30/2008 00:15	Mark E McNulty	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	07/30/2008 14:08	Joseph M Gambler	1
02302	UST-Waters by 8260B	SW-846 8260B	1	08/04/2008 19:26	Anita M Dale	2
02302	UST-Waters by 8260B	SW-846 8260B	1	08/04/2008 19:53	Anita M Dale	20
01163	GC/MS VOA Water Prep	SW-846 5030B	1	08/04/2008 19:26	Anita M Dale	2
01163	GC/MS VOA Water Prep	SW-846 5030B	2	08/04/2008 19:53	Anita M Dale	20
06050	ICP/MS SW-846 Water	SW-846 3010A modified	1	07/31/2008 19:02	James L Mertz	1
07786	EDB Extraction	SW-846 8011	1	07/29/2008 10:45	Deborah M Zimmerman	1
07807	BNA Water Extraction	SW-846 3510C	1	07/29/2008 14:00	Kevin P Love	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5424683 WW Group No. 1102389

N-74 Grab Water

Philadelphia Refinery AOI-8

COC: 187465 N-74

Collected: 07/25/2008 07:45 by MH Account Number: 10132

Submitted: 07/25/2008 14:40 SUN: Aquaterra Tech.

Reported: 08/06/2008 at 16:46 PO Box 744

Discard: 10/06/2008 West Chester PA 19381

PR074

				As Received	As Received		
CAT			As Received	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06035	Lead	7439-92-1	< 0.0010	0.0010	0.000050	mg/l	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.029	0.029	0.0097	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	< 5.	5.	1.	ug/l	1
03956	Fluorene	86-73-7	< 5.	5.	1.	ug/l	1
03963	Phenanthrene	85-01-8	< 5.	5.	1.	ug/l	1
03967	Pyrene	129-00-0	< 5.	5.	1.	ug/l	1
03971	Chrysene	218-01-9	< 5.	5.	1.	ug/l	1
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 1.	1.	0.5	ug/l	1
05401	Benzene	71-43-2	4.	1.	0.5	ug/l	1
05402	1,2-Dichloroethane	107-06-2	< 1.	1.	0.5	ug/l	1
05407	Toluene	108-88-3	< 1.	1.	0.5	ug/l	1
05415	Ethylbenzene	100-41-4	< 1.	1.	0.5	ug/l	1
05420	Isopropylbenzene	98-82-8	< 2.	2.	0.5	ug/l	1
06310	Xylene (Total)	1330-20-7	< 1.	1.	0.5	ug/l	1

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09 This sample was filtered in the lab for dissolved metals. Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5424683 WW Group No. 1102389

N-74 Grab Water

Philadelphia Refinery AOI-8

COC: 187465 N-74

Collected: 07/25/2008 07:45 by MH Account Number: 10132

Submitted: 07/25/2008 14:40 SUN: Aquaterra Tech.

Reported: 08/06/2008 at 16:46 PO Box 744

Discard: 10/06/2008 West Chester PA 19381

CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06035	Lead	SW-846 6020	1	08/01/2008 10:45	James R Williams II	1
07879	EDB in Wastewater	SW-846 8011	1	07/30/2008 13:48	Jamie L Brillhart	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	07/30/2008 14:32	Joseph M Gambler	1
02302	UST-Waters by 8260B	SW-846 8260B	1	08/04/2008 20:20	Anita M Dale	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	08/04/2008 20:20	Anita M Dale	1
06050	ICP/MS SW-846 Water	SW-846 3010A modified	d 1	07/31/2008 19:02	James L Mertz	1
07786	EDB Extraction	SW-846 8011	1	07/29/2008 13:30	Kelli M Barto	1
07807	BNA Water Extraction	SW-846 3510C	1	07/29/2008 14:00	Kevin P Love	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5424684 WW Group No. 1102389

PZ-503 Grab Water

Philadelphia Refinery AOI-8

COC: 187465 PZ-503

Collected: 07/25/2008 08:15 by MH Account Number: 10132

Submitted: 07/25/2008 14:40 SUN: Aquaterra Tech.

Reported: 08/06/2008 at 16:46 PO Box 744

Discard: 10/06/2008 West Chester PA 19381

PR503

				As Received	As Received		
CAT			As Received	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06035	Lead	7439-92-1	< 0.0010	0.0010	0.000050	mg/l	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.029	0.029	0.0098	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	< 50.	50.	10.	ug/l	1
03956	Fluorene	86-73-7	< 50.	50.	10.	ug/l	1
03963	Phenanthrene	85-01-8	< 50.	50.	10.	ug/l	1
03967	Pyrene	129-00-0	62.	50.	10.	ug/l	1
03971	Chrysene	218-01-9	51.	50.	10.	ug/l	1
	Due to the nature of the sample	e matrix, a re	educed aliquot	was used for			
	analysis. The reporting limits	s were raised	accordingly.				
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 1.	1.	0.5	ug/l	1
05401	Benzene	71-43-2	13.	1.	0.5	ug/l	1
05402	1,2-Dichloroethane	107-06-2	< 1.	1.	0.5	ug/l	1
05407	Toluene	108-88-3	< 1.	1.	0.5	ug/l	1
05415	Ethylbenzene	100-41-4	< 1.	1.	0.5	ug/l	1
05420	Isopropylbenzene	98-82-8	6.	2.	0.5	ug/l	1
06310	Xylene (Total)	1330-20-7	3.	1.	0.5	ug/l	1

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09 This sample was filtered in the lab for dissolved metals. Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5424684 WW Group No. 1102389

PZ-503 Grab Water

Philadelphia Refinery AOI-8

COC: 187465 PZ-503

Collected:07/25/2008 08:15 by MH Account Number: 10132

Submitted: 07/25/2008 14:40 SUN: Aquaterra Tech.

Reported: 08/06/2008 at 16:46 PO Box 744

Discard: 10/06/2008 West Chester PA 19381

PR503

		<u> </u>	O111 O.			
CAT		_		Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06035	Lead	SW-846 6020	1	08/01/2008 10:52	James R Williams II	1
07879	EDB in Wastewater	SW-846 8011	1	07/30/2008 15:18	Jamie L Brillhart	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	07/30/2008 14:55	Joseph M Gambler	1
02302	UST-Waters by 8260B	SW-846 8260B	1	08/04/2008 20:46	Anita M Dale	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	08/04/2008 20:46	Anita M Dale	1
06050	ICP/MS SW-846 Water	SW-846 3010A modified	1	07/31/2008 19:02	James L Mertz	1
07786	EDB Extraction	SW-846 8011	1	07/29/2008 13:30	Kelli M Barto	1
07807	BNA Water Extraction	SW-846 3510C	1	07/29/2008 14:00	Kevin P Love	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5424685 WW Group No. 1102389

N-61 Grab Water

Philadelphia Refinery AOI-8

COC: 187465 N-61

Collected: 07/25/2008 08:40 by MH Account Number: 10132

Submitted: 07/25/2008 14:40 SUN: Aquaterra Tech.

Reported: 08/06/2008 at 16:46 PO Box 744

Discard: 10/06/2008 West Chester PA 19381

PR061

				As Received	As Received		
CAT			As Received	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06035	Lead	7439-92-1	< 0.0010	0.0010	0.000050	mg/l	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.029	0.029	0.0098	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	< 24.	24.	5.	ug/l	5
03956	Fluorene	86-73-7	< 24.	24.	5.	ug/l	5
03963	Phenanthrene	85-01-8	< 24.	24.	5.	ug/l	5
03967	Pyrene	129-00-0	< 24.	24.	5.	ug/l	5
03971	Chrysene	218-01-9	< 24.	24.	5.	ug/l	5
	Due to the sample matrix an in:	itial dilutior	n was necessary	to perform the			
	analysis. Therefore, the repor	rting limits f	for the GC/MS s	semivolatile			
	compounds were raised.						
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 10.	10.	5.	ug/l	10
05401	Benzene	71-43-2	8,700.	50.	25.	ug/l	50
05402	1,2-Dichloroethane	107-06-2	< 10.	10.	5.	ug/l	10
05407	Toluene	108-88-3	< 10.	10.	5.	ug/l	10
05415	Ethylbenzene	100-41-4	< 10.	10.	5.	ug/l	10
05420	Isopropylbenzene	98-82-8	< 20.	20.	5.	ug/l	10
06310	Xylene (Total)	1330-20-7	23.	10.	5.	ug/l	10

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09 This sample was filtered in the lab for dissolved metals. Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681• www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5424685 WW Group No. 1102389

N-61 Grab Water

Philadelphia Refinery AOI-8

COC: 187465 N-61

Collected:07/25/2008 08:40 by MH Account Number: 10132

Submitted: 07/25/2008 14:40 SUN: Aquaterra Tech.

Reported: 08/06/2008 at 16:46 PO Box 744

Discard: 10/06/2008 West Chester PA 19381

PR061

Laboratory chronicie						
			Analysis		Dilution	
Analysis Name	Method	Trial#	Date and Time	Analyst	Factor	
Lead	SW-846 6020	1	08/01/2008 10:55	James R Williams II	1	
EDB in Wastewater	SW-846 8011	1	07/30/2008 16:19	Jamie L Brillhart	1	
PAHs in Water by GC/MS	SW-846 8270C	1	07/31/2008 00:25	Gregory J Drahovsky	5	
UST-Waters by 8260B	SW-846 8260B	1	08/04/2008 21:13	Anita M Dale	10	
UST-Waters by 8260B	SW-846 8260B	1	08/04/2008 21:40	Anita M Dale	50	
GC/MS VOA Water Prep	SW-846 5030B	1	08/04/2008 21:13	Anita M Dale	10	
GC/MS VOA Water Prep	SW-846 5030B	2	08/04/2008 21:40	Anita M Dale	50	
ICP/MS SW-846 Water	SW-846 3010A modified	d 1	07/31/2008 19:02	James L Mertz	1	
EDB Extraction	SW-846 8011	1	07/29/2008 13:30	Kelli M Barto	1	
BNA Water Extraction	SW-846 3510C	1	07/30/2008 00:35	David V Hershey Jr	1	
	Lead EDB in Wastewater PAHs in Water by GC/MS UST-Waters by 8260B UST-Waters by 8260B GC/MS VOA Water Prep GC/MS VOA Water Prep ICP/MS SW-846 Water EDB Extraction	Analysis Name Lead SW-846 6020 EDB in Wastewater SW-846 8011 PAHs in Water by GC/MS UST-Waters by 8260B SW-846 8260B UST-Waters by 8260B GC/MS VOA Water Prep SW-846 5030B GC/MS VOA Water Prep SW-846 5030B ICP/MS SW-846 Water SW-846 3010A modified EDB Extraction SW-846 8011	Analysis Name Method Trial# Lead SW-846 6020 1 EDB in Wastewater SW-846 8011 1 PAHs in Water by GC/MS SW-846 8270C 1 UST-Waters by 8260B SW-846 8260B 1 UST-Waters by 8260B SW-846 8260B 1 GC/MS VOA Water Prep SW-846 5030B 1 GC/MS VOA Water Prep SW-846 5030B 2 ICP/MS SW-846 Water SW-846 3010A modified 1 EDB Extraction SW-846 8011 1	Analysis Name Method Trial# Date and Time Lead SW-846 6020 1 08/01/2008 10:55 EDB in Wastewater SW-846 8011 1 07/30/2008 16:19 PAHs in Water by GC/MS SW-846 8270C 1 07/31/2008 00:25 UST-Waters by 8260B SW-846 8260B 1 08/04/2008 21:13 UST-Waters by 8260B SW-846 8260B 1 08/04/2008 21:40 GC/MS VOA Water Prep SW-846 5030B 1 08/04/2008 21:13 GC/MS VOA Water Prep SW-846 5030B 2 08/04/2008 21:40 ICP/MS SW-846 Water SW-846 3010A modified 1 07/31/2008 19:02 EDB Extraction SW-846 8011 1 07/29/2008 13:30	Analysis Name Method Trial# Date and Time Analyst Lead SW-846 6020 1 08/01/2008 10:55 James R Williams II EDB in Wastewater SW-846 8011 1 07/30/2008 16:19 Jamie L Brillhart PAHs in Water by GC/MS SW-846 8270C 1 07/31/2008 00:25 Gregory J Drahovsky UST-Waters by 8260B SW-846 8260B 1 08/04/2008 21:13 Anita M Dale UST-Waters by 8260B SW-846 8260B 1 08/04/2008 21:40 Anita M Dale GC/MS VOA Water Prep SW-846 5030B 1 08/04/2008 21:13 Anita M Dale GC/MS VOA Water Prep SW-846 5030B 2 08/04/2008 21:40 Anita M Dale GC/MS VOA Water Prep SW-846 5030B 2 08/04/2008 21:40 Anita M Dale ICP/MS SW-846 Water SW-846 3010A modified 1 07/31/2008 19:02 James L Mertz EDB Extraction SW-846 8011 1 07/29/2008 13:30 Kelli M Barto	

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5424686 WW Group No. 1102389

RW-500 Grab Water

Philadelphia Refinery AOI-8

COC: 187465 RW-500

Collected: 07/25/2008 09:30 by MH Account Number: 10132

Submitted: 07/25/2008 14:40 SUN: Aquaterra Tech.

Reported: 08/06/2008 at 16:46 PO Box 744

Discard: 10/06/2008 West Chester PA 19381

PR500

				As Received	As Received		
CAT			As Received	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06035	Lead	7439-92-1	< 0.0010	0.0010	0.000050	mg/l	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.030	0.030	0.0099	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	< 5.	5.	1.	ug/l	1
03956	Fluorene	86-73-7	< 5.	5.	1.	ug/l	1
03963	Phenanthrene	85-01-8	< 5.	5.	1.	ug/l	1
03967	Pyrene	129-00-0	< 5.	5.	1.	ug/l	1
03971	Chrysene	218-01-9	< 5.	5.	1.	ug/l	1
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 5.	5.	3.	ug/l	5
05401	Benzene	71-43-2	300.	5.	3.	ug/l	5
05402	1,2-Dichloroethane	107-06-2	< 5.	5.	3.	ug/l	5
05407	Toluene	108-88-3	< 5.	5.	3.	ug/l	5
05415	Ethylbenzene	100-41-4	< 5.	5.	3.	ug/l	5
05420	Isopropylbenzene	98-82-8	< 10.	10.	3.	ug/l	5
06310	Xylene (Total)	1330-20-7	< 5.	5.	3.	ug/l	5

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09 This sample was filtered in the lab for dissolved metals. Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5424686 WW Group No. 1102389

RW-500 Grab Water

Philadelphia Refinery AOI-8

COC: 187465 RW-500

Collected:07/25/2008 09:30 by MH Account Number: 10132

Submitted: 07/25/2008 14:40 SUN: Aquaterra Tech.

Reported: 08/06/2008 at 16:46 PO Box 744

Discard: 10/06/2008 West Chester PA 19381

CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06035	Lead	SW-846 6020	1	08/01/2008 10:57	James R Williams II	1
07879	EDB in Wastewater	SW-846 8011	1	07/30/2008 16:49	Jamie L Brillhart	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	07/31/2008 00:49	Gregory J Drahovsky	1
02302	UST-Waters by 8260B	SW-846 8260B	1	08/04/2008 22:07	Anita M Dale	5
01163	GC/MS VOA Water Prep	SW-846 5030B	1	08/04/2008 22:07	Anita M Dale	5
06050	ICP/MS SW-846 Water	SW-846 3010A modified	1	07/31/2008 19:02	James L Mertz	1
07786	EDB Extraction	SW-846 8011	1	07/29/2008 13:30	Kelli M Barto	1
07807	BNA Water Extraction	SW-846 3510C	1	07/30/2008 00:35	David V Hershey Jr	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5424687 WW Group No. 1102389

N-73 Grab Water

Philadelphia Refinery AOI-8

COC: 187465 N-73

Collected: 07/25/2008 10:55 by MH Account Number: 10132

Submitted: 07/25/2008 14:40 SUN: Aquaterra Tech.

Reported: 08/06/2008 at 16:46 PO Box 744

Discard: 10/06/2008 West Chester PA 19381

PR073

				As Received	As Received		
CAT			As Received	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06035	Lead	7439-92-1	< 0.0010	0.0010	0.000050	mg/l	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.029	0.029	0.0097	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	< 5.	5.	1.	ug/l	1
03956	Fluorene	86-73-7	< 5.	5.	1.	ug/l	1
03963	Phenanthrene	85-01-8	< 5.	5.	1.	ug/l	1
03967	Pyrene	129-00-0	< 5.	5.	1.	ug/l	1
03971	Chrysene	218-01-9	< 5.	5.	1.	ug/l	1
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 1.	1.	0.5	ug/l	1
05401	Benzene	71-43-2	4.	1.	0.5	ug/l	1
05402	1,2-Dichloroethane	107-06-2	< 1.	1.	0.5	ug/l	1
05407	Toluene	108-88-3	< 1.	1.	0.5	ug/l	1
05415	Ethylbenzene	100-41-4	< 1.	1.	0.5	ug/l	1
05420	Isopropylbenzene	98-82-8	< 2.	2.	0.5	ug/l	1
06310	Xylene (Total)	1330-20-7	1.	1.	0.5	ug/l	1

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09 This sample was filtered in the lab for dissolved metals. Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5424687 WW Group No. 1102389

N-73 Grab Water

Philadelphia Refinery AOI-8

COC: 187465 N-73

Collected: 07/25/2008 10:55 by MH Account Number: 10132

Submitted: 07/25/2008 14:40 SUN: Aquaterra Tech.

Reported: 08/06/2008 at 16:46 PO Box 744

Discard: 10/06/2008 West Chester PA 19381

CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06035	Lead	SW-846 6020	1	08/01/2008 10:59	James R Williams II	1
07879	EDB in Wastewater	SW-846 8011	1	07/30/2008 17:19	Jamie L Brillhart	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	07/31/2008 01:13	Gregory J Drahovsky	1
02302	UST-Waters by 8260B	SW-846 8260B	1	08/04/2008 22:33	Anita M Dale	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	08/04/2008 22:33	Anita M Dale	1
06050	ICP/MS SW-846 Water	SW-846 3010A modified	1	07/31/2008 19:02	James L Mertz	1
07786	EDB Extraction	SW-846 8011	1	07/29/2008 13:30	Kelli M Barto	1
07807	BNA Water Extraction	SW-846 3510C	1	07/30/2008 00:35	David V Hershey Jr	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5424688 WW Group No. 1102389

N-58 Grab Water

Philadelphia Refinery AOI-8

COC: 187465 N-58

Collected: 07/25/2008 11:30 by MH Account Number: 10132

Submitted: 07/25/2008 14:40 SUN: Aquaterra Tech.

Reported: 08/06/2008 at 16:46 PO Box 744

Discard: 10/06/2008 West Chester PA 19381

PR058

				As Received	As Received		
CAT			As Received	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06035	Lead	7439-92-1	< 0.0010	0.0010	0.000050	mg/l	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.029	0.029	0.0098	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	< 5.	5.	1.	ug/l	1
03956	Fluorene	86-73-7	< 5.	5.	1.	ug/l	1
03963	Phenanthrene	85-01-8	< 5.	5.	1.	ug/l	1
03967	Pyrene	129-00-0	< 5.	5.	1.	ug/l	1
03971	Chrysene	218-01-9	< 5.	5.	1.	ug/l	1
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 10.	10.	5.	ug/l	10
05401	Benzene	71-43-2	< 10.	10.	5.	ug/l	10
05402	1,2-Dichloroethane	107-06-2	< 10.	10.	5.	ug/l	10
05407	Toluene	108-88-3	< 10.	10.	5.	ug/l	10
05415	Ethylbenzene	100-41-4	< 10.	10.	5.	ug/l	10
05420	Isopropylbenzene	98-82-8	< 20.	20.	5.	ug/l	10
06310	Xylene (Total)	1330-20-7	100.	10.	5.	ug/l	10
	The reporting limits for the GC/MS volatile compounds were raised due to						

The reporting limits for the GC/MS volatile compounds were raised due to sample foaming.

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09 This sample was filtered in the lab for dissolved metals. Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5424688 WW Group No. 1102389

N-58 Grab Water

Philadelphia Refinery AOI-8

COC: 187465 N-58

Collected: 07/25/2008 11:30 by MH Account Number: 10132

Submitted: 07/25/2008 14:40 SUN: Aquaterra Tech.

Reported: 08/06/2008 at 16:46 PO Box 744

Discard: 10/06/2008 West Chester PA 19381

PR058

haboracory chronicic							
CAT			- Analysis Di				
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor	
06035	Lead	SW-846 6020	1	08/01/2008 11:02	James R Williams II	1	
07879	EDB in Wastewater	SW-846 8011	1	07/30/2008 17:49	Jamie L Brillhart	1	
07805	PAHs in Water by GC/MS	SW-846 8270C	1	07/31/2008 01:37	Gregory J Drahovsky	1	
02302	UST-Waters by 8260B	SW-846 8260B	1	08/05/2008 12:26	Daniel H Heller	10	
01163	GC/MS VOA Water Prep	SW-846 5030B	1	08/05/2008 12:26	Daniel H Heller	10	
06050	ICP/MS SW-846 Water	SW-846 3010A modified	l 1	07/31/2008 19:02	James L Mertz	1	
07786	EDB Extraction	SW-846 8011	1	07/29/2008 13:30	Kelli M Barto	1	
07807	BNA Water Extraction	SW-846 3510C	1	07/30/2008 00:35	David V Hershey Jr	1	

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5424689 WW Group No. 1102389

N-57 Grab Water

Philadelphia Refinery AOI-8

COC: 187465 N-57

Collected: 07/25/2008 12:00 by MH Account Number: 10132

Submitted: 07/25/2008 14:40 SUN: Aquaterra Tech.

Reported: 08/06/2008 at 16:46 PO Box 744

Discard: 10/06/2008 West Chester PA 19381

PR057

				As Received	As Received				
CAT			As Received	Limit of	Method		Dilution		
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor		
06035	Lead	7439-92-1	< 0.0010	0.0010	0.000050	mg/l	1		
07879	EDB in Wastewater								
01087	Ethylene dibromide	106-93-4	< 0.029	0.029	0.0098	ug/l	1		
07805	PAHs in Water by GC/MS								
03947	Naphthalene	91-20-3	< 24.	24.	5.	ug/l	5		
03956	Fluorene	86-73-7	< 24.	24.	5.	ug/l	5		
03963	Phenanthrene	85-01-8	< 24.	24.	5.	ug/l	5		
03967	Pyrene	129-00-0	< 24.	24.	5.	ug/l	5		
03971	Chrysene	218-01-9	< 24.	24.	5.	ug/l	5		
	Due to the sample matrix an initial dilution was necessary to perform the								
	analysis. Therefore, the reporting limits for the GC/MS semivolatile								
	compounds were raised.								
02302	UST-Waters by 8260B								
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 5.	5.	3.	ug/l	5		
05401	Benzene	71-43-2	< 5.	5.	3.	ug/l	5		
05402	1,2-Dichloroethane	107-06-2	< 5.	5.	3.	ug/l	5		
05407	Toluene	108-88-3	< 5.	5.	3.	ug/l	5		
05415	Ethylbenzene	100-41-4	< 5.	5.	3.	ug/l	5		
05420	Isopropylbenzene	98-82-8	< 10.	10.	3.	ug/l	5		
06310	Xylene (Total)	1330-20-7	120.	5.	3.	ug/l	5		
	The reporting limits for the GC/MS volatile compounds were raised due to								

The reporting limits for the GC/MS volatile compounds were raised due to sample foaming.

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09 This sample was filtered in the lab for dissolved metals. Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5424689 WW Group No. 1102389

N-57 Grab Water

Philadelphia Refinery AOI-8

COC: 187465 N-57

Collected: 07/25/2008 12:00 by MH Account Number: 10132

Submitted: 07/25/2008 14:40 SUN: Aquaterra Tech.

Reported: 08/06/2008 at 16:46 PO Box 744

Discard: 10/06/2008 West Chester PA 19381

PR057

CAT		2		Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06035	Lead	SW-846 6020	1	08/01/2008 11:04	James R Williams II	1
07879	EDB in Wastewater	SW-846 8011	1	07/30/2008 18:19	Jamie L Brillhart	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	07/31/2008 02:01	Gregory J Drahovsky	5
02302	UST-Waters by 8260B	SW-846 8260B	1	08/05/2008 12:51	Daniel H Heller	5
01163	GC/MS VOA Water Prep	SW-846 5030B	1	08/05/2008 12:51	Daniel H Heller	5
06050	ICP/MS SW-846 Water	SW-846 3010A modified	1	07/31/2008 19:02	James L Mertz	1
07786	EDB Extraction	SW-846 8011	1	07/29/2008 13:30	Kelli M Barto	1
07807	BNA Water Extraction	SW-846 3510C	1	07/30/2008 00:35	David V Hershey Jr	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5424690 WW Group No. 1102389

N-136 Grab Water

Philadelphia Refinery AOI-8

COC: 187465 N-136

Collected: 07/25/2008 12:15 by MH Account Number: 10132

Submitted: 07/25/2008 14:40 SUN: Aquaterra Tech.

Reported: 08/06/2008 at 16:46 PO Box 744

Discard: 10/06/2008 West Chester PA 19381

PR136

				As Received	As Received		
CAT			As Received	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06035	Lead	7439-92-1	< 0.0010	0.0010	0.000050	mg/l	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.029	0.029	0.0098	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	< 24.	24.	5.	ug/l	5
03956	Fluorene	86-73-7	< 24.	24.	5.	ug/l	5
03963	Phenanthrene	85-01-8	< 24.	24.	5.	ug/l	5
03967	Pyrene	129-00-0	< 24.	24.	5.	ug/l	5
03971	Chrysene	218-01-9	< 24.	24.	5.	ug/l	5
	Due to the sample matrix an in analysis. Therefore, the report compounds were raised.		-	· -			
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 5.	5.	3.	ug/l	5
05401	Benzene	71-43-2	110.	5.	3.	ug/l	5
05402	1,2-Dichloroethane	107-06-2	< 5.	5.	3.	ug/l	5
05407	Toluene	108-88-3	< 5.	5.	3.	ug/l	5
05415	Ethylbenzene	100-41-4	< 5.	5.	3.	ug/l	5
05420	Isopropylbenzene	98-82-8	< 10.	10.	3.	ug/l	5
06310	Xylene (Total)	1330-20-7	< 5.	5.	3.	ug/l	5
	The reporting limits for the Co	7/MC **** 1 ** 1 *	aamnaunda	a maided due to			

The reporting limits for the GC/MS volatile compounds were raised due to sample foaming.

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09 This sample was filtered in the lab for dissolved metals. Trip blank vials were not received by the laboratory for this sample group.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5424690 WW Group No. 1102389

N-136 Grab Water

Philadelphia Refinery AOI-8

COC: 187465 N-136

Collected: 07/25/2008 12:15 by MH Account Number: 10132

Submitted: 07/25/2008 14:40 SUN: Aquaterra Tech.

Reported: 08/06/2008 at 16:46 PO Box 744

Discard: 10/06/2008 West Chester PA 19381

PR136

			Analysis		Dilution
Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
Lead	SW-846 6020	1	08/01/2008 11:06	James R Williams II	1
EDB in Wastewater	SW-846 8011	1	07/30/2008 18:49	Jamie L Brillhart	1
PAHs in Water by GC/MS	SW-846 8270C	1	07/31/2008 02:25	Gregory J Drahovsky	5
UST-Waters by 8260B	SW-846 8260B	1	08/05/2008 13:11	Daniel H Heller	5
GC/MS VOA Water Prep	SW-846 5030B	1	08/05/2008 13:11	Daniel H Heller	5
ICP/MS SW-846 Water	SW-846 3010A modified	d 1	07/31/2008 19:02	James L Mertz	1
EDB Extraction	SW-846 8011	1	07/29/2008 13:30	Kelli M Barto	1
BNA Water Extraction	SW-846 3510C	1	07/30/2008 00:35	David V Hershey Jr	1
	Lead EDB in Wastewater PAHs in Water by GC/MS UST-Waters by 8260B GC/MS VOA Water Prep ICP/MS SW-846 Water EDB Extraction	Lead SW-846 6020 EDB in Wastewater SW-846 8011 PAHs in Water by GC/MS SW-846 8270C UST-Waters by 8260B SW-846 8260B GC/MS VOA Water Prep SW-846 5030B ICP/MS SW-846 Water SW-846 3010A modified EDB Extraction SW-846 8011	Lead SW-846 6020 1 EDB in Wastewater SW-846 8011 1 PAHs in Water by GC/MS SW-846 8270C 1 UST-Waters by 8260B SW-846 8260B 1 GC/MS VOA Water Prep SW-846 5030B 1 ICP/MS SW-846 Water SW-846 3010A modified 1 EDB Extraction SW-846 8011 1	Analysis Name Method Trial# Date and Time Lead SW-846 6020 1 08/01/2008 11:06 EDB in Wastewater SW-846 8011 1 07/30/2008 18:49 PAHs in Water by GC/MS SW-846 8270C 1 07/31/2008 02:25 UST-Waters by 8260B SW-846 8260B 1 08/05/2008 13:11 GC/MS VOA Water Prep SW-846 5030B 1 08/05/2008 13:11 ICP/MS SW-846 Water SW-846 3010A modified 1 07/31/2008 19:02 EDB Extraction SW-846 8011 1 07/29/2008 13:30	Analysis Name Method Trial# Date and Time Analyst Lead SW-846 6020 1 08/01/2008 11:06 James R Williams II EDB in Wastewater SW-846 8011 1 07/30/2008 18:49 Jamie L Brillhart PAHs in Water by GC/MS SW-846 8270C 1 07/31/2008 02:25 Gregory J Drahovsky UST-Waters by 8260B SW-846 8260B 1 08/05/2008 13:11 Daniel H Heller GC/MS VOA Water Prep SW-846 5030B 1 08/05/2008 13:11 Daniel H Heller ICP/MS SW-846 Water SW-846 3010A modified 1 07/31/2008 19:02 James L Mertz EDB Extraction SW-846 8011 1 07/29/2008 13:30 Kelli M Barto

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5424691 WW Group No. 1102389

RW-308 Grab Water

Philadelphia Refinery AOI-8

COC: 187465 RW-308

Collected: 07/25/2008 09:30 by SS Account Number: 10132

Submitted: 07/25/2008 14:40 SUN: Aquaterra Tech.

Reported: 08/06/2008 at 16:46 PO Box 744

Discard: 10/06/2008 West Chester PA 19381

PR308

				As Received	As Received		
CAT			As Received	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06035	Lead	7439-92-1	< 0.0010	0.0010	0.000050	mg/l	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.016	0.016	0.0054	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	< 5.	5.	1.	ug/l	1
03956	Fluorene	86-73-7	< 5.	5.	1.	ug/l	1
03963	Phenanthrene	85-01-8	< 5.	5.	1.	ug/l	1
03967	Pyrene	129-00-0	< 5.	5.	1.	ug/l	1
03971	Chrysene	218-01-9	< 5.	5.	1.	ug/l	1
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 1.	1.	0.5	ug/l	1
05401	Benzene	71-43-2	46.	1.	0.5	ug/l	1
05402	1,2-Dichloroethane	107-06-2	< 1.	1.	0.5	ug/l	1
05407	Toluene	108-88-3	< 1.	1.	0.5	ug/l	1
05415	Ethylbenzene	100-41-4	1.	1.	0.5	ug/l	1
05420	Isopropylbenzene	98-82-8	5.	2.	0.5	ug/l	1
06310	Xylene (Total)	1330-20-7	< 1.	1.	0.5	ug/l	1

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09 This sample was filtered in the lab for dissolved metals. Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5424691 WW Group No. 1102389

RW-308 Grab Water

Philadelphia Refinery AOI-8

COC: 187465 RW-308

Collected: 07/25/2008 09:30 by SS Account Number: 10132

Submitted: 07/25/2008 14:40 SUN: Aquaterra Tech.

Reported: 08/06/2008 at 16:46 PO Box 744

Discard: 10/06/2008 West Chester PA 19381

PR308

CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06035	Lead	SW-846 6020	1	08/01/2008 11:09	James R Williams II	1
07879	EDB in Wastewater	SW-846 8011	1	07/30/2008 19:19	Jamie L Brillhart	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	07/31/2008 02:49	Gregory J Drahovsky	1
02302	UST-Waters by 8260B	SW-846 8260B	1	08/05/2008 11:08	Daniel H Heller	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	08/05/2008 11:08	Daniel H Heller	1
06050	ICP/MS SW-846 Water	SW-846 3010A modified	1	07/31/2008 19:02	James L Mertz	1
07786	EDB Extraction	SW-846 8011	1	07/29/2008 13:30	Kelli M Barto	1
07807	BNA Water Extraction	SW-846 3510C	1	07/30/2008 00:35	David V Hershey Jr	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5424692 WW Group No. 1102389

RW-303 Grab Water

Philadelphia Refinery AOI-8

COC: 187465 RW-303

Collected:07/25/2008 10:00 by SS Account Number: 10132

Submitted: 07/25/2008 14:40 SUN: Aquaterra Tech.

Reported: 08/06/2008 at 16:46 PO Box 744

Discard: 10/06/2008 West Chester PA 19381

PR303

				As Received	As Received		
CAT			As Received	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06035	Lead	7439-92-1	< 0.0010	0.0010	0.000050	mg/l	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.030	0.030	0.0099	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	< 5.	5.	1.	ug/l	1
03956	Fluorene	86-73-7	< 5.	5.	1.	ug/l	1
03963	Phenanthrene	85-01-8	< 5.	5.	1.	ug/l	1
03967	Pyrene	129-00-0	< 5.	5.	1.	ug/l	1
03971	Chrysene	218-01-9	< 5.	5.	1.	ug/l	1
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 1.	1.	0.5	ug/l	1
05401	Benzene	71-43-2	14.	1.	0.5	ug/l	1
05402	1,2-Dichloroethane	107-06-2	< 1.	1.	0.5	ug/l	1
05407	Toluene	108-88-3	13.	1.	0.5	ug/l	1
05415	Ethylbenzene	100-41-4	1.	1.	0.5	ug/l	1
05420	Isopropylbenzene	98-82-8	16.	2.	0.5	ug/l	1
06310	Xylene (Total)	1330-20-7	21.	1.	0.5	ug/l	1

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09 This sample was filtered in the lab for dissolved metals. Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5424692 WW Group No. 1102389

RW-303 Grab Water

Philadelphia Refinery AOI-8

COC: 187465 RW-303

Collected: 07/25/2008 10:00 by SS Account Number: 10132

Submitted: 07/25/2008 14:40 SUN: Aquaterra Tech.

Reported: 08/06/2008 at 16:46 PO Box 744

Discard: 10/06/2008 West Chester PA 19381

PR303

CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06035	Lead	SW-846 6020	1	08/01/2008 11:11	James R Williams II	1
07879	EDB in Wastewater	SW-846 8011	1	07/30/2008 19:49	Jamie L Brillhart	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	07/31/2008 03:12	Gregory J Drahovsky	1
02302	UST-Waters by 8260B	SW-846 8260B	1	08/05/2008 11:27	Daniel H Heller	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	08/05/2008 11:27	Daniel H Heller	1
06050	ICP/MS SW-846 Water	SW-846 3010A modified	i 1	07/31/2008 19:02	James L Mertz	1
07786	EDB Extraction	SW-846 8011	1	07/29/2008 13:30	Kelli M Barto	1
07807	BNA Water Extraction	SW-846 3510C	1	07/30/2008 00:35	David V Hershey Jr	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5424693 WW Group No. 1102389

N-36 Grab Water

Philadelphia Refinery AOI-8

COC: 187465 N-36

Collected: 07/25/2008 10:45 by SS Account Number: 10132

Submitted: 07/25/2008 14:40 SUN: Aquaterra Tech.

Reported: 08/06/2008 at 16:46 PO Box 744

Discard: 10/06/2008 West Chester PA 19381

PR036

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Limit of Quantitation*	As Received Method Detection Limit	Units	Dilution Factor
06035	Lead	7439-92-1	< 0.0010	0.0010	0.000050	mg/1	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.029	0.029	0.0098	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	< 120.	120.	24.	ug/l	5
03956	Fluorene	86-73-7	< 120.	120.	24.	ug/l	5
03963	Phenanthrene	85-01-8	< 120.	120.	24.	ug/l	5
03967	Pyrene	129-00-0	< 120.	120.	24.	ug/l	5
03971	Chrysene	218-01-9	< 120.	120.	24.	ug/l	5
	Due to sample matrix interferent normal reporting limits were not be to the sample matrix an interferent analysis. Therefore, the report compounds were raised.	ot attained. itial dilutior	n was necessary	v to perform the			
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 1.	1.	0.5	ug/l	1
05401	Benzene	71-43-2	< 1.	1.	0.5	ug/l	1
05402	1,2-Dichloroethane	107-06-2	< 1.	1.	0.5	ug/l	1
05407	Toluene	108-88-3	< 1.	1.	0.5	ug/l	1
05415	Ethylbenzene	100-41-4	< 1.	1.	0.5	ug/l	1
05420	Isopropylbenzene	98-82-8	< 2.	2.	0.5	ug/l	1
06310	Xylene (Total)	1330-20-7	< 1.	1.	0.5	ug/l	1

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09 This sample was filtered in the lab for dissolved metals. Trip blank vials were not received by the laboratory for this sample group.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5424693 WW Group No. 1102389

N-36 Grab Water

Philadelphia Refinery AOI-8

COC: 187465 N-36

Collected: 07/25/2008 10:45 by SS Account Number: 10132

Submitted: 07/25/2008 14:40 SUN: Aquaterra Tech.

Reported: 08/06/2008 at 16:46 PO Box 744

Discard: 10/06/2008 West Chester PA 19381

PR036

CAT As Received As Received

One of the control of

			Analysis		Dilution
Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
Lead	SW-846 6020	1	08/01/2008 11:13	James R Williams II	1
EDB in Wastewater	SW-846 8011	1	07/30/2008 20:49	Jamie L Brillhart	1
PAHs in Water by GC/MS	SW-846 8270C	1	07/31/2008 03:36	Gregory J Drahovsky	5
UST-Waters by 8260B	SW-846 8260B	1	08/05/2008 11:47	Daniel H Heller	1
GC/MS VOA Water Prep	SW-846 5030B	1	08/05/2008 11:47	Daniel H Heller	1
ICP/MS SW-846 Water	SW-846 3010A modified	l 1	07/31/2008 19:02	James L Mertz	1
EDB Extraction	SW-846 8011	1	07/29/2008 13:30	Kelli M Barto	1
BNA Water Extraction	SW-846 3510C	1	07/30/2008 00:35	David V Hershey Jr	1
	Lead EDB in Wastewater PAHs in Water by GC/MS UST-Waters by 8260B GC/MS VOA Water Prep ICP/MS SW-846 Water EDB Extraction	Lead SW-846 6020 EDB in Wastewater SW-846 8011 PAHs in Water by GC/MS SW-846 8270C UST-Waters by 8260B SW-846 8260B GC/MS VOA Water Prep SW-846 5030B ICP/MS SW-846 Water SW-846 3010A modified EDB Extraction SW-846 8011	Lead SW-846 6020 1 EDB in Wastewater SW-846 8011 1 PAHs in Water by GC/MS SW-846 8270C 1 UST-Waters by 8260B SW-846 8260B 1 GC/MS VOA Water Prep SW-846 5030B 1 ICP/MS SW-846 Water SW-846 3010A modified 1 EDB Extraction SW-846 8011 1	Analysis Name Method Trial# Date and Time Lead SW-846 6020 1 08/01/2008 11:13 EDB in Wastewater SW-846 8011 1 07/30/2008 20:49 PAHs in Water by GC/MS SW-846 8270C 1 07/31/2008 03:36 UST-Waters by 8260B SW-846 8260B 1 08/05/2008 11:47 GC/MS VOA Water Prep SW-846 5030B 1 08/05/2008 11:47 ICP/MS SW-846 Water SW-846 3010A modified 1 07/31/2008 19:02 EDB Extraction SW-846 8011 1 07/29/2008 13:30	Analysis Name Method Trial# Date and Time Analyst Lead SW-846 6020 1 08/01/2008 11:13 James R Williams II EDB in Wastewater SW-846 8011 1 07/30/2008 20:49 Jamie L Brillhart PAHs in Water by GC/MS SW-846 8270C 1 07/31/2008 03:36 Gregory J Drahovsky UST-Waters by 8260B SW-846 8260B 1 08/05/2008 11:47 Daniel H Heller GC/MS VOA Water Prep SW-846 5030B 1 08/05/2008 11:47 Daniel H Heller ICP/MS SW-846 Water SW-846 3010A modified 1 07/31/2008 19:02 James L Mertz EDB Extraction SW-846 8011 1 07/29/2008 13:30 Kelli M Barto

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5424694 WW Group No. 1102389

N-40 Grab Water

Philadelphia Refinery AOI-8

COC: 187465 N-40

Collected: 07/25/2008 11:30 by SS Account Number: 10132

Submitted: 07/25/2008 14:40 SUN: Aquaterra Tech.

Reported: 08/06/2008 at 16:46 PO Box 744

Discard: 10/06/2008 West Chester PA 19381

PR040

				As Received	As Received		
CAT			As Received	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06035	Lead	7439-92-1	< 0.0010	0.0010	0.000050	mg/l	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.030	0.030	0.010	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	< 24.	24.	5.	ug/l	5
03956	Fluorene	86-73-7	< 24.	24.	5.	ug/l	5
03963	Phenanthrene	85-01-8	< 24.	24.	5.	ug/l	5
03967	Pyrene	129-00-0	< 24.	24.	5.	ug/l	5
03971	Chrysene	218-01-9	< 24.	24.	5.	ug/l	5
	Due to the sample matrix an in	itial dilution	n was necessary	y to perform the			
	analysis. Therefore, the repo	rting limits	for the GC/MS a	semivolatile			
	compounds were raised.						
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 1.	1.	0.5	ug/l	1
05401	Benzene	71-43-2	< 1.	1.	0.5	ug/l	1
05402	1,2-Dichloroethane	107-06-2	< 1.	1.	0.5	ug/l	1
05407	Toluene	108-88-3	< 1.	1.	0.5	ug/l	1
05415	Ethylbenzene	100-41-4	< 1.	1.	0.5	ug/l	1
05420	Isopropylbenzene	98-82-8	7.	2.	0.5	ug/l	1
06310	Xylene (Total)	1330-20-7	1.	1.	0.5	ug/l	1

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09 This sample was filtered in the lab for dissolved metals. Trip blank vials were not received by the laboratory for this sample group.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5424694 WW Group No. 1102389

N-40 Grab Water

Philadelphia Refinery AOI-8

COC: 187465 N-40

Collected: 07/25/2008 11:30 by SS Account Number: 10132

Submitted: 07/25/2008 14:40 SUN: Aquaterra Tech.

Reported: 08/06/2008 at 16:46 PO Box 744

Discard: 10/06/2008 West Chester PA 19381

PR040

			O111 O			
CAT		_		Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06035	Lead	SW-846 6020	1	08/01/2008 11:20	James R Williams II	1
07879	EDB in Wastewater	SW-846 8011	1	07/30/2008 21:19	Jamie L Brillhart	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	07/31/2008 04:00	Gregory J Drahovsky	5
02302	UST-Waters by 8260B	SW-846 8260B	1	08/05/2008 17:16	Daniel H Heller	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	08/05/2008 17:16	Daniel H Heller	1
06050	ICP/MS SW-846 Water	SW-846 3010A modified	1	07/31/2008 19:02	James L Mertz	1
07786	EDB Extraction	SW-846 8011	1	07/29/2008 13:30	Kelli M Barto	1
07807	BNA Water Extraction	SW-846 3510C	1	07/30/2008 00:35	David V Hershey Jr	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Quality Control Summary

Client Name: SUN: Aquaterra Tech. Group Number: 1102389

Reported: 08/06/08 at 04:46 PM

Matrix QC may not be reported if site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

Laboratory Compliance Quality Control

Analysis Name	Blank <u>Result</u>	Blank LOQ**	Blank <u>MDL</u>	Report <u>Units</u>	LCS %REC	LCSD %REC	LCS/LCSD <u>Limits</u>	RPD	RPD Max
Batch number: 082100028A Ethylene dibromide	Sample numb < 0.030	oer(s): 54 0.030	24682 0.010	ug/l	88	88	60-140	0	20
Batch number: 082110017A Ethylene dibromide	Sample numb	per(s): 54 0.030	24683-542 0.010	4694 ug/l	88	92	60-140	5	20
Batch number: 08211WAC026	Sample numb				0.0	0.7	BB 10B	-	2.0
Naphthalene	< 5.	5.	1.	ug/l	98	97	77-107	1	30
Fluorene	< 5.	5.	1.	ug/l	97	99	82-113	2	30
Phenanthrene	< 5.	5.	1.	ug/l	104	105	83-112	1	30
Pyrene	< 5.	5.	1.	ug/l	109	105	80-115	3	30
Chrysene	< 5.	5.	1.	ug/l	100	99	82-112	1	30
Batch number: 08211WAE026	Sample numb		24685-542	4694					
Naphthalene	< 5.	5.	1.	ug/l	99	104	77-107	4	30
Fluorene	< 5.	5.	1.	ug/l	103	105	82-113	2	30
Phenanthrene	< 5.	5.	1.	ug/l	106	109	83-112	3	30
Pyrene	< 5.	5.	1.	ug/l	107	107	80-115	0	30
Chrysene	< 5.	5.	1.	ug/l	102	106	82-112	4	30
Batch number: 082136050003A	Sample numb	per(s): 54	24682-542	4694					
Lead	< 0.0010	0.0010	0.00005	mg/l	103		90-115		
Batch number: P082171AA	Sample numb	per(s): 54	24682-542	4687					
Methyl Tertiary Butyl Ether	< 1.	1.	0.5	ug/l	105	106	73-119	1	30
Benzene	< 1.	1.	0.5	ug/l	105	101	78-119	4	30
1,2-Dichloroethane	< 1.	1.	0.5	ug/l	107	106	69-135	1	30
Toluene	< 1.	1.	0.5	ug/l	94	93	85-115	1	30
Ethylbenzene	< 1.	1.	0.5	ug/l	94	92	82-119	2	30
Isopropylbenzene	< 2.	2.	0.5	ug/l	94	92	80-113	3	30
Xylene (Total)	< 1.	1.	0.5	ug/l	95	93	83-113	2	30
Batch number: P082182AA	Sample numb	per(s): 54	24688-542	4694					
Methyl Tertiary Butyl Ether	< 1.	1.	0.5	uq/l	102	103	73-119	1	30
Benzene	< 1.	1.	0.5	uq/l	98	97	78-119	0	30
1,2-Dichloroethane	< 1.	1.	0.5	ug/l	98	97	69-135	0	30
Toluene	< 1.	1.	0.5	ug/l	97	97	85-115	1	30
Ethylbenzene	< 1.	1.	0.5	ug/l	98	97	82-119	1	30
Isopropylbenzene	< 2.	2.	0.5	ug/l	98	98	80-113	0	30
Xylene (Total)	< 1.	1.	0.5	ug/l	99	99	83-113	0	30

Sample Matrix Quality Control

Page 1 of 4

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Group Number: 1102389

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Quality Control Summary

Client Name: SUN: Aquaterra Tech.

Reported: 08/06/08 at 04:46 PM

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

Analysis Name	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD MAX	BKG Conc	DUP Conc	DUP RPD	Dup RPD <u>Max</u>
Batch number: 082100028A Ethylene dibromide	Sample 83	number(s)	: 5424682 65-135	UNSPK:	P42469	95 BKG: P424 < 0.029	1696 < 0.030	0 (1)	30
Batch number: 082110017A Ethylene dibromide	Sample 87	number(s)	: 5424683 65-135	-542469	4 UNSP	<pre><: 5424683 E < 0.029</pre>	3KG: 5424684 < 0.029	0 (1)	30
Batch number: 082136050003A Lead	Sample 99	number(s) 129*	: 5424682 75-125	-542469 12	4 UNSPF 20	K: P425860 E 0.0209	BKG: P425860 0.0184	13	20
Batch number: P082171AA Methyl Tertiary Butyl Ether Benzene 1,2-Dichloroethane Toluene Ethylbenzene Isopropylbenzene Xylene (Total)	Sample 108 112 108 100 98 99	number(s)	: 5424682 69-127 83-128 70-143 83-127 82-129 81-130 82-130	-542468	7 UNSP	C: P424700			
Batch number: P082182AA Methyl Tertiary Butyl Ether Benzene 1,2-Dichloroethane Toluene Ethylbenzene Isopropylbenzene Xylene (Total)	Sample 99 101 100 98 95 92	number(s)	: 5424688 69-127 83-128 70-143 83-127 82-129 81-130 82-130	-542469	4 UNSPF	C: 5424693			

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: EDB in Wastewater

Batch number: 082100028A 1.1.2.2-

Tetrachloroethane

5424682	103
Blank	98
DUP	59
LCS	97
LCSD	98
MS	73

Limits: 46-136

Analysis Name: EDB in Wastewater

Batch number: 082110017A

1,1,2,2-

Tetrachloroethane

*- Outside of specification

- **-This limit was used in the evaluation of the final result for the blank
- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

Page 2 of 4

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 3 of 4

Quality Control Summary

Client Na	ame: SUN: Aquaterra I	ech.	G	roup Number: 1102389	
Reported	: 08/06/08 at 04:46 P	Surrogate Ç	mality	Control	
5424683 5424684 5424685 5424686 5424687	133 76 114 111 70	bullogate ,	quarrey	CONCIOI	
5424688 5424689	147* 136				
5424690 5424691	97 151*				
5424692 5424693 5424694	155* 80 122				
Blank DUP	96 77				
LCS LCSD MS	103 102 135				
Limits:	46-136				
	ame: PAHs in Water by GC/M	S			
Batch number	er: 08211WAC026 Nitrobenzene-d5	2-Fluorobiphenyl	Terpher	yl-d14	
5424682	93	93	97		
5424683	89	94	95		
5424684 Blank	95 97	99 97	100 108		
LCS	99	101	109		
LCSD	98	103	104		
Limits:	44-127	63-114	30-126		
	ame: PAHs in Water by GC/M er: 08211WAE026	S			
	Nitrobenzene-d5	2-Fluorobiphenyl	Terpher	yl-d14	
5424685	109	100	106		
5424686	100	98	112		
5424687	100	92	112		
5424688	100	99	107		
5424689	92	91	91		
5424690 5424691	102 102	97 100	98 109		
5424691	101	99	112		
5424693	129*	116*	127*		
5424694	95	98	106		
Blank	112	114	119		
LCS	103	104	108		
LCSD	104	106	110		
Limits:	44-127	63-114	30-126		
	ame: UST-Waters by 8260B er: P082171AA				
	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene	-d8 4-Bromoflu	uorobenzene
E404600	0.1		0.6	0.2	

*- Outside of specification

5424682

- **-This limit was used in the evaluation of the final result for the blank
- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 4 of 4

Quality Control Summary

	me: SUN: Aquaterra		Group Number:	1102389
Reported:	08/06/08 at 04:46	PM		
		Surrogate Qu	uality Control	
5424683	93	86	86	93
5424684	93	85	87	95
5424685	93	86	87	93
5424686	94	85	86	93
5424687	94	85	85	93
Blank	94	85	86	93
LCS	94	88	85	93
LCSD	93	88	87	93
MS	95	89	86	93
Limits:	80-116	77-113	80-113	78-113
	me: UST-Waters by 8260B r: P082182AA			
	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
5424688	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
5424688 5424689		, 		
	98	98	96	90 92 92
5424689	98 97	98 97	96 97	90
5424689 5424690	98 97 97	98 97 98	96 97 97	90 92 92
5424689 5424690 5424691	98 97 97 98	98 97 98 95	96 97 97 96	90 92 92 96
5424689 5424690 5424691 5424692	98 97 97 98 98	98 97 98 95 98	96 97 97 96 99	90 92 92 96 95
5424689 5424690 5424691 5424692 5424693	98 97 97 98 98	98 97 98 95 98	96 97 97 96 99	90 92 92 96 95 94
5424689 5424690 5424691 5424692 5424693 5424694 Blank LCS	98 97 97 98 98 97 97	98 97 98 95 98 93	96 97 97 96 99 97 95 97	90 92 92 96 95 94 93 91
5424689 5424690 5424691 5424692 5424693 5424694 Blank	98 97 97 98 98 97 97	98 97 98 95 98 93 96	96 97 97 96 99 97 95	90 92 92 96 95 94 93
5424689 5424690 5424691 5424692 5424693 5424694 Blank LCS	98 97 97 98 98 97 97	98 97 98 95 98 93 96 96	96 97 97 96 99 97 95 97	90 92 92 96 95 94 93 91

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Analysis Request/ Environmental Services Chain of Custody

For Lancaster Laboratories use only

Acct. # 10132 Group# 1102369 Sample # 5424682-94

Please print. Instructions on reverse side correspond with circled numbers. Woler Land 1.1-4.0°C (5) Analyses Requested FSC: Client: SUNOCO, Aquaterra Acct. #: Matrix SCR#: Preservation Codes Project Name/#: A01-8 philly Refinery PWSID #: **Preservation Codes** H=HCI T=Thiosulfate Project Manager: Tiffqo: Doern P.O.#: N=HNO₃ B=NaOH S=H₂SO₄ **0**=Other Sampler: Mike Hinderling Quote #: Name of state where samples were collected: PA 8 Time Grab Sample Identification Collected · Collected Remarks 7/25/08 × PZ - 504 730 N-74 7/25/08 745 PZ-503 7/25/08 815 7/25/0x 840 RW-500 7/25/08 930 For N-73 7/25/18 1055 N-58 7/25/08 1130 7/15/08 ルーダフ 1200 7/25/08 1215 Turnaround Time Requested (TAT) (please circle): Normal Rush Relinguished by: Time | Received by: Date Date |Time (9 7125108 1440 (Rush TAT is subject to Lancaster Laboratories approval and surcharge.) Sles & /ADVOTERTA Date results are needed: Received by: Relinquished by: Date Time Date Time Rush results requested by (please circle): Phone Fax Phone #: Fax #: E-mail address: Relinquished by: Time | Received by: Date Date lTime Data Package Options (please circle if required) SDG Complete? Type I (validation/NJ Reg) TX TRRP-13 No Date Relinquished by: Time Received by: Date Time Type II (Tier II) MA MCP CT RCP Type III (Reduced NJ) Site-specific QC (MS/MSD/Dup)? Yes No Type IV (CLP SOW) Time Received by Relinquished by: Date (If yes, indicate QC sample and submit triplicate volume.) Date Time Type VI (Raw Data Only) Internal COC Required? Yes / No 72500 144

Analysis Request/ Environmental Services Chain of Custody

For Lancaster Laboratories use only

Acct. # 10139 Group# 1103389 Sample # 5494682-94

COC # 187457

	P	lease print. Inst	truction	is on re	evers	e side	COL	espor				navaran en en en en			M-	For Lab Use Only		
1) Client: SUN- AQUATERRA	Appt #				Matr	k 7		e i i i i i	(5				leque Code			FSC:		_
Project Name/#: Phila REF AOT- Project Manager: T. DOERR Sampler: S. SYKES	P.O.#: _				this Check if		ainers (+	272		6/ms 8270						Preservation Codes H=HCl T=Thiosult N=HNO ₃ B=NaOH S=H ₂ SO ₄ O=Other	fate	est (best
Name of state where samples were collected:	PA		(3)	9		<u>.</u>	of Cont	Laboration		3	EDB	ļ						e of samp
2 Sample identification	Date Collected	Time Collected		Soll	Mother	Other	Total #	4 WY Ed		PAHS 6	7					Remarks		Temperatu upom recei
RW-308	7/25108	930	X		X	'	8	3)	2	2							
RW-303		1000					1			1								
N-36		1045							Ш									
N-40		1130	1					-										
			+															····
				+									\vdash					
						+							+-+	•				
Turnaround Time Requested (TAT) (please of (Rush TAT is subject to Lancaster Laboratories appro			R	elinqui			3	- / +	<u>40</u> 04	ITER 81	Date 7/25		Time ツル	Received	l by:		Date	Time (
Date results are needed: Rush results requested by (please circle): Phone #: Fax #:		E-mail	R	elinqui	ished	l by:					Date	е	Time	Received	Hay:		Date	Time
E-mail address:			R	elinqui	ishee	Lby:					Date	е	Time	Received	by:		Date	Time
Data Package Options (please circle if required) Type I (validation/NJ Reg) TX TRRP-13 Type II (Tier II) MA MCP CT F	RCP (F	G Complete? No		elinqui	ished	l by:	_		<u></u>	_	Date	e	Time	Received	l by:		Date	Time
Type III (Reduced NJ) Type IV (CLP SOW) Type VI (Raw Data Only) Site-specific QC (N (If yes, indicate ∞ sample and subm	rt triplicate volume.)		R	elinqui	ishec	l by:				· · ·	Date	è	Time	Received	Pove	esa	Date	Time / 440

Lancaster Laboratories Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

N.D.	none detected	BMQL	Below Minimum Quantitation Level
TNTC	Too Numerous To Count	MPN	Most Probable Number
IU	International Units	CP Units	cobalt-chloroplatinate units
umhos/cm	micromhos/cm	NTU	nephelometric turbidity units
С	degrees Celsius	F	degrees Fahrenheit
Cal	(diet) calories	lb.	pound(s)
meq	milliequivalents	kg	kilogram(s)
g	gram(s)	mg	milligram(s)
ug	microgram(s)	I	liter(s)
ml	milliliter(s)	ul	microliter(s)
m3	cubic meter(s)	fib >5 um/ml	fibers greater than 5 microns in length per ml

- < less than The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.
- > greater than
- ppm parts per million One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.

Inorganic Qualifiers

- ppb parts per billion
- **Dry weight**Results printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture.

U.S. EPA data qualifiers:

9	lifier	(uu	9	 u	" 9	•

A B C D E	TIC is a possible aldol-condensation product Analyte was also detected in the blank Pesticide result confirmed by GC/MS Compound quatitated on a diluted sample Concentration exceeds the calibration range of the instrument	B E M N S	Value is <crdl, (msa)="" additions="" amount="" but="" calculation<="" control="" due="" duplicate="" estimated="" for="" injection="" interference="" limits="" met="" method="" not="" of="" precision="" spike="" standard="" th="" to="" used="" within="" ≥idl=""></crdl,>
J	Estimated value	U	Compound was not detected
N	Presumptive evidence of a compound (TICs only)	W	Post digestion spike out of control limits
Р	Concentration difference between primary and	*	Duplicate analysis not within control limits
	confirmation columns >25%	+	Correlation coefficient for MSA < 0.995
U	Compound was not detected		
X,Y,Z	Defined in case narrative		

Analytical test results for methods listed on the laboratories' accreditation scope meet all requirements of NELAC unless otherwise noted under the individual analysis.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

WARRANTY AND LIMITS OF LIABILITY – In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL LANCASTER LABORATORIES BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF LANCASTER LABORATORIES AND (B) WHETHER LANCASTER LABORATORIES HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Lancaster Laboratories which includes any conditions that vary from the Standard Terms and Conditions of Lancaster Laboratories and we hereby object to any conflicting terms contained in any acceptance or order submitted by client.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

ANALYTICAL RESULTS

Prepared for:

SUN: Aquaterra Tech. PO Box 744 West Chester PA 19381

610-431-5733

Prepared by:

Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425

SAMPLE GROUP

The sample group for this submittal is 1102390. Samples arrived at the laboratory on Thursday, July 24, 2008. The PO# for this group is PHILADELPHIA.

Client Description	<u>Lancaster Labs Number</u>
N-21 Grab Water	5424695
N-20 Grab Water	5424696
N-103 Grab Water	5424697
N-105 Grab Water	5424698
N-104 Grab Water	5424699
N-99 Grab Water	5424700
N-13 Grab Water	5424701
N-12 Grab Water	5424702
N-307 Grab Water	5424703
N-302 Grab Water	5424704
N-128 Grab Water	5424705
N-50D Grab Water	5424706
RW-200 Grab Water	5424707
N-64 Grab Water	5424708
PZ-507 Grab Water	5424709
PZ-506 Grab Water	5424710
RW-501 Grab Water	5424711
PZ-505 Grab Water	5424712
N-133 Grab Water	5424713

ELECTRONIC COPY TO

SUN: Aquaterra Tech.

Attn: Kevin Martin

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

ELECTRONIC Langan Attn: Joseph Catricks

COPY TO

ELECTRONIC SUN: Aquaterra Tech. Attn: Tiffani Doerr

COPY TO

ELECTRONIC LLI Attn: EDD Group

COPY TO

Questions? Contact your Client Services Representative Jessica A Heun at (717) 656-2300

Respectfully Submitted,

Marla S. Lord Senior Specialist

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5424695 WW Group No. 1102390

N-21 Grab Water

Philadelphia Refinery AOI-8

COC: 187467 N-21

Collected: 07/23/2008 08:45 by SS Account Number: 10132

Submitted: 07/24/2008 17:10 SUN: Aquaterra Tech.

Reported: 08/06/2008 at 19:53 PO Box 744

Discard: 10/06/2008 West Chester PA 19381

PR021

CAT			As Received	As Received Limit of	As Received Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06035	Lead	7439-92-1	< 0.0010	0.0010	0.000050	mg/l	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.029	0.029	0.0098	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	< 5.	5.	1.	ug/l	1
03956	Fluorene	86-73-7	< 5.	5.	1.	ug/l	1
03963	Phenanthrene	85-01-8	< 5.	5.	1.	ug/l	1
03967	Pyrene	129-00-0	< 5.	5.	1.	ug/l	1
03971	Chrysene	218-01-9	< 5.	5.	1.	ug/l	1
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	1.	1.	0.5	ug/l	1
05401	Benzene	71-43-2	16.	1.	0.5	ug/l	1
05402	1,2-Dichloroethane	107-06-2	< 1.	1.	0.5	ug/l	1
05407	Toluene	108-88-3	1.	1.	0.5	ug/l	1
05415	Ethylbenzene	100-41-4	< 1.	1.	0.5	ug/l	1
05420	Isopropylbenzene	98-82-8	190.	2.	0.5	ug/l	1
06310	Xylene (Total)	1330-20-7	3.	1.	0.5	ug/l	1

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09 This sample was filtered in the lab for dissolved metals. Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5424695 WW Group No. 1102390

N-21 Grab Water

Philadelphia Refinery AOI-8

COC: 187467 N-21

Collected: 07/23/2008 08:45 by SS Account Number: 10132

Submitted: 07/24/2008 17:10 SUN: Aquaterra Tech.

Reported: 08/06/2008 at 19:53 PO Box 744

Discard: 10/06/2008 West Chester PA 19381

PR021

CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06035	Lead	SW-846 6020	1	07/31/2008 07:17	David K Beck	1
07879	EDB in Wastewater	SW-846 8011	1	07/30/2008 00:47	Mark E McNulty	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	07/29/2008 08:03	Brian K Graham	1
02302	UST-Waters by 8260B	SW-846 8260B	1	08/04/2008 14:05	Anita M Dale	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	08/04/2008 14:05	Anita M Dale	1
06050	ICP/MS SW-846 Water	SW-846 3010A modified	1	07/30/2008 18:45	James L Mertz	1
07786	EDB Extraction	SW-846 8011	1	07/29/2008 10:45	Deborah M Zimmerman	1
07807	BNA Water Extraction	SW-846 3510C	1	07/28/2008 10:30	Cynthia J Stoltzfus	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5424696 WW Group No. 1102390

N-20 Grab Water

Philadelphia Refinery AOI-8

COC: 187467 N-20

Collected: 07/23/2008 09:00 by SS Account Number: 10132

Submitted: 07/24/2008 17:10 SUN: Aquaterra Tech.

Reported: 08/06/2008 at 19:53 PO Box 744

Discard: 10/06/2008 West Chester PA 19381

PR020

				As Received	As Received		
CAT			As Received	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06035	Lead	7439-92-1	< 0.0010	0.0010	0.000050	mg/l	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.029	0.029	0.0097	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	< 50.	50.	10.	ug/l	1
03956	Fluorene	86-73-7	66.	50.	10.	ug/l	1
03963	Phenanthrene	85-01-8	< 50.	50.	10.	ug/l	1
03967	Pyrene	129-00-0	90.	50.	10.	ug/l	1
03971	Chrysene	218-01-9	70.	50.	10.	ug/l	1
	Due to the nature of the sample		-	was used for			
	analysis. The reporting limits	were raised	accordingly.				
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 1.	1.	0.5	ug/l	1
05401	Benzene	71-43-2	< 1.	1.	0.5	ug/l	1
05402	1,2-Dichloroethane	107-06-2	< 1.	1.	0.5	ug/l	1
05407	Toluene	108-88-3	< 1.	1.	0.5	ug/l	1
05415	Ethylbenzene	100-41-4	< 1.	1.	0.5	ug/l	1
05420	Isopropylbenzene	98-82-8	42.	2.	0.5	ug/l	1
06310	Xylene (Total)	1330-20-7	< 1.	1.	0.5	ug/l	1

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09 This sample was filtered in the lab for dissolved metals. Trip blank vials were not received by the laboratory for this sample group.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5424696 WW Group No. 1102390

N-20 Grab Water

Philadelphia Refinery AOI-8

COC: 187467 N-20

Collected: 07/23/2008 09:00 by SS Account Number: 10132

Submitted: 07/24/2008 17:10 SUN: Aquaterra Tech.

Reported: 08/06/2008 at 19:53 PO Box 744

Discard: 10/06/2008 West Chester PA 19381

PR020

			O111 O.			
CAT		_		Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06035	Lead	SW-846 6020	1	07/31/2008 07:19	David K Beck	1
07879	EDB in Wastewater	SW-846 8011	1	07/30/2008 02:17	Mark E McNulty	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	07/29/2008 08:26	Brian K Graham	1
02302	UST-Waters by 8260B	SW-846 8260B	1	08/04/2008 14:32	Anita M Dale	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	08/04/2008 14:32	Anita M Dale	1
06050	ICP/MS SW-846 Water	SW-846 3010A modified	1	07/30/2008 18:45	James L Mertz	1
07786	EDB Extraction	SW-846 8011	1	07/29/2008 10:45	Deborah M Zimmerman	1
07807	BNA Water Extraction	SW-846 3510C	1	07/28/2008 10:30	Cynthia J Stoltzfus	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5424697 WW Group No. 1102390

N-103 Grab Water

Philadelphia Refinery AOI-8

COC: 187467 N-103

Collected: 07/23/2008 09:30 by SS Account Number: 10132

Submitted: 07/24/2008 17:10 SUN: Aquaterra Tech.

Reported: 08/06/2008 at 19:53 PO Box 744

Discard: 10/06/2008 West Chester PA 19381

PR103

				As Received	As Received		
CAT			As Received	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06035	Lead	7439-92-1	< 0.0010	0.0010	0.000050	mg/l	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.029	0.029	0.0097	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	< 50.	50.	10.	ug/l	1
03956	Fluorene	86-73-7	740.	50.	10.	ug/l	1
03963	Phenanthrene	85-01-8	2,500.	250.	50.	ug/l	5
03967	Pyrene	129-00-0	390.	50.	10.	ug/l	1
03971	Chrysene	218-01-9	360.	50.	10.	ug/l	1
	Due to the nature of the sample	e matrix, a re	educed aliquot	was used for			
	analysis. The reporting limits	s were raised	accordingly.				
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 5.	5.	3.	ug/l	5
05401	Benzene	71-43-2	16.	5.	3.	ug/l	5
05402	1,2-Dichloroethane	107-06-2	< 5.	5.	3.	ug/l	5
05407	Toluene	108-88-3	22.	5.	3.	ug/l	5
05415	Ethylbenzene	100-41-4	< 5.	5.	3.	ug/l	5
05420	Isopropylbenzene	98-82-8	360.	10.	3.	ug/l	5
06310	Xylene (Total)	1330-20-7	47.	5.	3.	ug/l	5

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09 This sample was filtered in the lab for dissolved metals. Trip blank vials were not received by the laboratory for this sample group.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5424697 WW Group No. 1102390

N-103 Grab Water

Philadelphia Refinery AOI-8

COC: 187467 N-103

Collected: 07/23/2008 09:30 by SS Account Number: 10132

Submitted: 07/24/2008 17:10 SUN: Aquaterra Tech.

Reported: 08/06/2008 at 19:53 PO Box 744

Discard: 10/06/2008 West Chester PA 19381

PR103

CAT		2		Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06035	Lead	SW-846 6020	1	07/31/2008 07:21	David K Beck	1
07879	EDB in Wastewater	SW-846 8011	1	07/30/2008 02:47	Mark E McNulty	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	07/29/2008 08:49	Brian K Graham	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	07/29/2008 21:35	William T Parker	5
02302	UST-Waters by 8260B	SW-846 8260B	1	08/04/2008 14:59	Anita M Dale	5
01163	GC/MS VOA Water Prep	SW-846 5030B	1	08/04/2008 14:59	Anita M Dale	5
06050	ICP/MS SW-846 Water	SW-846 3010A modified	. 1	07/30/2008 18:45	James L Mertz	1
07786	EDB Extraction	SW-846 8011	1	07/29/2008 10:45	Deborah M Zimmerman	1
07807	BNA Water Extraction	SW-846 3510C	1	07/28/2008 10:30	Cynthia J Stoltzfus	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5424698 WW Group No. 1102390

N-105 Grab Water

Philadelphia Refinery AOI-8

COC: 187467 N-105

Collected: 07/23/2008 10:00 by SS Account Number: 10132

Submitted: 07/24/2008 17:10 SUN: Aquaterra Tech.

Reported: 08/06/2008 at 19:53 PO Box 744

Discard: 10/06/2008 West Chester PA 19381

PR105

				As Received	As Received		
CAT			As Received	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06035	Lead	7439-92-1	< 0.0010	0.0010	0.000050	mg/l	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.029	0.029	0.0097	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	< 50.	50.	10.	ug/l	1
03956	Fluorene	86-73-7	72.	50.	10.	ug/l	1
03963	Phenanthrene	85-01-8	100.	50.	10.	ug/l	1
03967	Pyrene	129-00-0	< 50.	50.	10.	ug/l	1
03971	Chrysene	218-01-9	< 50.	50.	10.	ug/l	1
	Due to the nature of the sample analysis. The reporting limits	•	-	was used for			
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 1.	1.	0.5	ug/l	1
05401	Benzene	71-43-2	< 1.	1.	0.5	ug/l	1
05402	1,2-Dichloroethane	107-06-2	< 1.	1.	0.5	ug/l	1
05407	Toluene	108-88-3	3.	1.	0.5	ug/l	1
05415	Ethylbenzene	100-41-4	< 1.	1.	0.5	ug/l	1
05420	Isopropylbenzene	98-82-8	9.	2.	0.5	ug/l	1
06310	Xylene (Total)	1330-20-7	7.	1.	0.5	ug/l	1

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09 This sample was filtered in the lab for dissolved metals. Trip blank vials were not received by the laboratory for this sample group.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5424698 WW Group No. 1102390

N-105 Grab Water

Philadelphia Refinery AOI-8

COC: 187467 N-105

Collected: 07/23/2008 10:00 by SS Account Number: 10132

Submitted: 07/24/2008 17:10 SUN: Aquaterra Tech.

Reported: 08/06/2008 at 19:53 PO Box 744

Discard: 10/06/2008 West Chester PA 19381

PR105

		паротасоту	CIII O.	111010		
CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06035	Lead	SW-846 6020	1	07/31/2008 07:22	David K Beck	1
07879	EDB in Wastewater	SW-846 8011	1	07/30/2008 03:17	Mark E McNulty	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	07/29/2008 09:13	Brian K Graham	1
02302	UST-Waters by 8260B	SW-846 8260B	1	08/05/2008 16:18	Daniel H Heller	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	08/05/2008 16:18	Daniel H Heller	1
06050	ICP/MS SW-846 Water	SW-846 3010A modified	1	07/30/2008 18:45	James L Mertz	1
07786	EDB Extraction	SW-846 8011	1	07/29/2008 10:45	Deborah M Zimmerman	1
07807	BNA Water Extraction	SW-846 3510C	1	07/28/2008 10:30	Cynthia J Stoltzfus	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5424699 WW Group No. 1102390

N-104 Grab Water

Philadelphia Refinery AOI-8

COC: 187467 N-104

Collected: 07/23/2008 10:25 by SS Account Number: 10132

Submitted: 07/24/2008 17:10 SUN: Aquaterra Tech.

Reported: 08/06/2008 at 19:53 PO Box 744

Discard: 10/06/2008 West Chester PA 19381

PR104

				As Received	As Received		
CAT			As Received	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06035	Lead	7439-92-1	< 0.0010	0.0010	0.000050	mg/l	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.029	0.029	0.0096	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	< 50.	50.	10.	ug/l	1
03956	Fluorene	86-73-7	310.	50.	10.	ug/l	1
03963	Phenanthrene	85-01-8	740.	50.	10.	ug/l	1
03967	Pyrene	129-00-0	150.	50.	10.	ug/l	1
03971	Chrysene	218-01-9	85.	50.	10.	ug/l	1
	Due to the nature of the sample	e matrix, a re	educed aliquot	was used for			
	analysis. The reporting limits	s were raised	accordingly.				
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 1.	1.	0.5	ug/l	1
05401	Benzene	71-43-2	7.	1.	0.5	ug/l	1
05402	1,2-Dichloroethane	107-06-2	< 1.	1.	0.5	ug/l	1
05407	Toluene	108-88-3	13.	1.	0.5	ug/l	1
05415	Ethylbenzene	100-41-4	2.	1.	0.5	ug/l	1
05420	Isopropylbenzene	98-82-8	44.	2.	0.5	ug/l	1
06310	Xylene (Total)	1330-20-7	30.	1.	0.5	ug/l	1

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09 This sample was filtered in the lab for dissolved metals. Trip blank vials were not received by the laboratory for this sample group.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5424699 WW Group No. 1102390

N-104 Grab Water

Philadelphia Refinery AOI-8

COC: 187467 N-104

Collected: 07/23/2008 10:25 by SS Account Number: 10132

Submitted: 07/24/2008 17:10 SUN: Aquaterra Tech.

Reported: 08/06/2008 at 19:53 PO Box 744

Discard: 10/06/2008 West Chester PA 19381

PR104

CAT		-		Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06035	Lead	SW-846 6020	1	07/31/2008 07:24	David K Beck	1
07879	EDB in Wastewater	SW-846 8011	1	07/30/2008 04:17	Mark E McNulty	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	07/29/2008 09:37	Brian K Graham	1
02302	UST-Waters by 8260B	SW-846 8260B	1	08/05/2008 16:37	Daniel H Heller	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	08/05/2008 16:37	Daniel H Heller	1
06050	ICP/MS SW-846 Water	SW-846 3010A modified	1	07/30/2008 18:45	James L Mertz	1
07786	EDB Extraction	SW-846 8011	1	07/29/2008 10:45	Deborah M Zimmerman	1
07807	BNA Water Extraction	SW-846 3510C	1	07/28/2008 10:30	Cynthia J Stoltzfus	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5424700 WW Group No. 1102390

N-99 Grab Water

Philadelphia Refinery AOI-8

COC: 187467 N-99

Collected: 07/23/2008 11:05 by SS Account Number: 10132

Submitted: 07/24/2008 17:10 SUN: Aquaterra Tech.

Reported: 08/06/2008 at 19:53 PO Box 744

Discard: 10/06/2008 West Chester PA 19381

PR099

				As Received	As Received		
CAT			As Received	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06035	Lead	7439-92-1	< 0.0010	0.0010	0.000050	mg/1	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.029	0.029	0.0098	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	< 50.	50.	10.	ug/l	1
03956	Fluorene	86-73-7	< 50.	50.	10.	ug/l	1
03963	Phenanthrene	85-01-8	< 50.	50.	10.	ug/l	1
03967	Pyrene	129-00-0	< 50.	50.	10.	ug/l	1
03971	Chrysene	218-01-9	< 50.	50.	10.	ug/l	1
	Due to the nature of the sample analysis. The reporting limits	•	-	was used for			
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 1.	1.	0.5	ug/l	1
05401	Benzene	71-43-2	< 1.	1.	0.5	ug/l	1
05402	1,2-Dichloroethane	107-06-2	< 1.	1.	0.5	ug/l	1
05407	Toluene	108-88-3	< 1.	1.	0.5	ug/l	1
05415	Ethylbenzene	100-41-4	< 1.	1.	0.5	ug/l	1
05420	Isopropylbenzene	98-82-8	< 2.	2.	0.5	ug/l	1
06310	Xylene (Total)	1330-20-7	< 1.	1.	0.5	ug/l	1

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09 This sample was filtered in the lab for dissolved metals. Trip blank vials were not received by the laboratory for this sample group.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5424700 WW Group No. 1102390

N-99 Grab Water

Philadelphia Refinery AOI-8

COC: 187467 N-99

Collected: 07/23/2008 11:05 by SS Account Number: 10132

Submitted: 07/24/2008 17:10 SUN: Aquaterra Tech.

Reported: 08/06/2008 at 19:53 PO Box 744

Discard: 10/06/2008 West Chester PA 19381

PR099

CAT		1		Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06035	Lead	SW-846 6020	1	07/31/2008 07:26	David K Beck	1
07879	EDB in Wastewater	SW-846 8011	1	07/30/2008 04:47	Mark E McNulty	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	07/29/2008 10:00	Brian K Graham	1
02302	UST-Waters by 8260B	SW-846 8260B	1	08/04/2008 16:19	Anita M Dale	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	08/04/2008 16:19	Anita M Dale	1
06050	ICP/MS SW-846 Water	SW-846 3010A modified	l 1	07/30/2008 18:45	James L Mertz	1
07786	EDB Extraction	SW-846 8011	1	07/29/2008 10:45	Deborah M Zimmerman	1
07807	BNA Water Extraction	SW-846 3510C	1	07/28/2008 10:30	Cynthia J Stoltzfus	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5424701 WW Group No. 1102390

N-13 Grab Water

Philadelphia Refinery AOI-8

COC: 187467 N-13

Collected: 07/23/2008 11:45 by SS Account Number: 10132

Submitted: 07/24/2008 17:10 SUN: Aquaterra Tech.

Reported: 08/06/2008 at 19:53 PO Box 744

Discard: 10/06/2008 West Chester PA 19381

PR013

				As Received	As Received		
CAT			As Received	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06035	Lead	7439-92-1	< 0.0010	0.0010	0.000050	mg/l	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.029	0.029	0.0096	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	< 5.	5.	0.9	ug/l	1
03956	Fluorene	86-73-7	< 5.	5.	0.9	ug/l	1
03963	Phenanthrene	85-01-8	< 5.	5.	0.9	ug/l	1
03967	Pyrene	129-00-0	< 5.	5.	0.9	ug/l	1
03971	Chrysene	218-01-9	< 5.	5.	0.9	ug/l	1
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	2.	1.	0.5	ug/l	1
05401	Benzene	71-43-2	< 1.	1.	0.5	ug/l	1
05402	1,2-Dichloroethane	107-06-2	< 1.	1.	0.5	ug/l	1
05407	Toluene	108-88-3	< 1.	1.	0.5	ug/l	1
05415	Ethylbenzene	100-41-4	< 1.	1.	0.5	ug/l	1
05420	Isopropylbenzene	98-82-8	< 2.	2.	0.5	ug/l	1
06310	Xylene (Total)	1330-20-7	< 1.	1.	0.5	ug/l	1

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09 This sample was filtered in the lab for dissolved metals. Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Group No. 1102390 Lancaster Laboratories Sample No. 5424701 WW

N-13 Grab Water

Philadelphia Refinery AOI-8

COC: 187467 N-13

Collected:07/23/2008 11:45 by SS Account Number: 10132

Submitted: 07/24/2008 17:10 SUN: Aquaterra Tech.

Reported: 08/06/2008 at 19:53 PO Box 744

Discard: 10/06/2008 West Chester PA 19381

			Analveie		Dilution
Analysis Name	Method	Trial#	Date and Time	Analvst	Factor
Lead	SW-846 6020	1	07/31/2008 07:28	David K Beck	1
EDB in Wastewater	SW-846 8011	1	07/30/2008 05:17	Mark E McNulty	1
PAHs in Water by GC/MS	SW-846 8270C	1	07/29/2008 10:24	Brian K Graham	1
UST-Waters by 8260B	SW-846 8260B	1	08/04/2008 17:12	Anita M Dale	1
GC/MS VOA Water Prep	SW-846 5030B	1	08/04/2008 17:12	Anita M Dale	1
ICP/MS SW-846 Water	SW-846 3010A modifie	d 1	07/30/2008 18:45	James L Mertz	1
EDB Extraction	SW-846 8011	1	07/29/2008 10:45	Deborah M Zimmerman	1
BNA Water Extraction	SW-846 3510C	1	07/28/2008 10:30	Cynthia J Stoltzfus	1
	EDB in Wastewater PAHs in Water by GC/MS UST-Waters by 8260B GC/MS VOA Water Prep ICP/MS SW-846 Water EDB Extraction	Lead SW-846 6020 EDB in Wastewater SW-846 8011 PAHs in Water by GC/MS SW-846 8270C UST-Waters by 8260B SW-846 8260B GC/MS VOA Water Prep SW-846 5030B ICP/MS SW-846 Water SW-846 3010A modified EDB Extraction SW-846 8011	Lead SW-846 6020 1 EDB in Wastewater SW-846 8011 1 PAHs in Water by GC/MS SW-846 8270C 1 UST-Waters by 8260B SW-846 8260B 1 GC/MS VOA Water Prep SW-846 5030B 1 ICP/MS SW-846 Water SW-846 3010A modified 1 EDB Extraction SW-846 8011 1	Lead SW-846 6020 1 07/31/2008 07:28 EDB in Wastewater SW-846 8011 1 07/30/2008 05:17 PAHs in Water by GC/MS SW-846 8270C 1 07/29/2008 10:24 UST-Waters by 8260B SW-846 8260B 1 08/04/2008 17:12 GC/MS VOA Water Prep SW-846 5030B 1 08/04/2008 17:12 ICP/MS SW-846 Water SW-846 3010A modified 1 07/30/2008 18:45 EDB Extraction SW-846 8011 1 07/29/2008 10:45	Analysis Name Method Trial# Date and Time Analyst Lead SW-846 6020 1 07/31/2008 07:28 David K Beck EDB in Wastewater SW-846 8011 1 07/30/2008 05:17 Mark E McNulty PAHs in Water by GC/MS SW-846 8270C 1 07/29/2008 10:24 Brian K Graham UST-Waters by 8260B SW-846 8260B 1 08/04/2008 17:12 Anita M Dale GC/MS VOA Water Prep SW-846 5030B 1 08/04/2008 17:12 Anita M Dale ICP/MS SW-846 Water SW-846 3010A modified 1 07/30/2008 18:45 James L Mertz EDB Extraction SW-846 8011 1 07/29/2008 10:45 Deborah M Zimmerman

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5424702 WW Group No. 1102390

N-12 Grab Water

Philadelphia Refinery AOI-8

COC: 187467 N-12

Collected: 07/23/2008 12:00 by SS Account Number: 10132

Submitted: 07/24/2008 17:10 SUN: Aquaterra Tech.

Reported: 08/06/2008 at 19:53 PO Box 744

Discard: 10/06/2008 West Chester PA 19381

PR012

				As Received	As Received		
CAT			As Received	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06035	Lead	7439-92-1	< 0.0010	0.0010	0.000050	mg/l	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.029	0.029	0.0097	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	< 50.	50.	10.	ug/l	1
03956	Fluorene	86-73-7	1,600.	500.	100.	ug/l	10
03963	Phenanthrene	85-01-8	5,500.	500.	100.	ug/l	10
03967	Pyrene	129-00-0	870.	50.	10.	ug/l	1
03971	Chrysene	218-01-9	470.	50.	10.	ug/l	1
	Due to the nature of the sample	e matrix, a re	educed aliquot	was used for			
	analysis. The reporting limits	s were raised	accordingly.				
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 1.	1.	0.5	ug/l	1
05401	Benzene	71-43-2	6.	1.	0.5	ug/l	1
05402	1,2-Dichloroethane	107-06-2	< 1.	1.	0.5	ug/l	1
05407	Toluene	108-88-3	10.	1.	0.5	ug/l	1
05415	Ethylbenzene	100-41-4	1.	1.	0.5	ug/l	1
05420	Isopropylbenzene	98-82-8	15.	2.	0.5	ug/l	1
06310	Xylene (Total)	1330-20-7	14.	1.	0.5	ug/l	1

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09 This sample was filtered in the lab for dissolved metals. Trip blank vials were not received by the laboratory for this sample group.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5424702 WW Group No. 1102390

N-12 Grab Water

Philadelphia Refinery AOI-8

COC: 187467 N-12

Collected: 07/23/2008 12:00 by SS Account Number: 10132

Submitted: 07/24/2008 17:10 SUN: Aquaterra Tech.

Reported: 08/06/2008 at 19:53 PO Box 744

Discard: 10/06/2008 West Chester PA 19381

PR012

CAT		2		Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06035	Lead	SW-846 6020	1	07/31/2008 07:33	David K Beck	1
07879	EDB in Wastewater	SW-846 8011	1	07/30/2008 05:47	Mark E McNulty	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	07/29/2008 10:47	Brian K Graham	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	07/29/2008 21:59	William T Parker	10
02302	UST-Waters by 8260B	SW-846 8260B	1	08/04/2008 17:39	Anita M Dale	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	08/04/2008 17:39	Anita M Dale	1
06050	ICP/MS SW-846 Water	SW-846 3010A modified	. 1	07/30/2008 18:45	James L Mertz	1
07786	EDB Extraction	SW-846 8011	1	07/29/2008 10:45	Deborah M Zimmerman	1
07807	BNA Water Extraction	SW-846 3510C	1	07/28/2008 10:30	Cynthia J Stoltzfus	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5424703 WW Group No. 1102390

N-307 Grab Water

Philadelphia Refinery AOI-8

COC: 187467 N-307

Collected: 07/23/2008 13:00 by SS Account Number: 10132

Submitted: 07/24/2008 17:10 SUN: Aquaterra Tech.

Reported: 08/06/2008 at 19:53 PO Box 744

Discard: 10/06/2008 West Chester PA 19381

PR307

				As Received	As Received		
CAT			As Received	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06035	Lead	7439-92-1	< 0.0010	0.0010	0.000050	mg/l	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.029	0.029	0.0096	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	< 5.	5.	1.	ug/l	1
03956	Fluorene	86-73-7	< 5.	5.	1.	ug/l	1
03963	Phenanthrene	85-01-8	< 5.	5.	1.	ug/l	1
03967	Pyrene	129-00-0	< 5.	5.	1.	ug/l	1
03971	Chrysene	218-01-9	< 5.	5.	1.	ug/l	1
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 1.	1.	0.5	ug/l	1
05401	Benzene	71-43-2	52.	1.	0.5	ug/l	1
05402	1,2-Dichloroethane	107-06-2	< 1.	1.	0.5	ug/l	1
05407	Toluene	108-88-3	30.	1.	0.5	ug/l	1
05415	Ethylbenzene	100-41-4	3.	1.	0.5	ug/l	1
05420	Isopropylbenzene	98-82-8	30.	2.	0.5	ug/l	1
06310	Xylene (Total)	1330-20-7	34.	1.	0.5	ug/l	1

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09 This sample was filtered in the lab for dissolved metals. Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681• www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5424703 WW Group No. 1102390

N-307 Grab Water

Philadelphia Refinery AOI-8

COC: 187467 N-307

Collected: 07/23/2008 13:00 by SS Account Number: 10132

Submitted: 07/24/2008 17:10 SUN: Aquaterra Tech.

Reported: 08/06/2008 at 19:53 PO Box 744

Discard: 10/06/2008 West Chester PA 19381

PR307

CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06035	Lead	SW-846 6020	1	07/31/2008 07:35	David K Beck	1
07879	EDB in Wastewater	SW-846 8011	1	07/30/2008 06:17	Mark E McNulty	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	07/29/2008 11:11	Brian K Graham	1
02302	UST-Waters by 8260B	SW-846 8260B	1	08/04/2008 18:06	Anita M Dale	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	08/04/2008 18:06	Anita M Dale	1
06050	ICP/MS SW-846 Water	SW-846 3010A modified	l 1	07/30/2008 18:45	James L Mertz	1
07786	EDB Extraction	SW-846 8011	1	07/29/2008 10:45	Deborah M Zimmerman	1
07807	BNA Water Extraction	SW-846 3510C	1	07/28/2008 10:30	Cynthia J Stoltzfus	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5424704 WW Group No. 1102390

N-302 Grab Water

Philadelphia Refinery AOI-8

COC: 187467 N-302

Collected: 07/23/2008 14:10 by SS Account Number: 10132

Submitted: 07/24/2008 17:10 SUN: Aquaterra Tech.

Reported: 08/06/2008 at 19:53 PO Box 744

Discard: 10/06/2008 West Chester PA 19381

PR302

				As Received	As Received		
CAT			As Received	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06035	Lead	7439-92-1	< 0.0010	0.0010	0.000050	mg/l	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.029	0.029	0.0096	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	< 5.	5.	1.	ug/l	1
03956	Fluorene	86-73-7	8.	5.	1.	ug/l	1
03963	Phenanthrene	85-01-8	< 5.	5.	1.	ug/l	1
03967	Pyrene	129-00-0	5.	5.	1.	ug/l	1
03971	Chrysene	218-01-9	< 5.	5.	1.	ug/l	1
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 1.	1.	0.5	ug/l	1
05401	Benzene	71-43-2	3.	1.	0.5	ug/l	1
05402	1,2-Dichloroethane	107-06-2	< 1.	1.	0.5	ug/l	1
05407	Toluene	108-88-3	2.	1.	0.5	ug/l	1
05415	Ethylbenzene	100-41-4	< 1.	1.	0.5	ug/l	1
05420	Isopropylbenzene	98-82-8	17.	2.	0.5	ug/l	1
06310	Xylene (Total)	1330-20-7	4.	1.	0.5	ug/l	1

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09 This sample was filtered in the lab for dissolved metals. Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5424704 WW Group No. 1102390

N-302 Grab Water

Philadelphia Refinery AOI-8

COC: 187467 N-302

Collected: 07/23/2008 14:10 by SS Account Number: 10132

Submitted: 07/24/2008 17:10 SUN: Aquaterra Tech.

Reported: 08/06/2008 at 19:53 PO Box 744

Discard: 10/06/2008 West Chester PA 19381

PR302

CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06035	Lead	SW-846 6020	1	07/31/2008 07:36	David K Beck	1
07879	EDB in Wastewater	SW-846 8011	1	07/30/2008 06:47	Mark E McNulty	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	07/29/2008 11:34	Brian K Graham	1
02302	UST-Waters by 8260B	SW-846 8260B	1	08/04/2008 18:33	Anita M Dale	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	08/04/2008 18:33	Anita M Dale	1
06050	ICP/MS SW-846 Water	SW-846 3010A modified	l 1	07/30/2008 18:45	James L Mertz	1
07786	EDB Extraction	SW-846 8011	1	07/29/2008 10:45	Deborah M Zimmerman	1
07807	BNA Water Extraction	SW-846 3510C	1	07/28/2008 10:30	Cynthia J Stoltzfus	1

^{*=}This limit was used in the evaluation of the final result

As Received

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5424705 WW Group No. 1102390

N-128 Grab Water

Philadelphia Refinery AOI-8

COC: 187467 N-128

Collected: 07/23/2008 08:15 by MH Account Number: 10132

Submitted: 07/24/2008 17:10 SUN: Aquaterra Tech.

Reported: 08/06/2008 at 19:53 PO Box 744

Discard: 10/06/2008 West Chester PA 19381

PR128

				As Received	As Received					
CAT			As Received	Limit of	Method		Dilution			
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor			
06035	Lead	7439-92-1	< 0.0010	0.0010	0.000050	mg/1	1			
07879	EDB in Wastewater									
01087	Ethylene dibromide	106-93-4	< 0.029	0.029	0.0097	ug/l	1			
07805	PAHs in Water by GC/MS									
03947	Naphthalene	91-20-3	< 100.	100.	20.	ug/l	1			
03956	Fluorene	86-73-7	< 100.	100.	20.	ug/l	1			
03963	Phenanthrene	85-01-8	4,300.	500.	100.	ug/l	5			
03967	Pyrene	129-00-0	940.	100.	20.	ug/l	1			
03971	Chrysene	218-01-9	470.	100.	20.	ug/l	1			
	Due to sample matrix interferences observed during the extraction, the normal reporting limits were not attained. Due to the nature of the sample matrix, a reduced aliquot was used for analysis. The reporting limits were raised accordingly.									
02302	UST-Waters by 8260B									
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 1.	1.	0.5	ug/l	1			
05401	Benzene	71-43-2	< 1.	1.	0.5	ug/l	1			
05402	1,2-Dichloroethane	107-06-2	< 1.	1.	0.5	ug/l	1			
05407	Toluene	108-88-3	< 1.	1.	0.5	ug/l	1			
05415	Ethylbenzene	100-41-4	< 1.	1.	0.5	ug/l	1			
05420	Isopropylbenzene	98-82-8	30.	2.	0.5	ug/l	1			
06310	Xylene (Total)	1330-20-7	< 1.	1.	0.5	ug/l	1			

As Received

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09 This sample was filtered in the lab for dissolved metals. Trip blank vials were not received by the laboratory for this sample group.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5424705 WW Group No. 1102390

N-128 Grab Water

Philadelphia Refinery AOI-8

COC: 187467 N-128

Collected: 07/23/2008 08:15 by MH Account Number: 10132

Submitted: 07/24/2008 17:10 SUN: Aquaterra Tech.

Reported: 08/06/2008 at 19:53 PO Box 744

Discard: 10/06/2008 West Chester PA 19381

PR128

CAT		1		Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06035	Lead	SW-846 6020	1	07/31/2008 07:38	David K Beck	1
07879	EDB in Wastewater	SW-846 8011	1	07/30/2008 07:17	Mark E McNulty	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	07/29/2008 11:57	Brian K Graham	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	07/29/2008 22:22	William T Parker	5
02302	UST-Waters by 8260B	SW-846 8260B	1	08/04/2008 18:59	Anita M Dale	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	08/04/2008 18:59	Anita M Dale	1
06050	ICP/MS SW-846 Water	SW-846 3010A modified	1	07/30/2008 18:45	James L Mertz	1
07786	EDB Extraction	SW-846 8011	1	07/29/2008 10:45	Deborah M Zimmerman	1
07807	BNA Water Extraction	SW-846 3510C	1	07/28/2008 10:30	Cynthia J Stoltzfus	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5424706 WW Group No. 1102390

N-50D Grab Water

Philadelphia Refinery AOI-8

COC: 187467 N-50D

Collected: 07/23/2008 09:15 by MH Account Number: 10132

Submitted: 07/24/2008 17:10 SUN: Aquaterra Tech.

Reported: 08/06/2008 at 19:53 PO Box 744

Discard: 10/06/2008 West Chester PA 19381

PR50D

				As Received	As Received		
CAT			As Received	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06035	Lead	7439-92-1	< 0.0010	0.0010	0.000050	mg/l	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.029	0.029	0.0098	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	< 5.	5.	1.	ug/l	1
03956	Fluorene	86-73-7	< 5.	5.	1.	ug/l	1
03963	Phenanthrene	85-01-8	< 5.	5.	1.	ug/l	1
03967	Pyrene	129-00-0	< 5.	5.	1.	ug/l	1
03971	Chrysene	218-01-9	< 5.	5.	1.	ug/l	1
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 1.	1.	0.5	ug/l	1
05401	Benzene	71-43-2	< 1.	1.	0.5	ug/l	1
05402	1,2-Dichloroethane	107-06-2	< 1.	1.	0.5	ug/l	1
05407	Toluene	108-88-3	< 1.	1.	0.5	ug/l	1
05415	Ethylbenzene	100-41-4	< 1.	1.	0.5	ug/l	1
05420	Isopropylbenzene	98-82-8	< 2.	2.	0.5	ug/l	1
06310	Xylene (Total)	1330-20-7	< 1.	1.	0.5	ug/l	1

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09 This sample was filtered in the lab for dissolved metals. Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5424706 WW Group No. 1102390

N-50D Grab Water

Philadelphia Refinery AOI-8

COC: 187467 N-50D

Collected: 07/23/2008 09:15 by MH Account Number: 10132

Submitted: 07/24/2008 17:10 SUN: Aquaterra Tech.

Reported: 08/06/2008 at 19:53 PO Box 744

Discard: 10/06/2008 West Chester PA 19381

PR50D

CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06035	Lead	SW-846 6020	1	07/31/2008 07:40	David K Beck	1
07879	EDB in Wastewater	SW-846 8011	1	07/30/2008 07:47	Mark E McNulty	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	07/29/2008 12:21	Brian K Graham	1
02302	UST-Waters by 8260B	SW-846 8260B	1	08/04/2008 14:18	Anita M Dale	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	08/04/2008 14:18	Anita M Dale	1
06050	ICP/MS SW-846 Water	SW-846 3010A modified	l 1	07/30/2008 18:45	James L Mertz	1
07786	EDB Extraction	SW-846 8011	1	07/29/2008 10:45	Deborah M Zimmerman	1
07807	BNA Water Extraction	SW-846 3510C	1	07/28/2008 10:30	Cynthia J Stoltzfus	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5424707 WW Group No. 1102390

RW-200 Grab Water

Philadelphia Refinery AOI-8

COC: 187467 RW-200

Collected: 07/23/2008 10:20 by MH Account Number: 10132

Submitted: 07/24/2008 17:10 SUN: Aquaterra Tech.

Reported: 08/06/2008 at 19:53 PO Box 744

Discard: 10/06/2008 West Chester PA 19381

PR200

				As Received	As Received		
CAT			As Received	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06035	Lead	7439-92-1	< 0.0010	0.0010	0.000050	mg/1	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.029	0.029	0.0098	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	< 50.	50.	10.	ug/l	1
03956	Fluorene	86-73-7	72.	50.	10.	ug/l	1
03963	Phenanthrene	85-01-8	100.	50.	10.	ug/l	1
03967	Pyrene	129-00-0	300.	50.	10.	ug/l	1
03971	Chrysene	218-01-9	97.	50.	10.	ug/l	1
	Due to the nature of the sample analysis. The reporting limits	•	-	was used for			
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 1.	1.	0.5	ug/l	1
05401	Benzene	71-43-2	< 1.	1.	0.5	ug/l	1
05402	1,2-Dichloroethane	107-06-2	< 1.	1.	0.5	ug/l	1
05407	Toluene	108-88-3	< 1.	1.	0.5	ug/l	1
05415	Ethylbenzene	100-41-4	< 1.	1.	0.5	ug/l	1
05420	Isopropylbenzene	98-82-8	< 2.	2.	0.5	ug/l	1
06310	Xylene (Total)	1330-20-7	< 1.	1.	0.5	ug/l	1

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09 This sample was filtered in the lab for dissolved metals. Trip blank vials were not received by the laboratory for this sample group.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5424707 WW Group No. 1102390

RW-200 Grab Water

Philadelphia Refinery AOI-8

COC: 187467 RW-200

Collected: 07/23/2008 10:20 by MH Account Number: 10132

Submitted: 07/24/2008 17:10 SUN: Aquaterra Tech.

Reported: 08/06/2008 at 19:53 PO Box 744

Discard: 10/06/2008 West Chester PA 19381

PR200

	паротасоту	CIII O.	111010		
			Analysis		Dilution
Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
Lead	SW-846 6020	1	07/31/2008 07:42	David K Beck	1
EDB in Wastewater	SW-846 8011	1	07/30/2008 08:17	Mark E McNulty	1
PAHs in Water by GC/MS	SW-846 8270C	1	07/29/2008 12:44	Brian K Graham	1
UST-Waters by 8260B	SW-846 8260B	1	08/04/2008 14:45	Anita M Dale	1
GC/MS VOA Water Prep	SW-846 5030B	1	08/04/2008 14:45	Anita M Dale	1
ICP/MS SW-846 Water	SW-846 3010A modified	l 1	07/30/2008 18:45	James L Mertz	1
EDB Extraction	SW-846 8011	1	07/29/2008 10:45	Deborah M Zimmerman	1
BNA Water Extraction	SW-846 3510C	1	07/28/2008 10:30	Cynthia J Stoltzfus	1
	Lead EDB in Wastewater PAHs in Water by GC/MS UST-Waters by 8260B GC/MS VOA Water Prep ICP/MS SW-846 Water EDB Extraction	Analysis Name Lead SW-846 6020 EDB in Wastewater SW-846 8011 PAHs in Water by GC/MS UST-Waters by 8260B GC/MS VOA Water Prep SW-846 8260B GC/MS SW-846 Water EDB Extraction SW-846 8011	Analysis Name Method Trial# Lead SW-846 6020 1 EDB in Wastewater SW-846 8011 1 PAHs in Water by GC/MS SW-846 8270C 1 UST-Waters by 8260B SW-846 8260B 1 GC/MS VOA Water Prep SW-846 5030B 1 ICP/MS SW-846 Water SW-846 3010A modified 1 EDB Extraction SW-846 8011 1	Analysis Name Method Trial# Date and Time Lead SW-846 6020 1 07/31/2008 07:42 EDB in Wastewater SW-846 8011 1 07/30/2008 08:17 PAHs in Water by GC/MS SW-846 8270C 1 07/29/2008 12:44 UST-Waters by 8260B SW-846 8260B 1 08/04/2008 14:45 GC/MS VOA Water Prep SW-846 5030B 1 08/04/2008 14:45 ICP/MS SW-846 Water SW-846 3010A modified 1 07/30/2008 18:45 EDB Extraction SW-846 8011 1 07/29/2008 10:45	Analysis Name Method Trial# Date and Time Analyst Lead SW-846 6020 1 07/31/2008 07:42 David K Beck EDB in Wastewater SW-846 8011 1 07/30/2008 08:17 Mark E McNulty PAHs in Water by GC/MS SW-846 8270C 1 07/29/2008 12:44 Brian K Graham UST-Waters by 8260B SW-846 8260B 1 08/04/2008 14:45 Anita M Dale GC/MS VOA Water Prep SW-846 5030B 1 08/04/2008 14:45 Anita M Dale ICP/MS SW-846 Water SW-846 3010A modified 1 07/30/2008 18:45 James L Mertz EDB Extraction SW-846 8011 1 07/29/2008 10:45 Deborah M Zimmerman

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5424708 WW Group No. 1102390

N-64 Grab Water

Philadelphia Refinery AOI-8

COC: 187467 N-64

Collected: 07/23/2008 10:45 by MH Account Number: 10132

Submitted: 07/24/2008 17:10 SUN: Aquaterra Tech.

Reported: 08/06/2008 at 19:53 PO Box 744

Discard: 10/06/2008 West Chester PA 19381

PR064

				As Received	As Received		
CAT			As Received	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06035	Lead	7439-92-1	< 0.0010	0.0010	0.000050	mg/l	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.029	0.029	0.0098	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	< 5.	5.	1.	ug/l	1
03956	Fluorene	86-73-7	< 5.	5.	1.	ug/l	1
03963	Phenanthrene	85-01-8	< 5.	5.	1.	ug/l	1
03967	Pyrene	129-00-0	< 5.	5.	1.	ug/l	1
03971	Chrysene	218-01-9	< 5.	5.	1.	ug/l	1
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 1.	1.	0.5	ug/l	1
05401	Benzene	71-43-2	< 1.	1.	0.5	ug/l	1
05402	1,2-Dichloroethane	107-06-2	< 1.	1.	0.5	ug/l	1
05407	Toluene	108-88-3	< 1.	1.	0.5	ug/l	1
05415	Ethylbenzene	100-41-4	< 1.	1.	0.5	ug/l	1
05420	Isopropylbenzene	98-82-8	< 2.	2.	0.5	ug/l	1
06310	Xylene (Total)	1330-20-7	< 1.	1.	0.5	ug/l	1

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09 This sample was filtered in the lab for dissolved metals. Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5424708 WW Group No. 1102390

N-64 Grab Water

Philadelphia Refinery AOI-8

COC: 187467 N-64

Collected: 07/23/2008 10:45 by MH Account Number: 10132

Submitted: 07/24/2008 17:10 SUN: Aquaterra Tech.

Reported: 08/06/2008 at 19:53 PO Box 744

Discard: 10/06/2008 West Chester PA 19381

PR064

CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06035	Lead	SW-846 6020	1	07/31/2008 07:43	David K Beck	1
07879	EDB in Wastewater	SW-846 8011	1	07/30/2008 08:47	Mark E McNulty	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	07/29/2008 13:07	Brian K Graham	1
02302	UST-Waters by 8260B	SW-846 8260B	1	08/04/2008 15:11	Anita M Dale	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	08/04/2008 15:11	Anita M Dale	1
06050	ICP/MS SW-846 Water	SW-846 3010A modified	l 1	07/30/2008 18:45	James L Mertz	1
07786	EDB Extraction	SW-846 8011	1	07/29/2008 10:45	Deborah M Zimmerman	1
07807	BNA Water Extraction	SW-846 3510C	1	07/28/2008 10:30	Cynthia J Stoltzfus	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5424709 WW Group No. 1102390

PZ-507 Grab Water

Philadelphia Refinery AOI-8

COC: 187467 PZ-507

Collected: 07/23/2008 11:10 by MH Account Number: 10132

Submitted: 07/24/2008 17:10 SUN: Aquaterra Tech.

Reported: 08/06/2008 at 19:53 PO Box 744

Discard: 10/06/2008 West Chester PA 19381

PR507

				As Received	As Received		
CAT			As Received	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06035	Lead	7439-92-1	< 0.0010	0.0010	0.000050	mg/l	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.029	0.029	0.0098	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	< 50.	50.	10.	ug/l	1
03956	Fluorene	86-73-7	< 50.	50.	10.	ug/l	1
03963	Phenanthrene	85-01-8	< 50.	50.	10.	ug/l	1
03967	Pyrene	129-00-0	120.	50.	10.	ug/l	1
03971	Chrysene	218-01-9	120.	50.	10.	ug/l	1
	Due to the nature of the sample analysis. The reporting limits	•	-	was used for			
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 1.	1.	0.5	ug/l	1
05401	Benzene	71-43-2	< 1.	1.	0.5	ug/l	1
05402	1,2-Dichloroethane	107-06-2	< 1.	1.	0.5	ug/l	1
05407	Toluene	108-88-3	< 1.	1.	0.5	ug/l	1
05415	Ethylbenzene	100-41-4	< 1.	1.	0.5	ug/l	1
05420	Isopropylbenzene	98-82-8	< 2.	2.	0.5	ug/l	1
06310	Xylene (Total)	1330-20-7	< 1.	1.	0.5	ug/l	1

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09 This sample was filtered in the lab for dissolved metals. Trip blank vials were not received by the laboratory for this sample group.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5424709 WW Group No. 1102390

PZ-507 Grab Water

Philadelphia Refinery AOI-8

COC: 187467 PZ-507

Collected: 07/23/2008 11:10 by MH Account Number: 10132

Submitted: 07/24/2008 17:10 SUN: Aquaterra Tech.

Reported: 08/06/2008 at 19:53 PO Box 744

Discard: 10/06/2008 West Chester PA 19381

PR507

CAT		-		Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06035	Lead	SW-846 6020	1	07/31/2008 10:18	James R Williams II	1
07879	EDB in Wastewater	SW-846 8011	1	07/30/2008 09:47	Mark E McNulty	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	07/29/2008 13:31	Brian K Graham	1
02302	UST-Waters by 8260B	SW-846 8260B	1	08/04/2008 16:05	Anita M Dale	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	08/04/2008 16:05	Anita M Dale	1
06050	ICP/MS SW-846 Water	SW-846 3010A modified	1	07/30/2008 19:05	James L Mertz	1
07786	EDB Extraction	SW-846 8011	1	07/29/2008 10:45	Deborah M Zimmerman	1
07807	BNA Water Extraction	SW-846 3510C	1	07/28/2008 10:30	Cynthia J Stoltzfus	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5424710 WW Group No. 1102390

PZ-506 Grab Water

Philadelphia Refinery AOI-8

COC: 187467 PZ-506

Collected: 07/23/2008 11:40 by MH Account Number: 10132

Submitted: 07/24/2008 17:10 SUN: Aquaterra Tech.

Reported: 08/06/2008 at 19:53 PO Box 744

Discard: 10/06/2008 West Chester PA 19381

PR506

				As Received	As Received		
CAT			As Received	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06035	Lead	7439-92-1	< 0.0010	0.0010	0.000050	mg/l	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.030	0.030	0.0098	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	< 5.	5.	1.	ug/l	1
03956	Fluorene	86-73-7	< 5.	5.	1.	ug/l	1
03963	Phenanthrene	85-01-8	< 5.	5.	1.	ug/l	1
03967	Pyrene	129-00-0	11.	5.	1.	ug/l	1
03971	Chrysene	218-01-9	8.	5.	1.	ug/l	1
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 10.	10.	5.	ug/l	10
05401	Benzene	71-43-2	< 10.	10.	5.	ug/l	10
05402	1,2-Dichloroethane	107-06-2	< 10.	10.	5.	ug/l	10
05407	Toluene	108-88-3	< 10.	10.	5.	ug/l	10
05415	Ethylbenzene	100-41-4	< 10.	10.	5.	ug/l	10
05420	Isopropylbenzene	98-82-8	< 20.	20.	5.	ug/l	10
06310	Xylene (Total)	1330-20-7	< 10.	10.	5.	ug/l	10

The usual reporting limits were not attained due to the matrix of the sample in the GC/MS volatile analysis.

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09 This sample was filtered in the lab for dissolved metals. Trip blank vials were not received by the laboratory for this sample group.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5424710 WW Group No. 1102390

PZ-506 Grab Water

Philadelphia Refinery AOI-8

COC: 187467 PZ-506

Collected: 07/23/2008 11:40 by MH Account Number: 10132

Submitted: 07/24/2008 17:10 SUN: Aquaterra Tech.

Reported: 08/06/2008 at 19:53 PO Box 744

Discard: 10/06/2008 West Chester PA 19381

PR506

		Haboracory	CIII O.	111010		
CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06035	Lead	SW-846 6020	1	07/31/2008 10:19	James R Williams II	1
07879	EDB in Wastewater	SW-846 8011	1	07/30/2008 10:17	Mark E McNulty	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	07/29/2008 13:55	Brian K Graham	1
02302	UST-Waters by 8260B	SW-846 8260B	1	08/04/2008 16:32	Anita M Dale	10
01163	GC/MS VOA Water Prep	SW-846 5030B	1	08/04/2008 16:32	Anita M Dale	10
06050	ICP/MS SW-846 Water	SW-846 3010A modified	i 1	07/30/2008 19:05	James L Mertz	1
07786	EDB Extraction	SW-846 8011	1	07/29/2008 10:45	Deborah M Zimmerman	1
07807	BNA Water Extraction	SW-846 3510C	1	07/28/2008 10:30	Cynthia J Stoltzfus	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5424711 WW Group No. 1102390

RW-501 Grab Water

Philadelphia Refinery AOI-8

COC: 187467 RW-501

Collected: 07/23/2008 12:45 by MH Account Number: 10132

Submitted: 07/24/2008 17:10 SUN: Aquaterra Tech.

Reported: 08/06/2008 at 19:53 PO Box 744

Discard: 10/06/2008 West Chester PA 19381

PR501

				As Received	As Received		
CAT			As Received	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06035	Lead	7439-92-1	< 0.0010	0.0010	0.000050	mg/l	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.029	0.029	0.0095	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	< 5.	5.	1.	ug/l	1
03956	Fluorene	86-73-7	< 5.	5.	1.	ug/l	1
03963	Phenanthrene	85-01-8	< 5.	5.	1.	ug/l	1
03967	Pyrene	129-00-0	< 5.	5.	1.	ug/l	1
03971	Chrysene	218-01-9	< 5.	5.	1.	ug/l	1
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 1.	1.	0.5	ug/l	1
05401	Benzene	71-43-2	3.	1.	0.5	ug/l	1
05402	1,2-Dichloroethane	107-06-2	< 1.	1.	0.5	ug/l	1
05407	Toluene	108-88-3	< 1.	1.	0.5	ug/l	1
05415	Ethylbenzene	100-41-4	< 1.	1.	0.5	ug/l	1
05420	Isopropylbenzene	98-82-8	< 2.	2.	0.5	ug/l	1
06310	Xylene (Total)	1330-20-7	< 1.	1.	0.5	ug/l	1

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09 This sample was filtered in the lab for dissolved metals. Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5424711 WW Group No. 1102390

RW-501 Grab Water

Philadelphia Refinery AOI-8

COC: 187467 RW-501

Collected: 07/23/2008 12:45 by MH Account Number: 10132

Submitted: 07/24/2008 17:10 SUN: Aquaterra Tech.

Reported: 08/06/2008 at 19:53 PO Box 744

Discard: 10/06/2008 West Chester PA 19381

PR501

CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06035	Lead	SW-846 6020	1	07/31/2008 10:21	James R Williams II	1
07879	EDB in Wastewater	SW-846 8011	1	07/30/2008 10:47	Mark E McNulty	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	07/29/2008 14:18	Brian K Graham	1
02302	UST-Waters by 8260B	SW-846 8260B	1	08/04/2008 16:58	Anita M Dale	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	08/04/2008 16:58	Anita M Dale	1
06050	ICP/MS SW-846 Water	SW-846 3010A modified	1	07/30/2008 19:05	James L Mertz	1
07786	EDB Extraction	SW-846 8011	1	07/29/2008 10:45	Deborah M Zimmerman	1
07807	BNA Water Extraction	SW-846 3510C	1	07/28/2008 10:30	Cynthia J Stoltzfus	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5424712 WW Group No. 1102390

PZ-505 Grab Water

Philadelphia Refinery AOI-8

COC: 187467 PZ-505

Collected: 07/23/2008 13:00 by MH Account Number: 10132

Submitted: 07/24/2008 17:10 SUN: Aquaterra Tech.

Reported: 08/06/2008 at 19:53 PO Box 744

Discard: 10/06/2008 West Chester PA 19381

PR505

				As Received	As Received		
CAT			As Received	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06035	Lead	7439-92-1	< 0.0010	0.0010	0.000050	mg/l	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.030	0.030	0.0099	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	< 10.	10.	2.	ug/l	1
03956	Fluorene	86-73-7	11.	10.	2.	ug/l	1
03963	Phenanthrene	85-01-8	< 10.	10.	2.	ug/l	1
03967	Pyrene	129-00-0	61.	10.	2.	ug/l	1
03971	Chrysene	218-01-9	41.	10.	2.	ug/l	1
	Due to the nature of the sample	•	-	was used for			
	analysis. The reporting limits	were raised	accordingly.				
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 1.	1.	0.5	ug/l	1
05401	Benzene	71-43-2	160.	1.	0.5	ug/l	1
05402	1,2-Dichloroethane	107-06-2	< 1.	1.	0.5	ug/l	1
05407	Toluene	108-88-3	< 1.	1.	0.5	ug/l	1
05415	Ethylbenzene	100-41-4	< 1.	1.	0.5	ug/l	1
05420	Isopropylbenzene	98-82-8	3.	2.	0.5	ug/l	1
06310	Xylene (Total)	1330-20-7	2.	1.	0.5	ug/l	1

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09 This sample was filtered in the lab for dissolved metals. Trip blank vials were not received by the laboratory for this sample group.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5424712 WW Group No. 1102390

PZ-505 Grab Water

Philadelphia Refinery AOI-8

COC: 187467 PZ-505

Collected: 07/23/2008 13:00 by MH Account Number: 10132

Submitted: 07/24/2008 17:10 SUN: Aquaterra Tech.

Reported: 08/06/2008 at 19:53 PO Box 744

Discard: 10/06/2008 West Chester PA 19381

PR505

		<u> </u>	0111 0.			
CAT		_		Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06035	Lead	SW-846 6020	1	07/31/2008 10:23	James R Williams II	1
07879	EDB in Wastewater	SW-846 8011	1	07/30/2008 11:17	Mark E McNulty	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	07/29/2008 14:41	Brian K Graham	1
02302	UST-Waters by 8260B	SW-846 8260B	1	08/04/2008 17:25	Anita M Dale	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	08/04/2008 17:25	Anita M Dale	1
06050	ICP/MS SW-846 Water	SW-846 3010A modified	1	07/30/2008 19:05	James L Mertz	1
07786	EDB Extraction	SW-846 8011	1	07/29/2008 10:45	Deborah M Zimmerman	1
07807	BNA Water Extraction	SW-846 3510C	1	07/28/2008 10:30	Cynthia J Stoltzfus	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5424713 WW Group No. 1102390

N-133 Grab Water

Philadelphia Refinery AOI-8

COC: 187467 N-133

Collected: 07/23/2008 13:20 by MH Account Number: 10132

Submitted: 07/24/2008 17:10 SUN: Aquaterra Tech.

Reported: 08/06/2008 at 19:53 PO Box 744

Discard: 10/06/2008 West Chester PA 19381

PR133

				As Received	As Received		
CAT			As Received	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06035	Lead	7439-92-1	< 0.0010	0.0010	0.000050	mg/l	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.029	0.029	0.0097	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	31.	5.	1.	ug/l	1
03956	Fluorene	86-73-7	< 5.	5.	1.	ug/l	1
03963	Phenanthrene	85-01-8	9.	5.	1.	ug/l	1
03967	Pyrene	129-00-0	6.	5.	1.	ug/l	1
03971	Chrysene	218-01-9	< 5.	5.	1.	ug/l	1
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 10.	10.	5.	ug/l	10
05401	Benzene	71-43-2	10,000.	100.	50.	ug/l	100
05402	1,2-Dichloroethane	107-06-2	< 10.	10.	5.	ug/l	10
05407	Toluene	108-88-3	< 10.	10.	5.	ug/l	10
05415	Ethylbenzene	100-41-4	11.	10.	5.	ug/l	10
05420	Isopropylbenzene	98-82-8	< 20.	20.	5.	ug/l	10
05439	Naphthalene	91-20-3	< 40.	40.	10.	ug/l	10
06310	Xylene (Total)	1330-20-7	17.	10.	5.	ug/l	10

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09 This sample was filtered in the lab for dissolved metals. Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5424713 WW Group No. 1102390

N-133 Grab Water

Philadelphia Refinery AOI-8

COC: 187467 N-133

Collected: 07/23/2008 13:20 by MH Account Number: 10132

Submitted: 07/24/2008 17:10 SUN: Aquaterra Tech.

Reported: 08/06/2008 at 19:53 PO Box 744

Discard: 10/06/2008 West Chester PA 19381

PR133

PRI33						
CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06035	Lead	SW-846 6020	1	07/31/2008 10:24	James R Williams II	1
07879	EDB in Wastewater	SW-846 8011	1	07/30/2008 11:48	Mark E McNulty	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	07/31/2008 09:33	Brian K Graham	1
02302	UST-Waters by 8260B	SW-846 8260B	1	08/04/2008 17:52	Anita M Dale	10
02302	UST-Waters by 8260B	SW-846 8260B	1	08/06/2008 12:06	Daniel H Heller	100
01163	GC/MS VOA Water Prep	SW-846 5030B	1	08/04/2008 17:52	Anita M Dale	10
01163	GC/MS VOA Water Prep	SW-846 5030B	2	08/06/2008 12:06	Daniel H Heller	100
06050	ICP/MS SW-846 Water	SW-846 3010A modified	l 1	07/30/2008 19:05	James L Mertz	1
07786	EDB Extraction	SW-846 8011	1	07/29/2008 10:45	Deborah M Zimmerman	1
07807	BNA Water Extraction	SW-846 3510C	1	07/29/2008 04:30	Tracy L Schickel	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 5

Quality Control Summary

Client Name: SUN: Aquaterra Tech. Group Number: 1102390

Reported: 08/06/08 at 07:53 PM

Matrix QC may not be reported if site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

Laboratory Compliance Quality Control

Analysis Name	Blank <u>Result</u>	Blank <u>LOQ**</u>	Blank <u>MDL</u>	Report <u>Units</u>	LCS %REC	LCSD %REC	LCS/LCSD <u>Limits</u>	RPD	RPD Max
Batch number: 08208WAH026	Sample num	her(a) . 5/	124695-542	1712					
	< 5.	5.	1.	uq/l	93	87	77-107	6	30
Naphthalene				٥,					
Fluorene	< 5.	5.	1.	ug/l	99	94	82-113	5	30
Phenanthrene	< 5.	5.	1.	ug/l	104	97	83-112	7	30
Pyrene	< 5.	5.	1.	ug/l	102	94	80-115	9	30
Chrysene	< 5.	5.	1.	ug/l	101	95	82-112	7	30
Batch number: 082100028A	Sample num	ber(s): 54	24695-542	4713					
Ethylene dibromide	< 0.030	0.030	0.010	ug/l	88	88	60-140	0	20
•	_			5.					
Batch number: 08210WAH026	Sample num		124713						
Naphthalene	< 5.	5.	1.	ug/l	92	100	77-107	9	30
Fluorene	< 5.	5.	1.	ug/l	95	102	82-113	7	30
Phenanthrene	< 5.	5.	1.	uq/l	99	106	83-112	7	30
Pyrene	< 5.	5.	1.	uq/l	95	99	80-115	4	30
Chrysene	< 5.	5.	1.	uq/l	92	99	82-112	7	30
chirybene	` 3.	٥.		49/1	22	,,,	02 112	,	30
Batch number: 082116050002A	Sample num	ber(s): 54	24695-542	4708					
Lead	< 0.0010	0.0010	0.00005	mq/l	105		90-115		
			0	3.					
Batch number: 082126050001A	Sample num	her(s) · 54	124709-542	4713					
Lead	< 0.0010	0.0010	0.00005	mg/l	102		90-115		
Пеац	< 0.0010	0.0010	0.00003	ilig/ I	102		90-113		
			-						
Batch number: P082171AA	Sample num	ber(s): 54	24695-542	4697,542470	0-54247	05			
Methyl Tertiary Butyl Ether	< 1.	1.	0.5	uq/l	105	106	73-119	1	30
Benzene	< 1.	1.	0.5	ug/l	105	101	78-119	4	30
1,2-Dichloroethane	< 1.	1.	0.5	uq/l	107	106	69-135	1	30
Toluene	< 1.	1.	0.5	uq/l	94	93	85-115	1	30
Ethylbenzene	< 1.	1.	0.5	uq/l	94	92	82-119	2	30
Isopropylbenzene	< 2.	2.	0.5	ug/1	94	92	80-113	3	30
Xylene (Total)	< 1.	1.	0.5	ug/1 ug/l	95	93	83-113	2	30
Aylene (local)	< 1.	1.	0.5	ug/1	95	93	03-113	2	30
Batch number: P082172AA	Sample num								
Methyl Tertiary Butyl Ether	< 1.	1.	0.5	ug/l	98	98	73-119	1	30
Benzene	< 1.	1.	0.5	ug/l	95	96	78-119	1	30
1,2-Dichloroethane	< 1.	1.	0.5	ug/l	99	97	69-135	2	30
Toluene	< 1.	1.	0.5	uq/l	96	99	85-115	4	3.0
Ethylbenzene	< 1.	1.	0.5	uq/l	96	99	82-119	3	30
Isopropylbenzene	< 2.	2.	0.5	uq/l	96	100	80-113	4	30
Naphthalene	< 4.	4.	1.	ug/1	93	96	61-116	3	30
	< 4.	4. 1.			93 97	100		3	30
Xylene (Total)	< 1.	Ι.	0.5	ug/l	91	100	83-113	3	30
Batch number: P082182AA	Sample num	ber(s): 54							
Methyl Tertiary Butyl Ether	< 1.	1.	0.5	ug/l	102	103	73-119	1	30
Benzene	< 1.	1.	0.5	ug/l	98	97	78-119	0	30

^{*-} Outside of specification

- **-This limit was used in the evaluation of the final result for the blank
- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 2 of 5

Quality Control Summary

Client Name: SUN: Aquaterra Tech. Group Number: 1102390

Reported: 08/06/08 at 07:53 PM

Laboratory Compliance Quality Control

	Blank	Blank	Blank	Report	LCS	LCSD	LCS/LCSD		
<u>Analysis Name</u>	Result	LOQ * *	MDL	<u>Units</u>	%REC	%REC	<u>Limits</u>	RPD	RPD Max
1,2-Dichloroethane	< 1.	1.	0.5	ug/l	98	97	69-135	0	30
Toluene	< 1.	1.	0.5	ug/l	97	97	85-115	1	30
Ethylbenzene	< 1.	1.	0.5	ug/l	98	97	82-119	1	30
Isopropylbenzene	< 2.	2.	0.5	ug/l	98	98	80-113	0	30
Xylene (Total)	< 1.	1.	0.5	ug/l	99	99	83-113	0	30
Batch number: P082191AA	Sample nu	umber(s): 5	424713						
Benzene	< 1.	1.	0.5	ug/l	91	89	78-119	2	30

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

		-		-					
Analysis Name	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD <u>MAX</u>	BKG Conc	DUP Conc	DUP RPD	Dup RPD <u>Max</u>
Batch number: 082100028A Ethylene dibromide	Sample 83	number(s)	: 5424695 65-135	-542471	3 UNSPR	<pre><: 5424695 < 0.029</pre>	BKG: 5424696 < 0.030	0 (1)	30
Batch number: 082116050002A Lead	Sample 98	number(s) 96	: 5424695 75-125	-542470 2	8 UNSPI 20	<pre>C: P422562 < 0.0010</pre>	BKG: P422562 < 0.0010	0 (1)	20
Batch number: 082126050001A Lead	Sample 122	number(s) 119	: 5424709 75-125	-542471 1	3 UNSPF 20	C: P425132 0.0424	BKG: P425132 0.0441	4	20
Batch number: P082171AA Methyl Tertiary Butyl Ether Benzene 1,2-Dichloroethane Toluene Ethylbenzene Isopropylbenzene Xylene (Total)	Sample 108 112 108 100 98 99	number(s)	: 5424695 69-127 83-128 70-143 83-127 82-129 81-130 82-130	-542469	7,54247	700-5424705	5 UNSPK: 5424	700	
Batch number: P082172AA Methyl Tertiary Butyl Ether Benzene 1,2-Dichloroethane Toluene Ethylbenzene Isopropylbenzene Naphthalene Xylene (Total)	Sample 102 104 101 104 103 106 108	number(s)	: 5424706 69-127 83-128 70-143 83-127 82-129 81-130 57-125 82-130	-542471	3 UNSPR	< 5424708			
Batch number: P082182AA Methyl Tertiary Butyl Ether Benzene 1,2-Dichloroethane Toluene Ethylbenzene Isopropylbenzene Xylene (Total)	Sample 99 101 100 98 95 92	number(s)	: 5424698 69-127 83-128 70-143 83-127 82-129 81-130 82-130	-542469	9 UNSP	K: P424693			

*- Outside of specification

- **-This limit was used in the evaluation of the final result for the blank
- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 3 of 5

Quality Control Summary

Client Name: SUN: Aquaterra Tech. Group Number: 1102390

Reported: 08/06/08 at 07:53 PM

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

BKG DUP DUP Dup RPD Analysis Name %REC %REC <u>Limits</u> MAX Conc Conc RPD Max Batch number: P082191AA Sample number(s): 5424713 UNSPK: P432328 Benzene 83-128

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: PAHs in Water by GC/MS

Batch number: 08208WAH026 Nitrobenzene-d5

	Nitrobenzene-d5	2-Fluorobiphenyl	Terphenyl-d14	
5424695	105	95	93	
5424696	105	96	90	
5424697	126	91	67	
5424698	111	90	86	
5424699	110	86	71	
5424700	102	92	64	
5424701	102	94	88	
5424702	141*	88	83	
5424703	104	98	93	
5424704	109	94	90	
5424705	276*	101	87	
5424706	104	97	97	
5424707	95	89	88	
5424708	99	99	88	
5424709	96	91	87	
5424710	101	97	87	
5424711	93	89	88	
5424712	102	97	89	
Blank	102	96	93	
LCS	103	94	95	
LCSD	93	89	86	
Limits:	44-127	63-114	30-126	

Analysis Name: EDB in Wastewater

Batch number: 082100028A

1,1,2,2-

Tetrachloroethane

5424695	70
5424696	57
5424697	58
5424698	89
5424699	80
5424700	90
5424701	129
5424702	69
5424703	127

- *- Outside of specification
- **-This limit was used in the evaluation of the final result for the blank
- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 4 of 5

Quality Control Summary

Client Na	ame: SUN: Aquaterra : : 08/06/08 at 07:53 I	Tech.	Group Number:	1102390
Reported	: 08/06/08 at 07:53 I		. 1	
		Surrogate Qi	ality Control	
5424704	79			
5424705	85			
5424706	93			
5424707	95			
5424708	108			
5424709	96			
5424710	99			
5424711	127			
5424712	104			
5424713	154*			
Blank	98			
DUP	59			
LCS	97			
LCSD	98			
MS	73			
Limits:	46-136			
	ame: PAHs in Water by GC/N er: 08210WAH026	IS		
	Nitrobenzene-d5	2-Fluorobiphenyl	Terphenyl-d14	
5424713	107	96	91	
Blank	104	100	91	
LCS	97	90	89	
LCSD	105	99	92	
Limits:	44-127	63-114	30-126	
HIMITOS.	11 12/	03-114	30-126	
Analysis Na	ame: UST-Waters by 8260B	03-114	30-126	
Analysis Na	ame: UST-Waters by 8260B er: P082171AA			4 Puomofluovakonnano
Analysis Na	ame: UST-Waters by 8260B	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
Analysis Na Batch numbe	ame: UST-Waters by 8260B er: P082171AA Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	
Analysis Na Batch numbe	ame: UST-Waters by 8260B er: P082171AA Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	108
Analysis Na Batch number	ame: UST-Waters by 8260B er: P082171AA Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8 85 87	108 95
Analysis Na Batch number 5424695 5424696 5424697	ame: UST-Waters by 8260B er: P082171AA Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8 85 87 88	108 95 95
Analysis Na Batch numbe 5424695 5424696 5424697 5424700	mme: UST-Waters by 8260B er: P082171AA Dibromofluoromethane 92 94 94 94	1,2-Dichloroethane-d4 85 86 88 85	Toluene-d8 85 87 88 87	108 95 95 93
Analysis Na Batch number 5424695 5424696 5424697 5424700 5424701	ame: UST-Waters by 8260B er: P082171AA Dibromofluoromethane 92 94 94 94 94	1,2-Dichloroethane-d4 85 86 88 85 87	Toluene-d8 85 87 88 87 88	108 95 95 93 94
Analysis Na Batch number 5424695 5424696 5424697 5424700 5424701 5424701	ame: UST-Waters by 8260B er: P082171AA Dibromofluoromethane 92 94 94 94 94 95	1,2-Dichloroethane-d4 85 86 88 85 87 87	Toluene-d8 85 87 88 87 86 89	108 95 95 93 94 98
Analysis Na Batch number 5424695 5424696 5424697 5424700 5424701 5424702 5424702	ame: UST-Waters by 8260B er: P082171AA Dibromofluoromethane 92 94 94 94 94 95	1,2-Dichloroethane-d4 85 86 88 85 87 87	Toluene-d8 85 87 88 87 86 89	108 95 95 93 94 98
Analysis Na Batch number 5424695 5424696 5424697 5424700 5424701 5424702 5424703 5424703	ame: UST-Waters by 8260B er: P082171AA Dibromofluoromethane 92 94 94 94 95 95 94 93	1,2-Dichloroethane-d4 85 86 88 85 87 87 85	Toluene-d8 85 87 88 87 86 89 88	108 95 95 93 94 98 95
Analysis Na Batch number 5424695 5424696 5424697 5424700 5424701 5424702 5424703 5424704 5424705	ame: UST-Waters by 8260B er: P082171AA Dibromofluoromethane 92 94 94 94 95 94 95 94 93	1,2-Dichloroethane-d4 85 86 88 85 87 87 87 85	Toluene-d8 85 87 88 87 86 89 88 87	108 95 95 93 94 98 95 93
Analysis Na Batch number 5424695 5424696 5424697 5424700 5424701 5424702 5424703 5424704 5424705 Blank	ame: UST-Waters by 8260B er: P082171AA Dibromofluoromethane 92 94 94 94 95 94 95 94 93 94	1,2-Dichloroethane-d4 85 86 88 85 87 87 85 85	Toluene-d8 85 87 88 87 86 89 88 87 84	108 95 95 93 94 98 95 93 92
Analysis Na Batch number 5424695 5424696 5424697 5424701 5424701 5424702 5424703 5424704 5424705 Blamk LCS	ame: UST-Waters by 8260B er: P082171AA Dibromofluoromethane 92 94 94 94 94 95 94 95 94 93 94 94 94	1,2-Dichloroethane-d4 85 86 88 85 87 87 85 85 85	Toluene-d8 85 87 88 87 86 89 88 87 84 86 85	108 95 95 93 94 98 95 93 92 93
Analysis Na Batch number 5424695 5424696 5424697 5424700 5424701 5424702 5424703 5424704 5424705 Blank LCS LCSD	ame: UST-Waters by 8260B er: P082171AA Dibromofluoromethane 92 94 94 94 94 95 94 93 94 93 94 94 93	1,2-Dichloroethane-d4 85 86 88 85 87 87 85 85 85 85	Toluene-d8 85 87 88 87 86 89 88 87 84 86 85	108 95 95 93 94 98 95 93 92 93 93 93
Analysis Na Batch number 5424695 5424696 5424697 5424701 5424701 5424702 5424703 5424704 5424705 Blamk LCS	ame: UST-Waters by 8260B er: P082171AA Dibromofluoromethane 92 94 94 94 94 95 94 95 94 93 94 94 94	1,2-Dichloroethane-d4 85 86 88 85 87 87 85 85 85	Toluene-d8 85 87 88 87 86 89 88 87 84 86 85	108 95 95 93 94 98 95 93 92 93
Analysis Na Batch number 5424695 5424696 5424697 5424700 5424701 5424702 5424703 5424704 5424705 Blank LCS LCSD	ame: UST-Waters by 8260B er: P082171AA Dibromofluoromethane 92 94 94 94 94 95 94 93 94 93 94 94 93	1,2-Dichloroethane-d4 85 86 88 85 87 87 85 85 85 85	Toluene-d8 85 87 88 87 86 89 88 87 84 86 85	108 95 95 93 94 98 95 93 92 93 93 93
Analysis Na Batch number 5424695 5424696 5424697 5424700 5424701 5424702 5424703 5424704 5424705 Blank LCS LCSD MS	ame: UST-Waters by 8260B er: P082171AA Dibromofluoromethane 92 94 94 94 94 95 94 93 94 94 94 95 80-116 ame: UST-Waters by 8260B	1,2-Dichloroethane-d4 85 86 88 85 87 87 85 85 85 85 85	Toluene-d8 85 87 88 87 86 89 88 87 84 86 85 87	108 95 93 94 98 95 93 92 93 92 93 93
Analysis Na Batch number 5424695 5424696 5424697 5424700 5424701 5424702 5424703 5424704 5424705 Blank LCS LCSD MS	mme: UST-Waters by 8260B er: P082171AA Dibromofluoromethane 92 94 94 94 95 94 95 94 93 94 93 94 98 98 98 98 98 98	1,2-Dichloroethane-d4 85 86 88 85 87 87 85 85 85 85 85	Toluene-d8 85 87 88 87 86 89 88 87 84 86 85 87	108 95 93 94 98 95 93 92 93 92 93 93
Analysis Na Batch number 5424695 5424696 5424697 5424700 5424701 5424702 5424704 5424705 Blank LCS LCSD MS Limits: Analysis Na Batch number	ame: UST-Waters by 8260B er: P082171AA Dibromofluoromethane 92 94 94 94 95 94 95 94 93 94 94 95 80-116 ame: UST-Waters by 8260B er: P082172AA Dibromofluoromethane	1,2-Dichloroethane-d4 85 86 88 85 87 87 85 85 85 85 85 87 87 87 87 87 88 88 88 89 77-113	Toluene-d8 85 87 88 87 86 89 88 87 84 86 85 87 86 80-113 Toluene-d8	108 95 95 93 94 98 95 93 92 93 93 93 93 93 93 93
Analysis Na Batch number 5424695 5424696 5424697 5424701 5424702 5424703 5424704 5424704 5424705 Blank LCS LCSD MS Limits: Analysis Na Batch number	ame: UST-Waters by 8260B er: P082171AA Dibromofluoromethane 92 94 94 94 95 94 95 94 93 94 94 95 80-116 ame: UST-Waters by 8260B er: P082172AA Dibromofluoromethane	1,2-Dichloroethane-d4 85 86 88 85 87 87 85 85 85 85 85 85 87 87 87 87 87 87 87 87 87 87 87 87 87	Toluene-d8 85 87 88 87 86 89 88 87 84 86 85 87 86 80-113 Toluene-d8	108 95 95 93 94 98 95 93 92 93 93 93 93 93 93 93 93
Analysis Na Batch number 5424695 5424696 5424697 5424700 5424701 5424702 5424703 5424705 Blank LCS LCSD MS Limits: Analysis Na Batch number	ame: UST-Waters by 8260B er: P082171AA Dibromofluoromethane 92 94 94 94 94 95 94 93 94 94 95 80-116 ame: UST-Waters by 8260B er: P082172AA Dibromofluoromethane	1,2-Dichloroethane-d4 85 86 88 85 87 87 85 85 85 85 85 87 87 87 87 86 88 89 77-113	Toluene-d8 85 87 88 87 86 89 88 87 84 86 85 87 86 80-113 Toluene-d8	108 95 95 93 94 98 95 93 92 93 93 93 93 93 93 93 93 94 4-Bromofluorobenzene
Analysis Na Batch number 5424695 5424696 5424696 5424700 5424701 5424702 5424703 5424705 Blank LCS LCSD MS Limits: Analysis Na Batch number 5424706 5424707 5424708	ame: UST-Waters by 8260B er: P082171AA Dibromofluoromethane 92 94 94 94 94 95 94 94 94 95 80-116 ame: UST-Waters by 8260B er: P082172AA Dibromofluoromethane 97 98 98	1,2-Dichloroethane-d4 85 86 88 85 87 87 85 85 85 85 85 87 87 87 87 87 88 88 89 77-113	Toluene-d8 85 87 88 87 86 89 88 87 84 86 85 87 86 80-113 Toluene-d8	108 95 95 93 94 98 95 93 92 93 93 93 93 93 78-113
Analysis Na Batch number 5424695 5424696 5424697 5424700 5424701 5424702 5424703 5424704 5424705 Blank LCS LCSD MS Limits: Analysis Na Batch number	ame: UST-Waters by 8260B er: P082171AA Dibromofluoromethane 92 94 94 94 94 95 94 93 94 94 95 80-116 ame: UST-Waters by 8260B er: P082172AA Dibromofluoromethane	1,2-Dichloroethane-d4 85 86 88 85 87 87 85 85 85 85 85 87 87 87 87 86 88 89 77-113	Toluene-d8 85 87 88 87 86 89 88 87 84 86 85 87 86 80-113 Toluene-d8	108 95 95 93 94 98 95 93 92 93 93 93 93 93 93 93 93 94 4-Bromofluorobenzene

*- Outside of specification

- **-This limit was used in the evaluation of the final result for the blank
- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 5 of 5

Quality Control Summary

	ame: SUN: Aquaterra		Group Number:	: 1102390
Reported	: 08/06/08 at 07:53	PM		
		Surrogate Qı	uality Control	
5424711	97	97	98	91
5424712	97	96	97	94
5424713	97	95	97	92
Blank	99	98	98	93
LCS	99	100	98	93
LCSD	98	100	98	92
MS	100	99	97	92
Limits:	80-116	77-113	80-113	78-113
Analysis N	ame: UST-Waters by 8260B			
Batch numb	er: P082182AA			
	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
5424698	99	98	96	101
5424699	98	95	99	107
Blank	99	96	97	91
LCS	98	98	98	92
LCSD	99	98	97	92
MS	97	98	98	93
Limits:	80-116	77-113	80-113	78-113
	ame: 8260 Master Scan (wa	ter)		
Batch numb	er: P082191AA			
	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
Blank	90	84	93	91
LCS	91	88	91	90
LCSD	91	85	92	91
MS	93	87	92	91
Limits:	80-116	77-113	80-113	78-113

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Analysis Request/ Environmental Services Chain of Custody

For Lancaster Laboratories use only

Acct. # 10132 Group# 1102390 Sample # 5424695-713

COC # 187467

		P	Please print. Insti	ructio	ons or	ı rev	erse s	side c	orre	spond	with	circle	d num	bers.	10	olerl	em	n_1.5-5	ع مادد	v	
لح									1111		(5) Aı	nalys	es F	leque	sted	18-18-18-18-18-18-18-18-18-18-18-18-18-1	For Lab Use FSC:	· Only		_
ì	Client: SUN-AQUATERRA	Acct. #:			_	N	latrix	4)			Pre	serva	tion	Code	s		SCR#:			
	Project Name/#: PHILA REF AOT-S				25		- 8	T	1								<u> </u>	Preservation			
	Project Manager: T, DOERR					l	98		2	90978		2278						1	T =Thiosul B =NaOH		(6)
	Sampler: S. SYKES				i i		鲁鉛		ine	8		82							O =Other		s (pe
į		0.4	<u> </u>		- 8	ı,	8E		ĕ		ead	Ins	M)							dwa
	Name of state where samples were collected:	<u>PA</u>		(3)	S. C.	[7	3	<u> ၁</u>	64 4Pms	ļā								5 <u>5</u>
		Date	Time			1	6	k :	*	70	7	H (Tie de
	Sample Identification	Collected	Collected	<u>e</u>	Som	3	Wate	Š	Tota	PA Untoded		Рян						Remarks			Temp
	N-21	7/23/08	245	X			X		8	3	1	2	2								
	N-20	1	900	ı			1			1)	ì									
	N-103		930	11			\top		Ħ	\top	\top	_									
	N-105		1000	\top			T		(11											——— j
i	N-104		1025	\top			\dagger	_	$\dagger \dagger$	† †		+									
	N-99		1105			\dashv	$\dagger \dagger$	1	H	++	+	+									
	N-13		1145	+1		\dashv		<u> </u>	╁╂	+		+				_					
				+		\dashv	+		H	+	+	-					+				
	<u> </u>	-	1200	+		+	+		╁╂	+	+	+					_	•			
	N-307		1300	41	\dashv	1	\dashv	4	\coprod	\bot							-				
	N-302	L	1410	<u> </u>				,	1					F							
7	Turnaround Time Requested (TAT) (please ci (Rush TAT is subject to Lancaster Laboratories appro	,					hed b			1.			Date			Receiv			-		Time (9
Ì	Date results are needed:	vai and surona	iig o.)						_	1AG	UA]	EPRA	1	- 1				eJorg		-124-08	11:55
	Rush results requested by (please circle): Ph	one Fax	E-mail		~	•	hed b	•	0				Date	- 1		Receiv	ed by:			Date	Time
	Phone #:Fax #:	·····			_	_	<u>D</u>			10		7-	24.		7:10					<u> </u>	
ہے	E-mail address:			F	Relino	pisl	hed b	y:					Date	e 🎵	Time	Receiv	ed by:			Date	Time
(8)	Data Package Options (please circle if required)		G Complete?											1			\angle				
	Type I (validation/NJ Reg) TX TRRP-13 Type II (Tier II) MA MCP CT R		es No	٦	Relind	quisl	hed b	y:					Date	e '	Time	Receiv	e∕d by:			Date	Time
	Type II (Reduced NJ) Site-specific QC (M		Yes No	1						_											
	Type IV (CLP SOW) (If yes, indicate QC sample and subm			F	Relind	quisl	hed b	y:					Date	e '	Time	Receiv				Date	
l	Type VI (Raw Data Only) Internal COC Requ	Jired? Yes / No														14	WL.	Mostta	<u>e</u> -	1/24/0	77:10

Analysis Request/ Environmental Services Chain of Custody

For Lancaster Laboratories use only

Acct. # 10139 Group# 1109390 Sample # 5494695-713 COC # 187463

Tabolatories	F	Please print. In	struct	ions o	n revers	se side	cor	respor	nd with	circle	d numb	oers. /	100	ertem	D 1.55.6	2°C		
1) Client: SUNOCO, Agustora					Mat		$oldsymbol{igs}$	304 193	(5) A	n <mark>alys</mark> e servat	es Re	ques	ted	FSC: SCR#:			
Project Name/#: AOI - 8 philly Re Project Manager: Tiffeni Doer Sampler: Mike Hinderling	P.O.#:	#:		·	Mable Check If										Preservation H=HCI T=	Codes =Thiosulfat =NaOH =Other	te	(6) Feed
Name of state where samples were collected 2 Sample Identification	i: PA	Hime	(3) •	nposite			fotal # of Car	8260	PAH5 8270		Pb				Remarks			emperature of san
N-128	7/23/08	815	X		と		8	×	X	×					Kemarks			
N-50D	7/23/02	915	X		4		8	×	X	X	X							
RW-200	7/23/08	1020	X		1		8	X	X	X	X							
N-64	7/23/08	1045	X		X		ን	X	X	×	X							
PZ-507	7/23/08	1110	X		1		8	X	X	X	X							
PZ-506	7/23/08	1140	X		4		8	X	X	ょ	X							
RW-501	7/20/08	1245	1		1		8	\times	×	X	X							
PZ-505	7/23/08	1300	X		X	•	8	X	X	×	×							
N-133	7/23/08	1320	X		*		8	X	×	×	X							
Turnaround Time Requested (TAT) (please (Rush TAT is subject to Lancaster Laboratories ap Date results are needed:			_	Relin	quishe	d by:	fr	7		 >	Date 7/23/4	Ti	me	Received by	e Ly			Time (
Rush results requested by (please circle): Phone #:Fax #:		E-mail		Bi	quishe	<u>De</u>	L) M	1	7-	Date 24-0	בו אי		Received by			Date	Time
E-mail address:				Relin	quišhe	d by:		1	•		Date	Ti	me	Received by:		[Date	Time
· · · ·	T RCP		ŀ	Relin	quishe	d by:				/	Date	: Ti	me	Received by		f	Date	Time
Type IV (CLP SOW) (If yes, indicate OC sample and	C (MS/MSD/Dup)? I submit triplicate volume > Required? Yes / No			Relin	quishe	d by:	_			· ·	Date	Ti		Received by	3 1 1	ae 7		Time

Lancaster Laboratories Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

N.D.	none detected	BMQL	Below Minimum Quantitation Level
TNTC	Too Numerous To Count	MPN	Most Probable Number
IU	International Units	CP Units	cobalt-chloroplatinate units
umhos/cm	micromhos/cm	NTU	nephelometric turbidity units
С	degrees Celsius	F	degrees Fahrenheit
Cal	(diet) calories	lb.	pound(s)
meq	milliequivalents	kg	kilogram(s)
g	gram(s)	mg	milligram(s)
ug	microgram(s)	I	liter(s)
ml	milliliter(s)	ul	microliter(s)
m3	cubic meter(s)	fib >5 um/ml	fibers greater than 5 microns in length per ml

- < less than The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.
- > greater than
- ppm parts per million One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.

Inorganic Qualifiers

- ppb parts per billion
- **Dry weight**Results printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture.

U.S. EPA data qualifiers:

9	lifier	(uu	9	 u	" 9	•

A B C D E	TIC is a possible aldol-condensation product Analyte was also detected in the blank Pesticide result confirmed by GC/MS Compound quatitated on a diluted sample Concentration exceeds the calibration range of the instrument	B E M N S	Value is <crdl, (msa)="" additions="" amount="" but="" calculation<="" control="" due="" duplicate="" estimated="" for="" injection="" interference="" limits="" met="" method="" not="" of="" precision="" spike="" standard="" th="" to="" used="" within="" ≥idl=""></crdl,>
J	Estimated value	U	Compound was not detected
N	Presumptive evidence of a compound (TICs only)	W	Post digestion spike out of control limits
Р	Concentration difference between primary and	*	Duplicate analysis not within control limits
	confirmation columns >25%	+	Correlation coefficient for MSA < 0.995
U	Compound was not detected		
X,Y,Z	Defined in case narrative		

Analytical test results for methods listed on the laboratories' accreditation scope meet all requirements of NELAC unless otherwise noted under the individual analysis.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

WARRANTY AND LIMITS OF LIABILITY – In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL LANCASTER LABORATORIES BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF LANCASTER LABORATORIES AND (B) WHETHER LANCASTER LABORATORIES HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Lancaster Laboratories which includes any conditions that vary from the Standard Terms and Conditions of Lancaster Laboratories and we hereby object to any conflicting terms contained in any acceptance or order submitted by client.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

ANALYTICAL RESULTS

Prepared for:

SUN: Aquaterra Tech. PO Box 744 West Chester PA 19381

610-431-5733

Prepared by:

Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425

SAMPLE GROUP

The sample group for this submittal is 1102391. Samples arrived at the laboratory on Friday, July 25, 2008. The PO# for this group is PHILADELPHIA.

Client Description	<u>Lancaster Labs Number</u>
N-34 Grab Water	5424714
N-35 Grab Water	5424715
N-109 Grab Water	5424716
N-37 Grab Water	5424717
N-38 Grab Water	5424718
N-38D Grab Water	5424719
N-111 Grab Water	5424720
N-110 Grab Water	5424721
N-112 Grab Water	5424722
N-114 Grab Water	5424723

ELECTRONIC COPY TO	SUN: Aquaterra Tech.	Attn: Kevin Martin
ELECTRONIC COPY TO	Langan	Attn: Joseph Catricks
ELECTRONIC	SUN: Aquaterra Tech.	Attn: Tiffani Doerr
COPY TO ELECTRONIC	LLI	Attn: EDD Group
COPY TO		

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Questions? Contact your Client Services Representative Jessica A Heun at (717) 656-2300

Respectfully Submitted,

Chad Moline

Chad A. Moline Group Leader

As Received

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5424714 WW Group No. 1102391

N-34 Grab Water

Philadelphia Refinery AOI-8

COC: 188249 N-34

Collected: 07/24/2008 09:05 by SS Account Number: 10132

Submitted: 07/25/2008 14:10 SUN: Aquaterra Tech.

Reported: 08/05/2008 at 16:22 PO Box 744

Discard: 10/05/2008 West Chester PA 19381

PR034

				AS RECEIVED	As Received		
CAT			As Received	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06035	Lead	7439-92-1	< 0.0010	0.0010	0.000050	mg/l	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.028	0.028	0.0093	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	< 50.	50.	10.	ug/l	1
03956	Fluorene	86-73-7	200.	50.	10.	ug/l	1
03963	Phenanthrene	85-01-8	200.	50.	10.	ug/l	1
03967	Pyrene	129-00-0	610.	50.	10.	ug/l	1
03971	Chrysene	218-01-9	290.	50.	10.	ug/l	1
	Due to the nature of the sample	e matrix, a re	educed aliquot	was used for			
	analysis. The reporting limits	s were raised	accordingly.				
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 10.	10.	5.	ug/l	10
05401	Benzene	71-43-2	< 10.	10.	5.	ug/l	10
05402	1,2-Dichloroethane	107-06-2	< 10.	10.	5.	ug/l	10
05407	Toluene	108-88-3	< 10.	10.	5.	ug/l	10
05415	Ethylbenzene	100-41-4	< 10.	10.	5.	ug/l	10
05420	Isopropylbenzene	98-82-8	< 20.	20.	5.	ug/l	10
06310	Xylene (Total)	1330-20-7	< 10.	10.	5.	ug/l	10
	The usual reporting limits were	not attained	due to the ma	atriv of			

As Received

The usual reporting limits were not attained due to the matrix of the sample in the GC/MS volatile analysis.

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09 This sample was filtered in the lab for dissolved metals. Trip blank vials were not received by the laboratory for this sample group.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5424714 WW Group No. 1102391

N-34 Grab Water

Philadelphia Refinery AOI-8

COC: 188249 N-34

Collected: 07/24/2008 09:05 by SS Account Number: 10132

Submitted: 07/25/2008 14:10 SUN: Aquaterra Tech.

Reported: 08/05/2008 at 16:22 PO Box 744

Discard: 10/05/2008 West Chester PA 19381

PR034

haboracory chronicic							
	_		Analysis		Dilution		
Analysis Name	Method	Trial#	Date and Time	Analyst	Factor		
Lead	SW-846 6020	1	07/31/2008 10:28	James R Williams II	1		
EDB in Wastewater	SW-846 8011	1	07/30/2008 21:49	Jamie L Brillhart	1		
PAHs in Water by GC/MS	SW-846 8270C	1	07/30/2008 15:19	Joseph M Gambler	1		
UST-Waters by 8260B	SW-846 8260B	1	08/04/2008 18:45	Anita M Dale	10		
GC/MS VOA Water Prep	SW-846 5030B	1	08/04/2008 18:45	Anita M Dale	10		
ICP/MS SW-846 Water	SW-846 3010A modified	. 1	07/30/2008 19:05	James L Mertz	1		
EDB Extraction	SW-846 8011	1	07/29/2008 13:30	Kelli M Barto	1		
BNA Water Extraction	SW-846 3510C	1	07/29/2008 14:00	Kevin P Love	1		
	Lead EDB in Wastewater PAHs in Water by GC/MS UST-Waters by 8260B GC/MS VOA Water Prep ICP/MS SW-846 Water EDB Extraction	Analysis Name Lead SW-846 6020 EDB in Wastewater SW-846 8011 PAHs in Water by GC/MS SW-846 8270C UST-Waters by 8260B SW-846 8260B GC/MS VOA Water Prep SW-846 5030B ICP/MS SW-846 Water SW-846 3010A modified EDB Extraction SW-846 8011	Analysis Name Method Trial# Lead SW-846 6020 1 EDB in Wastewater SW-846 8011 1 PAHs in Water by GC/MS SW-846 8270C 1 UST-Waters by 8260B SW-846 8260B 1 GC/MS VOA Water Prep SW-846 5030B 1 ICP/MS SW-846 Water SW-846 3010A modified 1 EDB Extraction SW-846 8011 1	Analysis Name Method Trial# Date and Time Lead SW-846 6020 1 07/31/2008 10:28 EDB in Wastewater SW-846 8011 1 07/30/2008 21:49 PAHs in Water by GC/MS SW-846 8270C 1 07/30/2008 15:19 UST-Waters by 8260B SW-846 8260B 1 08/04/2008 18:45 GC/MS VOA Water Prep SW-846 5030B 1 08/04/2008 18:45 ICP/MS SW-846 Water SW-846 3010A modified 1 07/30/2008 19:05 EDB Extraction SW-846 8011 1 07/29/2008 13:30	Analysis Name Method Trial# Date and Time Analyst Lead SW-846 6020 1 07/31/2008 10:28 James R Williams II EDB in Wastewater SW-846 8011 1 07/30/2008 21:49 Jamie L Brillhart PAHs in Water by GC/MS SW-846 8270C 1 07/30/2008 15:19 Joseph M Gambler UST-Waters by 8260B SW-846 8260B 1 08/04/2008 18:45 Anita M Dale GC/MS VOA Water Prep SW-846 5030B 1 08/04/2008 18:45 Anita M Dale ICP/MS SW-846 Water SW-846 3010A modified 1 07/30/2008 19:05 James L Mertz EDB Extraction SW-846 8011 1 07/29/2008 13:30 Kelli M Barto		

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5424715 WW Group No. 1102391

N-35 Grab Water

Philadelphia Refinery AOI-8

COC: 188249 N-35

Collected: 07/24/2008 09:40 by SS Account Number: 10132

Submitted: 07/25/2008 14:10 SUN: Aquaterra Tech.

Reported: 08/05/2008 at 16:22 PO Box 744

Discard: 10/05/2008 West Chester PA 19381

PR035

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Limit of Ouantitation*	As Received Method Detection	Units	Dilution Factor			
	-			-	Limit					
06035	Lead	7439-92-1	< 0.0010	0.0010	0.000050	mg/1	1			
07879	EDB in Wastewater									
01087	Ethylene dibromide	106-93-4	< 0.029	0.029	0.0098	ug/l	1			
07805	PAHs in Water by GC/MS									
03947	Naphthalene	91-20-3	< 47.	47.	9.	ug/l	10			
03956	Fluorene	86-73-7	< 47.	47.	9.	ug/l	10			
03963	Phenanthrene	85-01-8	< 47.	47.	9.	ug/l	10			
03967	Pyrene	129-00-0	70.	47.	9.	ug/l	10			
03971	Chrysene	218-01-9	61.	47.	9.	ug/l	10			
	Due to the sample matrix an initial dilution was necessary to perform the									
	analysis. Therefore, the reporting limits for the GC/MS semivolatile									
	compounds were raised.									
02302	UST-Waters by 8260B									
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 10.	10.	5.	ug/l	10			
05401	Benzene	71-43-2	< 10.	10.	5.	ug/l	10			
05402	1,2-Dichloroethane	107-06-2	< 10.	10.	5.	ug/l	10			
05407	Toluene	108-88-3	< 10.	10.	5.	ug/l	10			
05415	Ethylbenzene	100-41-4	< 10.	10.	5.	ug/l	10			
05420	Isopropylbenzene	98-82-8	< 20.	20.	5.	ug/l	10			
06310	Xylene (Total)	1330-20-7	< 10.	10.	5.	ug/l	10			
	mb									

The usual reporting limits were not attained due to the matrix of the sample in the ${\rm GC/MS}$ volatile analysis.

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09 This sample was filtered in the lab for dissolved metals. Trip blank vials were not received by the laboratory for this sample group.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681• www.lancasterlabs.com

Page 2 of 2

Group No. 1102391 Lancaster Laboratories Sample No. 5424715 WW

N-35 Grab Water

Philadelphia Refinery AOI-8

COC: 188249 N-35

Collected:07/24/2008 09:40 by SS Account Number: 10132

Submitted: 07/25/2008 14:10 SUN: Aquaterra Tech.

Reported: 08/05/2008 at 16:22 PO Box 744

Discard: 10/05/2008 West Chester PA 19381

PR035

Edbordeory chronicie							
CAT		- Analysis					
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor	
06035	Lead	SW-846 6020	1	07/31/2008 10:30	James R Williams II	1	
07879	EDB in Wastewater	SW-846 8011	1	07/30/2008 22:19	Jamie L Brillhart	1	
07805	PAHs in Water by GC/MS	SW-846 8270C	1	07/30/2008 15:44	Joseph M Gambler	10	
02302	UST-Waters by 8260B	SW-846 8260B	1	08/04/2008 19:12	Anita M Dale	10	
01163	GC/MS VOA Water Prep	SW-846 5030B	1	08/04/2008 19:12	Anita M Dale	10	
06050	ICP/MS SW-846 Water	SW-846 3010A modified	l 1	07/30/2008 19:05	James L Mertz	1	
07786	EDB Extraction	SW-846 8011	1	07/29/2008 13:30	Kelli M Barto	1	
07807	BNA Water Extraction	SW-846 3510C	1	07/29/2008 14:00	Kevin P Love	1	

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5424716 WW Group No. 1102391

N-109 Grab Water

Philadelphia Refinery AOI-8

COC: 188249 N-109

Collected: 07/24/2008 10:10 by SS Account Number: 10132

Submitted: 07/25/2008 14:10 SUN: Aquaterra Tech.

Reported: 08/05/2008 at 16:22 PO Box 744

Discard: 10/05/2008 West Chester PA 19381

PR109

				As Received	As Received				
CAT			As Received	Limit of	Method		Dilution		
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor		
06035	Lead	7439-92-1	< 0.0010	0.0010	0.000050	mg/1	1		
07879	EDB in Wastewater								
01087	Ethylene dibromide	106-93-4	< 0.029	0.029	0.0098	ug/l	1		
07805	PAHs in Water by GC/MS								
03947	Naphthalene	91-20-3	< 50.	50.	10.	ug/l	1		
03956	Fluorene	86-73-7	140.	50.	10.	ug/l	1		
03963	Phenanthrene	85-01-8	230.	50.	10.	ug/l	1		
03967	Pyrene	129-00-0	63.	50.	10.	ug/l	1		
03971	Chrysene	218-01-9	< 50.	50.	10.	ug/l	1		
	Due to the nature of the sample matrix, a reduced aliquot was used for analysis. The reporting limits were raised accordingly.								
02302	UST-Waters by 8260B								
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 1.	1.	0.5	ug/l	1		
05401	Benzene	71-43-2	< 1.	1.	0.5	ug/l	1		
05402	1,2-Dichloroethane	107-06-2	< 1.	1.	0.5	ug/l	1		
05407	Toluene	108-88-3	< 1.	1.	0.5	ug/l	1		
05415	Ethylbenzene	100-41-4	< 1.	1.	0.5	ug/l	1		
05420	Isopropylbenzene	98-82-8	11.	2.	0.5	ug/l	1		
06310	Xylene (Total)	1330-20-7	< 1.	1.	0.5	ug/l	1		

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09 This sample was filtered in the lab for dissolved metals. Trip blank vials were not received by the laboratory for this sample group.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5424716 WW Group No. 1102391

N-109 Grab Water

Philadelphia Refinery AOI-8

COC: 188249 N-109

Collected: 07/24/2008 10:10 by SS Account Number: 10132

Submitted: 07/25/2008 14:10 SUN: Aquaterra Tech.

Reported: 08/05/2008 at 16:22 PO Box 744

Discard: 10/05/2008 West Chester PA 19381

PR109

		паротасот у	CIII O	111010		
CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06035	Lead	SW-846 6020	1	07/31/2008 10:31	James R Williams II	1
07879	EDB in Wastewater	SW-846 8011	1	07/30/2008 22:49	Jamie L Brillhart	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	07/30/2008 16:08	Joseph M Gambler	1
02302	UST-Waters by 8260B	SW-846 8260B	1	08/04/2008 19:39	Anita M Dale	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	08/04/2008 19:39	Anita M Dale	1
06050	ICP/MS SW-846 Water	SW-846 3010A modified	1	07/30/2008 19:05	James L Mertz	1
07786	EDB Extraction	SW-846 8011	1	07/29/2008 13:30	Kelli M Barto	1
07807	BNA Water Extraction	SW-846 3510C	1	07/29/2008 14:00	Kevin P Love	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5424717 WW Group No. 1102391

N-37 Grab Water

Philadelphia Refinery AOI-8

COC: 188249 N-37

Collected: 07/24/2008 10:35 by SS Account Number: 10132

Submitted: 07/25/2008 14:10 SUN: Aquaterra Tech.

Reported: 08/05/2008 at 16:22 PO Box 744

Discard: 10/05/2008 West Chester PA 19381

PR037

				As Received	As Received		
CAT			As Received	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06035	Lead	7439-92-1	< 0.0010	0.0010	0.000050	mg/l	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.029	0.029	0.0097	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	< 5.	5.	1.	ug/l	1
03956	Fluorene	86-73-7	< 5.	5.	1.	ug/l	1
03963	Phenanthrene	85-01-8	< 5.	5.	1.	ug/l	1
03967	Pyrene	129-00-0	< 5.	5.	1.	ug/l	1
03971	Chrysene	218-01-9	< 5.	5.	1.	ug/l	1
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 1.	1.	0.5	ug/l	1
05401	Benzene	71-43-2	< 1.	1.	0.5	ug/l	1
05402	1,2-Dichloroethane	107-06-2	< 1.	1.	0.5	ug/l	1
05407	Toluene	108-88-3	< 1.	1.	0.5	ug/l	1
05415	Ethylbenzene	100-41-4	< 1.	1.	0.5	ug/l	1
05420	Isopropylbenzene	98-82-8	< 2.	2.	0.5	ug/l	1
06310	Xylene (Total)	1330-20-7	< 1.	1.	0.5	ug/l	1

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09 This sample was filtered in the lab for dissolved metals. Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5424717 WW Group No. 1102391

N-37 Grab Water

Philadelphia Refinery AOI-8

COC: 188249 N-37

Collected: 07/24/2008 10:35 by SS Account Number: 10132

Submitted: 07/25/2008 14:10 SUN: Aquaterra Tech.

Reported: 08/05/2008 at 16:22 PO Box 744

Discard: 10/05/2008 West Chester PA 19381

PR037

CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06035	Lead	SW-846 6020	1	07/31/2008 10:37	James R Williams II	1
07879	EDB in Wastewater	SW-846 8011	1	07/30/2008 23:20	Jamie L Brillhart	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	07/30/2008 16:32	Joseph M Gambler	1
02302	UST-Waters by 8260B	SW-846 8260B	1	08/04/2008 20:06	Anita M Dale	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	08/04/2008 20:06	Anita M Dale	1
06050	ICP/MS SW-846 Water	SW-846 3010A modified	d 1	07/30/2008 19:05	James L Mertz	1
07786	EDB Extraction	SW-846 8011	1	07/29/2008 13:30	Kelli M Barto	1
07807	BNA Water Extraction	SW-846 3510C	1	07/29/2008 14:00	Kevin P Love	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5424718 WW Group No. 1102391

N-38 Grab Water

Philadelphia Refinery AOI-8

COC: 188249 N-38

Collected: 07/24/2008 11:15 by SS Account Number: 10132

Submitted: 07/25/2008 14:10 SUN: Aquaterra Tech.

Reported: 08/05/2008 at 16:22 PO Box 744

Discard: 10/05/2008 West Chester PA 19381

PR038

				As Received	As Received		
CAT			As Received	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06035	Lead	7439-92-1	< 0.0010	0.0010	0.000050	mg/l	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.029	0.029	0.0097	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	< 5.	5.	0.9	ug/l	1
03956	Fluorene	86-73-7	< 5.	5.	0.9	ug/l	1
03963	Phenanthrene	85-01-8	< 5.	5.	0.9	ug/l	1
03967	Pyrene	129-00-0	< 5.	5.	0.9	ug/l	1
03971	Chrysene	218-01-9	< 5.	5.	0.9	ug/l	1
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 1.	1.	0.5	ug/l	1
05401	Benzene	71-43-2	< 1.	1.	0.5	ug/l	1
05402	1,2-Dichloroethane	107-06-2	< 1.	1.	0.5	ug/l	1
05407	Toluene	108-88-3	< 1.	1.	0.5	ug/l	1
05415	Ethylbenzene	100-41-4	< 1.	1.	0.5	ug/l	1
05420	Isopropylbenzene	98-82-8	< 2.	2.	0.5	ug/l	1
06310	Xylene (Total)	1330-20-7	< 1.	1.	0.5	ug/l	1

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09 This sample was filtered in the lab for dissolved metals. Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5424718 WW Group No. 1102391

N-38 Grab Water

Philadelphia Refinery AOI-8

COC: 188249 N-38

Collected: 07/24/2008 11:15 by SS Account Number: 10132

Submitted: 07/25/2008 14:10 SUN: Aquaterra Tech.

Reported: 08/05/2008 at 16:22 PO Box 744

Discard: 10/05/2008 West Chester PA 19381

PR038

PR038 CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06035	Lead	SW-846 6020	1	07/31/2008 10:38	James R Williams II	1
07879	EDB in Wastewater	SW-846 8011	1	07/30/2008 23:50	Jamie L Brillhart	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	07/30/2008 16:56	Joseph M Gambler	1
02302	UST-Waters by 8260B	SW-846 8260B	1	08/04/2008 20:32	Anita M Dale	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	08/04/2008 20:32	Anita M Dale	1
06050	ICP/MS SW-846 Water	SW-846 3010A modified	l 1	07/30/2008 19:05	James L Mertz	1
07786	EDB Extraction	SW-846 8011	1	07/29/2008 13:30	Kelli M Barto	1
07807	BNA Water Extraction	SW-846 3510C	1	07/29/2008 14:00	Kevin P Love	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5424719 WW Group No. 1102391

N-38D Grab Water

Philadelphia Refinery AOI-8

COC: 188249 N-38D

Collected: 07/24/2008 11:50 by SS Account Number: 10132

Submitted: 07/25/2008 14:10 SUN: Aquaterra Tech.

Reported: 08/05/2008 at 16:22 PO Box 744

Discard: 10/05/2008 West Chester PA 19381

PR38D

				As Received	As Received		
CAT			As Received	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06035	Lead	7439-92-1	< 0.0010	0.0010	0.000050	mg/l	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.029	0.029	0.0098	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	< 5.	5.	0.9	ug/l	1
03956	Fluorene	86-73-7	< 5.	5.	0.9	ug/l	1
03963	Phenanthrene	85-01-8	< 5.	5.	0.9	ug/l	1
03967	Pyrene	129-00-0	< 5.	5.	0.9	ug/l	1
03971	Chrysene	218-01-9	< 5.	5.	0.9	ug/l	1
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 1.	1.	0.5	ug/l	1
05401	Benzene	71-43-2	< 1.	1.	0.5	ug/l	1
05402	1,2-Dichloroethane	107-06-2	< 1.	1.	0.5	ug/l	1
05407	Toluene	108-88-3	< 1.	1.	0.5	ug/l	1
05415	Ethylbenzene	100-41-4	< 1.	1.	0.5	ug/l	1
05420	Isopropylbenzene	98-82-8	< 2.	2.	0.5	ug/l	1
06310	Xylene (Total)	1330-20-7	< 1.	1.	0.5	ug/l	1

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09 This sample was filtered in the lab for dissolved metals. Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5424719 WW Group No. 1102391

N-38D Grab Water

Philadelphia Refinery AOI-8

COC: 188249 N-38D

Collected: 07/24/2008 11:50 by SS Account Number: 10132

Submitted: 07/25/2008 14:10 SUN: Aquaterra Tech.

Reported: 08/05/2008 at 16:22 PO Box 744

Discard: 10/05/2008 West Chester PA 19381

PR38D

CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06035	Lead	SW-846 6020	1	07/31/2008 10:40	James R Williams II	1
07879	EDB in Wastewater	SW-846 8011	1	07/31/2008 00:20	Jamie L Brillhart	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	07/30/2008 17:21	Joseph M Gambler	1
02302	UST-Waters by 8260B	SW-846 8260B	1	08/04/2008 20:59	Anita M Dale	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	08/04/2008 20:59	Anita M Dale	1
06050	ICP/MS SW-846 Water	SW-846 3010A modified	l 1	07/30/2008 19:05	James L Mertz	1
07786	EDB Extraction	SW-846 8011	1	07/29/2008 13:30	Kelli M Barto	1
07807	BNA Water Extraction	SW-846 3510C	1	07/29/2008 14:00	Kevin P Love	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5424720 WW Group No. 1102391

N-111 Grab Water

Philadelphia Refinery AOI-8

COC: 188249 N-111

Collected: 07/24/2008 13:00 by SS Account Number: 10132

Submitted: 07/25/2008 14:10 SUN: Aquaterra Tech.

Reported: 08/05/2008 at 16:22 PO Box 744

Discard: 10/05/2008 West Chester PA 19381

PR111

				As Received	As Received		
CAT			As Received	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06035	Lead	7439-92-1	< 0.0010	0.0010	0.000050	mg/l	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.030	0.030	0.0099	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	< 50.	50.	10.	ug/l	1
03956	Fluorene	86-73-7	170.	50.	10.	ug/l	1
03963	Phenanthrene	85-01-8	380.	50.	10.	ug/l	1
03967	Pyrene	129-00-0	160.	50.	10.	ug/l	1
03971	Chrysene	218-01-9	110.	50.	10.	ug/l	1
	Due to the nature of the sample	e matrix, a re	educed aliquot	was used for			
	analysis. The reporting limits	were raised	accordingly.				
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 1.	1.	0.5	ug/l	1
05401	Benzene	71-43-2	< 1.	1.	0.5	ug/l	1
05402	1,2-Dichloroethane	107-06-2	< 1.	1.	0.5	ug/l	1
05407	Toluene	108-88-3	< 1.	1.	0.5	ug/l	1
05415	Ethylbenzene	100-41-4	< 1.	1.	0.5	ug/l	1
05420	Isopropylbenzene	98-82-8	8.	2.	0.5	ug/l	1
06310	Xylene (Total)	1330-20-7	< 1.	1.	0.5	ug/l	1

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09 This sample was filtered in the lab for dissolved metals. Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5424720 WW Group No. 1102391

N-111 Grab Water

Philadelphia Refinery AOI-8

COC: 188249 N-111

Collected: 07/24/2008 13:00 by SS Account Number: 10132

Submitted: 07/25/2008 14:10 SUN: Aquaterra Tech.

Reported: 08/05/2008 at 16:22 PO Box 744

Discard: 10/05/2008 West Chester PA 19381

PR111

CAT		_		Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06035	Lead	SW-846 6020	1	07/31/2008 10:42	James R Williams II	1
07879	EDB in Wastewater	SW-846 8011	1	07/31/2008 00:50	Jamie L Brillhart	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	07/30/2008 20:01	Gregory J Drahovsky	1
02302	UST-Waters by 8260B	SW-846 8260B	1	08/04/2008 21:26	Anita M Dale	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	08/04/2008 21:26	Anita M Dale	1
06050	ICP/MS SW-846 Water	SW-846 3010A modified	1	07/30/2008 19:05	James L Mertz	1
07786	EDB Extraction	SW-846 8011	1	07/29/2008 13:30	Kelli M Barto	1
07807	BNA Water Extraction	SW-846 3510C	1	07/29/2008 14:00	Kevin P Love	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5424721 WW Group No. 1102391

N-110 Grab Water

Philadelphia Refinery AOI-8

COC: 188249 N-110

Collected: 07/24/2008 13:40 by SS Account Number: 10132

Submitted: 07/25/2008 14:10 SUN: Aquaterra Tech.

Reported: 08/05/2008 at 16:22 PO Box 744

Discard: 10/05/2008 West Chester PA 19381

PR110

				As Received	As Received		
CAT			As Received	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06035	Lead	7439-92-1	< 0.0010	0.0010	0.000050	mg/l	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.029	0.029	0.0098	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	< 50.	50.	10.	ug/l	1
03956	Fluorene	86-73-7	< 50.	50.	10.	ug/l	1
03963	Phenanthrene	85-01-8	< 50.	50.	10.	ug/l	1
03967	Pyrene	129-00-0	< 50.	50.	10.	ug/l	1
03971	Chrysene	218-01-9	< 50.	50.	10.	ug/l	1
	Due to the nature of the sample analysis. The reporting limits	· ·	-	was used for			
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 1.	1.	0.5	ug/l	1
05401	Benzene	71-43-2	< 1.	1.	0.5	ug/l	1
05402	1,2-Dichloroethane	107-06-2	< 1.	1.	0.5	ug/l	1
05407	Toluene	108-88-3	< 1.	1.	0.5	ug/l	1
05415	Ethylbenzene	100-41-4	< 1.	1.	0.5	ug/l	1
05420	Isopropylbenzene	98-82-8	< 2.	2.	0.5	ug/l	1
06310	Xylene (Total)	1330-20-7	< 1.	1.	0.5	ug/l	1

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09 This sample was filtered in the lab for dissolved metals. Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5424721 WW Group No. 1102391

N-110 Grab Water

Philadelphia Refinery AOI-8

COC: 188249 N-110

Collected: 07/24/2008 13:40 by SS Account Number: 10132

Submitted: 07/25/2008 14:10 SUN: Aquaterra Tech.

Reported: 08/05/2008 at 16:22 PO Box 744

Discard: 10/05/2008 West Chester PA 19381

PR110

CAT		-		Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06035	Lead	SW-846 6020	1	07/31/2008 10:44	James R Williams II	1
07879	EDB in Wastewater	SW-846 8011	1	07/31/2008 01:20	Jamie L Brillhart	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	07/30/2008 20:25	Gregory J Drahovsky	1
02302	UST-Waters by 8260B	SW-846 8260B	1	08/04/2008 21:53	Anita M Dale	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	08/04/2008 21:53	Anita M Dale	1
06050	ICP/MS SW-846 Water	SW-846 3010A modified	l 1	07/30/2008 19:05	James L Mertz	1
07786	EDB Extraction	SW-846 8011	1	07/29/2008 13:30	Kelli M Barto	1
07807	BNA Water Extraction	SW-846 3510C	1	07/29/2008 14:00	Kevin P Love	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5424722 WW Group No. 1102391

N-112 Grab Water

Philadelphia Refinery AOI-8

COC: 188249 N-112

Collected: 07/24/2008 14:15 by SS Account Number: 10132

Submitted: 07/25/2008 14:10 SUN: Aquaterra Tech.

Reported: 08/05/2008 at 16:22 PO Box 744

Discard: 10/05/2008 West Chester PA 19381

PR112

				As Received	As Received		
CAT			As Received	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06035	Lead	7439-92-1	< 0.0010	0.0010	0.000050	mg/l	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.029	0.029	0.0095	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	< 50.	50.	10.	ug/l	1
03956	Fluorene	86-73-7	380.	50.	10.	ug/l	1
03963	Phenanthrene	85-01-8	1,400.	250.	50.	ug/l	5
03967	Pyrene	129-00-0	760.	50.	10.	ug/l	1
03971	Chrysene	218-01-9	290.	50.	10.	ug/l	1
	Due to the nature of the sample analysis. The reporting limits	· ·	-	was used for			
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 1.	1.	0.5	ug/l	1
05401	Benzene	71-43-2	< 1.	1.	0.5	ug/l	1
05402	1,2-Dichloroethane	107-06-2	< 1.	1.	0.5	ug/l	1
05407	Toluene	108-88-3	< 1.	1.	0.5	ug/l	1
05415	Ethylbenzene	100-41-4	< 1.	1.	0.5	ug/l	1
05420	Isopropylbenzene	98-82-8	22.	2.	0.5	ug/l	1
06310	Xylene (Total)	1330-20-7	< 1.	1.	0.5	ug/l	1

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09 This sample was filtered in the lab for dissolved metals. Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5424722 WW Group No. 1102391

N-112 Grab Water

Philadelphia Refinery AOI-8

COC: 188249 N-112

Collected: 07/24/2008 14:15 by SS Account Number: 10132

Submitted: 07/25/2008 14:10 SUN: Aquaterra Tech.

Reported: 08/05/2008 at 16:22 PO Box 744

Discard: 10/05/2008 West Chester PA 19381

PR112

CAT		2		Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06035	Lead	SW-846 6020	1	07/31/2008 10:45	James R Williams II	1
07879	EDB in Wastewater	SW-846 8011	1	08/01/2008 15:03	Jamie L Brillhart	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	07/30/2008 20:49	Gregory J Drahovsky	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	07/31/2008 04:44	Gregory J Drahovsky	5
02302	UST-Waters by 8260B	SW-846 8260B	1	08/04/2008 22:46	Anita M Dale	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	08/04/2008 22:46	Anita M Dale	1
06050	ICP/MS SW-846 Water	SW-846 3010A modified	1	07/30/2008 19:05	James L Mertz	1
07786	EDB Extraction	SW-846 8011	1	07/30/2008 14:00	Kelli M Barto	1
07807	BNA Water Extraction	SW-846 3510C	1	07/29/2008 14:00	Kevin P Love	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5424723 WW Group No. 1102391

N-114 Grab Water

Philadelphia Refinery AOI-8

COC: 188249 N-114

Collected: 07/24/2008 14:45 by SS Account Number: 10132

Submitted: 07/25/2008 14:10 SUN: Aquaterra Tech.

Reported: 08/05/2008 at 16:22 PO Box 744

Discard: 10/05/2008 West Chester PA 19381

PR114

				As Received	As Received		
CAT			As Received	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06035	Lead	7439-92-1	< 0.0010	0.0010	0.000050	mg/l	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.029	0.029	0.0097	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	< 5.	5.	1.	ug/l	1
03956	Fluorene	86-73-7	9.	5.	1.	ug/l	1
03963	Phenanthrene	85-01-8	7.	5.	1.	ug/l	1
03967	Pyrene	129-00-0	< 5.	5.	1.	ug/l	1
03971	Chrysene	218-01-9	< 5.	5.	1.	ug/l	1
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 1.	1.	0.5	ug/l	1
05401	Benzene	71-43-2	< 1.	1.	0.5	ug/l	1
05402	1,2-Dichloroethane	107-06-2	< 1.	1.	0.5	ug/l	1
05407	Toluene	108-88-3	< 1.	1.	0.5	ug/l	1
05415	Ethylbenzene	100-41-4	< 1.	1.	0.5	ug/l	1
05420	Isopropylbenzene	98-82-8	24.	2.	0.5	ug/l	1
06310	Xylene (Total)	1330-20-7	3.	1.	0.5	ug/l	1

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09 This sample was filtered in the lab for dissolved metals. Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5424723 WW Group No. 1102391

N-114 Grab Water

Philadelphia Refinery AOI-8

COC: 188249 N-114

Collected: 07/24/2008 14:45 by SS Account Number: 10132

Submitted: 07/25/2008 14:10 SUN: Aquaterra Tech.

Reported: 08/05/2008 at 16:22 PO Box 744

Discard: 10/05/2008 West Chester PA 19381

PR114

CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06035	Lead	SW-846 6020	1	07/31/2008 10:47	James R Williams II	1
07879	EDB in Wastewater	SW-846 8011	1	08/01/2008 16:03	Jamie L Brillhart	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	07/30/2008 21:12	Gregory J Drahovsky	1
02302	UST-Waters by 8260B	SW-846 8260B	1	08/04/2008 23:13	Anita M Dale	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	08/04/2008 23:13	Anita M Dale	1
06050	ICP/MS SW-846 Water	SW-846 3010A modified	d 1	07/30/2008 19:05	James L Mertz	1
07786	EDB Extraction	SW-846 8011	1	07/30/2008 14:00	Kelli M Barto	1
07807	BNA Water Extraction	SW-846 3510C	1	07/29/2008 14:00	Kevin P Love	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 3

Quality Control Summary

Client Name: SUN: Aquaterra Tech. Group Number: 1102391

Reported: 08/05/08 at 04:22 PM

Matrix QC may not be reported if site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

Laboratory Compliance Quality Control

Analysis Name	Blank <u>Result</u>	Blank LOQ**	Blank <u>MDL</u>	Report <u>Units</u>	LCS %REC	LCSD %REC	LCS/LCSD <u>Limits</u>	RPD	RPD Max
Batch number: 082110017A Ethylene dibromide	Sample numl < 0.030	ber(s): 54 0.030	24714-542 0.010	4721 ug/l	88	92	60-140	5	20
Batch number: 08211WAC026 Naphthalene Fluorene Phenanthrene Pyrene Chrysene	Sample numl < 5. < 5. < 5. < 5. < 5.	ber(s): 54 5. 5. 5. 5. 5.	24714-542 1. 1. 1. 1.	4723 ug/1 ug/1 ug/1 ug/1 ug/1	98 97 104 109	97 99 105 105 99	77-107 82-113 83-112 80-115 82-112	1 2 1 3 1	30 30 30 30 30
Batch number: 082120007A Ethylene dibromide	Sample numl < 0.030	ber(s): 54 0.030	24722-542 0.010	4723 ug/l	96	96	60-140	0	20
Batch number: 082126050001A Lead	Sample numl < 0.0010	ber(s): 54 0.0010	24714-542 0.00005 0	4723 mg/l	102		90-115		
Batch number: P082172AA Methyl Tertiary Butyl Ether Benzene 1,2-Dichloroethane Toluene Ethylbenzene Isopropylbenzene Xylene (Total)	Sample numl < 1. < 1. < 1. < 1. < 1. < 1. < 1. < 1.	ber(s): 54 1. 1. 1. 1. 1. 2.	24714-542 0.5 0.5 0.5 0.5 0.5 0.5	4723 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	98 95 99 96 96 96	98 96 97 99 99 100	73-119 78-119 69-135 85-115 82-119 80-113	1 1 2 4 3 4	30 30 30 30 30 30 30

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

Analysis Name	MS %REC	MSD %REC	MS/MSD <u>Limits</u>	RPD	RPD <u>MAX</u>	BKG Conc	DUP <u>Conc</u>	DUP <u>RPD</u>	Dup RPD <u>Max</u>
Batch number: 082110017A Ethylene dibromide	Sample r 87	number(s)	: 5424714 65-135	-542472	1 UNSPI	K: P424683 < 0.029	BKG: P424684 < 0.029	0 (1)	30
Batch number: 082120007A Ethylene dibromide	Sample r	number(s)	: 5424722 65-135	-542472	3 UNSPI	K: 5424722 < 0.029	BKG: P425132 < 0.030	0 (1)	30
Batch number: 082126050001A Lead	Sample r 122	number(s) 119	: 5424714 75-125		3 UNSPI 20	X: P425132 0.0424	BKG: P425132 0.0441	4	20
Batch number: P082172AA Methyl Tertiary Butyl Ether Benzene	Sample r 102 104	number(s)	: 5424714 69-127 83-128	-542472	3 UNSPI	K: P424708			

*- Outside of specification

- **-This limit was used in the evaluation of the final result for the blank
- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 2 of 3

Quality Control Summary

Client Name: SUN: Aquaterra Tech. Group Number: 1102391

Reported: 08/05/08 at 04:22 PM

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

	MS	MSD	MS/MSD		RPD	BKG	DUP	DUP	Dup RPD
<u>Analysis Name</u>	%REC	%REC	<u>Limits</u>	RPD	MAX	Conc	Conc	RPD	Max
1,2-Dichloroethane	101		70-143						
Toluene	104		83-127						
Ethylbenzene	103		82-129						
Isopropylbenzene	106		81-130						
Xylene (Total)	104		82-130						

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: EDB in Wastewater

Batch number: 082110017A

1,1,2,2-Tetrachloroethane

5424714	52
5424715	68
5424716	86
5424717	93
5424718	102
5424719	96
5424720	86
5424721	92
Blank	96
DUP	77
LCS	103
LCSD	102
MS	135

Limits: 46-136

Analysis Name: PAHs in Water by GC/MS

Batch number: 08211WAC026

	Nitrobenzene-d5	2-Fluorobiphenyl	Terphenyl-d14	
5424714	92	89	95	
5424715	61	66	66	
5424716	91	95	85	
5424717	88	95	89	
5424718	91	100	96	
5424719	82	87	86	
5424720	98	96	107	
5424721	94	92	101	
5424722	85	84	97	
5424723	92	97	109	
Blank	97	97	108	
LCS	99	101	109	
LCSD	98	103	104	

*- Outside of specification

- **-This limit was used in the evaluation of the final result for the blank
- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 3 of 3

Quality Control Summary

Client Name: SUN: Aquaterra Tech. Group Number: 1102391

Reported: 08/05/08 at 04:22 PM

Surrogate Quality Control

30-126 44-127 63-114 Limits:

Analysis Name: EDB in Wastewater

Batch number: 082120007A

1,1,2,2-

Tetrachloroethane

5424722	6.7
5424723	132
Blank	109
DUP	102
LCS	109
LCSD	108
MS	59

Limits: 46-136

Analysis Name: UST-Waters by 8260B Batch number: P082172AA

	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzen
5424714	99	97	96	92
5424715	97	96	98	92
5424716	98	94	96	102
5424717	99	99	96	94
5424718	97	96	97	94
5424719	98	95	97	92
5424720	98	97	97	93
5424721	98	97	97	91
5424722	98	97	96	93
5424723	99	97	98	91
Blank	99	98	98	93
LCS	99	100	98	93
LCSD	98	100	98	92
MS	100	99	97	92
Limits:	80-116	77-113	80-113	78-113

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Analysis Request/ Environmental Services Chain of Custody

For Lancaster Laboratories use only Acct. # 10132 Group# 1102391 Sample # 5424714-23

COC # 188249

Client: SUN-AQUATERRA	A cot #				đa trix			(5	**********	2010/01/19/04/01	Reque	202010-1-1-1-21/20/09/09/09/09/09/09/09	For Lab Use Only FSC: SCR#:		
Project Name/#: PHILA REF AOT Project Manager: T. DOERR Sampler: S. SYKES	- 8 PWSID # P.O.#: Quote #:	‡ :			Potable Check if NPDES Applicable		Section 3	1	2/2X				Preservation Code: H=HCl T=Thios N=HNO ₃ B=NaO S=H ₂ SO ₄ O=Othe	sulfate H	mples (9)
Name of state where samples were collected: _ 2 Sample Identification	PA Date Collected	Ime Collected	Grab	ansoda I	Water III	Other Total # of Co	PAK \$2606	Leas	PAHS 64 66/ms	ED			Remarks		Temperature of 88 upon receipt (if tex
N-34	7/24/08		X		X	8	3	1	2	کر				2,5	-4.5
N-35		946	\perp	-	-}-	\dashv	11		_	$\perp \downarrow \downarrow$					
N-109		1016	$+\!\!\!+$	-			igapha	H	\dashv						+
_\N-3\frac{7}{2}		1035	+	-	-		$oxed{oxed}$		\dashv	+					+
W-38		1115	++	+	+		H			+				. .	+-1
N-38D		1150	+		+	\dashv	\vdash		+						+
N-111		1300	+		+	$\dashv \dagger$	+								+-
<u>V-110</u>	 	1340	+	+	+	+	+			-++					
N-112		1415	+		\dashv	$\dashv +$	+		\dashv	- \					
Turnaround Time Requested (TAT) (please of (Rush TAT is subject to Lancaster Laboratories appropriate results are needed:	oval and surchar	Rush			e	. Q.					8 1600	Received by	ma Hidge	7/21/08	ime (9
Rush results requested by (please circle): Ph				XZ)(- Com	frid	<i>y</i>	1/2/	1955	A mag a	allinan	25/08	
Phone #:Fax #:Fax #:			The state of the s	elinali:	shed b	y:				Date	Time	Received by:	U Circan	· · · · · · · · · · · · · · · · · ·	ime
Data Package Options (please circle if required) Type I (validation/NJ Reg) TX TRRP-13 Type II (Tier II) Type III (Reduced NJ) Site-specific QC (M	Ye.	G Complete? s No	<u>ر</u> الح	(4)	<u>u 2</u>	lel	lme	u		25/55 Date	77.77 Time	Received by:		Date T	ime
Type IV (CLP SOW) Type Vi (Raw Data Only) Type Vi (Raw Data Only) Internal COC Requ	it triplicate volume.)		Re	elinqui	shed b	y:			/	Date		Received by:	na Mesel	Date T	

Lancaster Laboratories Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

N.D.	none detected	BMQL	Below Minimum Quantitation Level
TNTC	Too Numerous To Count	MPN	Most Probable Number
IU	International Units	CP Units	cobalt-chloroplatinate units
umhos/cm	micromhos/cm	NTU	nephelometric turbidity units
С	degrees Celsius	F	degrees Fahrenheit
Cal	(diet) calories	lb.	pound(s)
meq	milliequivalents	kg	kilogram(s)
g	gram(s)	mg	milligram(s)
ug	microgram(s)	I	liter(s)
ml	milliliter(s)	ul	microliter(s)
m3	cubic meter(s)	fib >5 um/ml	fibers greater than 5 microns in length per ml

- < less than The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.
- > greater than
- ppm parts per million One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.

Inorganic Qualifiers

- ppb parts per billion
- **Dry weight**Results printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture.

U.S. EPA data qualifiers:

9	lifier	(uu	9	 u	" 9	•

A B C D E	TIC is a possible aldol-condensation product Analyte was also detected in the blank Pesticide result confirmed by GC/MS Compound quatitated on a diluted sample Concentration exceeds the calibration range of the instrument	B E M N S	Value is <crdl, (msa)="" additions="" amount="" but="" calculation<="" control="" due="" duplicate="" estimated="" for="" injection="" interference="" limits="" met="" method="" not="" of="" precision="" spike="" standard="" th="" to="" used="" within="" ≥idl=""></crdl,>
J	Estimated value	U	Compound was not detected
N	Presumptive evidence of a compound (TICs only)	W	Post digestion spike out of control limits
Р	Concentration difference between primary and	*	Duplicate analysis not within control limits
	confirmation columns >25%	+	Correlation coefficient for MSA < 0.995
U	Compound was not detected		
X,Y,Z	Defined in case narrative		

Analytical test results for methods listed on the laboratories' accreditation scope meet all requirements of NELAC unless otherwise noted under the individual analysis.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

WARRANTY AND LIMITS OF LIABILITY – In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL LANCASTER LABORATORIES BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF LANCASTER LABORATORIES AND (B) WHETHER LANCASTER LABORATORIES HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Lancaster Laboratories which includes any conditions that vary from the Standard Terms and Conditions of Lancaster Laboratories and we hereby object to any conflicting terms contained in any acceptance or order submitted by client.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

ANALYTICAL RESULTS

Prepared for:

SUN: Aquaterra Tech. PO Box 744 West Chester PA 19381

610-431-5733

Prepared by:

Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425

SAMPLE GROUP

The sample group for this submittal is 1103058. Samples arrived at the laboratory on Wednesday, July 30, 2008. The PO# for this group is PHILADELPHIA.

Client Description	<u>Lancaster Labs Number</u>
N-60 Grab Water	5428282
N-44D Grab Water	5428283
N-115 Grab Water	5428284
N-41 Grab Water	5428285
N-53 Grab Water	5428286
N-55 Grab Water	5428287
N-132 Grab Water	5428288
N-131 Grab Water	5428289
N-39 Grab Water	5428290
RW-202 Grab Water	5428291
PZ-300 Grab Water	5428292

ELECTRONIC COPY TO	SUN: Aquaterra Tech.	Attn: Kevin Martin
ELECTRONIC	Langan	Attn: Joseph Catricks
COPY TO ELECTRONIC	SUN: Aquaterra Tech.	Attn: Tiffani Doerr
COPY TO ELECTRONIC	LLI	Attn: EDD Group
COPY TO		

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681• www.lancasterlabs.com

Questions? Contact your Client Services Representative Jessica A Heun at (717) 656-2300

Respectfully Submitted,

Christine Dulaney Senior Specialist

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5428282 WW Group No. 1103058

N-60 Grab Water

Philadelphia Refinery AOI-8

COC: 187464 N-60

Collected: 07/25/2008 12:55 by MH Account Number: 10132

Submitted: 07/30/2008 15:55 SUN: Aquaterra Tech.

Reported: 08/08/2008 at 16:31 PO Box 744

Discard: 10/08/2008 West Chester PA 19381

PR060

				As Received	As Received		
CAT			As Received	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06035	Lead	7439-92-1	< 0.0010	0.0010	0.000050	mg/l	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.030	0.030	0.0099	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	< 5.	5.	1.	ug/l	1
03956	Fluorene	86-73-7	< 5.	5.	1.	ug/l	1
03963	Phenanthrene	85-01-8	< 5.	5.	1.	ug/l	1
03967	Pyrene	129-00-0	12.	5.	1.	ug/l	1
03971	Chrysene	218-01-9	14.	5.	1.	ug/l	1
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 1.	1.	0.5	ug/l	1
05401	Benzene	71-43-2	< 1.	1.	0.5	ug/l	1
05402	1,2-Dichloroethane	107-06-2	< 1.	1.	0.5	ug/l	1
05407	Toluene	108-88-3	< 1.	1.	0.5	ug/l	1
05415	Ethylbenzene	100-41-4	< 1.	1.	0.5	ug/l	1
05420	Isopropylbenzene	98-82-8	< 2.	2.	0.5	ug/l	1
06310	Xylene (Total)	1330-20-7	< 1.	1.	0.5	ug/l	1

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09 This sample was filtered in the lab for dissolved metals. Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5428282 WW Group No. 1103058

N-60 Grab Water

Philadelphia Refinery AOI-8

COC: 187464 N-60

Collected: 07/25/2008 12:55 by MH Account Number: 10132

Submitted: 07/30/2008 15:55 SUN: Aquaterra Tech.

Reported: 08/08/2008 at 16:31 PO Box 744

Discard: 10/08/2008 West Chester PA 19381

PR060

CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06035	Lead	SW-846 6020	1	08/05/2008 14:18	James R Williams II	1
07879	EDB in Wastewater	SW-846 8011	1	08/01/2008 06:02	Jamie L Brillhart	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	08/04/2008 09:29	Brian K Graham	1
02302	UST-Waters by 8260B	SW-846 8260B	1	08/07/2008 00:04	Kelly E Brickley	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	08/07/2008 00:04	Kelly E Brickley	1
06050	ICP/MS SW-846 Water	SW-846 3010A modified	1	08/04/2008 09:40	Denise K Conners	1
07786	EDB Extraction	SW-846 8011	1	07/31/2008 14:00	Kelli M Barto	1
07807	BNA Water Extraction	SW-846 3510C	1	08/01/2008 09:30	Cynthia J Stoltzfus	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5428283 WW Group No. 1103058

N-44D Grab Water

Philadelphia Refinery AOI-8

COC: 187464 N-44D

Collected: 07/25/2008 13:45 by MH Account Number: 10132

Submitted: 07/30/2008 15:55 SUN: Aquaterra Tech.

Reported: 08/08/2008 at 16:31 PO Box 744

Discard: 10/08/2008 West Chester PA 19381

PR44D

				As Received	As Received		
CAT			As Received	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06035	Lead	7439-92-1	< 0.0010	0.0010	0.000050	mg/l	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.029	0.029	0.0096	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	< 5.	5.	0.9	ug/l	1
03956	Fluorene	86-73-7	< 5.	5.	0.9	ug/l	1
03963	Phenanthrene	85-01-8	< 5.	5.	0.9	ug/l	1
03967	Pyrene	129-00-0	< 5.	5.	0.9	ug/l	1
03971	Chrysene	218-01-9	< 5.	5.	0.9	ug/l	1
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 1.	1.	0.5	ug/l	1
05401	Benzene	71-43-2	6.	1.	0.5	ug/l	1
05402	1,2-Dichloroethane	107-06-2	< 1.	1.	0.5	ug/l	1
05407	Toluene	108-88-3	< 1.	1.	0.5	ug/l	1
05415	Ethylbenzene	100-41-4	< 1.	1.	0.5	ug/l	1
05420	Isopropylbenzene	98-82-8	5.	2.	0.5	ug/l	1
06310	Xylene (Total)	1330-20-7	4.	1.	0.5	ug/l	1

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09 This sample was filtered in the lab for dissolved metals. Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5428283 WW Group No. 1103058

N-44D Grab Water

Philadelphia Refinery AOI-8

COC: 187464 N-44D

Collected: 07/25/2008 13:45 by MH Account Number: 10132

Submitted: 07/30/2008 15:55 SUN: Aquaterra Tech.

Reported: 08/08/2008 at 16:31 PO Box 744

Discard: 10/08/2008 West Chester PA 19381

PR44D

C	AT				Analysis		Dilution
N	ο.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
0	6035	Lead	SW-846 6020	1	08/05/2008 14:22	James R Williams II	1
0	7879	EDB in Wastewater	SW-846 8011	1	08/01/2008 07:02	Jamie L Brillhart	1
0	7805	PAHs in Water by GC/MS	SW-846 8270C	1	08/04/2008 09:52	Brian K Graham	1
0	2302	UST-Waters by 8260B	SW-846 8260B	1	08/07/2008 00:31	Kelly E Brickley	1
0	1163	GC/MS VOA Water Prep	SW-846 5030B	1	08/07/2008 00:31	Kelly E Brickley	1
0	6050	ICP/MS SW-846 Water	SW-846 3010A modifie	d 1	08/04/2008 09:40	Denise K Conners	1
0	7786	EDB Extraction	SW-846 8011	1	07/31/2008 14:00	Kelli M Barto	1
0	7807	BNA Water Extraction	SW-846 3510C	1	08/01/2008 09:30	Cynthia J Stoltzfus	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5428284 WW Group No. 1103058

N-115 Grab Water

Philadelphia Refinery AOI-8

COC: 187464 N-115

Collected: 07/28/2008 08:50 by MH Account Number: 10132

Submitted: 07/30/2008 15:55 SUN: Aquaterra Tech.

Reported: 08/08/2008 at 16:31 PO Box 744

Discard: 10/08/2008 West Chester PA 19381

PR115

				As Received	As Received		
CAT			As Received	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06035	Lead	7439-92-1	< 0.0010	0.0010	0.000050	mg/l	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.029	0.029	0.0096	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	< 5.	5.	1.	ug/l	1
03956	Fluorene	86-73-7	< 5.	5.	1.	ug/l	1
03963	Phenanthrene	85-01-8	10.	5.	1.	ug/l	1
03967	Pyrene	129-00-0	8.	5.	1.	ug/l	1
03971	Chrysene	218-01-9	7.	5.	1.	ug/l	1
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 1.	1.	0.5	ug/l	1
05401	Benzene	71-43-2	< 1.	1.	0.5	ug/l	1
05402	1,2-Dichloroethane	107-06-2	< 1.	1.	0.5	ug/l	1
05407	Toluene	108-88-3	< 1.	1.	0.5	ug/l	1
05415	Ethylbenzene	100-41-4	< 1.	1.	0.5	ug/l	1
05420	Isopropylbenzene	98-82-8	6.	2.	0.5	ug/l	1
06310	Xylene (Total)	1330-20-7	< 1.	1.	0.5	ug/l	1

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09 This sample was filtered in the lab for dissolved metals. Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5428284 WW Group No. 1103058

N-115 Grab Water

Philadelphia Refinery AOI-8

COC: 187464 N-115

Collected:07/28/2008 08:50 by MH Account Number: 10132

Submitted: 07/30/2008 15:55 SUN: Aquaterra Tech.

Reported: 08/08/2008 at 16:31 PO Box 744

Discard: 10/08/2008 West Chester PA 19381

PR115

CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06035	Lead	SW-846 6020	1	08/05/2008 14:25	James R Williams II	1
07879	EDB in Wastewater	SW-846 8011	1	08/01/2008 08:32	Jamie L Brillhart	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	08/04/2008 10:16	Brian K Graham	1
02302	UST-Waters by 8260B	SW-846 8260B	1	08/07/2008 01:24	Kelly E Brickley	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	08/07/2008 01:24	Kelly E Brickley	1
06050	ICP/MS SW-846 Water	SW-846 3010A modified	i 1	08/04/2008 09:40	Denise K Conners	1
07786	EDB Extraction	SW-846 8011	1	07/31/2008 14:00	Kelli M Barto	1
07807	BNA Water Extraction	SW-846 3510C	1	08/01/2008 09:30	Cynthia J Stoltzfus	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5428285 WW Group No. 1103058

N-41 Grab Water

Philadelphia Refinery AOI-8

COC: 187464 N-41

Collected: 07/28/2008 09:30 by MH Account Number: 10132

Submitted: 07/30/2008 15:55 SUN: Aquaterra Tech.

Reported: 08/08/2008 at 16:31 PO Box 744

Discard: 10/08/2008 West Chester PA 19381

PR041

				As Received	As Received		
CAT			As Received	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06035	Lead	7439-92-1	0.0017	0.0010	0.000050	mg/l	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.029	0.029	0.0097	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	< 50.	50.	10.	ug/l	1
03956	Fluorene	86-73-7	450.	50.	10.	ug/l	1
03963	Phenanthrene	85-01-8	1,100.	50.	10.	ug/l	1
03967	Pyrene	129-00-0	390.	50.	10.	ug/l	1
03971	Chrysene	218-01-9	280.	50.	10.	ug/l	1
	Due to the nature of the sample	•	-	was used for			
	analysis. The reporting limits	were raised	accordingly.				
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 1.	1.	0.5	ug/l	1
05401	Benzene	71-43-2	< 1.	1.	0.5	ug/l	1
05402	1,2-Dichloroethane	107-06-2	< 1.	1.	0.5	ug/l	1
05407	Toluene	108-88-3	< 1.	1.	0.5	ug/l	1
05415	Ethylbenzene	100-41-4	< 1.	1.	0.5	ug/l	1
05420	Isopropylbenzene	98-82-8	8.	2.	0.5	ug/l	1
06310	Xylene (Total)	1330-20-7	< 1.	1.	0.5	ug/l	1

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09 This sample was filtered in the lab for dissolved metals. Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5428285 WW Group No. 1103058

N-41 Grab Water

Philadelphia Refinery AOI-8

COC: 187464 N-41

Collected: 07/28/2008 09:30 by MH Account Number: 10132

Submitted: 07/30/2008 15:55 SUN: Aquaterra Tech.

Reported: 08/08/2008 at 16:31 PO Box 744

Discard: 10/08/2008 West Chester PA 19381

PR041

		Haboracory	CIII O.	111010		
CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06035	Lead	SW-846 6020	1	08/05/2008 14:29	James R Williams II	1
07879	EDB in Wastewater	SW-846 8011	1	08/01/2008 09:02	Jamie L Brillhart	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	08/04/2008 10:40	Brian K Graham	1
02302	UST-Waters by 8260B	SW-846 8260B	1	08/08/2008 01:30	Kelly E Brickley	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	08/08/2008 01:30	Kelly E Brickley	1
06050	ICP/MS SW-846 Water	SW-846 3010A modified	1	08/04/2008 09:40	Denise K Conners	1
07786	EDB Extraction	SW-846 8011	1	07/31/2008 14:00	Kelli M Barto	1
07807	BNA Water Extraction	SW-846 3510C	1	08/01/2008 09:30	Cynthia J Stoltzfus	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5428286 WW Group No. 1103058

N-53 Grab Water

Philadelphia Refinery AOI-8

COC: 187464 N-53

Collected: 07/28/2008 09:30 by SS Account Number: 10132

Submitted: 07/30/2008 15:55 SUN: Aquaterra Tech.

Reported: 08/08/2008 at 16:31 PO Box 744

Discard: 10/08/2008 West Chester PA 19381

PR053

				As Received	As Received		
CAT			As Received	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06035	Lead	7439-92-1	< 0.0010	0.0010	0.000050	mg/l	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.029	0.029	0.0097	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	< 50.	50.	10.	ug/l	1
03956	Fluorene	86-73-7	360.	50.	10.	ug/l	1
03963	Phenanthrene	85-01-8	610.	50.	10.	ug/l	1
03967	Pyrene	129-00-0	220.	50.	10.	ug/l	1
03971	Chrysene	218-01-9	180.	50.	10.	ug/l	1
	Due to the nature of the sample	e matrix, a re	educed aliquot	was used for			
	analysis. The reporting limits	were raised	accordingly.				
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 1.	1.	0.5	ug/l	1
05401	Benzene	71-43-2	< 1.	1.	0.5	ug/l	1
05402	1,2-Dichloroethane	107-06-2	< 1.	1.	0.5	ug/l	1
05407	Toluene	108-88-3	1.	1.	0.5	ug/l	1
05415	Ethylbenzene	100-41-4	< 1.	1.	0.5	ug/l	1
05420	Isopropylbenzene	98-82-8	17.	2.	0.5	ug/l	1
06310	Xylene (Total)	1330-20-7	11.	1.	0.5	ug/l	1

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09 This sample was filtered in the lab for dissolved metals. Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5428286 WW Group No. 1103058

N-53 Grab Water

Philadelphia Refinery AOI-8

COC: 187464 N-53

Collected: 07/28/2008 09:30 by SS Account Number: 10132

Submitted: 07/30/2008 15:55 SUN: Aquaterra Tech.

Reported: 08/08/2008 at 16:31 PO Box 744

Discard: 10/08/2008 West Chester PA 19381

PR053

haboracory chronicic							
CAT				Analysis		Dilution	
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor	
06035	Lead	SW-846 6020	1	08/07/2008 15:02	James R Williams II	1	
07879	EDB in Wastewater	SW-846 8011	1	08/01/2008 09:32	Jamie L Brillhart	1	
07805	PAHs in Water by GC/MS	SW-846 8270C	1	08/04/2008 11:03	Brian K Graham	1	
02302	UST-Waters by 8260B	SW-846 8260B	1	08/08/2008 01:56	Kelly E Brickley	1	
01163	GC/MS VOA Water Prep	SW-846 5030B	1	08/08/2008 01:56	Kelly E Brickley	1	
06050	ICP/MS SW-846 Water	SW-846 3010A modified	1	08/06/2008 09:20	Denise K Conners	1	
07786	EDB Extraction	SW-846 8011	1	07/31/2008 14:00	Kelli M Barto	1	
07807	BNA Water Extraction	SW-846 3510C	1	08/01/2008 09:30	Cynthia J Stoltzfus	1	

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5428287 WW Group No. 1103058

N-55 Grab Water

Philadelphia Refinery AOI-8

COC: 187464 N-55

Collected: 07/28/2008 10:00 by SS Account Number: 10132

Submitted: 07/30/2008 15:55 SUN: Aquaterra Tech.

Reported: 08/08/2008 at 16:31 PO Box 744

Discard: 10/08/2008 West Chester PA 19381

PR055

				As Received	As Received		
CAT			As Received	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06035	Lead	7439-92-1	< 0.0010	0.0010	0.000050	mg/l	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.029	0.029	0.0097	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	< 5.	5.	1.	ug/l	1
03956	Fluorene	86-73-7	< 5.	5.	1.	ug/l	1
03963	Phenanthrene	85-01-8	< 5.	5.	1.	ug/l	1
03967	Pyrene	129-00-0	< 5.	5.	1.	ug/l	1
03971	Chrysene	218-01-9	< 5.	5.	1.	ug/l	1
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 1.	1.	0.5	ug/l	1
05401	Benzene	71-43-2	< 1.	1.	0.5	ug/l	1
05402	1,2-Dichloroethane	107-06-2	< 1.	1.	0.5	ug/l	1
05407	Toluene	108-88-3	< 1.	1.	0.5	ug/l	1
05415	Ethylbenzene	100-41-4	< 1.	1.	0.5	ug/l	1
05420	Isopropylbenzene	98-82-8	< 2.	2.	0.5	ug/l	1
06310	Xylene (Total)	1330-20-7	< 1.	1.	0.5	ug/l	1

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09 This sample was filtered in the lab for dissolved metals. Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5428287 WW Group No. 1103058

N-55 Grab Water

Philadelphia Refinery AOI-8

COC: 187464 N-55

Collected: 07/28/2008 10:00 by SS Account Number: 10132

Submitted: 07/30/2008 15:55 SUN: Aquaterra Tech.

Reported: 08/08/2008 at 16:31 PO Box 744

Discard: 10/08/2008 West Chester PA 19381

PR055

CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06035	Lead	SW-846 6020	1	08/07/2008 15:05	James R Williams II	1
07879	EDB in Wastewater	SW-846 8011	1	08/01/2008 10:02	Jamie L Brillhart	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	08/04/2008 11:27	Brian K Graham	1
02302	UST-Waters by 8260B	SW-846 8260B	1	08/07/2008 03:38	Kelly E Brickley	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	08/07/2008 03:38	Kelly E Brickley	1
06050	ICP/MS SW-846 Water	SW-846 3010A modified	d 1	08/06/2008 09:20	Denise K Conners	1
07786	EDB Extraction	SW-846 8011	1	07/31/2008 14:00	Kelli M Barto	1
07807	BNA Water Extraction	SW-846 3510C	1	08/01/2008 09:30	Cynthia J Stoltzfus	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5428288 WW Group No. 1103058

N-132 Grab Water

Philadelphia Refinery AOI-8

COC: 187464 N-132

Collected: 07/28/2008 10:30 by SS Account Number: 10132

Submitted: 07/30/2008 15:55 SUN: Aquaterra Tech.

Reported: 08/08/2008 at 16:31 PO Box 744

Discard: 10/08/2008 West Chester PA 19381

PR132

				As Received	As Received		
CAT			As Received	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06035	Lead	7439-92-1	< 0.0010	0.0010	0.000050	mg/l	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.030	0.030	0.0099	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	< 5.	5.	0.9	ug/l	1
03956	Fluorene	86-73-7	< 5.	5.	0.9	ug/l	1
03963	Phenanthrene	85-01-8	< 5.	5.	0.9	ug/l	1
03967	Pyrene	129-00-0	< 5.	5.	0.9	ug/l	1
03971	Chrysene	218-01-9	< 5.	5.	0.9	ug/l	1
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 1.	1.	0.5	ug/l	1
05401	Benzene	71-43-2	< 1.	1.	0.5	ug/l	1
05402	1,2-Dichloroethane	107-06-2	< 1.	1.	0.5	ug/l	1
05407	Toluene	108-88-3	< 1.	1.	0.5	ug/l	1
05415	Ethylbenzene	100-41-4	< 1.	1.	0.5	ug/l	1
05420	Isopropylbenzene	98-82-8	< 2.	2.	0.5	ug/l	1
06310	Xylene (Total)	1330-20-7	4.	1.	0.5	ug/l	1

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09 This sample was filtered in the lab for dissolved metals. Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5428288 WW Group No. 1103058

N-132 Grab Water

Philadelphia Refinery AOI-8

COC: 187464 N-132

Collected: 07/28/2008 10:30 by SS Account Number: 10132

Submitted: 07/30/2008 15:55 SUN: Aquaterra Tech.

Reported: 08/08/2008 at 16:31 PO Box 744

Discard: 10/08/2008 West Chester PA 19381

PR132

			Analysis		Dilution
Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
Lead	SW-846 6020	1	08/07/2008 15:13	James R Williams II	1
EDB in Wastewater	SW-846 8011	1	08/01/2008 10:32	Jamie L Brillhart	1
PAHs in Water by GC/MS	SW-846 8270C	1	08/04/2008 11:50	Brian K Graham	1
UST-Waters by 8260B	SW-846 8260B	1	08/07/2008 04:05	Kelly E Brickley	1
GC/MS VOA Water Prep	SW-846 5030B	1	08/07/2008 04:05	Kelly E Brickley	1
ICP/MS SW-846 Water	SW-846 3010A modified	1	08/06/2008 09:20	Denise K Conners	1
EDB Extraction	SW-846 8011	1	07/31/2008 14:00	Kelli M Barto	1
BNA Water Extraction	SW-846 3510C	1	08/01/2008 09:30	Cynthia J Stoltzfus	1
	Lead EDB in Wastewater PAHs in Water by GC/MS UST-Waters by 8260B GC/MS VOA Water Prep ICP/MS SW-846 Water EDB Extraction	Lead SW-846 6020 EDB in Wastewater SW-846 8011 PAHs in Water by GC/MS SW-846 8270C UST-Waters by 8260B SW-846 8260B GC/MS VOA Water Prep SW-846 5030B ICP/MS SW-846 Water SW-846 3010A modified EDB Extraction SW-846 8011	Lead SW-846 6020 1 EDB in Wastewater SW-846 8011 1 PAHs in Water by GC/MS SW-846 8270C 1 UST-Waters by 8260B SW-846 8260B 1 GC/MS VOA Water Prep SW-846 5030B 1 ICP/MS SW-846 Water SW-846 3010A modified 1 EDB Extraction SW-846 8011 1	Analysis Name Method Trial# Date and Time Lead SW-846 6020 1 08/07/2008 15:13 EDB in Wastewater SW-846 8011 1 08/01/2008 10:32 PAHs in Water by GC/MS SW-846 8270C 1 08/04/2008 11:50 UST-Waters by 8260B SW-846 8260B 1 08/07/2008 04:05 GC/MS VOA Water Prep SW-846 5030B 1 08/07/2008 04:05 ICP/MS SW-846 Water SW-846 3010A modified 1 08/06/2008 09:20 EDB Extraction SW-846 8011 1 07/31/2008 14:00	Analysis Name Method Trial# Date and Time Analyst Lead SW-846 6020 1 08/07/2008 15:13 James R Williams II EDB in Wastewater SW-846 8011 1 08/01/2008 10:32 Jamie L Brillhart PAHs in Water by GC/MS SW-846 8270C 1 08/04/2008 11:50 Brian K Graham UST-Waters by 8260B SW-846 8260B 1 08/07/2008 04:05 Kelly E Brickley GC/MS VOA Water Prep SW-846 5030B 1 08/07/2008 04:05 Kelly E Brickley ICP/MS SW-846 Water SW-846 3010A modified 1 08/06/2008 09:20 Denise K Conners EDB Extraction SW-846 8011 1 07/31/2008 14:00 Kelli M Barto

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5428289 WW Group No. 1103058

N-131 Grab Water

Philadelphia Refinery AOI-8

COC: 187464 N-131

Collected: 07/28/2008 11:00 by SS Account Number: 10132

Submitted: 07/30/2008 15:55 SUN: Aquaterra Tech.

Reported: 08/08/2008 at 16:31 PO Box 744

Discard: 10/08/2008 West Chester PA 19381

PR131

				As Received	As Received		
CAT			As Received	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06035	Lead	7439-92-1	< 0.0010	0.0010	0.000050	mg/l	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.030	0.030	0.0099	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	< 50.	50.	10.	ug/l	1
03956	Fluorene	86-73-7	< 50.	50.	10.	ug/l	1
03963	Phenanthrene	85-01-8	< 50.	50.	10.	ug/l	1
03967	Pyrene	129-00-0	< 50.	50.	10.	ug/l	1
03971	Chrysene	218-01-9	86.	50.	10.	ug/l	1
	Due to the nature of the sample	e matrix, a re	educed aliquot	was used for			
	analysis. The reporting limits	s were raised	accordingly.				
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 2.	2.	1.	ug/l	2
05401	Benzene	71-43-2	3.	2.	1.	ug/l	2
05402	1,2-Dichloroethane	107-06-2	< 2.	2.	1.	ug/l	2
05407	Toluene	108-88-3	< 2.	2.	1.	ug/l	2
05415	Ethylbenzene	100-41-4	< 2.	2.	1.	ug/l	2
05420	Isopropylbenzene	98-82-8	370.	4.	1.	ug/l	2
06310	Xylene (Total)	1330-20-7	< 2.	2.	1.	ug/l	2

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09 This sample was filtered in the lab for dissolved metals. Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5428289 WW Group No. 1103058

N-131 Grab Water

Philadelphia Refinery AOI-8

COC: 187464 N-131

Collected: 07/28/2008 11:00 by SS Account Number: 10132

Submitted: 07/30/2008 15:55 SUN: Aquaterra Tech.

Reported: 08/08/2008 at 16:31 PO Box 744

Discard: 10/08/2008 West Chester PA 19381

PR131

Laboratory Chronicle

CAT		-		Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06035	Lead	SW-846 6020	1	08/07/2008 15:16	James R Williams II	1
07879	EDB in Wastewater	SW-846 8011	1	08/01/2008 11:02	Jamie L Brillhart	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	08/04/2008 12:13	Brian K Graham	1
02302	UST-Waters by 8260B	SW-846 8260B	1	08/07/2008 04:31	Kelly E Brickley	2
01163	GC/MS VOA Water Prep	SW-846 5030B	1	08/07/2008 04:31	Kelly E Brickley	2
06050	ICP/MS SW-846 Water	SW-846 3010A modified	1	08/06/2008 09:20	Denise K Conners	1
07786	EDB Extraction	SW-846 8011	1	07/31/2008 14:00	Kelli M Barto	1
07807	BNA Water Extraction	SW-846 3510C	1	08/01/2008 09:30	Cynthia J Stoltzfus	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5428290 WW Group No. 1103058

N-39 Grab Water

Philadelphia Refinery AOI-8

COC: 187464 N-39

Collected: 07/28/2008 11:45 by SS Account Number: 10132

Submitted: 07/30/2008 15:55 SUN: Aquaterra Tech.

Reported: 08/08/2008 at 16:31 PO Box 744

Discard: 10/08/2008 West Chester PA 19381

PR039

				As Received	As Received		
CAT			As Received	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06035	Lead	7439-92-1	< 0.0010	0.0010	0.000050	mg/l	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.029	0.029	0.0097	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	< 5.	5.	1.	ug/l	1
03956	Fluorene	86-73-7	9.	5.	1.	ug/l	1
03963	Phenanthrene	85-01-8	7.	5.	1.	ug/l	1
03967	Pyrene	129-00-0	25.	5.	1.	ug/l	1
03971	Chrysene	218-01-9	41.	5.	1.	ug/l	1
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 1.	1.	0.5	ug/l	1
05401	Benzene	71-43-2	< 1.	1.	0.5	ug/l	1
05402	1,2-Dichloroethane	107-06-2	< 1.	1.	0.5	ug/l	1
05407	Toluene	108-88-3	< 1.	1.	0.5	ug/l	1
05415	Ethylbenzene	100-41-4	< 1.	1.	0.5	ug/l	1
05420	Isopropylbenzene	98-82-8	24.	2.	0.5	ug/l	1
06310	Xylene (Total)	1330-20-7	3.	1.	0.5	ug/l	1

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09 This sample was filtered in the lab for dissolved metals. Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Chronicle

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5428290 WW Group No. 1103058

N-39 Grab Water

Philadelphia Refinery AOI-8

COC: 187464 N-39

Collected: 07/28/2008 11:45 by SS Account Number: 10132

Submitted: 07/30/2008 15:55 SUN: Aquaterra Tech.

Reported: 08/08/2008 at 16:31 PO Box 744

Discard: 10/08/2008 West Chester PA 19381

PR039

CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06035	Lead	SW-846 6020	1	08/07/2008 15:19	James R Williams II	1
07879	EDB in Wastewater	SW-846 8011	1	08/01/2008 11:32	Jamie L Brillhart	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	08/04/2008 12:37	Brian K Graham	1
02302	UST-Waters by 8260B	SW-846 8260B	1	08/07/2008 04:58	Kelly E Brickley	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	08/07/2008 04:58	Kelly E Brickley	1
06050	ICP/MS SW-846 Water	SW-846 3010A modified	l 1	08/06/2008 09:20	Denise K Conners	1
07786	EDB Extraction	SW-846 8011	1	07/31/2008 14:00	Kelli M Barto	1
07807	BNA Water Extraction	SW-846 3510C	1	08/01/2008 09:30	Cynthia J Stoltzfus	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5428291 WW Group No. 1103058

RW-202 Grab Water

Philadelphia Refinery AOI-8

COC: 187464 RW-202

Collected: 07/29/2008 11:00 by SS Account Number: 10132

Submitted: 07/30/2008 15:55 SUN: Aquaterra Tech.

Reported: 08/08/2008 at 16:31 PO Box 744

Discard: 10/08/2008 West Chester PA 19381

PR202

				As Received	As Received		
CAT			As Received	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06035	Lead	7439-92-1	< 0.0010	0.0010	0.000050	mg/l	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.029	0.029	0.0098	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	< 5.	5.	0.9	ug/l	1
03956	Fluorene	86-73-7	19.	5.	0.9	ug/l	1
03963	Phenanthrene	85-01-8	33.	5.	0.9	ug/l	1
03967	Pyrene	129-00-0	36.	5.	0.9	ug/l	1
03971	Chrysene	218-01-9	17.	5.	0.9	ug/l	1
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	2.	1.	0.5	ug/l	1
05401	Benzene	71-43-2	< 1.	1.	0.5	ug/l	1
05402	1,2-Dichloroethane	107-06-2	< 1.	1.	0.5	ug/l	1
05407	Toluene	108-88-3	1.	1.	0.5	ug/l	1
05415	Ethylbenzene	100-41-4	< 1.	1.	0.5	ug/l	1
05420	Isopropylbenzene	98-82-8	17.	2.	0.5	ug/l	1
06310	Xylene (Total)	1330-20-7	1.	1.	0.5	ug/l	1

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09 This sample was filtered in the lab for dissolved metals. Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Chronicle

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5428291 WW Group No. 1103058

RW-202 Grab Water

Philadelphia Refinery AOI-8

COC: 187464 RW-202

Collected: 07/29/2008 11:00 by SS Account Number: 10132

Submitted: 07/30/2008 15:55 SUN: Aquaterra Tech.

Reported: 08/08/2008 at 16:31 PO Box 744

Discard: 10/08/2008 West Chester PA 19381

PR202

CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06035	Lead	SW-846 6020	1	08/07/2008 15:22	James R Williams II	1
07879	EDB in Wastewater	SW-846 8011	1	08/01/2008 12:02	Jamie L Brillhart	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	08/04/2008 13:01	Brian K Graham	1
02302	UST-Waters by 8260B	SW-846 8260B	1	08/08/2008 02:23	Kelly E Brickley	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	08/08/2008 02:23	Kelly E Brickley	1
06050	ICP/MS SW-846 Water	SW-846 3010A modified	l 1	08/06/2008 09:20	Denise K Conners	1
07786	EDB Extraction	SW-846 8011	1	07/31/2008 14:00	Kelli M Barto	1
07807	BNA Water Extraction	SW-846 3510C	1	08/01/2008 09:30	Cynthia J Stoltzfus	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5428292 WW Group No. 1103058

PZ-300 Grab Water

Philadelphia Refinery AOI-8

COC: 187464 PZ-300

Collected: 07/29/2008 11:50 by SS Account Number: 10132

Submitted: 07/30/2008 15:55 SUN: Aquaterra Tech.

Reported: 08/08/2008 at 16:31 PO Box 744

Discard: 10/08/2008 West Chester PA 19381

PR300

				As Received	As Received		
CAT			As Received	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06035	Lead	7439-92-1	< 0.0010	0.0010	0.000050	mg/l	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.030	0.030	0.0099	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	< 5.	5.	1.	ug/l	1
03956	Fluorene	86-73-7	< 5.	5.	1.	ug/l	1
03963	Phenanthrene	85-01-8	< 5.	5.	1.	ug/l	1
03967	Pyrene	129-00-0	6.	5.	1.	ug/l	1
03971	Chrysene	218-01-9	< 5.	5.	1.	ug/l	1
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 1.	1.	0.5	ug/l	1
05401	Benzene	71-43-2	110.	1.	0.5	ug/l	1
05402	1,2-Dichloroethane	107-06-2	< 1.	1.	0.5	ug/l	1
05407	Toluene	108-88-3	1.	1.	0.5	ug/l	1
05415	Ethylbenzene	100-41-4	9.	1.	0.5	ug/l	1
05420	Isopropylbenzene	98-82-8	6.	2.	0.5	ug/l	1
06310	Xylene (Total)	1330-20-7	9.	1.	0.5	ug/l	1

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09 This sample was filtered in the lab for dissolved metals. Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Chronicle

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5428292 WW Group No. 1103058

PZ-300 Grab Water

Philadelphia Refinery AOI-8

COC: 187464 PZ-300

Collected: 07/29/2008 11:50 by SS Account Number: 10132

Submitted: 07/30/2008 15:55 SUN: Aquaterra Tech.

Reported: 08/08/2008 at 16:31 PO Box 744

Discard: 10/08/2008 West Chester PA 19381

PR300

CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06035	Lead	SW-846 6020	1	08/07/2008 15:25	James R Williams II	1
07879	EDB in Wastewater	SW-846 8011	1	08/01/2008 12:32	Jamie L Brillhart	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	08/04/2008 13:25	Brian K Graham	1
02302	UST-Waters by 8260B	SW-846 8260B	1	08/07/2008 05:52	Kelly E Brickley	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	08/07/2008 05:52	Kelly E Brickley	1
06050	ICP/MS SW-846 Water	SW-846 3010A modified	l 1	08/06/2008 09:20	Denise K Conners	1
07786	EDB Extraction	SW-846 8011	1	07/31/2008 14:00	Kelli M Barto	1
07807	BNA Water Extraction	SW-846 3510C	1	08/01/2008 09:30	Cynthia J Stoltzfus	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 4

Quality Control Summary

Client Name: SUN: Aquaterra Tech. Group Number: 1103058

Reported: 08/08/08 at 04:31 PM

Matrix QC may not be reported if site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

Laboratory Compliance Quality Control

Analysis Name	Blank <u>Result</u>	Blank LOQ**	Blank <u>MDL</u>	Report <u>Units</u>	LCS %REC	LCSD %REC	LCS/LCSD <u>Limits</u>	RPD	RPD Max
Batch number: 082130022A Ethylene dibromide	Sample number 0.030	per(s): 54 0.030	28282-542 0.010	8292 ug/l	92	92	60-140	0	20
Batch number: 08213WAG026	Sample numb	per(s): 54	28282-542	8292					
Naphthalene	< 5.	5.	1.	ug/l	96	97	77-107	1	30
Fluorene	< 5.	5.	1.	ug/l	96	101	82-113	5	30
Phenanthrene	< 5.	5.	1.	ug/l	101	104	83-112	3	30
Pyrene	< 5.	5.	1.	ug/l	100	106	80-115	6	30
Chrysene	< 5.	5.	1.	ug/l	95	101	82-112	6	30
Batch number: 082146050002A	Sample numb	ner(s): 54	28282-542	8285					
Lead	< 0.0010	0.0010	0.00005	mg/l	102		90-115		
Batch number: 082186050001A	Sample numb	ner(s): 54	28286-542	8292					
Lead	< 0.0010	0.0010	0.00005	mg/l	102		90-115		
Batch number: P082193AA	Sample numb	ner(s): 54	28282-542	8284,5428287	-54282	90.5428	1292		
Methyl Tertiary Butyl Ether	< 1.	1.	0.5	uq/1	91	91	73-119	0	30
Benzene	< 1.	1.	0.5	ug/l	91	90	78-119	1	30
1,2-Dichloroethane	< 1.	1.	0.5	ug/l	92	93	69-135	1	30
Toluene	< 1.	1.	0.5	ug/l	94	93	85-115	1	30
Ethylbenzene	< 1.	1.	0.5	ug/l	93	92	82-119	1	30
Isopropylbenzene	< 2.	2.	0.5	ug/l	94	93	80-113	1	30
Xylene (Total)	< 1.	1.	0.5	ug/l	95	94	83-113	1	30
Batch number: P082204AA	Sample numb	per(s): 54	28285-542	8286,5428291					
Methyl Tertiary Butyl Ether	< 1.	1.	0.5	ug/l	98		73-119		
Benzene	< 1.	1.	0.5	ug/l	96		78-119		
1,2-Dichloroethane	< 1.	1.	0.5	ug/l	95		69-135		
Toluene	< 1.	1.	0.5	ug/l	98		85-115		
Ethylbenzene	< 1.	1.	0.5	ug/l	97		82-119		
Isopropylbenzene	< 2.	2.	0.5	ug/l	97		80-113		
Xylene (Total)	< 1.	1.	0.5	ug/l	98		83-113		

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

Analysis Name	MS %REC	MSD %REC	MS/MSD <u>Limits</u>	RPD	RPD <u>MAX</u>	BKG Conc	DUP Conc	DUP <u>RPD</u>	Dup RPD <u>Max</u>
Batch number: 082130022A Ethylene dibromide	Sample	number(s)	: 5428282 65-135	-542829	2 UNSPK	C: 5428282 < 0.029	BKG: 5428283 < 0.029	0 (1)	3.0

^{*-} Outside of specification

- **-This limit was used in the evaluation of the final result for the blank
- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 4

Quality Control Summary

Client Name: SUN: Aquaterra Tech. Group Number: 1103058

Reported: 08/08/08 at 04:31 PM

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

Analysis Name	MS %REC	MSD %REC	MS/MSD <u>Limits</u>	RPD	RPD <u>MAX</u>	BKG Conc	DUP Conc	DUP RPD	Dup RPD <u>Max</u>
Batch number: 082146050002A Lead	Sample 102	number(s) 191*	: 5428282 75-125	-542828 50*	5 UNSPK 20	C: P427002 0.0046	BKG: P427002 0.0048	3 (1)	20
Batch number: 082186050001A Lead	Sample 102	number(s)		-542829 1	2 UNSPK 20	C: P430633 < 0.0010	BKG: P430633 < 0.0010	6 (1)	20
Batch number: P082193AA Methyl Tertiary Butyl Ether Benzene 1,2-Dichloroethane Toluene Ethylbenzene Isopropylbenzene Xylene (Total)	Sample 96 100 97 103 101 99	number(s)	: 5428282 69-127 83-128 70-143 83-127 82-129 81-130 82-130	-542828	4,54282	87-542829(),5428292 UNS	PK: 5428283	
Batch number: P082204AA Methyl Tertiary Butyl Ether Benzene 1,2-Dichloroethane Toluene Ethylbenzene Isopropylbenzene Xylene (Total)	Sample 113 (2) 109 108 109 111 110	number(s) 106 (2) 107 105 108 108 107 108		-542828 1 1 3 1 3 3 2	6,54282 30 30 30 30 30 30 30 30 30	91 UNSPK:	P427882		

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: EDB in Wastewater Batch number: 082130022A

1,1,2,2-

Tetrachloroethane

5428282	86
5428283	162*
5428284	137*
5428285	88
5428286	93
5428287	99
5428288	137*
5428289	116
5428290	117
5428291	89
5428292	138*
Blank	105
DUP	160*
LCS	103
LCSD	104

- *- Outside of specification
- **-This limit was used in the evaluation of the final result for the blank
- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 3 of 4

Quality Control Summary

Client Name: SUN: Aquaterra Tech. Group Number: 1103058

Reported: 08/08/08 at 04:31 PM

Surrogate Quality Control

MS	87			
Limits:	46-136			
Analysis N	Name: PAHs in Water by GC/	MS		
Batch numb	er: 08213WAG026			
	Nitrobenzene-d5	2-Fluorobiphenyl	Terphenyl-d14	
5428282	93	90	91	
5428283	100	99	95	
5428284	99	95	81	
5428285	129*	94	89	
5428286	136*	94	87	
5428287	95	98	95	
5428288	102	63	95	
5428289	98	91	90	
5428290	103	96	90	
5428291	128*	88	88	
5428292	106	94	92	
Blank	100	97	90	
LCS	102	98	89	
LCSD	104	100	94	
цсар	104	100	94	
Limits:	44-127	63-114	30-126	
Analysis N	Tame: UST-Waters by 8260B			
Batch numb	per: P082193AA			
	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
5428282	89	84	92	92
5428283	89	84	89	89
5428284	91	84	91	90
5428287	90	85	91	91
5428288	91	85	93	94
5428289	92	87	91	91
5428290	92	85	90	94
5428292	91	86	93	103
Blank	91	85	92	90
LCS	90	87	92	91
	90			90
LCSD		88	92	
MS	90	87	90	93
Limits:	80-116	77-113	80-113	78-113
Analyssis N	lamo. Her Waters by 0260D			
	Name: UST-Waters by 8260B			
Batch numb		1 0 0 0	m-1 10	4. D
	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
5428285	98	98	97	90
	20	30		90
5428286	99	95	96	93
5428286 5428291				
	99	95	96	93
5428291 Blank	99 99 98	95 98 96	96 98 98	93 91 88
5428291 Blank LCS	99 99 98 99	95 98 96 99	96 98 98 97	93 91 88 91
5428291 Blank LCS MS	99 99 98 99 99	95 98 96 99 101	96 98 98 97 95	93 91 88 91 92
5428291 Blank LCS	99 99 98 99	95 98 96 99	96 98 98 97	93 91 88 91

*- Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 4 of 4

Quality Control Summary

Client Name: SUN: Aquaterra Tech. Reported: 08/08/08 at 04:31 PM

Group Number: 1103058

Surrogate Quality Control

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

For Lancaster Laboratories use only

Acct. # 10130 Group# 1103058 sample #H28382-92 COC # 187464

		Please print. In	struction	ons on	reverse	side co	rrespo	\$2.70.00000000	** North Assessed				For Lab Use	a Out	
(1)						-1		(!			s Requ	444	FSC:	# Only	
Client: SUNOLO, AquaTella	Acct. #:			-	Matrix	+(4)			Pre	servat	ion Co	des	SCR#:		
Project Name/#: A01-8 Philly & Project Manager: Tiffan, Doetr	<i>efiner</i> PWSID P.O.#:_	#:		_	Check if	92								on Codes T=Thiosulfate B=NaOH	6
Sampler: Mike Hinderling	Quote #	t·			e g	alne			9				S =H₂SO₄		8
Name of state where samples were collected:				2	Pot T	8		3	722						Idwes
Sample Identification	Date Collected	Time Collected	Grab.	Composi	Valer	Other Total # of	12 T. A.S.	46	PAHS	8011			Remarks		emperature p
N-60	7/25/08	1255	X		12	P	X	メ	×	X				-	1.7-3.3
N-44D	7/25/08	1345	X		x	8	X	X	X	X					1
N - 115	7/28/08	850	X		×	8	X	X	X	X	1-				
N-41	7/28/08	930	1		と	2		×	X	X	_				-
					-		 	1			_				V_
		-			1										
					1 1	Ť					_				
	-	-		_		+				-					· · ·
			\vdash							_	- -			<u> </u>	
				- -											
Turnaround Time Requested (TAT) (please (Rush TAT is subject to Lancaster Laboratories app Date results are needed:			R	elingui M	ished b	y. Abe				Date	Time	Received by:	<u> </u>		Time (
Rush results requested by (please circle): F		E-mail			shed b					Date /		Received by:		7 17 1	Time
Phone #:Fax #:			-		RIX		,		9	430/b		Som o	tulk	734	Q 125
E-mail address:	 		_	~~~	shed b	C 7.1				Date		Received by	,		Time
Data Package Options (please circle if required Type I (validation/NJ Reg) TX TRRP-13) SD	G Complete?	<u> </u>		m	777	4	X (The	fere	<u> 7/30/l</u>	8/2/
Type II (Tier II) MA MCP CT	RCP		R	· : 1	shed b	' //	_	0	_ [Date	Time	Received by		/ pate	
Type III (Reduced NJ) Type IV (CLP SOW) Site-specific QC ((If yes, indicate QC sample and su		Yes No	1		Les				7/3		153.				
Type IV (CLP SOW) Type VI (Raw Data Only) (If yes, indicate Oc sample and su Internal COC Re-			_ R∙	elinqui	she ti/b i	(Date	Time	Received by:	an m	- Ma Date	Time
	tor Laboratorias					7						-NU 2	ey "	WW /154	B 1553

For Lancaster Laboratories use only Acct. # 10132 Group# 1103058 Sample # 5498282-92 COC # 187466

	• Laboratorics	Р	lease print. Ins	tructions	on rev	/ers e s i	de cor	respo	nd with	circle	d numb	ers.				
لح			<u> </u>					110000	(!	# NO.25 WAS	*********	s Reque) A	For Lab Use Only FSC:		-
ì	Client: SUN- AQUATERRA	Acct. #:			N	latrix	(4)	.	,	Pre	servat	ion Cod	es	SCR#:		
	Project Name/#: PHILA REF AOI-9		#:			eck if	Ĭ	<u> </u>	2	8				Preservation Codes H=HCl T=Thiosu	lfate	(6)
	Project Manager: T. DOERR					ම හ දිදු	ners	70700		8270				N=HNO ₃ B=NaOH S=H ₂ SO ₄ O=Other		, §
	Sampler: 5,57KES	Quote #	:			Bal	12			64/28	8				 	기출필
	Name of state where samples were collected: _	PA		(3) #			8	(-(-2)4)	Lead	29 7	FDB					of (if rec
\	Sample Identification	Date Collected	Time Collected	Grab	108	Water	Total #	2		PBH,				Remarks		Temperatu upon moel
	N-53	7/28/08	930	X		X	8	3	1	2	2				2.	<u>1-3.3°</u>
	N-55		1000			1					1					
	N-132		1030				- []		1/							
	N-131		1100						П	Π	Ш					
	N-39		1145			1										グー
	77 91	1		<u> </u>	1		1	İ –	1	† †						
							+	1	1						-	
		 			+	- +		 		1						
				<u> </u>			+	 								
					1 1			-								
6	Turnaround Time Requested (TAT) (please of	ircle): (Norma	al) Rush	Re	linguis	shed b	<u>'</u> γ:	<u> </u>	<u> </u>		Date	Time	Received by:		Date ₁	Time (9
Ÿ	(Rush TAT is subject to Lancaster Laboratories appr	oval and surcha	lfge.)		21	n I	1 ac	1A	QUAT	erra	71281	08 140C	ATPLI	Rχί	7/28/8	1400
	Date results are needed:	nono Fay	E-mail			shed b		•			Date	4	Received by:		Date	
	Rush results requested by (please circle): Phone #:Fax #:				AT	ρ_{l}	106	۴,	1		7/39	125	Kray	tulf	7/30/0	1215
_	E-mail address:			Re		hed/6		//	/		Date		Received/by:	1	, , , ,	Time
8	Data Package Options (please circle if required)	SD	G Complete?	7/	Trei	$\mathcal{C}X$	M	K			7/30	9/4/2/5	J. Les	lever 7x	30/08	12/5
	Type I (validation/NJ Reg) TX TRRP-13	1 1	es) No	Re	inquis	hed	y: 🎤	_			Date	Time	Received by:		Date	Time
	Type II (Tier II) Type III (Reduced NJ) MA MCP CT S Site-specific QC (6)		Yes No	\pm	P.0	Lea	lev	n		7/3	0/0	8 155				
	Type IV (CLP SOW) (If yes, indicate QC sample and subn	nit triplicate volume.)		Re		shedb				\mathcal{T}	Date	Time	Received by:	2 1m 1/10 m of	Date	
	Type VI (Raw Data Only) Internal COC Req	juired? Yes / No)			\propto							Westo	zo miller	7/3:48	<i>US</i> 3

Acct. # 10132

For Lancaster Laboratories use only Group# 1103058 sample # 5428282-93 COC # 187461

7	1) Client: SUN-AQUATERRA	Acct #				Matrib			(5	A:::::::::::::::::::::::::::::::::::::	WARPER BANKS	s Reque ion Cod		For Lab Use Only FSC: SCR#:	
	Project Name/#: PHILA REF ACT Project Manager: T. DOERR Sampler: S. SYICES Name of state where samples were collected:	P.O.#:Quote #	#:			Potable Check if	f Containers	Unleaded 82406	ead	by 64ms	רח			Preservation Codes H=HCl T=Thiosul N=HNO ₃ B=NaOH S=H ₂ SO ₄ O=Other	N O
	2 Sample identification	Date Collected	Time Collected	Grab (Soil	Water	Office: Total # c	æ		PAHS				Remarks	Tampedus (
	RW-202 PZ-300	7/29/08 7/29/08	1100 1150	X		X	& ₩	3)	2	2				2.7-3.3
		, ,													
															<u></u>
7	Turnaround Time Requested (TAT) (please	sizele). Alexand	J. Duch			`						 			· · · · · · · · · · · · · · · · · · ·
7	(Rush TAT is subject to Lancaster Laboratories applicate results are needed:	· ·			عد		de	_//	400	ALEKA		8 1400	Received by:	36E	Date Time (
	Rush results requested by (please circle): P Phone #:Fax #:			1	17	/_	06E		<u> </u>		Date	1 1215	Received by	ronk	Date Time 1265
] B	E-mail address:	Ye	G Complete?	, T/2	XVI	ished 	M	K			Date Date	0 /215	Received by	fever 7/3	Date Time
	Type II (Tier II) Type III (Reduced NJ) Type IV (CLP SOW) Type VI (Raw Data Only) MA MCP CT Site-specific QC (If yes, indicate ∞ sample and sub Internal COC Red	vrit triplicate volume.)		\	J., elinqui	ishedi l	evi py:	<u>~</u>		7/3	08 Date		Ţ	ery millen	Pate Time

Lancaster Laboratories Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

N.D.	none detected	BMQL	Below Minimum Quantitation Level
TNTC	Too Numerous To Count	MPN	Most Probable Number
IU	International Units	CP Units	cobalt-chloroplatinate units
umhos/cm	micromhos/cm	NTU	nephelometric turbidity units
С	degrees Celsius	F	degrees Fahrenheit
Cal	(diet) calories	lb.	pound(s)
meq	milliequivalents	kg	kilogram(s)
g	gram(s)	mg	milligram(s)
ug	microgram(s)	I	liter(s)
ml	milliliter(s)	ul	microliter(s)
m3	cubic meter(s)	fib >5 um/ml	fibers greater than 5 microns in length per ml

- < less than The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.
- > greater than
- ppm parts per million One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.

Inorganic Qualifiers

- ppb parts per billion
- **Dry weight**Results printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture.

U.S. EPA data qualifiers:

9	lifier	(uu	9	 u	" 9	•

A B C D E	TIC is a possible aldol-condensation product Analyte was also detected in the blank Pesticide result confirmed by GC/MS Compound quatitated on a diluted sample Concentration exceeds the calibration range of the instrument	B E M N S	Value is <crdl, (msa)="" additions="" amount="" but="" calculation<="" control="" due="" duplicate="" estimated="" for="" injection="" interference="" limits="" met="" method="" not="" of="" precision="" spike="" standard="" th="" to="" used="" within="" ≥idl=""></crdl,>
J	Estimated value	U	Compound was not detected
N	Presumptive evidence of a compound (TICs only)	W	Post digestion spike out of control limits
Р	Concentration difference between primary and	*	Duplicate analysis not within control limits
	confirmation columns >25%	+	Correlation coefficient for MSA < 0.995
U	Compound was not detected		
X,Y,Z	Defined in case narrative		

Analytical test results for methods listed on the laboratories' accreditation scope meet all requirements of NELAC unless otherwise noted under the individual analysis.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

WARRANTY AND LIMITS OF LIABILITY – In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL LANCASTER LABORATORIES BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF LANCASTER LABORATORIES AND (B) WHETHER LANCASTER LABORATORIES HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Lancaster Laboratories which includes any conditions that vary from the Standard Terms and Conditions of Lancaster Laboratories and we hereby object to any conflicting terms contained in any acceptance or order submitted by client.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

ANALYTICAL RESULTS

Prepared for:

SUN: Aquaterra Tech. PO Box 744 West Chester PA 19381

610-431-5733

Prepared by:

Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425

SAMPLE GROUP

The sample group for this submittal is 1104406. Samples arrived at the laboratory on Thursday, August 07, 2008. The PO# for this group is SUNOCO PHILLY REFINER.

Client DescriptionLancaster Labs NumberS-117 Grab Water5435926

ELECTRONIC SUN: Aquaterra Tech. Attn: Kevin Martin

COPY TO

ELECTRONIC Langan Attn: Joseph Catricks

COPY TO

ELECTRONIC SUN: Aquaterra Tech. Attn: Tiffani Doerr

COPY TO

ELECTRONIC LLI Attn: EDD Group

COPY TO

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681• www.lancasterlabs.com

Questions? Contact your Client Services Representative Jessica A Oknefski at (717) 656-2300

Respectfully Submitted,

Christine Dulaney Senior Specialist

West Chester PA 19381

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Lancaster Laboratories Sample No. 5435926 WW Group No. 1104406

S-117 Grab Water

Philadelphia Refinery AOI-1 DUNS# COC: 188637 S-117

Collected: 08/06/2008 11:45 by SS Account Number: 10132

Submitted: 08/07/2008 16:15 SUN: Aquaterra Tech.

Reported: 08/15/2008 at 18:58 PO Box 744

Discard: 10/15/2008

S-117

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Limit of Quantitation*	As Received Method Detection Limit	Units	Dilution Factor
02300	UST-Unleaded Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	89.	10.	5.	ug/l	10
05401	Benzene	71-43-2	7,400.	50.	25.	ug/l	50
05407	Toluene	108-88-3	43.	10.	5.	ug/l	10
05415	Ethylbenzene	100-41-4	900.	10.	5.	ug/l	10
06310	Xylene (Total)	1330-20-7	69.	10.	5.	ug/l	10

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09 Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Chronicle

CAT		_		Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
02300	UST-Unleaded Waters by 8260B	SW-846 8260B	1	08/15/2008 04:48	Kathrine K Muramatsu	10
02300	UST-Unleaded Waters by 8260B	SW-846 8260B	1	08/15/2008 05:15	Kathrine K Muramatsu	50
01163 01163	GC/MS VOA Water Prep GC/MS VOA Water Prep	SW-846 5030B SW-846 5030B	1 2	08/15/2008 04:48 08/15/2008 05:15	Kathrine K Muramatsu Kathrine K Muramatsu	
	_					

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Quality Control Summary

Client Name: SUN: Aquaterra Tech. Group Number: 1104406

Reported: 08/15/08 at 06:58 PM

Matrix QC may not be reported if site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

Laboratory Compliance Quality Control

Analysis Name	Blank <u>Result</u>	Blank <u>LOQ**</u>	Blank <u>MDL</u>	Report <u>Units</u>	LCS %REC	LCSD %REC	LCS/LCSD <u>Limits</u>	RPD	RPD Max
Batch number: P082273AA	Sample nu	umber(s): 5	435926						
Methyl Tertiary Butyl Ether	< 1.	1.	0.5	ug/l	94	93	73-119	1	30
Benzene	< 1.	1.	0.5	ug/l	94	91	78-119	3	30
Toluene	< 1.	1.	0.5	ug/l	92	91	85-115	1	30
Ethylbenzene	< 1.	1.	0.5	ug/l	91	88	82-119	3	30
Xylene (Total)	< 1.	1.	0.5	ug/l	93	93	83-113	0	30

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

Analysis Name	MS <u>%REC</u>		MSD <u>nits</u> <u>RPD</u>	RPD <u>MAX</u>	BKG Conc	DUP <u>Conc</u>	DUP <u>RPD</u>	Dup RPD <u>Max</u>
Batch number: P082273AA	Sample	number(s): 54	135926 UNSPK	: P4380	31			
Methyl Tertiary Butyl Ether	96	69-	127					
Benzene	99	83-	128					
Toluene	101	83-	127					
Ethylbenzene	98	82-	129					
Xylene (Total)	101	82-	130					

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: UST-Unleaded Waters by 8260B

Batch number: P082273AA

Daceir Irani	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
5435926	93	86	89	88
Blank	91	86	89	88
LCS	93	85	88	88
LCSD	91	88	88	87
MS	93	90	88	90
Limits:	80-116	77-113	80-113	78-113

*- Outside of specification

- **-This limit was used in the evaluation of the final result for the blank
- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

{	1) Client: SUN- AQUATERRA		rease print, ins				/atrix) A	n alys e	es l	Requ∈ n Cod			<u> </u>	For Lab FSC: SCR#:	Use Only	<i>'</i>		
	Project Name/#: PHREF AOI-1 Project Manager: T. DOERR Sampler: S. SY k ES Name of state where samples were collected:	PWSID P.O.#: _ Quote #	#:		_		Potable Checkif		Containers	82606 MFBE];	H=HCI N=HNO3		iosulfate iOH		f samples (O)
	2) Sample Identification	Date Collected	Time Collected	(Srab	Composit	Jeg		Other	Total # of	Phu6 82									Remar	ks			Temperature o upon receipt (if
	S-117	216108	1145	X		-	X		3	X					<u> </u>		<u> </u>	17	ting	p/.	700		
																		1					
					+			-											·				
					1														- · · · ·				
																•							
7	Turnaround Time Requested (TAT) (please of (Rush TAT is subject to Lancaster Laboratories appropriate results are needed:	oval and surcha		L		<u>ک</u>		2	n	· /,	4QU)Térq	Date 8/6/	102	Time 530	F	tau	<u> </u>		FRIDG	Dat 816 1	e Tii	me (9 538
	Rush results requested by (please circle): Pr Phone #:Fax #:	none Fax	E-mail		F	17	hed b	er	6	Ε	.		Date		Time OKO				wh	6	Dat 8/7		me OGJO
3	E-mail address:	SD	G Complete?	\exists	N	V	_ / /	H	11	¶	>		Date	• '	Time	Rege	ived b	in /	ne	· ·	7/0/	e Tii	me 150
	Type I (validation/NJ Reg) TX TRRP-13 Type II (Tier II) MA MCP CT F Site-specific QC (N	RCP	s No		teline	Huisi	heg b	y: Je	1/2	es	,	81	Date		Time						Dat	_	me
	Type IV (CLP SOW) Type VI (Raw Data Only) Internal COC Requ	nt triplicate volume.j		R			heo	_	<u> </u>				/Date		Time	Rece	ived b	у: 9 Ч	Zin	lle	\$ 5 ² 1	# Till	me [5]

Lancaster Laboratories Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

N.D.	none detected	BMQL	Below Minimum Quantitation Level
TNTC	Too Numerous To Count	MPN	Most Probable Number
IU	International Units	CP Units	cobalt-chloroplatinate units
umhos/cm	micromhos/cm	NTU	nephelometric turbidity units
С	degrees Celsius	F	degrees Fahrenheit
Cal	(diet) calories	lb.	pound(s)
meq	milliequivalents	kg	kilogram(s)
g	gram(s)	mg	milligram(s)
ug	microgram(s)	1	liter(s)
ml	milliliter(s)	ul	microliter(s)
m3	cubic meter(s)	fib >5 um/ml	fibers greater than 5 microns in length per ml

- < less than The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.
- > greater than
- ppm parts per million One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.

Inorganic Qualifiers

- ppb parts per billion
- **Dry weight**Results printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture.

U.S. EPA data qualifiers:

9	lifier	(uu	9	 u	" 9	•

A B C D E	TIC is a possible aldol-condensation product Analyte was also detected in the blank Pesticide result confirmed by GC/MS Compound quatitated on a diluted sample Concentration exceeds the calibration range of the instrument	B E M N S	Value is <crdl, (msa)="" additions="" amount="" but="" calculation<="" control="" due="" duplicate="" estimated="" for="" injection="" interference="" limits="" met="" method="" not="" of="" precision="" spike="" standard="" th="" to="" used="" within="" ≥idl=""></crdl,>
J	Estimated value	U	Compound was not detected
N	Presumptive evidence of a compound (TICs only)	W	Post digestion spike out of control limits
Р	Concentration difference between primary and	*	Duplicate analysis not within control limits
	confirmation columns >25%	+	Correlation coefficient for MSA < 0.995
U	Compound was not detected		
X,Y,Z	Defined in case narrative		

Analytical test results for methods listed on the laboratories' accreditation scope meet all requirements of NELAC unless otherwise noted under the individual analysis.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

WARRANTY AND LIMITS OF LIABILITY – In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL LANCASTER LABORATORIES BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF LANCASTER LABORATORIES AND (B) WHETHER LANCASTER LABORATORIES HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Lancaster Laboratories which includes any conditions that vary from the Standard Terms and Conditions of Lancaster Laboratories and we hereby object to any conflicting terms contained in any acceptance or order submitted by client.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

ANALYTICAL RESULTS

Prepared for:

SUN: Aquaterra Tech. PO Box 744 West Chester PA 19381

610-431-5733

Prepared by:

Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425

SAMPLE GROUP

The sample group for this submittal is 1104407. Samples arrived at the laboratory on Thursday, August 07, 2008. The PO# for this group is PHILADELPHIA.

Client DescriptionLancaster Labs NumberN-59 Grab Water5435927N-97 Grab Water5435928

ELECTRONIC SUN: Aquaterra Tech. Attn: Kevin Martin

COPY TO

ELECTRONIC Langan Attn: Joseph Catricks

COPY TO

ELECTRONIC SUN: Aquaterra Tech. Attn: Tiffani Doerr

COPY TO

ELECTRONIC LLI Attn: EDD Group

COPY TO

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Questions? Contact your Client Services Representative Jessica A Heun at (717) 656-2300

Respectfully Submitted,

Chad Moline

Chad A. Moline Group Leader

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5435927 WW Group No. 1104407

N-59 Grab Water

Philadelphia Refinery AOI-8 DUNS# COC: 187350 N-59

Collected: 08/06/2008 13:00 by SS Account Number: 10132

Submitted: 08/07/2008 16:15 SUN: Aquaterra Tech.

Reported: 08/12/2008 at 14:27 PO Box 744

Discard: 10/12/2008 West Chester PA 19381

N59--

CAT	Annal and a Wanna	G1G Worth on	As Received	As Received Limit of	As Received Method	*****	Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06035	Lead	7439-92-1	< 0.0010	0.0010	0.000050	mg/1	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.030	0.030	0.010	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	< 5.	5.	1.	ug/l	1
03956	Fluorene	86-73-7	< 5.	5.	1.	ug/l	1
03963	Phenanthrene	85-01-8	< 5.	5.	1.	ug/l	1
03967	Pyrene	129-00-0	< 5.	5.	1.	ug/l	1
03971	Chrysene	218-01-9	< 5.	5.	1.	ug/l	1
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 1.	1.	0.5	ug/l	1
05401	Benzene	71-43-2	98.	1.	0.5	ug/l	1
05402	1,2-Dichloroethane	107-06-2	< 1.	1.	0.5	ug/l	1
05407	Toluene	108-88-3	< 1.	1.	0.5	ug/l	1
05415	Ethylbenzene	100-41-4	3.	1.	0.5	ug/l	1
05420	Isopropylbenzene	98-82-8	2.	2.	0.5	ug/l	1
06310	Xylene (Total)	1330-20-7	4.	1.	0.5	ug/l	1

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09 This sample was filtered in the lab for dissolved metals. Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Chronicle

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5435927 WW Group No. 1104407

N-59 Grab Water

Philadelphia Refinery AOI-8 DUNS# COC: 187350 N-59

Collected: 08/06/2008 13:00 by SS Account Number: 10132

Submitted: 08/07/2008 16:15 SUN: Aquaterra Tech.

Reported: 08/12/2008 at 14:27 PO Box 744

Discard: 10/12/2008 West Chester PA 19381

N59--

CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06035	Lead	SW-846 6020	1	08/12/2008 11:35	James R Williams II	1
07879	EDB in Wastewater	SW-846 8011	1	08/09/2008 09:22	Mark E McNulty	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	08/08/2008 17:17	Linda M Hartenstine	1
02302	UST-Waters by 8260B	SW-846 8260B	1	08/11/2008 12:52	Daniel H Heller	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	08/11/2008 12:52	Daniel H Heller	1
06050	ICP/MS SW-846 Water	SW-846 3010A modifie	d 1	08/10/2008 19:40	James L Mertz	1
07786	EDB Extraction	SW-846 8011	1	08/08/2008 14:45	Kelli M Barto	1
07807	BNA Water Extraction	SW-846 3510C	1	08/08/2008 09:15	Kevin P Love	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. 5435928 WW Group No. 1104407

N-97 Grab Water

Philadelphia Refinery AOI-8 DUNS# COC: 187350 N-97

Collected: 08/06/2008 14:00 by SS Account Number: 10132

Submitted: 08/07/2008 16:15 SUN: Aquaterra Tech.

Reported: 08/12/2008 at 14:27 PO Box 744

Discard: 10/12/2008 West Chester PA 19381

N97--

				As Received	As Received		
CAT			As Received	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06035	Lead	7439-92-1	< 0.0010	0.0010	0.000050	mg/1	1
07879	EDB in Wastewater						
						/7	_
01087	Ethylene dibromide	106-93-4	< 0.029	0.029	0.0097	ug/l	1
07805	PAHs in Water by GC/MS						
07803	PARS III Water by GC/MS						
03947	Naphthalene	91-20-3	50.	5.	1.	ug/l	1
03956	Fluorene	86-73-7	13.	5.	1.	ug/l	1
03963	Phenanthrene	85-01-8	45.	5.	1.	ug/l	1
03967	Pyrene	129-00-0	10.	5.	1.	ug/l	1
03971	Chrysene	218-01-9	6.	5.	1.	ug/l	1
	The LCS recovery is outside the	e stated QC w	indow but with:	in the marginal			
	exceedance allowance of $+/-4$	standard devi	ations as defin	ned in the NELAC			
	Standards. The following analy	ytes are acce	pted based on t	this allowance:			
	phenanthrene						
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 1.	1.	0.5	uq/l	1
05401	Benzene	71-43-2	2.	1.	0.5	ug/1	1
05401	1,2-Dichloroethane	107-06-2	< 1.	1.	0.5	ug/1	1
05402	Toluene	108-88-3	< 1.	1.	0.5	ug/1	1
05415	Ethylbenzene	100-41-4	< 1.	1.	0.5	ug/1 ug/l	1
05415	Isopropylbenzene	98-82-8	140.	2.	0.5	ug/1 ug/l	1
06310	Xylene (Total)	1330-20-7	< 1.	1.	0.5	ug/1 ug/l	1
00310	Ayrene (10car)	1330-20-7	< Ι.	1.	0.5	ug/I	T

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/09 This sample was filtered in the lab for dissolved metals. Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. 5435928 WW Group No. 1104407

N-97 Grab Water

Philadelphia Refinery AOI-8 DUNS# COC: 187350 N-97

Collected: 08/06/2008 14:00 by SS Account Number: 10132

Submitted: 08/07/2008 16:15 SUN: Aquaterra Tech.

Reported: 08/12/2008 at 14:27 PO Box 744

Discard: 10/12/2008 West Chester PA 19381

N97--

Laboratory Chronicle

		Haboracory	CIII O	111010		
CAT		-		Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
0603	5 Lead	SW-846 6020	1	08/12/2008 11:37	James R Williams II	1
07879	EDB in Wastewater	SW-846 8011	1	08/09/2008 10:22	Mark E McNulty	1
0780	PAHs in Water by GC/MS	SW-846 8270C	1	08/08/2008 17:40	Linda M Hartenstine	1
02302	UST-Waters by 8260B	SW-846 8260B	1	08/12/2008 11:29	Daniel H Heller	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	08/12/2008 11:29	Daniel H Heller	1
06050	O ICP/MS SW-846 Water	SW-846 3010A modified	1	08/10/2008 19:40	James L Mertz	1
0778	EDB Extraction	SW-846 8011	1	08/08/2008 14:45	Kelli M Barto	1
0780	7 BNA Water Extraction	SW-846 3510C	1	08/08/2008 09:15	Kevin P Love	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 3

Quality Control Summary

Client Name: SUN: Aquaterra Tech. Group Number: 1104407

Reported: 08/12/08 at 02:27 PM

Matrix QC may not be reported if site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

Laboratory Compliance Quality Control

Analysis Name	Blank <u>Result</u>	Blank LOQ**	Blank <u>MDL</u>	Report <u>Units</u>	LCS %REC	LCSD %REC	LCS/LCSD <u>Limits</u>	RPD	RPD Max
Batch number: 082210007A Ethylene dibromide	Sample num < 0.030	ber(s): 54 0.030	135927-543 0.010	5928 ug/l	92	88	60-140	5	20
Batch number: 082216050001A Lead	Sample num < 0.0010	ber(s): 54 0.0010	135927-543 0.00005 0	5928 mg/l	103		90-115		
Batch number: 08221WAA026	Sample num	ber(s): 54	135927-543	5928					
Naphthalene	< 5.	5.	1.	ug/l	93	100	77-107	7	30
Fluorene	< 5.	5.	1.	ug/l	99	103	82-113	4	30
Phenanthrene	< 5.	5.	1.	ug/l	110	113*	83-112	3	30
Pyrene	< 5.	5.	1.	ug/l	109	115	80-115	5	30
Chrysene	< 5.	5.	1.	ug/l	101	105	82-112	4	30
Batch number: P082241AA	Sample num	ber(s): 54	135927						
Methyl Tertiary Butyl Ether	< 1.	1.	0.5	ug/l	95	94	73-119	1	30
Benzene	< 1.	1.	0.5	ug/l	94	95	78-119	1	30
1,2-Dichloroethane	< 1.	1.	0.5	ug/l	94	95	69-135	1	30
Toluene	< 1.	1.	0.5	ug/l	92	93	85-115	1	30
Ethylbenzene	< 1.	1.	0.5	ug/l	90	91	82-119	1	30
Isopropylbenzene	< 2.	2.	0.5	ug/l	91	92	80-113	1	30
Xylene (Total)	< 1.	1.	0.5	ug/l	92	94	83-113	2	30
Batch number: P082252AA	Sample num	ber(s): 54	135928						
Methyl Tertiary Butyl Ether	< 1.	1.	0.5	uq/l	100	100	73-119	0	30
Benzene	< 1.	1.	0.5	uq/l	99	98	78-119	1	30
1,2-Dichloroethane	< 1.	1.	0.5	uq/l	99	97	69-135	3	30
Toluene	< 1.	1.	0.5	ug/l	99	98	85-115	1	30
Ethylbenzene	< 1.	1.	0.5	ug/l	98	98	82-119	0	30
Isopropylbenzene	< 2.	2.	0.5	ug/l	101	99	80-113	1	30
Xylene (Total)	< 1.	1.	0.5	ug/l	102	100	83-113	2	30

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

Analysis Name	MS %REC	MSD %REC	MS/MSD <u>Limits</u>	RPD	RPD <u>MAX</u>	BKG Conc	DUP <u>Conc</u>	DUP <u>RPD</u>	Dup RPD <u>Max</u>
Batch number: 082210007A Ethylene dibromide	Sample:	number(s)	: 5435927 65-135	-543592	8 UNSP		BKG: 5435928 < 0.029	0 (1)	30
Batch number: 082216050001A Lead	Sample :	number(s) 100	: 5435927 75-125				BKG: P435033	7 (1)	20

^{*-} Outside of specification

- **-This limit was used in the evaluation of the final result for the blank
- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 2 of 3

Quality Control Summary

Client Name: SUN: Aquaterra Tech. Group Number: 1104407

Reported: 08/12/08 at 02:27 PM

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

MS	MSD	MS/MSD		RPD	BKG	DUP	DUP	Dup RPD
%REC	%REC	<u>Limits</u>	RPD	MAX	Conc	Conc	RPD	<u>Max</u>
Sample	number(s)	: 5435927	UNSPK:	P4332	19			
98		69-127						
103		83-128						
100		70-143						
98		83-127						
98		82-129						
100		81-130						
99		82-130						
Sample	number(s)	: 5435928	UNSPK:	P4336	95			
100		69-127						
103		83-128						
100		70-143						
106		83-127						
105		82-129						
108		81-130						
107		82-130						
	**REC Sample 98 103 100 98 98 100 99 Sample 100 103 100 106 105 108 108	<pre>%REC %REC Sample number(s) 98 103 100 98 98 100 99 Sample number(s) 100 103 100 106 105 108</pre>	%REC %REC Limits Sample number(s): 5435927 98 69-127 103 83-128 100 70-143 98 83-127 98 82-129 100 81-130 99 82-130 Sample number(s): 5435928 100 69-127 103 83-128 100 70-143 106 83-127 105 82-129 108 81-130	%REC %REC Limits RPD Sample number(s): 5435927 UNSPK: 98 69-127 103 83-128 100 - 143 98 83-127 98 82-129 100 - 127 98 82-129 100 - 130 83-128 UNSPK: 100 - 127 103 - 128 100 - 70-143 83-128 100 - 70-143 106 - 83-127 105 - 82-129 105 - 82-129 108 - 81-130 81-1	%REC %REC Limits RPD MAX Sample number(s): 5435927 UNSPK: P4332 98 69-127 UNSPK: P4332 100 70-143 Factorial Street	%REC %REC Limits RPD MAX Conc Sample number(s): 5435927 UNSPK: P433219 98 69-127 103 83-128 100 70-143 98 83-127 98 82-129 100 81-130 99 82-130 Sample number(s): 5435928 UNSPK: P433695 100 69-127 103 83-128 100 70-143 106 83-127 105 82-129 108 81-130	%REC %REC Limits RPD MAX Conc Sample number(s): 5435927 UNSPK: P433219 98 69-127 103 83-128 100 70-143 98 83-127 98 82-129 100 81-130 99 82-130 Sample number(s): 5435928 UNSPK: P433695 100 69-127 103 83-128 100 70-143 106 83-127 105 82-129 108 81-130	%REC %REC Limits RPD MAX Conc Conc RPD Sample number(s): 5435927 UNSPK: P433219 83-127 98 69-127 98 83-128 98 98-127 98 82-129 98 82-129 99 82-130 99 82-130 83-128 99 82-130 99 82-129 98 99 99 82-130 99

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: EDB in Wastewater

Batch number: 082210007A 1,1,2,2-

Tetrachloroethane

5435927	104
5435928	93
Blank	106
DUP	78
LCS	107
LCSD	104
MS	100

Limits: 46-136

Analysis Name: PAHs in Water by GC/MS

Batch number: 08221WAA026

	Nitrobenzene-d5	2-Fluorobiphenyl	Terphenyl-d14	
5435927	68	77	86	
5435928	86	95	90	
Blank	86	101	112	
LCS	82	97	104	
LCSD	86	102	109	
Limits:	44-127	63-114	30-126	

*- Outside of specification

- **-This limit was used in the evaluation of the final result for the blank
- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681• www.lancasterlabs.com

Page 3 of 3

Quality Control Summary

Client Name: SUN: Aquaterra Tech. Group Number: 1104407

Reported: 08/12/08 at 02:27 PM

Surrogate Quality Control

Analysis Name: UST-Waters by 8260B

	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzen
5435927	90	82	89	89
Blank	93	85	87	90
LCS	94	87	88	89
LCSD	93	87	88	90
MS	93	88	88	90
Limits:	80-116	77-113	80-113	78-113
	Name: UST-Waters by 8260B			
	Name: UST-Waters by 8260B Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzen
Batch numl	per: P082252AA	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzen
Batch numl 5435928	per: P082252AA Dibromofluoromethane	·		
Batch numk 5435928 Blank	per: P082252AA Dibromofluoromethane	98	100	100
Batch numb 5435928 Blank LCS	per: P082252AA Dibromofluoromethane 97 99	98 98	100	100
	per: P082252AA Dibromofluoromethane 97 99 100	98 98 100	100 96 96	100 88 88

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

		. Р	lease print. Ins	tructions	on re	everse	side d	corre	spond	National Service	111111111111111	HELEKOT SEL	X 2 4 2 2 3 3	73 543 4444	1014828531374F		For Lab Use Only		
							Ţ	Ţ	A CONTRACT	(5	APANTAL NO.	4 P# HC # 8 F 5 V R	******	eque	*********		FSC:		_
	Client: SUN-AQUATERRA					Matrix 9	-(4	λͰ		-	Pres	ervat	ion	Code	s T		SCR#:		100000000000000000000000000000000000000
	Project Name/#: PH REF AUT-8	PWSID ;	# :			# 6 # 6	10 11 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-									Preservation Codes H=HCl T=Thiosulf	ate	6)
	Project Manager: T. DOERR	P.O.#: _				βē	1	2			۲						N=HNO ₃ B=NaOH		
	Sampler: S-SYKES					able DES		Ē			Sw/29	\sim					S=H ₂ SO ₄ O=Other		
•	Name of state where samples were coilected:	O A-		જ\≗				1001	500 E	Lead	99 69	303							e of sem (if requ
	2 Sample Identification	Date Collected	Time Collected	Grab (Compos	Hos.	Water	Other	Total # o	AV6 82606	7	Paris	\sim					Remarks		Temperatur upon receipi
	N-59	8/6/08	1300	×		X		8	3	١	2	2					& See table po	er mal	ys65_
	N-97	8/6/08	1400	$ \mathcal{X} $		X	•	 ₹	3		2	2					,		
		,															& Pls copy	lcevin	
																	Martino	Jasor	
																	+empl.2		
						<u> </u>													
-																	temp1.2	200	
																	/		
(7	Turnaround Time Requested (TAT) (please of		. ,	Rel	inqu	ished l	oy:		1.			Date		- 1	Receive				Time (9
)	(Rush TAT is subject to Lancaster Laboratories appro Date results are needed:	oval and surcha aくまだんいく	sed 145	-(ماره	8	en	14	40	11	QUA	TERRA	8/6/0	18	1530	Ac	PUA.	TERRA FRIDGE	3/6/08	1530
	Rush results requested by (please circle): Ph	none Fax	E-mail	٦٠٠٠	4	ished I	•					Date			Receive	/	ALL	Date	
	Phone #:Fax #:				A1	ZP.	ŖΙ	PS	Œ			47/			HAS		TOP	5/7/0	
	E-mail address:			— /	\ ~	ished	of:	i/	U			Date	- 1		Receive	\sim		Date	
(8	Data Package Options (please circle if required)		Complete?	// <i>/</i>	XX		7/	4	<u>//</u>			2/7	<u> </u>		J.,	_	Jewy 8/	// ` 	
	Type I (validation/NJ Reg) TX TRRP-13 Type II (Tier II) MA MCP CT F	, _	No No	- 1 /	•	ished	1 12	ノ			2	Date			Receive —	a b y/		Date	Time
	Type III (Reduced NJ) Site-specific QC (N		Yes 😡		_	Ze	<u> </u>	ارر	رس	/	8/	7/0	8/	6/5		X			<u></u>
į	Type IV (CLP SOW) Type VI (Raw Data Only) (If yes, indicate QC sample and subm)	Re	linqu	ished	þý:				İ	∕Date		l ime	Receive	by:	Cegarille	8/7/4	11me 1665
			_	i													- 7)0 00000		

Lancaster Laboratories Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

N.D.	none detected	BMQL	Below Minimum Quantitation Level
TNTC	Too Numerous To Count	MPN	Most Probable Number
IU	International Units	CP Units	cobalt-chloroplatinate units
umhos/cm	micromhos/cm	NTU	nephelometric turbidity units
С	degrees Celsius	F	degrees Fahrenheit
Cal	(diet) calories	lb.	pound(s)
meq	milliequivalents	kg	kilogram(s)
g	gram(s)	mg	milligram(s)
ug	microgram(s)	I	liter(s)
ml	milliliter(s)	ul	microliter(s)
m3	cubic meter(s)	fib >5 um/ml	fibers greater than 5 microns in length per ml

- < less than The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.
- > greater than
- ppm parts per million One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.

Inorganic Qualifiers

- ppb parts per billion
- **Dry weight**Results printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture.

U.S. EPA data qualifiers:

lifier	(uu	9	 u	, ı ç	•

A B C D E	TIC is a possible aldol-condensation product Analyte was also detected in the blank Pesticide result confirmed by GC/MS Compound quatitated on a diluted sample Concentration exceeds the calibration range of the instrument	B E M N S	Value is <crdl, (msa)="" additions="" amount="" but="" calculation<="" control="" due="" duplicate="" estimated="" for="" injection="" interference="" limits="" met="" method="" not="" of="" precision="" spike="" standard="" th="" to="" used="" within="" ≥idl=""></crdl,>
J	Estimated value	U	Compound was not detected
N	Presumptive evidence of a compound (TICs only)	W	Post digestion spike out of control limits
Р	Concentration difference between primary and	*	Duplicate analysis not within control limits
	confirmation columns >25%	+	Correlation coefficient for MSA < 0.995
U	Compound was not detected		
X,Y,Z	Defined in case narrative		

Analytical test results for methods listed on the laboratories' accreditation scope meet all requirements of NELAC unless otherwise noted under the individual analysis.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

WARRANTY AND LIMITS OF LIABILITY – In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL LANCASTER LABORATORIES BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF LANCASTER LABORATORIES AND (B) WHETHER LANCASTER LABORATORIES HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Lancaster Laboratories which includes any conditions that vary from the Standard Terms and Conditions of Lancaster Laboratories and we hereby object to any conflicting terms contained in any acceptance or order submitted by client.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

ANALYTICAL RESULTS

Prepared for:

SUN: Aquaterra Tech. PO Box 744 West Chester PA 19381

610-431-5733

Prepared by:

Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425

May 07, 2009

SAMPLE GROUP

The sample group for this submittal is 1142359. Samples arrived at the laboratory on Tuesday, April 28, 2009. The PO# for this group is SUN PHILLY REF. AOI-8.

Client Description	<u>Lancaster Labs Number</u>
SG-3_AOI8 Grab Air	5656946
SG-2_AOI8 Grab Air	5656947
SG-1_AOI8 Grab Air	5656948
SG-4_AOI8 Grab Air	5656949
TRIP BLANK Air	5656950

METHODOLOGY

The specific methodologies used in obtaining the enclosed analytical results are indicated on the Laboratory Chronicle.

ELECTRONIC SUN: Aquaterra Tech. Attn: Megan Breen

COPY TO

ELECTRONIC SUN: Aquaterra Tech. Attn: Tiffani Doerr

COPY TO

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Questions? Contact your Client Services Representative Jessica A Oknefski at (717) 656-2300

Respectfully Submitted,

Barbara F. Reedy Senior Specialist

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Lancaster Laboratories Sample No. AQ 5656946

Group No. 1142359

PA

SG-3 AOI8 Grab Air

Summa #1008 Philadelphia Ref. AOI-8

COC: 203870 SG-3_AOI8

Collected: 04/23/2009 13:07 by TD Account Number: 10132

Submitted: 04/28/2009 14:45 SUN: Aquaterra Tech.

Reported: 05/07/2009 at 17:37 PO Box 744

Discard: 07/07/2009 West Chester PA 19381

CAT No.	Analysis Name		CAS Number	As Received Final Result	LOQ	As Received Final Result	LOQ	DF
EPA T	0-15/Naph \	Volatiles	in Air	mg/m3	mg/m3	ppm(v)	ppm(v)	
00015	Benzene		71-43-2	0.60	0.32	0.19	0.10	100
00015	Cumene		98-82-8	< 0.49	0.49	< 0.10	0.10	100
00015	1,2-Dibromoethane		106-93-4	< 0.77	0.77	< 0.10	0.10	100
00015	1,2-Dichloroethane		107-06-2	< 0.40	0.40	< 0.10	0.10	100
00015	Ethylbenzene		100-41-4	< 0.43	0.43	< 0.10	0.10	100
00015	Methyl t-Butyl Ether		1634-04-4	< 0.36	0.36	< 0.10	0.10	100
00015	Naphthalene		91-20-3	< 0.52	0.52	< 0.10	0.10	100
00015	Toluene		108-88-3	< 0.38	0.38	< 0.10	0.10	100
00015	m/p-Xylene		n.a.	0.53	0.43	0.12	0.10	100
00015	o-Xylene		95-47-6	< 0.43	0.43	< 0.10	0.10	100

LOQ = Limit of Quantitation

General Sample Comments

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/10

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

	~1 ! T
Laboratory	Chronicle

CAT	Analysis Name	Method	Trial#	Batch#	Analysis		Analyst	Dilution
No.					Date and Ti	me		Factor
00015	TO-15 VOA special compounds	EPA TO-15/Naph	1	D0912130AB	05/04/2009	18:14	Jonathan K Nardelli	100

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Lancaster Laboratories Sample No. AQ 5656947

Group No. 1142359

PA

SG-2 AOI8 Grab Air

Summa #1006 Philadelphia Ref. AOI-8

COC: 203870 SG-2 AOI8

Collected: 04/23/2009 13:49 by TD Account Number: 10132

Submitted: 04/28/2009 14:45 SUN: Aquaterra Tech.

Reported: 05/07/2009 at 17:37 PO Box 744

Discard: 07/07/2009 West Chester PA 19381

CAT No.	Analysis Name	CAS Number	As Received Final Result	LOQ	As Received Final Result	LOQ	DF
EPA T	O-15/Naph Vol	atiles in Air	mg/m3	mg/m3	ppm(v)	ppm(v)	
00015	Benzene	71-43-2	3.0	0.32	0.92	0.10	100
00015	Cumene	98-82-8	< 0.49	0.49	< 0.10	0.10	100
00015	1,2-Dibromoethane	106-93-4	< 0.77	0.77	< 0.10	0.10	100
00015	1,2-Dichloroethane	107-06-2	< 0.40	0.40	< 0.10	0.10	100
00015	Ethylbenzene	100-41-4	1.0	0.43	0.23	0.10	100
00015	Methyl t-Butyl Ether	1634-04-4	< 0.36	0.36	< 0.10	0.10	100
00015	Naphthalene	91-20-3	< 0.52	0.52	< 0.10	0.10	100
00015	Toluene	108-88-3	0.81	0.38	0.21	0.10	100
00015	m/p-Xylene	n.a.	4.5	0.43	1.0	0.10	100
00015	o-Xylene	95-47-6	2.1	0.43	0.48	0.10	100

The GC/MS volatile internal standard peak areas were outside the QC limits for both the initial analysis and the re-analysis. The values reported here are from the initial analysis of the sample.

LOQ = Limit of Quantitation

General Sample Comments

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/10

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Chronicle

CAT	Analysis Name	Method	Trial#	Batch#	Analysis	Analyst	Dilution
No.					Date and Time		Factor
00015	TO-15 VOA special compounds	EPA TO-15/Naph	1	D0912130AB	05/04/2009 19:42	Jonathan K	100
						Nardelli	

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Lancaster Laboratories Sample No. AQ 5656948

Group No. 1142359

PA

SG-1 AOI8 Grab Air

Summa #929 Philadelphia Ref. AOI-8

COC: 203870 SG-1_AOI8

Collected: 04/23/2009 14:11 by TD Account Number: 10132

Submitted: 04/28/2009 14:45 SUN: Aquaterra Tech.

Reported: 05/07/2009 at 17:37 PO Box 744

Discard: 07/07/2009 West Chester PA 19381

CAT No.	Analysis Name		CAS Number	As Received Final Result	LOQ	As Received Final Result	LOQ	DF	
EPA TO	0-15/Naph	Volatiles	in Air	mg/m3	mg/m3	ppm(v)	ppm(v)		
00015	Benzene		71-43-2	140	6.4	44	2.0	2000	
00015	Cumene		98-82-8	< 9.8	9.8	< 2.0	2.0	2000	
00015	1,2-Dibromoethane		106-93-4	< 15	15	< 2.0	2.0	2000	
00015	1,2-Dichloroethane		107-06-2	< 8.1	8.1	< 2.0	2.0	2000	
00015	Ethylbenzene		100-41-4	< 8.7	8.7	< 2.0	2.0	2000	
00015	Methyl t-Butyl Ethe	r	1634-04-4	< 7.2	7.2	< 2.0	2.0	2000	
00015	Naphthalene		91-20-3	< 10	10	< 2.0	2.0	2000	
00015	Toluene		108-88-3	42	7.5	11	2.0	2000	
00015	m/p-Xylene		n.a.	< 8.7	8.7	< 2.0	2.0	2000	
00015	o-Xylene		95-47-6	< 8.7	8.7	< 2.0	2.0	2000	

LOQ = Limit of Quantitation

General Sample Comments

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/10

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

	~1 ! T
Laboratory	Chronicle

CAT	Analysis Name	Method	Trial#	Batch#	Analysis		Analyst	Dilution
No.					Date and Ti	me		Factor
00015	TO-15 VOA special compounds	EPA TO-15/Naph	1	D0912530BA	05/06/2009	16:20	Jonathan K	2000
							Nardelli	

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Lancaster Laboratories Sample No. AQ 5656949

Group No. 1142359

PA

SG-4 AOI8 Grab Air

Summa #942 Philadelphia Ref. AOI-8

COC: 203870 SG-4 AOI8

Collected: 04/23/2009 14:34 by TD Account Number: 10132

Submitted: 04/28/2009 14:45 SUN: Aquaterra Tech.

Reported: 05/07/2009 at 17:37 PO Box 744

Discard: 07/07/2009 West Chester PA 19381

CAT No.	Analysis Name		CAS Number	As Received Final Result	LOQ	As Received Final Result		
EPA T	O-15/Naph Vo	olatiles	in Air	mg/m3	mg/m3	ppm(v)	ppm(v)	
00015	Benzene		71-43-2	4.6	0.64	1.4	0.20	200
00015	Cumene		98-82-8	< 0.98	0.98	< 0.20	0.20	200
00015	1,2-Dibromoethane		106-93-4	< 1.5	1.5	< 0.20	0.20	200
00015	1,2-Dichloroethane		107-06-2	< 0.81	0.81	< 0.20	0.20	200
00015	Ethylbenzene		100-41-4	< 0.87	0.87	< 0.20	0.20	200
00015	Methyl t-Butyl Ether		1634-04-4	< 0.72	0.72	< 0.20	0.20	200
00015	Naphthalene		91-20-3	< 1.0	1.0	< 0.20	0.20	200
00015	Toluene		108-88-3	4.1	0.75	1.1	0.20	200
00015	m/p-Xylene		n.a.	2.3	0.87	0.52	0.20	200
00015	o-Xylene		95-47-6	1.0	0.87	0.24	0.20	200
_								

The GC/MS volatile internal standard peak areas were outside the QC limits for both the initial analysis and the re-analysis. The values reported here are from the initial analysis of the sample.

LOQ = Limit of Quantitation

General Sample Comments

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/10

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Chronicle

CAT	Analysis Name	Method	Trial#	Batch#	Analysis	Analyst	Dilution
No.					Date and Time		Factor
00015	TO-15 VOA special compounds	EPA TO-15/Naph	1	D0912130AB	05/05/2009 07:05	Jonathan K	200
						Nardelli	

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Lancaster Laboratories Sample No. AQ 5656950

Group No. 1142359

PA

TRIP BLANK Air

Summa #986 Philadelphia Ref. AOI-8

COC: 203870

Collected: 04/23/2009 Account Number: 10132

Submitted: 04/28/2009 14:45 SUN: Aquaterra Tech.

Reported: 05/07/2009 at 17:37 PO Box 744

Discard: 07/07/2009 West Chester PA 19381

CAT No.	Analysis Name		CAS Number	As Received Final Result	LOQ	As Received Final Result	LOQ	DF
EPA TO	O-15/Naph V	olatiles	in Air	mg/m3	mg/m3	ppm(v)	ppm(v)	
00015	Benzene		71-43-2	< 0.0032	0.0032	< 0.0010	0.0010	1
00015	Cumene		98-82-8	< 0.0049	0.0049	< 0.0010	0.0010	1
00015	1,2-Dibromoethane		106-93-4	< 0.0077	0.0077	< 0.0010	0.0010	1
00015	1,2-Dichloroethane		107-06-2	< 0.0040	0.0040	< 0.0010	0.0010	1
00015	Ethylbenzene		100-41-4	< 0.0043	0.0043	< 0.0010	0.0010	1
00015	Methyl t-Butyl Ether		1634-04-4	< 0.0036	0.0036	< 0.0010	0.0010	1
00015	Naphthalene		91-20-3	< 0.0052	0.0052	< 0.0010	0.0010	1
00015	Toluene		108-88-3	< 0.0038	0.0038	< 0.0010	0.0010	1
00015	m/p-Xylene		n.a.	< 0.0043	0.0043	< 0.0010	0.0010	1
00015	o-Xylene		95-47-6	< 0.0043	0.0043	< 0.0010	0.0010	1

LOQ = Limit of Quantitation

General Sample Comments

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/10

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Chronicle

CAT	Analysis Name	Method	Trial#	Batch#	Analysis		Analyst	Dilution
No.					Date and Tim	e		Factor
00015	TO-15 VOA special compounds	EPA TO-15/Naph	1	D0911930AB	05/01/2009	09:17	Jonathan K	1
							Nardelli	

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681• www.lancasterlabs.com

Page 1 of 1

Quality Control Summary

Client Name: SUN: Aquaterra Tech. Group Number: 1142359

Reported: 05/07/09 at 05:37 PM

Matrix QC may not be reported if site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the

Laboratory Compliance Quality Control

	Blank	Blank	Report	LCS	LCSD	LCS/LCSD		
Analysis Name	<u>Result</u>	LOQ	<u>Units</u>	%REC	%REC	<u>Limits</u>	RPD	RPD Max
Batch number: D0911930AB	Sample nu	mbox(a).	ECECOEO					
Benzene	< 0.0032	0.0032	ma/m3	89	89	70-130	1	25
Cumene	< 0.0032	0.0032	mg/m3	106	103	53-137	2	25
1,2-Dibromoethane	< 0.0043	0.0077	mg/m3	100	103	33-137	2	23
1,2-Dichloroethane	< 0.0077	0.0040	mg/m3					
Ethylbenzene	< 0.0040	0.0043	mg/m3	94	92	70-130	2	25
Methyl t-Butyl Ether	< 0.0045	0.0036	mg/m3	118	120	51-142	2	25
Naphthalene	< 0.0052	0.0052	mg/m3	129	119	26-151	8	25
Toluene	< 0.0032	0.0032	mg/m3	94	94	70-131	1	25
m/p-Xylene	< 0.0030	0.0043	mg/m3	99	98	70-130	1	25
o-Xylene	< 0.0043	0.0043	mg/m3	95	93	70-130	2	25
O-Xylene	< 0.0043	0.0043	mg/ms	93	93	70-130	2	23
Batch number: D0912130AB	Sample nu	mber(s):	5656946-56	56947,56	56949			
Benzene	< 0.0032	0.0032	mq/m3	86	81	70-130	5	25
Cumene	< 0.0049	0.0049	mg/m3	107	109	53-137	2	25
1,2-Dibromoethane	< 0.0077	0.0077	mg/m3					
1,2-Dichloroethane	< 0.0040	0.0040	mg/m3					
Ethylbenzene	< 0.0043	0.0043	mg/m3	93	94	70-130	1	25
Methyl t-Butyl Ether	< 0.0036	0.0036	mg/m3	90	93	51-142	4	25
Naphthalene	< 0.0052	0.0052	mg/m3	120	121	26-151	1	25
Toluene	< 0.0038	0.0038	mg/m3	93	94	70-130	1	25
m/p-Xylene	< 0.0043	0.0043	mg/m3	101	101	70-130	0	25
o-Xylene	< 0.0043	0.0043	mg/m3	95	96	70-130	1	25
Batch number: D0912530BA	Sample nu							
Benzene	< 0.0032	0.0032	mg/m3	88	91	70-130	3	25
Cumene	< 0.0049	0.0049	mg/m3	110	110	53-137	0	25
1,2-Dibromoethane	< 0.0077	0.0077	mg/m3					
1,2-Dichloroethane	< 0.0040	0.0040	mg/m3					
Ethylbenzene	< 0.0043	0.0043	mg/m3	98	99	70-130	1	25
Methyl t-Butyl Ether	< 0.0036	0.0036	mg/m3	89	95	51-142	6	25
Naphthalene	< 0.0052	0.0052	mg/m3	130	131	26-151	1	25
Toluene	< 0.0038	0.0038	mg/m3	95	98	70-130	3	25
m/p-Xylene	< 0.0043	0.0043	mg/m3	100	100	70-130	1	25
o-Xylene	< 0.0043	0.0043	mg/m3	98	98	70-130	0	25

^{*-} Outside of specification

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Analysis Request/ Environmental Services Chain of Custody

For Lancaster Laboratories use only

Acct. # 1018Z Group# 1147359 Sample # 5656946-50 COC #

OC # 203870

Please print. Instructions on reverse side correspond with circled numbers. For Lab Use Only (5) Analyses Requested FSC: Matrix Preservation Codes Acct. #: Project Name/# Sun Philly R/- AOI-8 PWSID #: **Preservation Codes** H=HCI T=Thiosulfate N=HNO₃ B=NaOH P.O.#: Project Manager: S=H₂SO₄ O=Other Sampler: Quote #: Name of state where samples were collected: Date Time Grab Sample identification Collected Collected Remarks 800 X Reliberiished ov. Turnaround Time Requested (TAT) (please circle): Normal) Rush Time | Received by: Date Time Date (Rush TAT is subject to Lancaster Laboratories approval and surcharge.) Date results are needed: induished by: Time Received by Date Time Date Rush results requested by (please circle): Phone 7/2869 1035 Mn 10B€ Phone #: Fax #: E-mail address: Heaguadura-tech com Relinguished by: Date Time Received by: Date Data Package Options (please circle if required) SDG Complete Type I (validation/NJ Reg) TX TRRP-13 Time | Received by: **D**ate ∏ime Date Type II (Tier II) MA MCP CT RCP Type III (Reduced NJ) Site-specific QC (MS/MSD/Dup)? Yes 🐠 Time Received by: Date Type IV (CLP SOW) Relinquished by: Date Time (If yes, indicate QC sample and submit triplicate volume.) Type VI (Raw Data Only) Internal COC Required? Yes Mo

Lancaster Laboratories Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

N.D.	none detected	BMQL	Below Minimum Quantitation Level
TNTC	Too Numerous To Count	MPN	Most Probable Number
IU	International Units	CP Units	cobalt-chloroplatinate units
umhos/cm	micromhos/cm	NTU	nephelometric turbidity units
С	degrees Celsius	F	degrees Fahrenheit
Cal	(diet) calories	lb.	pound(s)
meq	milliequivalents	kg	kilogram(s)
g	gram(s)	mg	milligram(s)
ug	microgram(s)	I	liter(s)
ml	milliliter(s)	ul	microliter(s)
m3	cubic meter(s)	fib >5 um/ml	fibers greater than 5 microns in length per ml

- < less than The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.
- > greater than
- ppm parts per million One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.

Inorganic Qualifiers

- ppb parts per billion
- **Dry weight**Results printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture.

U.S. EPA data qualifiers:

9	lifier	(uu	9	 u	" 9	•

A B C D E	TIC is a possible aldol-condensation product Analyte was also detected in the blank Pesticide result confirmed by GC/MS Compound quatitated on a diluted sample Concentration exceeds the calibration range of the instrument	B E M N S	Value is <crdl, (msa)="" additions="" amount="" but="" calculation<="" control="" due="" duplicate="" estimated="" for="" injection="" interference="" limits="" met="" method="" not="" of="" precision="" spike="" standard="" th="" to="" used="" within="" ≥idl=""></crdl,>
J	Estimated value	U	Compound was not detected
N	Presumptive evidence of a compound (TICs only)	W	Post digestion spike out of control limits
Р	Concentration difference between primary and	*	Duplicate analysis not within control limits
	confirmation columns >25%	+	Correlation coefficient for MSA < 0.995
U	Compound was not detected		
X,Y,Z	Defined in case narrative		

Analytical test results for methods listed on the laboratories' accreditation scope meet all requirements of NELAC unless otherwise noted under the individual analysis.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

WARRANTY AND LIMITS OF LIABILITY – In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL LANCASTER LABORATORIES BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF LANCASTER LABORATORIES AND (B) WHETHER LANCASTER LABORATORIES HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Lancaster Laboratories which includes any conditions that vary from the Standard Terms and Conditions of Lancaster Laboratories and we hereby object to any conflicting terms contained in any acceptance or order submitted by client.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

ANALYTICAL RESULTS

Prepared for:

SUN: Aquaterra Tech. PO Box 744 West Chester PA 19381

610-431-5733

Prepared by:

Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425

June 18, 2009

SAMPLE GROUP

The sample group for this submittal is 1148396. Samples arrived at the laboratory on Tuesday, June 09, 2009. The PO# for this group is PHILA REF JACKSON ST.

Client Description	<u>Lancaster Labs Number</u>
Manhole #1 Summa #509 Grab Air	5695002
Manhole #3 Summa #515 Grab Air	5695003
Manhole #6 Summa #102 Grab Air	5695004
Jackson Ambient Can #062 Grab Air	5695005

METHODOLOGY

The specific methodologies used in obtaining the enclosed analytical results are indicated on the Laboratory Chronicle.

ELECTRONIC	SUN: Aquaterra Tech.	Attn: Megan Breen
COPY TO ELECTRONIC	SUN: Aquaterra Tech.	Attn: Tiffani Doerr
COPY TO		Augus EDD, Consum
ELECTRONIC COPY TO	LLI	Attn: EDD Group
ELECTRONIC COPY TO	Langan	Attn: Dennis Webster
COPY TO		

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Questions? Contact your Client Services Representative Jessica A Oknefski at (717) 656-2300

Respectfully Submitted,

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Page 1 of 3

Lancaster Laboratories Sample No. AQ 5695002

Group No. 1148396

PΑ

Manhole #1 Summa #509 Grab Air Philadelphia Refinery Jackson St

COC: 209188 Manhole #1

Collected: 06/05/2009 09:42 by TD Account Number: 10132

Submitted: 06/09/2009 16:45 SUN: Aquaterra Tech.

Reported: 06/18/2009 at 14:42 PO Box 744

Discard: 08/18/2009 West Chester PA 19381

CAT No.	Analysis Name	CAS Number	As Received Final Result	LOQ	As Received Final Result	LOQ	DF
EPA 1	8 modified Volatile	s in Air	mg/m3	mg/m3	ppm(v)	ppm(v)	
07056	Methane	74-82-8	< 6.6	6.6	< 10	10	2
EPA T	0-15 Volatile	s in Air	mg/m3	mg/m3	ppm(v)	ppm(v)	
05298	Acetone	67-64-1	0.018	0.0048	0.0076	0.0020	1
05298	Acetonitrile	75-05-8	< 0.0034	0.0034	< 0.0020	0.0020	1
05298	Acrolein	107-02-8	< 0.0046	0.0046	< 0.0020	0.0020	1
05298	Acrylonitrile	107-13-1	< 0.0043	0.0043	< 0.0020	0.0020	1
05298	Benzene	71-43-2	< 0.0032	0.0032	< 0.0010	0.0010	1
05298	Bromobenzene	108-86-1	< 0.0064	0.0064	< 0.0010	0.0010	1
05298	Bromodichloromethane	75-27-4	< 0.0067	0.0067	< 0.0010	0.0010	1
05298	Bromoform	75-25-2	< 0.010	0.010	< 0.0010	0.0010	1
05298	Bromomethane	74-83-9	< 0.0039	0.0039	< 0.0010	0.0010	1
05298	1,3-Butadiene	106-99-0	< 0.0044	0.0044	< 0.0020	0.0020	1
05298	2-Butanone	78-93-3	< 0.0059	0.0059	< 0.0020	0.0020	1
05298	tert-Butyl Alcohol	75-65-0	< 0.0030	0.0030	< 0.0010	0.0010	1
05298	Carbon Disulfide	75-15-0	< 0.0031	0.0031	< 0.0010	0.0010	1
05298	Carbon Tetrachloride	56-23-5	< 0.0063	0.0063	< 0.0010	0.0010	1
05298	Chlorobenzene	108-90-7	< 0.0046	0.0046	< 0.0010	0.0010	1
05298	Chlorodifluoromethane	75-45-6	< 0.0035	0.0035	< 0.0010	0.0010	1
05298	Chloroethane	75-00-3	< 0.0026	0.0026	< 0.0010	0.0010	1
05298	Chloroform	67-66-3	0.0055	0.0049	0.0011	0.0010	1
05298	Chloromethane	74-87-3	< 0.0021	0.0021	< 0.0010	0.0010	1
05298	3-Chloropropene	107-05-1	< 0.0031	0.0031	< 0.0010	0.0010	1
05298	Cumene	98-82-8	< 0.0049	0.0049	< 0.0010	0.0010	1
05298	Dibromochloromethane	124-48-1	< 0.0085	0.0085	< 0.0010	0.0010	1
05298	1,2-Dibromoethane	106-93-4	< 0.0077	0.0077	< 0.0010	0.0010	1
05298	Dibromomethane	74-95-3	< 0.0071	0.0071	< 0.0010	0.0010	1
05298	1,2-Dichlorobenzene	95-50-1	< 0.0060	0.0060	< 0.0010	0.0010	1
05298	1,3-Dichlorobenzene	541-73-1	< 0.0060	0.0060	< 0.0010	0.0010	1
05298	1,4-Dichlorobenzene	106-46-7	< 0.0060	0.0060	< 0.0010	0.0010	1
05298	Dichlorodifluoromethane	75-71-8	< 0.0049	0.0049	< 0.0010	0.0010	1
05298	1,1-Dichloroethane	75-34-3	< 0.0040	0.0040	< 0.0010	0.0010	1
05298 05298	1,2-Dichloroethane	107-06-2	< 0.0040	0.0040	< 0.0010	0.0010	1
	1,1-Dichloroethene	75-35-4	< 0.0040	0.0040	< 0.0010	0.0010	1
05298 05298	cis-1,2-Dichloroethene trans-1,2-Dichloroethene	156-59-2	< 0.0040	0.0040	< 0.0010	0.0010	1 1
05298	Dichlorofluoromethane	156-60-5 75-43-4	< 0.0040	0.0040 0.0042	< 0.0010 < 0.0010	0.0010 0.0010	1
05298	1,2-Dichloropropane	78-87-5	< 0.0042	0.0042	< 0.0010	0.0010	1
05298	cis-1,3-Dichloropropene	10061-01-5	< 0.0046	0.0045	< 0.0010	0.0010	1
05298	trans-1,3-Dichloropropene	10061-01-5	< 0.0045	0.0045	< 0.0010	0.0010	1
05298	1,4-Dioxane	123-91-1	< 0.0045	0.0045	< 0.0010	0.0010	1
05298	Ethyl Acetate	123-91-1	< 0.0036	0.0036	< 0.0010	0.0010	1
05298	Ethyl Acrylate	140-88-5	< 0.0036	0.0036	< 0.0010	0.0010	1
05298	Ethyl Methacrylate	97-63-2	< 0.0041	0.0041	< 0.0010	0.0010	1
05298	Ethylbenzene	100-41-4	< 0.0047	0.0047	< 0.0010	0.0010	1
05298	4-Ethyltoluene	622-96-8	< 0.0043	0.0043	< 0.0010	0.0010	1
05298	Freon 113	76-13-1	< 0.0049	0.0049	< 0.0010	0.0010	1
05298	Freon 114	76-13-1	< 0.013	0.013	< 0.0020	0.0020	1
05298	Heptane	142-82-5	< 0.0070	0.0070	< 0.0010	0.0010	1
03270	nepeane	142 02 3	~ 0.0041	0.0011	< 0.0010	0.0010	_

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 3

Lancaster Laboratories Sample No. AQ 5695002

Group No. 1148396

PA

Manhole #1 Summa #509 Grab Air Philadelphia Refinery Jackson St

COC: 209188 Manhole #1

Collected: 06/05/2009 09:42 by TD Account Number: 10132

Submitted: 06/09/2009 16:45 SUN: Aquaterra Tech.

Reported: 06/18/2009 at 14:42 PO Box 744

Discard: 08/18/2009 West Chester PA 19381

CAT No.	Analysis Name	CAS Number	As Received Final Result	LOQ	As Received Final Result	LOQ	DF
NO.	1		Final Result	TOÖ	Final Result	TOÖ	
EPA TO	0-15 Volatiles	in Air	mg/m3	mg/m3	ppm(v)	ppm(v)	
05298	Hexachlorobutadiene	87-68-3	< 0.021	0.021	< 0.0020	0.0020	1
05298	Hexachloroethane	67-72-1	< 0.0097	0.0097	< 0.0010	0.0010	1
05298	Hexane	110-54-3	< 0.0035	0.0035	< 0.0010	0.0010	1
05298	2-Hexanone	591-78-6	< 0.0082	0.0082	< 0.0020	0.0020	1
05298	Isooctane	540-84-1	0.016	0.0047	0.0035	0.0010	1
05298	Methyl Acrylate	96-33-3	< 0.0035	0.0035	< 0.0010	0.0010	1
05298	Methyl Iodide	74-88-4	< 0.0058	0.0058	< 0.0010	0.0010	1
05298	Methyl Methacrylate	80-62-6	< 0.0041	0.0041	< 0.0010	0.0010	1
05298	Alpha Methyl Styrene	98-83-9	< 0.0048	0.0048	< 0.0010	0.0010	1
05298	Methyl t-Butyl Ether	1634-04-4	< 0.0036	0.0036	< 0.0010	0.0010	1
05298	4-Methyl-2-Pentanone	108-10-1	< 0.0082	0.0082	< 0.0020	0.0020	1
05298	Methylene Chloride	75-09-2	< 0.0035	0.0035	< 0.0010	0.0010	1
05298	Octane	111-65-9	< 0.0047	0.0047	< 0.0010	0.0010	1
05298	Pentane	109-66-0	< 0.0030	0.0030	< 0.0010	0.0010	1
05298	Propene	115-07-1	0.0023	0.0017	0.0013	0.0010	1
05298	Styrene	100-42-5	< 0.0043	0.0043	< 0.0010	0.0010	1
05298	1,1,1,2-Tetrachloroethane	630-20-6	< 0.0069	0.0069	< 0.0010	0.0010	1
05298	1,1,2,2-Tetrachloroethane	79-34-5	< 0.0069	0.0069	< 0.0010	0.0010	1
05298	Tetrachloroethene	127-18-4	< 0.0068	0.0068	< 0.0010	0.0010	1
05298	Toluene	108-88-3	0.0041	0.0038	0.0011	0.0010	1
05298	1,2,4-Trichlorobenzene	120-82-1	< 0.015	0.015	< 0.0020	0.0020	1
05298	1,1,1-Trichloroethane	71-55-6	< 0.0055	0.0055	< 0.0010	0.0010	1
05298	1,1,2-Trichloroethane	79-00-5	< 0.0055	0.0055	< 0.0010	0.0010	1
05298	Trichloroethene	79-01-6	< 0.0054	0.0054	< 0.0010	0.0010	1
05298	Trichlorofluoromethane	75-69-4	< 0.0056	0.0056	< 0.0010	0.0010	1
05298	1,2,3-Trichloropropane	96-18-4	< 0.0060	0.0060	< 0.0010	0.0010	1
05298	1,2,4-Trimethylbenzene	95-63-6	< 0.0049	0.0049	< 0.0010	0.0010	1
05298	1,3,5-Trimethylbenzene	108-67-8	< 0.0049	0.0049	< 0.0010	0.0010	1
05298	Vinyl Acetate	108-05-4	< 0.0035	0.0035	< 0.0010	0.0010	1
05298	Vinyl Chloride	75-01-4	< 0.0026	0.0026	< 0.0010	0.0010	1
05298	m/p-Xylene	n.a.	< 0.0043	0.0043	< 0.0010	0.0010	1
05298	o-Xylene	95-47-6	< 0.0043	0.0043	< 0.0010	0.0010	1
00 %	Degerrory limits for Minul Asstate	1 4 Diarrama	and O Harranana a				

QC %Recovery limits for Vinyl Acetate, 1,4-Dioxane, and 2-Hexanone are advisory only.

LOQ = Limit of Quantitation

General Sample Comments

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/10

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 3 of 3

Lancaster Laboratories Sample No. AQ 5695002

Group No. 1148396

PA

Manhole #1 Summa #509 Grab Air Philadelphia Refinery Jackson St

COC: 209188 Manhole #1

Collected: 06/05/2009 09:42 by TD Account Number: 10132

Submitted: 06/09/2009 16:45 SUN: Aquaterra Tech.

Reported: 06/18/2009 at 14:42 PO Box 744

Discard: 08/18/2009 West Chester PA 19381

Laboratory Chronicle

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
05298	TO 15 VOA Ext. List	EPA TO-15	1	C0916730AA	06/16/2009 15	41 Jonathan K Nardelli	1
07056	Methane	EPA 18 modified	1	M091621ZA	06/10/2009 18	01 David I Ressler	2

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Page 1 of 3

Lancaster Laboratories Sample No. AQ 5695003

Group No. 1148396

PΑ

Manhole #3 Summa #515 Grab Air Philadelphia Refinery Jackson St

COC: 209188 Manhole #3

Collected: 06/05/2009 09:48 by TD Account Number: 10132

 Submitted:
 06/09/2009
 16:45
 SUN: Aquaterra Tech.

Reported: 06/18/2009 at 14:42 PO Box 744

Discard: 08/18/2009 West Chester PA 19381

CAT No.	Analysis Name		CAS Number	As Received Final Result	LOQ	As Received Final Result	LOQ	DF
EPA 1	8 modified	Volatiles	in Air	mg/m3	mg/m3	ppm(v)	ppm(v)	
07056	Methane		74-82-8	30	6.6	45	10	2
EPA T	0-15	Volatiles	in Air	mg/m3	mg/m3	ppm(v)	ppm(v)	
05298	Acetone		67-64-1	0.022	0.0048	0.0094	0.0020	1
05298	Acetonitrile		75-05-8	< 0.0034	0.0034	< 0.0020	0.0020	1
05298	Acrolein		107-02-8	< 0.0046	0.0046	< 0.0020	0.0020	1
05298	Acrylonitrile		107-13-1	< 0.0043	0.0043	< 0.0020	0.0020	1
05298	Benzene		71-43-2	0.0036	0.0032	0.0011	0.0010	1
05298	Bromobenzene		108-86-1	< 0.0064	0.0064	< 0.0010	0.0010	1
05298	Bromodichloromethan	e	75-27-4	< 0.0067	0.0067	< 0.0010	0.0010	1
05298	Bromoform		75-25-2	< 0.010	0.010	< 0.0010	0.0010	1
05298	Bromomethane		74-83-9	< 0.0039	0.0039	< 0.0010	0.0010	1
05298	1,3-Butadiene		106-99-0	< 0.0044	0.0044	< 0.0020	0.0020	1
05298	2-Butanone		78-93-3	0.0066	0.0059	0.0022	0.0020	1
05298	tert-Butyl Alcohol		75-65-0	< 0.0030	0.0030	< 0.0010	0.0010	1
05298	Carbon Disulfide		75-15-0	< 0.0031	0.0031	< 0.0010	0.0010	1
05298	Carbon Tetrachlorid	e	56-23-5	< 0.0063	0.0063	< 0.0010	0.0010	1
05298	Chlorobenzene		108-90-7	< 0.0046	0.0046	< 0.0010	0.0010	1
05298	Chlorodifluorometha	ne	75-45-6	< 0.0035	0.0035	< 0.0010	0.0010	1
05298 05298	Chloroethane Chloroform		75-00-3	< 0.0026	0.0026	< 0.0010	0.0010	1
	Chloromethane		67-66-3	< 0.0049	0.0049	< 0.0010	0.0010	1
05298			74-87-3	< 0.0021	0.0021	< 0.0010	0.0010	1
05298 05298	3-Chloropropene Cumene		107-05-1 98-82-8	< 0.0031 0.046	0.0031 0.0049	< 0.0010 0.0093	0.0010 0.0010	1 1
05298	Dibromochloromethan		124-48-1	< 0.046	0.0049	< 0.0093	0.0010	1
05298	1,2-Dibromoethane	е	124-48-1	< 0.0085	0.0085	< 0.0010	0.0010	1
05298	Dibromomethane		74-95-3	< 0.0077	0.0077	< 0.0010	0.0010	1
05298	1,2-Dichlorobenzene		95-50-1	< 0.0071	0.0071	< 0.0010	0.0010	1
05298	1,3-Dichlorobenzene		541-73-1	< 0.0060	0.0060	< 0.0010	0.0010	1
05298	1,4-Dichlorobenzene		106-46-7	< 0.0060	0.0060	< 0.0010	0.0010	1
05298	Dichlorodifluoromet		75-71-8	< 0.0049	0.0049	< 0.0010	0.0010	1
05298	1,1-Dichloroethane	nanc	75-34-3	< 0.0049	0.0040	< 0.0010	0.0010	1
05298	1,2-Dichloroethane		107-06-2	< 0.0040	0.0040	< 0.0010	0.0010	1
05298	1,1-Dichloroethene		75-35-4	< 0.0040	0.0040	< 0.0010	0.0010	1
05298	cis-1,2-Dichloroeth	ene	156-59-2	< 0.0040	0.0040	< 0.0010	0.0010	1
05298	trans-1,2-Dichloroe		156-60-5	< 0.0040	0.0040	< 0.0010	0.0010	1
05298	Dichlorofluorometha		75-43-4	< 0.0042	0.0042	< 0.0010	0.0010	1
05298	1,2-Dichloropropane		78-87-5	< 0.0046	0.0046	< 0.0010	0.0010	1
05298	cis-1,3-Dichloropro		10061-01-5	< 0.0045	0.0045	< 0.0010	0.0010	1
05298	trans-1,3-Dichlorop		10061-02-6	< 0.0045	0.0045	< 0.0010	0.0010	1
05298	1,4-Dioxane	-	123-91-1	< 0.0036	0.0036	< 0.0010	0.0010	1
05298	Ethyl Acetate		141-78-6	< 0.0036	0.0036	< 0.0010	0.0010	1
05298	Ethyl Acrylate		140-88-5	0.34	0.041	0.083	0.010	10
05298	Ethyl Methacrylate		97-63-2	< 0.0047	0.0047	< 0.0010	0.0010	1
05298	Ethylbenzene		100-41-4	< 0.0043	0.0043	< 0.0010	0.0010	1
05298	4-Ethyltoluene		622-96-8	< 0.0049	0.0049	< 0.0010	0.0010	1
05298	Freon 113		76-13-1	< 0.015	0.015	< 0.0020	0.0020	1
05298	Freon 114		76-14-2	< 0.0070	0.0070	< 0.0010	0.0010	1
05298	Heptane		142-82-5	< 0.0041	0.0041	< 0.0010	0.0010	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 3

Lancaster Laboratories Sample No. AQ 5695003

Group No. 1148396

PA

Manhole #3 Summa #515 Grab Air Philadelphia Refinery Jackson St

COC: 209188 Manhole #3

Collected: 06/05/2009 09:48 by TD

Account Number: 10132

SUN: Aquaterra Tech.

PO Box 744

West Chester PA 19381

Submitted: 06/09/2009 16:45 Reported: 06/18/2009 at 14:42

Discard: 08/18/2009

CAT No.	Analysis Name	CAS Number	As Received Final Result	LOQ	As Received Final Result	LOQ	DF
EPA T	0-15 Volatiles	in Air	mg/m3	mg/m3	ppm(v)	ppm(v)	
05298	Hexachlorobutadiene	87-68-3	< 0.021	0.021	< 0.0020	0.0020	1
05298	Hexachloroethane	67-72-1	< 0.0097	0.0097	< 0.0010	0.0010	1
05298	Hexane	110-54-3	0.016	0.0035	0.0046	0.0010	1
05298	2-Hexanone	591-78-6	< 0.0082	0.0082	< 0.0020	0.0020	1
05298	Isooctane	540-84-1	0.94	0.047	0.20	0.010	10
05298	Methyl Acrylate	96-33-3	< 0.0035	0.0035	< 0.0010	0.0010	1
05298	Methyl Iodide	74-88-4	< 0.0058	0.0058	< 0.0010	0.0010	1
05298	Methyl Methacrylate	80-62-6	< 0.0041	0.0041	< 0.0010	0.0010	1
05298	Alpha Methyl Styrene	98-83-9	< 0.0048	0.0048	< 0.0010	0.0010	1
05298	Methyl t-Butyl Ether	1634-04-4	< 0.0036	0.0036	< 0.0010	0.0010	1
05298	4-Methyl-2-Pentanone	108-10-1	< 0.0082	0.0082	< 0.0020	0.0020	1
05298	Methylene Chloride	75-09-2	< 0.0035	0.0035	< 0.0010	0.0010	1
05298	Octane	111-65-9	< 0.0047	0.0047	< 0.0010	0.0010	1
05298	Pentane	109-66-0	0.059	0.0030	0.020	0.0010	1
05298	Propene	115-07-1	< 0.0017	0.0017	< 0.0010	0.0010	1
05298	Styrene	100-42-5	< 0.0043	0.0043	< 0.0010	0.0010	1
05298	1,1,1,2-Tetrachloroethane	630-20-6	< 0.0069	0.0069	< 0.0010	0.0010	1
05298	1,1,2,2-Tetrachloroethane	79-34-5	< 0.0069	0.0069	< 0.0010	0.0010	1
05298	Tetrachloroethene	127-18-4	< 0.0068	0.0068	< 0.0010	0.0010	1
05298	Toluene	108-88-3	< 0.0038	0.0038	< 0.0010	0.0010	1
05298	1,2,4-Trichlorobenzene	120-82-1	< 0.015	0.015	< 0.0020	0.0020	1
05298	1,1,1-Trichloroethane	71-55-6	< 0.0055	0.0055	< 0.0010	0.0010	1
05298	1,1,2-Trichloroethane	79-00-5	< 0.0055	0.0055	< 0.0010	0.0010	1
05298	Trichloroethene	79-01-6	< 0.0054	0.0054	< 0.0010	0.0010	1
05298	Trichlorofluoromethane	75-69-4	< 0.0056	0.0056	< 0.0010	0.0010	1
05298	1,2,3-Trichloropropane	96-18-4	< 0.0060	0.0060	< 0.0010	0.0010	1
05298	1,2,4-Trimethylbenzene	95-63-6	< 0.0049	0.0049	< 0.0010	0.0010	1
05298	1,3,5-Trimethylbenzene	108-67-8	< 0.0049	0.0049	< 0.0010	0.0010	1
05298	Vinyl Acetate	108-05-4	< 0.0035	0.0035	< 0.0010	0.0010	1
05298	Vinyl Chloride	75-01-4	< 0.0026	0.0026	< 0.0010	0.0010	1
05298	m/p-Xylene	n.a.	0.0069	0.0043	0.0016	0.0010	1
05298	o-Xylene	95-47-6	< 0.0043	0.0043	< 0.0010	0.0010	1
QC %	Recovery limits for Vinyl Acetate	, 1,4-Dioxane,	and 2-Hexanone a	re advisory			

QC Recovery limits for Vinyl Acetate, 1,4-Dioxane, and 2-Hexanone are advisory only.

LOQ = Limit of Quantitation

General Sample Comments

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/10

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

06/10/2009 18:29 David I Ressler

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Page 3 of 3

Lancaster Laboratories Sample No. AQ 5695003

Group No. 1148396

PA

Manhole #3 Summa #515 Grab Air Philadelphia Refinery Jackson St

COC: 209188 Manhole #3

Collected: 06/05/2009 09:48 by TD Account Number: 10132

Submitted: 06/09/2009 16:45 SUN: Aquaterra Tech.

Reported: 06/18/2009 at 14:42 PO Box 744

Discard: 08/18/2009

07056 Methane

West Chester PA 19381

	Laboratory Chronicle							
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor	
05298	TO 15 VOA Ext. List	EPA TO-15	1	C0916730AA	06/17/2009 04:30	Jonathan K Nardelli	1	
05298	TO 15 VOA Ext. List	EPA TO-15	1	C0916730AA	06/17/2009 05:13	Jonathan K Nardelli	10	

EPA 18 modified 1 M091621ZA

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Page 1 of 3

Lancaster Laboratories Sample No. AQ 5695004

Group No. 1148396

PA

Manhole #6 Summa #102 Grab Air Philadelphia Refinery Jackson St

COC: 209188 Manhole #6

Collected: 06/05/2009 10:55 by TD Account Number: 10132

 Submitted:
 06/09/2009
 16:45
 SUN: Aquaterra Tech.

Reported: 06/18/2009 at 14:42 PO Box 744

Discard: 08/18/2009 West Chester PA 19381

CAT No.	Analysis Name	CAS Number	As Received Final Result	LOQ	As Received Final Result	LOQ	DF
EPA 1	8 modified Volat	tiles in Air	mg/m3	mg/m3	ppm(v)	ppm(v)	
07056	Methane	74-82-8	9.8	6.6	15	10	2
EPA TO	O-15 Volat	tiles in Air	mg/m3	mg/m3	ppm(v)	ppm(v)	
05298	Acetone	67-64-1	0.012	0.0048	0.0050	0.0020	1
05298	Acetonitrile	75-05-8	< 0.0034	0.0034	< 0.0020	0.0020	1
05298	Acrolein	107-02-8	< 0.0046	0.0046	< 0.0020	0.0020	1
05298	Acrylonitrile	107-13-1	< 0.0043	0.0043	< 0.0020	0.0020	1
05298	Benzene	71-43-2	< 0.0032	0.0032	< 0.0010	0.0010	1
05298	Bromobenzene	108-86-1	< 0.0064	0.0064	< 0.0010	0.0010	1
05298	Bromodichloromethane	75-27-4	< 0.0067	0.0067	< 0.0010	0.0010	1
05298	Bromoform	75-25-2	< 0.010	0.010	< 0.0010	0.0010	1
05298	Bromomethane	74-83-9	< 0.0039	0.0039	< 0.0010	0.0010	1
05298	1,3-Butadiene	106-99-0	< 0.0044	0.0044	< 0.0020	0.0020	1
05298	2-Butanone	78-93-3	< 0.0059	0.0059	< 0.0020	0.0020	1
05298	tert-Butyl Alcohol	75-65-0	< 0.0030	0.0030	< 0.0010	0.0010	1
05298	Carbon Disulfide	75-15-0	< 0.0031	0.0031	< 0.0010	0.0010	1
05298	Carbon Tetrachloride	56-23-5	< 0.0063	0.0063	< 0.0010	0.0010	1
05298	Chlorobenzene	108-90-7	< 0.0046	0.0046	< 0.0010	0.0010	1
05298	Chlorodifluoromethane	75-45-6	< 0.0035	0.0035	< 0.0010	0.0010	1
05298	Chloroethane	75-00-3	< 0.0026	0.0026	< 0.0010	0.0010	1
05298	Chloroform	67-66-3	0.0067	0.0049	0.0014	0.0010	1
05298	Chloromethane	74-87-3	< 0.0021	0.0021	< 0.0010	0.0010	1
05298	3-Chloropropene	107-05-1	< 0.0031	0.0031	< 0.0010	0.0010	1
05298	Cumene	98-82-8	0.0075	0.0049	0.0015	0.0010	1
05298	Dibromochloromethane	124-48-1	< 0.0085	0.0085	< 0.0010	0.0010	1
05298	1,2-Dibromoethane	106-93-4	< 0.0077	0.0077	< 0.0010	0.0010	1
05298	Dibromomethane	74-95-3	< 0.0071	0.0071	< 0.0010	0.0010	1
05298	1,2-Dichlorobenzene	95-50-1	< 0.0060	0.0060	< 0.0010	0.0010	1
05298	1,3-Dichlorobenzene	541-73-1	< 0.0060	0.0060	< 0.0010	0.0010	1
05298	1,4-Dichlorobenzene	106-46-7	< 0.0060	0.0060	< 0.0010	0.0010	1
05298	Dichlorodifluoromethane	75-71-8	< 0.0049	0.0049	< 0.0010	0.0010	1
05298	1,1-Dichloroethane	75-34-3	< 0.0040	0.0040	< 0.0010	0.0010	1
05298	1,2-Dichloroethane	107-06-2	< 0.0040	0.0040	< 0.0010	0.0010	1
05298	1,1-Dichloroethene	75-35-4	< 0.0040	0.0040	< 0.0010	0.0010	1
05298	cis-1,2-Dichloroethene	156-59-2	< 0.0040	0.0040	< 0.0010	0.0010	1
05298 05298	trans-1,2-Dichloroethene	156-60-5	< 0.0040	0.0040	< 0.0010	0.0010	1 1
	Dichlorofluoromethane	75-43-4	< 0.0042	0.0042	< 0.0010	0.0010	
05298	1,2-Dichloropropane	78-87-5	< 0.0046	0.0046	< 0.0010	0.0010	1 1
05298	cis-1,3-Dichloropropene	10061-01-5	< 0.0045	0.0045	< 0.0010	0.0010	1
05298 05298	trans-1,3-Dichloropropene 1,4-Dioxane	10061-02-6	< 0.0045	0.0045	< 0.0010	0.0010	1
05298	Ethyl Acetate	123-91-1 141-78-6	< 0.0036 < 0.0036	0.0036 0.0036	< 0.0010 < 0.0010	0.0010 0.0010	1
05298	Ethyl Acrylate	140-88-5					1
05298	Ethyl Methacrylate	140-88-5 97-63-2	< 0.0041 < 0.0047	0.0041 0.0047	< 0.0010 < 0.0010	0.0010 0.0010	1
05298 05298	Ethyl Methacrylate Ethylbenzene	97-63-2 100-41-4	< 0.0047	0.0047	< 0.0010	0.0010	1
05298	4-Ethyltoluene	622-96-8	< 0.0043	0.0043	< 0.0010	0.0010	1
05298	Freon 113	622-96-8 76-13-1	< 0.0049	0.0049	< 0.0010	0.0010	1
05298	Freon 113 Freon 114	76-13-1 76-14-2	< 0.015	0.015	< 0.0020	0.0020	1
05298	Heptane	142-82-5	< 0.0070	0.0070	< 0.0010	0.0010	1
02230	персапе	142-02-5	< 0.0041	0.0041	< 0.0010	0.0010	_

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 3

Lancaster Laboratories Sample No. AQ 5695004

Group No. 1148396

PA

Manhole #6 Summa #102 Grab Air Philadelphia Refinery Jackson St

COC: 209188 Manhole #6

Collected: 06/05/2009 10:55 by TD

Account Number: 10132

Submitted: 06/09/2009 16:45

SUN: Aquaterra Tech.

Reported: 06/18/2009 at 14:42

PO Box 744

Discard: 08/18/2009

West Chester PA 19381

CAT No.	Analysis Name	CAS Number	As Received Final Result	LOQ	As Received Final Result	LOQ	DF
NO.	-		rinai kesuit	поб	Final Result	поб	
EPA T	0-15 Volatiles	in Air	mg/m3	mg/m3	ppm(v)	ppm(v)	
05298	Hexachlorobutadiene	87-68-3	< 0.021	0.021	< 0.0020	0.0020	1
05298	Hexachloroethane	67-72-1	< 0.0097	0.0097	< 0.0010	0.0010	1
05298	Hexane	110-54-3	0.0036	0.0035	0.0010	0.0010	1
05298	2-Hexanone	591-78-6	< 0.0082	0.0082	< 0.0020	0.0020	1
05298	Isooctane	540-84-1	0.25	0.047	0.054	0.010	10
05298	Methyl Acrylate	96-33-3	< 0.0035	0.0035	< 0.0010	0.0010	1
05298	Methyl Iodide	74-88-4	< 0.0058	0.0058	< 0.0010	0.0010	1
05298	Methyl Methacrylate	80-62-6	< 0.0041	0.0041	< 0.0010	0.0010	1
05298	Alpha Methyl Styrene	98-83-9	< 0.0048	0.0048	< 0.0010	0.0010	1
05298	Methyl t-Butyl Ether	1634-04-4	< 0.0036	0.0036	< 0.0010	0.0010	1
05298	4-Methyl-2-Pentanone	108-10-1	< 0.0082	0.0082	< 0.0020	0.0020	1
05298	Methylene Chloride	75-09-2	< 0.0035	0.0035	< 0.0010	0.0010	1
05298	Octane	111-65-9	< 0.0047	0.0047	< 0.0010	0.0010	1
05298	Pentane	109-66-0	0.013	0.0030	0.0044	0.0010	1
05298	Propene	115-07-1	< 0.0017	0.0017	< 0.0010	0.0010	1
05298	Styrene	100-42-5	< 0.0043	0.0043	< 0.0010	0.0010	1
05298	1,1,1,2-Tetrachloroethane	630-20-6	< 0.0069	0.0069	< 0.0010	0.0010	1
05298	1,1,2,2-Tetrachloroethane	79-34-5	< 0.0069	0.0069	< 0.0010	0.0010	1
05298	Tetrachloroethene	127-18-4	< 0.0068	0.0068	< 0.0010	0.0010	1
05298	Toluene	108-88-3	< 0.0038	0.0038	< 0.0010	0.0010	1
05298	1,2,4-Trichlorobenzene	120-82-1	< 0.015	0.015	< 0.0020	0.0020	1
05298	1,1,1-Trichloroethane	71-55-6	< 0.0055	0.0055	< 0.0010	0.0010	1
05298	1,1,2-Trichloroethane	79-00-5	< 0.0055	0.0055	< 0.0010	0.0010	1
05298	Trichloroethene	79-01-6	< 0.0054	0.0054	< 0.0010	0.0010	1
05298	Trichlorofluoromethane	75-69-4	< 0.0056	0.0056	< 0.0010	0.0010	1
05298	1,2,3-Trichloropropane	96-18-4	< 0.0060	0.0060	< 0.0010	0.0010	1
05298	1,2,4-Trimethylbenzene	95-63-6	< 0.0049	0.0049	< 0.0010	0.0010	1
05298	1,3,5-Trimethylbenzene	108-67-8	< 0.0049	0.0049	< 0.0010	0.0010	1
05298	Vinyl Acetate	108-05-4	< 0.0035	0.0035	< 0.0010	0.0010	1
05298	Vinyl Chloride	75-01-4	< 0.0026	0.0026	< 0.0010	0.0010	1
05298	m/p-Xylene	n.a.	< 0.0043	0.0043	< 0.0010	0.0010	1
05298	o-Xylene	95-47-6	< 0.0043	0.0043	< 0.0010	0.0010	1
00 %	Description I imite for Minus Destate	1 4 Diarrama	and a Harranana a				

QC ${\tt Recovery\ limits}$ for Vinyl Acetate, 1,4-Dioxane, and 2-Hexanone are advisory only.

LOQ = Limit of Quantitation

General Sample Comments

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/10

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 3 of 3

Lancaster Laboratories Sample No. AQ 5695004

Group No. 1148396

PA

Manhole #6 Summa #102 Grab Air Philadelphia Refinery Jackson St

COC: 209188 Manhole #6

Collected: 06/05/2009 10:55 by TD

Account Number: 10132

SUN: Aquaterra Tech.

PO Box 744

West Chester PA 19381

Submitted: 06/09/2009 16:45 Reported: 06/18/2009 at 14:42

Discard: 08/18/2009

Laboratory	Chronicle	

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
05298	TO 15 VOA Ext. List	EPA TO-15	1	C0916730AA	06/17/2009 03:00	Jonathan K Nardelli	1
05298	TO 15 VOA Ext. List	EPA TO-15	1	C0916730AA	06/17/2009 03:43	Jonathan K Nardelli	10
07056	Methane	EPA 18 modified	1	M091621ZA	06/10/2009 18:58	David I Ressler	2

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 3

Lancaster Laboratories Sample No. AQ 5695005

Group No. 1148396

Jackson Ambient Can #062 Grab Air Philadelphia Refinery Jackson St

COC: 209188 Jackson Ambient

by TD Collected: 06/05/2009 09:41 Account Number: 10132

Submitted: 06/09/2009 16:45 SUN: Aquaterra Tech.

Reported: 06/18/2009 at 14:42 PO Box 744

West Chester PA 19381 Discard: 08/18/2009

CAT No.	Analysis Name	CAS Number	As Received Final Result	LOQ	As Received Final Result	LOQ	DF
EPA 1	8 modified Volatile	es in Air	mg/m3	mg/m3	ppm(v)	ppm(v)	
07056	Methane	74-82-8	< 6.6	6.6	< 10	10	2
EPA T	0-15 Volatile	es in Air	mg/m3	mg/m3	ppm(v)	ppm(v)	
05298	Acetone	67-64-1	0.018	0.0048	0.0077	0.0020	1
05298	Acetonitrile	75-05-8	< 0.0034	0.0034	< 0.0020	0.0020	1
05298	Acrolein	107-02-8	< 0.0046	0.0046	< 0.0020	0.0020	1
05298	Acrylonitrile	107-13-1	< 0.0043	0.0043	< 0.0020	0.0020	1
05298	Benzene	71-43-2	< 0.0032	0.0032	< 0.0010	0.0010	1
05298	Bromobenzene	108-86-1	< 0.0064	0.0064	< 0.0010	0.0010	1
05298	Bromodichloromethane	75-27-4	< 0.0067	0.0067	< 0.0010	0.0010	1
05298	Bromoform	75-25-2	< 0.010	0.010	< 0.0010	0.0010	1
05298	Bromomethane	74-83-9	< 0.0039	0.0039	< 0.0010	0.0010	1
05298	1,3-Butadiene	106-99-0	< 0.0044	0.0044	< 0.0020	0.0020	1
05298	2-Butanone	78-93-3	0.0059	0.0059	0.0020	0.0020	1
05298	tert-Butyl Alcohol	75-65-0	< 0.0030	0.0030	< 0.0010	0.0010	1
05298	Carbon Disulfide	75-15-0	0.0067	0.0031	0.0021	0.0010	1
05298	Carbon Tetrachloride	56-23-5	< 0.0063	0.0063	< 0.0010	0.0010	1
05298	Chlorobenzene	108-90-7	< 0.0046	0.0046	< 0.0010	0.0010	1
05298	Chlorodifluoromethane	75-45-6	< 0.0035	0.0035	< 0.0010	0.0010	1
05298	Chloroethane	75-00-3	< 0.0026	0.0026	< 0.0010	0.0010	1
05298	Chloroform	67-66-3	< 0.0049	0.0049	< 0.0010	0.0010	1
05298	Chloromethane	74-87-3	< 0.0021	0.0021	< 0.0010	0.0010	1
05298	3-Chloropropene	107-05-1	< 0.0031	0.0031	< 0.0010	0.0010	1
05298	Cumene	98-82-8	< 0.0049	0.0049	< 0.0010	0.0010	1
05298	Dibromochloromethane	124-48-1	< 0.0085	0.0085	< 0.0010	0.0010	1
05298	1,2-Dibromoethane	106-93-4	< 0.0077	0.0077	< 0.0010	0.0010	1
05298	Dibromomethane	74-95-3	< 0.0071	0.0071	< 0.0010	0.0010	1
05298	1,2-Dichlorobenzene	95-50-1	< 0.0060	0.0060	< 0.0010	0.0010	1
05298	1,3-Dichlorobenzene	541-73-1	< 0.0060	0.0060	< 0.0010	0.0010	1
05298	1,4-Dichlorobenzene	106-46-7	< 0.0060	0.0060	< 0.0010	0.0010	1
05298	Dichlorodifluoromethane	75-71-8	< 0.0049	0.0049	< 0.0010	0.0010	1
05298	1,1-Dichloroethane	75-34-3	< 0.0040	0.0040	< 0.0010	0.0010	1
05298	1,2-Dichloroethane	107-06-2	< 0.0040	0.0040	< 0.0010	0.0010	1
05298	1,1-Dichloroethene	75-35-4	< 0.0040	0.0040	< 0.0010	0.0010	1
05298	cis-1,2-Dichloroethene	156-59-2	< 0.0040	0.0040	< 0.0010	0.0010	1
05298 05298	trans-1,2-Dichloroethene	156-60-5	< 0.0040	0.0040	< 0.0010	0.0010	1
	Dichlorofluoromethane	75-43-4	< 0.0042	0.0042	< 0.0010	0.0010	1
05298	1,2-Dichloropropane	78-87-5	< 0.0046	0.0046	< 0.0010	0.0010	1
05298	cis-1,3-Dichloropropene	10061-01-5	< 0.0045	0.0045	< 0.0010	0.0010	1
05298 05298	trans-1,3-Dichloropropene 1,4-Dioxane	10061-02-6	< 0.0045	0.0045	< 0.0010	0.0010	1 1
05298	Ethyl Acetate	123-91-1 141-78-6	< 0.0036 < 0.0036	0.0036 0.0036	< 0.0010 < 0.0010	0.0010 0.0010	1
05298	Ethyl Acrylate	141-78-6				0.0010	1
05298	Ethyl Methacrylate	97-63-2	< 0.0041 < 0.0047	0.0041 0.0047	< 0.0010 < 0.0010	0.0010	1
05298 05298	Ethyl Methacrylate Ethylbenzene	97-63-2 100-41-4	< 0.0047	0.0047	< 0.0010	0.0010	1
05298	4-Ethyltoluene	622-96-8	< 0.0043	0.0043	< 0.0010	0.0010	1
05298	Freon 113	622-96-8 76-13-1	< 0.0049	0.0049	< 0.0010	0.0010	1
05298	Freon 113 Freon 114	76-13-1 76-14-2	< 0.015	0.015	< 0.0020	0.0020	1
05298	Heptane	142-82-5	< 0.0070	0.0070	< 0.0010	0.0010	1
03230	nepeane	142-02-3	\ 0.0041	0.0041	0.0010	0.0010	_

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 3

Lancaster Laboratories Sample No. AQ 5695005

Group No. 1148396

PA

Jackson Ambient Can #062 Grab Air Philadelphia Refinery Jackson St

COC: 209188 Jackson Ambient

Collected: 06/05/2009 09:41 by TD Account Number: 10132

Submitted: 06/09/2009 16:45 SUN: Aquaterra Tech.

Reported: 06/18/2009 at 14:42 PO Box 744

Discard: 08/18/2009 West Chester PA 19381

CAT No.	Analysis Name	CAS Number	As Received Final Result	LOQ	As Received Final Result	LOQ	DF
NO.	-		rinai kesuit	поб	Final Result	поб	
EPA T	0-15 Volatiles	in Air	mg/m3	mg/m3	ppm(v)	ppm(v)	
05298	Hexachlorobutadiene	87-68-3	< 0.021	0.021	< 0.0020	0.0020	1
05298	Hexachloroethane	67-72-1	< 0.0097	0.0097	< 0.0010	0.0010	1
05298	Hexane	110-54-3	< 0.0035	0.0035	< 0.0010	0.0010	1
05298	2-Hexanone	591-78-6	< 0.0082	0.0082	< 0.0020	0.0020	1
05298	Isooctane	540-84-1	< 0.0047	0.0047	< 0.0010	0.0010	1
05298	Methyl Acrylate	96-33-3	< 0.0035	0.0035	< 0.0010	0.0010	1
05298	Methyl Iodide	74-88-4	< 0.0058	0.0058	< 0.0010	0.0010	1
05298	Methyl Methacrylate	80-62-6	< 0.0041	0.0041	< 0.0010	0.0010	1
05298	Alpha Methyl Styrene	98-83-9	< 0.0048	0.0048	< 0.0010	0.0010	1
05298	Methyl t-Butyl Ether	1634-04-4	< 0.0036	0.0036	< 0.0010	0.0010	1
05298	4-Methyl-2-Pentanone	108-10-1	< 0.0082	0.0082	< 0.0020	0.0020	1
05298	Methylene Chloride	75-09-2	0.042	0.0035	0.012	0.0010	1
05298	Octane	111-65-9	< 0.0047	0.0047	< 0.0010	0.0010	1
05298	Pentane	109-66-0	< 0.0030	0.0030	< 0.0010	0.0010	1
05298	Propene	115-07-1	< 0.0017	0.0017	< 0.0010	0.0010	1
05298	Styrene	100-42-5	< 0.0043	0.0043	< 0.0010	0.0010	1
05298	1,1,1,2-Tetrachloroethane	630-20-6	< 0.0069	0.0069	< 0.0010	0.0010	1
05298	1,1,2,2-Tetrachloroethane	79-34-5	< 0.0069	0.0069	< 0.0010	0.0010	1
05298	Tetrachloroethene	127-18-4	< 0.0068	0.0068	< 0.0010	0.0010	1
05298	Toluene	108-88-3	< 0.0038	0.0038	< 0.0010	0.0010	1
05298	1,2,4-Trichlorobenzene	120-82-1	< 0.015	0.015	< 0.0020	0.0020	1
05298	1,1,1-Trichloroethane	71-55-6	< 0.0055	0.0055	< 0.0010	0.0010	1
05298	1,1,2-Trichloroethane	79-00-5	< 0.0055	0.0055	< 0.0010	0.0010	1
05298	Trichloroethene	79-01-6	< 0.0054	0.0054	< 0.0010	0.0010	1
05298	Trichlorofluoromethane	75-69-4	< 0.0056	0.0056	< 0.0010	0.0010	1
05298	1,2,3-Trichloropropane	96-18-4	< 0.0060	0.0060	< 0.0010	0.0010	1
05298	1,2,4-Trimethylbenzene	95-63-6	< 0.0049	0.0049	< 0.0010	0.0010	1
05298	1,3,5-Trimethylbenzene	108-67-8	< 0.0049	0.0049	< 0.0010	0.0010	1
05298	Vinyl Acetate	108-05-4	< 0.0035	0.0035	< 0.0010	0.0010	1
05298	Vinyl Chloride	75-01-4	< 0.0026	0.0026	< 0.0010	0.0010	1
05298	m/p-Xylene	n.a.	< 0.0043	0.0043	< 0.0010	0.0010	1
05298	o-Xylene	95-47-6	< 0.0043	0.0043	< 0.0010	0.0010	1
00 %	Description I imite for Winer Asstate	1 / Diarrama	and a Harranana a				

QC %Recovery limits for Vinyl Acetate, 1,4-Dioxane, and 2-Hexanone are advisory only.

LOQ = Limit of Quantitation

General Sample Comments

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/10

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 3 of 3

Lancaster Laboratories Sample No. AQ 5695005

Group No. 1148396

PA

Jackson Ambient Can #062 Grab Air Philadelphia Refinery Jackson St

COC: 209188 Jackson Ambient

Collected: 06/05/2009 09:41 by TD

Account Number: 10132

SUN: Aquaterra Tech.

PO Box 744

West Chester PA 19381

Submitted: 06/09/2009 16:45 Reported: 06/18/2009 at 14:42

Discard: 08/18/2009

Laboratory Chronicle

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
05298	TO 15 VOA Ext. List	EPA TO-15	1	C0916730AB	06/17/2009 17:	22 Jonathan K Nardelli	1
07056	Methane	EPA 18 modified	1	M091621ZA	06/10/2009 19:	27 David I Ressler	2

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681• www.lancasterlabs.com

Page 1 of 4

Quality Control Summary

Client Name: SUN: Aquaterra Tech. Group Number: 1148396

Reported: 06/18/09 at 02:42 PM

Matrix QC may not be reported if site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method

Laboratory Compliance Quality Control

Analysis Name	Blank <u>Result</u>	Blank <u>LOO</u>	Report <u>Units</u>	LCS %REC	LCSD %REC	LCS/LCSD <u>Limits</u>	RPD	RPD Max
Batch number: C0916730AA	Sample numb	er(s): 569	95002-5695	004				
Acetone	< 0.0048	0.0048	mq/m3	121	128	70-130	6	25
Acetonitrile	< 0.0034	0.0034	mq/m3					
Acrolein	< 0.0046	0.0046	mg/m3					
Acrylonitrile	< 0.0043	0.0043	mq/m3					
Benzene	< 0.0032	0.0032	mg/m3	102	106	70-130	4	25
Bromobenzene	< 0.0064	0.0064	mq/m3					
Bromodichloromethane	< 0.0067	0.0067	mg/m3	91	94	70-130	3	25
Bromoform	< 0.010	0.010	mg/m3	73	76	70-130	4	25
Bromomethane	< 0.0039	0.0039	mg/m3	107	113	70-130	5	25
1,3-Butadiene	< 0.0044	0.0044	mg/m3	117	122	70-130	4	25
2-Butanone	< 0.0059	0.0059	mg/m3	116	118	70-130	2	25
tert-Butyl Alcohol	< 0.0030	0.0030	mg/m3					
Carbon Disulfide	< 0.0031	0.0031	mg/m3	77	80	70-130	4	25
Carbon Tetrachloride	< 0.0063	0.0063	mg/m3	90	95	70-130	5	25
Chlorobenzene	< 0.0046	0.0046	mg/m3	95	98	70-130	4	25
Chlorodifluoromethane	< 0.0035	0.0035	mg/m3					
Chloroethane	< 0.0026	0.0026	mg/m3	106	111	57-131	4	25
Chloroform	< 0.0049	0.0049	mg/m3	105	109	70-130	4	25
Chloromethane	< 0.0021	0.0021	mg/m3	100	107	50-127	7	25
3-Chloropropene	< 0.0031	0.0031	mg/m3					
Cumene	< 0.0049	0.0049	mq/m3					
Dibromochloromethane	< 0.0085	0.0085	mg/m3	85	88	70-130	3	25
1,2-Dibromoethane	< 0.0077	0.0077	mg/m3	99	102	53-158	3	25
Dibromomethane	< 0.0071	0.0071	mg/m3					
1,2-Dichlorobenzene	< 0.0060	0.0060	mg/m3	94	99	46-171	5	25
1,3-Dichlorobenzene	< 0.0060	0.0060	mg/m3	85	90	46-170	6	25
1,4-Dichlorobenzene	< 0.0060	0.0060	mg/m3	90	94	39-169	5	25
Dichlorodifluoromethane	< 0.0049	0.0049	mg/m3	101	108	54-122	7	25
1,1-Dichloroethane	< 0.0040	0.0040	mg/m3	97	102	56-128	4	25
1,2-Dichloroethane	< 0.0040	0.0040	mg/m3	98	102	70-130	3	25
1,1-Dichloroethene	< 0.0040	0.0040	mg/m3	98	103	56-127	5	25
cis-1,2-Dichloroethene	< 0.0040	0.0040	mg/m3	103	107	52-125	4	25
trans-1,2-Dichloroethene	< 0.0040	0.0040	mg/m3	93	97	70-130	4	25
Dichlorofluoromethane	< 0.0042	0.0042	mg/m3					
1,2-Dichloropropane	< 0.0046	0.0046	mg/m3	93	96	70-130	3	25
cis-1,3-Dichloropropene	< 0.0045	0.0045	mg/m3	97	101	48-132	3	25
trans-1,3-Dichloropropene	< 0.0045	0.0045	mg/m3	91	95	53-147	4	25
1,4-Dioxane	< 0.0036	0.0036	mg/m3	167*	160*	70-130	4	25
Ethyl Acetate	< 0.0036	0.0036	mg/m3	96	99	70-130	4	25
Ethyl Acrylate	< 0.0041	0.0041	mg/m3					
Ethyl Methacrylate	< 0.0047	0.0047	mg/m3					
Ethylbenzene	< 0.0043	0.0043	mg/m3	104	108	70-130	4	25
4-Ethyltoluene	< 0.0049	0.0049	mg/m3	91	96	70-130	5	25
Freon 113	< 0.015	0.015	mg/m3	93	96	61-135	3	25
Freon 114	< 0.0070	0.0070	mg/m3	108	115	58-125	6	25
Heptane	< 0.0041	0.0041	mg/m3	106	110	70-130	3	25

*- Outside of specification

- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 4

Quality Control Summary

Client Name: SUN: Aquaterra Tech. Group Number: 1148396

Reported: 06/18/09 at 02:42 PM

Laboratory Compliance Quality Control

	Blank	Blank	Report	LCS	LCSD	LCS/LCSD		
Analysis Name	Result	LOQ	Units	%REC	%REC	Limits	RPD	RPD Max
Hexachlorobutadiene	< 0.021	0.021	mg/m3	85	88	32-200	4	25
Hexachloroethane	< 0.0097	0.0097	mg/m3					
Hexane	< 0.0035	0.0035	mg/m3	108	110	70-130	2	25
2-Hexanone	< 0.0082	0.0082	mg/m3	133*	140*	70-130	5	25
Isooctane	< 0.0047	0.0047	mg/m3					
Methyl Acrylate	< 0.0035	0.0035	mg/m3					
Methyl Iodide	< 0.0058	0.0058	mg/m3					
Methyl Methacrylate	< 0.0041	0.0041	mg/m3					
Alpha Methyl Styrene	< 0.0048	0.0048	mg/m3					
Methyl t-Butyl Ether	< 0.0036	0.0036	mg/m3	99	103	70-130	4	25
4-Methyl-2-Pentanone	< 0.0082	0.0082	mg/m3	123	127	70-130	3	25
Methylene Chloride	< 0.0035	0.0035	mg/m3	91	94	70-130	3	25
Octane	< 0.0033	0.0047	mq/m3	7 ±	J 1	70 150	3	23
Pentane	< 0.0047	0.0030	mq/m3					
Propene	< 0.0030	0.0017	mg/m3	84	91	70-130	8	25
Styrene	< 0.0017	0.0017	mq/m3	97	100	58-169	4	25
1,1,1,2-Tetrachloroethane	< 0.0043	0.0043	mg/m3	51	100	30-103	-	23
1,1,2,2-Tetrachloroethane	< 0.0069	0.0069	mq/m3	94	98	43-171	5	25
Tetrachloroethene	< 0.0068	0.0068	mg/m3	94	98	70-130	4	25
Toluene	< 0.0088	0.0088	mg/m3	106	110	70-130	3	25
1,2,4-Trichlorobenzene	< 0.0038	0.0038	mg/m3	94	98	32-200	4	25
1,1,1-Trichloroethane	< 0.015	0.015	mq/m3	92	96	70-130	5	25
	< 0.0055	0.0055	mg/m3	90	93	54-132	3	25
1,1,2-Trichloroethane Trichloroethene	< 0.0054	0.0054	mg/m3	100	103	70-130	2	25
				99	103		5	25
Trichlorofluoromethane	< 0.0056	0.0056	mg/m3	99	104	70-130	5	25
1,2,3-Trichloropropane	< 0.0060	0.0060	mg/m3	97	100	44 164	5	0.5
1,2,4-Trimethylbenzene	< 0.0049	0.0049	mg/m3		102	44-164		25
1,3,5-Trimethylbenzene	< 0.0049	0.0049	mg/m3	101	105	49-157	4	25
Vinyl Acetate	< 0.0035	0.0035	mg/m3	58*	60*	70-130	4 5	25
Vinyl Chloride	< 0.0026	0.0026	mg/m3	114	120	70-130	-	25
m/p-Xylene	< 0.0043	0.0043	mg/m3	116	121	70-130	4	25
o-Xylene	< 0.0043	0.0043	mg/m3	110	115	70-130	5	25
Batch number: C0916730AB	Sample numb	er(s): 569	95005					
Acetone	< 0.0048	0.0048	mg/m3	121	128	70-130	6	25
Acetonitrile	< 0.0034	0.0034	mg/m3					
Acrolein	< 0.0046	0.0046	mg/m3					
Acrylonitrile	< 0.0043	0.0043	mg/m3					
Benzene	< 0.0032	0.0032	mg/m3	102	106	70-130	4	25
Bromobenzene	< 0.0064	0.0064	mg/m3					
Bromodichloromethane	< 0.0067	0.0067	mg/m3	91	94	70-130	3	25
Bromoform	< 0.010	0.010	mg/m3	73	76	70-130	4	25
Bromomethane	< 0.0039	0.0039	mg/m3	107	113	70-130	5	25
1,3-Butadiene	< 0.0044	0.0044	mg/m3	117	122	70-130	4	25
2-Butanone	< 0.0059	0.0059	mg/m3	116	118	70-130	2	25
tert-Butyl Alcohol	< 0.0030	0.0030	mg/m3					
Carbon Disulfide	< 0.0031	0.0031	mg/m3	77	8.0	70-130	4	25
Carbon Tetrachloride	< 0.0063	0.0063	mg/m3	90	95	70-130	5	25
Chlorobenzene	< 0.0046	0.0046	mg/m3	95	98	70-130	4	25
Chlorodifluoromethane	< 0.0035	0.0035	mq/m3	23	50	70 150	-	23
Chloroethane	< 0.0035	0.0035	mq/m3	106	111	57-131	4	25
Chloroform	< 0.0020	0.0020	mg/m3	105	109	70-130	4	25
Chloromethane	< 0.0045	0.0045	mg/m3	100	107	50-127	7	25
3-Chloropropene	< 0.0021	0.0021	mg/m3	100	10,	50 127	,	20
Cumene	< 0.0031	0.0031	mq/m3					
Cameric	· 0.0049	0.0049	1119/1113					

*- Outside of specification

- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 3 of 4

Quality Control Summary

Client Name: SUN: Aquaterra Tech. Group Number: 1148396

Reported: 06/18/09 at 02:42 PM

Laboratory Compliance Quality Control

	Blank	Blank	Report	LCS	LCSD	LCS/LCSD		
Analysis Name	Result	<u>LOO</u>	<u>Units</u>	%REC	%REC	<u>Limits</u>	RPD	RPD Max
Dibromochloromethane	< 0.0085	0.0085	mg/m3	85	88	70-130	3	25
1,2-Dibromoethane	< 0.0077	0.0077	mg/m3	99	102	53-158	3	25
Dibromomethane	< 0.0071	0.0071	mg/m3					
1,2-Dichlorobenzene	< 0.0060	0.0060	mg/m3	94	99	46-171	5	25
1,3-Dichlorobenzene	< 0.0060	0.0060	mg/m3	85	90	46-170	6	25
1,4-Dichlorobenzene	< 0.0060	0.0060	mg/m3	90	94	39-169	5	25
Dichlorodifluoromethane	< 0.0049	0.0049	mg/m3	101	108	54-122	7	25
1,1-Dichloroethane	< 0.0040	0.0040	mg/m3	97	102	56-128	4	25
1,2-Dichloroethane	< 0.0040	0.0040	mg/m3	98	102	70-130	3	25
1,1-Dichloroethene	< 0.0040	0.0040	mg/m3	98	103	56-127	5	25
cis-1,2-Dichloroethene	< 0.0040	0.0040	mg/m3	103	107	52-125	4	25
trans-1,2-Dichloroethene	< 0.0040	0.0040	mg/m3	93	97	70-130	4	25
Dichlorofluoromethane	< 0.0042	0.0042	mg/m3					
1,2-Dichloropropane	< 0.0046	0.0046	mg/m3	93	96	70-130	3	25
cis-1,3-Dichloropropene	< 0.0045	0.0045	mg/m3	97	101	48-132	3	25
trans-1,3-Dichloropropene	< 0.0045	0.0045	mg/m3	91	95	53-147	4	25
1,4-Dioxane	< 0.0036	0.0036	mg/m3	167*	160*	70-130	4	25
Ethyl Acetate	< 0.0036	0.0036	mg/m3	96	99	70-130	4	25
Ethyl Acrylate	< 0.0041	0.0041	mq/m3	50		, 0 100	-	20
Ethyl Methacrylate	< 0.0011	0.0047	mg/m3					
Ethylbenzene	< 0.0043	0.0043	mq/m3	104	108	70-130	4	25
4-Ethyltoluene	< 0.0019	0.0049	mq/m3	91	96	70-130	5	25
Freon 113	< 0.0045	0.015	mq/m3	93	96	61-135	3	25
Freon 114	< 0.013	0.013	mq/m3	108	115	58-125	6	25
Heptane	< 0.0070	0.0070	mg/m3	106	110	70-130	3	25
Hexachlorobutadiene	< 0.0041	0.0041	mg/m3	85	88	32-200	4	25
Hexachloroethane	< 0.021	0.021	mg/m3	65	00	32-200	4	25
Hexane				108	110	70 120	2	25
2-Hexanone	< 0.0035 < 0.0082	0.0035 0.0082	mg/m3	133*	140*	70-130 70-130	5	25
Isooctane	< 0.0082	0.0082	mg/m3	133^	140^	70-130	5	25
	< 0.0047	0.0047	mg/m3					
Methyl Acrylate Methyl Iodide	< 0.0035	0.0058	mg/m3 mg/m3					
Methyl Methacrylate	< 0.0056	0.0058	mg/m3					
Alpha Methyl Styrene	< 0.0041	0.0041						
		0.0048	mg/m3 mg/m3	99	103	70-130	4	25
Methyl t-Butyl Ether	< 0.0036	0.0036		123	103	70-130	3	25
4-Methyl-2-Pentanone	< 0.0082	0.0082	mg/m3	91	94	70-130	3	25
Methylene Chloride	< 0.0035		mg/m3	91	94	70-130	3	25
Octane Pentane	< 0.0047 < 0.0030	0.0047 0.0030	mg/m3					
			mg/m3	0.4	0.1	E0 120	0	0.5
Propene	< 0.0017	0.0017	mg/m3	84 97	91 100	70-130	8 4	25 25
Styrene	< 0.0043	0.0043	mg/m3	97	100	58-169	4	25
1,1,1,2-Tetrachloroethane	< 0.0069	0.0069	mg/m3	0.4	0.0	40 101	_	0.5
1,1,2,2-Tetrachloroethane	< 0.0069	0.0069	mg/m3	94	98	43-171	5	25
Tetrachloroethene	< 0.0068	0.0068	mg/m3	94	98	70-130	4	25
Toluene	< 0.0038	0.0038	mg/m3	106	110	70-130	3	25
1,2,4-Trichlorobenzene	< 0.015	0.015	mg/m3	94	98	32-200	4	25
1,1,1-Trichloroethane	< 0.0055	0.0055	mg/m3	92	96	70-130	5	25
1,1,2-Trichloroethane	< 0.0055	0.0055	mg/m3	90	93	54-132	3	25
Trichloroethene	< 0.0054	0.0054	mg/m3	100	103	70-130	2	25
Trichlorofluoromethane	< 0.0056	0.0056	mg/m3	99	104	70-130	5	25
1,2,3-Trichloropropane	< 0.0060	0.0060	mg/m3	0.5	100		_	0.5
1,2,4-Trimethylbenzene	< 0.0049	0.0049	mg/m3	97	102	44-164	5	25
1,3,5-Trimethylbenzene	< 0.0049	0.0049	mg/m3	101	105	49-157	4	25
Vinyl Acetate	< 0.0035	0.0035	mg/m3	58*	60*	70-130	4	25
Vinyl Chloride	< 0.0026	0.0026	mg/m3	114	120	70-130	5	25

^{*-} Outside of specification

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 4 of 4

Quality Control Summary

Client Name: SUN: Aquaterra Tech. Group Number: 1148396

Reported: 06/18/09 at 02:42 PM

Laboratory Compliance Quality Control

	Blank	Blank	Report	LCS	LCSD	LCS/LCSD		
Analysis Name	<u>Result</u>	LOQ	<u>Units</u>	%REC	%REC	<u>Limits</u>	RPD	RPD Max
m/p-Xylene	< 0.0043	0.0043	mg/m3	116	121	70-130	4	25
o-Xylene	< 0.0043	0.0043	mg/m3	110	115	70-130	5	25

Batch number: M091621ZA Sample number(s): 5695002-5695005 Methane < 3.3 3.3 mg/m3

^{*-} Outside of specification

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Analysis Request/ Environmental Services Chain of Custody

For Lancaster Laboratories use only

Acct. # 10182 Group# 1148396 Sample # 5695002-05 COC #

209188

Please print. Instructions on reverse side correspond with circled numbers. For Lab Use Only (5) Analyses Requested FSC: Matrix **Preservation Codes** SCR#: Preservation Codes H=HCL T=Thiosulfate N=HNO₃ B=NaOH P.O.#: Project Manager: S=H₂SO₄ O=Other Quote #: Sampler: Name of state where samples were collected: Time Sample Identification : Collected Remarks * Allached is sheet w/ stat/stop + mes Turnaround Time Requested (TAT) (please circle): Normal) Relinguathed by: Time Received by: (Rush TAT is subject to Lancaster Laboratories approval and surcharge.) Date results are needed: Time! Rush results requested by (please circle): Phone Fax Fax#: 40 agraden Phone #: CC: dwebsier Clanson Received by E-mail address: Data Package Options (please circle if required) SDG Complete? Type I (validation/NJ Reg) TX TRRP-13 Type If (Tier II) MA MCP CT RCP Site-specific QC (MS/MSD/Dup)? Yes Type III (Reduced NJ) Time Received by:/ Refincuished by Type IV (CLP SOW) ∕Date (If yes, indicate QC sample and submit triplicate volume.) Type VI (Raw Data Only) Internal COC Required? Yes No

Summa Canister Sampling Field Data Sheet

	Sample Number 062 062 062 062	Final Tracer Gas Results	Canister Pressure Went (YES/NO YES/NO YES/NO YES/NO YES/	olume LL GL/°	\	Total Sample Time (min) 1,474 1,440 1,436 1,410	8460	0952 1125	sampling Sauge - before 5th 27 M 27 M 27 M 29.5 Mg	Initial Tracer Gas Results	PID Test of Purge Air	Purge Volume:	Total Purge Time (min)	Purge Time (Stop)	Purge Time (Start)	How much YES - How much YES - How much YES - How much	54 337461 316942 3	Summa Canister ID 062 509 515 102	Location 100' of (W) 50' W & Blower Consider	Sample # (062) #7 #2086x Hole	Date: 6/4/09 (24-MS) (Above Cudon)	lers:
•			YES/NO													NO/ YES - How much	: :					

Lancaster Laboratories Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

N.D.	none detected	BMQL	Below Minimum Quantitation Level
TNTC	Too Numerous To Count	MPN	Most Probable Number
IU	International Units	CP Units	cobalt-chloroplatinate units
umhos/cm	micromhos/cm	NTU	nephelometric turbidity units
С	degrees Celsius	F	degrees Fahrenheit
Cal	(diet) calories	lb.	pound(s)
meq	milliequivalents	kg	kilogram(s)
g	gram(s)	mg	milligram(s)
ug	microgram(s)	I	liter(s)
ml	milliliter(s)	ul	microliter(s)
m3	cubic meter(s)	fib >5 um/ml	fibers greater than 5 microns in length per ml

- < less than The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.
- > greater than
- ppm parts per million One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.

Inorganic Qualifiers

- ppb parts per billion
- **Dry weight**Results printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture.

U.S. EPA data qualifiers:

9	lifier	(uu	9	 u	" 9	•

A B C D E	TIC is a possible aldol-condensation product Analyte was also detected in the blank Pesticide result confirmed by GC/MS Compound quatitated on a diluted sample Concentration exceeds the calibration range of the instrument	B E M N S	Value is <crdl, (msa)="" additions="" amount="" but="" calculation<="" control="" due="" duplicate="" estimated="" for="" injection="" interference="" limits="" met="" method="" not="" of="" precision="" spike="" standard="" th="" to="" used="" within="" ≥idl=""></crdl,>
J	Estimated value	U	Compound was not detected
N	Presumptive evidence of a compound (TICs only)	W	Post digestion spike out of control limits
Р	Concentration difference between primary and	*	Duplicate analysis not within control limits
	confirmation columns >25%	+	Correlation coefficient for MSA < 0.995
U	Compound was not detected		
X,Y,Z	Defined in case narrative		

Analytical test results for methods listed on the laboratories' accreditation scope meet all requirements of NELAC unless otherwise noted under the individual analysis.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

WARRANTY AND LIMITS OF LIABILITY – In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL LANCASTER LABORATORIES BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF LANCASTER LABORATORIES AND (B) WHETHER LANCASTER LABORATORIES HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Lancaster Laboratories which includes any conditions that vary from the Standard Terms and Conditions of Lancaster Laboratories and we hereby object to any conflicting terms contained in any acceptance or order submitted by client.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

ANALYTICAL RESULTS

Prepared for:

SUN: Aquaterra Tech. PO Box 744 West Chester PA 19381

610-431-5733

Prepared by:

Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425

June 18, 2009

SAMPLE GROUP

The sample group for this submittal is 1148395. Samples arrived at the laboratory on Tuesday, June 09, 2009. The PO# for this group is PHILA REFINERY AOI-8.

Client DescriptionLancaster Labs NumberFirehouse Indoor #413 Grab Air5695000Firehouse Ambient #420 Grab Air5695001

METHODOLOGY

The specific methodologies used in obtaining the enclosed analytical results are indicated on the Laboratory Chronicle.

ELECTRONIC SUN: Aquaterra Tech. Attn: Megan Breen

COPY TO

ELECTRONIC SUN: Aquaterra Tech. Attn: Tiffani Doerr

COPY TO

ELECTRONIC LLI Attn: EDD Group

COPY TO

ELECTRONIC Langan Attn: Dennis Webster

COPY TO

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Questions? Contact your Client Services Representative Jessica A Oknefski at (717) 656-2300

Respectfully Submitted,

Chad Moline

Chad A. Moline Group Leader

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Page 1 of 3

Lancaster Laboratories Sample No. AQ 5695000

Group No. 1148395

PA

Firehouse Indoor #413 Grab Air Philadelphia Refinery AOI-8 COC: 209187 Firehouse Indoor

Collected: 06/05/2009 10:11 by TD Account Number: 10132

 Submitted:
 06/09/2009
 16:45
 SUN: Aquaterra Tech.

Reported: 06/18/2009 at 14:42 PO Box 744

Discard: 08/18/2009 West Chester PA 19381

CAT No.	Analysis Name	CAS Number	As Received Final Result	LOQ	As Received Final Result	LOQ	DF
EPA 1	8 modified Volatile	s in Air	mg/m3	mg/m3	ppm(v)	ppm(v)	
07056	Methane	74-82-8	< 6.6	6.6	< 10	10	2
EPA T	0-15 Volatile	s in Air	mg/m3	mg/m3	ppm(v)	ppm(v)	
05298	Acetone	67-64-1	0.044	0.0048	0.019	0.0020	1
05298	Acetonitrile	75-05-8	< 0.0034	0.0034	< 0.0020	0.0020	1
05298	Acrolein	107-02-8	< 0.0046	0.0046	< 0.0020	0.0020	1
05298	Acrylonitrile	107-13-1	< 0.0043	0.0043	< 0.0020	0.0020	1
05298	Benzene	71-43-2	< 0.0032	0.0032	< 0.0010	0.0010	1
05298	Bromobenzene	108-86-1	< 0.0064	0.0064	< 0.0010	0.0010	1
05298	Bromodichloromethane	75-27-4	< 0.0067	0.0067	< 0.0010	0.0010	1
05298	Bromoform	75-25-2	< 0.010	0.010	< 0.0010	0.0010	1
05298	Bromomethane	74-83-9	< 0.0039	0.0039	< 0.0010	0.0010	1
05298	1,3-Butadiene	106-99-0	< 0.0044	0.0044	< 0.0020	0.0020	1
05298	2-Butanone	78-93-3	0.015	0.0059	0.0052	0.0020	1
05298	tert-Butyl Alcohol	75-65-0	< 0.0030	0.0030	< 0.0010	0.0010	1
05298	Carbon Disulfide	75-15-0	< 0.0031	0.0031	< 0.0010	0.0010	1
05298	Carbon Tetrachloride	56-23-5	< 0.0063	0.0063	< 0.0010	0.0010	1
05298	Chlorobenzene	108-90-7	< 0.0046	0.0046	< 0.0010	0.0010	1
05298	Chlorodifluoromethane	75-45-6	0.020	0.0035	0.0056	0.0010	1
05298	Chloroethane	75-00-3	< 0.0026	0.0026	< 0.0010	0.0010	1
05298	Chloroform	67-66-3	< 0.0049	0.0049	< 0.0010	0.0010	1
05298	Chloromethane	74-87-3	< 0.0021	0.0021	< 0.0010	0.0010	1
05298	3-Chloropropene	107-05-1	< 0.0031	0.0031	< 0.0010	0.0010	1
05298	Cumene	98-82-8	< 0.0049	0.0049	< 0.0010	0.0010	1
05298	Dibromochloromethane	124-48-1	< 0.0085	0.0085	< 0.0010	0.0010	1
05298	1,2-Dibromoethane	106-93-4	< 0.0077	0.0077	< 0.0010	0.0010	1
05298	Dibromomethane	74-95-3	< 0.0071	0.0071	< 0.0010	0.0010	1
05298	1,2-Dichlorobenzene	95-50-1	< 0.0060	0.0060	< 0.0010	0.0010	1
05298 05298	1,3-Dichlorobenzene	541-73-1 106-46-7	< 0.0060 0.039	0.0060	< 0.0010	0.0010	1
05298	1,4-Dichlorobenzene Dichlorodifluoromethane			0.0060	0.0065	0.0010	1 1
	1,1-Dichloroethane	75-71-8	< 0.0049	0.0049	< 0.0010	0.0010	
05298 05298	1,1-Dichloroethane	75-34-3 107-06-2	< 0.0040 < 0.0040	0.0040 0.0040	< 0.0010 < 0.0010	0.0010 0.0010	1 1
05298	1,1-Dichloroethene	75-35-4	< 0.0040	0.0040	< 0.0010	0.0010	1
05298	cis-1,2-Dichloroethene	156-59-2	< 0.0040	0.0040	< 0.0010	0.0010	1
05298	trans-1,2-Dichloroethene	156-59-2	< 0.0040	0.0040	< 0.0010	0.0010	1
05298	Dichlorofluoromethane	75-43-4	< 0.0040	0.0040	< 0.0010	0.0010	1
05298	1,2-Dichloropropane	78-87-5	< 0.0042	0.0042	< 0.0010	0.0010	1
05298	cis-1,3-Dichloropropene	10061-01-5	< 0.0045	0.0045	< 0.0010	0.0010	1
05298	trans-1,3-Dichloropropene	10061-02-6	< 0.0015	0.0045	< 0.0010	0.0010	1
05298	1,4-Dioxane	123-91-1	< 0.0015	0.0036	< 0.0010	0.0010	1
05298	Ethyl Acetate	141-78-6	< 0.0036	0.0036	< 0.0010	0.0010	1
05298	Ethyl Acrylate	140-88-5	< 0.0041	0.0041	< 0.0010	0.0010	1
05298	Ethyl Methacrylate	97-63-2	< 0.0047	0.0047	< 0.0010	0.0010	1
05298	Ethylbenzene	100-41-4	< 0.0043	0.0043	< 0.0010	0.0010	1
05298	4-Ethyltoluene	622-96-8	< 0.0049	0.0049	< 0.0010	0.0010	1
05298	Freon 113	76-13-1	< 0.015	0.015	< 0.0020	0.0020	1
05298	Freon 114	76-14-2	< 0.0070	0.0070	< 0.0010	0.0010	1
05298	Heptane	142-82-5	< 0.0041	0.0041	< 0.0010	0.0010	1
	-						

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 3

Lancaster Laboratories Sample No. AQ 5695000

Group No. 1148395

PA

Firehouse Indoor #413 Grab Air Philadelphia Refinery AOI-8 COC: 209187 Firehouse Indoor

Collected: 06/05/2009 10:11 by TD Account Number: 10132

Submitted: 06/09/2009 16:45 SUN: Aquaterra Tech.

Reported: 06/18/2009 at 14:42 PO Box 744

Discard: 08/18/2009 West Chester PA 19381

CAT No.	Analysis Name	CAS Number	As Received CAS Number Final Result LOQ		As Received Final Result	LOQ	DF
EPA T	0-15 Volatiles	in Air	mg/m3	mg/m3	ppm(v)	ppm(v)	
05298	Hexachlorobutadiene	87-68-3	< 0.021	0.021	< 0.0020	0.0020	1
05298	Hexachloroethane	67-72-1	< 0.0097	0.0097	< 0.0010	0.0010	1
05298	Hexane	110-54-3	< 0.0035	0.0035	< 0.0010	0.0010	1
05298	2-Hexanone	591-78-6	< 0.0082	0.0082	< 0.0020	0.0020	1
05298	Isooctane	540-84-1	< 0.0047	0.0047	< 0.0010	0.0010	1
05298	Methyl Acrylate	96-33-3	< 0.0035	0.0035	< 0.0010	0.0010	1
05298	Methyl Iodide	74-88-4	< 0.0058	0.0058	< 0.0010	0.0010	1
05298	Methyl Methacrylate	80-62-6	< 0.0041	0.0041	< 0.0010	0.0010	1
05298	Alpha Methyl Styrene	98-83-9	< 0.0048	0.0048	< 0.0010	0.0010	1
05298	Methyl t-Butyl Ether	1634-04-4	< 0.0036	0.0036	< 0.0010	0.0010	1
05298	4-Methyl-2-Pentanone	108-10-1	< 0.0082	0.0082	< 0.0020	0.0020	1
05298	Methylene Chloride	75-09-2	0.015	0.0035	0.0042	0.0010	1
05298	Octane	111-65-9	< 0.0047	0.0047	< 0.0010	0.0010	1
05298	Pentane	109-66-0	0.0045	0.0030	0.0015	0.0010	1
05298	Propene	115-07-1	0.0041	0.0017	0.0024	0.0010	1
05298	Styrene	100-42-5	< 0.0043	0.0043	< 0.0010	0.0010	1
05298	1,1,1,2-Tetrachloroethane	630-20-6	< 0.0069	0.0069	< 0.0010	0.0010	1
05298	1,1,2,2-Tetrachloroethane	79-34-5	< 0.0069	0.0069	< 0.0010	0.0010	1
05298	Tetrachloroethene	127-18-4	< 0.0068	0.0068	< 0.0010	0.0010	1
05298	Toluene	108-88-3	< 0.0038	0.0038	< 0.0010	0.0010	1
05298	1,2,4-Trichlorobenzene	120-82-1	< 0.015	0.015	< 0.0020	0.0020	1
05298	1,1,1-Trichloroethane	71-55-6	< 0.0055	0.0055	< 0.0010	0.0010	1
05298	1,1,2-Trichloroethane	79-00-5	< 0.0055	0.0055	< 0.0010	0.0010	1
05298	Trichloroethene	79-01-6	< 0.0054	0.0054	< 0.0010	0.0010	1
05298	Trichlorofluoromethane	75-69-4	< 0.0056	0.0056	< 0.0010	0.0010	1
05298	1,2,3-Trichloropropane	96-18-4	< 0.0060	0.0060	< 0.0010	0.0010	1
05298	1,2,4-Trimethylbenzene	95-63-6	< 0.0049	0.0049	< 0.0010	0.0010	1
05298	1,3,5-Trimethylbenzene	108-67-8	< 0.0049	0.0049	< 0.0010	0.0010	1
05298	Vinyl Acetate	108-05-4	< 0.0035	0.0035	< 0.0010	0.0010	1
05298	Vinyl Chloride	75-01-4	< 0.0026	0.0026	< 0.0010	0.0010	1
05298	m/p-Xylene	n.a.	< 0.0043	0.0043	< 0.0010	0.0010	1
05298	o-Xylene	95-47-6	< 0.0043	0.0043	< 0.0010	0.0010	1
00 8	Pecovery limits for Vinyl Agetate	1 4-Diovane	and 2-Meyanone a	re advisory			

QC %Recovery limits for Vinyl Acetate, 1,4-Dioxane, and 2-Hexanone are advisory only.

LOQ = Limit of Quantitation

General Sample Comments

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/10

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Page 3 of 3

Lancaster Laboratories Sample No. AQ 5695000

Group No. 1148395

PA

Firehouse Indoor #413 Grab Air Philadelphia Refinery AOI-8 COC: 209187 Firehouse Indoor

Collected: 06/05/2009 10:11 by TD Account Number: 10132

Submitted: 06/09/2009 16:45 SUN: Aquaterra Tech.

Reported: 06/18/2009 at 14:42 PO Box 744

Discard: 08/18/2009 West Chester PA 19381

Laboratory Chronicle

CAT	Analysis Name	Method	Trial#	Batch#	Analysis		Analyst	Dilution
No.					Date and Time	1		Factor
05298	TO 15 VOA Ext. List	EPA TO-15	1	C0916730AA	06/16/2009 14		Jonathan K Nardelli	1
07056	Methane	EPA 18 modified	1	M091621ZA	06/10/2009 1	7:03	David I Ressler	2

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Page 1 of 3

Lancaster Laboratories Sample No. AQ 5695001

Group No. 1148395

PZ

Firehouse Ambient #420 Grab Air Philadelphia Refinery AOI-8 COC: 209187 Firehouse Ambient

Collected: 06/05/2009 10:07 by TD Account Number: 10132

Submitted: 06/09/2009 16:45 SUN: Aquaterra Tech.

Reported: 06/18/2009 at 14:42 PO Box 744

Discard: 08/18/2009 West Chester PA 19381

CAT No.	Analysis Name	CAS Number	As Received Final Result	LOQ	As Received Final Result	LOQ	DF
EPA 1	8 modified Volati	les in Air	mg/m3	mg/m3	ppm(v)	ppm(v)	
07056	Methane	74-82-8	< 6.6	6.6	< 10	10	2
EPA T	0-15 Volati	les in Air	mg/m3	mg/m3	ppm(v)	ppm(v)	
05298	Acetone	67-64-1	0.013	0.0048	0.0056	0.0020	1
05298	Acetonitrile	75-05-8	< 0.0034	0.0034	< 0.0020	0.0020	1
05298	Acrolein	107-02-8	< 0.0046	0.0046	< 0.0020	0.0020	1
05298	Acrylonitrile	107-13-1	< 0.0043	0.0043	< 0.0020	0.0020	1
05298	Benzene	71-43-2	< 0.0032	0.0032	< 0.0010	0.0010	1
05298	Bromobenzene	108-86-1	< 0.0064	0.0064	< 0.0010	0.0010	1
05298	Bromodichloromethane	75-27-4	< 0.0067	0.0067	< 0.0010	0.0010	1
05298	Bromoform	75-25-2	< 0.010	0.010	< 0.0010	0.0010	1
05298	Bromomethane	74-83-9	< 0.0039	0.0039	< 0.0010	0.0010	1
05298	1,3-Butadiene	106-99-0	< 0.0044	0.0044	< 0.0020	0.0020	1
05298	2-Butanone	78-93-3	< 0.0059	0.0059	< 0.0020	0.0020	1
05298	tert-Butyl Alcohol	75-65-0	< 0.0030	0.0030	< 0.0010	0.0010	1
05298	Carbon Disulfide	75-15-0	< 0.0031	0.0031	< 0.0010	0.0010	1
05298	Carbon Tetrachloride	56-23-5	< 0.0063	0.0063	< 0.0010	0.0010	1
05298	Chlorobenzene	108-90-7	< 0.0046	0.0046	< 0.0010	0.0010	1
05298	Chlorodifluoromethane	75-45-6	< 0.0035	0.0035	< 0.0010	0.0010	1
05298	Chloroethane	75-00-3	< 0.0026	0.0026	< 0.0010	0.0010	1
05298	Chloroform	67-66-3	< 0.0049	0.0049	< 0.0010	0.0010	1
05298	Chloromethane	74-87-3	< 0.0021	0.0021	< 0.0010	0.0010	1
05298	3-Chloropropene	107-05-1	< 0.0031	0.0031	< 0.0010	0.0010	1
05298	Cumene	98-82-8	< 0.0049	0.0049	< 0.0010	0.0010	1
05298	Dibromochloromethane	124-48-1	< 0.0085	0.0085	< 0.0010	0.0010	1
05298	1,2-Dibromoethane	106-93-4	< 0.0077	0.0077	< 0.0010	0.0010	1
05298	Dibromomethane	74-95-3	< 0.0071	0.0071	< 0.0010	0.0010	1
05298	1,2-Dichlorobenzene	95-50-1	< 0.0060	0.0060	< 0.0010	0.0010	1
05298	1,3-Dichlorobenzene	541-73-1	< 0.0060	0.0060	< 0.0010	0.0010	1
05298	1,4-Dichlorobenzene	106-46-7	< 0.0060	0.0060	< 0.0010	0.0010	1
05298	Dichlorodifluoromethane	75-71-8	< 0.0049	0.0049	< 0.0010	0.0010	1
05298	1,1-Dichloroethane	75-34-3	< 0.0040	0.0040	< 0.0010	0.0010	1
05298	1,2-Dichloroethane	107-06-2	< 0.0040	0.0040	< 0.0010	0.0010	1
05298	1,1-Dichloroethene	75-35-4	< 0.0040	0.0040	< 0.0010	0.0010	1
05298 05298	cis-1,2-Dichloroethene	156-59-2	< 0.0040	0.0040	< 0.0010	0.0010	1 1
05298	trans-1,2-Dichloroethene Dichlorofluoromethane	156-60-5	< 0.0040	0.0040	< 0.0010	0.0010	1
05298	1,2-Dichloropropane	75-43-4 78-87-5	< 0.0042 < 0.0046	0.0042 0.0046	< 0.0010 < 0.0010	0.0010 0.0010	1
05298	cis-1,3-Dichloropropene	10061-01-5	< 0.0045	0.0045	< 0.0010	0.0010	1
05298	trans-1,3-Dichloropropene	10061-01-3	< 0.0045	0.0045	< 0.0010	0.0010	1
05298	1,4-Dioxane	123-91-1	< 0.0045	0.0045	< 0.0010	0.0010	1
05298	Ethyl Acetate	141-78-6	< 0.0036	0.0036	< 0.0010	0.0010	1
05298	Ethyl Acrylate	140-88-5	< 0.0036	0.0036	< 0.0010	0.0010	1
05298	Ethyl Methacrylate	97-63-2	< 0.0041	0.0041	< 0.0010	0.0010	1
05298	Ethylbenzene	100-41-4	< 0.0047	0.0047	< 0.0010	0.0010	1
05298	4-Ethyltoluene	622-96-8	< 0.0043	0.0043	< 0.0010	0.0010	1
05298	Freon 113	76-13-1	< 0.0049	0.0049	< 0.0010	0.0010	1
05298	Freon 114	76-13-1	< 0.015	0.013	< 0.0020	0.0020	1
05298	Heptane	142-82-5	< 0.0070	0.0070	< 0.0010	0.0010	1
02220	персине	T47 -07 - 3	\ 0.0041	0.0041	\ 0.0010	0.0010	_

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 3

Lancaster Laboratories Sample No. AQ 5695001

Group No. 1148395

PA

Firehouse Ambient #420 Grab Air Philadelphia Refinery AOI-8 COC: 209187 Firehouse Ambient

Collected: 06/05/2009 10:07 by TD Account Number: 10132

Submitted: 06/09/2009 16:45 SUN: Aquaterra Tech.

Reported: 06/18/2009 at 14:42 PO Box 744

Discard: 08/18/2009 West Chester PA 19381

CAT No.	Analysis Name	CAS Number	As Received Final Result	LOQ	As Received Final Result	LOQ	DF
NO.	-		rinai kesuit	ПОФ	rinai kesuit	поб	
EPA T	O-15 Volatiles	in Air	mg/m3	mg/m3	ppm(v)	ppm(v)	
05298	Hexachlorobutadiene	87-68-3	< 0.021	0.021	< 0.0020	0.0020	1
05298	Hexachloroethane	67-72-1	< 0.0097	0.0097	< 0.0010	0.0010	1
05298	Hexane	110-54-3	< 0.0035	0.0035	< 0.0010	0.0010	1
05298	2-Hexanone	591-78-6	< 0.0082	0.0082	< 0.0020	0.0020	1
05298	Isooctane	540-84-1	< 0.0047	0.0047	< 0.0010	0.0010	1
05298	Methyl Acrylate	96-33-3	< 0.0035	0.0035	< 0.0010	0.0010	1
05298	Methyl Iodide	74-88-4	< 0.0058	0.0058	< 0.0010	0.0010	1
05298	Methyl Methacrylate	80-62-6	< 0.0041	0.0041	< 0.0010	0.0010	1
05298	Alpha Methyl Styrene	98-83-9	< 0.0048	0.0048	< 0.0010	0.0010	1
05298	Methyl t-Butyl Ether	1634-04-4	< 0.0036	0.0036	< 0.0010	0.0010	1
05298	4-Methyl-2-Pentanone	108-10-1	< 0.0082	0.0082	< 0.0020	0.0020	1
05298	Methylene Chloride	75-09-2	< 0.0035	0.0035	< 0.0010	0.0010	1
05298	Octane	111-65-9	< 0.0047	0.0047	< 0.0010	0.0010	1
05298	Pentane	109-66-0	0.0059	0.0030	0.0020	0.0010	1
05298	Propene	115-07-1	0.0026	0.0017	0.0015	0.0010	1
05298	Styrene	100-42-5	< 0.0043	0.0043	< 0.0010	0.0010	1
05298	1,1,1,2-Tetrachloroethane	630-20-6	< 0.0069	0.0069	< 0.0010	0.0010	1
05298	1,1,2,2-Tetrachloroethane	79-34-5	< 0.0069	0.0069	< 0.0010	0.0010	1
05298	Tetrachloroethene	127-18-4	< 0.0068	0.0068	< 0.0010	0.0010	1
05298	Toluene	108-88-3	< 0.0038	0.0038	< 0.0010	0.0010	1
05298	1,2,4-Trichlorobenzene	120-82-1	< 0.015	0.015	< 0.0020	0.0020	1
05298	1,1,1-Trichloroethane	71-55-6	< 0.0055	0.0055	< 0.0010	0.0010	1
05298	1,1,2-Trichloroethane	79-00-5	< 0.0055	0.0055	< 0.0010	0.0010	1
05298	Trichloroethene	79-01-6	< 0.0054	0.0054	< 0.0010	0.0010	1
05298	Trichlorofluoromethane	75-69-4	< 0.0056	0.0056	< 0.0010	0.0010	1
05298	1,2,3-Trichloropropane	96-18-4	< 0.0060	0.0060	< 0.0010	0.0010	1
05298	1,2,4-Trimethylbenzene	95-63-6	< 0.0049	0.0049	< 0.0010	0.0010	1
05298	1,3,5-Trimethylbenzene	108-67-8	< 0.0049	0.0049	< 0.0010	0.0010	1
05298	Vinyl Acetate	108-05-4	< 0.0035	0.0035	< 0.0010	0.0010	1
05298	Vinyl Chloride	75-01-4	< 0.0026	0.0026	< 0.0010	0.0010	1
05298	m/p-Xylene	n.a.	0.0046	0.0043	0.0011	0.0010	1
05298	o-Xylene	95-47-6	< 0.0043	0.0043	< 0.0010	0.0010	1
00 %	Deserver limits for Virgil Asstate	1 4 Diarrama	and a Harranana a				

QC %Recovery limits for Vinyl Acetate, 1,4-Dioxane, and 2-Hexanone are advisory only.

LOQ = Limit of Quantitation

General Sample Comments

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/10

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Page 3 of 3

Lancaster Laboratories Sample No. AQ 5695001

Group No. 1148395

PI

Firehouse Ambient #420 Grab Air Philadelphia Refinery AOI-8 COC: 209187 Firehouse Ambient

Collected: 06/05/2009 10:07 by TD Account Number: 10132

Submitted: 06/09/2009 16:45 SUN: Aquaterra Tech.

Reported: 06/18/2009 at 14:42 PO Box 744

Discard: 08/18/2009 West Chester PA 19381

Laboratory Chronicle

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
05298	TO 15 VOA Ext. List	EPA TO-15	1	C0916730AA	06/16/2009 14	l:55 Jonathan K Nardelli	1
07056	Methane	EPA 18 modified	1	M091621ZA	06/10/2009 17	7:32 David I Ressler	2

Analysis Report

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Quality Control Summary

Client Name: SUN: Aquaterra Tech. Group Number: 1148395

Reported: 06/18/09 at 02:42 PM

Matrix QC may not be reported if site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method

Laboratory Compliance Quality Control

Analysis Name	Blank <u>Result</u>	Blank <u>LOQ</u>	Report <u>Units</u>	LCS <u>%REC</u>	LCSD %REC	LCS/LCSD <u>Limits</u>	RPD	RPD Max
Batch number: C0916730AA	Sample numl	per(s): 56	95000-5695	001				
Acetone	< 0.0048	0.0048	mq/m3	121	128	70-130	6	25
Acetonitrile	< 0.0034	0.0034	mg/m3					
Acrolein	< 0.0046	0.0046	mg/m3					
Acrylonitrile	< 0.0043	0.0043	mg/m3					
Benzene	< 0.0032	0.0032	mg/m3	102	106	70-130	4	25
Bromobenzene	< 0.0064	0.0064	mg/m3					
Bromodichloromethane	< 0.0067	0.0067	mg/m3	91	94	70-130	3	25
Bromoform	< 0.010	0.010	mg/m3	73	76	70-130	4	25
Bromomethane	< 0.0039	0.0039	mg/m3	107	113	70-130	5	25
1,3-Butadiene	< 0.0044	0.0044	mg/m3	117	122	70-130	4	25
2-Butanone	< 0.0059	0.0059	mg/m3	116	118	70-130	2	25
tert-Butyl Alcohol	< 0.0030	0.0030	mg/m3					
Carbon Disulfide	< 0.0031	0.0031	mg/m3	77	80	70-130	4	25
Carbon Tetrachloride	< 0.0063	0.0063	mg/m3	90	95	70-130	5	25
Chlorobenzene	< 0.0046	0.0046	mg/m3	95	98	70-130	4	25
Chlorodifluoromethane	< 0.0035	0.0035	mg/m3					
Chloroethane	< 0.0026	0.0026	mg/m3	106	111	57-131	4	25
Chloroform	< 0.0049	0.0049	mg/m3	105	109	70-130	4	25
Chloromethane	< 0.0021	0.0021	mg/m3	100	107	50-127	7	25
3-Chloropropene	< 0.0031	0.0031	mg/m3					
Cumene	< 0.0049	0.0049	mg/m3					
Dibromochloromethane	< 0.0085	0.0085	mg/m3	85	88	70-130	3	25
1,2-Dibromoethane	< 0.0077	0.0077	mg/m3	99	102	53-158	3	25
Dibromomethane	< 0.0071	0.0071	mg/m3					
1,2-Dichlorobenzene	< 0.0060	0.0060	mg/m3	94	99	46-171	5	25
1,3-Dichlorobenzene	< 0.0060	0.0060	mg/m3	85	90	46-170	6	25
1,4-Dichlorobenzene	< 0.0060	0.0060	mq/m3	90	94	39-169	5	25
Dichlorodifluoromethane	< 0.0049	0.0049	mg/m3	101	108	54-122	7	25
1,1-Dichloroethane	< 0.0040	0.0040	mg/m3	97	102	56-128	4	25
1,2-Dichloroethane	< 0.0040	0.0040	mq/m3	98	102	70-130	3	25
1,1-Dichloroethene	< 0.0040	0.0040	mg/m3	98	103	56-127	5	25
cis-1,2-Dichloroethene	< 0.0040	0.0040	mg/m3	103	107	52-125	4	25
trans-1,2-Dichloroethene	< 0.0040	0.0040	mq/m3	93	97	70-130	4	25
Dichlorofluoromethane	< 0.0042	0.0042	mg/m3					
1,2-Dichloropropane	< 0.0046	0.0046	mg/m3	93	96	70-130	3	25
cis-1,3-Dichloropropene	< 0.0045	0.0045	mg/m3	97	101	48-132	3	25
trans-1,3-Dichloropropene	< 0.0045	0.0045	mg/m3	91	95	53-147	4	25
1,4-Dioxane	< 0.0036	0.0036	mg/m3	167*	160*	70-130	4	25
Ethyl Acetate	< 0.0036	0.0036	mq/m3	96	99	70-130	4	25
Ethyl Acrylate	< 0.0041	0.0041	mg/m3					
Ethyl Methacrylate	< 0.0047	0.0047	mg/m3					
Ethylbenzene	< 0.0043	0.0043	mg/m3	104	108	70-130	4	25
4-Ethyltoluene	< 0.0049	0.0049	mg/m3	91	96	70-130	5	25
Freon 113	< 0.015	0.015	mg/m3	93	96	61-135	3	25
Freon 114	< 0.0070	0.0070	mg/m3	108	115	58-125	6	25
Heptane	< 0.0041	0.0041	mg/m3	106	110	70-130	3	25

*- Outside of specification

- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

Analysis Report

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681• www.lancasterlabs.com

Page 2 of 2

Quality Control Summary

Client Name: SUN: Aquaterra Tech. Group Number: 1148395

Reported: 06/18/09 at 02:42 PM

Laboratory Compliance Quality Control

	Blank	Blank	Report	LCS	LCSD	LCS/LCSD		
Analysis Name	Result	LOQ	Units	%REC	%REC	Limits	RPD	RPD Max
Hexachlorobutadiene	< 0.021	0.021	mg/m3	85	88	32-200	4	25
Hexachloroethane	< 0.0097	0.0097	mg/m3					
Hexane	< 0.0035	0.0035	mg/m3	108	110	70-130	2	25
2-Hexanone	< 0.0082	0.0082	mg/m3	133*	140*	70-130	5	25
Isooctane	< 0.0047	0.0047	mg/m3					
Methyl Acrylate	< 0.0035	0.0035	mg/m3					
Methyl Iodide	< 0.0058	0.0058	mg/m3					
Methyl Methacrylate	< 0.0041	0.0041	mg/m3					
Alpha Methyl Styrene	< 0.0048	0.0048	mg/m3					
Methyl t-Butyl Ether	< 0.0036	0.0036	mg/m3	99	103	70-130	4	25
4-Methyl-2-Pentanone	< 0.0082	0.0082	mg/m3	123	127	70-130	3	25
Methylene Chloride	< 0.0035	0.0035	mg/m3	91	94	70-130	3	25
Octane	< 0.0047	0.0047	mg/m3					
Pentane	< 0.0030	0.0030	mg/m3					
Propene	< 0.0017	0.0017	mg/m3	84	91	70-130	8	25
Styrene	< 0.0043	0.0043	mg/m3	97	100	58-169	4	25
1,1,1,2-Tetrachloroethane	< 0.0069	0.0069	mg/m3					
1,1,2,2-Tetrachloroethane	< 0.0069	0.0069	mg/m3	94	98	43-171	5	25
Tetrachloroethene	< 0.0068	0.0068	mg/m3	94	98	70-130	4	25
Toluene	< 0.0038	0.0038	mg/m3	106	110	70-130	3	25
1,2,4-Trichlorobenzene	< 0.015	0.015	mg/m3	94	98	32-200	4	25
1,1,1-Trichloroethane	< 0.0055	0.0055	mg/m3	92	96	70-130	5	25
1,1,2-Trichloroethane	< 0.0055	0.0055	mg/m3	90	93	54-132	3	25
Trichloroethene	< 0.0054	0.0054	mg/m3	100	103	70-130	2	25
Trichlorofluoromethane	< 0.0056	0.0056	mg/m3	99	104	70-130	5	25
1,2,3-Trichloropropane	< 0.0060	0.0060	mg/m3					
1,2,4-Trimethylbenzene	< 0.0049	0.0049	mg/m3	97	102	44-164	5	25
1,3,5-Trimethylbenzene	< 0.0049	0.0049	mg/m3	101	105	49-157	4	25
Vinyl Acetate	< 0.0035	0.0035	mg/m3	58*	60*	70-130	4	25
Vinyl Chloride	< 0.0026	0.0026	mg/m3	114	120	70-130	5	25
m/p-Xylene	< 0.0043	0.0043	mg/m3	116	121	70-130	4	25
o-Xylene	< 0.0043	0.0043	mg/m3	110	115	70-130	5	25

Batch number: M091621ZA Sample number(s): 5695000-5695001

Methane < 3.3 3.3 mg/m3

^{*-} Outside of specification

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Analysis Request/ Environmental Services Chain of Custody

For Lancaster Laboratories use only

Acct. # 10137 Group# 1148395 Sample # 5695000 - 01

COC # 209187

Please print. Instructions on reverse side correspond with circled numbers

لح	^	 	case print. Inc) Analy	1025110111011	Reque	sted		For Lab Use Only FSC:	
3	Client: Aquaterra Te	chacet.#:				Matri	X (41			Preserv			CASSACALLEZ		SCR#:	
	Project Name/#: Sun-Dhilly Pof. A Project Manager: T. DOERR Name of state where samples were collected:	01-8 -wsid :	# :		-	Potable Check II		Containers	16.7855 10.7855	thank						Preservation Codes H=HCl T=Thiosu N=HNO ₃ B=NaOH S=H ₂ SO ₄ O=Other	
	Sample identification	Date Collected	Time Collected	3) qea	Composit	Water	Other	Total # of	Full	7/17						Remarks	Temperature c
	Firehouse Indoor	6/5/09	1011	×			X	1	Х			\perp				Summe#	413
	Firehouse Ambient	6/5/09	1007	×			X)	χ			-	-			Summa#	
																*Allached is	sheet optimes pressures
7	Turnaround Time Requested (TAT) (please of (Rush TAT is subject to Lancaster Laboratories approximate part to Lancaster Laboratories approximate part to Lancaster Laboratories approximate part to Lancaster Laboratories approximate part to Lancaster Laboratories approximately approx	one Fax	ge.) E-mail	F	teling		by:	I) lu	<u> </u>	. 6/1 ba	5 /0 ate.	7 /35 Time // ///	Receive	ed by	gle Room	Date Time 9 5/04 134/5 Date Time 100/5
8	E-mail address: Data Package Options (please circle if required) Type I (validation/NJ Reg) TX TRRP-13 Type II (Tier II) MA MCP CT R	SD.	G Complete		A	uished uished		1			4/3	9/05	lods	Receive	n	Lyey	Date Time Light Cops Date Time
	Type III (Reduced NJ) Type IV (CLP SOW) Type VI (Raw Data Only) WA WCP CTR Site-specific QC (N (Vyss. Indicate QC sample and subm Internal COC Requ	IS/MSD/Dup)?		F	() leynq	v~ V uished	by/	8	y		Da		<i>! ረ-<u>ነ</u>ረ</i> Time	Receive	ed by:	5 G/9	Date Time

Summa Canister Sampling Field Data Shee

Sile	Phillu F	20 Des	rt. Blda		·
Samplers: T. J Date:	tanil 1	24 hrs	5)		
Sample #	=	7			
ocation SE	Inside	Frehouse Ambrent		·	
Summa Canister ID	413°00	1			
low Controller ID	77	338068			
Additional Tubing Added	YES - How much	YES Hew much	NO/ YES - How much	NO/ YES - How much	NO/ YES - How much
urge Time (Start)	\				
urge Time (Stop)	\	\			
Total Purge Time (min)	\	\			
urge Volume	\	\			
PID Test of Purge Air	\	\			
nitial Tracer Gas Results	\	\			
ressure Gauge - before ampling	30 Hz	30+ 45			
Sample Time (Start) 6/4	1041	1036			•
Sample Time (Stop) 66	10	1007			
otal Sample Time (min)	1410	1,4)1			
ressure Gauge - after ampling	SF	8 Hay			
sample Volume	660	660			
anister Pressure Went o Ambient Pressure?	YES (AG)	YES (NO)	YES / NO	YES/NO	YES/NO
inal Tracer Gas Results	\	\			
Associated Ambient Air Sample Number	4RO	420			·
seneral Comments:	·				
					1

Lancaster Laboratories Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

N.D.	none detected	BMQL	Below Minimum Quantitation Level
TNTC	Too Numerous To Count	MPN	Most Probable Number
IU	International Units	CP Units	cobalt-chloroplatinate units
umhos/cm	micromhos/cm	NTU	nephelometric turbidity units
С	degrees Celsius	F	degrees Fahrenheit
Cal	(diet) calories	lb.	pound(s)
meq	milliequivalents	kg	kilogram(s)
g	gram(s)	mg	milligram(s)
ug	microgram(s)	I	liter(s)
ml	milliliter(s)	ul	microliter(s)
m3	cubic meter(s)	fib >5 um/ml	fibers greater than 5 microns in length per ml

- less than The number following the sign is the limit of quantitation, the smallest amount of analyte which can be reliably determined using this specific test.
- > greater than
- parts per million One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. ppm For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.
- parts per billion dqq
- Dry weight Results printed under this heading have been adjusted for moisture content. This increases the analyte weight basis concentration to approximate the value present in a similar sample without moisture.

U.S. EPA data qualifiers:

Α

В

С

D

Ε

J

Ν

Ρ

Organi	กเลา	ifiore
Organi	luai	111612

TIC is a possible aldol-condensation product Analyte was also detected in the blank	B E	Value is <crdl, but="" due="" estimated="" interference<="" th="" to="" ≥idl=""></crdl,>
Pesticide result confirmed by GC/MS	М	Duplicate injection precision not met
Compound quatitated on a diluted sample	N	Spike amount not within control limits
Concentration exceeds the calibration range of	S	Method of standard additions (MSA) used
the instrument		for calculation
Estimated value	U	Compound was not detected
Presumptive evidence of a compound (TICs only)	W	Post digestion spike out of control limits
Concentration difference between primary and	*	Duplicate analysis not within control limits

Correlation coefficient for MSA < 0.995

Inorganic Qualifiers

U Compound was not detected

confirmation columns >25%

X,Y,ZDefined in case narrative

Analytical test results for methods listed on the laboratories' accreditation scope meet all requirements of NELAC unless otherwise noted under the individual analysis.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have guestions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL LANCASTER LABORATORIES BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF LANCASTER LABORATORIES AND (B) WHETHER LANCASTER LABORATORIES HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Lancaster Laboratories which includes any conditions that vary from the Standard Terms and Conditions of Lancaster Laboratories and we hereby object to any conflicting terms contained in any acceptance or order submitted by client.

APPENDIX F GROUNDWATER SAMPLING SUMMARY SUNOCO PHILADELPHIA REFINERY PHILADELPHIA, PENNSYLVANIA

Well ID	Sample Date	Depth to Product	Depth to Water	Product Thickness	Total Depth of Well	Conversion Factor (Well Diameter)	Well Volume (gallons)	Purge Volume (gallons)
N-1	7/15/2008		14.53		22.00	0.65	4.9	14.6
N-10	7/15/2008		4.77		10.00	0.65	3.4	10.2
N-11	7/15/2008		18.26		23.50	0.65	3.4	10.2
N-12	7/23/2008		15.89		20.70	0.65	3.1	9.4
N-13	7/23/2008		22.34		52.00	0.65	19.3	57.8
N-14	NS	21.21	21.22	0.01	-	0.65	-	-
N-15	7/15/2008		20.83		25.00	0.65	2.7	8.1
N-16	7/16/2008		21.91		26.80	0.65	3.2	9.5
N-17	7/16/2008		23.39		25.70	0.65	1.5	4.5
N-18	7/16/2008	·····	22.11		25.50	0.65	2.2	6.6
N-19	7/16/2008		30.16		59.40	0.65	19.0	57.0
N-2	NS	-	-		-	0.65	-	-
N-20	7/23/2008		17.49		22.70	0.65	3.4	10.2
N-21	7/23/2008		20.97		55.00	0.65	22.1	66.4
N-22	NS	-	-		-	0.65	-	-
N-23	7/22/2008		10.17		18.00	0.65	5.1	15.3
N-24	7/18/2008		11.54		16.60	0.65	3.3	9.9
N-25	NS	2.78	3.3	0.52	-	0.65	-	-
N-26	7/17/2008		5.74		9.60	0.65	2.5	7.5
N-27	7/17/2008		21.03		62.00	0.65	26.6	79.9
N-28	7/16/2008		9.77		16.80	0.65	4.6	13.7
N-29	7/22/2008	····	30.50		33.00	0.65	1.6	4.9
N-3	7/15/2008		16.24		22.80	0.65	4.3	12.8
N-30	7/22/2008		37.47		-	0.65	-	NA
N-31	NS	14.87	15.15	0.28		0.65	-	-
N-32	7/22/2008		8.26		22.50	0.65	9.3	27.8
N-33	NS	-	-		-	0.65	-	-
N-34	7/24/2008		6.23		15.00	0.65	5.7	17.1
N-35	7/24/2008		9.33		14.60	0.65	3.4	10.3
N-36	7/25/2008	***************************************	8.29		14.00	0.65	3.7	11.1
N-37	7/24/2008		11.90		17.80	0.65	3.8	11.5
N-38	7/24/2008		5.76 9.91		18.00 84.00	0.65 0.16	8.0 11.9	23.9 35.6
N-38D N-39	7/24/2008					0.16	6.3	18.9
N-4	7/28/2008		3.69		13.40			
N-40	7/15/2008 7/25/2008		19.37 5.94		47.00 15.00	0.65 0.65	18.0 5.9	53.9 17.7
N-41	7/28/208		4.29		12.00	0.65	5.0	15.0
N-41	NS	7.37	8.18	0.81	12.00	0.65	- 5.0	-
N-42	Dry	1.31	20.07	0.61	21.00	0.65	0.6	1.8
N-44D	7/25/2008		26.34		58.00	0.65	20.6	61.7
N-44D	NS	13.05	13.27	0.22	-	0.65	20.0	- 01.7
N-46D	NS	-	13.27	0.22		0.65		
N-47	NS	19.69	20.57	0.88		0.65	-	_
N-48	NS	21.4	21.65	0.25	-	0.65	-	_
N-49	NS	24.41	26.42	2.01	-	0.65	-	_
N-5	7/15/2008		9.12		15.00	0.65	3.8	11.5
N-503	NS	7.84	8.61	0.77	-	0.65	-	-
N-504	NS	8.21	8.21	<0.01	23.20	0.65	_	_
N-50D	7/23/2008		28.56	10.01	58.00	0.65	19.1	57.4
N-51	NS NS	22.25	23.65	1.4	-	0.65	-	-
N-52	NS	24.48	24.5	0.02	_	0.65	-	_
N-53	7/28/2008		20.08		26.60	0.65	4.2	12.7
N-54	NS				······································	0.65	-	-
N-55	7/28/208		2.65		9.60	0.65	4.5	13.6
N-56	NS		6.87	***************************************	15.00	0.65	-	-
N-57	7/25/2008		4.74	•	12.00	0.65	4.7	14.2
N-58	7/25/2008		3.21		18.60	0.65	10.0	30.0
N-59	8/6/2008		1.29		20.00	0.65	12.2	36.5
N-6	NS	-	-		-	0.65	-	-
N-60	7/25/2008		4.30		15.00	0.65	7.0	20.9
N-61	7/25/2008		3.72		19.50	0.65	10.3	30.8
N-64	7/23/2008		6.55		16.00	0.65	6.1	18.4

APPENDIX F GROUNDWATER SAMPLING SUMMARY SUNOCO PHILADELPHIA REFINERY PHILADELPHIA, PENNSYLVANIA

Well ID	Sample Date	Depth to Product	Depth to Water	Product Thickness	Total Depth of Well	Conversion Factor (Well Diameter)	Well Volume (gallons)	Purge Volume (gallons)
N-65	7/16/2008		12.59		14.00	0.65	0.9	2.7
N-66	7/22/2008		8.05		16.00	0.65	5.2	15.5
N-67	7/18/2008		5.63		25.40	0.16	3.2	9.5
N-68	NS	11.33	11.59	0.26	-	0.65	_	-
N-69	7/18/2008		15.42		42.00	5.875	156.2	468.5
N-7	NS	-	-		-	0.65	-	-
N-70	7/18/2008		14.91		38.00	5.875		407.0
N-71	NS	-	-		-	0.65	-	-
N-72	NS		8.21		-	0.65	-	-
N-73	7/25/2008		7.62		45.60	0.16	6.1	18.2
N-73D	NS 7/05/0000	-	-		-	0.65	-	-
N-74	7/25/2008	0.14	6.17	0.07	35.40	0.65	19.0	57.0
N-75	NS	6.14	6.21	0.07	-	0.16	-	-
N-76	NS 7/10/0000	24.85	26.93	2.08	-	2.56	-	-
N-77 N-78	7/18/2008				31.00	0.65	20.2	60.5
	NS NC		-	0.00	10.40	0.65	-	-
N-79	NS 7/10/0000	11.1	11.13	0.03	28.00	0.65	-	-
N-8	7/16/2008	10.17	25.85	0.04	32.50	0.65	4.3	13.0
N-81 N-82	NS NS	18.17 23.29	18.18	0.01	-	0.65 0.65	-	-
N-82 N-83	NS NS	23.29	23.91	0.62		0.65		
N-84			15.39	15.39	30.00	0.65		
N-85	7/16/2008 7/16/2008		6.52 14.5		25.00 24.00	0.65	12.0 6.2	36.0 18.5
N-85	7/16/2008		14.5		24.00	0.65	3.5	10.6
N-87	7/17/2008		15.31		20.30	0.65	3.2	9.7
N-88	NS	_	- 13.31		-	0.65	3.2	9.7
N-89	7/22/2008		14.01		23.40	0.65	6.1	18.3
N-9	7/16/2008		35.24		65.00	0.65	19.3	58.0
N-90	7/10/2008		15.01		25.00	0.65	6.5	19.5
N-91	NS	8.21	10.79	2.58	-	0.65	-	-
N-92	7/17/2008	0.21	7.38	2.50	18.00	0.65	6.9	20.7
N-93	7/17/2008		14.66		20.20	0.65	3.6	10.8
N-94	7/18/2008		5.61		23.40	0.65	11.6	34.7
N-95	NS	-	-		-	0.65	-	-
N-97	8/6/2008		13.8		17.10	0.16	0.5	1.6
P-30	NS	20.11	21.18	1.07	-	0.16	-	_
P-42	NS		12.14		35.35	0.16	-	-
P-44	NS		21.65		24.70	0.16	_	-
P-45	NS		23.59		34.85	0.16	-	-
PZ-201	NS	22.2	22.21	0.01	23.00	0.16	-	-
PZ-202	NS		22.15		23.00	0.16	-	-
PZ-203	NS		19.93		20.70	0.16	-	-
PZ-204	NS	19.96	21.01	1.05	-	0.16		-
PZ-300	7/29/2008		17.13		26.80	0.04	0.4	1.2
PZ-500	NS		2.01		10.00	0.16	-	-
PZ-501	NS		2.88		9.50	0.16	-	-
PZ-502	NS	1.91	4.31	2.4	_	0.16	-	-
PZ-503	7/25/2008		3.65		9.00	0.16	0.9	2.6
PZ-504	7/25/2008		2.64		6.00	0.16	0.5	1.6
PZ-505	7/23/2008		3.44		8.50	0.16	0.8	2.4
PZ-506	7/23/2008		6.23		10.30	0.16	0.7	2.0
PZ-507	7/23/2008		7.89		9.60	0.16	0.3	0.8
RW-200	7/23/2008		5.57	0.15	20.50	1.46	21.8	65.4
RW-201	NS 7/00/0000	22.9	23.02	0.12	-	1.46	- 01 7	-
RW-202	7/29/2008	00.07	20.13	0.00	35.00	1.46	21.7	65.1
RW-203	NS	22.67	22.69	0.02	<u>-</u>	1.46	-	-
RW-204	NS NC	19.32	19.91	0.59	-	1.46	_	-
RW-205	NS NC	19.45	23.43	3.98	-	1.46	-	-
RW-206	NS NC	110	21.38	0.00	-	1.46	-	-
RW-300	NS 7/22/2008	14.6	15.46 12.02	0.86	-	0.65 1.46	19.4	58.2
RW-301			ローレーロン	•	25.30	1.40	194	1 20 /

APPENDIX F **GROUNDWATER SAMPLING SUMMARY** SUNOCO PHILADELPHIA REFINERY PHILADELPHIA, PENNSYLVANIA

Well ID	Sample Date	Depth to Product	Depth to Water	Product Thickness	Total Depth of Well	Conversion Factor (Well Diameter)	Well Volume (gallons)	Purge Volume (gallons)
RW-303	7/25/2008		14.17		17.00	1.46	4.1	12.4
RW-304	7/22/2008		14.86		29.60	1.46	21.5	64.6
RW-305	7/22/2008		14.91		25.00	1.46	14.7	44.2
RW-306	NS	13.02	13.14	0.12	26.00	1.46	_	_
RW-307	7/23/2008	***************************************	14.60	***************************************	28.00	1.46	19.6	58.7
RW-308	7/25/2008		16.72	***************************************	25.00	1.46	12.1	36.3
RW-309	NS		15.55		15.80	1.46	_	-
RW-500	7/25/2008		2.01		-	1.46	_	NA
RW-501	7/23/2008		4.58		-	1.46	_	NA
RW-502	NS	8.22	8.23	0.01	-	1.46	-	-
N-98	7/14/2008	<u> </u>	23.33	0.0.	30	0.16	1.1	3.2
N-99	7/23/2008		20.07		28	0.16	1.3	3.8
N-100	7/14/2008		18.84		20	0.16	0.2	0.6
N-101	7/15/2008		15.69		23	0.16	1.2	3.5
N-102	7/15/2008		22.22		30	0.16	1.2	3.7
N-103	7/23/2008	*****	18.37		27	0.16	1.4	4.1
N-104	7/23/2008		16.70		25	0.16	1.3	4.0
N-105	7/23/2008		17.25		25	0.16	1.2	3.7
N-106	7/14/2008		10.62		19	0.16	1.3	4.0
N-107	7/14/2008 NS	15.44	16.27	0.83	22	0.16	-	7.0
N-107	7/22/2008	13.44	14.03	0.05	18	0.16	0.6	1.9
N-109	7/24/2008		11.65		20	0.16	1.3	4.0
N-110	7/24/2008		7.41		15	0.16	1.2	3.6
N-110	7/24/2008		6.00		15	0.16	1.4	4.3
N-112	7/24/2008		9.06		20	0.16	1.8	5.3
N-112	NS		7.86		15	0.16	1.0	- 5.5
N-114	7/24/2008		8.01		25	0.16	2.7	8.2
N-115	7/28/2008		7.44		14	0.16	1.0	3.1
N-116	NS	5.29	6.02	0.73	12	0.16	1.0	3.1
N-117	7/17/2008	5.29	14.65	0.73	20	0.16	0.9	2.6
N-117		****	14.83		20	0.16	0.9	2.0
	7/22/2008		9.17					4.2
N-119	7/17/2008				18	0.16	1.4	
N-120 N-121	7/17/2008		11.15		18	0.16	1.1	3.3
	7/17/2008		11.13		20 18	0.16	1.4	4.3
N-122 N-123	7/22/2008		9.83		20	0.16	1.3	3.9
	7/22/2008		11.82			0.16	1.3	3.9
N-124	7/22/2008	10.10	15.08	0.00	25	0.16	1.6	4.8
N-125	NS 7/00/0000	16.46	16.72	0.26	25	0.16		-
N-126	7/22/2008	04.00	5.09	0.50	14	0.16	1.4	4.3
N-127	NS	24.30	24.86	0.56	34	0.16	-	-
N-128	7/23/2008	10.40	18.82	1.00	25	0.16	1.0	3.0
N-129	NS NC	19.46	20.49	1.03	30	0.16	-	-
N-130	NS	22.53	23.25	0.72	30	0.16	-	-
N-131	7/28/2008		2.75		15	0.16	2.0	5.9
N-132	7/28/2008		4.54		25	0.16	3.3	9.8
N-133	7/23/2008		3.93		12	0.16	1.3	3.9
N-134	7/16/2008		18.04		20	0.16	0.3	0.9
N-135	NS	4.35	4.98	0.63	12	0.16	-	-
N-136	7/25/2008		4.09		12	0.16	1.3	3.8

All Gauging Info provided by Secor (gauged on 7/14 & 7/15/2008)

NA = Information not available NS = Not Sampled

ATTACHMENT G LNAPL MODELING PROCEDURES AOI 8: SUNOCO PHILADELPHIA REFINERY PHILADELPHIA, PENNSYLVANIA

G.1 INTRODUCTION AND OVERVIEW

Models which assess volume, mobility, and recoverability of light non-aqueous phase liquid (LNAPL) contamination have progressed beyond simply extrapolating LNAPL monitoring well thicknesses into the surrounding geologic materials. Instead, these models incorporate the physical properties of groundwater, LNAPL, and soil, in conjunction with an improved understanding of how fluids interact with each other and the surrounding geologic materials, and provide better estimates of LNAPL volume, mobility, and recoverability. These scientific improvements have allowed more realistic endpoints to be set during the remediation process.

For the LNAPL modeling in AOI 8 at the Sunoco Refinery in Philadelphia, PA (the Facility), Langan utilized the American Petroleum Institute (API) Publication Number 4682, "Free-Product Recovery of Petroleum Hydrocarbon Liquids," dated June 1999, as a guide for assessing LNAPL volume, mobility, and recoverability. The parameters discussed in subsequent sections are presented in API Publication 4682 as the significant variables and parameters needed to evaluate the nature and extent of free LNAPL. An updated version of the API model found in the API publication "API Interactive LNAPL Guide," version 2.0.4, dated July 2004, was used. These parameters and the API model were utilized to estimate the specific volume and mobility of LNAPL at the Facility.

G.2 INPUT PARAMETERS

Representative values obtained from the API's LNAPL and Environmental Canada's Reference Database were used to identify input parameters. Table G-1 of this attachment summarizes the LNAPL modeling input parameters used for this phase of the project. The individual input parameters used for the LNAPL models are described in detail below.

G.3 FLUID PROPERTIES

The fluids of concern in LNAPL modeling are LNAPL, groundwater, and air. Key physical properties of these fluids are density (ρ), interfacial tension (σ) and viscosity (μ). Chromatographic and mass spectroscopic hydrocarbon LNAPL characterization analyses were

conducted on collected LNAPL samples in an attempt to identify and categorize LNAPLs on site.

G.3.1 Fluid Density and Specific Gravity

Fluid density, ρ , is the mass of fluid per unit volume. Specific gravity, ρ_r , is the relative density of LNAPL with respect to the density of water. The density of LNAPL is related to its specific gravity through the following relationship:

$$\rho_{\rm r} = \rho_{\rm o}/\rho_{\rm w} \tag{G.1}$$

where ρ_{\circ} and $\rho_{\rm \scriptscriptstyle W}$ are the LNAPL and water densities, respectively.

Density estimates for LNAPL samples collected from wells within the Facility were determined from LNAPL and groundwater density data. If a density value was not available for the LNAPL in a particular monitoring well, a value was assigned based on the physical characteristics of the LNAPL observed in neighboring wells.

G.3.2 LNAPL Viscosity

Viscosity is the measure of friction between molecules within a given fluid. The dynamic (or absolute) viscosity, μ , is defined as the ratio of the shear stress to the strain rate for a Newtonian fluid (Newtonian fluids have constant viscosity and flow immediately on the application of a force). The kinematic viscosity (v) is the ratio of the dynamic viscosity to the density of a fluid.

If a kinematic viscosity value was not available for the LNAPL within a monitoring well, a value was assigned based on the physical characteristics of the LNAPL in relation to neighboring monitor wells, or a representative viscocity value was selected from the API or Environmental Canada Database chosen based upon other LNAPL physical characteristics.

G.4 FORMATION PHYSICAL PROPERTIES

Where available, site-specific geologic and hydrogeologic data were obtained from site soil boring investigations, monitoring and recovery wells installation and sampling activities, and aquifer characteristic testing. All remaining physical property input values were obtained from reference literature.

Variations in soil type were noted from boring log descriptions. For the purpose of determining modeling parameters, generalizations of the geologic characteristics were made based on the occurrence and distribution of soil types within the LNAPL wetted screen interval of monitoring wells. Consistent with the API guidance publication, the geologic parameters of interest include: soil texture, porosity, bulk density, fluid saturation, capillary pressure relationships, and total organic carbon (TOC). These parameters are discussed in detail below.

G.4.1 Formation Texture

One of the most important parameters in determining the properties of porous media is the size range of particles in a soil, which is referred to as soil texture. Grain size is closely related to soil texture, and a grain size distribution gives the relative percentage of grain sizes within a formation.

Where available, historic site-specific grain size distribution data were used to describe the relative percentage of grain size within the various geologic units at the Facility. Regions with similar grain size distributions were grouped together, and representative values were selected. Soil within the historic maximum LNAPL wetted interval was used for this selection. Note, however, that in any given boring log, the soil type spanning the LNAPL wetted interval may actually include a range of soil types. In addition to the grain size analyses, the soil Atterberg Limits were referenced for select soil types. The Atterberg limits were used to correlate and characterize the fine-grained soil (i.e., silt and clay) in conjunction with the grain size distribution analyses.

G.4.2 Porosity

The ratio of the volume of void space in a soil to the total volume is defined as the porosity (n), which is usually written as a fraction or a percent of void space. Generally,

wider variations in particle sizes result in smaller porosity values, as the void space between the larger particles are filled by smaller particles. The effective porosity (or kinematic porosity) refers to the volume of interconnected pore spaces through which fluids can flow.

G.4.3 Bulk Density

Bulk density is a measure of the weight of the soil per unit volume, usually given on an oven-dry (110° C) basis. Variation in bulk density is attributable to the relative proportion and specific gravity of solid organic and inorganic particles and to the porosity of the soil. Most mineral soils have bulk densities between 1.0 and 2.0.

G.4.4 Fluid Saturation

According to the API guidance documents, the void space of a natural porous medium affected by an LNAPL release is filled with water, air and LNAPL. The fraction of the pore space of a representative volume of material that is occupied by a particular fluid is called the fluid saturation. The fluid saturation of each phase can range from 0 to 1, and the sum of the three phases must equal 1.

G.4.5 Capillary Pressure Relationships

According to the API guidance document, molecules located near the interface between two fluids (i.e. water and LNAPL) in one void space have a greater energy than molecules of the same fluid located within the bulk volume due to cohesive forces between the molecules. The excess energy associated with a fluid interface results in interfacial tension between the fluids, and surface tension between the liquid and vapor.

These relationships are incorporated into the API model for determining formation specific volume under vertical equilibrium.

G.5 LNAPL EFFECTIVE PERMEABILITY

Water, air, and LNAPL are in competition for the interstitial spaces within the formation. Relative permeability describes the ability of one fluid to flow in the presence of other fluids, compared to the ability of the fluid to flow if it were the only fluid present. Typically, these

differences in permeability between water and LNAPL are observed as LNAPL reaches the water table in sufficient quantities, pools, and spreads laterally as a floating layer.

The API modeling approach is to predict the LNAPL saturation and relative permeability distributions under vertical equilibrium conditions. The effective saturation and relative permeability values depend on the LNAPL thicknesses within the formation, for which the apparent monitoring well LNAPL thicknesses serve as a useful measure. The modeling objective is to replace the layer with varying saturation and relative permeability with an equivalent layer with vertically uniform characteristics.

For each well with reported apparent LNAPL thickness, the API model was run to determine the effective relative permeability of LNAPL within that well. As a first approximation, the residual saturation of LNAPL (the portion of LNAPL that is adhered to soil and not recoverable) was considered to be zero for the calculation of effective relative permeability. The residual saturation of LNAPL will be determined based on the soil grain size, fluid saturation and capillary curves for the recoverability analysis.

G.6 SOIL INTRINSIC PERMEABILITY

The intrinsic permeability of the soil was estimated using the following equation:

$$k_{soil} = \frac{K_W \mu_W}{\rho_W g} \tag{G.2}$$

where,

 k_{soil} = permeability of soil

 K_w = hydraulic conductivity of groundwater for fill horizon

 $\mu_{\rm w}$ = dynamic viscosity of water

 $p_w = density of water$

g = gravity

The estimates of the ground water density and viscosity were used to determine the intrinsic soil permeability. The gravity constant was assumed to be 32.2 feet/s² (9.81 m/s²).

G.7 LNAPL HYDRAULIC CONDUCTIVITY AT SATURATION

To estimate the seepage velocity of the free-phase LNAPL, the hydraulic conductivity of the formation with respect to LNAPL must be known. The hydraulic conductivity of LNAPL is first calculated at 100% saturation at the LNAPL phase. Then it is corrected from the effective LNAPL relative permeability. This corrected hydraulic conductivity of LNAPL is the hydraulic conductivity of LNAPL in the formation at the estimated saturation of LNAPL. This can be estimated based on the following equation:

$$K_{oil} = k_{ro} \frac{k_{soil} \rho_{oil} g}{\mu_{oil}}$$
 (G.3)

where,

 K_{oil} = hydraulic conductivity of LNAPL in the soil at saturation

 k_{ro} = effective LNAPL relative permeability

 k_{soil} = permeability of soil relative to groundwater (Equation D.2)

 μ_{oil} = dynamic viscosity of LNAPL

 p_{oil} = density of LNAPL

g = gravity

G.8 LNAPL SPECIFIC DISCHARGE

The result of the corrected hydraulic conductivity for LNAPL saturation (Equation G.3) was used to calculate the specific velocity of the LNAPL based on hydraulic gradient of the groundwater using the following equation:

$$q_{oil} = K_{oil} \times i_{W} \tag{G.4}$$

where,

q_{oil} = LNAPL specific velocity of LNAPL discharge

 K_{oil} = hydraulic conductivity of LNAPL in the soil at the corrected saturation

i_w = water table gradient

The water table gradient was assumed to be similar to the LNAPL table gradient. Based on the groundwater monitoring data collected to date, average water table gradients were selected.

The seepage velocity or mobility of the LNAPL was calculated based on the specific velocity calculated in Equation G.4, and correcting it for the effective porosity of the formation as follows:

$$v_{oil} = \frac{q_{oil}}{\phi_{eff}} \tag{G.5}$$

where,

 $v_{oil} = LNAPL$ seepage velocity

q_{oil} = LNAPL specific velocity of LNAPL discharge

 $\phi_{\rm eff} = {
m effective\ porosity}$

The specific velocity of the LNAPL discharge from the previous calculation was divided by the effective porosity to determine the seepage velocity of LNAPL for all wells. For this calculation, total porosity values associated with each soil type were reduced for use as an effective porosity for LNAPL mobility.

Located in Tables G-2 and G-3 are the output results of the LNAPL modeling. Located in Table G-4 of this attachment is the LNAPL characterization data provided by Torkelson Laboratories.

Table G.1 **API Model Input Parameters AOI 8 Site Characterization Report** Sunoco Philadelphia Refinery and Belmont Terminal Philadelphia, Pennsylvania

					API D	atabase					API or E	nvironment Canada	Database
Well ID	Apparent LNA Field Meas meter	443	Porosity Well ID (unitless)	USCS Soil Type Surrounding Well Screen ⁽²⁾	Source of Soil Type	van Genuchten "N" (unitless)	van Genuchten "a" [m ⁻¹]	Irreducible Water Saturation ⁽³⁾ (unitless)	LNAPL Density (Torkelson Geochemistry) (gm/cc)	LNAPL Type or Source of Surrogate LNAPL Type (Torkelson Geochemistry)	Air/Water Surface Tension ⁽⁴⁾ (dynes/cm)	Air/LNAPL Surface Tension (dynes/cm)	LNAPL/Water Surface Tension (dynes/cm)
N-14	0.003	0.010	0.426	SP	Borina Loa	1.980	1.350	0.321	0.9299	Residual Oil	65.000	32.100	30.200
N-23	0.076	0.250	0.428	SM	Boring Log	2.160	2.750	0.313	0.9211	Middle Distillate (N-68)	65.000	26.900	22.300
N-25	0.122	0.400	0.426	SP	Boring Log	1.980	1.350	0.321	0.9402	Residual Oil	65.000	32.100	30.200
N-31	0.137	0.450	0.426	SP	Boring Log	1.980	1.350	0.321	0.9016	Lube Oil (PZ-204)	65.000	21.000	50.000
N-42	0.003	0.010	0.426	SP	Boring Log	1.980	1.350	0.321	0.8900	Middle Distillate	65.000	26.900	22.300
N-45	0.067	0.220	0.388	SW-SM	Boring Log	2.040	1.990	0.253	0.8922	Residual Oil (N-125)	65.000	32.100	30.200
N-47	0.186	0.610	0.426	SP	Boring Log	1.980	1.350	0.321	0.8834	Residual Oil	65.000	32.100	30.200
N-48	0.040	0.130	0.426	SP	Borina Loa	1.980	1.350	0.321	0.9049	Lube Oil	65.000	21.000	50.000
N-49	0.430	1.410	0.388	SW-SM	Boring Log	2.040	1.990	0.253	0.8995	Residual Oil (N-51)	65.000	32.100	30.200
N-51	0.317	1.040	0.428	SM	Boring Log	2.160	2.750	0.313	0.8995	Residual Oil	65.000	32.100	30.200
N-52	0.006	0.020	0.428	SM	Boring Log	2.160	2.750	0.313	0.8613	Residual Oil	65.000	32.100	30.200
N-68	0.006	0.020	0.428	SM	Boring Log	2.160	2.750	0.313	0.9211	Middle Distillate	65.000	26.900	22.300
N-75	0.351	1.150	0.388	SW-SM	Boring Log	2.040	1.990	0.253	0.9371	Residual Oil	65.000	32.100	30.200
N-76	0.634	2.080	0.426	SP	Boring Log	1.980	1.350	0.321	0.8899	Residual Oil	65.000	32.100	30.200
N-79	0.003	0.010	0.388	SW-SM	Boring Log	2.040	1.990	0.253	0.8169	Middle Distillate	65.000	26.900	22.300
N-81	0.006	0.020	0.388	SW-SM	Boring Log	2.040	1.990	0.253	0.9016	Lube Oil (PZ-204)	65.000	21.000	50.000
N-82	0.040	0.130	0.426	SP	Boring Log	1.980	1.350	0.321	0.9132	Residual Oil	65.000	32.100	30.200
N-91	0.634	2.080	0.388	SW-SM	Boring Log	2.040	1.990	0.253	0.9471	Residual Oil	65.000	32.100	30.200
N-107	0.003	0.010	0.388	SW-SM	Boring Log	2.040	1.990	0.253	0.9033	Middle Distillate	65.000	26.900	22.300
N-112	0.975	3.200	0.388	SW-SM	Boring Log	2.040	1.990	0.253	0.9167	Residual Oil (N-113)	65.000	32.100	30.200
N-113	0.244	0.800	0.426	SP	Boring Log	1.980	1.350	0.321	0.9167	Residual Oil	65.000	32.100	30.200
N-115	0.003	0.010	0.388	SW-SM	Boring Log	2.040	1.990	0.253	0.8900	Middle Distillate (N-42)	65.000	26.900	22.300
N-116	0.223	0.730	0.426	SP	Boring Log	1.980	1.350	0.321	0.8985	Middle Distillate	65.000	26.900	22.300
N-125	0.881	2.890	0.426	SP	Boring Log	1.980	1.350	0.321	0.8922	Residual Oil	65.000	32.100	30.200
N-127	0.149	0.490	0.388	SW-SM	Boring Log	2.040	1.990	0.253	0.8785	Residual Oil	65.000	32.100	30.200
N-128	0.198	0.650	0.428	SM	Boring Log	2.160	2.750	0.313	0.8995	Residual Oil (N-51)	65.000	32.100	30.200
N-129	0.344	1.130	0.388	SW-SM	Boring Log	2.040	1.990	0.253	0.9017	Residual Oil	65.000	32.100	30.200
N-130	0.064	0.210	0.388	SW-SM	Boring Log	2.040	1.990	0.253	0.7893	Residual Oil	65.000	32.100	30.200
N-135	0.341	1.120	0.388	SW-SM	Boring Log	2.040	1.990	0.253	0.9148	Residual Oil	65.000	32.100	30.200
N-503	0.177	0.580	0.388	SW-SM	Boring Log	2.040	1.990	0.253	0.9065	Residual Oil	65.000	32.100	30.200
N-504	0.003	0.010	0.388	SW-SM	Boring Log	2.040	1.990	0.253	0.9065	Residual Oil (N-503)	65.000	32.100	30.200
P-30	0.744	2.440	0.388	SW-SM	Boring Log	2.040	1.990	0.253	0.9016	Lube Oil (PZ-204)	65.000	21.000	50.000
PZ-204	0.366	1.200	0.426	SP	N-31	1.980	1.350	0.321	0.9016	Lube Oil	65.000	21.000	50.000
PZ-502	0.469	1.540	0.426	SP	N-35	1.980	1.350	0.321	0.9155	Residual Oil	65.000	32.100	30.200
RW-201	0.003	0.010	0.428	SM	Boring Log	2.160	2.750	0.313	0.8785	Residual Oil (N-127)	65.000	32.100	30.200
RW-203	0.006	0.020	0.428	SM	Boring Log	2.160	2.750	0.313	0.8995	Residual Oil (N-51)	65.000	32.100	30.200
RW-204	0.341	1.120	0.428	SM	Boring Log	2.160	2.750	0.313	0.8995	Residual Oil (N-51)	65.000	32.100	30.200
RW-205	0.866	2.840	0.426	SP	Boring Log	1.980	1.350	0.321	0.9112	Lube Oil	65.000	21.000	50.000
RW-206	0.003	0.010	0.426	SP	Boring Log	1.980	1.350	0.321	0.8899	Residual Oil (N-76)	65.000	32.100	30.200
RW-300	0.107	0.350	0.388	SW-SM	Boring Log	2.040	1.990	0.253	0.8358	Residual Oil	65.000	32.100	30.200
RW-306	0.003	0.010	0.388	SW-SM	Boring Log	2.040	1.990	0.253	0.8169	Middle Distillate (N-79)	65.000	26.900	22.300
RW-502	0.015	0.050	0.388	SW-SM	Boring Log	2.040	1.990	0.253	0.9065	Residual Oil (N-503)	65.000	32.100	30.200

NOTES:

NOTES:

(1) Groundwater/LNAPL gauging event May 2011.

(2) Unified Soil Classification System

USCS Symbol

SW-SM Silty/gravelly sand

SP Sand

SN SIM Silty Grave and

SM Silty sand

(3) Residual LNAPL saturation in the saturated and vadose zones are considered to be negligible.

(4) SPL Interfacial Tensions:

NAPL Type

<u>Source</u>

Light Lube Oil/Lube Oil Environment Canada (Gasoline Engine)

Middle Distillate Environment Canada (Diesel)

Residual Oil Environment Canada (Residual Fuel Oil #4)

LNAPL at N-59 to viscous to measure

N-54 Product type unknown. Apparent LNAPL thickness = 0.10 feet.

Table G.2 API Model Output AOI 8 Sunoco Philadelphia Refinery Philadelphia, Pennsylvania

				API Model Results	
Well ID	Apparent LNAI Field Meas		Specific Volume	Specific Volume	Relative Permeabilty
	meter	feet	meters	feet	unitless
N-14	0.003	0.010	6.240E-11	2.047E-10	5.879E-11
N-23	0.076	0.250	5.395E-06	1.770E-05	5.481E-06
N-25	0.122	0.400	2.884E-06	9.462E-06	2.055E-06
N-31	0.137	0.450	3.970E-06	1.302E-05	2.841E-06
N-42	0.003	0.010	2.776E-10	9.108E-10	5.434E-10
N-45	0.067	0.220	2.771E-06	9.091E-06	3.637E-06
N-47	0.186	0.610	4.835E-05	1.586E-04	6.105E-05
N-48	0.040	0.130	9.467E-08	3.106E-07	6.803E-08
N-49	0.430	1.410	8.503E-04	2.790E-03	1.066E-03
N-51	0.317	1.040	5.509E-04	1.807E-03	6.751E-04
N-52	0.006	0.020	3.109E-09	1.020E-08	2.375E-09
N-68	0.006	0.020	1.770E-09	5.807E-09	9.782E-10
N-75	0.351	1.150	1.602E-04	5.256E-04	1.279E-04
N-76	0.634	2.080	1.667E-03	5.469E-03	1.832E-03
N-79	0.003	0.010	1.176E-09	3.858E-09	3.168E-09
N-81	0.006	0.020	5.249E-10	1.722E-09	3.242E-10
N-82	0.040	0.130	2.144E-07	7.034E-07	2.299E-07
N-91	0.634	2.080	6.603E-04	2.166E-03	4.520E-04
N-107	0.003	0.010	3.198E-10	1.049E-09	4.379E-10
N-112	0.975	3.200	6.359E-03	2.086E-02	6.725E-03
N-113	0.244	0.800	5.205E-05	1.708E-04	4.765E-05
N-115	0.003	0.010	4.159E-10	1.364E-09	6.528E-10
N-116	0.223	0.730	1.177E-04	3.862E-04	1.685E-04
N-125	0.881	2.890	4.153E-03	1.363E-02	4.353E-03
N-127	0.149	0.490	5.309E-05	1.742E-04	7.727E-05
N-128	0.198	0.650	1.264E-04	4.147E-04	1.391E-04
N-129	0.344	1.130	4.110E-04	1.348E-03	5.031E-04
N-130	0.064	0.210	1.760E-05	5.774E-05	3.939E-05
N-135	0.341	1.120	2.900E-04	9.514E-04	3.085E-04
N-503	0.177	0.580	4.904E-05	1.609E-04	5.536E-05
N-504	0.003	0.010	1.603E-10	5.259E-10	1.541E-10
P-30	0.744	2.440	1.291E-03	4.236E-03	1.013E-03
PZ-204	0.366	1.200	7.956E-05	2.610E-04	5.426E-05
PZ-502	0.469	1.540	3.798E-04	1.246E-03	3.391E-04
RW-201	0.003	0.010	2.613E-10	8.573E-10	1.434E-10
RW-203	0.006	0.020	1.550E-09	5.085E-09	7.942E-10
RW-204	0.341	1.120	6.986E-04	2.292E-03	8.624E-04
RW-205	0.866	2.840	8.507E-04	2.791E-03	5.021E-04
RW-206	0.003	0.010	1.526E-10	5.007E-10	2.227E-10
RW-300	0.107	0.350	4.259E-05	1.397E-04	7.861E-05
RW-306	0.003	0.010	1.176E-09	3.858E-09	3.168E-09
RW-502	0.015	0.050	2.144E-08	7.034E-08	2.262E-08

NOTES:

N-54 product type unknown

⁽¹⁾ Groundwater/LNAPL gauging event July 2011.

Table G.3 Seepage Velocity Calculations AOI 8 Sunoco Philadelphia Refinery Philadelphia, Pennsylvania

Well ID	API Database USCS Soil Type	LNAPL Density	Dominant LNAPL Type at Each Well Location	API Model Calculated LNAPL Relative Permeabilty	Effective Porosity	Groundwater Density @ 60F (kg/m³)	Groundwater Dynamic Viscosity (N·s/m²)	Soil Permeabililty (m²)	Kro (%)	Groundwater Gradient	Dynamic Viscosity of LNAPL (N·s/m2)	LNAPL Density (kg/m3)	LNAPL K @ 100% Saturation (m/day)	Corrected LNAPL K (m/day)	LNAPL Specific Discharge (m/day)	LNAPL Seepage Velocity (m/year)	LNAPL Seepage Velocity (cm/sec)
	Equivalent	(gm/cc)	Each Well Education	Unitless	API Database	CRC	API Database	API Database	API Model	May 2011 AOI-8 Contour Map	API/Env. Canada Databases	Torkelson Geochemistry Inc.	Calculated	Calculated	Calculated	Calculated	Calculated
N-14	SP	0.9299	Residual Oil	5.879E-11	0.43	999.19	1.124E-03	3.34E-12	0.00%	0.002	2.300E-02	929.90	1.14E-01	6.73E-12	1.63E-14	1.38E-11	4.36E-17
N-23	SM	0.9211	Middle Distillate (N-68)	5.481E-06	0.43	999.19	1.124E-03	3.2E-12	0.00%	0.015	4.000E-03	921.10	6.25E-01	3.42E-06	5.26E-08	4.46E-05	1.41E-10
N-25	SP	0.9402	Residual Oil	2.055E-06	0.43	999.19	1.124E-03	3.34E-12	0.00%	0.054	2.300E-02	940.20	1.16E-01	2.38E-07	1.29E-08	1.09E-05	3.45E-11
N-31	SP	0.9016	Lube Oil (PZ-204)	2.841E-06	0.43	999.19	1.124E-03	3.34E-12	0.00%	0.011	1.750E-01	901.60	1.46E-02	4.14E-08	4.38E-10	3.71E-07	1.17E-12
N-42	SP	0.8900	Middle Distillate	5.434E-10	0.43	999.19	1.124E-03	3.34E-12	0.00%	0.010	4.000E-03	890.00	6.30E-01	3.42E-10	3.59E-12	3.04E-09	9.60E-15
N-45	SW-SM	0.8922	Residual Oil (N-125)	3.637E-06	0.39	999.19	1.124E-03	6.15E-12	0.00%	0.014	2.300E-02	892.20	2.02E-01	7.35E-07	1.01E-08	9.42E-06	2.97E-11
N-47	SP	0.8834	Residual Oil	6.105E-05	0.43	999.19	1.124E-03	3.34E-12	0.01%	0.012	2.300E-02	883.40	1.09E-01	6.64E-06	7.91E-08	6.71E-05	2.12E-10
N-48	SP	0.9049	Lube Oil	6.803E-08	0.43	999.19	1.124E-03	3.34E-12	0.00%	0.006	1.750E-01	904.90	1.46E-02	9.96E-10	6.02E-12	5.11E-09	1.61E-14
N-49	SW-SM	0.8995	Residual Oil (N-51)	1.066E-03	0.39	999.19	1.124E-03	6.15E-12	0.11%	0.009	2.300E-02	899.50	2.04E-01	2.17E-04	2.05E-06	1.92E-03	6.05E-09
N-51	SM	0.8995	Residual Oil	6.751E-04	0.43	999.19	1.124E-03	3.2E-12	0.07%	0.005	2.300E-02	899.50	1.06E-01	7.16E-05	3.64E-07	3.09E-04	9.73E-10
N-52	SM	0.8613	Residual Oil	2.375E-09	0.43	999.19	1.124E-03	3.2E-12	0.00%	0.011	2.300E-02	861.30	1.02E-01	2.41E-10	2.73E-12	2.32E-09	7.31E-15
N-68	SM	0.9211	Middle Distillate	9.782E-10	0.43	999.19	1.124E-03	3.2E-12	0.00%	0.020	4.000E-03	921.10	6.25E-01	6.11E-10	1.21E-11	1.03E-08	3.23E-14
N-75	SW-SM	0.9371	Residual Oil	9.782E-10	0.39	999.19	1.124E-03	6.15E-12	0.00%	0.091	2.300E-02	937.10	2.12E-01	2.08E-10	1.88E-11	1.76E-08	5.56E-14
N-76	SP	0.8899	Residual Oil	1.279E-04	0.43	999.19	1.124E-03	3.34E-12	0.01%	0.022	2.300E-02	889.90	1.10E-01	1.40E-05	3.12E-07	2.65E-04	8.35E-10
N-79	SW-SM	0.8169	Middle Distillate	1.832E-03	0.39	999.19	1.124E-03	6.15E-12	0.18%	0.004	4.000E-03	816.90	1.06E+00	1.95E-03	7.48E-06	7.00E-03	2.21E-08
N-81	SW-SM	0.9016	Lube Oil (PZ-204)	3.168E-09	0.39	999.19	1.124E-03	6.15E-12	0.00%	0.101	1.750E-01	901.60	2.69E-02	8.51E-11	8.57E-12	8.02E-09	2.53E-14
N-82	SP	0.9132	Residual Oil	3.242E-10	0.43	999.19	1.124E-03	3.34E-12	0.00%	0.001	2.300E-02	913.20	1.12E-01	3.64E-11	5.40E-14	4.58E-11	1.45E-16
N-91	SW-SM	0.9471	Residual Oil	2.299E-07	0.39	999.19	1.124E-03	6.15E-12	0.00%	0.050	2.300E-02	947.10	2.15E-01	4.93E-08	2.48E-09	2.32E-06	7.31E-12
N-107	SW-SM	0.9033	Middle Distillate	4.520E-04	0.39	999.19	1.124E-03	6.15E-12	0.05%	0.015	4.000E-03	903.30	1.18E+00	5.32E-04	8.09E-06	7.57E-03	2.39E-08
N-112	SW-SM	0.9167	Residual Oil (N-113)	4.379E-10	0.39	999.19	1.124E-03	6.15E-12	0.00%	0.022	2.300E-02	916.70	2.08E-01	9.10E-11	1.96E-12	1.83E-09	5.78E-15
N-113	SP	0.9167	Residual Oil	6.725E-03	0.43	999.19	1.124E-03	3.34E-12	0.67%	0.012	2.300E-02	916.70	1.13E-01	7.59E-04	8.95E-06	7.60E-03	2.40E-08
N-115	SW-SM	0.8900	Middle Distillate (N-42)	4.765E-05	0.39	999.19	1.124E-03	6.15E-12 3.34E-12	0.00%	0.006	4.000E-03	890.00	1.16E+00	5.53E-05	3.13E-07	2.92E-04	9.22E-10
N-116	SP SP	0.8985	Middle Distillate	6.528E-10 1.685E-04	0.43 0.43	999.19	1.124E-03	3.34E-12 3.34E-12	0.00%	0.025	4.000E-03	898.50	6.36E-01 1.10E-01	4.15E-10 1.85E-05	1.02E-11 3.82E-08	8.68E-09 3.24E-05	2.74E-14 1.02E-10
N-125	SW-SM	0.8922	Residual Oil	4.353E-03		999.19	1.124E-03	3.34E-12 6.15E-12		0.002	2.300E-02	892.20 878.50	1.10E-01 1.99E-01		2.55E-06	2.39E-03	7.54E-09
N-127	SW-SM	0.8785 0.8995	Residual Oil	4.353E-03 7.727E-05	0.39	999.19 999.19	1.124E-03	6.15E-12 3.2E-12	0.44%	0.003 0.002	2.300E-02 2.300E-02	878.50 899.50	1.99E-01 1.06E-01	8.67E-04 8.20E-06	1.25E-08	2.39E-03 1.07E-05	7.54E-09 3.36E-11
N-128 N-129	SW-SM	0.8995	Residual Oil (N-51) Residual Oil	1.391E-04	0.43 0.39	999.19	1.124E-03 1.124E-03	3.2E-12 6.15E-12	0.01% 0.01%	0.002	2.300E-02 2.300E-02	901.70	2.04E-01	8.20E-06 2.84E-05	1.25E-08 1.99E-08	1.07E-05 1.87E-05	5.89E-11
N-129 N-130	SW-SM SW-SM	0.9017	Residual Oil	1.391E-04 5.031E-04	0.39	999.19	1.124E-03 1.124E-03	6.15E-12 6.15E-12	0.01%	0.001	2.300E-02 2.300E-02	789.30	1.79E-01	2.84E-05 9.00E-05	1.99E-08 1.17E-06	1.87E-05 1.09E-03	3.45E-09
N-135	SW-SM	0.7693	Residual Oil	3.939E-05	0.39	999.19	1.124E-03	6.15E-12	0.05%	0.002	2.300E-02 2.300E-02	914.80	2.07E-01	8.17E-06	1.82E-08	1.71E-05	5.38E-11
N-503	SW-SM	0.9148	Residual Oil	3.085E-04	0.39	999.19	1.124E-03	6.15E-12 6.15E-12	0.00%	0.002	2.300E-02 2.300E-02	914.60	2.05E-01	6.34E-05	4.74E-08	4.44E-05	1.40E-10
N-504	SW-SM	0.9065	Residual Oil (N-503)	5.536E-05	0.39	999.19	1.124E-03	6.15E-12	0.01%	0.001	2.300E-02	906.50	2.05E-01	1.14E-05	1.93E-08	1.81E-05	5.71E-11
P-30	SW-SM	0.9003	Lube Oil (PZ-204)	1.541E-10	0.39	999.19	1.124E-03	6.15E-12	0.00%	0.020	1.750E-01	901.60	2.69E-02	4.14E-12	8.16E-14	7.64E-11	2.41E-16
PZ-204	SP SW	0.9016	Lube Oil	1.013E-03	0.43	999.19	1.124E-03	3.34E-12	0.10%	0.020	1.750E-01	901.60	1.46E-02	1.48E-05	1.56E-07	1.32E-04	4.18E-10
PZ-502	SP	0.9155	Residual Oil	5.426E-05	0.43	999.19	1.124E-03	3.34E-12	0.01%	0.004	2.300E-02	915.50	1.13E-01	6.11E-06	2.44E-08	2.07E-05	6.54E-11
RW-201	SM	0.8785	Residual Oil (N-127)	3.391E-04	0.43	999.19	1.124E-03	3.2E-12	0.03%	0.000	2.300E-02	878.50	1.04E-01	3.51E-05	9.70E-09	8.24E-06	2.60E-11
RW-203	SM	0.8995	Residual Oil (N-51)	1.434E-10	0.43	999.19	1.124E-03	3.2E-12	0.00%	0.009	2.300E-02	899.50	1.06E-01	1.52E-11	1.43E-13	1.22E-10	3.84E-16
RW-204	SM	0.8995	Residual Oil (N-51)	7.942E-10	0.43	999.19	1.124E-03	3.2E-12	0.00%	0.006	2.300E-02	899.50	1.06E-01	8.42E-11	5.09E-13	4.32E-10	1.36E-15
RW-205	SP	0.9112	Lube Oil	8.624E-04	0.43	999.19	1.124E-03	3.34E-12	0.09%	0.006	1.750E-01	911.20	1.47E-02	1.27E-05	7.81E-08	6.63E-05	2.09E-10
RW-206	SP	0.8899	Residual Oil (N-76)	5.021E-04	0.43	999.19	1.124E-03	3.34E-12	0.05%	0.022	2.300E-02	889.90	1.10E-01	5.50E-05	1.22E-06	1.04E-03	3.28E-09
RW-300	SW-SM	0.8358	Residual Oil	2.227E-10	0.39	999.19	1.124E-03	6.15E-12	0.00%	0.108	2.300E-02	835.80	1.89E-01	4.22E-11	4.57E-12	4.28E-09	1.35E-14
RW-306	SW-SM	0.8169	Middle Distillate (N-79)	7.861E-05	0.39	999.19	1.124E-03	6.15E-12	0.01%	0.007	4.000E-03	816.90	1.06E+00	8.37E-05	5.59E-07	5.23E-04	1.65E-09
RW-502	SW-SM	0.9065	Residual Oil (N-503)	3.168E-09	0.39	999.19	1.124E-03	6.15E-12	0.00%	0.001	2.300E-02	906.50	2.05E-01	6.51E-10	4.87E-13	4.56E-10	1.44E-15

Appendix G LNAPL Characterization Data

147 II :=			e(s), Proportion, Weathering	I as 10 44 11	
Well ID	Density gm/ml (60 °F)	LNAPL Type(s)	Torkelson LNAPL Type(s)	Proportion (%)	Weathering
N-14	0.9299	Residual Oil	?Gasoline Residual Oil	2 98	Extreme Extreme
			Aviation Gasoline	3	Extreme
N-25	0.9402	Residual Oil	Residual Oil	97	Extreme
N-31	NS	Lube Oil	Lube Oil	100	Extreme
N-35	0.9205	Lube Oil	Lube Oil	90	Extreme
14-55	0.9203	Lube Oil	Residual Oil	10	Extreme
N-48	0.9049	Lube Oil	Lube Oil	95	Extreme
	5.55.15		Unknown Light Material	5	High
N-52	0.8613	Residual Oil	? Gasoline	5	Extreme
			Residual Oil	95	Extreme
N-68	0.9211	Lube Oil/ Middle Distillate	Lube Oil Middle Distillate	50 50	Extreme Extreme
N-78	NS	Residual Oil	Residual Oil	100	Extreme
	İ		?Gasoline	60	Extreme
N-79	0.8169	Middle Distillate	Middle Distillate	40	Severe
PZ-204	0.9016	Lube Oil	Lube Oil	100	Severe
			2-3 unknown products	unknown	unknown
PZ-502	0.9155	Residual Oil	Residual Oil	50	Extreme
			mpiled for AOI 8 Work Plan e(s), Proportion, Weathering		
	inte	rpretation of Product Type	Middle Distillate	F0	Evtromo
N-42	0.89	Residual Oil/Middle Distillate	Heavier Material	50 50	Extreme Extreme
			Heavier Material	80	Extreme
N-47	0.8834	Residual Oil	Light Material	20	?
			Heavier Material	65	Extreme
N-51	0.8995	Residual Oil	Lube Oil	20	Extreme
	0.0000	110010001	Light Material	15	?
			Heavier Material	75	Extreme
N-75	0.9371	Residual Oil	Lube Oil	25	Extreme
11.70	2 2222	D :: 10"	Heavier Material	80	Extreme
N-76	0.8899	Residual Oil	Light Material	20	?
N-82	0.9132	Residual Oil	Heavier Material	70	Extreme
IN-02	0.9132	nesiduai Oli	Aromatics	30	?
N-91	0.9471	Residual Oil	Heavier Material	100	Extreme
N-503	0.9065	Residual Oil	Heavier Material	75	Extreme
	0.0000	1100.000.	Middle Distillate	25	Extreme
RW-205	0.9112	Lube Oil/ Middle Distillate	Heavier Material	50	Extreme
			Lube Oil	50	Extreme
DW 000	0.0050	Desidual Oil	Heavier Material	60	Extreme
RW-300	0.8358	Residual Oil	Light Material	30	?
DIM OOF	0.0100	Desire Off	Stoddard Solvent	10	Extreme
RW-305	0.9186	Residual Oil	Heavier Material	100	Extreme
			d for AOI 8 Site Characterization e(s), Proportion, Weathering	1	
Well ID	Density gm/ml (60 °F)	LNAPL Type(s)	Torkelson LNAPL Type(s)	Proportion (%)	Weatherin
			Aviation Gasoline	5	Severe
N-107	0.9033	Middle Distillate	Middle Distillate	70	Extreme
			Heavier Material	25	Extreme
N 440	0.0167	Danish val Oil	Unknown Light Mateial	10	Extreme
N-113	0.9167	Residual Oil	? Middle Distillate	unknown	Extreme
			Heavier Material Unknown Light Mateial	90	Extreme Severe
N-116	0.8985	Middle Distillate	Middle Distillate	79	Extreme
14 110	0.0303	Wilddie Distillate	Heavier Material	19	Extreme
			Heavy Virgin Naphtha	15	Extreme
N-125	0.8922	Residual Oil	Heavier Material	85	Extreme
			Heavy Virgin Naphtha	20	Extreme
N-127	0.8785	Residual Oil	Middle Distillate	30	Extreme
			Heavier Material	50	Extreme
			Heavy Virgin Naphtha	5	Extreme
N-129	0.9017	Residual Oil	? Middle Distillate	unknown	Extreme
			Heavier Material	95	Extreme
			Heavy Virgin Naphtha	10	Extreme
N-130	0.7893	Residual Oil	? Middle Distillate	unknown	Extreme
			Heavier Material	90	Extreme
			Unknown Light Mateial	1	Extreme
N-135	0.9148	Residual Oil	? Middle Distillate	unknown	Extreme

NOTES:

Torkelson notes that "heavier material" could either be crude oil or residual oil. Residual oil was selected due to abundance of residual oil identified in CCR. ? = Tentative identification.

Sunoco Refinery -	- Philadelphia										
TGI Job 08018	·										
Interpretatio	n of Product Type(s), F	Proportions and V	/eathering		Similarities to Other Samples in this Study						
Sample	Product Type(s)	Proportions	Weathering	Quite Similar to	Fairly Similar to	Somewhat Similar to					
N-42 LNAPL	Middle Distillate	50	Extreme	Unique							
	Heavier Material	50 Extreme			RW-300	N-503					
N-47 LNAPL	Heavier Material	80	Extreme	N-76							
	Light Material	20	?	N-76		RW-300					
N-51 LNAPL	Heavier Material	65	Extreme		RW-205						
	Lube Oil	20	Extreme	RW-205	N-75						
	Light Material	15	?		RW-300						
N-75 LNAPL	Heavier Material	75	Extreme	Unique							
	Lube Oil	25	Extreme		N-51, RW-205						
N-76 LNAPL	Heavier Material	80	Extreme	N-47							
	Light Material	20	?	N-47		RW-300					
N-82 LNAPL	Heavier Material	70	Extreme	Unique							
	Aromatics	30	?	Unique							
N-91 LNAPL	Heavier Material	100	Extreme	Unique							
N-503 LNAPL	Heavier Material	75	Extreme			N-42, RW-300					
	Middle Distillate	25	Extreme	Unique		,					
RW-205 LNAPL	Heavier Material	50	Extreme		N-51						
	Lube Oil	50	Extreme	N-51	N-75						
RW-300 LNAPL	Heavier Material	60	Extreme		N-42	N-503					
	Light Material	30	?		N-51	N-47, N-76					
	Stoddard Solvent	10	Extreme	Unique							
RW-305 LNAPL	Heavier Material	100	Extreme	Unique							
	Note: Heavier material	 could be either cru	lde oil or residu	ual oil							

CHAIN-OF-CUSTODY RECORD

2528 S. Columbia Place Tulsa, OK 74114-3233

Fax: 918-749-6005

Phone: 918-749-8441 e-maii: BTorkelson@torkelsongeochemistry.com

Page 1 of 2

Project:	Project: Sunoco Philadelphia Refinery						Report/Bill To: Joseph Catricks-Langan Engineering										Additional Instructions				
Location:	Philadelphia, PA		-	Address:													Samples to be analyzed for Fingerprint (GC Characterization) and				
				PO Box 1569, Doylestown, PA 18901-0219								219					Density . Please include a 'Brief Description' of LNAPL, to be				
																	consistent with existing LNAPL types for the project.				
Proj. No.: 2574601						215-49	91-65	500									Contact Joe Catricks at 215-491-6540 with questions.				
P.O.:	2574601			Fax	21	5-491-6	5501				-										
Sampled By:	T. DOERR			e-mail: jcatricks@langan.com											Requested Turn-Around Time: Standard						
	-																				
	1				PRES	ERVATI	VES			ANA	LYS	ES	REC	UES	TED						
									Ì			Tens									
									Ì	6	5	Ţ.									
			j	ı				GC Characterization		Tension	Tension	rtac									
				ials				2112		ļ ģ	ļ į	Inte									
				ξl				ğ	Ι.	Ţ	lat	ater									
	İ			<u>*</u>	a			Ë	A S	N N	N N	3	_ _	.							
ITEM NO.	SAMPLE DESCRIPTION DATE	MATRIX	LAB NO.	Total # OF Vials				ပ္ပ	Density	Water Surface	NAPL Surface Tension	NAP.	Suffer				REMARKS				
1	RN-305_LNAFA 2/4/23	5		1	X			x	- 1				1				Sampled 1000				
2	RW-300 WAPE 2/4/0	3		ı	×												Sampled 1040				
3	N-91_ LNATA 2/4/0			T	1		П			T							Sampled 1120				
4	N-51- LNAPU 2/4/C			7	N.		\sqcap			\top	Ħ	7		1			Sampled 1205				
5	RW-205_WAPA 2/4/0			╗	X			1	+	1		\dashv	\top	\Box	\top		Sampled 1235				
· · · · · · ·		1				╁╌╅╼	H	+	_	+	Н	\dashv	+	++	+		7				
6	N-76 - LNAPE 2/4/6	3		4	۴		Ш	_		\perp	\perp		\perp	\sqcup			Semiled 1300				
7	N-47_LNAPL 2/4/09	}		١	`		Ш										Sampled 1315				
8	N-82_LNAVA 2/4/00	3		١	>												Sampled 1345				
9	N-42_LNAPY 2/5/0)\$		1	٨			Ī	T								Simpled 1200				
10	N-503-LNAPL 2/5/0	TT		1	X												Sunled 1240				
		1	RELIN	/OT	JLSH	ED BY	Y	-		T	DΑ	TE	Ť	TIN	./E	 	ACCEPTED BY DATE TIME				
		1 - /8/	,		1	7				-			+			<u> </u>	-1 - 0				
			<u> </u>	7		ریم		_		1	/ #	10	2 إذ	(4)(<u> 30 </u>	/ <u>/</u>	d-Ex Box 2/1/68 0900				
			}	_	_					1			- 1			1					

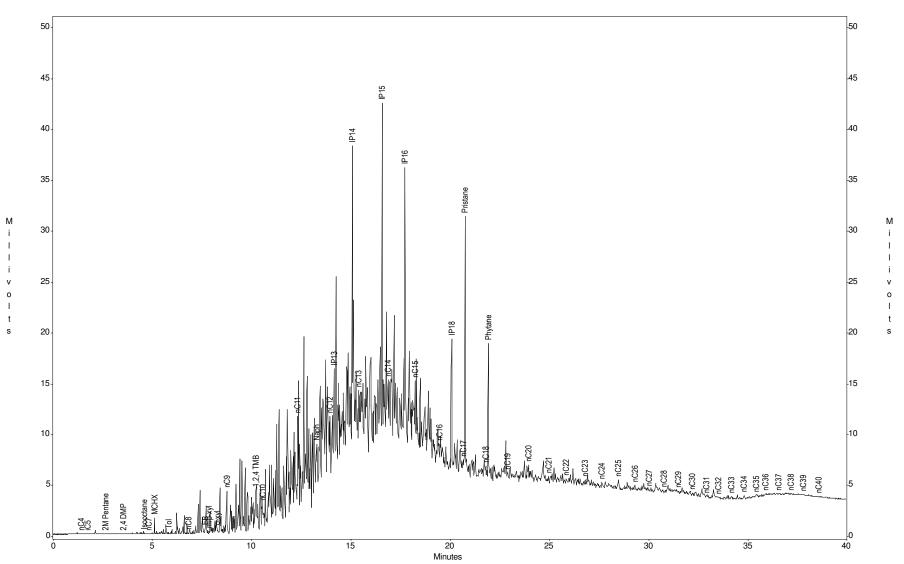
CHAIN-OF-CUSTODY RECORD

2528 S. Columbia Place Tulsa, OK 74114-3233

Fax: 918-749-6005

Phone: 918-749-8441 e-mail: BTorkelson@torkelsongeochemistry.com

Page 2 of 2

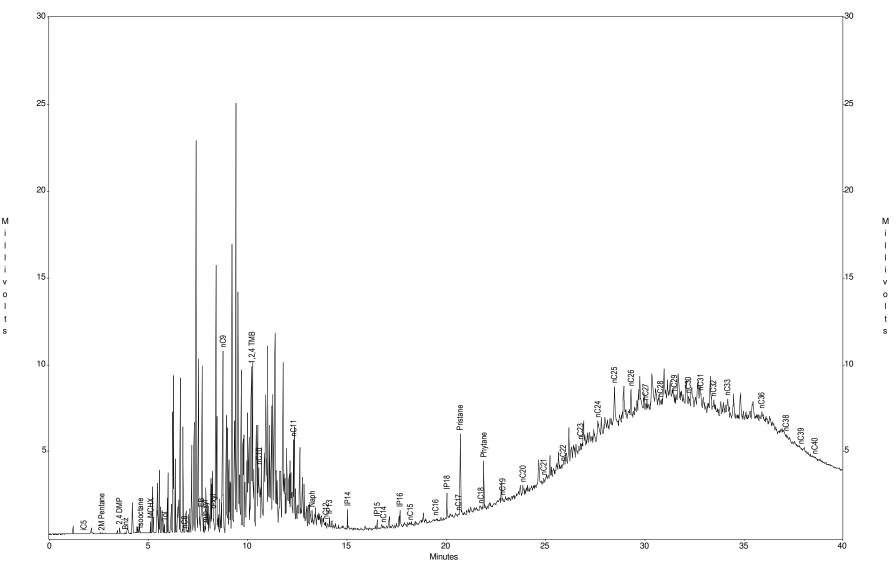

Project:	Sunoco Philadelphia Refinery Report/Bill To: Joseph Catricks-Langan Engineering									g			Additional Instructions										
Location:	Location: Philadelphia, PA							Address:											_	Samples to be analyzed for Fingerprint (GC Characterization) and			
				•	PO Box 1569, Doylestown, PA 18901-0219												Density . Please include a 'Brief Description' of LNAPL, to be						
				_																consistent with existing LNAPL types			
Proj. No.:	<u></u>						215			00							_		_	Contact Joe Catricks at 215-491-6	540 with question	S.	
P.O.:	2574601			_	Fax: 215-491-6501 e-mail: jcatricks@langan.com													_		·· · · · · · · · · · · · · · · · · · ·			
Sampled By:	T. DOERR	_		-	e-m	nail:	įca	atrick	∢s(a	lai	nga	n.ce	<u>om</u>						-	Requested Turn-Around Time: Standard			
		1		1	П	PRE	SERV	ATIVE	s			ANAI	LYS	ES	REC	UES	STED)	\neg				
	İ				Ш	Ī	7		\top	T	Т	1	$\overline{}$	-					П				
					Ш							=		E									
					Ш				٤			Water Surface Tension	<u>S</u>	Tac.									
					ia:				GC Characterization	1		j e	e	age									
					[일				Į	Š		lag.	[월	ale									
	1				*				Ę	<u> </u>	. §	2	<u> </u>	<u>\$</u> ,	_			Ì					
ITEM NO.	SAMPLE DESCRIPTION	DATE	MATRIX	LAB NO.	Total # OF Vials	Non			ို့	2 2	Viscosity	Wat	NAPL Surface Tension	¥.	Suffur					REMA	RKS		
1	N-75_WAFL	2/5/03	,			X			T _x											Simpled 1320	``		
2		T				П		П	T				П	7						Fr. S. C.S.	7		
3					П				\top				П	1		П			П				
4					П				Ť		T	T	П		Ť			1					
5					П				T				\Box	1	†								
6					П				1	T	1		П										
7					П				T	t	1		П						\top				
8					Ħ				1	T	1		П			П	\top						
9			1		П				T			<u> </u>				T							
10					П	H		\vdash	\dagger		╁	1				T	-	+	Н				
10	1	<u> </u>	<u> </u>		Н	Щ.		Ц.			1	-			+	Щ.		_	1			,	
			L_/	∦ BELI	NQ	<u>UIS</u>	HED	BY				<u> </u>	DA			TIN	ИE	4		ACCEPTED BY	DATE	TIME	
			-//	X		4	<i>یل</i> ا					2/	7/	03	1 6	71	2	,	To.	d-Ex Box	2/7/08	GOO	
			<i> </i>	')								Υ.	• •		Ī "			ľ	11	wetal.	2-8-08	1310	

Sunoco Philadelphia Refinery, Philadelphia, PA

Sample ID : N-42 LNAPL

Acquired : Feb 12, 2008 12:43:00

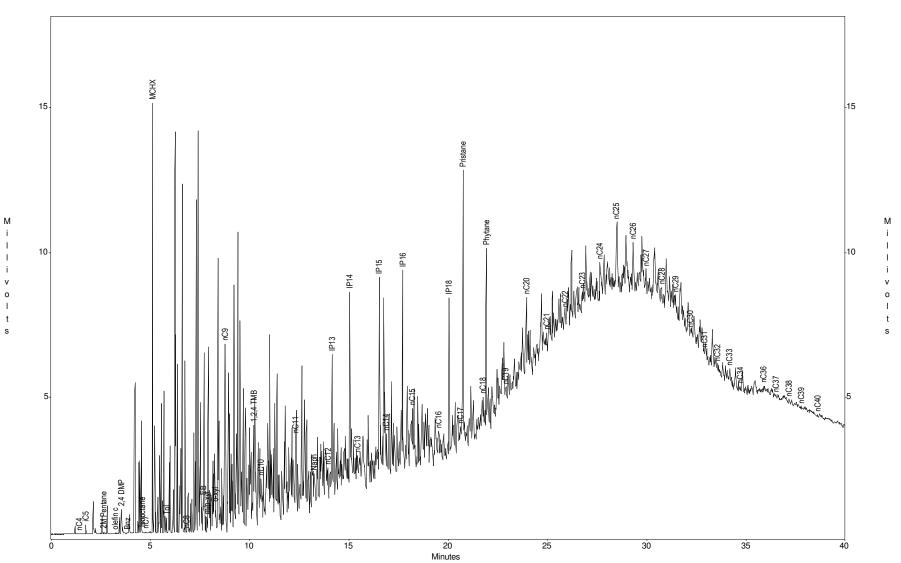
c:\ezchrom\chrom\08018\n-42 -- Channel A



Sunoco Philadelphia Refinery, Philadelphia, PA

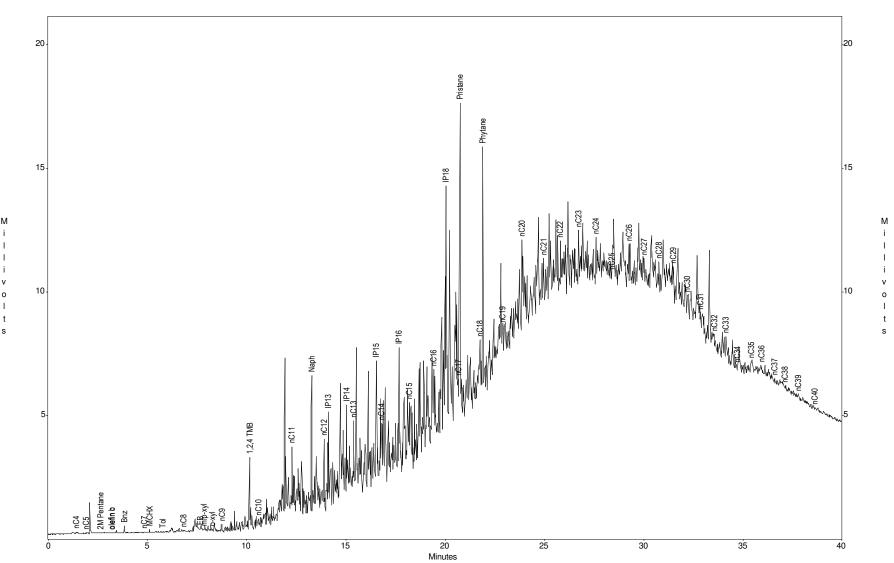
Sample ID : N-47 LNAPL

Acquired : Feb 12, 2008 13:32:10


c:\ezchrom\chrom\08018\n-47 -- Channel A

Sunoco Philadelphia Refinery, Philadelphia, PA Sample ID : N-51 LNAPL

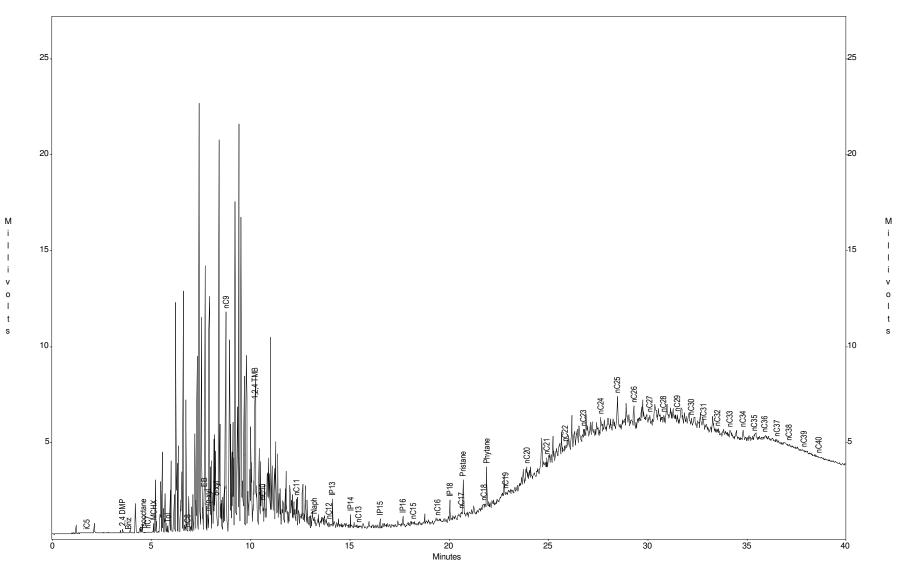
Acquired : Feb 12, 2008 10:07:28


c:\ezchrom\chrom\08018\n-51 -- Channel A

Sunoco Philadelphia Refinery, Philadelphia, PA Sample ID : N-75 LNAPL

Acquired : Feb 12, 2008 17:47:22

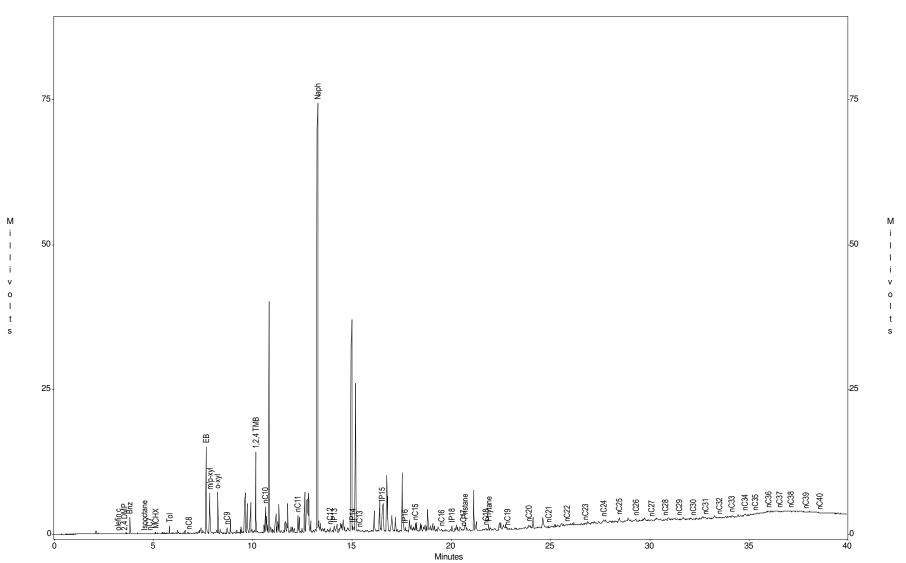
c:\ezchrom\chrom\08018\n-75 -- Channel A



Sunoco Philadelphia Refinery, Philadelphia, PA

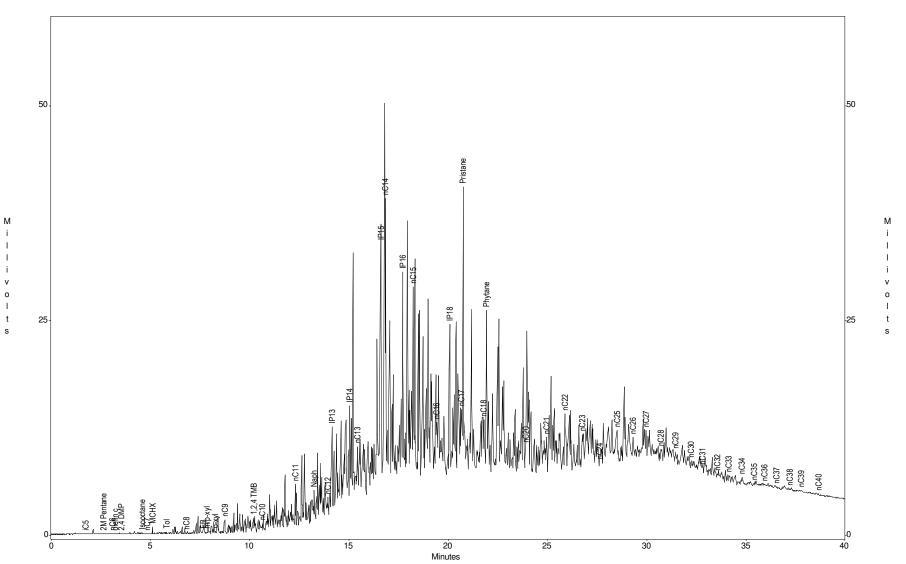
Sample ID : N-76 LNAPL

Acquired : Feb 12, 2008 15:14:12


c:\ezchrom\chrom\08018\n-76 -- Channel A

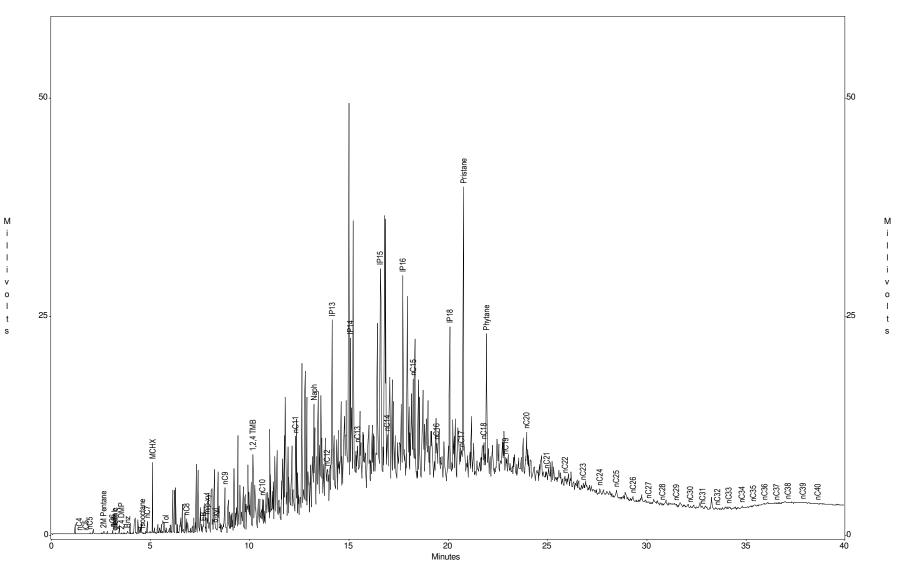
Sunoco Philadelphia Refinery, Philadelphia, PA Sample ID : N-82 LNAPL

. Acquired : Feb 12, 2008 18:57:06


c:\ezchrom\chrom\08018\n-82.2 -- Channel A

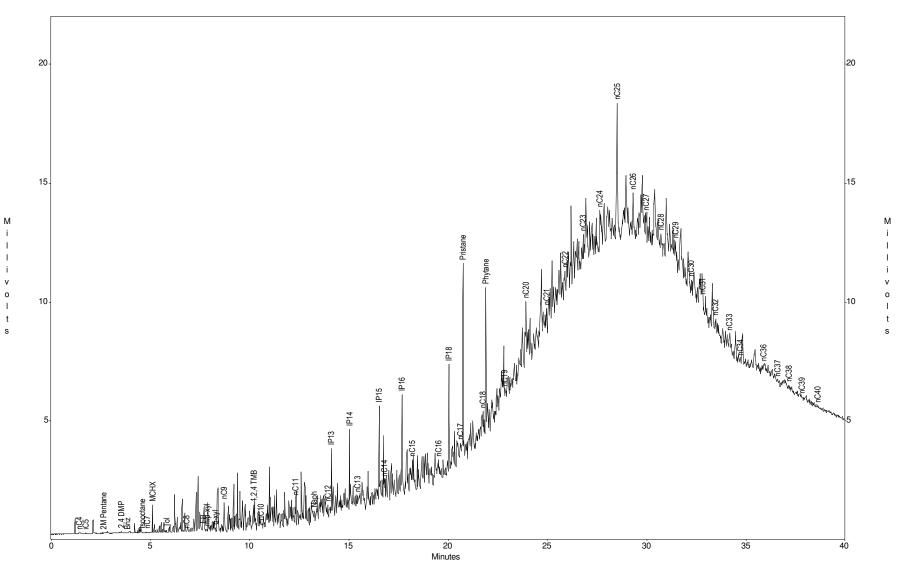
Sunoco Philadelphia Refinery, Philadelphia, PA Sample ID : N-91 LNAPL

. Acquired : Feb 12, 2008 16:03:11


c:\ezchrom\chrom\08018\n-91 -- Channel A

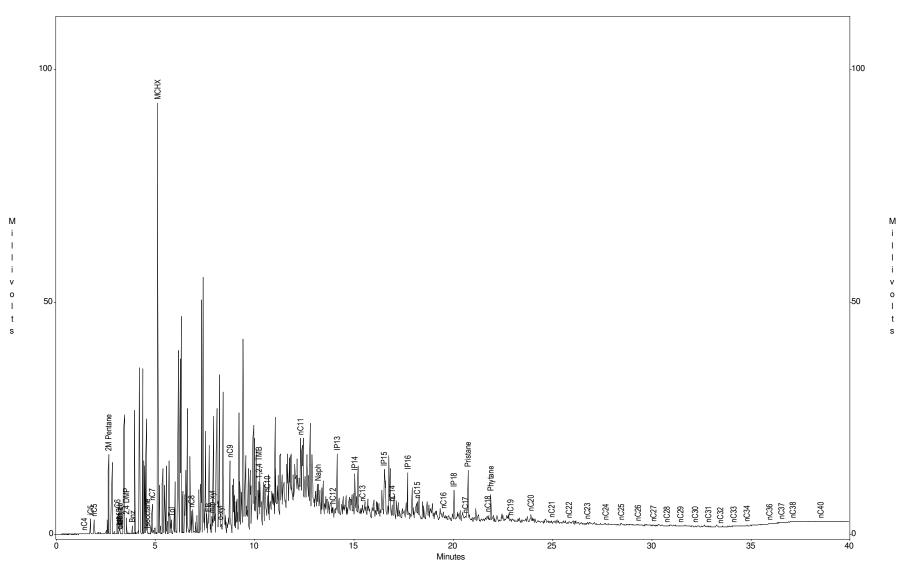
Sunoco Philadelphia Refinery, Philadelphia, PA Sample ID : N-503 LNAPL

. Acquired : Feb 12, 2008 10:55:46


c:\ezchrom\chrom\08018\n-503 -- Channel A

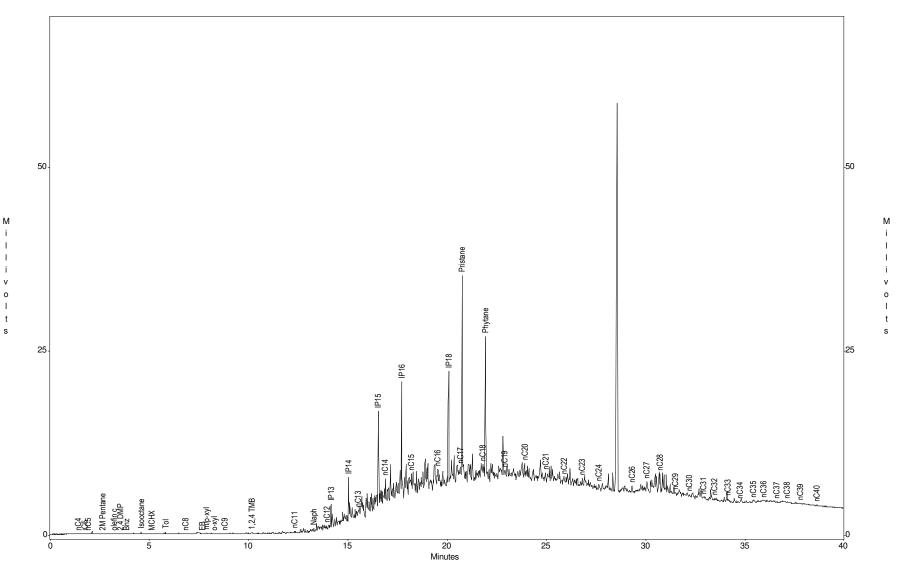
Sunoco Philadelphia Refinery, Philadelphia, PA Sample ID : RW-205 LNAPL

Sample ID : RW-205 LNAPL
Acquired : Feb 12, 2008 16:51:50


c:\ezchrom\chrom\08018\rw-205 -- Channel A

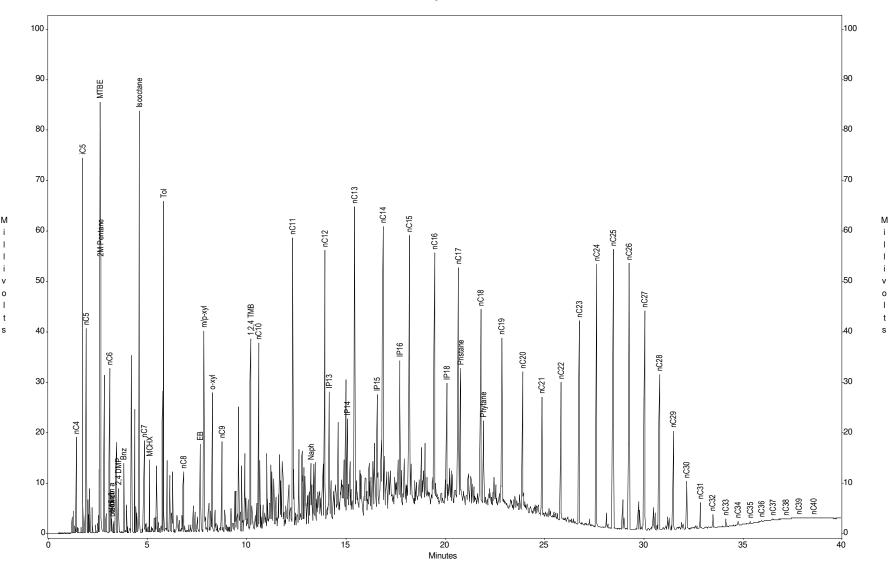
Sunoco Philadelphia Refinery, Philadelphia, PA Sample ID : RW-300 LNAPL

Sample ID : RW-300 LNAPL
Acquired : Feb 12, 2008 08:30:15


c:\ezchrom\chrom\08018\rw-300 -- Channel A

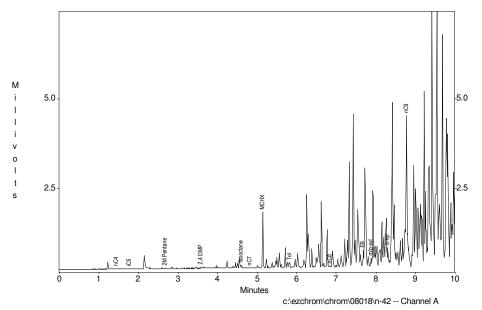
Sunoco Philadelphia Refinery, Philadelphia, PA

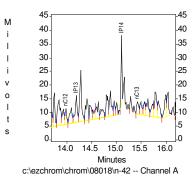
Sample ID : RW-305 LNAPL Acquired : Feb 12, 2008 14:25:40


c:\ezchrom\chrom\08018\rw-305 -- Channel A

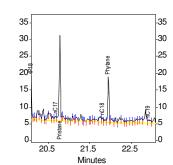
Sunoco Philadelphia Refinery, Philadelphia, PA

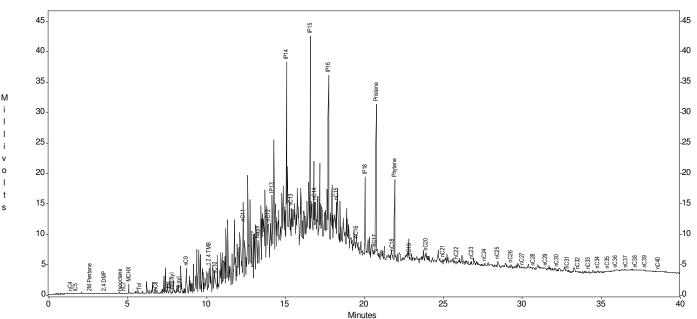
Sample ID : Gas/Dies/Wax std Acquired : Feb 12, 2008 11:48:01


c:\ezchrom\chrom\08018\gadiwax2 -- Channel A



Sample ID : N-42 LNAPL


Acquired : Feb 12, 2008 12:43:00

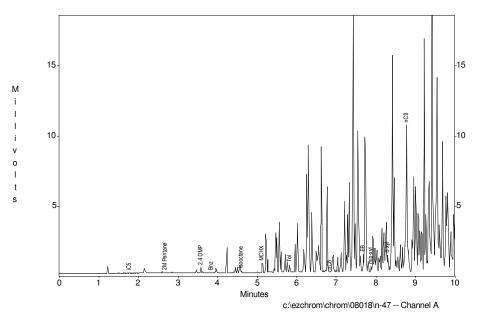

c:\ezchrom\chrom\08018\n-42 -- Channel A

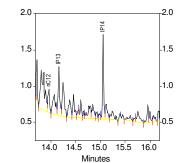
c:\ezchrom\chrom\08018\n-42 -- Channel A

Peak	Area	Height
nC4	21	
iC5	14	14
nC5	0) (
MTBE	0	
2M Pentane	16	14
nC6	0) (
olefin a	0) (
olefin b	0) (
olefin c	0) (
2,4 DMP	5.4	4.5
Bnz	0) (
Isooctane	97	7.4
nC7	16	14
MCHX	1843	1541
Tol	192	148
nC8	52	: 34
EB	693	457
m/p-xyl	442	
o-xyl	1021	
nC9	7723	
1,2,4 TMB	11845	
nC10	3714	
nC11	20500	
Naph	25628	
nC12	14996	
IP13	27934	
IP14	33392	
nC13	12922	
IP15	51389	
nC14	14669	
IP16	62858	
nC15	7860	
nC16	3635	
IP18	30794	
nC17	4005	
Pristane	57135	
nC18	2650	
Phytane	28533	
nC19	4736	
nC20	4102	
nC21	1888	
nC22	3473	
nC23	1810	
nC24		
	1669	
nC25 nC26	4331 1727	
nC27	288	
nC28	279	
nC29	479	
nC30	157	
nC31	65	
nC32	174	
nC33	135	
nC34	292	
nC35	167	
nC36	362	120

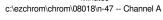
180

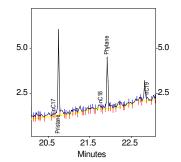
nC40

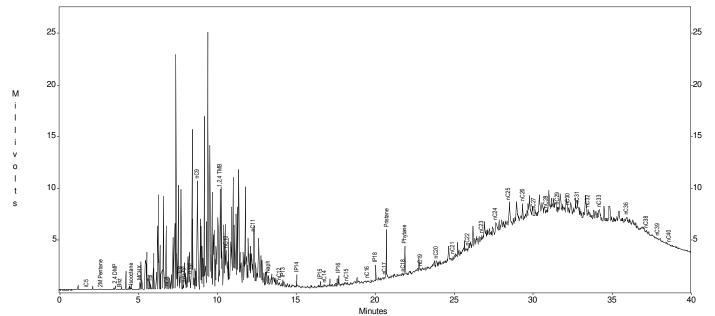

65


Sunoco Philadelphia Refinery, Philadelphia, PA

Sample ID : N-47 LNAPL

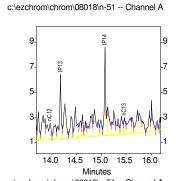

Acquired : Feb 12, 2008 13:32:10

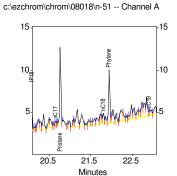

c:\ezchrom\chrom\08018\n-47 -- Channel A

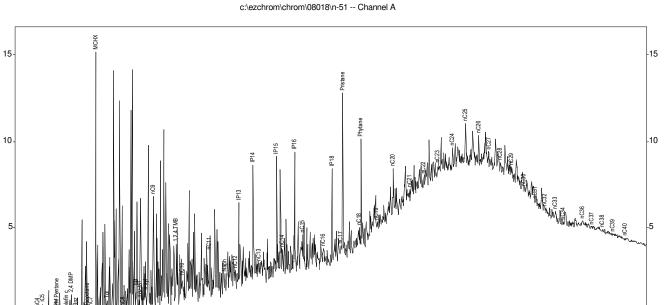


c:\ezchrom\chrom\08018\n-47 -- Channel A

eak	Area		Height
.C4		0	0
C5		31	28
.C5		0	0
ITBE		0	0
M Pentane		21	10
C6		0	0
lefin a		0	0
lefin b		0	0
lefin c		0	0
,4 DMP		381	346
nz		12	11
sooctane		140	116
.c7		0	0
ICHX		827	648
ol		653	505
.C8		90	58
В		1816	1281
/p-xyl		664	418
-xyl		2443 20971	1199 10457
.2,4 TMB		13818	9436
,2,4 TMB		7862	3583
C10		10140	5022
aph		2618	858
C12		885	321
P13		1413	667
P14		1671	1167
C13		0	0
P15		757	523
C14		490	161
P16		2062	968
C15		443	157
C16		470	158
P18		4054	1522
C17		299	178
ristane		9856	4763
C18		202	158
hytane		5441	2822
C19		727	250
C20		1321	594
C21		636	247
C22		310	248
C23		529	391
C24		2911	1032
C25		10755	2250
C26		4959	1693
C27		479	338
.C28		618	243
C29		883	494
C30		518	332
C31 .C32		62 1070	0 493
.C32 .C33		772	493
C33		0	333
C35		0	0
.C36		202	191
.C36		202	191
.C38		224	111
.C39		61	81
C40		199	45
			13


Channel A Results


Sample ID : N-51 LNAPL


Acquired : Feb 12, 2008 10:07:28

c:\ezchrom\chrom\08018\n-51 -- Channel A

20

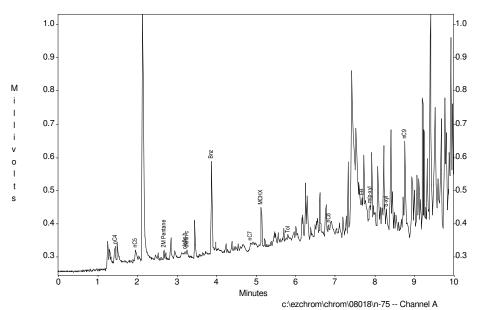
Minutes

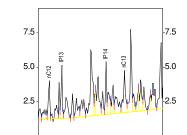
25

30

35

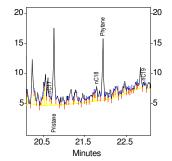
15

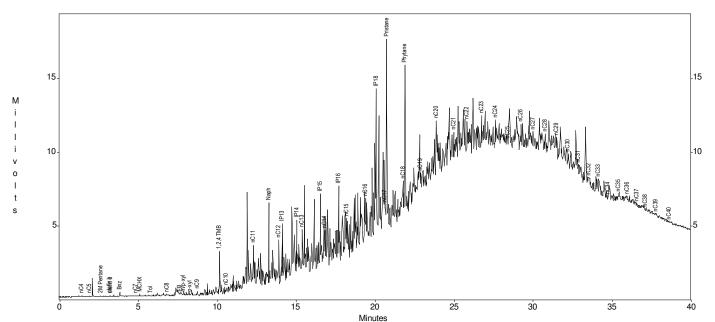

Peak	Area	Height
nC4	15	1
iC5	293	31
nC5	0	
MTBE	0	
2M Pentane	50	4
nC6	0	
olefin a	0	
olefin b	0	
olefin c	36	1
2,4 DMP	865	83
Bnz	37	2
Isooctane	125	11
nC7	57	4
MCHX	17263	1482
Tol	646	49
nC8	32	2
EB	1619	117
m/p-xyl	728	48
o-xyl	1354	77: 644:
nC9	11288	
1,2,4 TMB nC10	10062 3357	348
nC10 nC11	5890	155: 273:
Naph	6141	126
nc12	6582	128
IP13	11907	510
IP14	13429	700
nC13	3225	126
IP15	9666	659
nC14	2233	114
IP16	13915	690
nC15	4776	201
nC16	2470	110
IP18	12742	547
nC17	881	43
Pristane	17031	903
nC18	2702	126
Phytane	14057	632
nC19	1544	63
nC20	6017	265
nC21	2138	92
nC22	4522	101
nC23	3340	99
nC24	4086	134
nC25	9484	227
nC26	5780	181
nC27	2663	99
nC28	437	29
nC29	3101	74
nC30	129	91
nC31	91	8
nC32	445	16
nC33	1282	40
nC34	228	14:
nC35	0	1
nC36	226	17
nC37	78	6
nC38	155	9:
nC39	50	51
nC40	150	71


Sunoco Philadelphia Refinery, Philadelphia, PA

Sample ID : N-75 LNAPL

Acquired : Feb 12, 2008 17:47:22


c:\ezchrom\chrom\08018\n-75 -- Channel A



c:\ezchrom\chrom\08018\n-75 -- Channel A

Peak	Area	Height
nC4	120	57
iC5	0	
nC5	114	
MTBE	0	
2M Pentane	35	
nC6	0	
olefin a	0	
olefin b	11	
olefin c	36	
2,4 DMP	0	
Bnz	471	
Isooctane	0	
nC7	35	14
MCHX	175	120
Tol	93	
nC8	135	
EB	244	129
m/p-xyl	299	104
o-xyl	272	90
nC9	659	291
1,2,4 TMB	4658	2913
nC10	684	373
nC11	5838	2872
Naph	8742	5477
nC12	4869	2716
IP13	5861	3801
IP14	6222	3806
nC13	8486	3016
IP15	8599	4788
nC14	7533	1933
IP16	12324	5070
nC15	2534	1722
nC16	8721	2885
IP18	20344	9386
nC17	3451	1606
Pristane	32928	12733
nC18	5938	
Phytane	22697	
nC19	1162	
nC20	7400	
nC21	4479	
nC22	4811	
nC23	6507	
nC24	2977	
nC25	242	
nC26	3499	
nC27	1410	
nC28	2367	
nC29	3815	
nC30	1431	
nC31	640	
nC32	299	
nC33	2179	
nC34	89	
nC35	80	
nC36	339	
nC37	284	
nC38	58 238	
nC39	238	

Page 1 of 1 (5)

c:\ezchrom\chrom\08018\n-76 -- Channel A

14.0 14.5 15.0

c:\ezchrom\chrom\08018\n-76 -- Channel A

Minutes

21.5

Minutes

2.0

1.5 -

1.0 -

3.5

2.5 -

1.5 -

0.5

20.5

Channel A Results

Height Area

nC6 olefin a olefin c 2,4 DMP Isooctane

615 524 156 3059

1457 3419 21237 16615

1081 715 1382

795 185 103 403

241 416

Peak

iC5 nC5 MTBE 2M Pentane

-1.5

-0.5

22.5

MCHX Tol

IP15

nC14

IP16

nC15

nC17

nC18

nC19

nC30

nC31

nC32

Phytane

nC8

188 63

51

nC35 nC36 nC37 nC40

nC4

168

460

334

100

2173

872

1710

6559

1215

1361

547

264

1532

722

478

548

174 233

1120

356

2018

346

2226

268

954

697

726

919

1752

1124

130

412

411

201

89

154 229

147

137

103

11428

m/p-xyl o-xyl nC9

1,2,4 TMB nC10 nC11 Naph nC12

IP13

Pristane

nC20

nC21 nC22 nC23 nC24

nC25 nC26 nC27

nC28 nC29

51 42

35 40

30

Minutes

25

Torkelson Geochemistry, Inc.

20

15

Sunoco Philadelphia Refinery, Philadelphia, PA

: Feb 12, 2008 15:14:12

c:\ezchrom\chrom\08018\n-76 -- Channel A

Minutes

10

15

: N-76 LNAPL

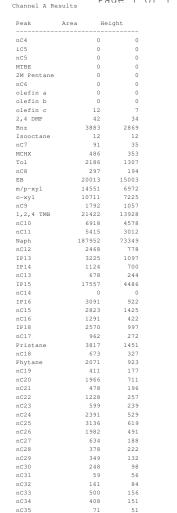
Sample ID

20-

15-

10-

20


15.

10-

Acquired

20

c:\ezchrom\chrom\08018\n-76 -- Channel A

102

59

87

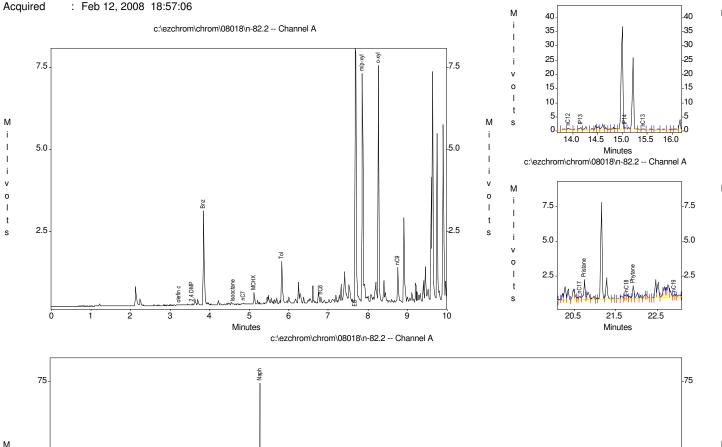
104

72

39

43

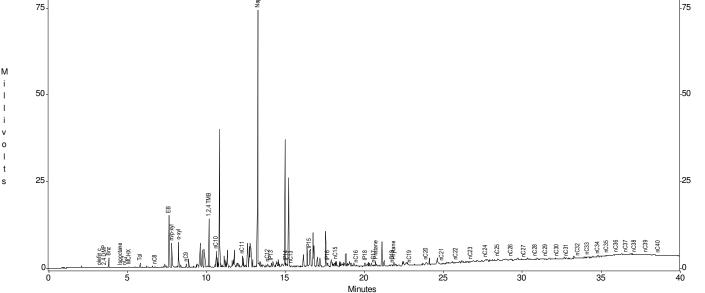
35


35

nC36

nC37

nC40



Sunoco Philadelphia Refinery, Philadelphia, PA

: N-82 LNAPL

Sample ID

5.4

67

216

144

232

1569

614

4743

3595

2284

6900

5930

18702

2898

1311

1379

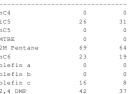
694

353

347

418

187


121

73 76

174

86

l A	Results	raue	1 ()1	'	(/)	
	Area	Heigh	t			
		0	0			
		26	31			
		0	0			
		0	0			
ntai	ne	69	64			
		23	19			

2M Per olefin a olefin b olefin c 2,4 DMP 42 Isooctane 148 123 nC7 97 MCHX 1014 815 203

378 397 264 526 2921 2423 788

12019 6923 175043 29660 66687 34679 80041 25407 58839 23217 20949 6496 44063 16745

20303 14499 45712

3129 10330 4076 19220 6616 13510 4029 364 451 21576 3747

8164 7662 3624 4517 1825

62 545 1020 992 359

447 117 119 483

Peak nC4 iC5 nC5 MTBE

Tol

m/p-xyl o-xyl nC9 1,2,4 TMB

6953

nC30 nC31 nC32 nC33 nC34

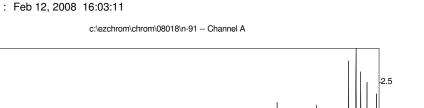
nC39

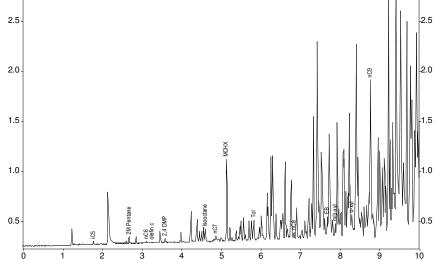
nC40

nC35 nC36 nC37 nC38

257

nC10 nC11 Naph nC12 IP14 nC13 IP15 nC14 IP16 nC15 nC16 IP18 nC17 Pristane nC18 Phytane nC19 nC20 nC21 nC22 nC23 nC24 nC25 nC26 nC27 nC28 nC29

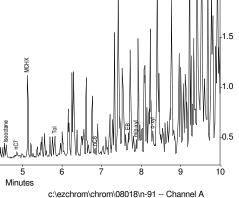


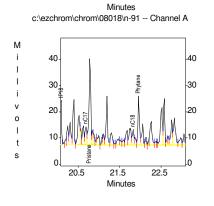

30.

25.

20

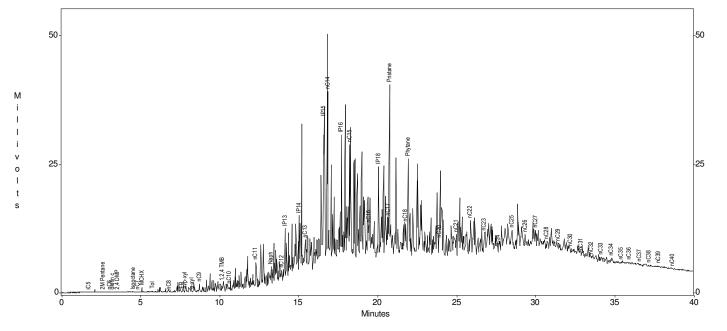
15-


Sunoco Philadelphia Refinery, Philadelphia, PA


: N-91 LNAPL

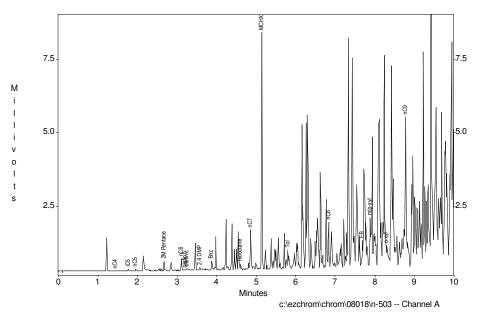
Sample ID

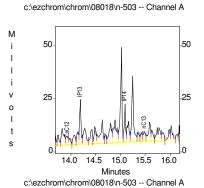
Acquired

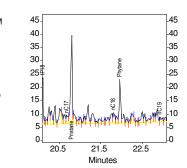

0

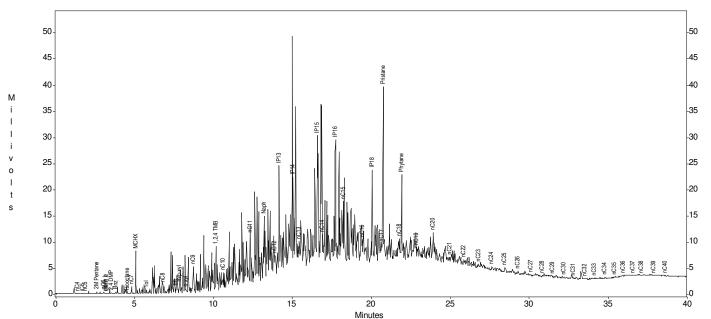
15.0

16.0

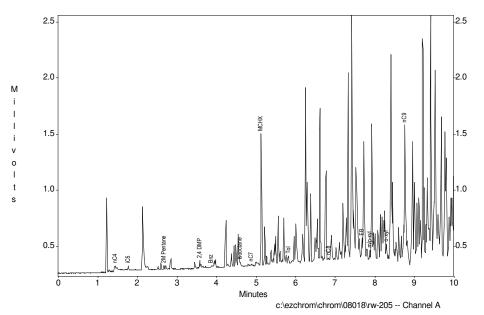


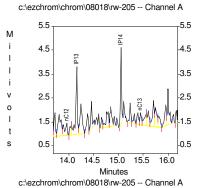

Sunoco Philadelphia Refinery, Philadelphia, PA

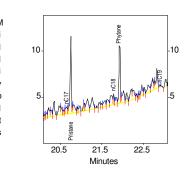

Sample ID : N-503 LNAPL

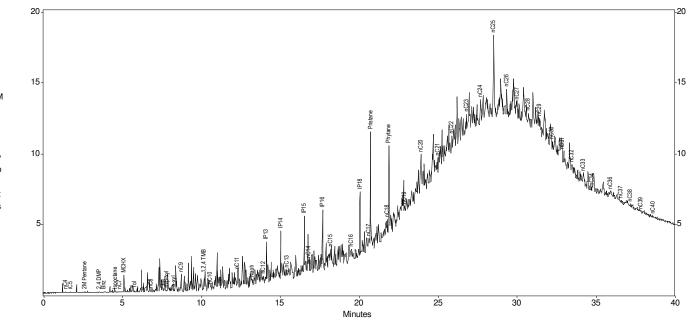

Acquired : Feb 12, 2008 10:55:46

c:\ezchrom\chrom\08018\n-503 -- Channel A


Peak	Area	Height
nC4	25	
iC5	4.8	4.9
nC5	71	6.5
MTBE	0	
2M Pentane	319	314
nC6	464	406
olefin a	0	
olefin b	36	25
olefin c	105	4.4
2,4 DMP	117	108
Bnz	458	281
Isooctane	273	197
nC7	1606	1344
MCHX	9442	8086
Tol	822	649
nC8	2062	1573
EB	1481	880
m/p-xyl	2654	1629
o-xyl	1312	522
nC9	9263	5085
1,2,4 TMB	16986	8425
nC10	4534	2938
nC11	17877	9055
Naph	24963	12164
nC12	12993	4069
IP13	40125	20878
IP14	33242	17865
nC13	15524	5176
IP15	96067	23235
nC14	5500	3531
IP16	51498	23146
nC15	24853	11401
nC16	8259	
IP18	45467	
nC17	11151	3244
Pristane	82400	33381
nC18	8991	
Phytane	39516	16387
nC19	7518	1844
nC20	13625	
nC21	3754	1235
nC22	3814	1206
nC23	2504	858
nC24	1721	
nC25	5300	
nC26	1921	
nC27	365	201
nC28	303	205
nC29	928	243
nC30	163	
nC31	32	: (
nC32	7.3	4.9
nC33	593	199
nC34	1175	238
nC35	86	79
nC36	7.9	
nC37	7.4	
nC38	56	
nC39	104	
nC40	71	. 39


Sunoco Philadelphia Refinery, Philadelphia, PA


Sample ID : RW-205 LNAPL


Acquired : Feb 12, 2008 16:51:50

c:\ezchrom\chrom\08018\rw-205 -- Channel A

Peak	Area	Height
nC4	125	5
iC5	35	4
nC5	0	
MTBE	0	
2M Pentane	39	3
nC6	0	
olefin a	0	
olefin b	0	
olefin c	0	
2,4 DMP	75	6
Bnz	81	2
Isooctane	61	3
nC7	48	1
MCHX	1410	117
Tol	242	8
nC8	166	6
EB	442	24
m/p-xyl	265	13
o-xvl	370	18
nC9	2376	124
1,2,4 TMB	2809	107
nC10	649	28
nC11	2247	114
Naph	896	29
nC12	2221	52
IP13	6179	285
IP14	4041	308
nC13	931	47
IP15	6354	392
nC14	1959	75
IP16	9015	424
nC15	3453	135
nC16	1403	71
IP18	10942	461
nC17	2235	88
Pristane	17054	837
nC18	2340	120
Phytane	13907	626
nC19	486	20
nC20	7095	285
nC21	2776	111
nC22	3019	116
nC23	3433	134
nC24	4773	185
nC25	21118	582
nC26	6168	190
nC27	2827	118
nC27 nC28	1358	76
nC28	2771	89
nC29 nC30	899	50
nC30 nC31	248	50
	248 310	27
nC32		
nC33	200	18
nC34	133	11
nC35	0	

nC36

nC37

nC40

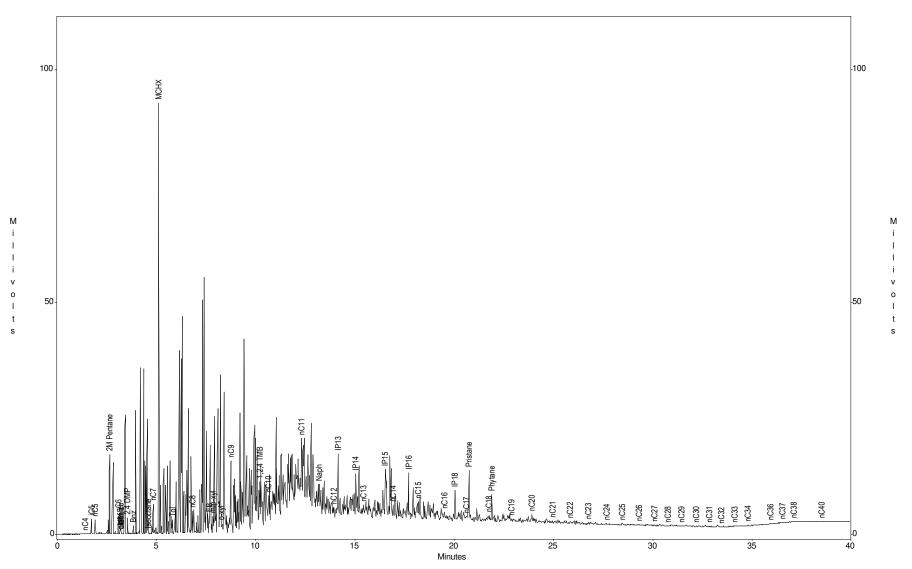
151

259

201

114

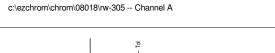
25

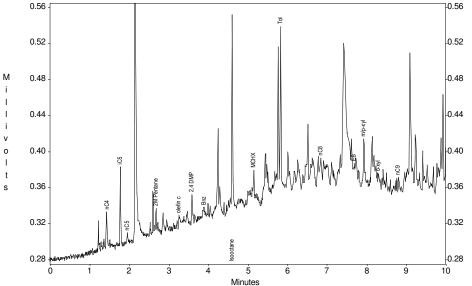

130

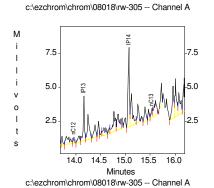
53 27

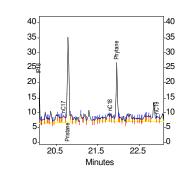
Sunoco Philadelphia Refinery, Philadelphia, PA Sample ID : RW-300 LNAPL

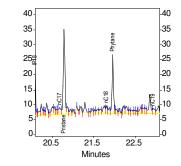
Sample ID : RW-300 LNAPL
Acquired : Feb 12, 2008 08:30:15

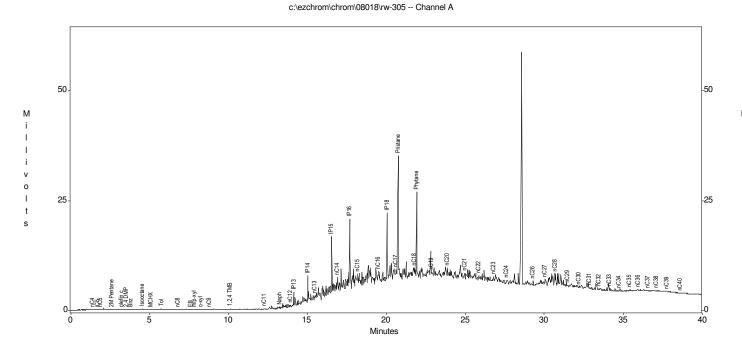

c:\ezchrom\chrom\08018\rw-300 -- Channel A



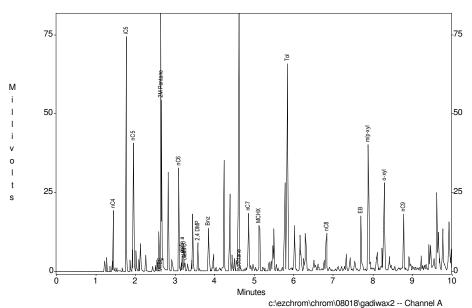

Sunoco Philadelphia Refinery, Philadelphia, PA

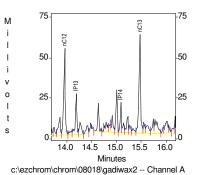

Sample ID : RW-305 LNAPL


Acquired : Feb 12, 2008 14:25:40

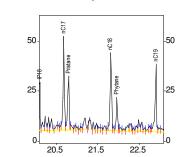


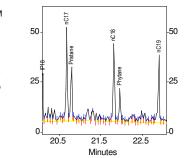
Peak	Area	Height
nC4	70	41
LC5	81	88
nC5	21	12
ATBE	0	0
2M Pentane	48	27
nC6	0	0
olefin a	0	0
olefin b	0	0
olefin c	32	13
2,4 DMP	54	33
Bnz	33	11
Isooctane nC7	277	215
1C / 4CHX	41	28
rol	246	178
nC8	69	26
EB	69	28
n/p-xyl	175	57
-xyl	76	21
nC9	32	20
L,2,4 TMB	365	156
nC10	0	0
nC11	496	239
Naph	1155	401
nC12	1036	462
IP13	6075	3299
IP14	8956	5935
nC13	1365	674
IP15	19171	12690
nC14	5151	2788
IP16	35097	15949
nC15	8689	
nC16	6511	2817
IP18	37249	15725
nC17	7757	2318
Pristane	70366	28317
nC18 Phytane	5036 45421	2360 19670
nC19	7099	1521
nC20	5818	2419
nC21	3706	1289
nC22	2769	
nC23	3638	1266
nC24	2506	878
nC25	0	0
nC26	2340	922
nC27	4177	1374
nC28	5520	2609
nC29	344	121
nC30	118	79
nC31	73	74
nC32	369	225
nC33	531	242
nC34	79	93
1C35	209	107
nC36	157	48
nC37	298	112
1C38	172	76
nC39	91	78
nC40	124	44

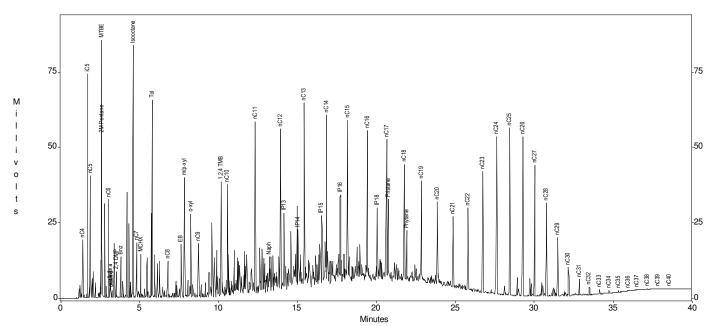

Channel A Results


Torkelson Geochemistry, Inc.

Sunoco Philadelphia Refinery, Philadelphia, PA


Sample ID : Gas/Dies/Wax std Acquired : Feb 12, 2008 11:48:01


c:\ezchrom\chrom\08018\gadiwax2 -- Channel A



c:\ezchrom\chrom\08018\gadiwax2 -- Channel A

Peak	Area	Height
nC4	10953	19102
iC5	51604	
nC5	30361	
MTBE	69425	
2M Pentane		
nC6	30726	
olefin a	5020	
olefin b	3273	
olefin c	3009	
2,4 DMP	8865	880
Bnz	17732	1372
Isooctane	115797	
nC7	24195	1827
MCHX	17960	
Tol	90969	
nC8	14305	
EB	24171	
m/p-xyl	83914	
o-xyl	40237	
nC9	24927	
1,2,4 TMB	67448	
nC10	57588	
nC11	110778	
Naph	29084	
nC12	116024	
IP13 IP14	49003 29193	
nC13	148522	
IP15	43017	
nC14	130476	
IP16	61019	
nC15	135279	
nC16	117334	
IP18	54476	
nC17	105162	47136
Pristane	61949	27129
nC18	82464	
Phytane	35962	
nC19	80606	
nC20	54289	
nC21	45872	
nC22	57487	
nC23	90749	
nC24	133557	
nC25	154936	
nC26 nC27	153087 112487	
nC27 nC28	68439	
nC29	36953	
nC30	17394	
nC31	7931	
nC32	4708	
nC33	2485	
nC34	1394	
nC35	886	
nC36	407	
nC37	611	
nC38	211	
nC39	226	
nC40	148	4.

Torkelson Geochemistry, Inc.								
Density Measurements								
Paar DMA 512 / DMA 60	AA 60 ASTM Method 4052							
Sample	Density gm/ml @ 60F	Job Number	Date					
N-42	0.8900	08018	2/12/08					
N-47	0.8834	08018	2/12/08					
N-51	0.8995	08018	2/12/08					
N-75	0.9371	08018	2/12/08					
N-76	0.8899	08018	2/12/08					
N-82	0.9132	08018	2/12/08					
N-91	0.9471	08018	2/12/08					
N-503	0.9065	08018	2/12/08					
RW-205	0.9112	08018	2/12/08					
RW-300	0.8358	08018	2/12/08					
RW-305	0.9186	08018	2/12/08					

CHAIN-OF-CUSTODY RECORD

2528 S. Columbia Place Tulsa, OK 74114-3233

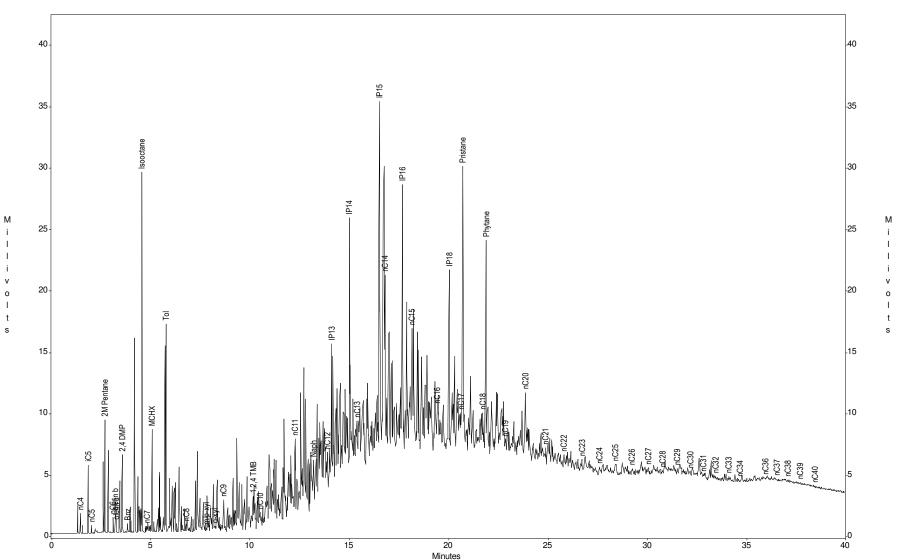
Phone: 918-749-844 Fax: 918-749-6005

Phone: 918-749-8441 e-mail: BTorkelson@torkelsongeochemistry.com

Page ___1_ of 1

Project: Sunoco Philadelphia Refinery - AOI 8 St		Additional Instructions
Location: Philadelphia, PA	Address:	Please include a brief interpretation of product type constar
	PO Box 1569, Doylestown PA 18901	other samples from this project
Proj. No.: 25	4601 Phone: 215-491.6540	
P.O.:	Fax: 215.491.6501	
Sampled By:	e-mail: jcatricks@langan.com	Requested Turn-Around Time: Standard
	PRESERVATIVES ANALYSES REQUESTE	ED .

						PRE	SERVAT	IVES			Α	NAL	YSE	S	REC	UE	STE)		Т	
ITEM NO.	SAMPLE DESCRIPTION	DATE	MATRIX	LAB NO.	Total # OF Vials	None			GC Characterization	Density	Viscosity	Water Surface Tension	NAPL Surface Tension	VAPL/Water Interfac. Tens.	Sulfur						TIME REMARKS
1	N-107	7/28/08			1	Х				х										F	1320
2	N-116	7/2/08				X			х	х											1235
3	N-125	7/28/08			1	Х			х	x											1240
4	N-127	1/19/13			1	×			х	х									\downarrow	1	1220
5	N-129	7/ 19/13 7/28/08				X	$\perp \downarrow$		х	x					╧					1/	<i>2.</i> 30
6	N-130	7/25/08				X			х	x				\perp	\perp		Ш	\downarrow			(2)5
-	N-135	17/28/28			1	X	\perp	Ш	х	x	Ш			\perp	1				\perp	\downarrow	1200
8	N-113	11-28-08			Ш	X	$\perp \! \! \perp$		Χ	X				\perp	\perp					1	1,30
9						Ц	_	Ш		_	Ш						Ш		\perp	_	
10																					

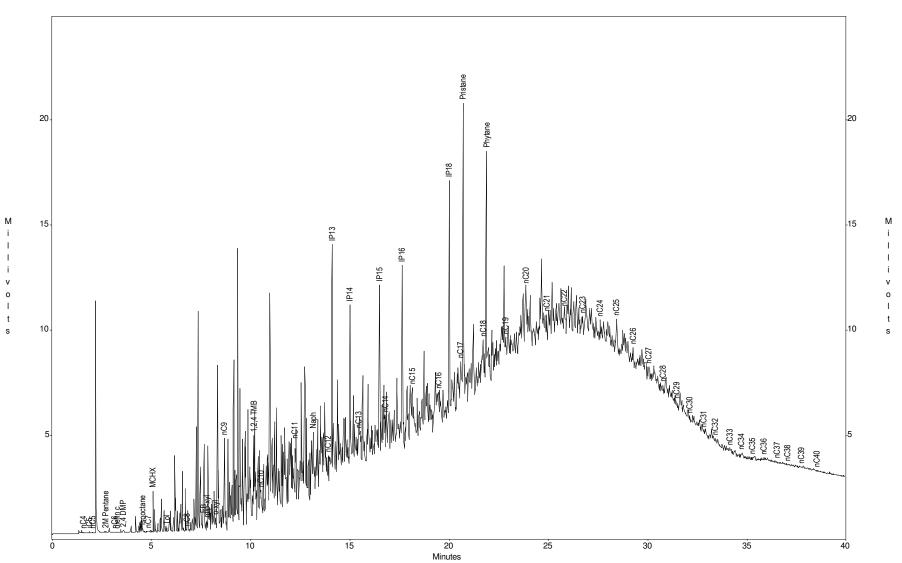

RELINQUISHED BY	DATE	TIME	ACCEPTED BY	DATE	TIME
Star Commen		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$\psi(t) = \psi f$		
				7-30 08	

Sunoco Philadelphia Refinery - AOI 8 SCR

Sample ID : N-107

Acquired : Jul 31, 2008 12:21:28

c:\ezchrom\chrom\08134\n-107 -- Channel A

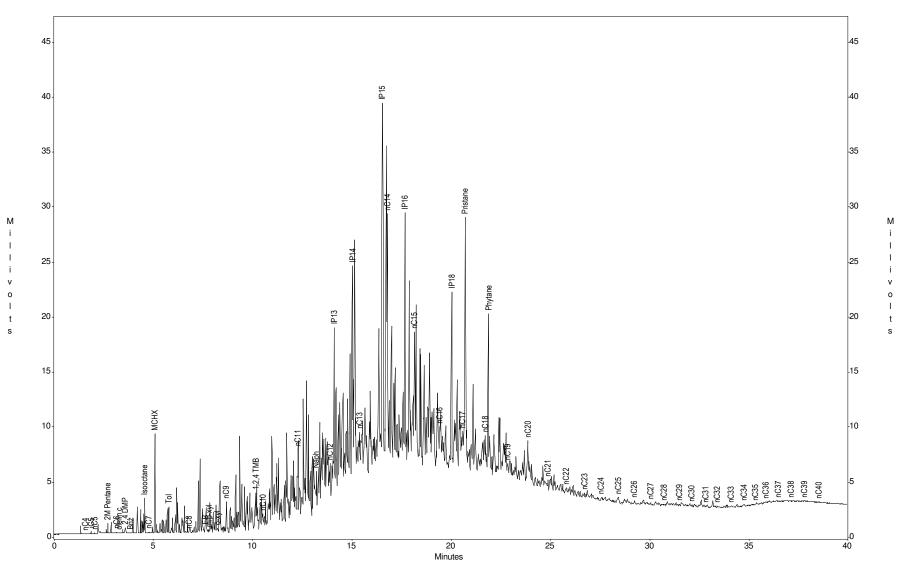


Sunoco Philadelphia Refinery - AOI 8 SCR

: N-113

Sample ID Acquired : Jul 31, 2008 14:27:34

c:\ezchrom\chrom\08134\n-113 -- Channel A

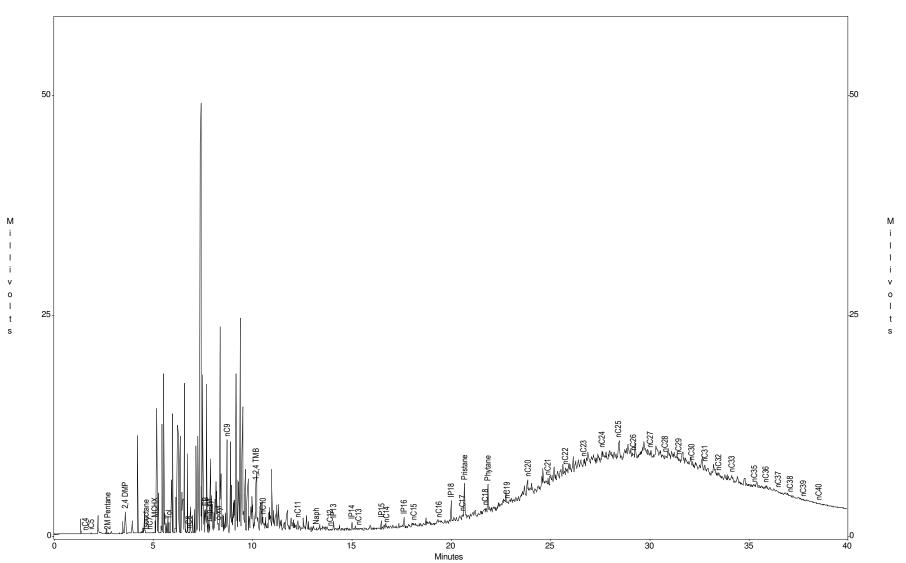


Sunoco Philadelphia Refinery - AOI 8 SCR

Sample ID : N-116

Acquired : Jul 31, 2008 15:18:40

c:\ezchrom\chrom\08134\n-116 -- Channel A

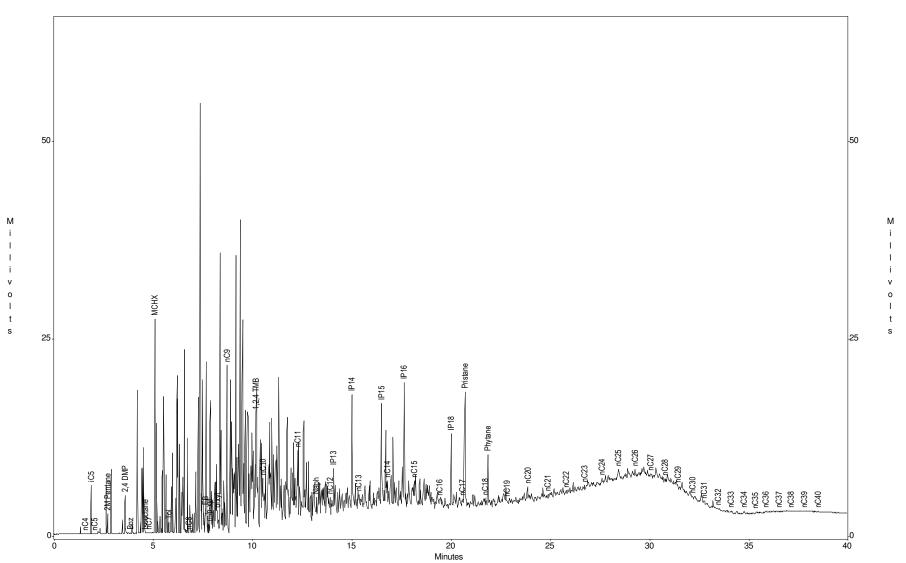


Sunoco Philadelphia Refinery - AOI 8 SCR

Sample ID : N-125

Acquired : Jul 31, 2008 09:41:17

c:\ezchrom\chrom\08134\n-125 -- Channel A

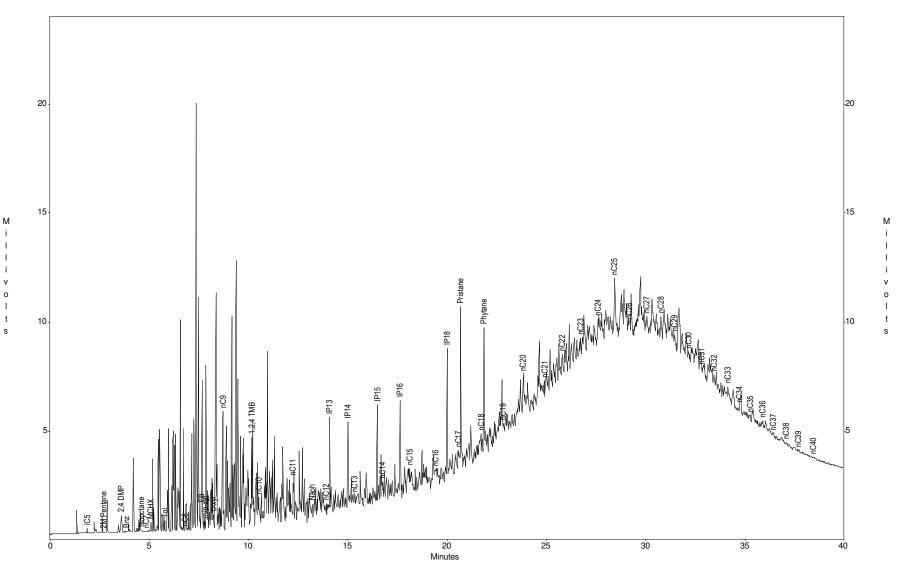


Sunoco Philadelphia Refinery - AOI 8 SCR

Sample ID : N-127

Acquired : Jul 31, 2008 11:29:45

c:\ezchrom\chrom\08134\n-127 -- Channel A

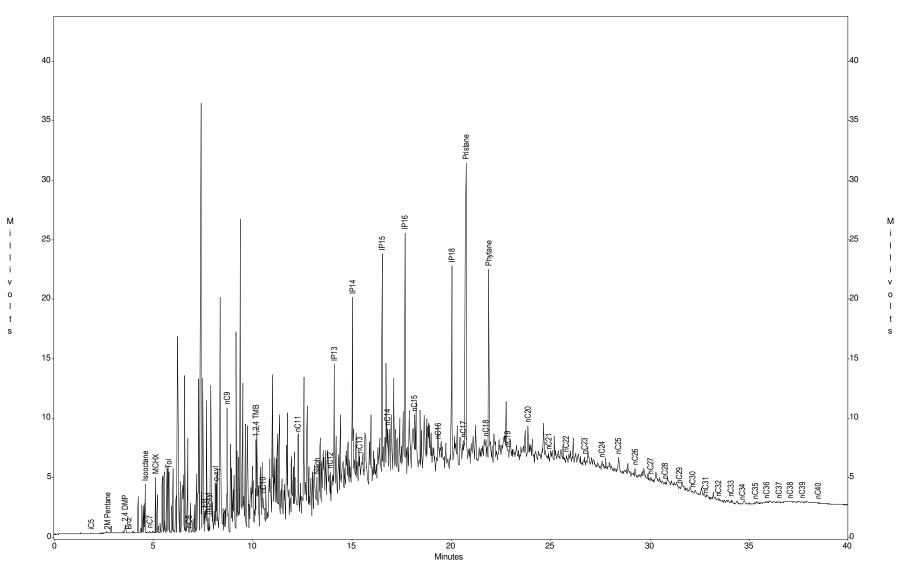


Sunoco Philadelphia Refinery - AOI 8 SCR

: N-129

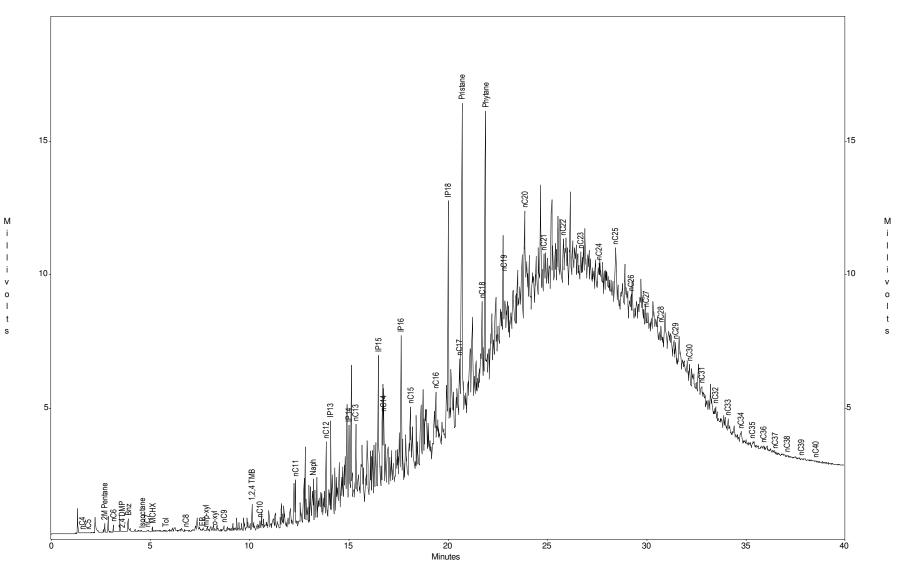
Sample ID Acquired : Jul 31, 2008 16:09:46

c:\ezchrom\chrom\08134\n-129 -- Channel A

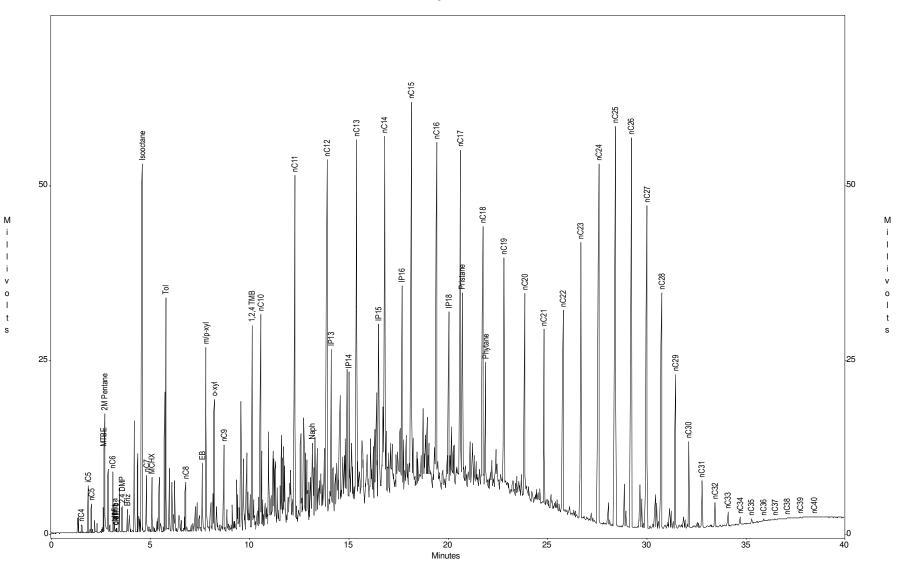


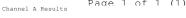
Sunoco Philadelphia Refinery - AOI 8 SCR

Sample ID : N-130


Acquired : Jul 31, 2008 08:50:57

c:\ezchrom\chrom\08134\n-130 -- Channel A


Sunoco Philadelphia Refinery - AOI 8 SCR Sample ID : N-135 Acquired : Jul 31, 2008 10:35:35


c:\ezchrom\chrom\08134\n-135 -- Channel A

Sunoco Philadelphia Refinery - AOI 8 SCR Sample ID : Gas/Dies/Wax std Acquired : Jul 31, 2008 13:18:39

c:\ezchrom\chrom\08134\gadiwax2 -- Channel A

Page 1 of 1 (1) Height 1153 1612

Area iC5 4452 5495 nC5 610 591 MTBE 8642 9154 1397 1248 1255 799

2M Pentane 7271 34028 539 10500

nC8 m/p-xyl o-xyl nC9 1,2,4 TMB

> 59900 7717 40808 6018 15122

4207 3409 4634 1414

1144

1008

634

880

474

559

360

479

163

62

158

0

67

72

82 83

69

2738 2064 1336 1255

154 49 358

94 115

100

nC6 olefin a

3818

nC36 nC37 nC40

nC35

Peak nC4

nC20 nC21 nC22

nC23 nC24

nC25

nC26

nC27

nC29

nC30

nC31

nC32

-15

-10

40

35

c:\ezchrom\chrom\08134\n-107 -- Channel A

14.0 14.5 15.0 Minutes

c:\ezchrom\chrom\08134\n-107 -- Channel A

21.5

Minutes

22.5

25-

20-

15.

30-

25-

20-

15-

20.5

30

25

Torkelson Geochemistry, Inc.

15

10

M

Sunoco Philadelphia Refinery - AOI 8 SCR

: Jul 31, 2008 12:21:28

c:\ezchrom\chrom\08134\n-107 -- Channel A

5

Minutes

: N-107

Sample ID

15-

10-

35-

30-

25-

20-

15-

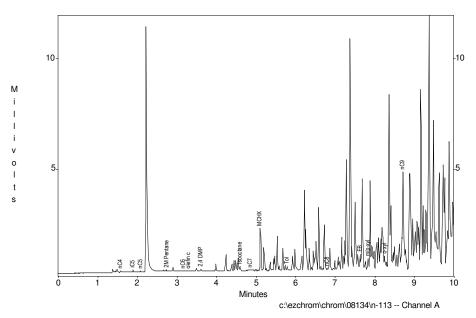
10-

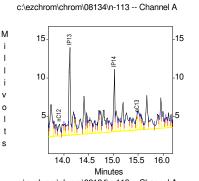
Acquired

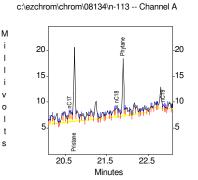
Minutes

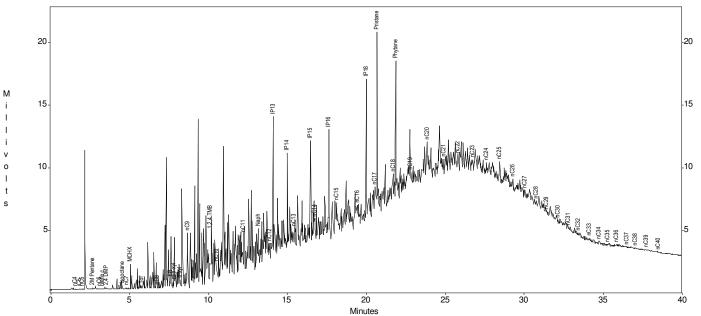
20

15


c:\ezchrom\chrom\08134\n-107 -- Channel A

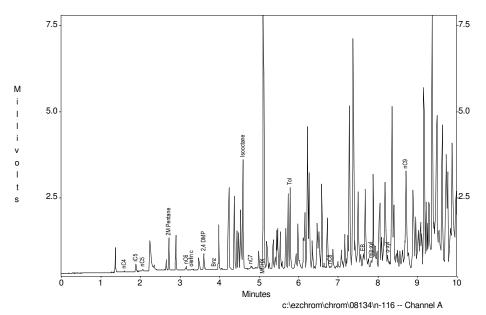


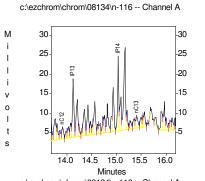

Sample ID : N-113

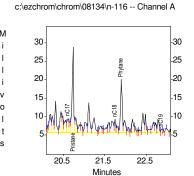

Acquired : Jul 31, 2008 14:27:34

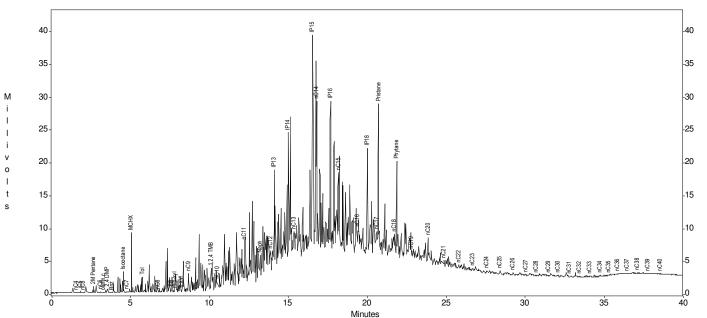
c:\ezchrom\chrom\08134\n-113 -- Channel A

Peak	Area	Height			
		4			
nC4	96				
iC5	88				
nC5	58				
MTBE	0				
2M Pentane	65				
nC6	24				
olefin a	0				
olefin b	0				
olefin c	47	1			
2,4 DMP	101	8			
Bnz	247				
Isooctane nC7	24 /				
MCHX	2466				
Tol	281				
nC8	89				
EB	845				
m/p-xyl	749				
o-xyl nC9	783 9190				
	6441				
	2461	134:			
nC10 nC11	2461 4529				
Naph nC12	8212 4306				
IP13	20618 12990				
IP14 nC13	3413				
IP15	14668				
nC14	3595				
IP16	21613				
nC15	5909				
nC16	3409				
IP18	25856				
nC17	5286				
Pristane	34964				
nC18	5356				
Phytane	26199				
nC19	1227				
nC20	14203				
nC21	4008				
nC22	7849				
nC23	3848				
nC24	3766				
nC25	7977				
nC26	3576				
nC27	1508				
nC28	1184				
nC29	547				
nC30	433				
nC31	152				
nC32	104	12			
nC33	143				
nC34	90				
nC35	58				
nC36	392				
nC37	51	31			
nC38	178				
nC39	64	2:			
-040		2.			


Channel A Results

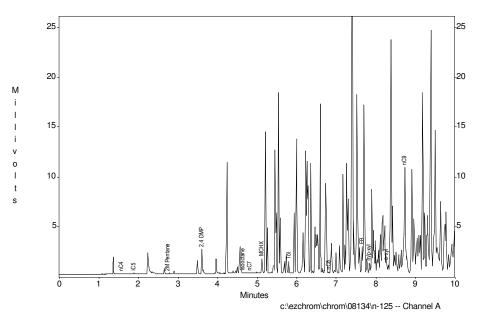


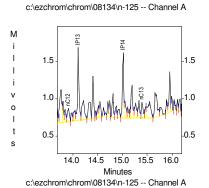

Sample ID : N-116

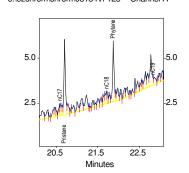

Acquired : Jul 31, 2008 15:18:40

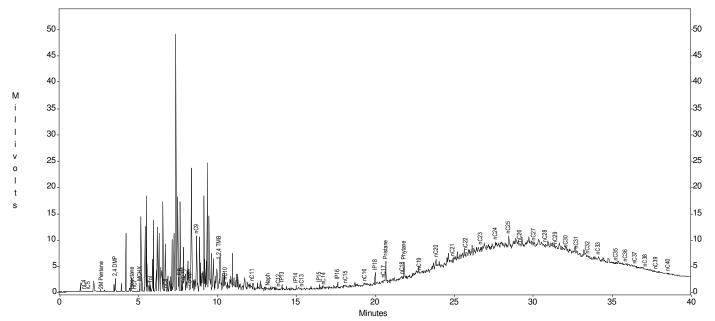
c:\ezchrom\chrom\08134\n-116 -- Channel A

Peak	Area	Height
nC4	24	1
iC5	203	
nC5	63	
MTBE	0	
2M Pentan		92
nC6	142	
olefin a	142	
	0	
olefin b		
olefin c	62	
2,4 DMP	530	
Bnz	51	1
Isooctane	3757	317
nC7	129	
MCHX	10954	902
Tol	3214	236
nC8	95	5
EB	678	
m/p-xyl	405	
o-xyl	858	
nC9	5856	
1,2,4 TMB	8619	334
nC10	3987	130
nC11	8664	549
Naph	7554	359
nC12	6831	306
IP13	27662	1498
IP14	32887	1893
nC13	9414	319
IP15	69957	3363
nC14	55327	
IP16	59594	
nC15	33902	
nC16	7528	
IP18	43536	
nC17	15083	
Pristane	61927	
nC18	7827	
Phytane	36350	
nC19	1726	
nC20	11339	
nC2U nC21	1339	66
nC22	2242	
nC23	1187	38
nC24	946	
nC25	3080	
nC26	1353	
nC27	442	21
nC28	379	
nC29	282	12
nC30	35	6
nC31	111	6
nC32	281	9
nC33	282	10
nC34	166	8
nC35	27	2
nC36	176	5
nC37	109	
nC38	116	
nC39	90	3
nC40	5.5	3

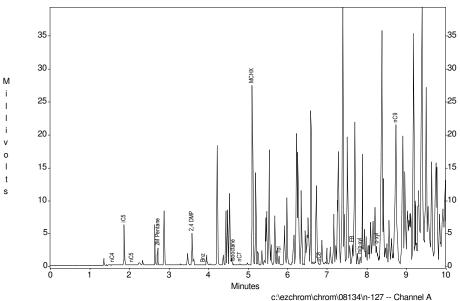

Channel A Results



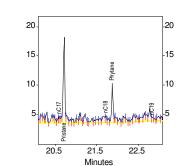

Sample ID : N-125

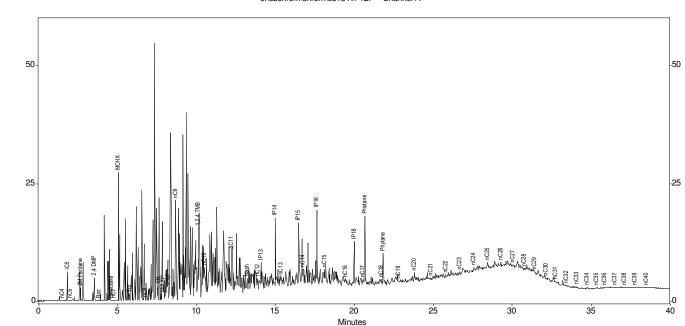

Acquired : Jul 31, 2008 09:41:17

c:\ezchrom\chrom\08134\n-125 -- Channel A

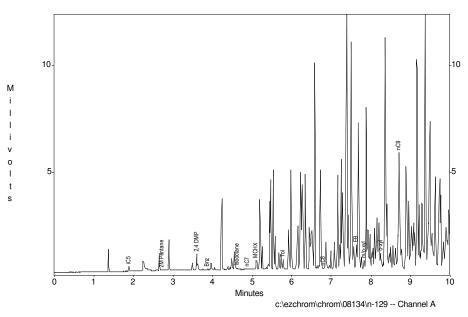

Peak	Area	Height
nC4	47	2
iC5	72	6
nC5	0	
MTBE	0	
2M Pentane	53	2
nC6	0	
olefin a	0	
olefin b	0	
olefin c	0	
2,4 DMP	2577	238
Bnz	0	
Isooctane	4 4	2
nC7	23	
MCHX	1879	
Tol	1507	
nC8	120	
EB	3613	
m/p-xyl	1348	
o-xyl	205	
nC9	20447	
1,2,4 TMB	13310	
nC10	6239	
nC11	2903	
Naph	1086	
nC12	432	
IP13	1890	
IP14	1363	
nC13	531	20
IP15	1322	
nC14	663	
IP16	3054	
nC15	1387	
nC16	738	
IP18	5649	
nC17	1339	
Pristane	9295	
nC18	1327	
Phytane	7858	
nC19	1333	
nC20	7370	
nC21	2465	
nC22	3395	
nC23	1679	
nC24	4216	
nC25 nC26	10649 1169	
nC27 nC28	1381 902	68: 39:
nC29 nC30	998 70	
nC30 nC31	2175	
	794	
nC32 nC33	1238	
nC33 nC34	1238	
nC35	228	
nC36	338	
nC37	314	
nC38 nC39	142 96	
nC39 nC40	96	
NC4U	85	4

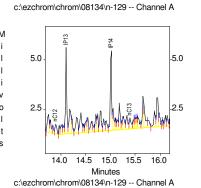

Sunoco Philadelphia Refinery - AOI 8 SCR

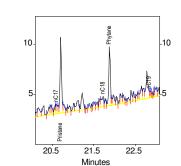

Sample ID : N-127

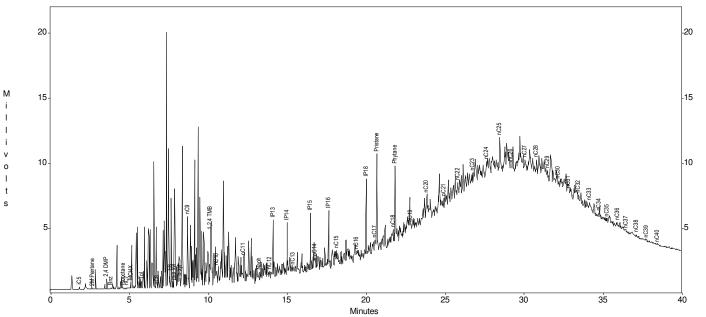

Acquired : Jul 31, 2008 11:29:45

c:\ezchrom\chrom\08134\n-127 -- Channel A

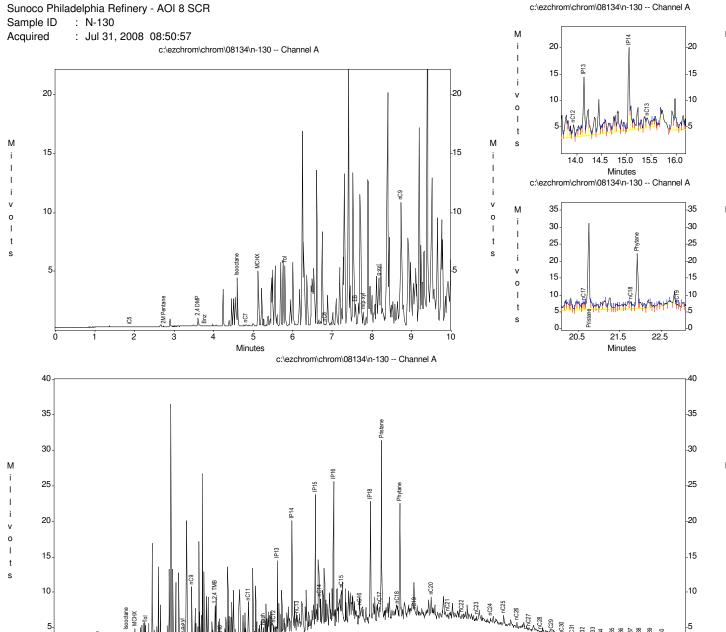

Peak	Area	Height
nC4	17	19
iC5	4910	6189
nC5	84	56
MTBE	0	0
2M Pentane	2592	2549
nC6	0	0
olefin a	0	0
olefin b	0	0
olefin c	0	0
2,4 DMP	5025	4777
Bnz	7.5	41
Isooctane	113	67
nC7	96	72
MCHX	33032	27162
Tol	2092	1325
nC8	59	52
EB	4401	3021
m/p-xyl	1642	1134
o-xyl	3858	
nC9	51916	21180
1,2,4 TMB	25429	14507
nC10	23403	6181
nC11	15784	9213
Naph	5722	2876
nC12	8124	2743
IP13	14502	6235
IP14	27677	15257
nC13	9689	2541
IP15	24550	13698
nC14	8141	3810
IP16 nC15	33304 7509	15891 3278
nC16	1761	1194
IP18	21967	9405
nC17	2647	1123
Pristane	35352	14653
nC18	2594	1163
Phytane	15046	6635
nC19	1147	583
nC20	6929	1967
nC21	1326	451
nC22	1356	447
nC23	1331	526
nC24	2317	776
nC25	7779	1337
nC26	2200	872
nC27	809	415
nC28	1713	563
nC29	905	477
nC30	140	88
nC31	185	4 4
nC32	53	21
nC33	330	147
nC34	1550	311
nC35	5.5	52
nC36	198	66
nC37	86	41
nC38	87	30
nC39	32	41
nC40	64	34




Sample ID : N-129


Acquired : Jul 31, 2008 16:09:46

c:\ezchrom\chrom\08134\n-129 -- Channel A


Peak	Area	Height
nC4	0	0
iC5	250	209
nC5	0	0
MTBE	0	0
2M Pentane	40	
nC6	0	
olefin a	0	
olefin b	0	0
olefin c	0	0
2,4 DMP	831	730
Bnz	41	26
Isooctane	178	
nC7	50	
MCHX	680	
Tol	700	
nC8	106	
EB	1613	
	706	
m/p-xyl	1606	
o-xyl nC9	11446	
	6591	
1,2,4 TMB		
nC10	5000 3476	
nC11		
Naph	1980	
nC12	1194	
IP13	7380	
IP14	6374	
nC13	1634	583
IP15	7102	4500
nC14	1776	956
IP16	9984	
nC15	3719	
nC16	1849	
IP18	13462	5994
nC17	2353	1001
Pristane	17045	7517
nC18	3993	1090
Phytane	14275	5857
nC19	835	668
nC20	7842	
nC21	1965	770
nC22	2875	
nC23	2499	
nC24	3370	
nC25	11460	
nC26	2233	
nC27	1884	723
nC28	3158	1007
nC29	1503	540
nC30	340	
nC31	180	
nC32	134	181
nC33	1200	418
nC34	50	125
nC35	232	150
nC36	466	212
nC37	72	0
nC38	150	92
nC39	69	31

121

nC40

Channel A Results

Torkelson Geochemistry, Inc. Channel A Results c:\ezchrom\chrom\08134\n-130 -- Channel A

20

Minutes

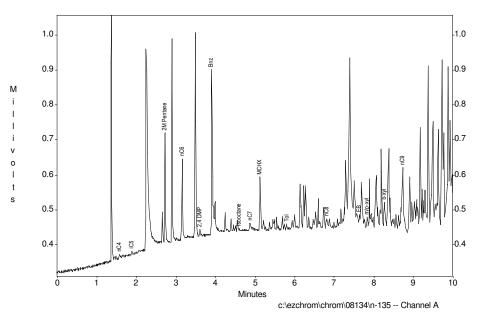
25

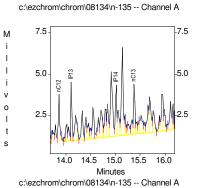
30

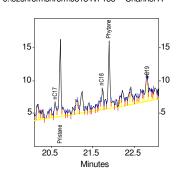
15

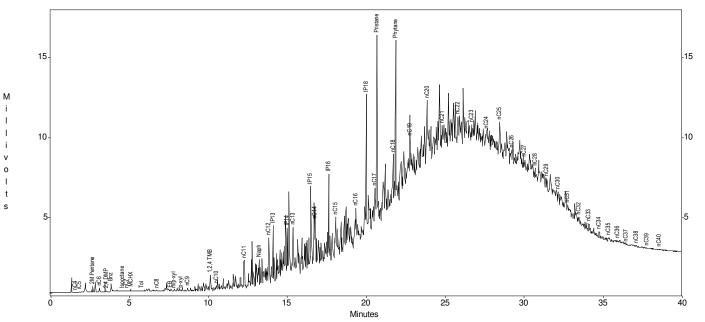
Peak	Area	Height
nC4	0	0
LC5	21	24
nC5	0	0
ITBE	0	0
2M Pentane	20	16
nC6	0	0
olefin a	0	0
olefin b	0	0
olefin c	0	0
2,4 DMP	745	673
Bnz	101	33
Isooctane	4886	4099
nC7 MCHX	133 5987	102 4646
Tol	6686	5092
1C8	151	115
EB	2496	1799
n/p-xyl	1741	1158
-xyl	7722	4000
nC9	22010	10445
,2,4 TMB	11786	7315
nC10	8611	2412
nC11	10853	6609
Naph	3337	2083
nC12	5473	2392
IP13	21152	11274
IP14	26304	15793
nC13	5854	1915
IP15	34853	19196
nC14	9002	4341
IP16	44924	20594
nC15	13951	5179
nC16 IP18	3292 40549	2434 17120
1P18 1C17	5048	2220
Pristane	68880	25557
nC18	4922	1996
Phytane	38404	16319
C19	363	193
nC20	11336	2984
nC21	954	615
nC22	1280	770
nC23	2101	831
nC24	2145	762
nC25	6705	1339
nC26	1532	721
1C27	731	280
1C28	562	215
C29	569	227
nC30	353	141
C31	54	32
C32 C33	45 373	47 154
	373 77	154 94
1C34 1C35	102	71
1C35 1C36	160	71
1C36 1C37	100	42
	125	25
1C38	36	28
nC38 nC39	36	

___0 40

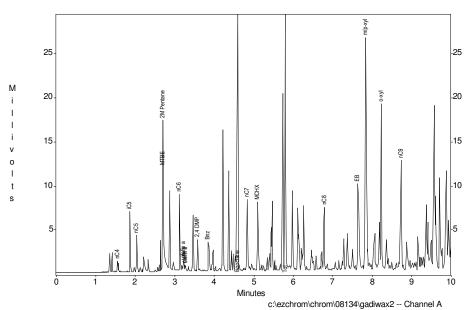

35

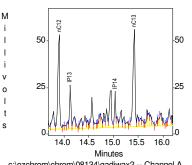



Sample ID : N-135

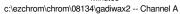

Acquired : Jul 31, 2008 10:35:35

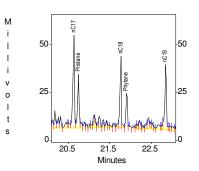
c:\ezchrom\chrom\08134\n-135 -- Channel A

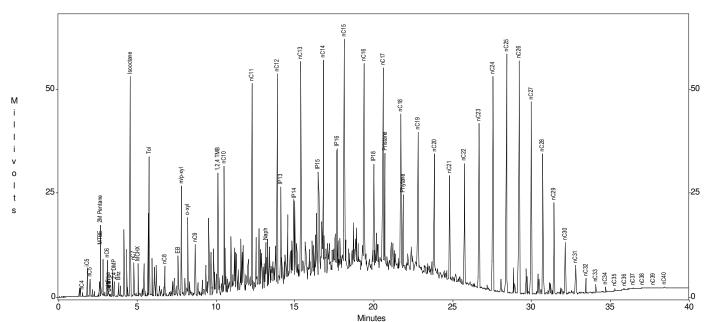



Peak	Area	Height
nC4	21	11
iC5	15	11
nC5	0	0
MTBE	0	0
2M Pentane	404	312
nC6	338	232
olefin a	0	0
olefin b	0	0
olefin c	0	0
2,4 DMP	29	19
Bnz	1035	472
Isooctane	10	9
nC7	43	20
MCHX	218	151
Tol	26	16
nC8	81	31
EB	78	4 6
m/p-xyl	90	40
o-xyl	234	8 4
nC9	622	184
1,2,4 TMB	2108	964
nC10	716	322
nC11	3298	1712
Naph	3965	1567
nC12	5283	2733
IP13	6040	3539
IP14	4922	3110
nC13	5957	3018
IP15	12047	5182
nC14	5226	2861
IP16	11626	5427
nC15	6778	2541
nC16	4795	2342
IP18	20954	8867
nC17	8105	2385
Pristane	31107	11857
nC18	8680	3296
Phytane	25947	10264
nC19	4190	3021
nC20	14032	4097
nC21	4009	1395
nC22	4643	1979
nC23	5304	1541
nC24	4841	1156
nC25	10876	2105
nC26	2637	965
nC27	2851	842
nC28	1489	720
nC29	1881	719
nC30	1037	497
nC31	360	208
nC32	753	326
nC33	801	386
nC34	589	160
nC35	101	67
nC36	367	110
nC37	63	46
nC38	114	42
nC39	48	30
~C40		2.2

Sunoco Philadelphia Refinery - AOI 8 SCR


: Gas/Dies/Wax std Sample ID Acquired : Jul 31, 2008 13:18:39


c:\ezchrom\chrom\08134\gadiwax2 -- Channel A



c:\ezchrom\chrom\08134\gadiwax2 -- Channel A

Peak	Area	Height
nC4	844	119
iC5	5237	680
nC5	3556	417
MTBE	7110	1174
2M Pentane	19226	1701
nC6	8381	856
olefin a	1201	109
olefin b	589	52
olefin c	640	52
2,4 DMP	3628	358
Bnz	4616	320
Isooctane	67342	5274
nC7	10732	805
MCHX	9891	778
Tol	46099	3354
nC8	8895	711
EB	15060	978
m/p-xyl	52242	2635
o-xyl	28562	1884
nC9	19381	1238
1,2,4 TMB	54430	2915
nC10	50580	3069
nC11	125205	4977
Naph	26419	1083
nC12	111988	5086
IP13	42314	2344
IP14	33440	1953
nC13	148615	5246
IP15	46608	2486
nC14	138215	5145
IP16	61655	2915
nC15 nC16	144672 129943	5554 4976
IP18	61028	2539
nC17	120104	4841
Pristane	72271	2795
nC18	88772	3700
Phytane	36788	1727
nC19	85744	3384
nC20	70856	2969
nC21	52259	2545
nC22	66568	2914
nC23	103851	3961
nC24	156908	5156
nC25	187403	5728
nC26	193674	5583
nC27	149116	4625
nC28	94360	3377
nC29	52340	2203
nC30	25143	1228
nC31	11594	643
nC32	6824	351
nC33	3654	205
nC34	2023	109
nC35	1190	60
nC36	665	32
nC37	376	16
nC38	277	10
nC39	221	6

142

45

	Torkelson Geochemistry, Inc.						
			Physical	Properties M	leasurements		
Sample	TGI Job	Density (gm/ml)	Viscosity (centipoise)	Surface Tension Air/Water (dynes/cm)	Interfacial Tension NAPL/Water (dynes/cm)	Surface Tension Air/NAPL (dynes/cm)	Temperature of Measurements
N-107	08134	0.9033	NA	NA	NA	NA	60F
N-113	08134	0.9167	NA	NA	NA	NA	60F
N-116	08134	0.8985	NA	NA	NA	NA	60F
N-125	08134	0.8922	NA	NA	NA	NA	60F
N-127	08134	0.8785	NA	NA	NA	NA	60F
N-129	08134	0.9017	NA	NA	NA	NA	60F
N-130	08134	0.7893	NA	NA	NA	NA	60F
N-135	08134	0.9148	NA	NA	NA	NA	60F

NA = Not Analyzed

Sunoco Refine	ery - Philadelphia					
TGI Job 08134						
Interpreta	ntion of Product Type(s), Pro	portions and V	/eathering		Similarities to Other S	Samples in this Study
Sample	Product Type(s)	Proportions	Weathering	Quite Similar to	Fairly Similar to	Somewhat Similar to
N-107	Aviation Gasoline	5	Severe	Unique		
	Middle Distillate	70	Extreme			
	Heavier Material	25	Extreme			
N-113	Unknown Light Mateial	10	Extreme	Unique		
	? Middle Distillate	?	Extreme	<u> </u>		
	Heavier Material	90	Extreme			
N-116	Unknown Light Mateial	2	Severe	Unique		
	Middle Distillate	79	Extreme			
	Heavier Material	19	Extreme			
N-125	Heavy Virgin Naphtha	15	Extreme	Unique		
	Heavier Material	85	Extreme			
N-127	Heavy Virgin Naphtha	20	Extreme	Unique		
	Middle Distillate	30	Extreme	'		
	Heavier Material	50	Extreme			
N-129	Heavy Virgin Naphtha	5	Extreme	Unique		
	? Middle Distillate	?	Extreme	'		
	Heavier Material	95	Extreme			
N-130	Heavy Virgin Naphtha	10	Extreme	Unique		
	? Middle Distillate	?	Extreme	'		
	Heavier Material	90	Extreme			
N-135	Unknown Light Mateial	1	Extreme	Unique		
	? Middle Distillate	?	Extreme			
	Heavier Material	99	Extreme			
	Note: Heavier material co	uld be either cru	ude oil or residu	ual oil		

van Genuchten-Mualem Model of LNAPL Distribution and Relative Permeability

Enter Data in Yellow Region

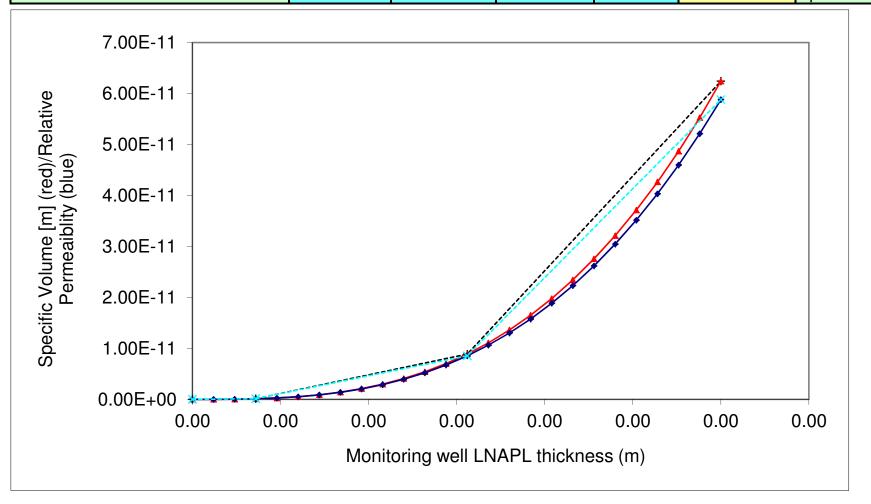
Maximum Monitoring Well		
LNAPL Thickne	ess (meters)	
b _o =	0.003	

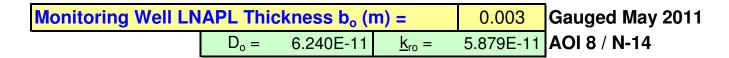
Gauged May 2011 **AOI 8** / **N-14**

0.010 feet

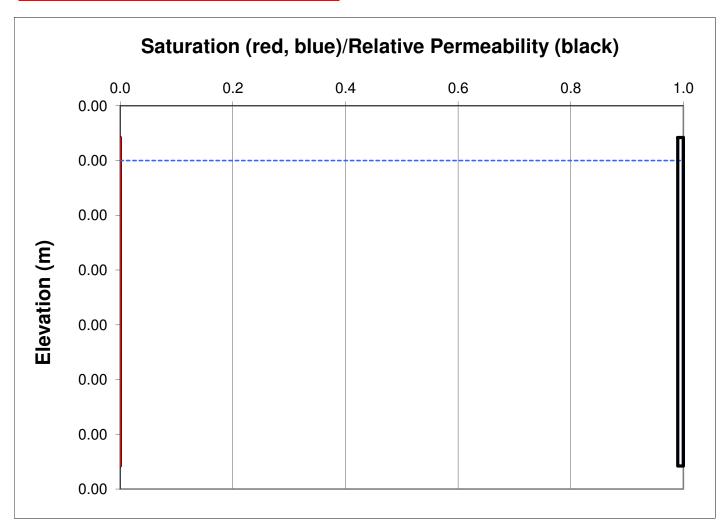
Soil Characteris	stic	<u>SP</u>
n =	0.426	porosity
N =	1.980	van Genuchten "N"
α =	1.350	van Genuchten "α" [m ⁻¹]
$S_{wr} =$	0.321	irreducible water saturation
S _{orv} =	0.000	residual LNAPL saturation (saturated)
$S_{ors} =$	0.000	residual LNAPL saturation (vadose)

Calculated Parameters		
M =	0.495	van Genuchten "M"
α _{ao} =	2.542	air/LNAPL "α"
$\alpha_{ow} =$	0.204	LNAPL/water "α"
z _{ao} =	0.000	elevation of air-LNAPL interface
z _{ow} =	-0.003	elevation of LNAPL-water interface
z _{max} =	0.000	maximum free-product elevation
λ =	0.738	pore-size distribution index
Ψ_{b} =	0.461	B-C displacement pressure head [m]


Press Ctrl+Shift+S to calculate sheet


Fluid Characteristics:		
ρ _o =	0.930	
$\sigma_{aw} =$	65.000	
$\sigma_{ao} =$	32.100	
σ.,, =	30 200	

Residual Oil


LNAPL density (gm/cc) air/water (dynes/cm) air/oil (dynes/cm) oil/water (dynes/cm)

Data for curve-fitting segments			Press Ctrl+Shift+S to calculate sheet					
b _o	D _o	<u>k</u> ro	α	β	ξ	η	Gauged May	2011
0.000	0.000	0.000					AOI 8 / N-14	
0.000	0.000	0.000	0.0000	0.000000	0.0000	0.000000		
0.002	0.000	0.000	0.0003	0.000000	0.0003	0.000000	0.001	Eps-Do
0.003	0.000	0.000	0.0013	0.000000	0.0013	0.000000	0.001	Eps-kro

Press Ctrl+Shift+S to calculate sheet

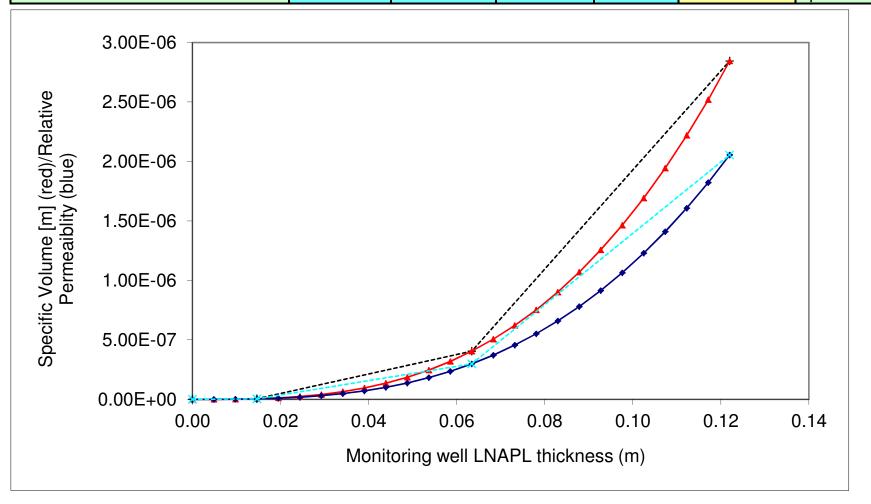
van Genuchten-Mualem Model of LNAPL Distribution and Relative Permeability

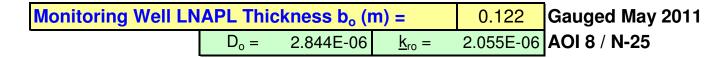
Enter Data in Yellow Region

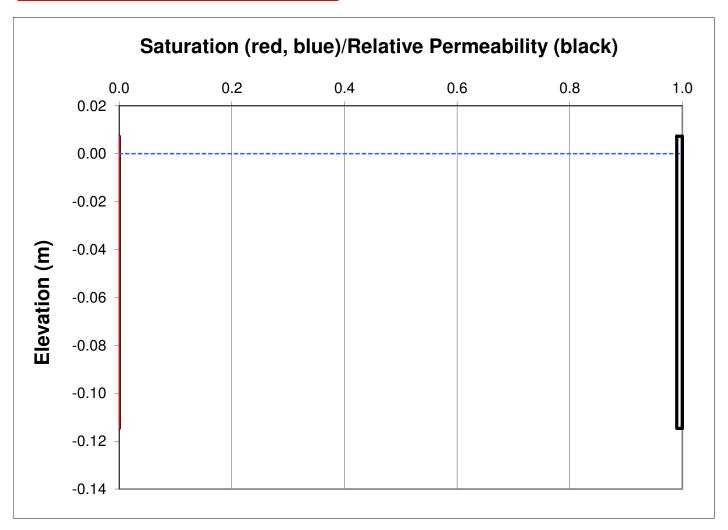
Maximum Moni	
LNAPL Thickne	ess (meters)
b _o =	0.122

Gauged May 2011

AOI 8 / N-250.400 feet


Soil Characteris	tic	<u>SP</u>
n =	0.426	porosity
N =	1.980	van Genuchten "N"
α =	1.350	van Genuchten "α" [m ⁻¹]
S _{wr} =	0.321	irreducible water saturation
S _{orv} =	0.000	residual LNAPL saturation (saturated)
S _{ors} =	0.000	residual LNAPL saturation (vadose)


Calculated Pa	rameters]
M =	0.495	van Genuchten "M"
$\alpha_{ao} =$	2.570	air/LNAPL "α"
$\alpha_{ow} =$	0.174	LNAPL/water "α"
z _{ao} =	0.007	elevation of air-LNAPL interface
$z_{ow} =$	-0.115	elevation of LNAPL-water interface
z _{max} =	0.007	maximum free-product elevation
λ =	0.738	pore-size distribution index
Ψ_{b} =	0.461	B-C displacement pressure head [m]


Press Ctrl+Shift+S to calculate sheet

Fluid Character	Middle Distillate	
ρ _o =	0.940	LNAPL density (gm/cc)
$\sigma_{aw} =$	65.000	air/water (dynes/cm)
$\sigma_{ao} =$	32.100	air/oil (dynes/cm)
$\sigma_{ow} =$	30.200	oil/water (dynes/cm)

Data for cu	urve-fitting se	gments		Press Ctrl+Shift+S to calculate sheet				
b _o	D _o	<u>k</u> ro	α	β	ξ	η	Gauged May	2011
0.000	0.000	0.000					AOI 8 / N-25	
0.015	0.000	0.000	0.0000	0.000000	0.0000	0.000000		
0.063	0.000	0.000	0.0140	0.000008	0.0140	0.000006	0.001	Eps-Do
0.122	0.000	0.000	0.0537	0.000042	0.0535	0.000030	0.001	Eps-kro

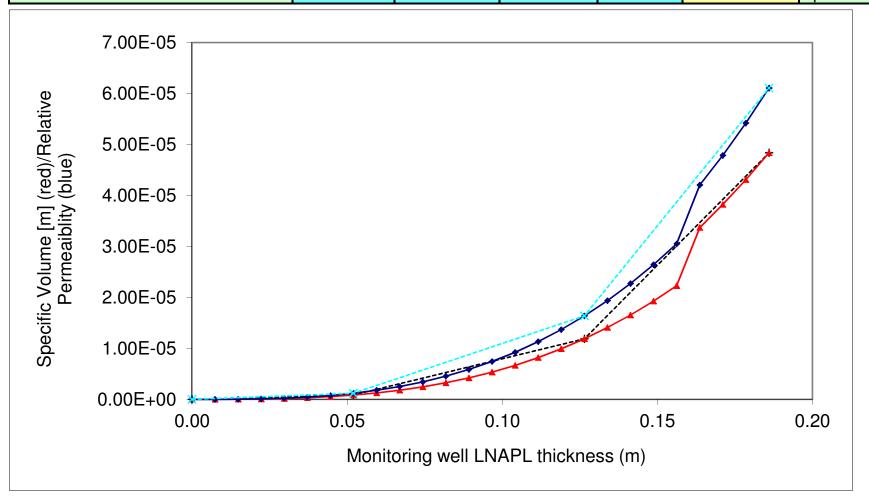
Enter Data in Yellow Region

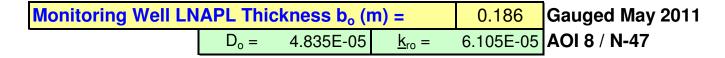
Maximum Monito	oring Well
LNAPL Thicknes	s (meters)
b _o =	0.186

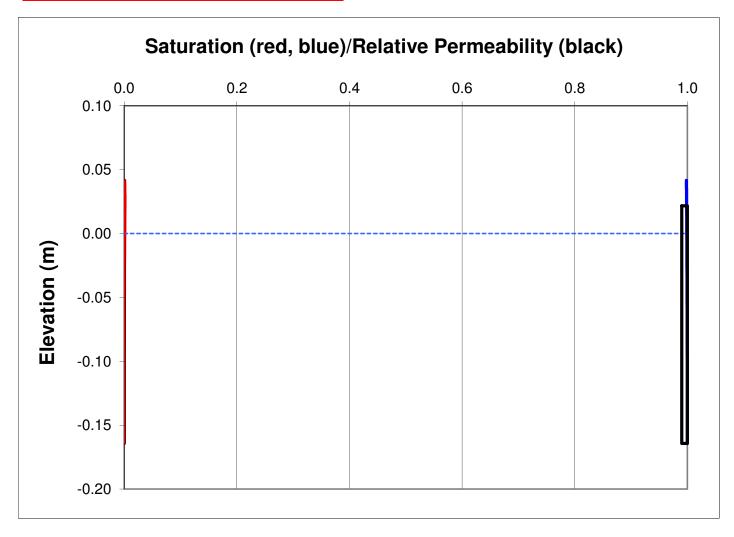
Gauged May 2011 **AOI 8** / **N-47**

0.610 feet

Soil Characterist	ic	<u>SP</u>
n =	0.426	porosity
N =	1.980	van Genuchten "N"
α =	1.350	van Genuchten "α" [m ⁻¹]
S _{wr} =	0.321	irreducible water saturation
S _{orv} =	0.000	residual LNAPL saturation (saturated)
S _{ors} =	0.000	residual LNAPL saturation (vadose)


Calculated Pa	rameters	
M =	0.495	van Genuchten "M"
$\alpha_{ao} =$	2.415	air/LNAPL "α"
$\alpha_{ow} =$	0.339	LNAPL/water "α"
z _{ao} =	0.022	elevation of air-LNAPL interface
$z_{ow} =$	-0.164	elevation of LNAPL-water interface
z _{max} =	0.042	maximum free-product elevation
λ =	0.738	pore-size distribution index
Ψ_{b} =	0.461	B-C displacement pressure head [m]


Press Ctrl+Shift+S to calculate sheet


Fluid Characteristics:				
ρ _o =	0.883	LN		
$\sigma_{aw} =$	65.000	air		
$\sigma_{ao} =$	32.100	air		
$\sigma_{ow} =$	30.200	oil		

Residual Oil

Data for curve-fitting segments				Press Ctrl+Shift+S to calculate sheet				
b _o	D _o	<u>k</u> ro	α	β	ξ	η	Gauged May	2011
0.000	0.000E+00	0.000E+00				AOI 8 / N-47		
0.052	8.444E-07	1.196E-06	0.0000	0.000016	0.0000	0.000023		
0.126	1.187E-05	1.637E-05	0.0463	0.000148	0.0461	0.000204	0.001	Eps-Do
0.186	4.835E-05	6.105E-05	0.1071	0.000613	0.1047	0.000751	0.001	Eps-kro

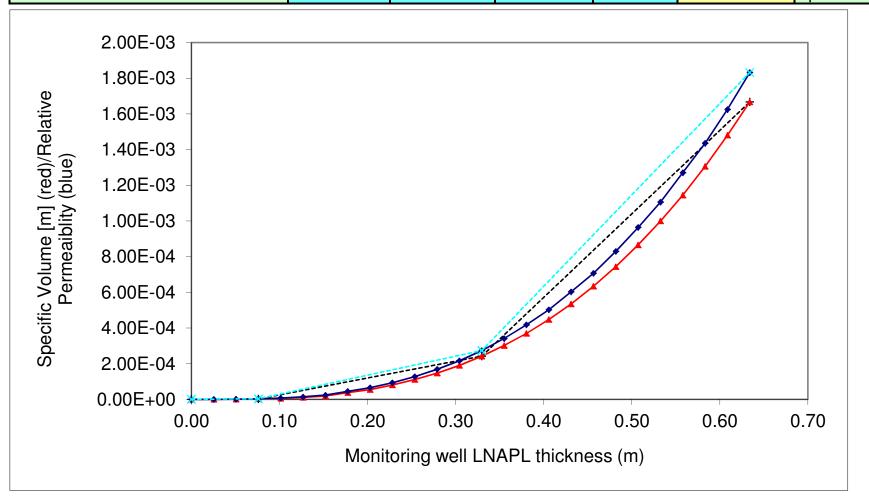
Enter Data in Yellow Region

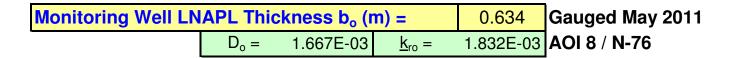
Maximum Monit	toring Well
LNAPL Thickness	ss (meters)
b _o =	0.634

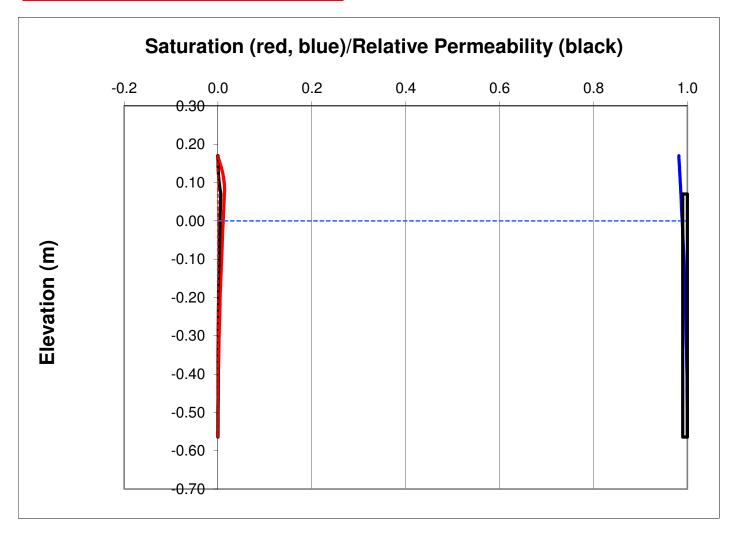
Gauged May 2011 **AOI 8** / **N-76**

2.080 feet

Soil Characteri	stic	<u>SP</u>
n =	0.426	porosity
N =	1.980	van Genuchten "N"
α =	1.350	van Genuchten "α" [m ⁻¹]
S _{wr} =	0.321	irreducible water saturation
S _{orv} =	0.000	residual LNAPL saturation (saturated)
S _{ors} =	0.000	residual LNAPL saturation (vadose)


Calculated Pa	arameters	
M =	0.495	van Genuchten "M"
$\alpha_{ao} =$	2.433	air/LNAPL "α"
$\alpha_{ow} =$	0.320	LNAPL/water "α"
z _{ao} =	0.070	elevation of air-LNAPL interface
z _{ow} =	-0.564	elevation of LNAPL-water interface
z _{max} =	0.170	maximum free-product elevation
λ =	0.738	pore-size distribution index
Ψ_{b} =	0.461	B-C displacement pressure head [m]


Press Ctrl+Shift+S to calculate sheet


Fluid Characte	Resi	
ρ _o =	0.890	LNAPL
$\sigma_{aw} =$	65.000	air/wate
$\sigma_{ao} =$	32.100	air/oil (d
$\sigma_{ow} =$	30.200	oil/wate

Residual Oil

Data for co	urve-fitting se	egments		Press Ctrl+Shift+S to calculate sheet					
b _o	D _o	<u>k</u> ro	α	β	ξ	η	Gauged May	2011	
0.000	0.000	0.000					AOI 8 / N-76		
0.076	0.000	0.000	0.0000	0.000031	0.0000	0.000040			
0.330	0.000	0.000	0.0736	0.000945	0.0732	0.001067	0.01	Eps-Do	
0.634	0.002	0.002	0.2780	0.004683	0.2762	0.005120	0.01	Eps-kro	

Enter Data in Yellow Region

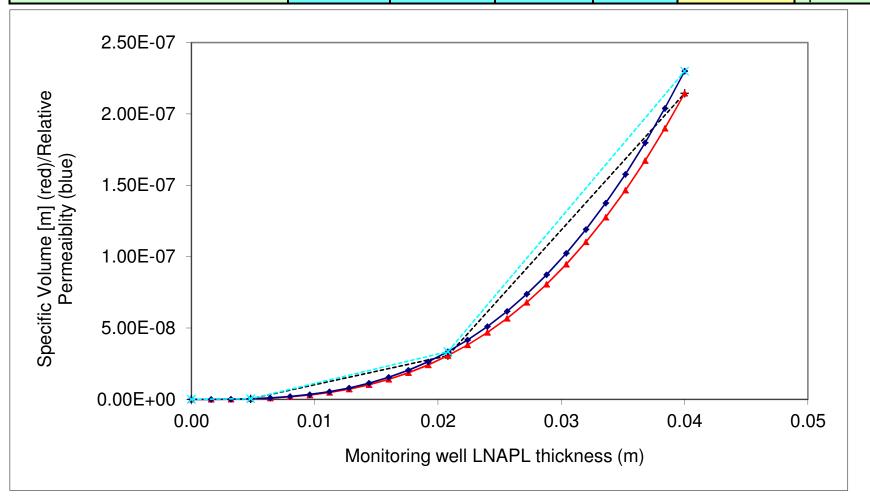
Maximum Moni	toring Well
LNAPL Thickne	ss (meters)
b _o =	0.040

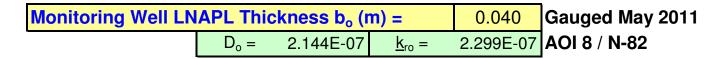
Gauged May 2011

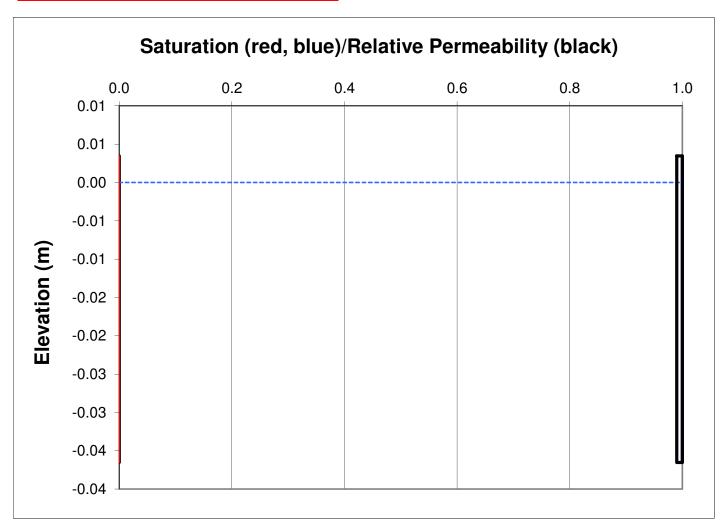
AOI 8 / N-82 0.130 feet

Soil Characterist	ic	<u>SP</u>
n =	0.426	porosity
N =	1.980	van Genuchten "N"
α =	1.350	van Genuchten "α" [m ⁻¹]
$S_{wr} =$	0.321	irreducible water saturation
S _{orv} =	0.000	residual LNAPL saturation (saturated)
S _{ors} =	0.000	residual LNAPL saturation (vadose)

Calculated Par	rameters	
M =	0.495	van Genuchten "M"
$\alpha_{ao} =$	2.496	air/LNAPL "α"
$\alpha_{ow} =$	0.252	LNAPL/water "α"
z _{ao} =	0.003	elevation of air-LNAPL interface
z _{ow} =	-0.037	elevation of LNAPL-water interface
z _{max} =	0.003	maximum free-product elevation
λ =	0.738	pore-size distribution index
Ψ_{b} =	0.461	B-C displacement pressure head [m]


Press Ctrl+Shift+S to calculate sheet


Fluid Character	Residual C	
ρ _o =	0.913	LNAPL densit
$\sigma_{aw} =$	65.000	air/water (dyn
$\sigma_{ao} =$	32.100	air/oil (dynes/o
$\sigma_{ow} =$	30.200	oil/water (dyne


Oil ity (gm/cc) nes/cm) /cm)

nes/cm)

Data for curve-fitting segments				Press Ctrl+	Shift+S to c	alculate s	<u>heet</u>	
b _o	D _o	<u>k</u> ro	α	β	ξ	η	Gauged May	2011
0.000	0.000	0.000					AOI 8 / N-82	
0.005	0.000	0.000	0.0000	0.000000	0.0000	0.000000		
0.021	0.000	0.000	0.0046	0.000002	0.0046	0.000002	0.001	Eps-Do
0.040	0.000	0.000	0.0176	0.000010	0.0175	0.000010	0.001	Eps-kro

Enter Data in Yellow Region

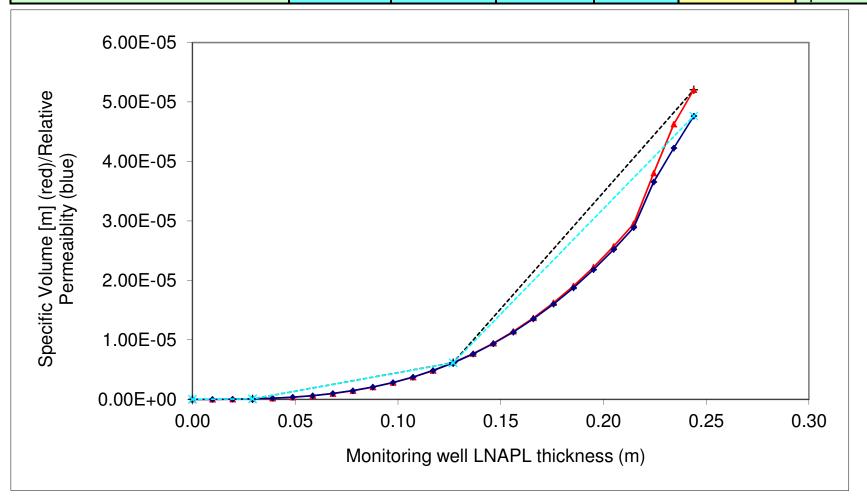
Maximum Moni	toring Well
LNAPL Thickne	ess (meters)
b _o =	0.244

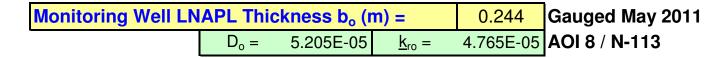
Gauged May 2011

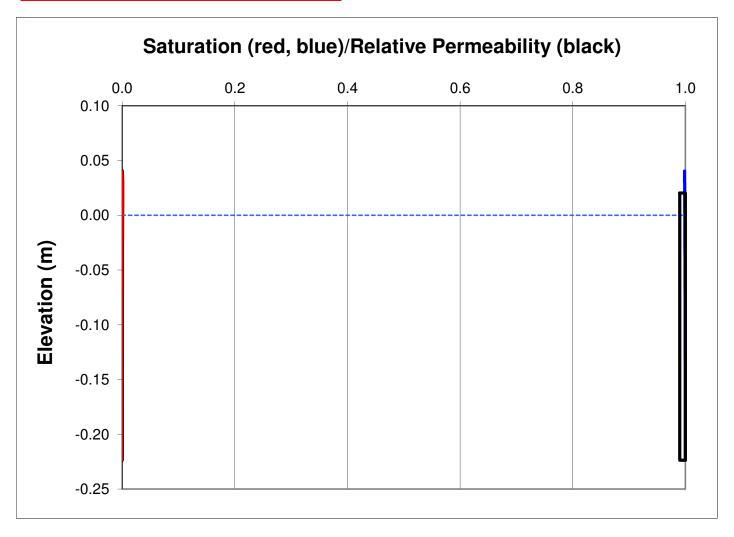
AOI 8 / N-113 0.800 feet

Soil Characteris	stic	<u>SP</u>
n =	0.426	porosity
N =	1.980	van Genuchten "N"
α =	1.350	van Genuchten "α" [m ⁻¹]
S _{wr} =	0.321	irreducible water saturation
S _{orv} =	0.000	residual LNAPL saturation (saturated)
S _{ors} =	0.000	residual LNAPL saturation (vadose)

Calculated Pa	arameters	
M =	0.495	van Genuchten "M"
$\alpha_{ao} =$	2.506	air/LNAPL "α"
$\alpha_{ow} =$	0.242	LNAPL/water "α"
z _{ao} =	0.020	elevation of air-LNAPL interface
z _{ow} =	-0.224	elevation of LNAPL-water interface
z _{max} =	0.040	maximum free-product elevation
λ =	0.738	pore-size distribution index
$\Psi_{b} =$	0.461	B-C displacement pressure head [m]


Press Ctrl+Shift+S to calculate sheet


Fluid Character	Residual	
ρ _o =	0.917	LNAPL dens
$\sigma_{aw} =$	65.000	air/water (dy
$\sigma_{ao} =$	32.100	air/oil (dynes
$\sigma_{ow} =$	30.200	oil/water (dy


l Oil

sity (gm/cc) ynes/cm) es/cm) /nes/cm)

Data for cu	urve-fitting se	gments		Press Ctrl+	Shift+S to d	calculate s	<u>heet</u>	
b _o	D _o	<u>k</u> ro	α	β	ξ	η	Gauged May	2011
0.000	0.000	0.000					AOI 8 / N-113	3
0.029	0.000	0.000	0.0000	0.000003	0.0000	0.000003		
0.127	0.000	0.000	0.0280	0.000062	0.0280	0.000062	0.001	Eps-Do
0.244	0.000	0.000	0.1112	0.000392	0.1096	0.000354	0.001	Eps-kro

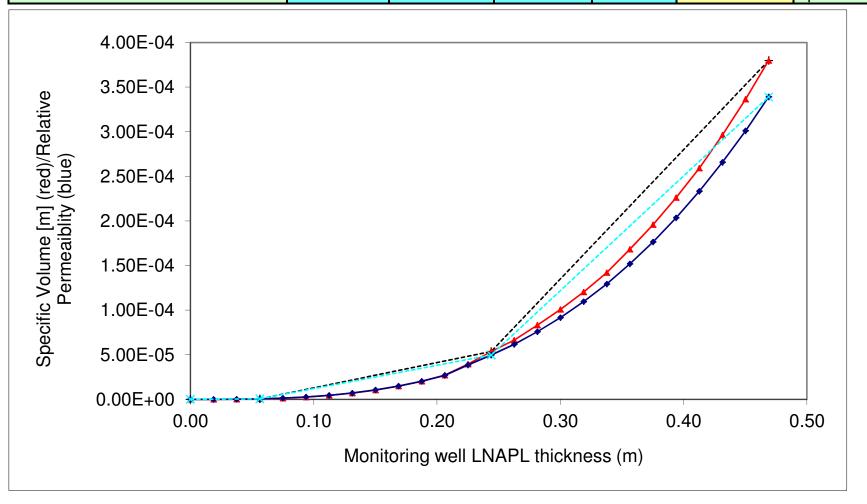
Enter Data in Yellow Region

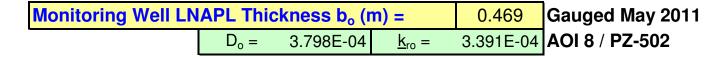
Maximum Monito	
LNAPL Thickness	s (meters)
b _o =	0.469

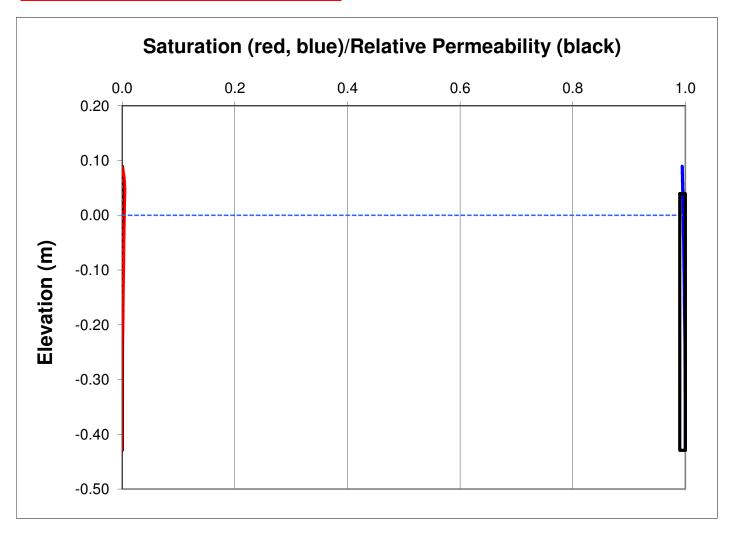
Gauged May 2011

AOI 8 / PZ-502 1.540 feet

Soil Characteristic		<u>SP</u>
n =	0.426	porosity
N =	1.980	van Genuchten "N"
α =	1.350	van Genuchten "α" [m ⁻¹]
S _{wr} =	0.321	irreducible water saturation
S _{orv} =	0.000	residual LNAPL saturation (saturated)
S _{ors} =	0.000	residual LNAPL saturation (vadose)


Calculated Pa	arameters	
M =	0.495	van Genuchten "M"
$\alpha_{ao} =$	2.503	air/LNAPL "α"
$\alpha_{ow} =$	0.246	LNAPL/water "α"
z _{ao} =	0.040	elevation of air-LNAPL interface
z _{ow} =	-0.429	elevation of LNAPL-water interface
z _{max} =	0.090	maximum free-product elevation
λ =	0.738	pore-size distribution index
Ψ_{b} =	0.461	B-C displacement pressure head [m


Press Ctrl+Shift+S to calculate sheet


Fluid Characteristics:			
ρ _o =	0.916	LN	
$\sigma_{aw} =$	65.000	air/	
$\sigma_{ao} =$	32.100	air/	
$\sigma_{ow} =$	30.200	oil/	

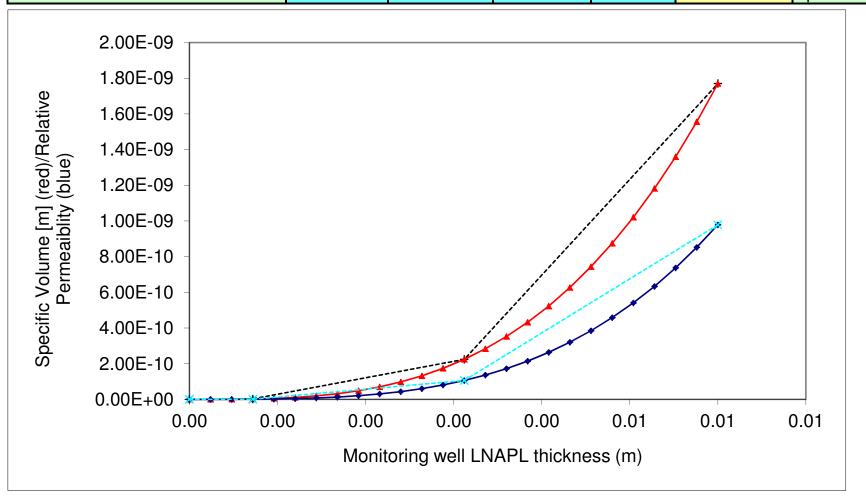
Residual Oil

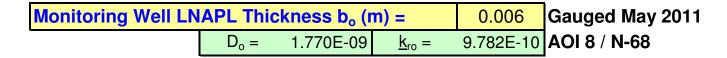
Data for cu	urve-fitting se	gments		Press Ctrl+Shift+S to calculate sheet				
b _o	D _o	<u>k</u> ro	α β ξ η Gau g					2011
0.000	0.000	0.000					AOI 8 / PZ-502	
0.056	0.000	0.000	0.0000	0.000010	0.0000	0.000010		
0.244	0.000	0.000	0.0543	0.000282	0.0541	0.000262	0.001	Eps-Do
0.469	0.000	0.000	0.2069	0.001449	0.2052	0.001285	0.001	Eps-kro

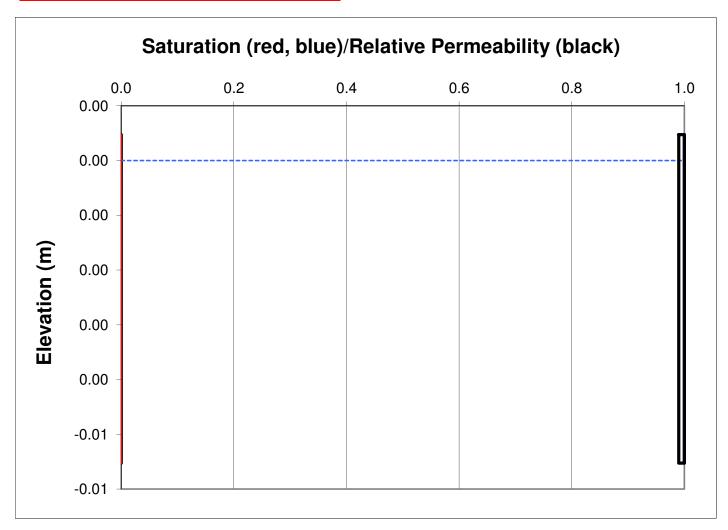
Enter Data in Yellow Region

Maximum Monitor	ring Well
LNAPL Thickness	(meters)
b _o =	0.006

Gauged May 2011


AOI 8 / N-680.020 feet


Soil Characteris	stic	<u>SM</u>
n =	0.428	porosity
N =	2.160	van Genuchten "N"
α =	2.750	van Genuchten "α" [m ⁻¹]
S _{wr} =	0.313	irreducible water saturation
S _{orv} =	0.000	residual LNAPL saturation (saturated)
S _{ors} =	0.000	residual LNAPL saturation (vadose)


Calculated Pa	arameters			
M = 0.537 v		van Genuchten "M"		
$\alpha_{ao} =$	6.121	air/LNAPL "α"		
$\alpha_{ow} =$	0.632	LNAPL/water "α"		
$z_{ao} = 0.000$		elevation of air-LNAPL interface		
$Z_{ow} = -0.006$		elevation of LNAPL-water interface		
z _{max} =	0.000	maximum free-product elevation		
$\lambda = 0.841$		pore-size distribution index		
$\Psi_{b} =$	0.227	B-C displacement pressure head [m]		

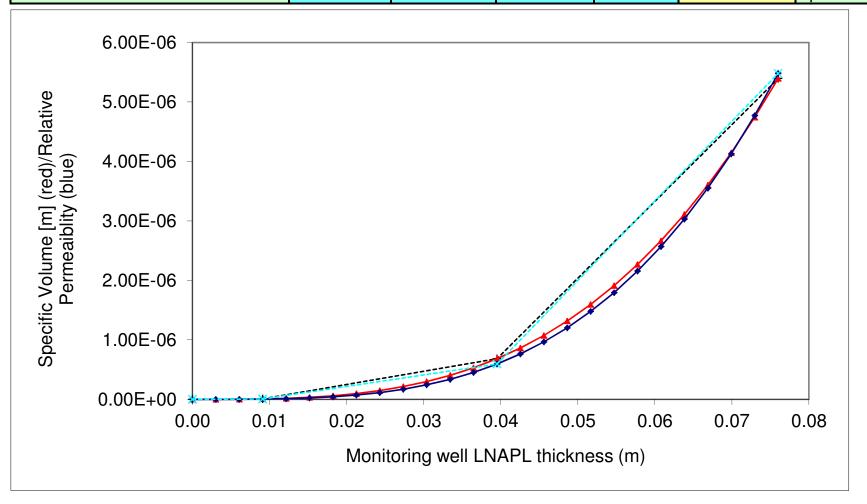
Fluid Characte	Middle Distillate	
ρ _o =	0.921	LNAPL density (gm/cc)
$\sigma_{aw} =$	65.000	air/water (dynes/cm)
$\sigma_{ao} =$	26.900	air/oil (dynes/cm)
$\sigma_{ow} =$	22.300	oil/water (dynes/cm)

Data for cu	urve-fitting se	gments		Press Ctrl+Shift+S to calculate sheet				
b _o	D _o	<u>k</u> ro	α	β	ξ	η	Gauged May 2011	2011
0.000	0.000	0.000					AOI 8 / N-68	
0.001	0.000	0.000	0.0000	0.000000	0.0000	0.000000		
0.003	0.000	0.000	0.0007	0.000000	0.0007	0.000000	0.001	Eps-Do
0.006	0.000	0.000	0.0027	0.000001	0.0028	0.000000	0.001	Eps-kro

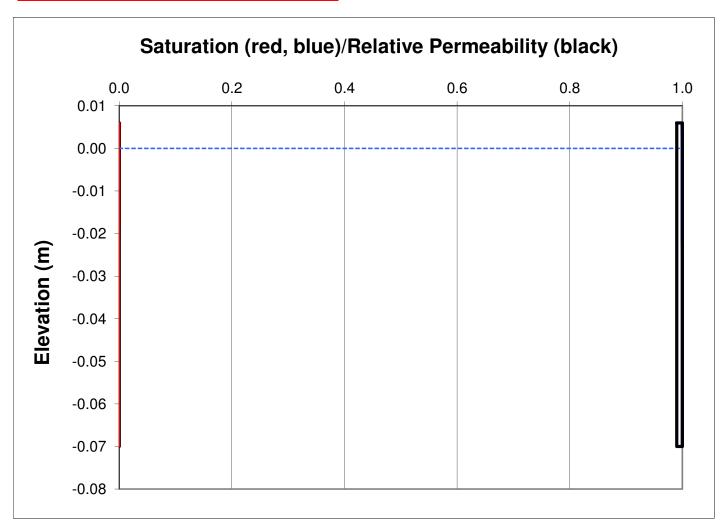
Enter Data in Yellow Region

Maximum Monitor	ing Well
LNAPL Thickness	(meters)
b _o =	0.076

Gauged May 2011


AOI 8 / N-23 0.250 feet

Soil Characteristic		<u>SM</u>
n =	0.428	porosity
N =	2.160	van Genuchten "N"
α =	2.750	van Genuchten "α" [m ⁻¹]
S _{wr} =	0.313	irreducible water saturation
S _{orv} =	0.000	residual LNAPL saturation (saturated)
S _{ors} =	0.000	residual LNAPL saturation (vadose)


Calculated P	arameters			
M =	0.537	van Genuchten "M"		
$\alpha_{ao} = 6.121$		air/LNAPL "α"		
$\alpha_{ow} = 0.632$		LNAPL/water "α"		
$Z_{ao} = 0.006$		elevation of air-LNAPL interface		
$Z_{ow} = -0.070$		elevation of LNAPL-water interface		
z _{max} =	0.006	maximum free-product elevation		
λ =	0.841	pore-size distribution index		
$\Psi_b =$	0.227	B-C displacement pressure head [m]		

Fluid Characte	Middle Distillate	
ρ _o =	0.921	LNAPL density (gm/cc)
$\sigma_{aw} =$	65.000	air/water (dynes/cm)
$\sigma_{ao} =$	26.900	air/oil (dynes/cm)
$\sigma_{ow} =$	22.300	oil/water (dynes/cm)

Data for cu	urve-fitting se	gments		Press Ctrl+Shift+S to calculate sheet				
b _o	D _o	<u>k</u> ro	α	β	ξ	η	Gauged May 2011	2011
0.000	0.000	0.000					AOI 8 / N-23	
0.009	0.000	0.000	0.0000	0.000001	0.0000	0.000000		
0.040	0.000	0.000	0.0088	0.000022	0.0089	0.000019	0.001	Eps-Do
0.076	0.000	0.000	0.0342	0.000129	0.0351	0.000134	0.001	Eps-kro

Monitoring Well LN	0.076	Gauged May 2011			
	D _o =	5.395E-06	<u>k</u> ro =	5.481E-06	AOI 8 / N-23

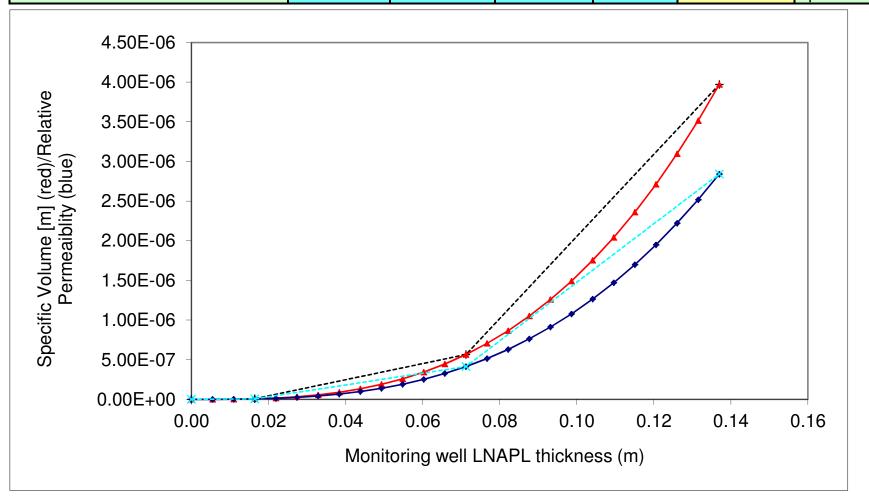
Enter Data in Yellow Region

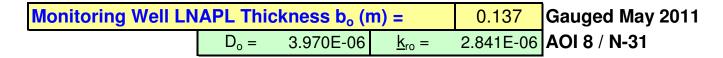
Maximum Monito	ring Well
LNAPL Thickness	(meters)
b _o =	0.137

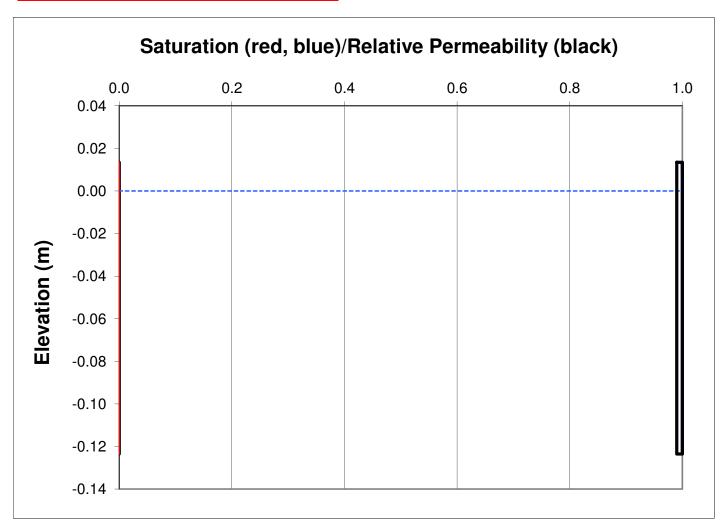
Gauged May 2011

AOI 8 / N-310.450 feet

Soil Characteris	tic	<u>SP</u>
n =	0.426	porosity
N =	1.980	van Genuchten "N"
α =	1.350	van Genuchten "α" [m ⁻¹]
S _{wr} =	0.321	irreducible water saturation
S _{orv} =	0.000	residual LNAPL saturation (saturated)
S _{ors} =	0.000	residual LNAPL saturation (vadose)


Calculated Pa	rameters	
M =	0.495	van Genuchten "M"
$\alpha_{ao} =$	3.767	air/LNAPL "α"
$\alpha_{ow} =$	0.173	LNAPL/water "α"
z _{ao} =	0.013	elevation of air-LNAPL interface
z _{ow} =	-0.124	elevation of LNAPL-water interface
z _{max} =	0.013	maximum free-product elevation
λ =	0.738	pore-size distribution index
Ψ_{b} =	0.461	B-C displacement pressure head [m]


Press Ctrl+Shift+S to calculate sheet


Fluid Characteristics:				
ρ _o =	0.902	LN		
$\sigma_{aw} =$	65.000	air		
$\sigma_{ao} =$	21.000	aiı		
$\sigma_{ow} =$	50.000	oil		

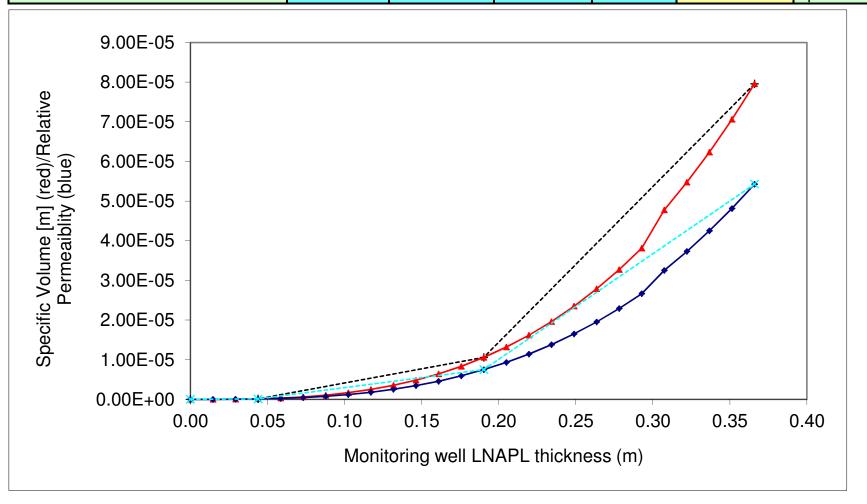
Lube Oil

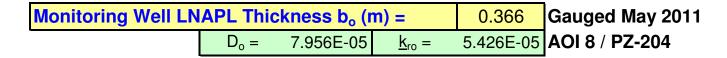
Data for cu	urve-fitting se	gments		Press Ctrl+Shift+S to calculate sheet				
b _o	D _o	<u>k</u> ro	α	β	ξ	η	Gauged May	2011
0.000	0.000	0.000					AOI 8 / N-31	
0.016	0.000	0.000	0.0000	0.000000	0.0000	0.000000		
0.071	0.000	0.000	0.0157	0.000010	0.0157	0.000007	0.001	Eps-Do
0.137	0.000	0.000	0.0603	0.000052	0.0601	0.000037	0.001	Eps-kro

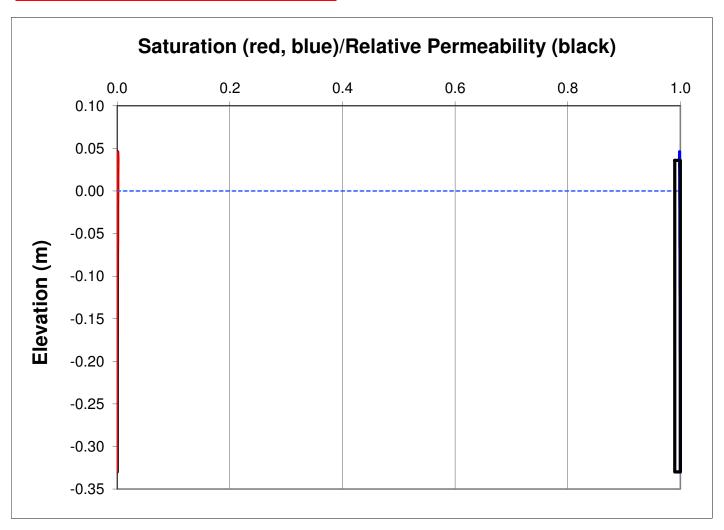
Enter Data in Yellow Region

Maximum Monito	ring Well
LNAPL Thickness	s (meters)
b _o =	0.366

Gauged May 2011


AOI 8 / PZ-204 1.200 feet


Soil Characteris	stic	<u>SP</u>
n =	0.426	porosity
N =	1.980	van Genuchten "N"
α =	1.350	van Genuchten "α" [m ⁻¹]
S _{wr} =	0.321	irreducible water saturation
S _{orv} =	0.000	residual LNAPL saturation (saturated)
S _{ors} =	0.000	residual LNAPL saturation (vadose)


Calculated Pa	arameters	
M =	0.495	van Genuchten "M"
$\alpha_{ao} =$	3.767	air/LNAPL "α"
$\alpha_{ow} =$	0.173	LNAPL/water "α"
z _{ao} =	0.036	elevation of air-LNAPL interface
z _{ow} =	-0.330	elevation of LNAPL-water interface
z _{max} =	0.046	maximum free-product elevation
λ =	0.738	pore-size distribution index
Ψ_{b} =	0.461	B-C displacement pressure head [m]

Fluid Characte	Lube Oil	
ρ _o =	0.902	LNAPL density (gm/cc)
$\sigma_{aw} =$	65.000	air/water (dynes/cm)
$\sigma_{ao} =$	21.000	air/oil (dynes/cm)
$\sigma_{ow} =$	50.000	oil/water (dynes/cm)

Data for cu	urve-fitting se	gments		Press Ctrl+Shift+S to calculate sheet				
b _o	D _o	<u>k</u> ro	α	β	ξ	η	Gauged May	2011
0.000	0.000	0.000					AOI 8 / PZ-20)4
0.044	0.000	0.000	0.0000	0.000003	0.0000	0.000002		
0.190	0.000	0.000	0.0420	0.000071	0.0420	0.000050	0.001	Eps-Do
0.366	0.000	0.000	0.1634	0.000393	0.1622	0.000266	0.001	Eps-kro

Enter Data in Yellow Region

Maximum Monitoring Well LNAPL Thickness (meters) $b_o =$ 0.040

Gauged May 2011

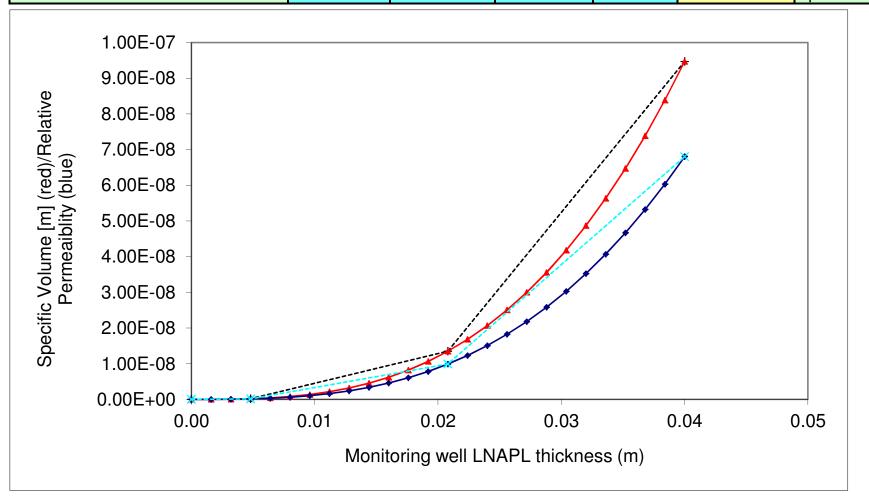
AOI 8 / N-48 0.130 feet

Soil Characteri	stic	<u>SP</u>
n =	0.426	porosity
N =	1.980	van Genuc
α =	1.350	van Genuc
$S_{wr} =$	0.321	irreducible
S _{orv} =	0.000	residual LN
S _{ors} =	0.000	residual LN

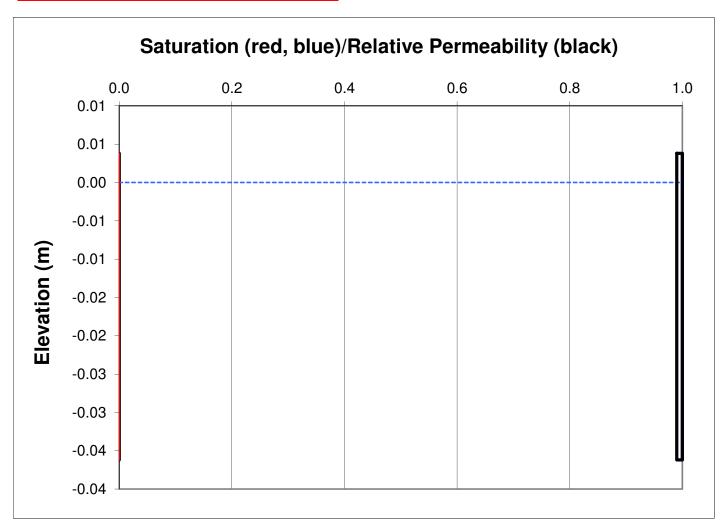
chten "N" chten " α " [m⁻¹] water saturation NAPL saturation (saturated) NAPL saturation (vadose)

Calculated Pa		
M =	0.495	van Genuch
$\alpha_{ao} =$	3.781	air/LNAPL "
$\alpha_{\sf ow} =$	0.167	LNAPL/wate
z _{ao} =	0.004	elevation of
$z_{ow} =$	-0.036	elevation of
z _{max} =	0.004	maximum fr
λ =	0.738	pore-size di
Ψ_b =	0.461	B-C displac

hten "M" "α" ter " α " air-LNAPL interface LNAPL-water interface free-product elevation distribution index cement pressure head [m]


Press Ctrl+Shift+S to calculate sheet

Fluid	Chara	cterist	ics:
	0- =	<u> </u>	0.0


0.905 $\sigma_{aw} =$ 65.000 $\sigma_{ao} =$ 21.000 $\sigma_{ow} =$ 50.000

Lube Oil

Data for co	urve-fitting se	egments		Press Ctrl+Shift+S to calculate s			<u>heet</u>	
b _o	D _o	<u>k</u> ro	α	β	ξ	η	Gauged May	2011
0.000	0.000	0.000					AOI 8 / N-48	3
0.005	0.000	0.000	0.0000	0.000000	0.0000	0.000000		
0.021	0.000	0.000	0.0046	0.000001	0.0046	0.000001	0.001	Eps-Do
0.040	0.000	0.000	0.0176	0.000004	0.0175	0.000003	0.001	Eps-kro

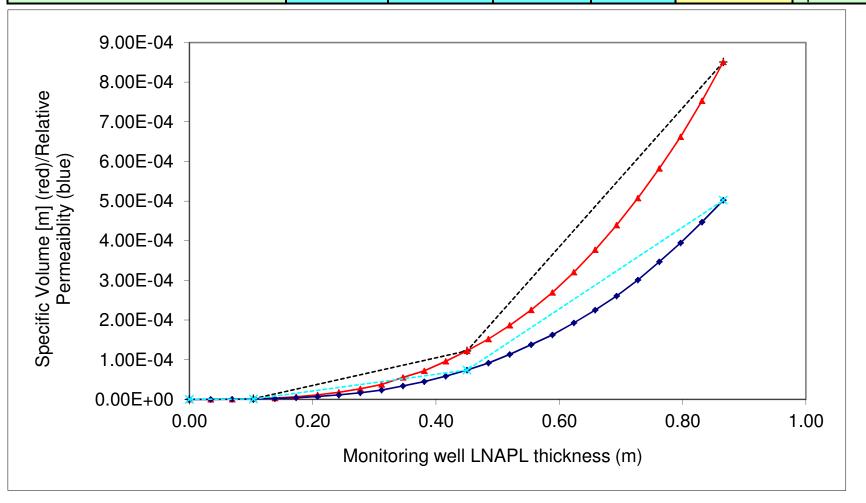
Enter Data in Yellow Region

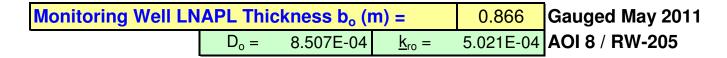
Maximum Monitor	ring Well
LNAPL Thickness	(meters)
b _o =	0.866

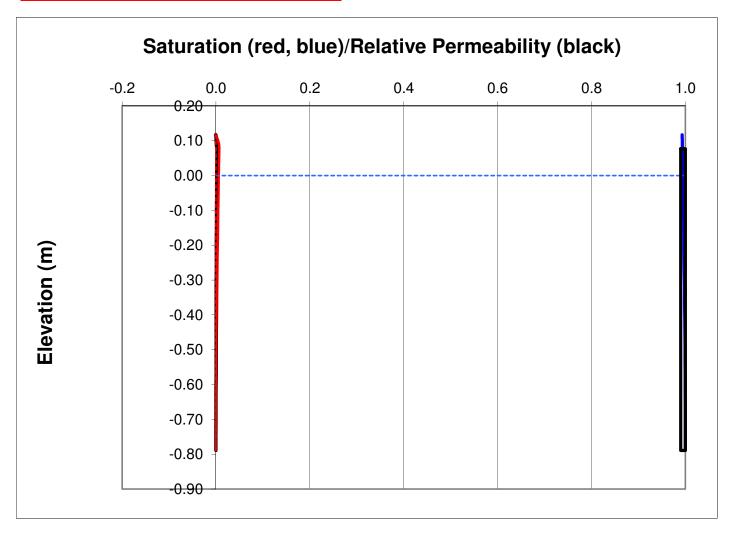
Gauged May 2011

AOI 8 / RW-205 2.840 feet

Soil Characteris	stic	<u>SP</u>
n =	0.426	porosity
N =	1.980	van Genuchten "N"
α =	1.350	van Genuchten "α" [m ⁻¹]
S _{wr} =	0.321	irreducible water saturation
S _{orv} =	0.000	residual LNAPL saturation (saturated)
S _{ors} =	0.000	residual LNAPL saturation (vadose)


Calculated Pa	rameters	
M =	0.495	van Genuchten "M"
$\alpha_{ao} =$	3.808	air/LNAPL "α"
$\alpha_{ow} =$	0.156	LNAPL/water "α"
$z_{ao} =$	0.077	elevation of air-LNAPL interface
$z_{ow} =$	-0.789	elevation of LNAPL-water interface
$z_{max} =$	0.117	maximum free-product elevation
λ =	0.738	pore-size distribution index
Ψ_{b} =	0.461	B-C displacement pressure head [m]


Press Ctrl+Shift+S to calculate sheet


Fluid Character	<u>Lı</u>	
ρ _o =	0.911	LNAPL
$\sigma_{aw} =$	65.000	air/wate
$\sigma_{ao} =$	21.000	air/oil (
$\sigma_{ow} =$	50.000	oil/wate

Lube Oil

Data for cu	urve-fitting se	gments		Press Ctrl+Shift+S to calculate s			<u>heet</u>	
b _o	D _o	<u>k</u> ro	α	β	ξ	η	Gauged May	2011
0.000	0.000	0.000					AOI 8 / RW-2	05
0.104	0.000	0.000	0.0000	0.000014	0.0000	0.000009		
0.450	0.000	0.000	0.0998	0.000348	0.0996	0.000210	0.03	Eps-Do
0.866	0.001	0.001	0.3807	0.001753	0.3788	0.001031	0.03	Eps-kro

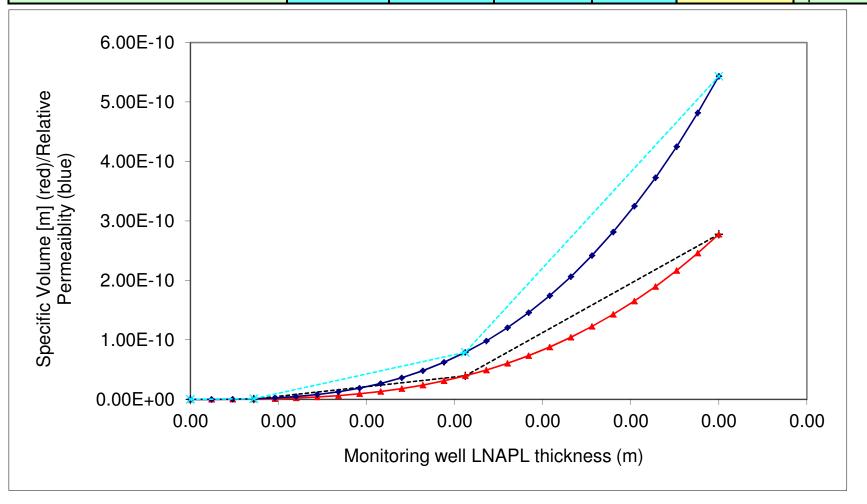
Enter Data in Yellow Region

Maximum Monito	oring Well
LNAPL Thicknes	s (meters)
b _o =	0.003

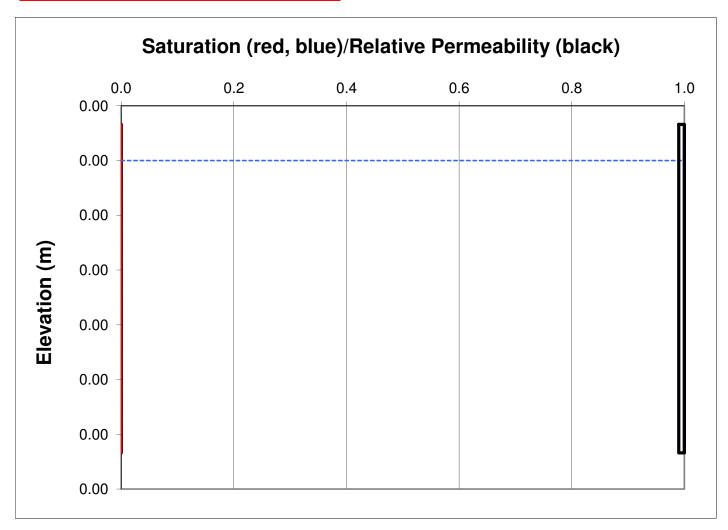
Gauged May 2011

AOI 8 / N-42 0.010 feet

Soil Characteris	tic	<u>SP</u>
n =	0.426	porosity
N =	1.980	van Genuchten "N"
α =	1.350	van Genuchten "α" [m ⁻¹]
S _{wr} =	0.321	irreducible water saturation
S _{orv} =	0.000	residual LNAPL saturation (saturated)
S _{ors} =	0.000	residual LNAPL saturation (vadose)


Calculated Pa	arameters	
M =	0.495	van Genuchten "M"
$\alpha_{ao} =$	2.903	air/LNAPL "α"
$\alpha_{ow} =$	0.433	LNAPL/water "α"
$z_{ao} =$	0.000	elevation of air-LNAPL interface
$z_{ow} =$	-0.003	elevation of LNAPL-water interface
$z_{max} =$	0.000	maximum free-product elevation
λ =	0.738	pore-size distribution index
Ψ_b =	0.461	B-C displacement pressure head [m]

Press Ctrl+Shift+S to calculate sheet


Fluid Character	<u>Lube Oi</u>	
ρ _o =	0.890	LNAPL densi
$\sigma_{aw} =$	65.000	air/water (dynair/oil (dynas/
$\sigma_{ao} =$	26.900	air/oil (dynes/
$\sigma_{ow} =$	22.300	oil/water (dyn

sity (gm/cc) nes/cm) s/cm) nes/cm)

Data for curve-fitting segments				Press Ctrl+	Shift+S to d	calculate s	<u>heet</u>	
b _o	D _o	<u>k</u> ro	α	β	ξ	η	Gauged May	2011
0.000	0.000	0.000					AOI 8 / N-42	
0.000	0.000	0.000	0.0000	0.000000	0.0000	0.000000		
0.002	0.000	0.000	0.0003	0.000000	0.0003	0.000000	0.001	Eps-Do
0.003	0.000	0.000	0.0013	0.000000	0.0013	0.000000	0.001	Eps-kro

Monitoring Well LN	APL Thic	kness b _o (ı	0.003	Gauged May 2011	
	D _o =	2.776E-10	<u>k</u> ro =	5.434E-10	AOI 8 / N-42

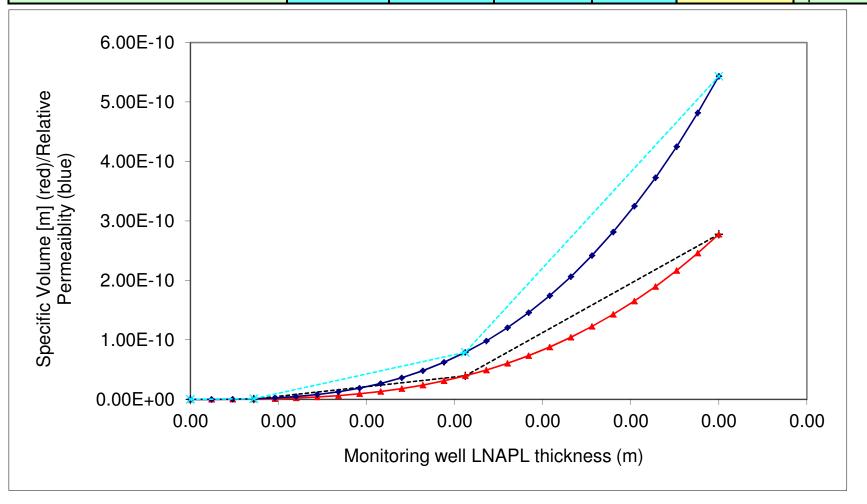
Enter Data in Yellow Region

Maximum Monito	oring Well
LNAPL Thicknes	s (meters)
b _o =	0.003

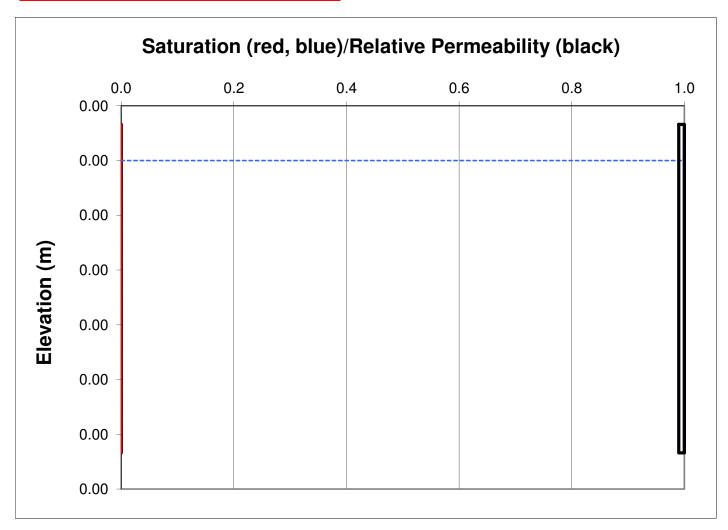
Gauged May 2011 AOI 8 / N-42

0.010 feet

Soil Characteristi	С	<u>SP</u>
n =	0.426	porosity
N =	1.980	van Genuchten "N"
α =	1.350	van Genuchten " α " [m^{-1}]
S _{wr} =	0.321	irreducible water saturation
S _{orv} =	0.000	residual LNAPL saturation (saturated)
S _{ors} =	0.000	residual LNAPL saturation (vadose)


Calculated Pa	arameters	
M =	0.495	van Genuchten "M"
α _{ao} =	2.903	air/LNAPL "α"
$\alpha_{ow} =$	0.433	LNAPL/water "α"
z _{ao} =	0.000	elevation of air-LNAPL interface
z _{ow} =	-0.003	elevation of LNAPL-water interface
z _{max} =	0.000	maximum free-product elevation
λ =	0.738	pore-size distribution index
Ψ_{b} =	0.461	B-C displacement pressure head [m]

Press Ctrl+Shift+S to calculate sheet


Fluid Characte	<u>Lu</u>	
ρ _o =	0.890	LNAPL
$\sigma_{aw} =$	65.000	air/wate
$\sigma_{ao} =$	26.900	air/oil (d
$\sigma_{ow} =$	22.300	oil/wate

Lube Oil

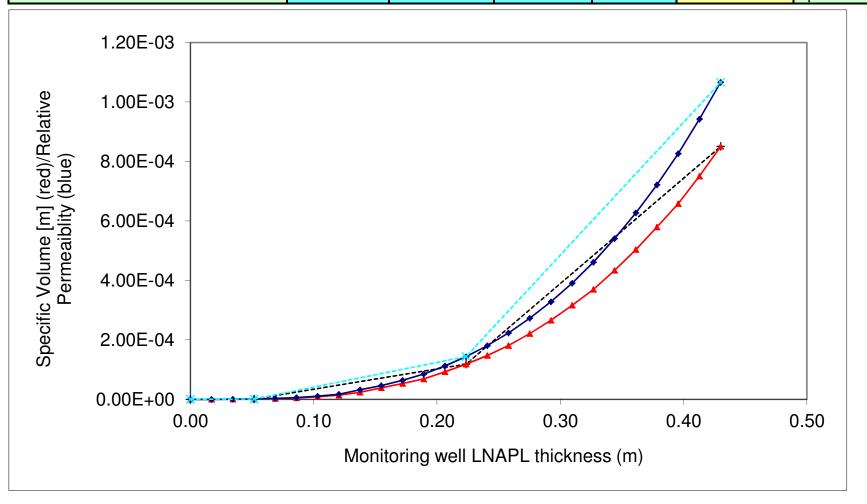
Data for curve-fitting segments				Press Ctrl+	Shift+S to d	calculate s	<u>heet</u>	
b _o	D _o	<u>k</u> ro	α	β	ξ	η	Gauged May	2011
0.000	0.000	0.000					AOI 8 / N-42	
0.000	0.000	0.000	0.0000	0.000000	0.0000	0.000000		
0.002	0.000	0.000	0.0003	0.000000	0.0003	0.000000	0.001	Eps-Do
0.003	0.000	0.000	0.0013	0.000000	0.0013	0.000000	0.001	Eps-kro

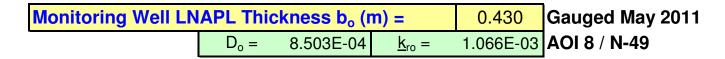
Monitoring Well LN	APL Thic	kness b _o (ı	0.003	Gauged May 2011	
	D _o =	2.776E-10	<u>k</u> ro =	5.434E-10	AOI 8 / N-42

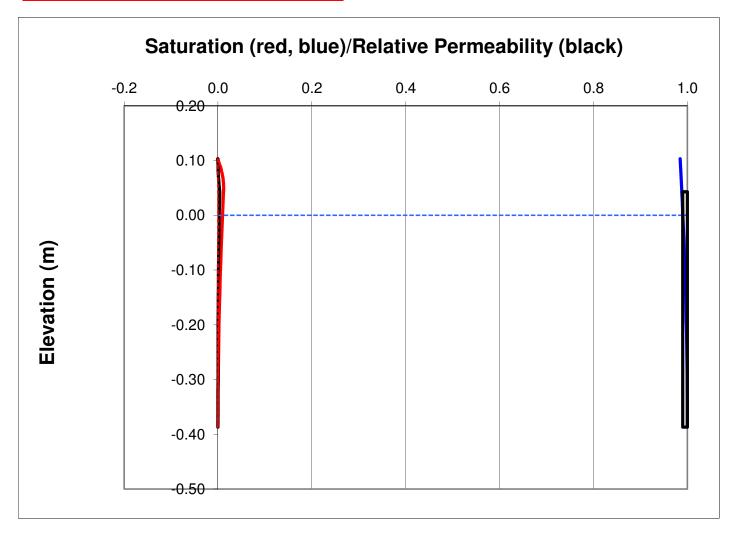
Enter Data in Yellow Region

Maximum Monitoring Well				
LNAPL Thickne	ess (meters)			
b _o =	0.430			

Gauged May 2011


AOI 8 / N-491.410 feet


Soil Characteris	stic	SW-SM
n =	0.388	porosity
N =	2.040	van Genuchten "N"
α =	1.990	van Genuchten "α" [m ⁻¹]
$S_{wr} =$	0.253	irreducible water saturation
S _{orv} =	0.000	residual LNAPL saturation (saturated)
S _{ors} =	0.000	residual LNAPL saturation (vadose)


Calculated Pa	arameters	
M =	0.510	van Genuchten "M"
$\alpha_{ao} =$	3.625	air/LNAPL "α"
$\alpha_{ow} =$	0.430	LNAPL/water "α"
z _{ao} =	0.043	elevation of air-LNAPL interface
$Z_{ow} =$	-0.387	elevation of LNAPL-water interface
$z_{max} =$	0.103	maximum free-product elevation
λ =	0.773	pore-size distribution index
$\Psi_b =$	0.313	B-C displacement pressure head [m]

Fluid Characte	Residual Oil	
ρ _o =	0.900	LNAPL density (gm/cc)
$\sigma_{aw} =$	65.000	air/water (dynes/cm)
$\sigma_{ao} =$	32.100	air/oil (dynes/cm)
$\sigma_{ow} =$	30.200	oil/water (dynes/cm)

Data for cu	urve-fitting se	gments		Press Ctrl+Shift+S to calculate sheet				
b _o	D _o	<u>k</u> ro	α	β	ξ	η	Gauged May 2011	
0.000	0.000	0.000					AOI 8 / N-49	1
0.052	0.000	0.000	0.0000	0.000021	0.0000	0.000024		
0.224	0.000	0.000	0.0500	0.000681	0.0501	0.000829	0.1	Eps-Do
0.430	0.001	0.001	0.1903	0.003547	0.1914	0.004468	0.1	Eps-kro

Enter Data in Yellow Region

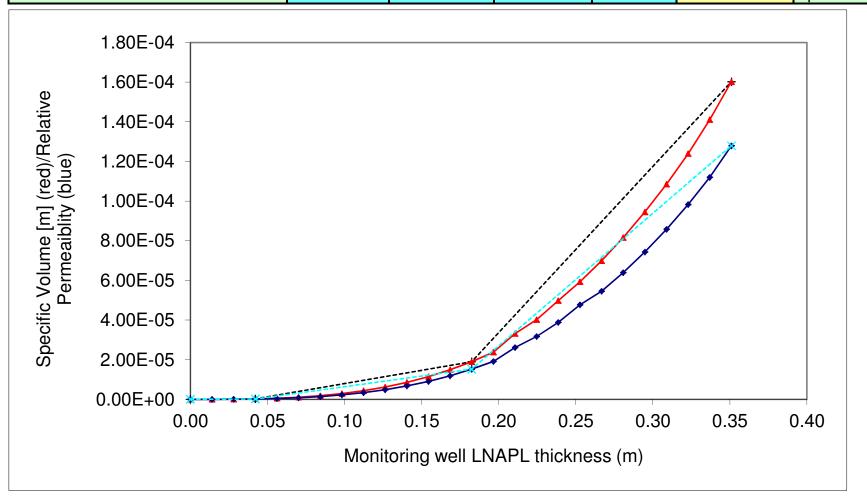
Maximum Monitoring Well					
LNAPL Thickne	ess (meters)				
b _o =	0.351				

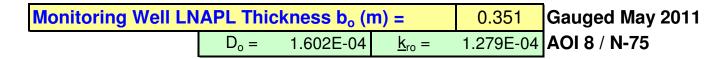
Gauged May 2011

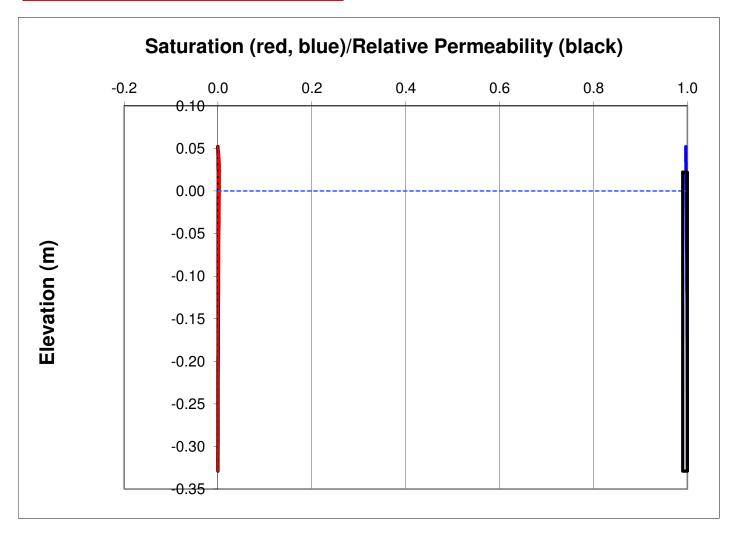
AOI 8 / N-75 1.150 feet

Soil Characteristi	С	<u>SW-SM</u>
n =	0.388	porosity
N =	2.040	van Genuchten "N"
α =	1.990	van Genuchten "α" [m ⁻¹]
S _{wr} =	0.253	irreducible water saturation
S _{orv} =	0.000	residual LNAPL saturation (saturated)
S _{ors} =	0.000	residual LNAPL saturation (vadose)

Calculated Pa	arameters			
M = 0.510		van Genuchten "M"		
$\alpha_{ao} = 3.776$		air/LNAPL "α"		
$\alpha_{ow} = 0.269$		LNAPL/water "α"		
$Z_{ao} = 0.022$		elevation of air-LNAPL interface		
z _{ow} =	-0.329	elevation of LNAPL-water interface		
z _{max} =	0.052	maximum free-product elevation		
$\lambda = 0.773$		pore-size distribution index		
$\Psi_{\rm b} = 0.313$		B-C displacement pressure head [m]		


Press Ctrl+Shift+S to calculate sheet


Fluid Character	Residual (
ρ _o =	0.937	LNAPL densit
$\sigma_{aw} =$	65.000	air/water (dyn
$\sigma_{ao} =$	32.100	air/oil (dynes/
$\sigma_{ow} =$	30.200	oil/water (dyn


Oil

ity (gm/cc) nes/cm) /cm) nes/cm)

Data for cu	urve-fitting se	gments		Press Ctrl+Shift+S to calculate sheet				
b _o	D _o	<u>k</u> ro	α	β	ξ	η	Gauged May 2011	
0.000	0.000	0.000					AOI 8 / N-75	
0.042	0.000	0.000	0.0000	0.000005	0.0000	0.000004		
0.183	0.000	0.000	0.0405	0.000134	0.0406	0.000107	0.01	Eps-Do
0.351	0.000	0.000	0.1598	0.000838	0.1598	0.000669	0.01	Eps-kro

Enter Data in Yellow Region

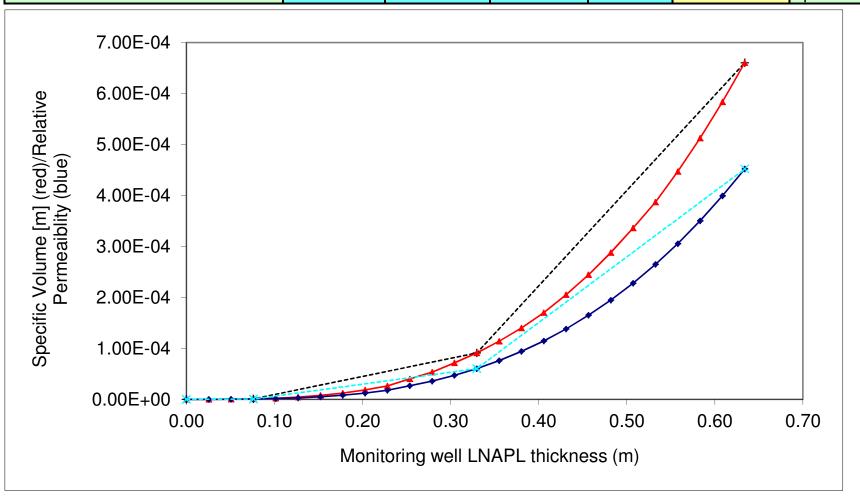
Maximum Monitoring Well					
LNAPL Thickne	ess (meters)				
b _o =	0.634				

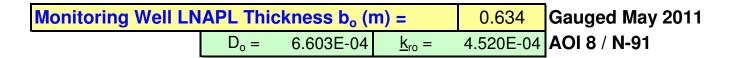
Gauged May 2011

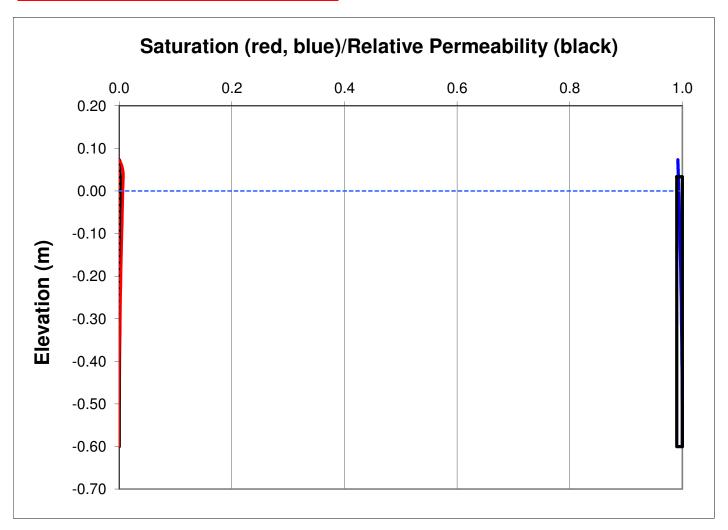
AOI 8 / N-912.080 feet

Soil Characteris	stic	SW-SM
n =	0.388	porosity
N =	2.040	van Genuchten "N"
α =	1.990	van Genuchten "α" [m ⁻¹]
S _{wr} =	0.253	irreducible water saturation
S _{orv} =	0.000	residual LNAPL saturation (saturated)
S _{ors} =	0.000	residual LNAPL saturation (vadose)

Calculated Parameters						
M =	0.510					
$\alpha_{ao} =$	3.816					
$\alpha_{\sf ow}$ =	0.227					
$z_{ao} =$	0.034					
$z_{ow} =$	-0.600					
$z_{max} =$	0.074					
λ =	0.773					
Ψ_{b} =	0.313					


van Genuchten "M"
air/LNAPL "α"
LNAPL/water "α"
elevation of air-LNAPL interface
elevation of LNAPL-water interface
maximum free-product elevation
pore-size distribution index
B-C displacement pressure head [m]


Press Ctrl+Shift+S to calculate sheet


Fluid Characteristics:					
ρ _o =	0.947				
$\sigma_{aw} =$	65.000				
$\sigma_{ao} =$	32.100				
$\sigma_{ow} =$	30.200				

Residual Oil

Data for cu	urve-fitting se	gments		Press Ctrl+Shift+S to calculate sheet				
b _o	D _o	<u>k</u> ro	α	β	ξ	η	Gauged May	2011
0.000	0.000	0.000					AOI 8 / N-91	
0.076	0.000	0.000	0.0000	0.000012	0.0000	0.000008		
0.330	0.000	0.000	0.0735	0.000355	0.0736	0.000236	0.01	Eps-Do
0.634	0.001	0.000	0.2810	0.001871	0.2828	0.001287	0.01	Eps-kro

Enter Data in Yellow Region

Maximum Monitoring Well					
LNAPL Thickness (meters)					
b _o =	0.975				

Gauged May 2011

AOI 8 / N-112 3.200 feet

Soil Characteristic		
n =	0.388	poros
N =	2.040	van C
α =	1.990	van C
S _{wr} =	0.253	irredu
S _{orv} =	0.000	resid
S _{ors} =	0.000	resid

SW-SM

porosity
van Genuchten "N"
van Genuchten "α" [m⁻¹]
irreducible water saturation
residual LNAPL saturation (saturated)
residual LNAPL saturation (vadose)

Calculated Pa		
M =	0.510	van Genuchten
$\alpha_{ao} =$	3.694	air/LNAPL "α"
$\alpha_{\sf ow} =$	0.357	LNAPL/water "c
$z_{ao} =$	0.081	elevation of air-
$z_{ow} =$	-0.894	elevation of LN
$z_{max} =$	0.191	maximum free-
λ =	0.773	pore-size distrib
Ψ_b =	0.313	B-C displaceme

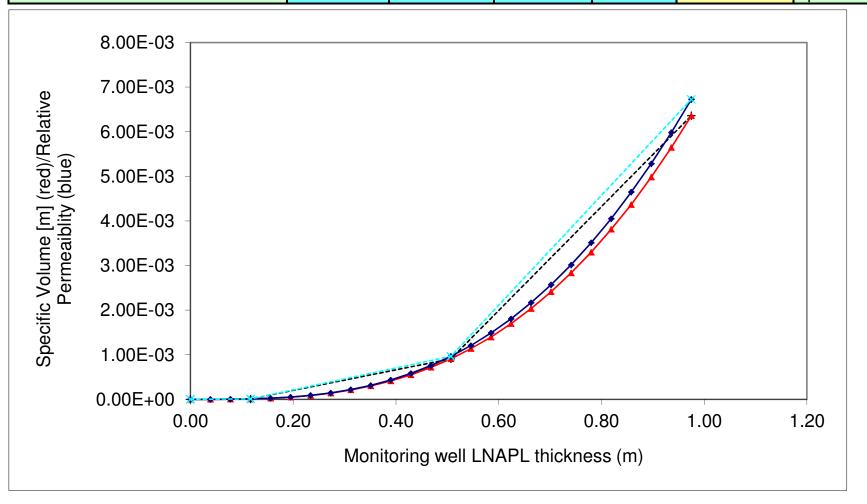
air/LNAPL "α"

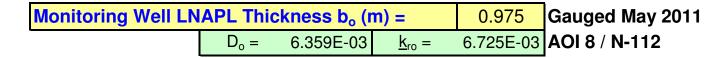
LNAPL/water "α"

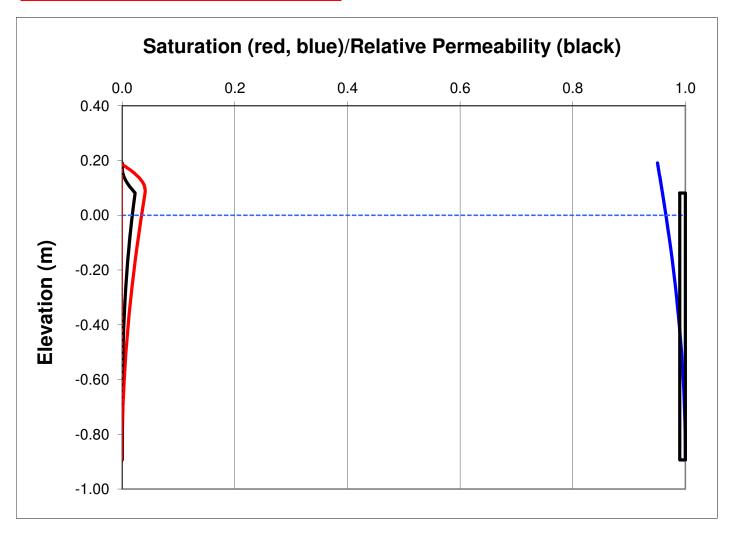
elevation of air-LNAPL interface
elevation of LNAPL-water interface
maximum free-product elevation
pore-size distribution index

B-C displacement pressure head [m]

"M"


Press Ctrl+Shift+S to calculate sheet


Fluid Characteristics:


ia characteri	
ρ _o =	0.917
$\sigma_{aw} =$	65.000
$\sigma_{ao} =$	32.100
$\sigma_{ow} =$	30.200

Residual Oil

Data for cu	urve-fitting se	gments		Press Ctrl+	Shift+S to d	calculate s	<u>heet</u>	
b _o	D _o	<u>k</u> ro	α	β	ξ	η	Gauged May	2011
0.000	0.000	0.000					AOI 8 / N-11	2
0.117	0.000	0.000	0.0000	0.000075	0.0000	0.000078		
0.507	0.001	0.001	0.1132	0.002307	0.1133	0.002451	0.01	Eps-Do
0.975	0.006	0.007	0.4290	0.011647	0.4286	0.012308	0.01	Eps-kro

Enter Data in Yellow Region

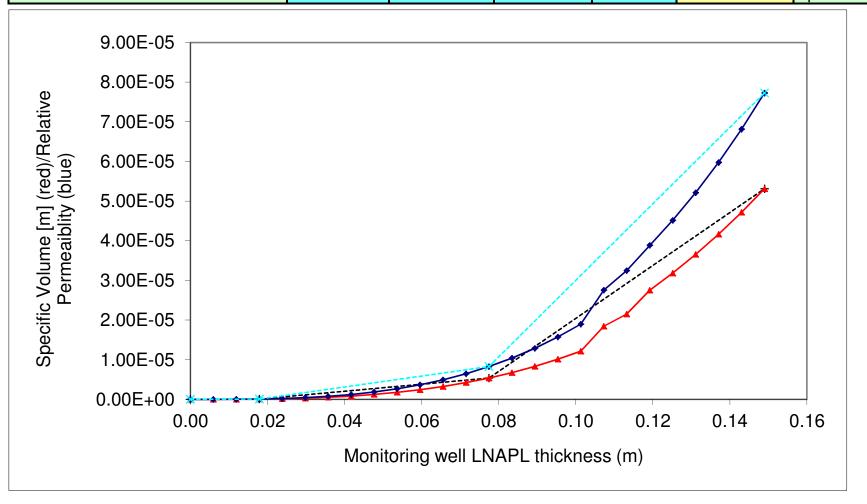
Maximum Monito	ring Well
LNAPL Thickness	s (meters)
b _o =	0.149

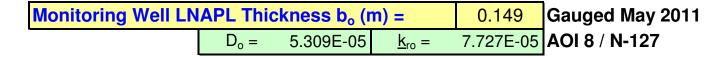
Gauged May 2011

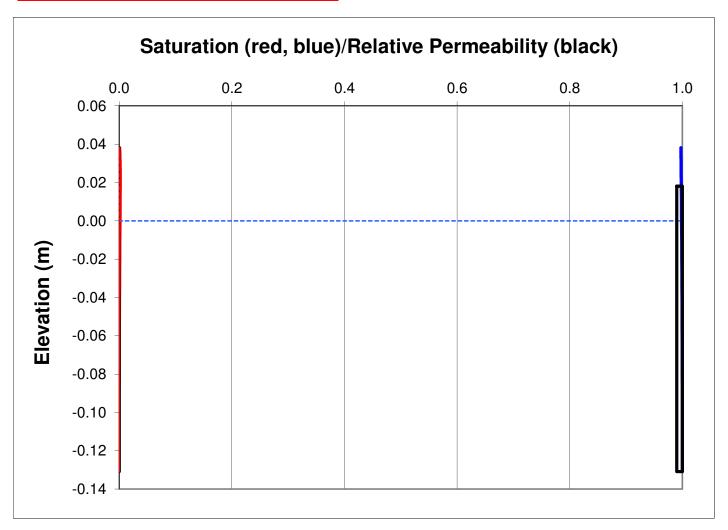
AOI 8 / N-127 0.490 feet

Soil Characteris	tic	SW-SM
n =	0.388	porosity
N =	2.040	van Genuchten "N"
α =	1.990	van Genuchten "α" [m ⁻¹]
$S_{wr} =$	0.253	irreducible water saturation
S _{orv} =	0.000	residual LNAPL saturation (saturated)
S _{ors} =	0.000	residual LNAPL saturation (vadose)

Calculated Pa	rameters	
M =	0.510	van Genuchten "M"
$\alpha_{ao} =$	3.540	air/LNAPL "α"
$\alpha_{\sf ow} =$	0.520	LNAPL/water "α"
$z_{ao} =$	0.018	elevation of air-LNAPL interface
$z_{ow} =$	-0.131	elevation of LNAPL-water interface
$z_{max} =$	0.038	maximum free-product elevation
λ =	0.773	pore-size distribution index
Ψ_{b} =	0.313	B-C displacement pressure head [m]


Press Ctrl+Shift+S to calculate sheet


Fluid Character	Residua	
ρ _o =	0.879	LNAPL den
$\sigma_{aw} =$	65.000	air/water (d
$\sigma_{ao} =$	32.100	air/oil (dyne
$\sigma_{ow} =$	30.200	air/water (d air/oil (dyne oil/water (d


ıal Oil

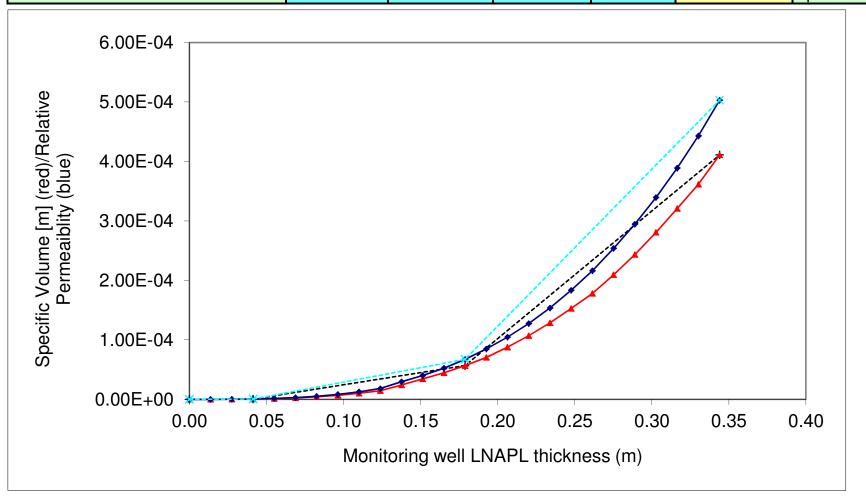
nsity (gm/cc) dynes/cm) es/cm) dynes/cm)

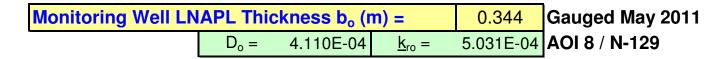
Data for curve-fitting segments				Press Ctrl+	Shift+S to d	calculate s	<u>heet</u>	
b _o	D _o	<u>k</u> ro	α	β	ξ	η	Gauged May	2011
0.000	0.000	0.000					AOI 8 / N-127	7
0.018	0.000	0.000	0.0000	0.000003	0.0000	0.000005		
0.077	0.000	0.000	0.0172	0.000089	0.0172	0.000137	0.001	Eps-Do
0.149	0.000	0.000	0.0694	0.000667	0.0689	0.000965	0.001	Eps-kro

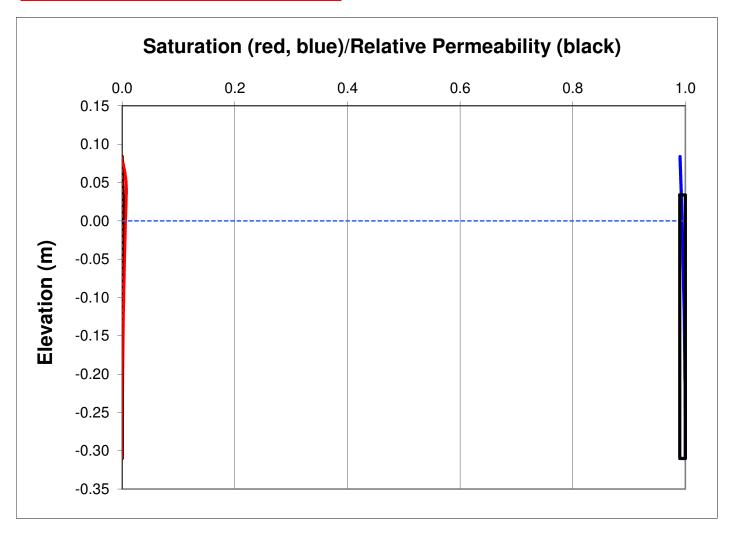
Enter Data in Yellow Region

Maximum Monit	toring Well
LNAPL Thickness	ss (meters)
b _o =	0.344

Gauged May 2011


AOI 8 / N-129 1.130 feet


Soil Characteris	tic	<u>SW-SM</u>
n =	0.388	porosity
N =	2.040	van Genuchten "N"
α =	1.990	van Genuchten "α" [m ⁻¹]
S _{wr} =	0.253	irreducible water saturation
S _{orv} =	0.000	residual LNAPL saturation (saturated)
S _{ors} =	0.000	residual LNAPL saturation (vadose)


Calculated Pa	arameters	
M =	0.510	van Genuchten "M"
$\alpha_{ao} =$	3.633	air/LNAPL "α"
$\alpha_{ow} =$	0.421	LNAPL/water "α"
z _{ao} =	0.034	elevation of air-LNAPL interface
$z_{ow} =$	-0.310	elevation of LNAPL-water interface
z _{max} =	0.084	maximum free-product elevation
λ =	0.773	pore-size distribution index
Ψ_b =	0.313	B-C displacement pressure head [m]

Fluid Characte	Residual Oil		
ρ _o =	LNAPL density (gm/cc)		
$\sigma_{aw} =$	65.000	air/water (dynes/cm)	
$\sigma_{ao} =$	32.100	air/oil (dynes/cm)	
$\sigma_{ow} =$	30.200	oil/water (dynes/cm)	

Data for cu	urve-fitting se	gments		Press Ctrl+	Shift+S to d	calculate s	<u>heet</u>	
b _o	D _o	<u>k</u> ro	α	β	ξ	η	Gauged May 2011	
0.000	0.000	0.000					AOI 8 / N-129	
0.041	0.000	0.000	0.0000	0.000012	0.0000	0.000015		
0.179	0.000	0.000	0.0400	0.000408	0.0400	0.000485	0.02	Eps-Do
0.344	0.000	0.001	0.1525	0.002146	0.1534	0.002639	0.02	Eps-kro

Enter Data in Yellow Region

Maximum Monitoring Well						
LNAPL Thickn	ess (meters)					
b _o =	0.064					

Gauged May 2011

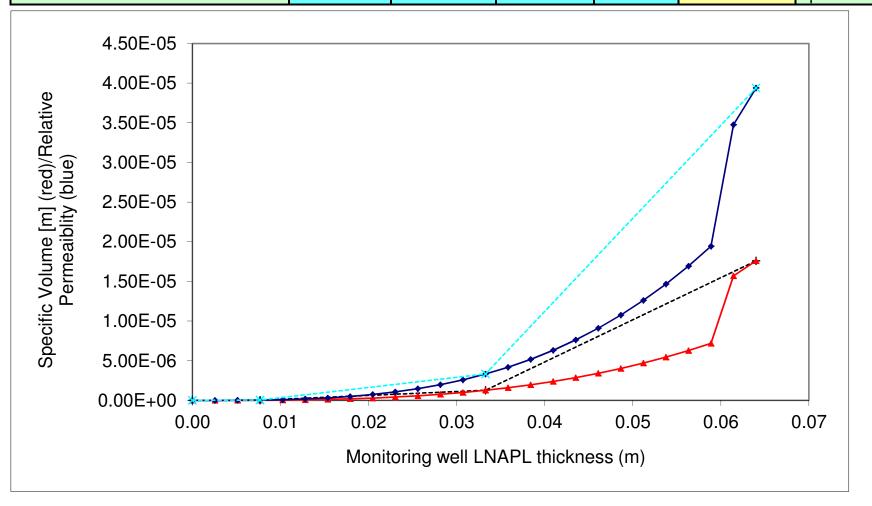
AOI 8 / N-130 0.210 feet

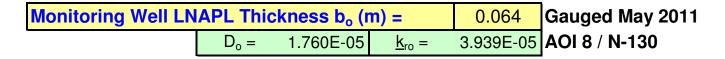
Soil Characterist	ic	SW-SM
n =	0.388	porosity
N =	2.040	van Genuchten "N"
α =	1.990	van Genuchten "α" [m ⁻¹]
S _{wr} =	0.253	irreducible water saturation
S _{orv} =	0.000	residual LNAPL saturation (saturated)
S _{ors} =	0.000	residual LNAPL saturation (vadose)

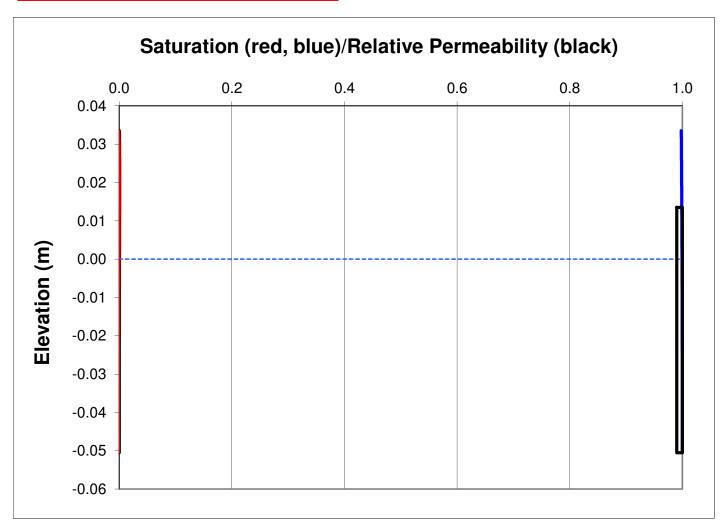
arameters	
0.510	van Genuchten
3.181	air/LNAPL "α"
0.902	LNAPL/water "d
0.013	elevation of air-
-0.051	elevation of LN
0.033	maximum free-
0.773	pore-size distrib
0.313	B-C displaceme
	0.510 3.181 0.902 0.013 -0.051 0.033 0.773

van Genuchten "M"
air/LNAPL "\alpha"
LNAPL/water "\alpha"
elevation of air-LNAPL interface
elevation of LNAPL-water interface
maximum free-product elevation
pore-size distribution index
B-C displacement pressure head [m]

Press Ctrl+Shift+S to calculate sheet


Fluid Characteristics: $\rho_0 = 0.789$ $\sigma_{aw} = 65.000$				
ρ _o =	0.789			
$\sigma_{aw} =$	65.000			
$\sigma_{ao} =$	32.100			


 $\sigma_{ow} =$


30.200

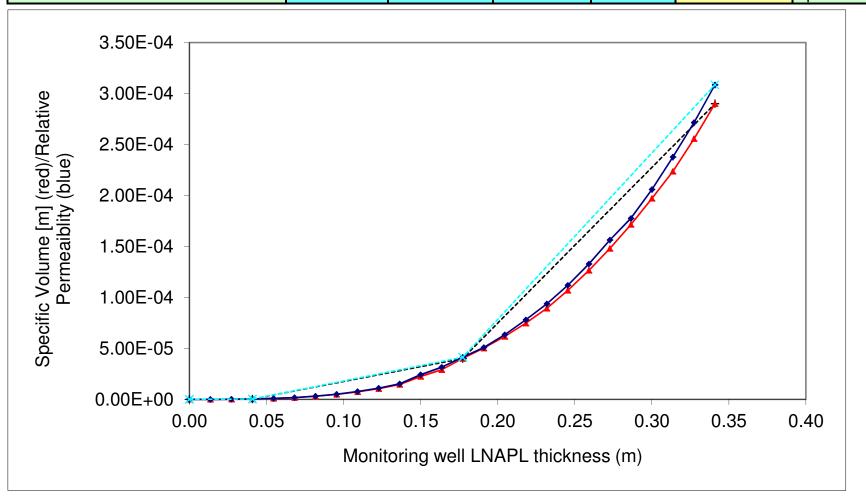
Residual Oil

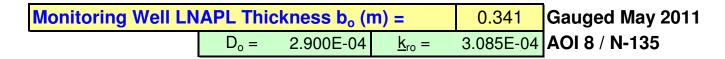
Data for cu	urve-fitting se	gments		Press Ctrl+	Shift+S to d	calculate s	<u>heet</u>	
b _o	D _o	<u>k</u> ro	α	β	ξ	η	Gauged May 2011	
0.000	0.000	0.000					AOI 8 / N-130	
0.008	0.000	0.000	0.0000	0.000002	0.0000	0.000005		
0.033	0.000	0.000	0.0074	0.000049	0.0074	0.000128	0.001	Eps-Do
0.064	0.000	0.000	0.0309	0.000532	0.0305	0.001174	0.001	Eps-kro

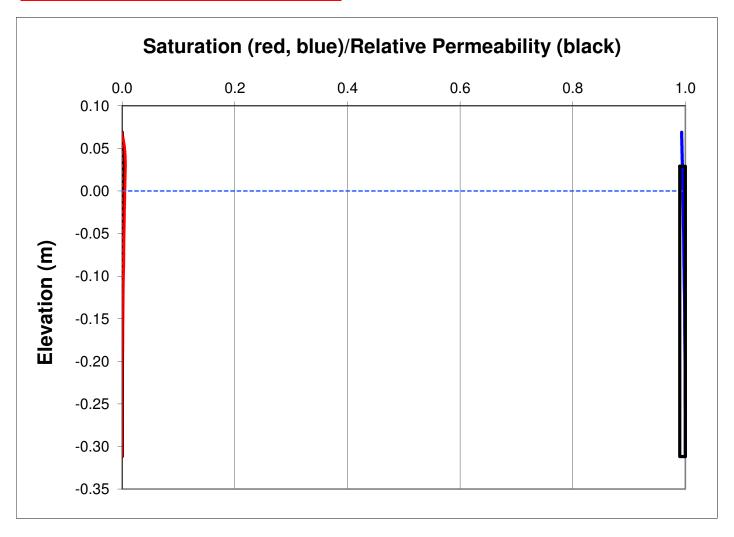
Enter Data in Yellow Region

Maximum Monitoring Well						
LNAPL Thickne	ess (meters)					
b _o =	0.341					

Gauged May 2011


AOI 8 / N-135 1.120 feet


Soil Characteria	stic	SW-SM
n =	0.388	porosity
N =	2.040	van Genuchten "N"
α =	1.990	van Genuchten "α" [m ⁻¹]
S _{wr} =	0.253	irreducible water saturation
S _{orv} =	0.000	residual LNAPL saturation (saturated)
S _{ors} =	0.000	residual LNAPL saturation (vadose)


Calculated Pa	arameters	
M =	0.510	van Genuchten "M"
α _{ao} =	3.686	air/LNAPL "α"
$\alpha_{ow} =$	0.365	LNAPL/water "α"
z _{ao} =	0.029	elevation of air-LNAPL interface
z _{ow} =	-0.312	elevation of LNAPL-water interface
z _{max} =	0.069	maximum free-product elevation
λ =	0.773	pore-size distribution index
$\Psi_b =$	0.313	B-C displacement pressure head [m]

Fluid Characte	Residual Oil		
ρ _o =	LNAPL density (gm/cc)		
$\sigma_{aw} =$	65.000	air/water (dynes/cm)	
$\sigma_{ao} =$	32.100	air/oil (dynes/cm)	
$\sigma_{ow} =$	30.200	oil/water (dynes/cm)	

Data for cu	urve-fitting se	gments		Press Ctrl+	Shift+S to d	calculate s	<u>heet</u>		
b _o	D _o	<u>k</u> ro	α	β	ξ	η	Gauged May 2011		
0.000	0.000	0.000					AOI 8 / N-135		
0.041	0.000	0.000	0.0000	0.000009	0.0000	0.000009			
0.177	0.000	0.000	0.0396	0.000291	0.0397	0.000300	0.1	Eps-Do	
0.341	0.000	0.000	0.1511	0.001527	0.1521	0.001633	0.1	Eps-kro	

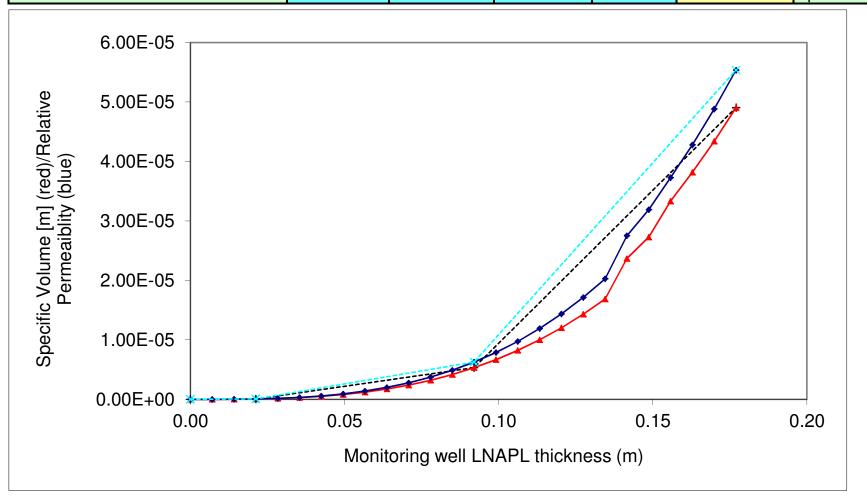
Enter Data in Yellow Region

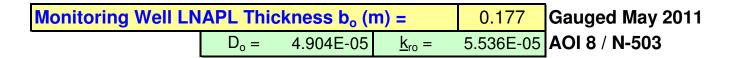
Maximum Monitoring Well			
LNAPL Thickne	ess (meters)		
b _o =	0.177		

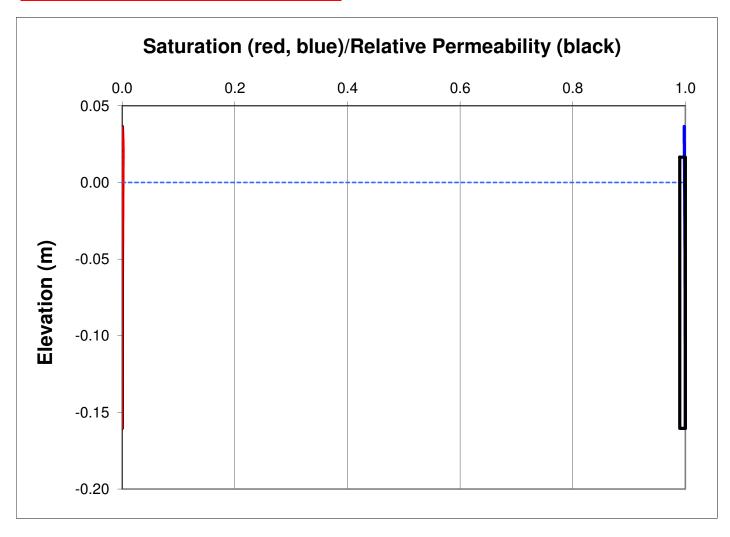
Gauged May 2011

AOI 8 / N-5030.580 feet

Soil Characteris	tic	SW-SM
n =	0.388	porosity
N =	2.040	van Genuchten "N"
α =	1.990	van Genuchten "α" [m ⁻¹]
$S_{wr} =$	0.253	irreducible water saturation
S _{orv} =	0.000	residual LNAPL saturation (saturated)
S _{ors} =	0.000	residual LNAPL saturation (vadose)


Calculated Parameters		
M =	0.510	van Genuchten "M"
$\alpha_{ao} =$	3.653	air/LNAPL "α"
$\alpha_{ow} =$	0.400	LNAPL/water "α"
z _{ao} =	0.017	elevation of air-LNAPL interface
z _{ow} =	-0.160	elevation of LNAPL-water interface
z _{max} =	0.037	maximum free-product elevation
λ =	0.773	pore-size distribution index
Ψ_{b} =	0.313	B-C displacement pressure head [m]


Press Ctrl+Shift+S to calculate sheet


Fluid Character	Resid	
ρ _o =	0.907	LNAPL d
$\sigma_{aw} =$	65.000	air/water
$\sigma_{ao} =$	32.100	air/oil (dy
$\sigma_{ow} =$	30.200	oil/water

Residual Oil

	Data for curve-fitting segments			Press Ctrl+	Shift+S to d	calculate s	<u>heet</u>		
I	b _o	D _o	<u>k</u> ro	α	β	ξ	η	Gauged May	2011
	0.000	0.000	0.000					AOI 8 / N-503	3
I	0.021	0.000	0.000	0.0000	0.000003	0.0000	0.000003		
	0.092	0.000	0.000	0.0204	0.000074	0.0205	0.000087	0.001	Eps-Do
	0.177	0.000	0.000	0.0817	0.000515	0.0812	0.000578	0.001	Eps-kro

Enter Data in Yellow Region

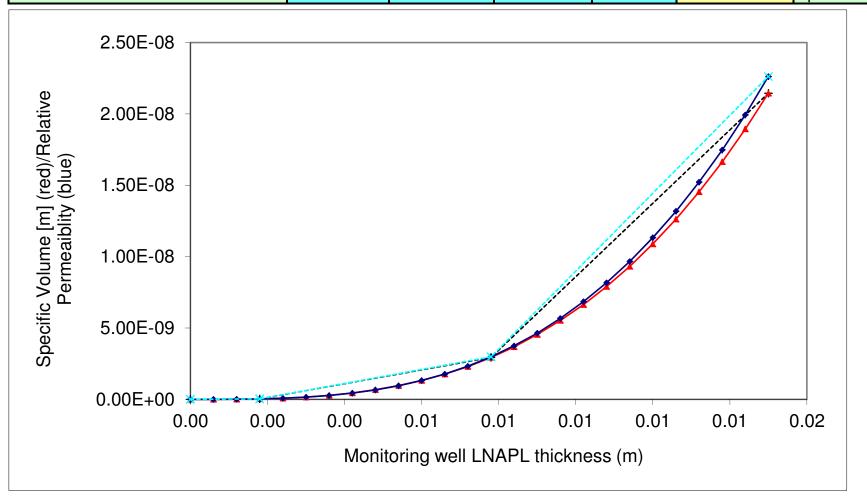
Maximum Monitoring Well			
LNAPL Thickne	ess (meters)		
b _o =	0.015		

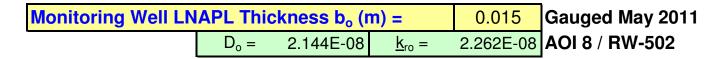
Gauged May 2011

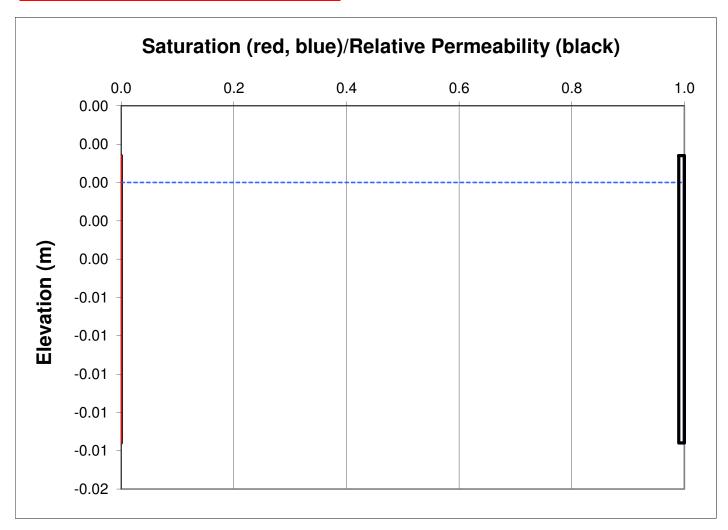
AOI 8 / RW-502 0.050 feet

Soil Characteris	tic	<u>SW-SM</u>
n =	0.388	porosity
N =	2.040	van Genuchten "N"
α =	1.990	van Genuchten "α" [m ⁻¹]
$S_{wr} =$	0.253	irreducible water saturation
S _{orv} =	0.000	residual LNAPL saturation (saturated)
S _{ors} =	0.000	residual LNAPL saturation (vadose)

Calculated Pa		
M =	0.510	van Genuchten "M
$\alpha_{ao} =$	3.653	air/LNAPL "α"
$\alpha_{ow} =$	0.400	LNAPL/water "α"
z _{ao} =	0.001	elevation of air-LN
$z_{ow} =$	-0.014	elevation of LNAPI
z _{max} =	0.001	maximum free-pro
λ =	0.773	pore-size distributi
Ψ_{b} =	0.313	B-C displacement


NAPL interface L-water interface oduct elevation ion index pressure head [m]


Press Ctrl+Shift+S to calculate sheet


Fluid Characteristics:				
$\rho_{o} =$	0.907			
$\sigma_{aw} =$	65.000			
$\sigma_{ao} =$	32.100			
$\sigma_{ow} =$	30.200			

Residual Oil

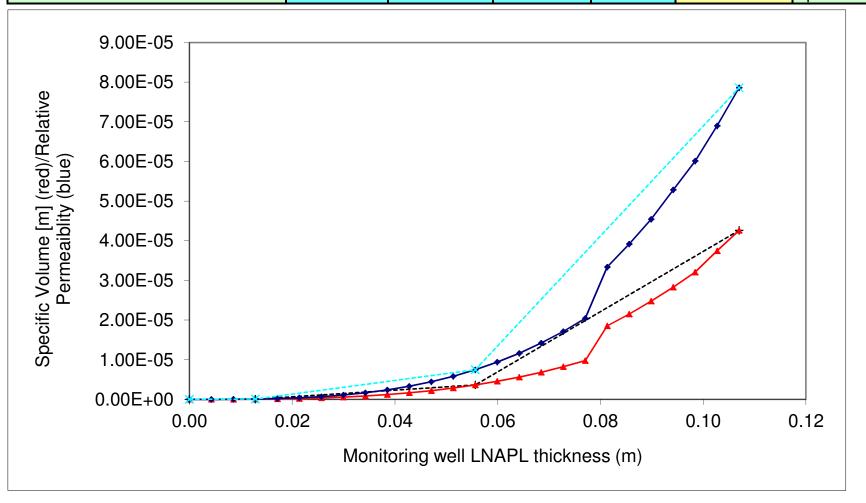
Data for curve-fitting segments			Press Ctrl+	Shift+S to d	calculate s	<u>heet</u>		
b _o	D _o	<u>k</u> ro	α	β	ξ	η	Gauged May	2011
0.000	0.000	0.000					AOI 8 / RW-5	02
0.002	0.000	0.000	0.0000	0.000000	0.0000	0.000000		
0.008	0.000	0.000	0.0017	0.000000	0.0017	0.000000	0.001	Eps-Do
0.015	0.000	0.000	0.0067	0.000003	0.0067	0.000003	0.001	Eps-kro

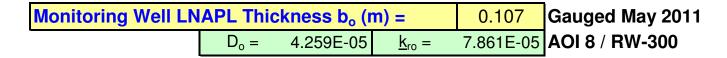
Enter Data in Yellow Region

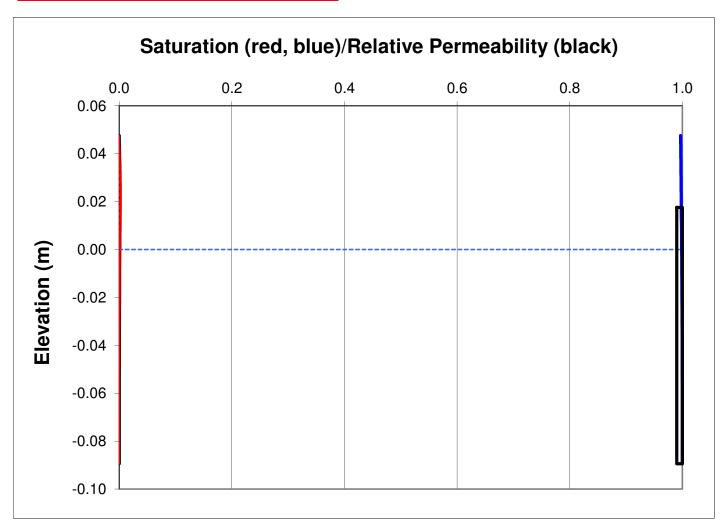
Maximum Monito	ring Well
LNAPL Thickness	(meters)
b _o =	0.107

Gauged May 2011

AOI 8 / RW-300


0.350 feet


Soil Characteri	stic	SW-SM
n =	0.388	porosity
N =	2.040	van Genuchten "N"
α =	1.990	van Genuchten "α" [m ⁻¹]
S _{wr} =	0.253	irreducible water saturation
S _{orv} =	0.000	residual LNAPL saturation (saturated)
S _{ors} =	0.000	residual LNAPL saturation (vadose)


Calculated Parameters		
M =	0.510	van Genuchten "M"
$\alpha_{ao} =$	3.368	air/LNAPL "α"
$\alpha_{ow} =$	0.703	LNAPL/water "α"
z _{ao} =	0.018	elevation of air-LNAPL interface
z _{ow} =	-0.089	elevation of LNAPL-water interface
z _{max} =	0.048	maximum free-product elevation
λ =	0.773	pore-size distribution index
Ψ_{b} =	0.313	B-C displacement pressure head [m]

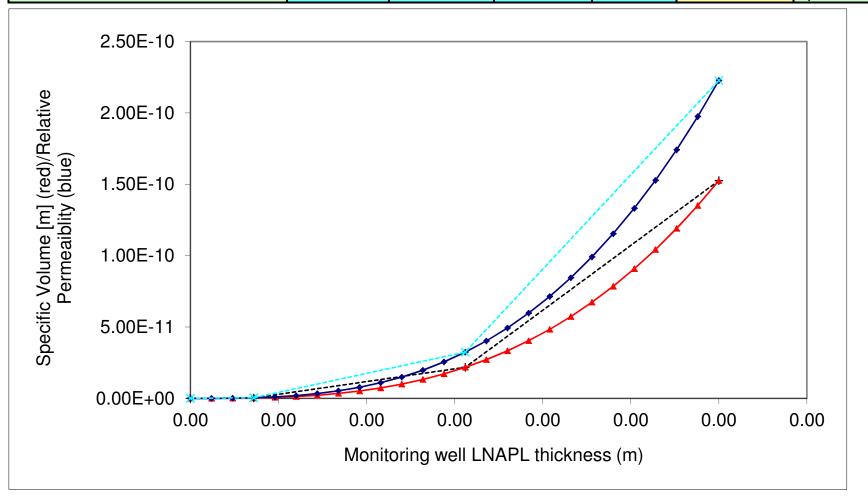
Fluid Characte	eristics:	Residual Oil
ρ _o =	0.836	LNAPL density (gm/cc)
$\sigma_{aw} =$	65.000	air/water (dynes/cm)
$\sigma_{ao} =$	32.100	air/oil (dynes/cm)
$\sigma_{ow} =$	30.200	oil/water (dynes/cm)

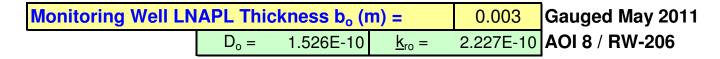
Data for curve-fitting segments				Press Ctrl+Shift+S to calculate sheet				
b _o	D _o	<u>k</u> ro	α	β	ξ	η	Gauged May 2011	
0.000	0.000	0.000				AOI 8 / RW-300		00
0.013	0.000	0.000	0.0000	0.000003	0.0000	0.000006		
0.056	0.000	0.000	0.0123	0.000084	0.0124	0.000172	0.02	Eps-Do
0.107	0.000	0.000	0.0508	0.000759	0.0503	0.001385	0.02	Eps-kro

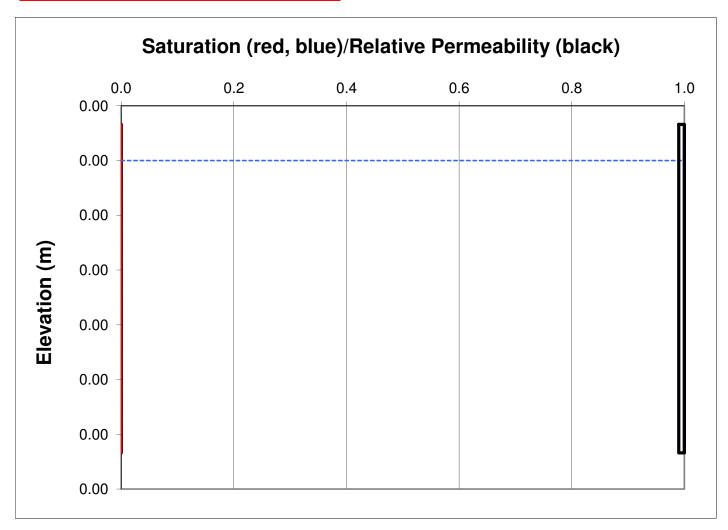
Enter Data in Yellow Region

Maximum Monito	oring Well
LNAPL Thicknes	s (meters)
b _o =	0.003

Gauged May 2011 AOI 8 / RW-206


0.010	feet


Soil Characteristic		<u>SP</u>
n =	0.426	porosity
N =	1.980	van Genuchten "N"
α =	1.350	van Genuchten "α" [m ⁻¹]
S _{wr} =	0.321	irreducible water saturation
S _{orv} =	0.000	residual LNAPL saturation (saturated
S _{ors} =	0.000	residual LNAPL saturation (vadose)


Calculated Pa	arameters	
M = 0.495 v		van Genuchten "M"
$\alpha_{ao} =$	2.433	air/LNAPL "α"
$\alpha_{ow} =$	0.320	LNAPL/water "α"
z _{ao} =	0.000	elevation of air-LNAPL interface
z _{ow} =	-0.003	elevation of LNAPL-water interface
z _{max} =	0.000	maximum free-product elevation
λ =	0.738	pore-size distribution index
Ψ_{b} =	0.461	B-C displacement pressure head [m]

Fluid Characte	Residual Oil	
ρ _o =	LNAPL density (gm/cc)	
$\sigma_{aw} =$	65.000	air/water (dynes/cm)
$\sigma_{ao} =$	32.100	air/oil (dynes/cm)
$\sigma_{ow} =$	30.200	oil/water (dynes/cm)

Data for curve-fitting segments				Press Ctrl+Shift+S to calculate sheet					
	b _o	D _o	<u>k</u> ro	α	β	ξ	η	Gauged May	2011
	0.000	0.000	0.000				AOI 8 / RW-206		06
	0.000	0.000	0.000	0.0000	0.000000	0.0000	0.000000		
	0.002	0.000	0.000	0.0003	0.000000	0.0003	0.000000	0.001	Eps-Do
	0.003	0.000	0.000	0.0013	0.000000	0.0013	0.000000	0.001	Eps-kro

Enter Data in Yellow Region

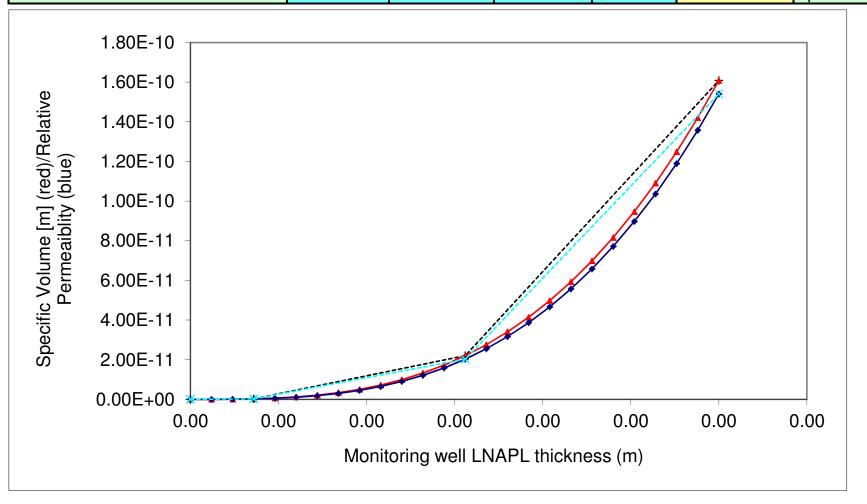
Maximum Monito	
LNAPL Thickness	(meters)
b _o =	0.003

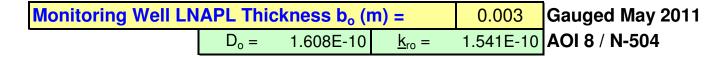
Gauged May 2011

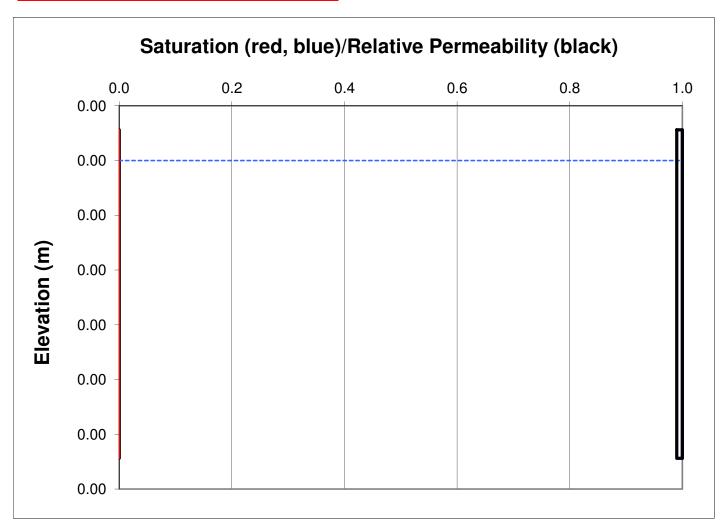
AOI 8 / N-504 0.010 feet

So	il Character	istic	SW-SM
	n =	0.388	porosity
	N =	2.040	van Genuchten "N"
	$\alpha =$	1.990	van Genuchten " α " [m^{-1}]
	$S_{wr} =$	0.253	irreducible water saturation
	$S_{orv} =$	0.000	residual LNAPL saturation (saturated)
	$S_{ors} =$	0.000	residual LNAPL saturation (vadose)

Calculated Parameters						
M =	0.510					
$\alpha_{ao} =$	3.653					
$\alpha_{\sf ow}$ =	0.400					
$z_{ao} =$	0.000					
$z_{ow} =$	-0.003					
z _{max} =	0.000					
λ =	0.773					
$\Psi_{b} =$	0.313					


van Genuchten "M"
air/LNAPL "α"
LNAPL/water "α"
elevation of air-LNAPL interface
elevation of LNAPL-water interface
maximum free-product elevation
pore-size distribution index
B-C displacement pressure head [m]


Press Ctrl+Shift+S to calculate sheet


Fluid Characteristics:						
ρ _o =	0.907					
$\sigma_{aw} =$	65.000					
$\sigma_{ao} =$	32.100					
$\sigma_{ow} =$	30.200					

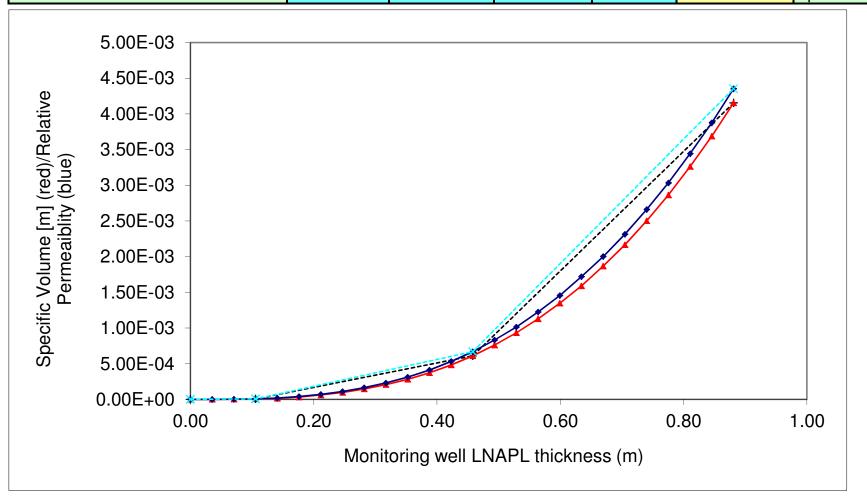
Residual Oil

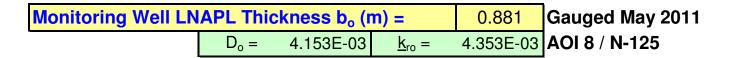
Data for cu	urve-fitting se	gments		Press Ctrl+Shift+S to calculate sheet				
b _o	D _o	<u>k</u> ro	α	β	ξ	η	Gauged May 2011	
0.000	0.000	0.000				AOI 8 / N-504		4
0.000	0.000	0.000	0.0000	0.000000	0.0000	0.000000		
0.002	0.000	0.000	0.0003	0.000000	0.0003	0.000000	0.001	Eps-Do
0.003	0.000	0.000	0.0013	0.000000	0.0013	0.000000	0.001	Eps-kro

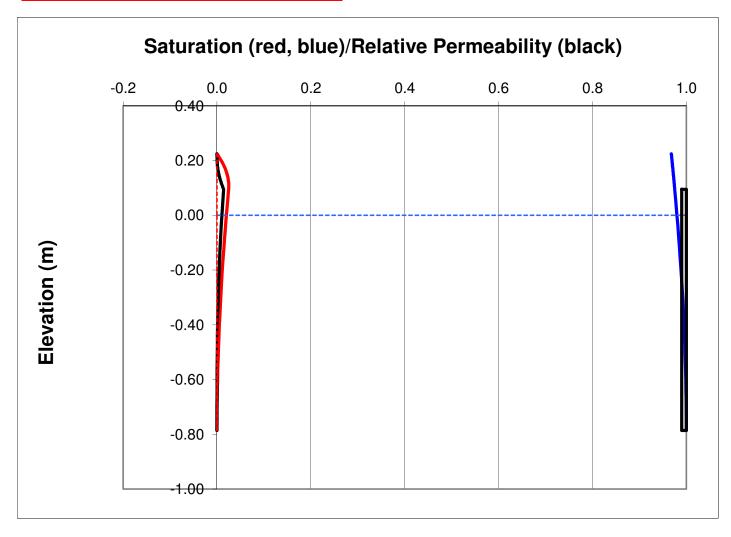
Enter Data in Yellow Region

Maximum Monit	toring Well
LNAPL Thickne	ss (meters)
b _o =	0.881

Gauged May 2011


AOI 8 / N-125 2.890 feet


Soil Characterist	ic	<u>SP</u>
n =	0.426	porosity
N =	1.980	van Genuchten "N"
α =	1.350	van Genuchten "α" [m ⁻¹]
S _{wr} =	0.321	irreducible water saturation
S _{orv} =	0.000	residual LNAPL saturation (saturated)
S _{ors} =	0.000	residual LNAPL saturation (vadose)


Calculated Pa	rameters	
M =	0.495	van Genuchten "M"
$\alpha_{ao} =$	2.439	air/LNAPL "α"
$\alpha_{ow} =$	0.313	LNAPL/water "α"
z _{ao} =	0.095	elevation of air-LNAPL interface
$z_{ow} =$	-0.786	elevation of LNAPL-water interface
z _{max} =	0.225	maximum free-product elevation
λ =	0.738	pore-size distribution index
Ψ_{b} =	0.461	B-C displacement pressure head [m]

Fluid Characte	eristics:	Residual Oil
ρ _o =	0.892	LNAPL density (gm/cc)
$\sigma_{aw} =$	65.000	air/water (dynes/cm)
$\sigma_{ao} =$	32.100	air/oil (dynes/cm)
$\sigma_{ow} =$	30.200	oil/water (dynes/cm)

Data for cu	urve-fitting se	gments		Press Ctrl+Shift+S to calculate s			<u>heet</u>	
b _o	D _o	<u>k</u> ro	α	β	ξ	η	Gauged May	2011
0.000	0.000	0.000	00			AOI 8 / N-12	5	
0.106	0.000	0.000	0.0000	0.000056	0.0000	0.000072		
0.458	0.001	0.001	0.1022	0.001715	0.1017	0.001876	0.01	Eps-Do
0.881	0.004	0.004	0.3853	0.008378	0.3813	0.008712	0.01	Eps-kro

Enter Data in Yellow Region

Maximum Monitoring Well				
LNAPL Thickne	ess (meters)			
b _o =	0.067			

Gauged May 2011 **AOI 8 / N-45**

0.220

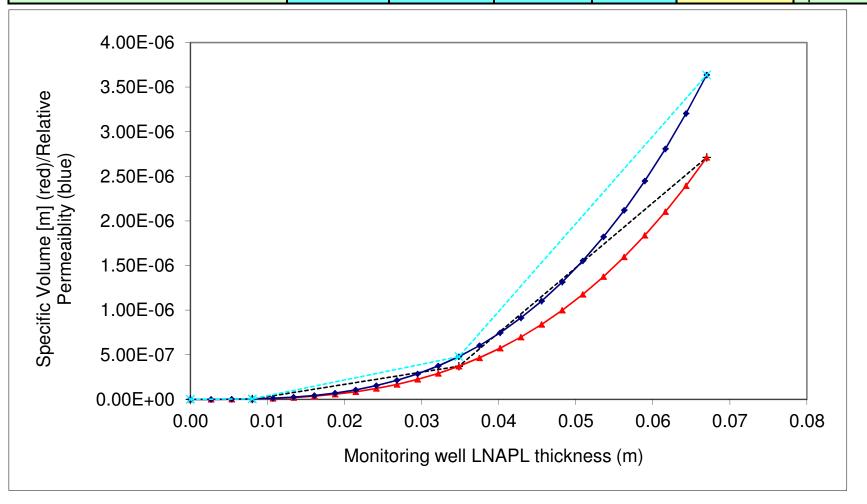
feet

Soil Characteristic				
n =	0.388			
N =	2.040			
α =	1.990			
$S_{wr} =$	0.253			
S _{orv} =	0.000			
S _{ors} =	0.000			

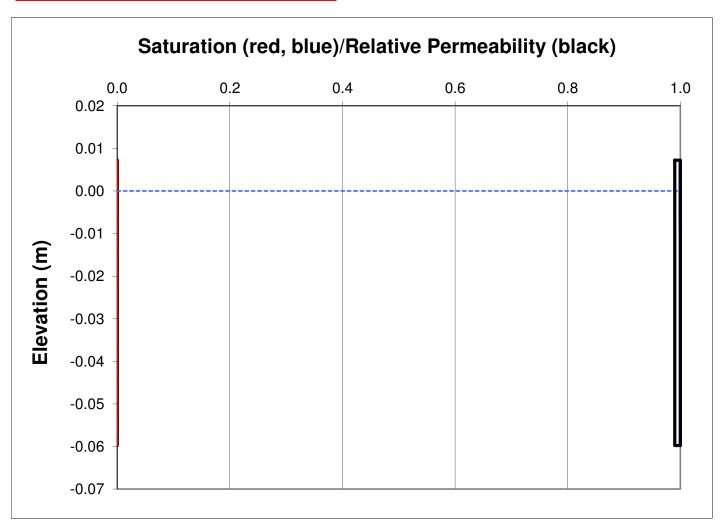
SW-SM

porosity van Genuchten "N" van Genuchten " α " [m⁻¹] irreducible water saturation residual LNAPL saturation (saturated) residual LNAPL saturation (vadose)

Calculated Parameters		
M =	0.510	van Genuchten "M"
$\alpha_{ao} =$	3.595	air/LNAPL "α"
$\alpha_{ow} =$	0.462	LNAPL/water "α"
z _{ao} =	0.007	elevation of air-LNAPL interface
$z_{ow} =$	-0.060	elevation of LNAPL-water interface
$z_{max} =$	0.007	maximum free-product elevation
λ =	0.773	pore-size distribution index
$\Psi_{b} \! = \!$	0.313	B-C displacement pressure head [m]


Press Ctrl+Shift+S to calculate sheet

Fluid Characteristics:


ρ _o =	0.892
$\sigma_{aw} =$	65.000
$\sigma_{ao} =$	32.100
$\sigma_{ow} =$	30.200

Residual Oil

Data for cu	a for curve-fitting segments Press Ctrl+Shift+S to calculate s			<u>heet</u>				
b _o	D _o	<u>k</u> ro	α	β	ξ	η	Gauged May 2	2011
0.000	0.000	0.000					AOI 8 / N-45	
0.008	0.000	0.000	0.0000	0.000001	0.0000	0.000001		
0.035	0.000	0.000	0.0077	0.000014	0.0078	0.000018	0.001	Eps-Do
0.067	0.000	0.000	0.0297	0.000073	0.0300	0.000098	0.001	Eps-kro

Monitoring Well LN	APL Thic	kness b _o (r	m) =	0.067	Gauged May 2011
	D _o =	2.711E-06	<u>k</u> ro =	3.637E-06	AOI 8 / N-45

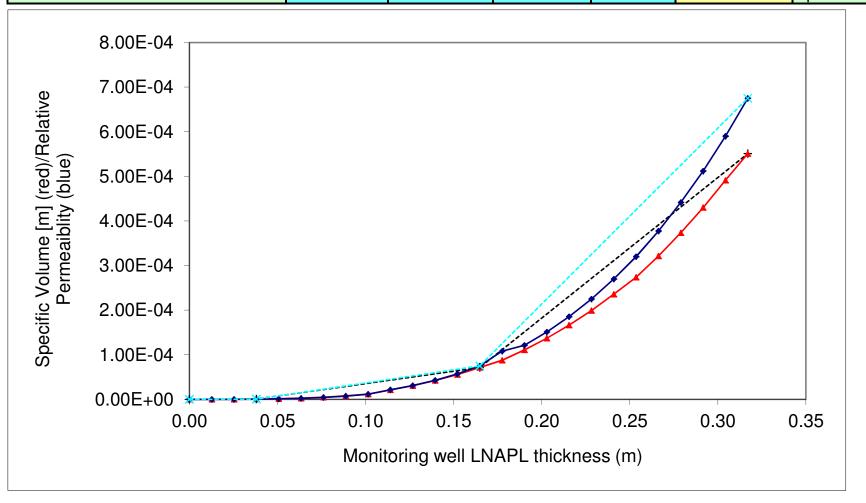
Enter Data in Yellow Region

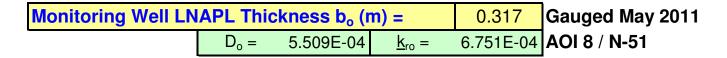
Maximum Monitoring Well				
LNAPL Thickne	ess (meters)			
b _o =	0.317			

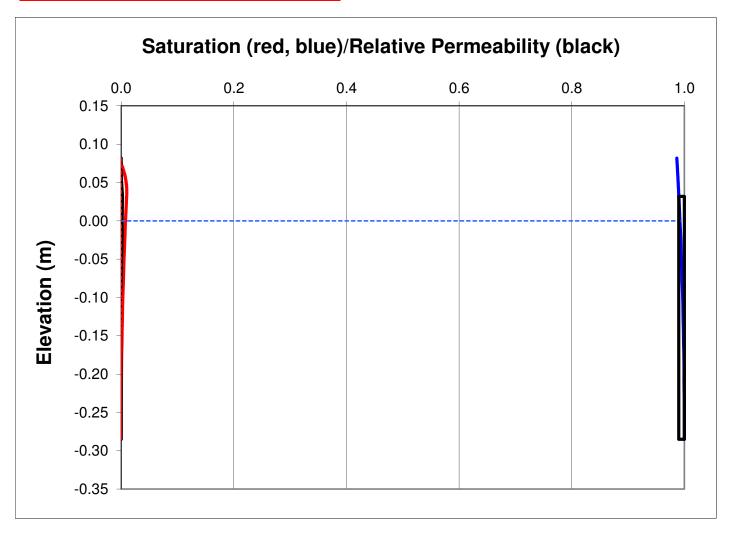
Gauged May 2011 AOI 8 / N-51

1.040 feet

Soil Characteristi	С	<u>SM</u>
n =	0.428	porosity
N =	2.160	van Genuchten "N"
α =	2.750	van Genuchten " α " [m^{-1}]
S _{wr} =	0.313	irreducible water saturation
S _{orv} =	0.000	residual LNAPL saturation (saturated)
S _{ors} =	0.000	residual LNAPL saturation (vadose)


Calculated Pa	arameters	
M =	0.537	van Genuchten "M"
$\alpha_{ao} =$	5.009	air/LNAPL "α"
$\alpha_{ow} =$	0.595	LNAPL/water "α"
z _{ao} =	0.032	elevation of air-LNAPL interface
$z_{ow} =$	-0.285	elevation of LNAPL-water interface
z _{max} =	0.082	maximum free-product elevation
λ =	0.841	pore-size distribution index
Ψ_{b} =	0.227	B-C displacement pressure head [m]


Press Ctrl+Shift+S to calculate sheet


Fluid Character	Resi	
$\rho_{o} =$	0.900	LNAPL
$\sigma_{aw} =$	65.000	air/wate
$\sigma_{ao} =$	32.100	air/oil (d
$\sigma_{ow} =$	30.200	oil/wate

Residual Oil

Data for curve-fitting segments				Press Ctrl+	Shift+S to d	calculate s	<u>heet</u>	
b _o	D _o	<u>k</u> ro	α	β	ξ	η	Gauged May	2011
0.000	0.000	0.000					AOI 8 / N-51	
0.038	0.000	0.000	0.0000	0.000014	0.0000	0.000011		
0.165	0.000	0.000	0.0371	0.000558	0.0374	0.000589	0.1	Eps-Do
0.317	0.001	0.001	0.1422	0.003152	0.1458	0.003944	0.1	Eps-kro

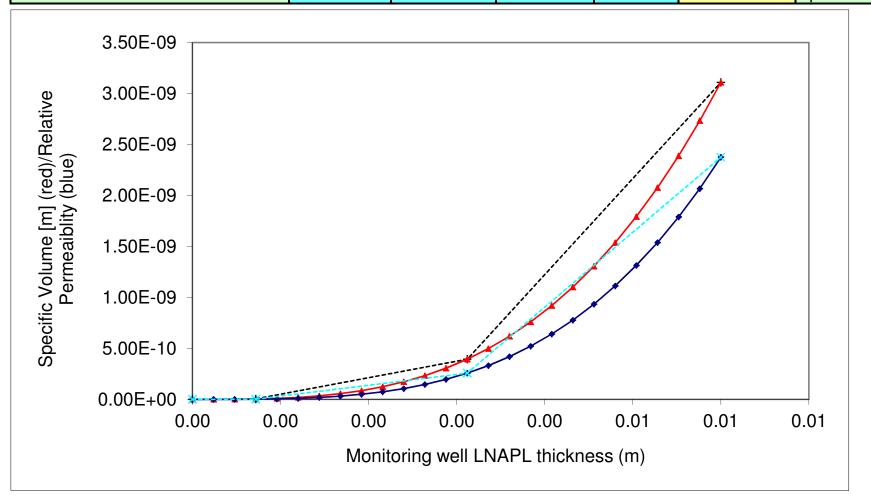
Enter Data in Yellow Region

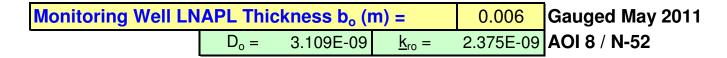
Maximum Monito	ring Well
LNAPL Thickness	(meters)
b _o =	0.006

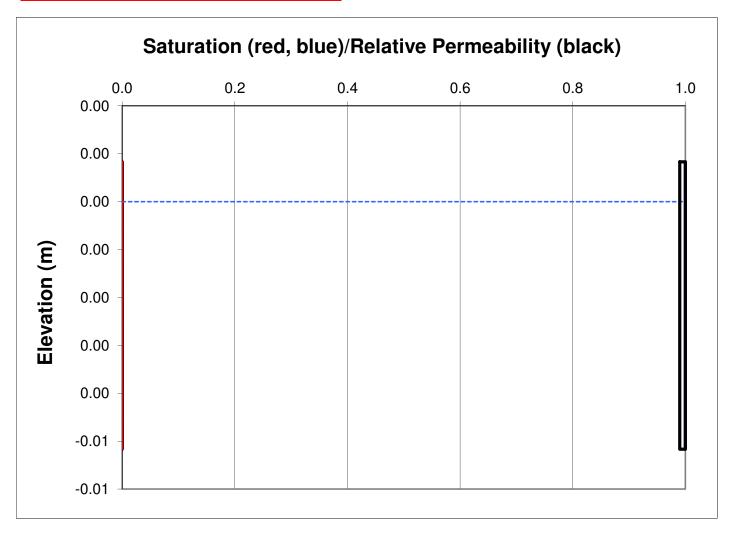
Gauged May 2011

AOI 8 / N-52 0.020 feet

Soil Characteristi	С	<u>SM</u>
n =	0.428	porosity
N =	2.160	van Genuchten "N"
α =	2.750	van Genuchten "α" [m ⁻¹]
S _{wr} =	0.313	irreducible water saturation
S _{orv} =	0.000	residual LNAPL saturation (saturated)
S _{ors} =	0.000	residual LNAPL saturation (vadose)


Calculated Pa	rameters	
M =	0.537	van Genuchten "M"
$\alpha_{ao} =$	4.796	air/LNAPL "α"
$\alpha_{ow} =$	0.821	LNAPL/water "α"
z _{ao} =	0.001	elevation of air-LNAPL interface
$z_{ow} =$	-0.005	elevation of LNAPL-water interface
z _{max} =	0.001	maximum free-product elevation
λ =	0.841	pore-size distribution index
Ψ_{b} =	0.227	B-C displacement pressure head [m]


Press Ctrl+Shift+S to calculate sheet


Fluid Characteristics:			
$\rho_{o} =$	0.861	LN	
$\sigma_{aw} =$	65.000	air	
$\sigma_{ao} =$	32.100	air	
$\sigma_{ow} =$	30.200	oil	

Residual Oil

Data for curve-fitting segments				Press Ctrl+	Shift+S to d	calculate s	<u>heet</u>	
b _o	D _o	<u>k</u> ro	α	β	ξ	η	Gauged May	2011
0.000	0.000	0.000					AOI 8 / N-52	2
0.001	0.000	0.000	0.0000	0.000000	0.0000	0.000000		
0.003	0.000	0.000	0.0007	0.000000	0.0007	0.000000	0.001	Eps-Do
0.006	0.000	0.000	0.0027	0.000001	0.0028	0.000001	0.001	Eps-kro

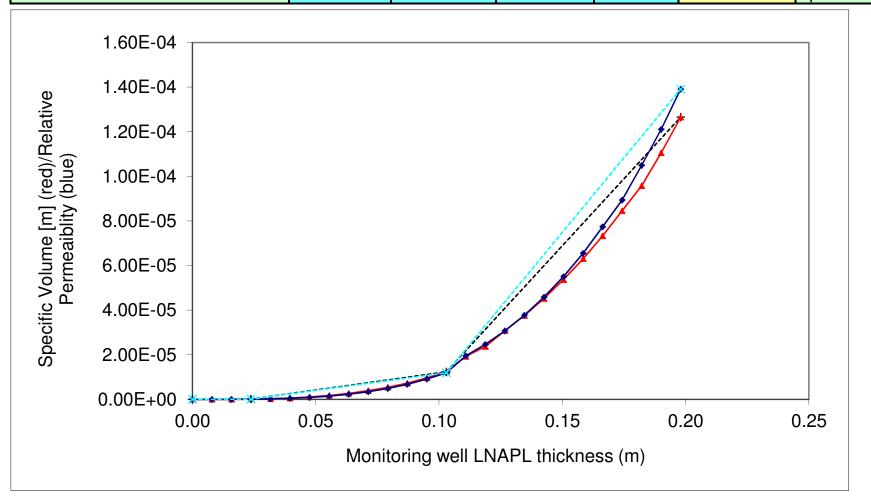
Enter Data in Yellow Region

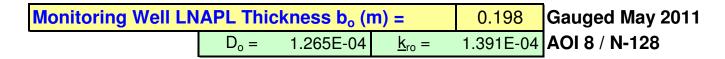
Maximum Mon	itoring Well			
LNAPL Thickness (meters)				
b _o =	0.198			

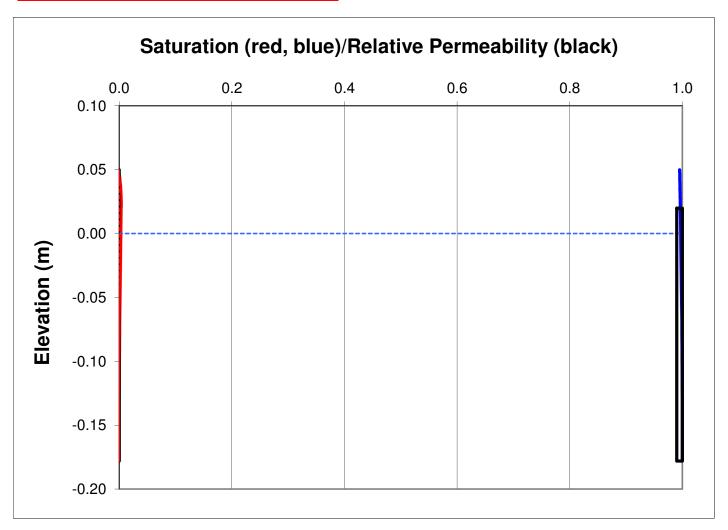
Gauged May 2011

AOI 8 / N-128 0.650 feet

Soil Characteristi	С	<u>SM</u>
n =	0.428	porosity
N =	2.160	van Genuchten "N"
α =	2.750	van Genuchten "α" [m ⁻¹]
S _{wr} =	0.313	irreducible water saturation
S _{orv} =	0.000	residual LNAPL saturation (saturated)
S _{ors} =	0.000	residual LNAPL saturation (vadose)


Calculated Pa	rameters	
M =	0.537	van Genuchten "M"
$\alpha_{ao} =$	5.009	air/LNAPL "α"
$\alpha_{ow} =$	0.595	LNAPL/water "α"
z _{ao} =	0.020	elevation of air-LNAPL interface
$z_{ow} =$	-0.178	elevation of LNAPL-water interface
z _{max} =	0.050	maximum free-product elevation
λ =	0.841	pore-size distribution index
Ψ_{b} =	0.227	B-C displacement pressure head [m]


Press Ctrl+Shift+S to calculate sheet


Fluid Characte	Resid	
ρ _o =	0.900	LNAPL o
$\sigma_{aw} =$	65.000	air/water
$\sigma_{ao} =$	32.100	air/oil (dy
$\sigma_{ow} =$	30.200	oil/water

Residual Oil

Data for curve-fitting segments				Press Ctrl+	Shift+S to	calculate s	<u>heet</u>	
b _o	D _o	<u>k</u> ro	α	β	ξ	η	Gauged May	2011
0.000	0.000	0.000					AOI 8 / N-12	8
0.024	0.000	0.000	0.0000	0.000005	0.0000	0.000003		
0.103	0.000	0.000	0.0230	0.000154	0.0232	0.000149	0.1	Eps-Do
0.198	0.000	0.000	0.0927	0.001202	0.0941	0.001338	0.1	Eps-kro

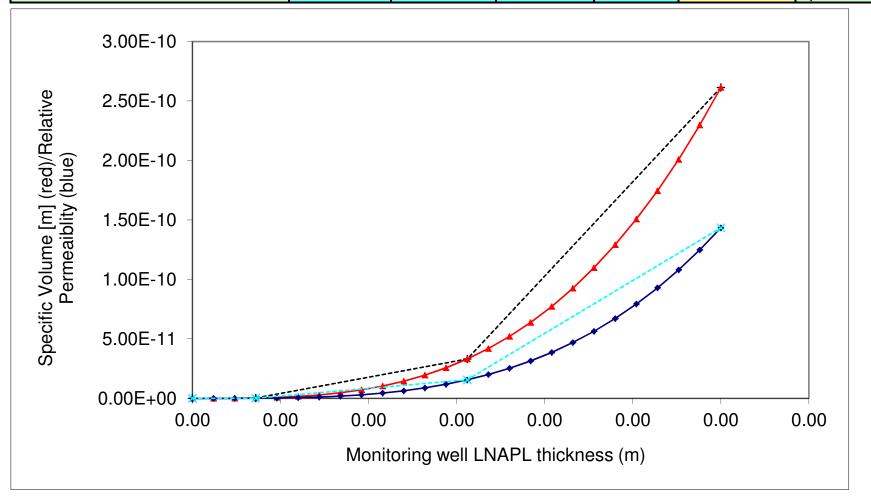
Enter Data in Yellow Region

Maximum Monito				
LNAPL Thickness (meters)				
b _o =	0.003			

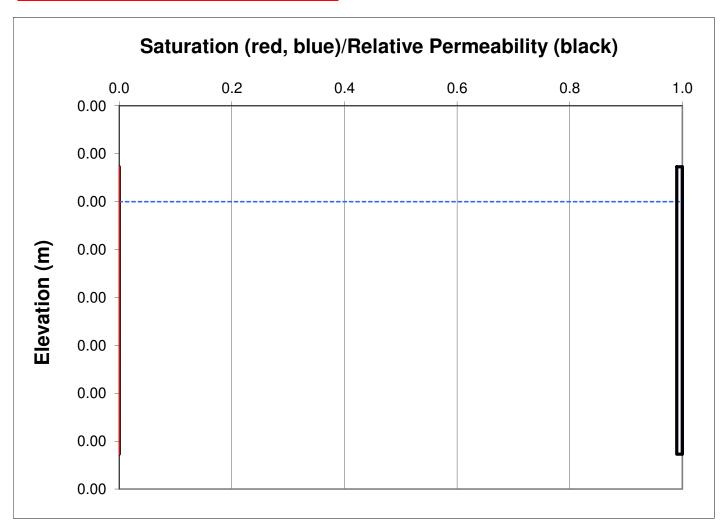
Gauged May 2011 AOI 8 / RW-201

0.010 feet

Soil Characteris	tic	<u>SM</u>
n =	0.428	porosity
N =	2.160	van Genuchten "N"
α =	2.750	van Genuchten "α" [m ⁻¹]
$S_{wr} =$	0.313	irreducible water saturation
S _{orv} =	0.000	residual LNAPL saturation (saturated)
S _{ors} =	0.000	residual LNAPL saturation (vadose)


Calculated Pa	arameters	
M =	0.537	van Genuchten "M"
$\alpha_{ao} =$	4.892	air/LNAPL "α"
$\alpha_{ow} =$	0.719	LNAPL/water "α"
z _{ao} =	0.000	elevation of air-LNAPL interface
z _{ow} =	-0.003	elevation of LNAPL-water interface
z _{max} =	0.000	maximum free-product elevation
λ =	0.841	pore-size distribution index
Ψ_{b} =	0.227	B-C displacement pressure head [m]

Press Ctrl+Shift+S to calculate sheet


Fluid Characteristics:			
ρ _o =	0.879	LNAF	
$\sigma_{aw} =$	65.000	air/wa	
$\sigma_{ao} =$	32.100	air/oil	
$\sigma_{ow} =$	30.200	oil/wa	

Residual Oil

Data for curve-fitting segments			Press Ctrl+	Shift+S to c	calculate s	<u>heet</u>		
b _o	D _o	<u>k</u> ro	α	β	ξ	η	Gauged May	2011
0.000	0.000	0.000					AOI 8 / RW-2	01
0.000	0.000	0.000	0.0000	0.000000	0.0000	0.000000		
0.002	0.000	0.000	0.0003	0.000000	0.0004	0.000000	0.001	Eps-Do
0.003	0.000	0.000	0.0014	0.000000	0.0014	0.000000	0.001	Eps-kro

Monitoring Well LN	ing Well LNAPL Thickness b _o (m) =				Gauged May 2011
	D _o =	2.613E-10	<u>k</u> ro =	1.434E-10	AOI 8 / RW-201

Enter Data in Yellow Region

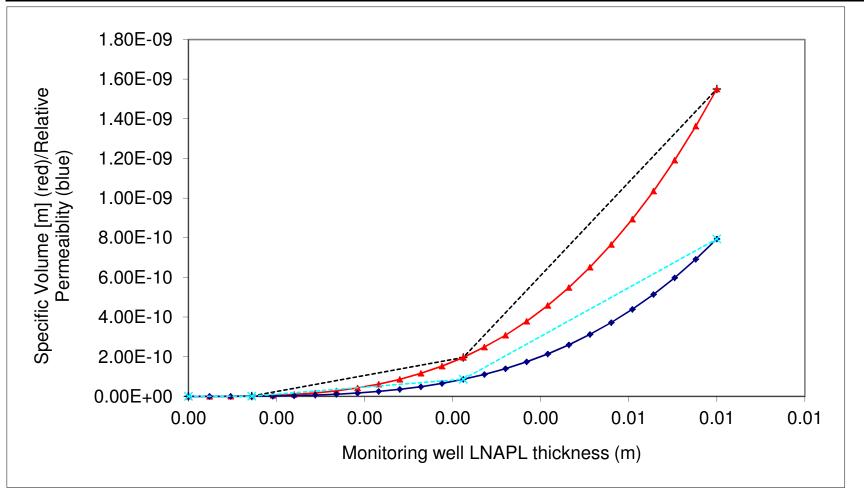
Maximum Monitor	ring Well
LNAPL Thickness	(meters)
b _o =	0.006

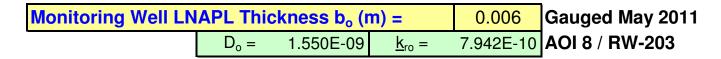
Gauged May 2011

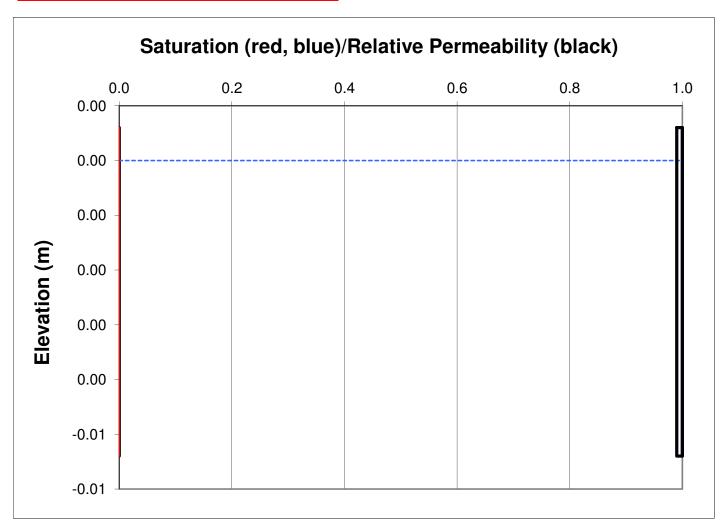
AOI 8 / RW-203 0.020 feet

Soil Characteris	tic	<u>SM</u>
n =	0.428	porosity
N =	2.160	van Genuchten "N"
α =	2.750	van Genuchten "α" [m ⁻¹]
S _{wr} =	0.313	irreducible water saturation
S _{orv} =	0.000	residual LNAPL saturation (saturated)
S _{ors} =	0.000	residual LNAPL saturation (vadose)

Calculated Pa	arameters	
M =	0.537	van Genuchten "M"
α _{ao} =	5.009	air/LNAPL "α"
$\alpha_{ow} =$	0.595	LNAPL/water "α"
z _{ao} =	0.001	elevation of air-LNAPL interface
z _{ow} =	-0.005	elevation of LNAPL-water interface
z _{max} =	0.001	maximum free-product elevation
λ =	0.841	pore-size distribution index
Ψ_{b} =	0.227	B-C displacement pressure head [m]


Press Ctrl+Shift+S to calculate sheet


Fluid Character	Residua	
ρ _o =	0.900	LNAPL der
$\sigma_{aw} =$	65.000	air/water (c
$\sigma_{ao} =$	32.100	air/oil (dyne
$\sigma_{ow} =$	30.200	oil/water (d


ıal Oil

ensity (gm/cc) (dynes/cm) nes/cm) dynes/cm)

Data for cu	urve-fitting se	gments		Press Ctrl+Shift+S to calculate sheet				
b _o	D _o	<u>k</u> ro	α	β	ξ	η	Gauged May	2011
0.000	0.000	0.000					AOI 8 / RW-20	03
0.001	0.000	0.000	0.0000	0.000000	0.0000	0.000000		
0.003	0.000	0.000	0.0007	0.000000	0.0007	0.000000	0.001	Eps-Do
0.006	0.000	0.000	0.0027	0.000000	0.0028	0.000000	0.001	Eps-kro

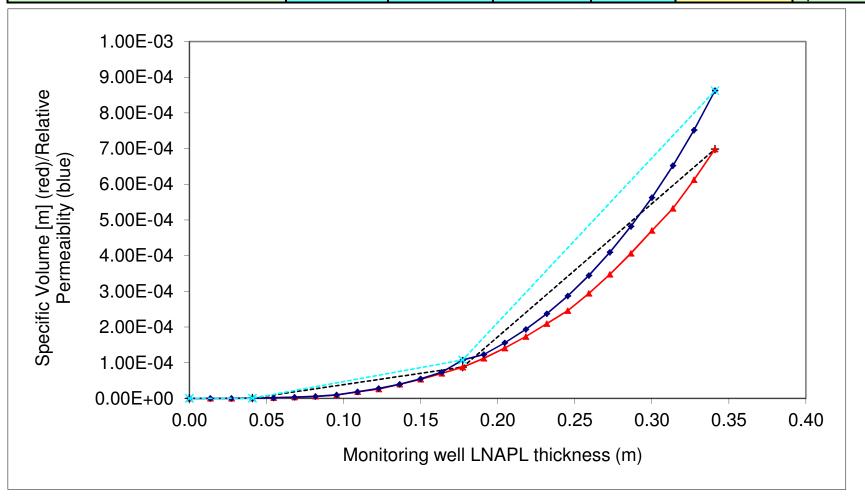
Enter Data in Yellow Region

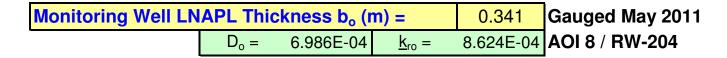
Maximum Monitoring Well						
LNAPL Thickness (meters)						
b _o =	0.341					

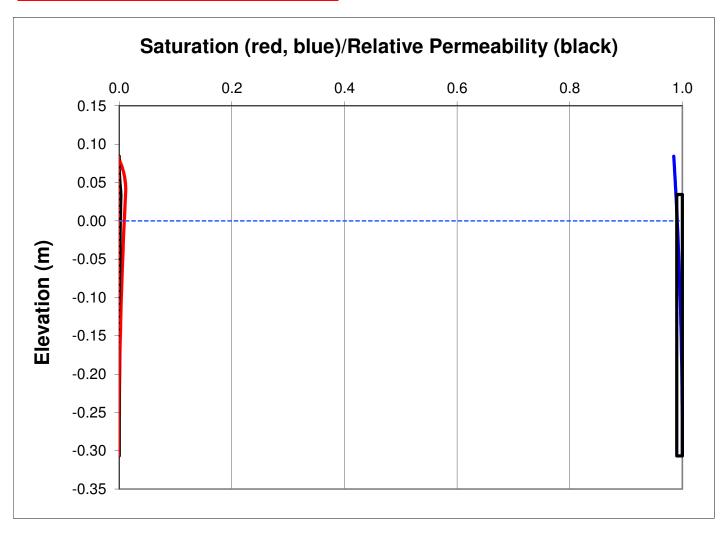
Gauged May 2011

AOI 8 / RW-204 1.120 feet

Soil Characteristic		<u>SM</u>
n =	0.428	porosity
N =	2.160	van Genuchten "N"
α =	2.750	van Genuchten "α" [m ⁻¹]
S _{wr} =	0.313	irreducible water saturation
S _{orv} =	0.000	residual LNAPL saturation (saturated)
S _{ors} =	0.000	residual LNAPL saturation (vadose)


Calculated Pa	arameters	
M =	0.537	van Genuchten "M"
$\alpha_{ao} =$	5.009	air/LNAPL "α"
$\alpha_{ow} =$	0.595	LNAPL/water "α"
z _{ao} =	0.034	elevation of air-LNAPL interface
z _{ow} =	-0.307	elevation of LNAPL-water interface
z _{max} =	0.084	maximum free-product elevation
λ =	0.841	pore-size distribution index
$\Psi_b =$	0.227	B-C displacement pressure head [m]


Press Ctrl+Shift+S to calculate sheet


Fluid Character	Residual Oil	
ρ _o =	0.900	LNAPL density (gm/c
$\sigma_{aw} =$	65.000	air/water (dynes/cm)
$\sigma_{ao} =$	32.100	air/oil (dynes/cm)
$\sigma_{ow} =$	30.200	oil/water (dynes/cm)

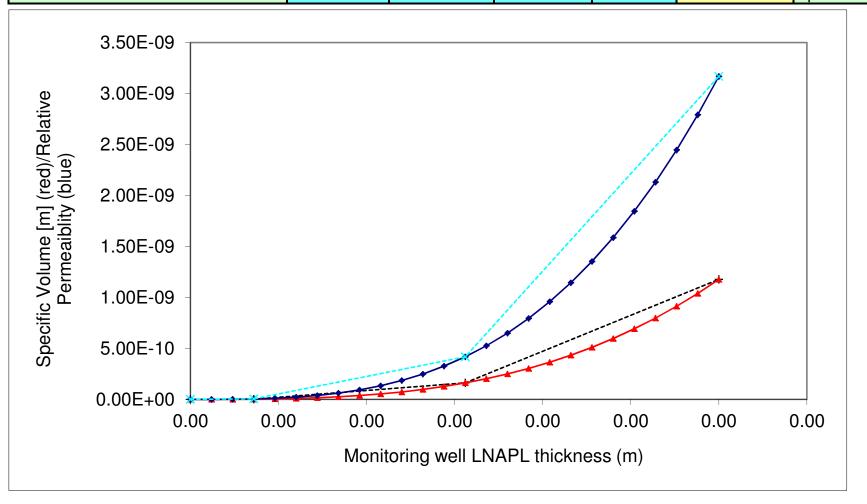
y (gm/cc) es/cm) cm)

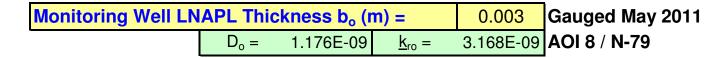
Data for cu	urve-fitting se	gments		Press Ctrl+Shift+S to calculate sheet				
b _o	D _o	<u>k</u> ro	α	β	ξ	η	Gauged May	y 2011
0.000	0.000	0.000					AOI 8 / RW-204	
0.041	0.000	0.000	0.0000	0.000016	0.0000	0.000013		
0.177	0.000	0.000	0.0399	0.000635	0.0403	0.000784	0.1	Eps-Do
0.341	0.001	0.001	0.1540	0.003735	0.1540	0.004612	0.1	Eps-kro

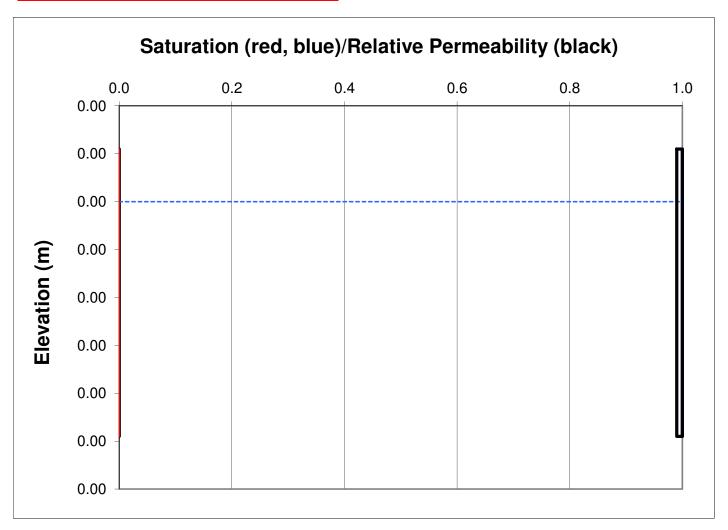
Enter Data in Yellow Region

Maximum Monito	ring Well
LNAPL Thickness	s (meters)
b _o =	0.003

Gauged May 2011


AOI 8 / N-790.010 feet


Soil Characteris	tic	SW-SM
n =	0.388	porosity
N =	2.040	van Genuchten "N"
α =	1.990	van Genuchten "α" [m ⁻¹]
$S_{wr} =$	0.253	irreducible water saturation
S _{orv} =	0.000	residual LNAPL saturation (saturated)
S _{ors} =	0.000	residual LNAPL saturation (vadose)


Calculated Pa	arameters	
M =	0.510	van Genuchten "M"
α _{ao} =	3.928	air/LNAPL "α"
$\alpha_{ow} =$	1.062	LNAPL/water "α"
z _{ao} =	0.001	elevation of air-LNAPL interface
z _{ow} =	-0.002	elevation of LNAPL-water interface
z _{max} =	0.001	maximum free-product elevation
λ =	0.773	pore-size distribution index
$\Psi_{b} =$	0.313	B-C displacement pressure head [m]

Fluid Characte	Middle Distillate	
ρ _o =	0.817	LNAPL density (gm/cc)
$\sigma_{aw} =$	65.000	air/water (dynes/cm)
$\sigma_{ao} =$	26.900	air/oil (dynes/cm)
$\sigma_{ow} =$	22.300	oil/water (dynes/cm)

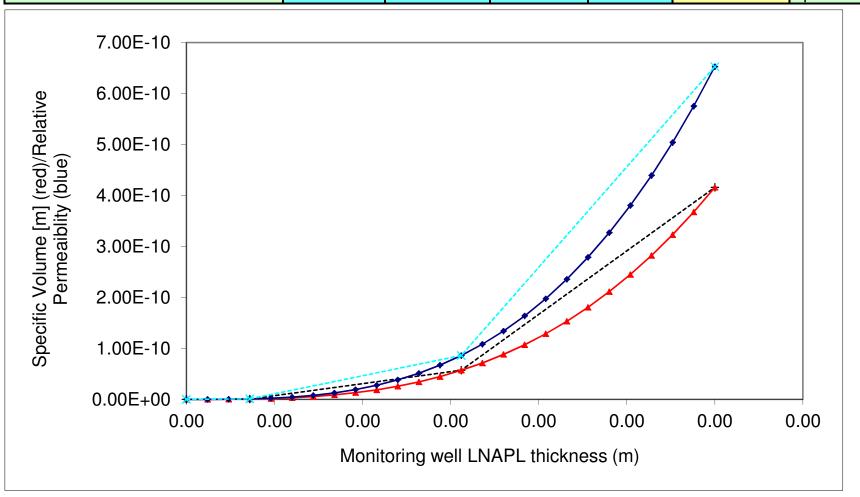
Data for cu	urve-fitting se	gments		Press Ctrl+Shift+S to calculate sheet				
b _o	D _o	<u>k</u> ro	α	β	ξ	η	Gauged May	2011
0.000	0.000	0.000					AOI 8 / N-79	
0.000	0.000	0.000	0.0000	0.000000	0.0000	0.000000		
0.002	0.000	0.000	0.0003	0.000000	0.0003	0.000000	0.001	Eps-Do
0.003	0.000	0.000	0.0013	0.000001	0.0013	0.000002	0.001	Eps-kro

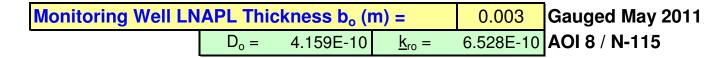
Enter Data in Yellow Region

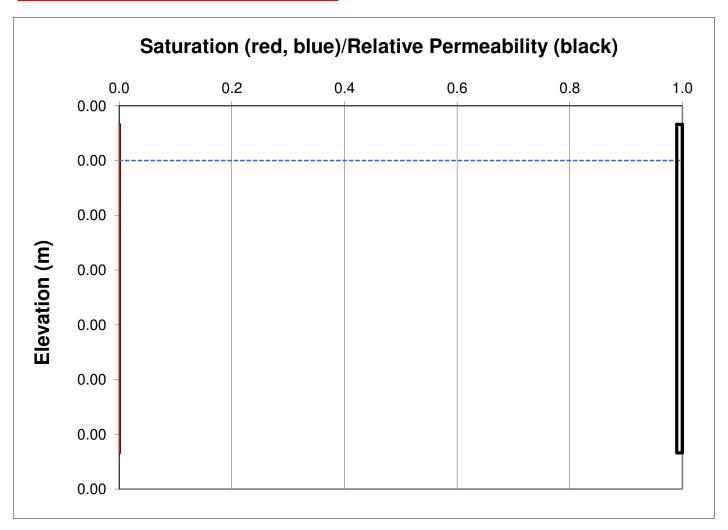
Maximum Monitor	ing Well
LNAPL Thickness	(meters)
b _o =	0.003

Gauged May 2011

AOI 8 / N-115 0.010 feet


Soil Characterist	ic	SW-SM
n =	0.388	porosity
N =	2.040	van Genuchten "N"
α =	1.990	van Genuchten "α" [m ⁻¹]
S _{wr} =	0.253	irreducible water saturation
S _{orv} =	0.000	residual LNAPL saturation (saturated)
S _{ors} =	0.000	residual LNAPL saturation (vadose)


Calculated Pa		
M =	0.510	van Genuchten "M"
α _{ao} =	4.280	air/LNAPL "α"
$\alpha_{ow} =$	0.638	LNAPL/water "α"
z _{ao} =	0.000	elevation of air-LNA
z _{ow} =	-0.003	elevation of LNAPL-
z _{max} =	0.000	maximum free-produ
λ =	0.773	pore-size distribution
$\Psi_{b} =$	0.313	B-C displacement pr


NPL interface -water interface duct elevation on index pressure head [m]

Fluid Characte	Middle Distillate	
ρ _o =	0.890	LNAPL density (gm/cc)
$\sigma_{aw} =$	65.000	air/water (dynes/cm)
$\sigma_{ao} =$	26.900	air/oil (dynes/cm)
$\sigma_{ow} =$	22.300	oil/water (dynes/cm)

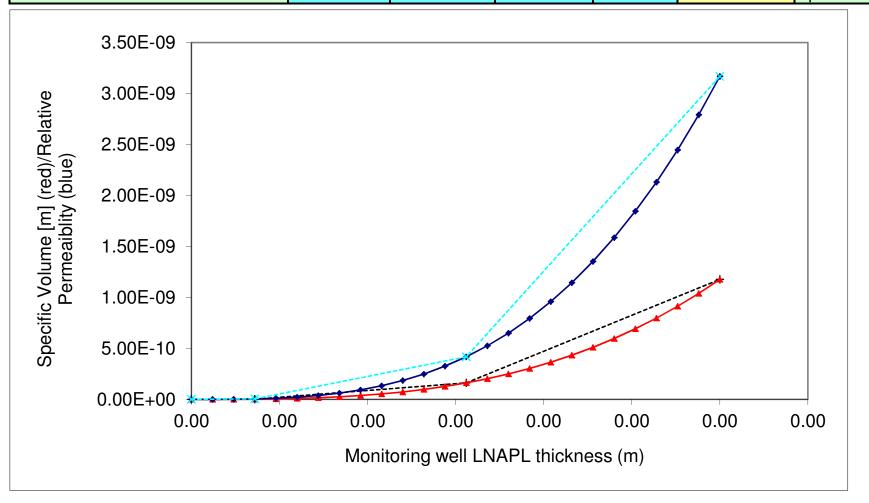
Data for co	urve-fitting se	egments		Press Ctrl+Shift+S to calculate sheet				
b _o	D _o	<u>k</u> ro	α	β	ξ	η	Gauged May 2011	
0.000	0.000	0.000					AOI 8 / N-11	5
0.000	0.000	0.000	0.0000	0.000000	0.0000	0.000000		
0.002	0.000	0.000	0.0003	0.000000	0.0003	0.000000	0.001	Eps-Do
0.003	0.000	0.000	0.0013	0.000000	0.0013	0.000000	0.001	Eps-kro

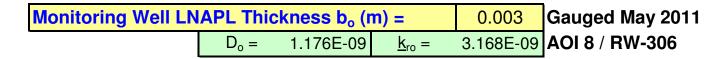
van Genuchten-Mualem Model of LNAPL Distribution and Relative Permeability

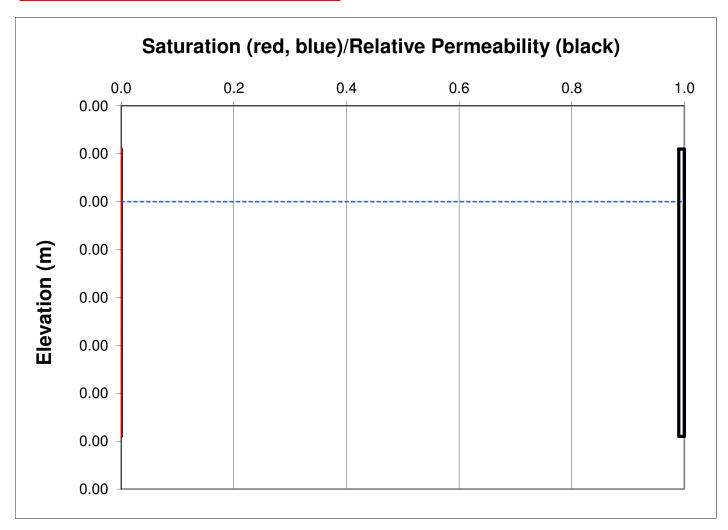
Enter Data in Yellow Region

Maximum Monitor	ing Well
LNAPL Thickness	(meters)
b _o =	0.003

Gauged May 2011


AOI 8 / RW-306 0.010 feet


Soil Characteris	stic	SW-SM
n =	0.388	porosity
N =	2.040	van Genuchten "N"
α =	1.990	van Genuchten "α" [m ⁻¹]
$S_{wr} =$	0.253	irreducible water saturation
S _{orv} =	0.000	residual LNAPL saturation (saturated)
S _{ors} =	0.000	residual LNAPL saturation (vadose)


Calculated P	arameters	
M =	0.510	van Genuchten "M"
α_{ao} =	3.928	air/LNAPL "α"
$\alpha_{ow} =$	1.062	LNAPL/water "α"
z _{ao} =	0.001	elevation of air-LNAPL interface
z _{ow} =	-0.002	elevation of LNAPL-water interface
z _{max} =	0.001	maximum free-product elevation
λ =	0.773	pore-size distribution index
$\Psi_b =$	0.313	B-C displacement pressure head [m]

Fluid Characte	Middle Distillate	
ρ _o =	0.817	LNAPL density (gm/cc)
$\sigma_{aw} =$	65.000	air/water (dynes/cm)
$\sigma_{ao} =$	26.900	air/oil (dynes/cm)
$\sigma_{ow} =$	22.300	oil/water (dynes/cm)

Data for co	urve-fitting se	egments		Press Ctrl+Shift+S to calculate sheet					
b _o	D _o	<u>k</u> ro	α	β	ξ	η	Gauged May	2011	
0.000	0.000	0.000					AOI 8 / RW-306		
0.000	0.000	0.000	0.0000	0.000000	0.0000	0.000000			
0.002	0.000	0.000	0.0003	0.000000	0.0003	0.000000	0.001	Eps-Do	
0.003	0.000	0.000	0.0013	0.000001	0.0013	0.000002	0.001	Eps-kro	

van Genuchten-Mualem Model of LNAPL Distribution and Relative Permeability

Enter Data in Yellow Region

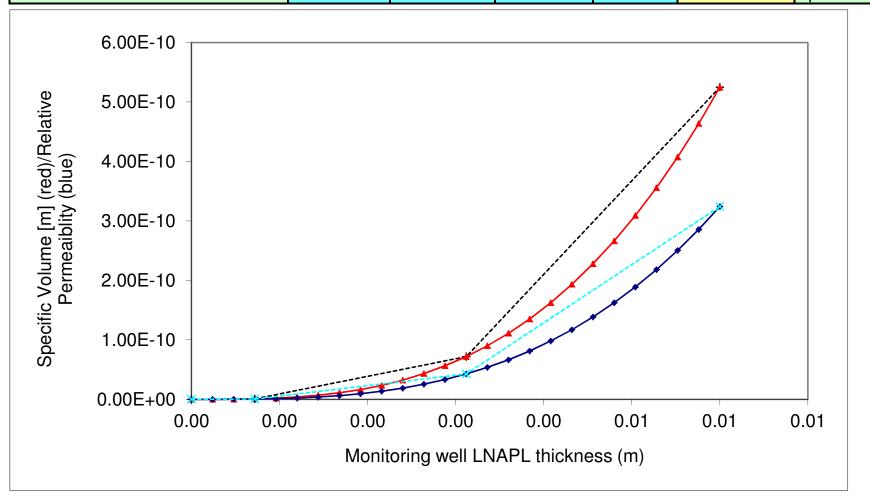
Maximum Monito	ring Well
LNAPL Thickness	s (meters)
b _o =	0.006

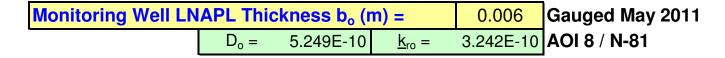
Gauged May 2011 **AOI 8** / **N-81**

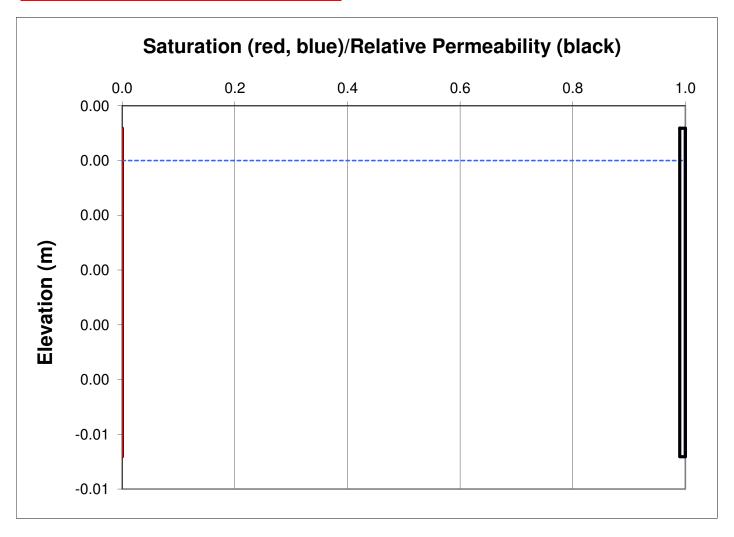
0.020 feet

Soil Characteris	tic	SW-SM
n =	0.388	porosity
N =	2.040	van Genuchten "N"
α =	1.990	van Genuchten "α" [m ⁻¹]
$S_{wr} =$	0.253	irreducible water saturation
S _{orv} =	0.000	residual LNAPL saturation (saturated)
S _{ors} =	0.000	residual LNAPL saturation (vadose)

Calculated Pa	arameters			
M =	0.510	van Genuchten "M"		
$\alpha_{ao} =$	5.553	air/LNAPL "α"		
$\alpha_{ow} = 0.255$		LNAPL/water "α"		
$Z_{ao} = 0.001$		elevation of air-LNAPL interface		
Z _{ow} =	-0.005	elevation of LNAPL-water interface		
z _{max} =	0.001	maximum free-product elevation		
λ =	0.773	pore-size distribution index		
Ψ_b =	0.313	B-C displacement pressure head [m]		


Press Ctrl+Shift+S to calculate sheet


Fluid Characteristics:						
ρ _o =	0.902	LNA				
$\sigma_{aw} =$	65.000	air/				
$\sigma_{ao} =$	21.000	air/				
$\sigma_{ow} =$	50.000	oil/\				


Lube Oil

LNAPL density (gm/cc) air/water (dynes/cm) air/oil (dynes/cm) oil/water (dynes/cm)

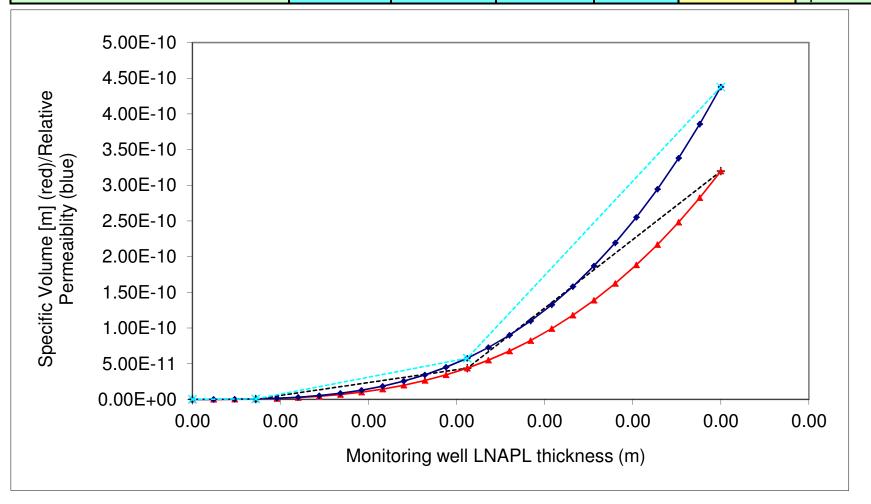
Data for cu	urve-fitting se	gments		Press Ctrl+	Shift+S to d	calculate s	<u>heet</u>	
b _o	D _o	<u>k</u> ro	α	β	ξ	η	Gauged May 2011	
0.000	0.000	0.000					AOI 8 / N-81	
0.001	0.000	0.000	0.0000	0.000000	0.0000	0.000000		
0.003	0.000	0.000	0.0007	0.000000	0.0007	0.000000	0.001	Eps-Do
0.006	0.000	0.000	0.0027	0.000000	0.0027	0.000000	0.001	Eps-kro

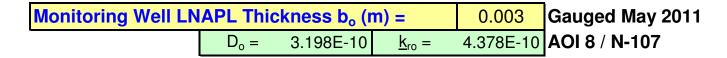
van Genuchten-Mualem Model of LNAPL Distribution and Relative Permeability

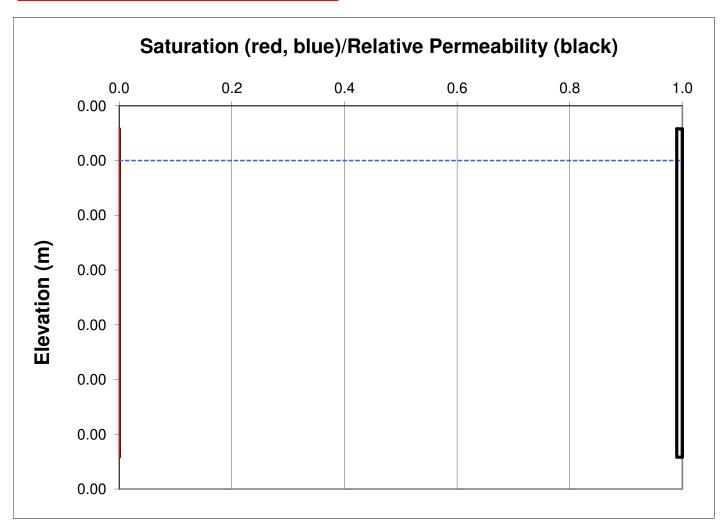
Enter Data in Yellow Region

Maximum Monitor	ring Well
LNAPL Thickness	(meters)
b _o =	0.003

Gauged May 2011


AOI 8 / N-1070.010 feet


Soil Characteris	stic	SW-SM
n =	0.388	porosity
N =	2.040	van Genuchten "N"
α =	1.990	van Genuchten "α" [m ⁻¹]
S _{wr} =	0.253	irreducible water saturation
S _{orv} =	0.000	residual LNAPL saturation (saturated)
S _{ors} =	0.000	residual LNAPL saturation (vadose)


Calculated Pa	arameters	
M =	0.510	van Genuchten "M"
$\alpha_{ao} =$	4.344	air/LNAPL "α"
$\alpha_{ow} =$	0.561	LNAPL/water "α"
z _{ao} =	0.000	elevation of air-LNAPL interface
$z_{ow} =$	-0.003	elevation of LNAPL-water interface
z _{max} =	0.000	maximum free-product elevation
λ =	0.773	pore-size distribution index
$\Psi_b =$	0.313	B-C displacement pressure head [m]

Fluid Character	Middle Distillate	
ρ _o =	0.903	LNAPL density (gm/cc)
$\sigma_{aw} =$	65.000	air/water (dynes/cm)
$\sigma_{ao} =$	26.900	air/oil (dynes/cm)
$\sigma_{ow} =$	22.300	oil/water (dynes/cm)

Data for cu	urve-fitting se	rve-fitting segments Press Ctrl+Shift+S to calculate sheet						
b _o	D _o	<u>k</u> ro	α	β	ξ	η	Gauged May	2011
0.000	0.000	0.000					AOI 8 / N-10	7
0.000	0.000	0.000	0.0000	0.000000	0.0000	0.000000		
0.002	0.000	0.000	0.0003	0.000000	0.0003	0.000000	0.001	Eps-Do
0.003	0.000	0.000	0.0013	0.000000	0.0013	0.000000	0.001	Eps-kro

van Genuchten-Mualem Model of LNAPL Distribution and Relative Permeability

Enter Data in Yellow Region

Maximum Monitoring Well

LNAPL Thickness (meters)

b₀ = 0.744

Gauged May 2011

AOI 8 / P-302.440 feet

Soil Characteri	stic
n =	0.388
N =	2.040
α =	1.990
$S_{wr} =$	0.253
S _{orv} =	0.000
S _{ors} =	0.000

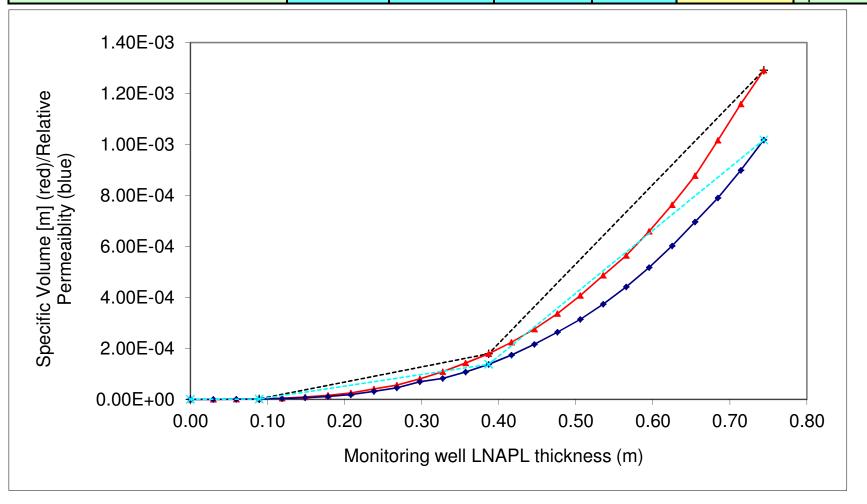
SW-SM

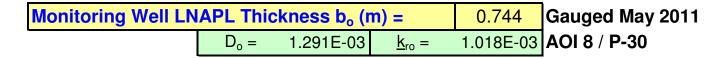
porosity
van Genuchten "N"
van Genuchten "α" [m⁻¹]
irreducible water saturation
residual LNAPL saturation (saturated)
residual LNAPL saturation (vadose)

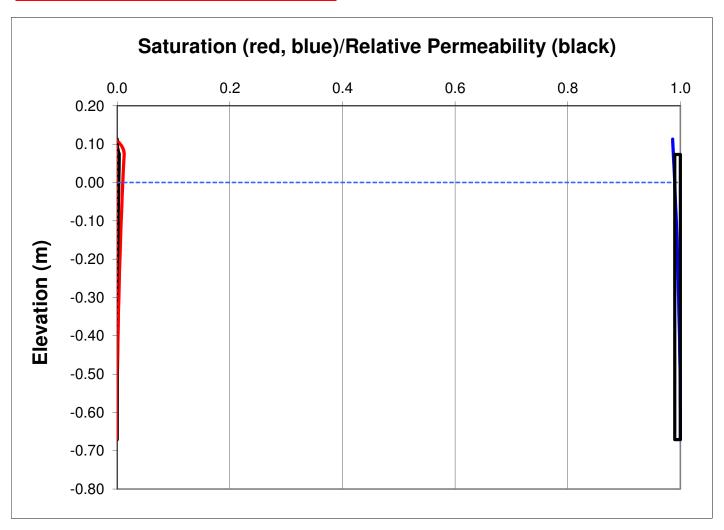
Calculated Pa	rameters	
M =	0.510	var
$\alpha_{ao} =$	5.553	air
$\alpha_{ow} =$	0.255	LN
$z_{ao} =$	0.073	ele
$z_{ow} =$	-0.671	ele
$z_{max} =$	0.113	ma
λ =	0.773	por
Ψ_{b} =	0.313	B-0

van Genuchten "M"
air/LNAPL "\alpha"
LNAPL/water "\alpha"
elevation of air-LNAPL interface
elevation of LNAPL-water interface
maximum free-product elevation
pore-size distribution index
B-C displacement pressure head [m]

Press Ctrl+Shift+S to calculate sheet


Fluid Characteristics:


ila Offaracteristics.			
ρ _o =	0.902		
$\sigma_{aw} =$	65.000		
$\sigma_{ao} =$	21.000		
$\sigma_{ow} =$	50.000		


Lube Oil

LNAPL density (gm/cc) air/water (dynes/cm) air/oil (dynes/cm) oil/water (dynes/cm)

Data for co	urve-fitting se	egments		Press Ctrl+Shift+S to calculate s			<u>sheet</u>		
b _o	D _o	<u>k</u> ro	α	β	ξ	η	Gauged May	y 2011	
0.000	0.000	0.000					AOI 8 / P-3	0	
0.089	0.000	0.000	0.0000	0.000022	0.0000	0.000015			
0.387	0.000	0.000	0.0860	0.000595	0.0864	0.000458	0.1	Eps-Do	
0.744	0.001	0.001	0.3294	0.003115	0.3311	0.002466	0.1	Eps-kro	

INDOOR AIR BUILDING SURVEY and SAMPLING FORM

The state of the s
Preparer's name: Tiffani Doerr Date: 3/19/09
Preparer's affiliation: Aquaterra Technologies Phone #:
Preparer's affiliation: Aquaterra Technologies Phone #: Site Name: Phily Remery A01-8 Case #:
Part I - Occupants
Building Address:
Property Contact: Owner / Renter / other:
Contact's Phone: home 215 685-178 work () cell ()
of Building occupants: Children under age 13 Children age 13-18 Adults 2 pu shift
Property Contact:Owner / Renter / other: Contact's Phone: home 215 685-178 work () cell () # of Building occupants: Children under age 13 Children age 13-18 Adults 2 pm shift Part II - Building Characteristics (occupred 24/7)
Building type: residential / multi-family residential / office / strip mall / commercial / industrial STEUCTURE Describe building: Curder Block
Describe building: Cynder Block Year constructed: 1954 (Addition
Sensitive population: day care / nursing home / hospital / school / other (specify): Nove later date
Number of floors below grade: X (full basement / crawl space / slab on grade) Crawl space under
Number of floors at or above grade:
Depth of basement below grade surface: 4 ft. Basement size: 969 ft ²
Basement floor construction: concrete) dirt / floating / stone / other (specify):
Foundation walls: poured concrete / (cinder blocks) stone / other (specify)
Basement sump present? Yes / No Sump pump? Yes / No Water in sump? Yes / No Some times
hot air circulation hot air radiation wood steam radiation heat pump hot water radiation kerosene heater electric baseboard
ype of ventilation system (circle all that apply): Large fan in Kitchen central air conditioning mechanical fans bathroom ventilation fans outside air intake other (specify):
ype of fuel utilized (circle all that apply):

Natural gas / electric / fuel oil / wood / coal / solar / kerosene

Are the basement walls or floor sealed with waterproof paint or epoxy coatings?

Is there a whole house fan?	Yes / No	
Septic system?	Yes / Yes (but not used) / No	
Irrigation/private well?	Yes / Yes (but not used) / No	
Type of ground cover outside of b	ouilding: grass concrete (asphalt) oth	er (specify)
Existing subsurface depressurizati	on (radon) system in place? Yes No) active / passive
Sub-slab vapor/moisture barrier in Type of barrier:		
Part III - Outside Contaminant	Sources	
NJDEP contaminated site (1000-	ft. radius):	
Other stationary sources nearby (g	as stations, emission stacks, etc.):	•
	other mobile sources):	
Part IV – Indoor Contaminant S		
source (floor and room), and whet	es found in the building (including attached her the item was removed from the building implemented after removal of the items sho of the indoor air sampling event.	g 48 hours prior to indoor ai
Potential Sources	Location(s)	Removed (Yes / No / NA)
Gasoline storage cans		(33,71,71,71,71,71,71,71,71,71,71,71,71,71,
Gas-powered equipment		
Kerosene storage cans		
Paints / thinners / strippers		
Cleaning solvents		
Oven cleaners		***************************************
Carpet / upholstery cleaners		
Other house cleaning products		
Moth balls		
Polishes / waxes		
1 Offshies / Waves		
Insecticides		

NA

NA

NA

Hairspray

Cologne / perfume
Air fresheners

Fuel tank (inside building)

New furniture / upholstery New carpeting / flooring

Hobbies - glues, paints, etc.

Wood stove or fireplace

Part V – Miscellaneous Items			
Do any occupants of the building smoke?	Ves /No	How often?	
Last time someone smoked in the building	g?	hours / days	ago
Does the building have an attached garage directly	connected to living s	pace? Yes (No
If so, is a car usually parked in the garage	? Yes / No	•	•
Are gas-powered equipment or cans of ga	soline/fuels stored in t	he garage?	Yes / No
Do the occupants of the building have their clothe	s dry cleaned?	Yes No	
If yes, how often? weekly / monthly	/ 3-4 times a year		*have separa
Do any of the occupants use solvents in work?	Yes / No	5	Horace bldg for
If yes, what types of solvents are used	?		items alth
If yes, are their clothes washed at work?	Yes / No		Some end
Have any pesticides/herbicides been applied arour	nd the building or in th	e yard?	Yes / No water pu
If so, when and which chemicals?			noted
Has there ever been a fire in the building?	'es (No)	If yes, when?	Store
Has painting or staining been done in the build	ding in the last 6 mo	nths?	Yes (No blde
If yes, when a	nd where?		·
Part VI – Sampling Information (Separa Sample Technician:	resheet.)		
Sample Technician:	Phone number:	: (')	
Sample Source: Indoor Air / Sub-Slab / Near Sl	ab Soil Gas / Exterior	Soil Gas	
Sampler Type: Tedlar bag / Sorbent / Stainless	Steel Canister / Other	(specify):	
Analytical Method: TO-15 / TO-17 / other:	Cert. L	aboratory:	
Sample locations (floor, room):	•		
Field ID #	Field ID #		
Field ID #	Field ID#		
Were "Instructions for Occupants" followed? If not, describe modifications:	Yes /No		

Provide Drawing of Sample Location(s) in Building

1	
PGN	
goroge River Rd.	
* * * * * * * * * * * * * * * * * * *	Water Ime
Grassia Addition gas line m	of Known (no eter), but a bldg. who lectric
ORIGINAL ELEC. Above el	> bldg. who
grade	Comes in ,
Concide	•
1 CONCIO	·
PATH & See bottom of page for	
Part VII - Meteorological Conditions bldg. measurement	15.
Was there significant precipitation within 12 hours prior to (or during) the sampling event? Yes / N	lo .
Describe the general weather conditions:	<u> </u>
	·
Part VIII – General Observations	
Provide any information that may be pertinent to the sampling event and may assist in the data interpretation process.	
	
(NJDEP 1997; NHDES 1998; VDOH 1998; MassDEP 2002; NYSDOH 2005; CalEPA 200	5)
65/ 13	- ,
ADDITION STATE	
N SCAPOLE R	
UE / 28	
OPICINAL WICKAML	
WISPACE	

Table H-1

Summary of Soil Gas Sample Analytical Results AOI 8 Site Characterization/Remedial Investigation Report Sunoco Philadelphia Refinery Philadelphia, Pennsylvania

	CAS No	PADEP Indoor Air Criteria Non-Residential MSC x100	Location ID Sample ID Sample Matrix Sample Date	O SG-1_AOI 8 Grab Air trix SG tte 4/23/2009			SG-2 AOI 8 Grab Air SG /23/2009	_	SG-3 AOI 8 Grab Air SG /23/2009	SG-4 SG-4_AOI 8 Grab Air SG 4/23/2009		
Volatile Organic Compounds			Unit	Unit Result Q RL R		Result Q RL		Result Q RL		Result	Q RL	
Naphthalene	91-20-3	0.88	mg/m ³	ND	10	ND	0.52	ND	0.52	ND	1	
Methyl Tertiary Butyl Ether	1634-04-4	31	mg/m ³	ND	7.2	ND	0.36	ND	0.36	ND	0.72	
Benzene	71-43-2	1.1	mg/m ³	140	6.4	3	0.32	0.6	0.32	4.6	0.64	
1,2-Dichloroethane	107-06-2	0.31	mg/m ³	ND	8.1	ND	0.4	ND	0.4	ND	0.81	
Toluene	108-88-3	120	mg/m ³	42	7.5	0.81	0.38	ND	0.38	4.1	0.75	
Ethylene dibromide (EDB)	106-93-4	0.037	mg/m ³	ND	15	ND	0.77	ND	0.77	ND	1.5	
Ethylbenzene	100-41-4	7.3	mg/m ³	ND	8.7	1	0.43	ND	0.43	ND	0.87	
Cumene	98-82-8	110	mg/m ³	ND	9.8	ND	0.49	ND	0.49	ND	0.98	
Xylene (Total)	1330-20-7	30	mg/m ³	ND	8.7	6.6	0.43	0.53	0.43	3.3	0.87	

Notes:
PADEP - Pennsylvania Department of Environmental Protection

mg/kg - milligram per kilogram

MSC - PADEP's Medium Specific Concentration for Soil

RL - Reporting Limit ND - Not Detected

Qualifiers: Q - Qualifier

Exceedance Summary:

10 - RL exceeds the PADEP Non-Residential Soil MSC

- Concentration exceeds the PADEP Non-Residential Soil MSC

Table H-2 **Summary of Indoor Air Sample Analytical Results** AOI 8 (Firehouse Bldg.) **Sunoco Philadelphia Refinery** Philadelphia, Pennsylvania

TO 45 Welsells O	C4C41 :	PADEP Nonresidential	Sample ID Sample Date			se Ambient #42 6/5/2009	Firehouse Indoor #413 6/5/2009					
TO-15 Volatile Organic Compounds	CAS Number	Indoor Air MSC	Sample Matrix			Air		6/5/2009 Air				
		(mg/m3)	Unit	Result	Q	MDL	RL	Result	Q	MDL	RL	
Ethylhonzono	100-41-4	0.073	ma/m2	ND	U	0.00087	0.0043	ND	U	0.00087	0.0043	
Ethylbenzene Styrene (Monomer)	100-41-4	2.9	mg/m3 mg/m3	ND ND	U	0.00087	0.0043	ND ND	U	0.00087	0.0043	
cis-1,3-Dichloropropene	10061-01-5	NS	mg/m3	ND	U	0.00091	0.0045	ND	U	0.00003	0.0045	
trans-1,3-Dichloropropene	10061-02-6	NS	mg/m3	ND	U	0.00091	0.0045	ND	Ū	0.00091	0.0045	
1,4-Dichlorobenzene	106-46-7	0.013	mg/m3	ND	U	0.0012	0.006	0.039		0.0012	0.006	
Ethylene dibromide (EDB)	106-93-4	0.00037	mg/m3	ND	U	0.0015	0.0077	ND	U	0.0015	0.0077	
1,3-Butadiene	106-99-0	0.0026	mg/m3	ND	U	0.0011	0.0044	ND	U	0.0011	0.0044	
Acrolein	107-02-8	0.000058	mg/m3	ND	U	0.0011	0.0046	ND	U	0.0011	0.0046	
3-Chloropropene	107-05-1	0.0029	mg/m3	ND	U	0.00063	0.0031	ND	U	0.00063	0.0031	
1,2-Dichloroethane Acrylonitrile	107-06-2 107-13-1	0.0031 0.0012	mg/m3 mg/m3	ND ND	U	0.00081 0.0011	0.004 0.0043	ND ND	U	0.00081	0.004	
Vinyl Acetate	108-05-4	0.58	mg/m3	ND	U	0.0007	0.0045	ND	U	0.0007	0.0035	
4-Methyl-2-pentanone	108-10-1	0.2	mg/m3	ND	U	0.002	0.0082	ND	U	0.002	0.0082	
1,3,5-Trimethylbenzene	108-67-8	0.017	mg/m3	ND	U	0.00098	0.0049	ND	U	0.00098	0.0049	
Bromobenzene	108-86-1	NS	mg/m3	ND	U	0.0013	0.0064	ND	U	0.0013	0.0064	
Toluene	108-88-3	1.2	mg/m3	ND	U	0.00075	0.0038	ND	U	0.00075	0.0038	
Chlorobenzene	108-90-7	0.051	mg/m3	ND	U	0.00092	0.0046	ND	U	0.00092	0.0046	
Pentane	109-66-0	NS 0.50	mg/m3	0.0059	- 11	0.00059	0.003	0.0045	- 11	0.00059	0.003	
Hexane Octane	110-54-3 111-65-9	0.58 NS	mg/m3 mg/m3	ND ND	U	0.0007 0.00093	0.0035 0.0047	ND ND	U	0.0007	0.0035	
Octane Propylene (Propene)	111-65-9	NS NS	mg/m3 mg/m3	0.0026	U	0.00093	0.0047	0.0041	U	0.00093	0.0047	
1,2,4-Trichlorobenzene	120-82-1	0.079	mg/m3	ND	U	0.0037	0.017	ND	U	0.0037	0.015	
1,4-Dioxane	123-91-1	0.011	mg/m3	ND	U	0.00072	0.0036	ND	U	0.00072	0.0036	
Chlorodibromomethane	124-48-1	0.003	mg/m3	ND	U	0.0017	0.0085	ND	U	0.0017	0.0085	
Tetrachloroethene	127-18-4	0.14	mg/m3	ND	U	0.0014	0.0068	ND	U	0.0014	0.0068	
Ethyl Acrylate	140-88-5	0.006	mg/m3	ND	U	0.00082	0.0041	ND	U	0.00082	0.0041	
Ethyl Acetate	141-78-6	9.2	mg/m3	ND	U	0.00072	0.0036	ND	U	0.00072	0.0036	
N-Heptane	142-82-5 156-59-2	NS 0.1	mg/m3	ND ND	U	0.00082 0.00079	0.0041 0.004	ND ND	U	0.00082	0.0041	
cis-1,2-Dichloroethene trans-1,2-Dichloroethene	156-60-5	0.1 0.2	mg/m3 mg/m3	ND ND	U	0.00079	0.004	ND	U	0.00079	0.004	
Methyl Tertiary Butyl Ether	1634-04-4	0.31	mg/m3	ND	U	0.00073	0.0036	ND	U	0.00073	0.0036	
m/p-Xylene	179601-23-1	NS	mg/m3	0.0046		0.00087	0.0043	ND	U	0.00087	0.0043	
2,2,4-Trimethylpentane	540-84-1	NS	mg/m3	ND	U	0.00093	0.0047	ND	U	0.00093	0.0047	
M-Dichlorobenzene	541-73-1	NS	mg/m3	ND	U	0.0012	0.006	ND	U	0.0012	0.006	
Carbon Tetrachloride	56-23-5	0.0055	mg/m3	ND	U	0.0013	0.0063	ND	U	0.0013	0.0063	
Methyl N-Butyl Ketone	591-78-6	NS	mg/m3	ND	U	0.002	0.0082	ND	U	0.002	0.0082	
4-Ethyltoluene 1,1,1,2-Tetrachlorroethane	622-96-8 630-20-6	NS 0.011	mg/m3	ND ND	U	0.00098 0.0014	0.0049 0.0069	ND ND	U	0.00098	0.0049	
Acetone	67-64-1	0.011 91	mg/m3 mg/m3	0.013	U	0.0014	0.0069	0.044	U	0.0014	0.0068	
Chloroform	67-66-3	0.00092	mg/m3	ND	U	0.00098	0.0049	ND	U	0.00098	0.0049	
Hexachloroethane	67-72-1	NS	mg/m3	ND	U	0.0019	0.0097	ND	U	0.0019	0.0097	
Benzene	71-43-2	0.011	mg/m3	ND	U	0.00064	0.0032	ND	U	0.00064	0.0032	
1,1,1-Trichloroethane	71-55-6	6.1	mg/m3	ND	U	0.0011	0.0055	ND	U	0.0011	0.0055	
Methane	74-82-8	NS	mg/m3	ND	U	1.3	6.6	ND	U	1.3	6.6	
Bromomethane	74-83-9	0.014	mg/m3	ND	U	0.00078	0.0039	ND	U	0.00078	0.0039	
Chloromethane	74-87-3	0.045	mg/m3	ND	U	0.00041	0.0021	ND	U	0.00041	0.0021	
Methyl lodide	74-88-4 74-95-3	NS 0.1	mg/m3	ND ND	U	0.0012 0.0014	0.0058 0.0071	ND ND	U	0.0012	0.0058	
Dibromomethane Chloroethane	75-00-3	0.1 0.099	mg/m3 mg/m3	ND ND	U	0.0014	0.0071	ND	U	0.0014	0.0071	
Vinyl chloride	75-01-4	0.0095	mg/m3	ND	U	0.00053	0.0026	ND	U	0.00051	0.0026	
Acetonitrile	75-05-8	0.17	mg/m3	ND	U	0.00084	0.0020	ND	U	0.00031	0.0024	
Dichloromethane	75-09-2	0.17	mg/m3	ND	U	0.00069	0.0035	0.015		0.00069	0.0035	
Carbon Disulfide	75-15-0	2	mg/m3	ND	U	0.00062	0.0031	ND	U	0.00062	0.0031	
Tribomomethane	75-25-2	0.074	mg/m3	ND	U	0.0021	0.01	ND	U	0.0021	0.01	
Bromodichloromethane	75-27-4	0.0022	mg/m3	ND	U	0.0013	0.0067	ND	U	0.0013	0.0067	
1,1-Dichloroethane	75-34-3	0.05	mg/m3	ND	U	0.00081	0.004	ND	U	0.00081	0.004	
1,1-Dichloroethylene Dichloromonofluoromethane	75-35-4 75-43-4	0.58 NS	mg/m3	ND ND	U	0.00079 0.00084	0.004 0.0042	ND ND	U	0.00079	0.004	
Dichloromonofluoromethane Chlorodifluoromethane	75-43-4 75-45-6	NS 140	mg/m3 mg/m3	ND ND	U	0.00084	0.0042	0.02	U	0.00084	0.0042	
Tert-Butyl Alcohol	75-65-0	NS	mg/m3	ND	U	0.00071	0.0033	ND	U	0.00071	0.003	
CFC-11	75-69-4	2	mg/m3	ND	U	0.0011	0.0056	ND	U	0.0011	0.0056	
CFC-12	75-71-8	0.51	mg/m3	ND	U	0.00099	0.0049	ND	U	0.00099	0.0049	
Chlorinated Fluocarbon (Freon 113)	76-13-1	88	mg/m3	ND	U	0.0038	0.015	ND	U	0.0038	0.015	
1,2-114 Dichlorotetrafluoroethane; Fluorocarbon 114	76-14-2	NS	mg/m3	ND	U	0.0014	0.007	ND	U	0.0014	0.007	
1,2-Dichloropropane	78-87-5	0.0079	mg/m3	ND	U	0.00092	0.0046	ND 0.015	U	0.00092	0.0046	
2-Butanone	78-93-3	2.9	mg/m3	ND	U	0.0015	0.0059	0.015	1.1	0.0015	0.0059	
1,1,2-Trichloroethane Trichloroethylene	79-00-5 79-01-6	0.0051 0.048	mg/m3 mg/m3	ND ND	U	0.0011 0.0011	0.0055 0.0054	ND ND	U	0.0011	0.005	
1,1,2,2-Tetrachloroethane	79-34-5	0.048	mg/m3	ND	U	0.0011	0.0054	ND	U	0.0011	0.0052	
Methyl Methacrylate	80-62-6	2	mg/m3	ND	U	0.00014	0.0003	ND	U	0.00014	0.0003	
Hexachloro-1,3-Butadiene	87-68-3	NS	mg/m3	ND	U	0.0053	0.021	ND	U	0.0053	0.021	
o-Xylene	95-47-6	NS	mg/m3	ND	U	0.00087	0.0043	ND	U	0.00087	0.0043	
1,2-Dichlorobenzene	95-50-1	0.41	mg/m3	ND	U	0.0012	0.006	ND	U	0.0012	0.006	
1,2,4-Trimethylbenzene	95-63-6	0.017	mg/m3	ND	U	0.00098	0.0049	ND	U	0.00098	0.0049	
1,2,3-Trichloropropane	96-18-4	0.000041	mg/m3	ND	U	0.0012	0.006	ND	U	0.0012	0.006	
Methyl Acrylate	96-33-3	0.31	mg/m3	ND	U	0.0007	0.0035	ND	U	0.0007	0.0035	
Ethyl Methacrylate	97-63-2	0.92	mg/m3	ND	U	0.00093	0.0047	ND	U	0.00093	0.0047	
Cumene	98-82-8	1.1	mg/m3	ND	U	0.00098	0.0049	ND	U	0.00098	0.0049	

Notes:

PADEP - Pennsylvania Department of Environmental Protection mg/m3 - milligram per cubic meter MSC - PADEP's Medium Specific Concentration for Air

RL - Reporting Limit

ND - Not Detected

Qualifiers:

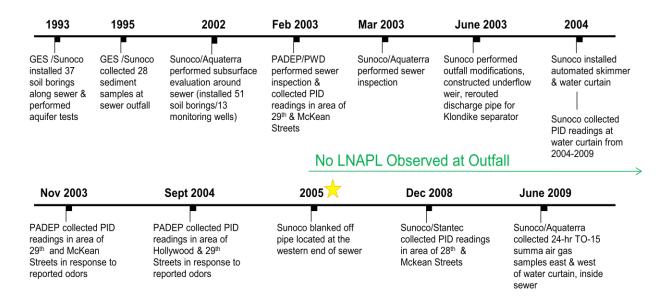
Q - Qualifier U - Undetected

Exceedance Summary:

10 - MDL exceeds the PADEP Non-Residential Indoor Air MSC

RL exceeds the PADEP Non-Residential Indoor Air MSC
 Concentration exceeds the PADEP Non-Residential Indoor Air MSC

TO-15 Volatile Organic Compounds	040.1:	PADEP Residential	Sample ID Jackson Ambient Can #062 Sample Date 6/5/2009				#062	Manhole #1 Summa #509 6/5/2009				Manhole #3 Summa #515 6/5/2009				Manhole #6 Summa #102 6/5/2009				
	CAS Number	Indoor Air MSC	Sample Matrix	Air				Air				Air				Air				
		(mg/m3)	Unit	Result	Q	MDL	RL	Result	Q	MDL	RL	Result	Q	MDL	RL	Result	Q	MDL	RL	
Ethylbenzene	100-41-4	0.019	mg/m3	ND	U	0.00087	0.0043	ND	U	0.00087	0.0043	ND	U	0.00087	0.0043	ND	U	0.00087	0.0043	
Styrene (Monomer)	100-42-5	1.4	mg/m3	ND	Ü	0.00085	0.0043	ND	Ü	0.00085	0.0043	ND	Ü	0.00085	0.0043	ND	Ü	0.00085	0.0043	
cis-1,3-Dichloropropene	10061-01-5	NS	mg/m3	ND	U	0.00091	0.0045	ND	U	0.00091	0.0045	ND	U	0.00091	0.0045	ND	U	0.00091	0.0045	
trans-1,3-Dichloropropene	10061-02-6	NS	mg/m3	ND	U	0.00091	0.0045	ND	U	0.00091	0.0045	ND	U	0.00091	0.0045	ND	U	0.00091	0.0045	
1,4-Dichlorobenzene	106-46-7	0.0033	mg/m3	ND	U	0.0012	0.006	ND	U	0.0012	0.006	ND	U	0.0012	0.006	ND	U	0.0012	0.006	
Ethylene dibromide (EDB)	106-93-4	0.000095	mg/m3	ND	U	0.0015	0.0077	ND	U	0.0015	0.0077	ND	U	0.0015	0.0077	ND	U	0.0015	0.0077	
1,3-Butadiene	106-99-0 107-02-8	0.00067 0.000028	mg/m3	ND ND	U	0.0011	0.0044	ND ND	U	0.0011	0.0044	ND ND	U	0.0011	0.0044	ND ND	U	0.0011	0.0044	
Acrolein 3-Chloropropene	107-02-8	0.00028	mg/m3	ND ND	U	0.00063	0.0046	ND	U	0.00063	0.0046	ND	U	0.00063	0.0046	ND	U	0.00063	0.0046	
1,2-Dichloroethane	107-05-1	0.00081	mg/m3 mg/m3	ND	U	0.00081	0.0031	ND	U	0.00081	0.0031	ND	U	0.00081	0.0031	ND	U	0.00081	0.0031	
Acrylonitrile	107-13-1	0.00031	mg/m3	ND	U	0.00001	0.0043	ND	U	0.00001	0.0043	ND	U	0.00001	0.0043	ND	U	0.00001	0.0043	
Vinyl Acetate	108-05-4	0.28	mg/m3	ND	U	0.0007	0.0035	ND	Ū	0.0007	0.0035	ND	Ü	0.0007	0.0035	ND	Ü	0.0007	0.0035	
4-Methyl-2-pentanone	108-10-1	0.097	mg/m3	ND	U	0.002	0.0082	ND	U	0.002	0.0082	ND	U	0.002	0.0082	ND	U	0.002	0.0082	
1,3,5-Trimethylbenzene	108-67-8	0.0083	mg/m3	ND	U	0.00098	0.0049	ND	U	0.00098	0.0049	ND	U	0.00098	0.0049	ND	U	0.00098	0.0049	
Bromobenzene	108-86-1	NS	mg/m3	ND	U	0.0013	0.0064	ND	U	0.0013	0.0064	ND	U	0.0013	0.0064	ND	U	0.0013	0.0064	
Toluene	108-88-3	0.56	mg/m3	ND	U	0.00075	0.0038	0.0041		0.00075	0.0038	ND	U	0.00075	0.0038	ND	U	0.00075	0.0038	
Chlorobenzene	108-90-7	0.024	mg/m3	ND	U	0.00092	0.0046	ND	U	0.00092	0.0046	ND	U	0.00092	0.0046	ND	U	0.00092	0.0046	
Pentane	109-66-0	NS	mg/m3	ND	U	0.00059	0.003	ND	U	0.00059	0.003	0.059		0.00059	0.003	0.013		0.00059	0.003	
Hexane	110-54-3	0.28	mg/m3	ND	U	0.0007	0.0035	ND	U	0.0007	0.0035	0.016	- 11	0.0007	0.0035	0.0036		0.0007	0.0035	
Octane Propulana (Propaga)	111-65-9 115-07-1	NS NS	mg/m3	ND ND	U	0.00093	0.0047	ND 0.0023	U	0.00093	0.0047	ND ND	U	0.00093	0.0047	ND ND	U	0.00093	0.0047	
Propylene (Propene) 1.2.4-Trichlorobenzene	115-07-1	0.02	mg/m3 mg/m3	ND ND	U	0.00034	0.0017	0.0023 ND	U	0.00034	0.0017	ND ND	U	0.00034	0.0017	ND ND	U	0.00034	0.0017	
1,4-Dioxane	120-62-1	0.027	mg/m3	ND ND	U	0.0037	0.0036	ND	U	0.0037	0.015	ND	U	0.0037	0.015	ND	U	0.0037	0.0036	
Chlorodibromomethane	124-48-1	0.0027	mg/m3	ND	U	0.00072	0.0036	ND	U	0.00072	0.0036	ND	U	0.00072	0.0085	ND	U	0.00072	0.0036	
Tetrachloroethene	127-18-4	0.036	mg/m3	ND	U	0.0017	0.0068	ND	U	0.0017	0.0068	ND	U	0.0017	0.0068	ND	U	0.0017	0.0068	
Ethyl Acrylate	140-88-5	0.0015	mg/m3	ND	U	0.00082	0.0041	ND	U	0.00082	0.0041	0.34		0.00082	0.041	ND	U	0.00082	0.0041	
Ethyl Acetate	141-78-6	4.4	mg/m3	ND	U	0.00072	0.0036	ND	U	0.00072	0.0036	ND	U	0.00072	0.0036	ND	U	0.00072	0.0036	
N-Heptane	142-82-5	NS	mg/m3	ND	U	0.00082	0.0041	ND	U	0.00082	0.0041	ND	U	0.00082	0.0041	ND	U	0.00082	0.0041	
cis-1,2-Dichloroethene	156-59-2	0.049	mg/m3	ND	U	0.00079	0.004	ND	U	0.00079	0.004	ND	U	0.00079	0.004	ND	U	0.00079	0.004	
trans-1,2-Dichloroethene	156-60-5	0.097	mg/m3	ND	U	0.00079	0.004	ND	U	0.00079	0.004	ND	U	0.00079	0.004	ND	U	0.00079	0.004	
Methyl Tertiary Butyl Ether	1634-04-4	0.081	mg/m3	ND	U	0.00072	0.0036	ND	U	0.00072	0.0036	ND	U	0.00072	0.0036	ND	U	0.00072	0.0036	
m/p-Xylene	179601-23-1	NS	mg/m3	ND	U	0.00087	0.0043	ND	U	0.00087	0.0043	0.0069		0.00087	0.0043	ND	U	0.00087	0.0043	
2,2,4-Trimethylpentane	540-84-1	NS	mg/m3	ND	U	0.00093	0.0047	0.016		0.00093	0.0047	0.94		0.00093	0.047	0.25		0.00093	0.047	
M-Dichlorobenzene	541-73-1	NS	mg/m3	ND	U	0.0012	0.006	ND	U	0.0012	0.006	ND	U	0.0012	0.006	ND	U	0.0012	0.006	
Carbon Tetrachloride	56-23-5	0.0014	mg/m3	ND	U	0.0013	0.0063	ND	U	0.0013	0.0063	ND	U	0.0013	0.0063	ND	U	0.0013	0.0063	
Methyl N-Butyl Ketone	591-78-6	NS	mg/m3	ND	U	0.002	0.0082	ND	U	0.002	0.0082	ND	U	0.002	0.0082	ND	U	0.002	0.0082	
4-Ethyltoluene	622-96-8 630-20-6	NS 0.0028	mg/m3	ND ND	U	0.00098	0.0049 0.0069	ND ND	U	0.00098	0.0049 0.0069	ND ND	U	0.00098	0.0049 0.0069	ND ND	U	0.00098	0.0049 0.0069	
1,1,1,2-Tetrachlorroethane Acetone	67-64-1	43	mg/m3	0.018	U	0.0014	0.0048	0.018	U	0.0014	0.0048	0.022	U	0.0014	0.0069	0.012		0.0014	0.0069	
Chloroform	67-66-3	0.00044	mg/m3 mg/m3	ND	U	0.00012	0.0048	0.0055		0.00012	0.0048	ND	U	0.00012	0.0048	0.012		0.00098	0.0048	
Hexachloroethane	67-72-1	NS	mg/m3	ND	U	0.00038	0.0097	ND	U	0.00038	0.0097	ND	U	0.0019	0.0097	ND	U	0.00038	0.0043	
Benzene	71-43-2	0.0027	mg/m3	ND	Ü	0.00064	0.0032	ND	Ü	0.00064	0.0032	0.0036		0.00064	0.0032	ND	Ü	0.00064	0.0032	
1,1,1-Trichloroethane	71-55-6	2.9	mg/m3	ND	U	0.0011	0.0055	ND	Ū	0.0011	0.0055	ND	U	0.0011	0.0055	ND	Ü	0.0011	0.0055	
Methane	74-82-8	NS	mg/m3	ND	U	1.3	6.6	ND	U	1.3	6.6	30		1.3	6.6	9.8		1.3	6.6	
Bromomethane	74-83-9	0.0068	mg/m3	ND	U	0.00078	0.0039	ND	U	0.00078	0.0039	ND	U	0.00078	0.0039	ND	U	0.00078	0.0039	
Chloromethane	74-87-3	0.012	mg/m3	ND	U	0.00041	0.0021	ND	U	0.00041	0.0021	ND	U	0.00041	0.0021	ND	U	0.00041	0.0021	
Methyl Iodide	74-88-4	NS	mg/m3	ND	U	0.0012	0.0058	ND	U	0.0012	0.0058	ND	U	0.0012	0.0058	ND	U	0.0012	0.0058	
Dibromomethane	74-95-3	0.049	mg/m3	ND	U	0.0014	0.0071	ND	U	0.0014	0.0071	ND	U	0.0014	0.0071	ND	U	0.0014	0.0071	
Chloroethane	75-00-3	0.025	mg/m3	ND	U	0.00053	0.0026	ND	U	0.00053	0.0026	ND	U	0.00053	0.0026	ND	U	0.00053	0.0026	
Vinyl chloride	75-01-4	0.0024	mg/m3	ND	U	0.00051	0.0026	ND	U	0.00051	0.0026	ND	U	0.00051	0.0026	ND	U	0.00051	0.0026	
Acetonitrile	75-05-8	0.083	mg/m3	ND 0.042	U	0.00084	0.0034	ND	U	0.00084	0.0034	ND	U	0.00084	0.0034	ND ND	U	0.00084	0.0034	
Dichloromethane	75-09-2	0.044	mg/m3	0.042		0.00069	0.0035	ND ND	U	0.00069	0.0035	ND	U	0.00069		ND ND	U	0.00069	0.0035	
Carbon Disulfide Tribomomethane	75-15-0 75-25-2	0.97 0.019	mg/m3 mg/m3	0.0067 ND	U	0.00062	0.0031	ND ND	U	0.00062	0.0031	ND ND	U	0.00062	0.0031	ND ND	U	0.00062	0.0031	
Bromodichloromethane	75-27-4	0.00057	mg/m3	ND	U	0.0021	0.0067	ND	U	0.0021	0.0067	ND	U	0.0021	0.0067	ND	U	0.0021	0.0067	
1,1-Dichloroethane	75-34-3	0.013	mg/m3	ND	U	0.00081	0.004	ND	U	0.00081	0.004	ND	U	0.00081	0.004	ND	U	0.00081	0.004	
1,1-Dichloroethylene	75-35-4	0.28	mg/m3	ND	Ü	0.00079	0.004	ND	Ü	0.00079	0.004	ND	Ü	0.00079		ND	Ü	0.00079	0.004	
Dichloromonofluoromethane	75-43-4	NS	mg/m3	ND	U	0.00084	0.0042	ND	U	0.00084	0.0042	ND	U	0.00084	0.0042	ND	U	0.00084	0.0042	
Chlorodifluoromethane	75-45-6	68	mg/m3	ND	U	0.00071	0.0035	ND	U	0.00071	0.0035	ND	U	0.00071	0.0035	ND	U	0.00071	0.0035	
Tert-Butyl Alcohol	75-65-0	NS	mg/m3	ND	U	0.00061	0.003	ND	U	0.00061	0.003	ND	U	0.00061	0.003	ND	U	0.00061	0.003	
CFC-11	75-69-4	0.97	mg/m3	ND	U	0.0011	0.0056	ND	U	0.0011	0.0056	ND	U	0.0011	0.0056	ND	U	0.0011	0.0056	
CFC-12	75-71-8	0.24	mg/m3	ND	U	0.00099	0.0049	ND	U	0.00099	0.0049	ND	U	0.00099		ND	U	0.00099	0.0049	
Chlorinated Fluocarbon (Freon 113)	76-13-1	42	mg/m3	ND	U	0.0038	0.015	ND	U	0.0038	0.015	ND	U	0.0038	0.015	ND	U	0.0038	0.015	
1,2-114 Dichlorotetrafluoroethane; Fluorocarbon 114	76-14-2	NS 0.002	mg/m3	ND	U	0.0014	0.007	ND	U	0.0014	0.007	ND	U	0.0014	0.007	ND	U	0.0014	0.007	
1,2-Dichloropropane	78-87-5	0.002	mg/m3	ND 0.0050	U	0.00092	0.0046	ND	U	0.00092	0.0046	ND 0.00ee	U	0.00092		ND	U	0.00092	0.0046	
2-Butanone 1,1,2-Trichloroethane	78-93-3 79-00-5	1.4 0.0013	mg/m3	0.0059 ND	U	0.0015	0.0059 0.0055	ND ND	U	0.0015	0.0059 0.0055	0.0066 ND	U	0.0015	0.0059 0.0055	ND ND	U	0.0015 0.0011	0.0059 0.0055	
Trichloroethylene	79-00-5	0.0013	mg/m3 mg/m3	ND ND	U	0.0011	0.0055	ND ND	U	0.0011	0.0054	ND ND	U	0.0011	0.0055	ND ND	U	0.0011	0.0055	
1,1,2,2-Tetrachloroethane	79-01-6	0.0036	mg/m3	ND ND	U	0.0011	0.0069	ND	U	0.0011	0.0054	ND	U	0.0011	0.0069	ND	U	0.0011	0.0069	
Methyl Methacrylate	80-62-6	0.00036	mg/m3	ND	U	0.00014	0.0003	ND	U	0.00014	0.0041	ND	U	0.00014		ND	U	0.00014	0.0003	
Hexachloro-1,3-Butadiene	87-68-3	NS	mg/m3	ND	U	0.00053	0.0041	ND	U	0.0003	0.0041	ND	U	0.0053	0.0041	ND	U	0.00032	0.0041	
o-Xylene	95-47-6	NS	mg/m3	ND	Ü	0.00087	0.0043	ND	U	0.00087	0.0043	ND	U	0.00087	0.0043	ND	U	0.00087	0.0043	
					U	0.00007	0.0048	ND	U	0.00007	0.006	ND	U		0.006	ND	U	0.00007	0.006	
1,2-Dichlorobenzene	95-50-1	0.19	ma/m3	ND	U			IND						0.0012						
1,2-Dichlorobenzene 1,2,4-Trimethylbenzene	95-50-1 95-63-6	0.19	mg/m3 mg/m3	ND ND	U	0.00098	0.0049	ND	U	0.00098	0.0049	ND	U	0.00012		ND	U	0.00098	0.0049	
															0.0049		U		0.0049 0.006	
1,2,4-Trimethylbenzene	95-63-6	0.0083	mg/m3	ND	U	0.00098	0.0049	ND	U	0.00098	0.0049	ND	U	0.00098	0.0049	ND		0.00098		
1,2,4-Trimethylbenzene 1,2,3-Trichloropropane	95-63-6 96-18-4	0.0083 0.00001	mg/m3 mg/m3	ND ND	U U	0.00098 0.0012	0.0049 0.006	ND ND	U	0.00098 0.0012	0.0049 0.006	ND ND	U	0.00098 0.0012	0.0049 0.006 0.0035	ND ND	U	0.00098 0.0012	0.006	
1,2,4-Trimethylbenzene 1,2,3-Trichloropropane Methyl Acrylate	95-63-6 96-18-4 96-33-3	0.0083 0.00001 0.15	mg/m3 mg/m3 mg/m3	ND ND ND	U U U	0.00098 0.0012 0.0007	0.0049 0.006 0.0035	ND ND ND	U U U	0.00098 0.0012 0.0007	0.0049 0.006 0.0035	ND ND ND	U U U	0.00098 0.0012 0.0007	0.0049 0.006 0.0035 0.0047	ND ND ND	U	0.00098 0.0012 0.0007	0.006 0.0035 0.0047	


Notes:

PADEP - Pennsylvania Department of Environmental Protection
mg/m3 - milligram per cubic meter
MSC - PADEP's Medium Specific Concentration for Air
RL - Reporting Limit
ND - Not Detected

Qualifiers: Q - Qualifier U - Undetected

| Exceedance Summary: | 10 | MDL exceeds the PADEP Residential Indoor Air MSC | 10 | - RL exceeds the PADEP Residential Indoor Air MSC | 10 | - Concentration exceeds the PADEP Residential Indoor Air MSC | 10 | - Concentration exceeds the PADEP Residential Indoor Air MSC | 10 | - Concentration exceeds the PADEP Residential Indoor Air MSC | 10 | - Concentration exceeds the PADEP Residential Indoor Air MSC | 10 | - Concentration exceeds the PADEP Residential Indoor Air MSC | 10 | - Concentration exceeds the PADEP Residential Indoor Air MSC | 10 | - Concentration exceeds the PADEP Residential Indoor Air MSC | 10 | - Concentration exceeds the PADEP Residential Indoor Air MSC | 10 | - Concentration exceeds the PADEP Residential Indoor Air MSC | 10 | - Concentration exceeds the PADEP Residential Indoor Air MSC | 10 | - Concentration exceeds the PADEP Residential Indoor Air MSC | 10 | - Concentration exceeds the PADEP Residential Indoor Air MSC | 10 | - Concentration exceeds the PADEP Residential Indoor Air MSC | 10 | - Concentration exceeds the PADEP Residential Indoor Air MSC | 10 | - Concentration exceeds the PADEP Residential Indoor Air MSC | 10 | - Concentration exceeds the PADEP Residential Indoor Air MSC | 10 | - Concentration exceeds the PADEP Residential Indoor Air MSC | 10 | - Concentration exceeds the PADEP Residential Indoor Air MSC | 10 | - Concentration exceeds the PADEP Residential Indoor Air MSC | 10 | - Concentration exceeds the PADEP Residential Indoor Air MSC | 10 | - Concentration exceeds the PADEP Residential Indoor Air MSC | 10 | - Concentration exceeds the PADEP Residential Indoor Air MSC | 10 | - Concentration exceeds the PADEP Residential Indoor Air MSC | 10 | - Concentration exceeds the PADEP Residential Indoor Air MSC | 10 | - Concentration exceeds the PADEP Residential Indoor Air MSC | 10 | - Concentration exceeds the PADEP Residential Indoor Air MSC | 10 | - Concentration exceeds the PADEP Residential Indoor Air MSC | 10 | - Concentration exceeds the PADEP Residential Indoor Air MSC | 10 |

Timeline of Jackson St. Sewer Investigations

Jackson Street Sewer Detailed Investigation Timeline Description

1993 – GES installed 37 soil borings along sewer and performed aquifer testing.

1995 – GES collected 28 sediment samples from sewer outfall.

December 2002 – PADEP performed inspection and collected PID readings in area of 29th and McKean Streets in response to residents complaining about odors coming from sewer. Results: Petroleum odor present, PID readings ranged from 0.0 to 40.0 ppm/Source of odor

2002 – Sunoco/Aquaterra performed subsurface evaluation around sewer. Installed 51 soil borings and installed 13 monitoring wells.

Results: Separate phase hydrocarbons existed in subsurface proximal to sewer.

February 2003 - PADEP performed inspection and collected PID readings in area of 29th and McKean Streets in response to residents complaining about odors coming from sewer. Results: Petroleum odors present and PID readings ranged from 0.0 to 53.7 ppm.

Feb 2003 – PADEP/PWD performed sewer inspection.

Results: Overall structural condition of sewer was good. Observed evidence of hydrocarbons in the sewer using UV light. Increased amounts of hydrocarbons observed towards western portion of sewer.

March 2003 – Sunoco/Aguaterra performed sewer inspection.

Results: Mapped locations of hydrocarbon seep areas by use of UV light and visual observations inside sewer. Identified locations of other pipes tying into sewer.

June 2003 – Sunoco performed outfall modifications. Constructed underflow weir. Rerouted the discharge pipe from Klondike separator.

September 2003 – Sunoco automated skimmer and installed water curtain.

November 2003 - PADEP performed inspection and collected PID readings in area of 29th and McKean Streets, and 27th Street and Snyder Avenue in response to residents complaining about odors coming from sewer.

Results: Petroleum odors present and PID readings ranged from 0.0 to 239 ppm.

September 2004 – PADEP performed inspection and collected PID readings in area of Hollywood and 29th Streets in response to residents complaining about odors coming from sewer.

Results: Petroleum odors present and PID readings ranged from 0.0 to 22.4 ppm.

September 2005 – PADEP performed inspection and collected PID readings to follow up on reports of odors coming from Hollywood and McKean Streets.

Results: No odors or PID readings reported.

2005 – Sunoco blanked off pipe located at the western end of the sewer which was discharging NAPL into sewer.

Results: Reduced amount of sheening/NAPL observed at outfall.

December 2008 – Sunoco/Stantec completed air monitoring in vicinity of Jackson and McKean Streets using a PID.

Results: No PID readings recorded.

2004 – 2009 – Sunoco monitors system weekly and collects PID monitoring data east and west of the water curtain area.

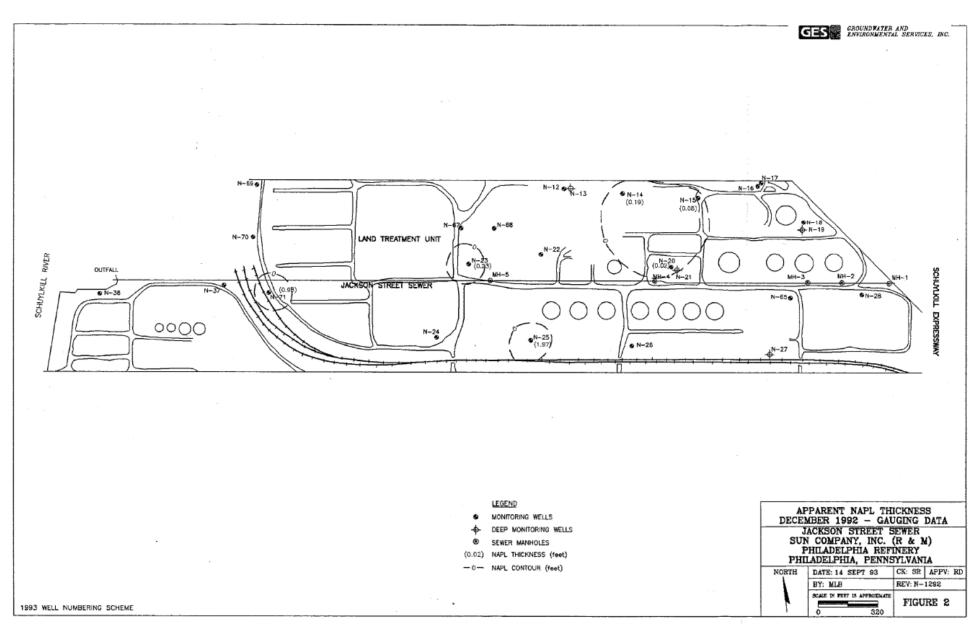
June 2009 – Sunoco/Aquaterra collected 24-hour TO-15 summa air gas samples east and west of the water curtain alongside and inside of sewer.

Results:

- Benzene was above the PADEP residential indoor air screening criteria on-site in Manhole No. 3 sample location;
- No benzene detections east of water curtain or off-site in sewer near residential neighborhood;
- Chloroform was above the residential MSC west of water curtain (Manhole No. 1) and off-site in sewer (Manhole No. 6); and
- No exceedances of residential MSCs in background ambient air sample.

With the exception of the above mentioned compounds, all other TO-15 compounds were below their respective PADEP residential indoor air screening criteria. Methane was present in two of the samples (Manhole No. 3 and Manhole No. 6), however there is no PADEP residential indoor air screening criteria for methane.

Jackson Street Sewer Figures


1992 & 2002-2008

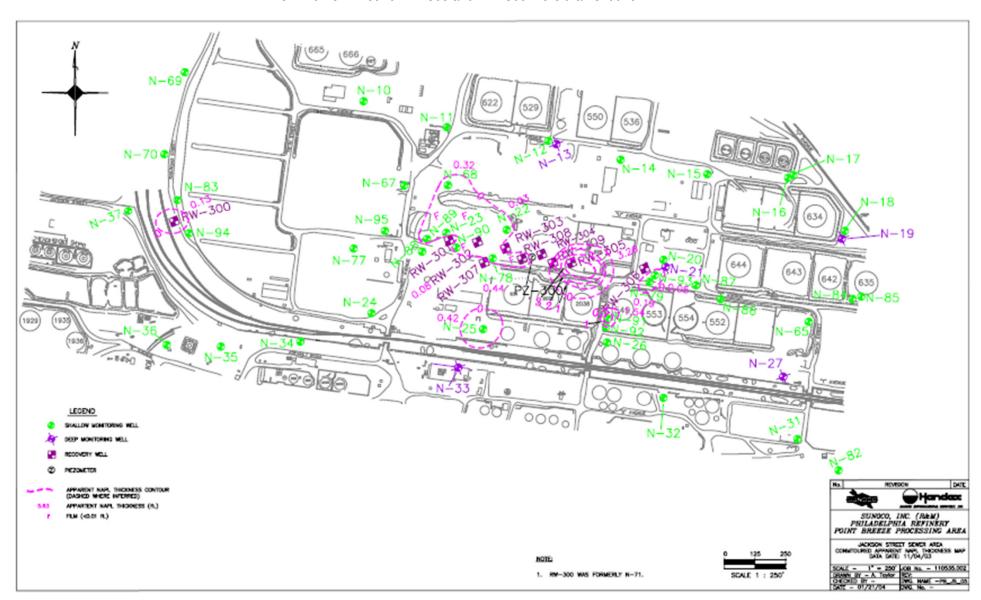
1993 Comprehensive Remedial Plan

OBSERVATIONS

4 Plumes – N-71, N-23, N-25 and (N-14,N-15,N-20)

All but N-25 are less than 1 foot thick

Point Breeze 4th Quarter 2003 Report (pg. 43) **OBSERVATIONS**


N-71 now RW-300 – Plume thickness decreased

N-23 – Plume size increased to N-68,N-89,RW-302,N-78,RW-308, and N-22 (thickness less than .5 ft)

N-14,N-15,N-20 – Plume is gone

N-25 - Plume thickness decreased to less than .5 ft

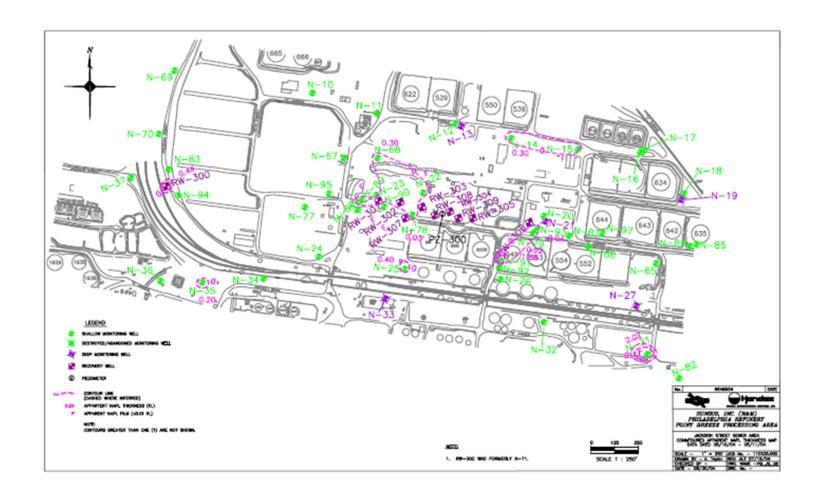
New Plume – Around RW-305 and RW-309 more than 3 ft thick

Point Breeze 2nd Quarter 2004 Report (pg. 41)

OBSERVATIONS

RW-300 - Plume thickness increased

N-23 – Plume size changed to N-68,N-89,RW-302,RW-301,N-78, and N-22 (thickness less than .5 ft)


N-14,N-15,N-20 – Plume is back around N-14 and N-15 (less than .5 ft)

N-25 - Plume thickness decreased slightly

Plume around RW-305 and RW-309 is gone

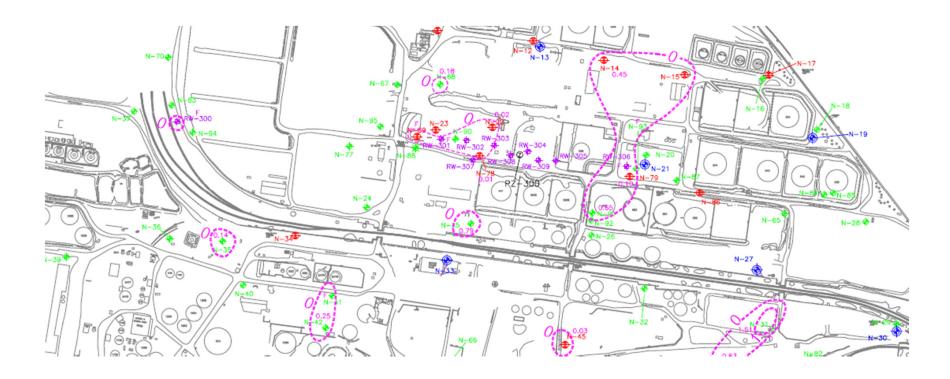
New Plume around N-91, N-79, and N-93 (more than a foot thick around N-91)

New Plume around N-35 (less than .5ft thick)

Point Breeze 4th Quarter 2004 Report (pg. 257)

OBSERVATIONS

RW-300 – Plume thickness decreased to a film


N-23 no longer in the plume – Plume size changed to N-89,N-90,RW-302,RW-301,N-78, and N-22 (thickness increased to less than 1 ft)

New Plume at N-68 – separated from the N-23 plume

2 Plumes combined to include N-91, N-79, RW-306, N-93, N-14 and N-15 (less than 1 ft thick)

N-25 – Plume thickness increased

Plume around N-35 thickness decreased slightly

Point Breeze 2nd Quarter 2005 Report (pg. 83)

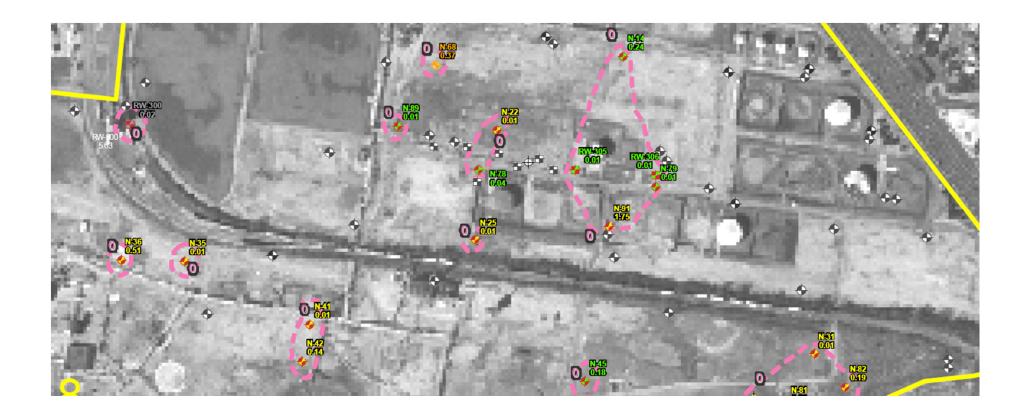
OBSERVATIONS

RW-300 - Plume thickness remained same

Plume size decreased to multiple separate plumes - N-89, N-78, and N-22 are all separate plumes (thickness decreased to film in N-89 and N-78, thickness less than .5 ft in N-22)

Plume at N-68 – increased in thickness slightly

Plume N-91, N-79, RW-306, N-93, N-14 and N-15 changed - Separate plume N-14 and Plume RW-305,


RW-306, N-91 and N-79 thicknesses less than .5 ft

N-25 – Plume thickness decreased slightly

Plume around N-35 thickness decreased slightly

Point Breeze 4th Quarter 2005 Report (pg. 50) OBSERVATIONS
RW-300 – Plume thickness increased slightly
Plume size changed to plumes - N-89, and N-78 and N-22 as a combined plume
Plume at N-68 – increased in thickness slightly
Separate plume N-14 is now combined with Plume RW-305, RW-306, N-91 and N-79
N-25 – Plume thickness decreased slightly
Plume around N-35 thickness decreased slightly
New Plume around N-36 thickness around .5 ft

Point Breeze 2nd Quarter 2006 Report (pg. 97)

OBSERVATIONS

RW-300 – Plume thickness increased slightly and now includes N-94 and N-83

Plume size changed to plumes - N-89 no longer plume, and N-78 and N-22 as separate plumes

Plume at N-68 – decreased in thickness slightly

Separate plume N-14 is now separated from Plume RW-305, RW-306, N-91 and N-79 (now plume includes N-93, and N-92)

N-25 – Plume thickness increased slightly

Plume around N-35 thickness increased slightly

Plume around N-36 is now gone

Point Breeze 4th Quarter 2006 Report (pg. 28)

OBSERVATIONS

RW-300, N-94 and N-83- Plume thickness decreased slightly

N-89 plume returns and includes N-23

Plume N-78 thickness increased slightly

Plume N-22 is no longer present

Plume at N-68 – increased in thickness slightly

Plume N-14 thickness decreased slightly

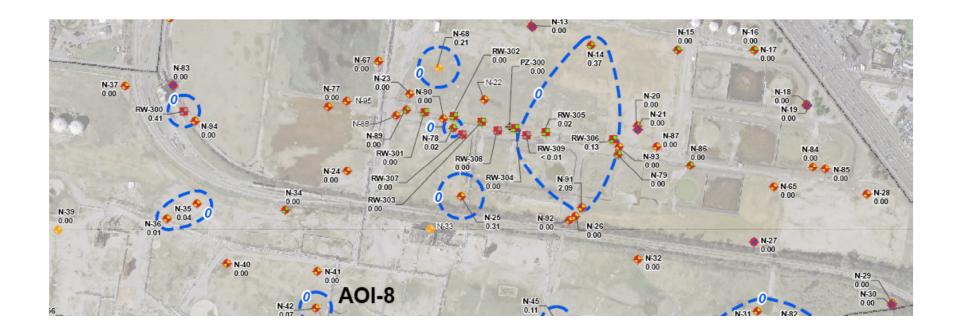
Plume RW-305, RW-306, N-91, N-79, N-93, and N-92 now includes N-26 and has increased in thickness

N-25 – Plume thickness increased Plume around N-35 no longer present

Point Breeze 4th Quarter 2007 Report (pg. 35) **OBSERVATIONS**

RW-300, N-94 and N-83- Plume thickness increased slightly but no longer includes N-83

N-89 plume no longer present


Plume N-78 thickness decreased slightly

Plume at N-68 – decreased in thickness slightly

Plume N-14 combined with Plume RW-305, RW-306, N-91, N-79, N-93 now includes RW-309 and no longer includes N-92 and N-26

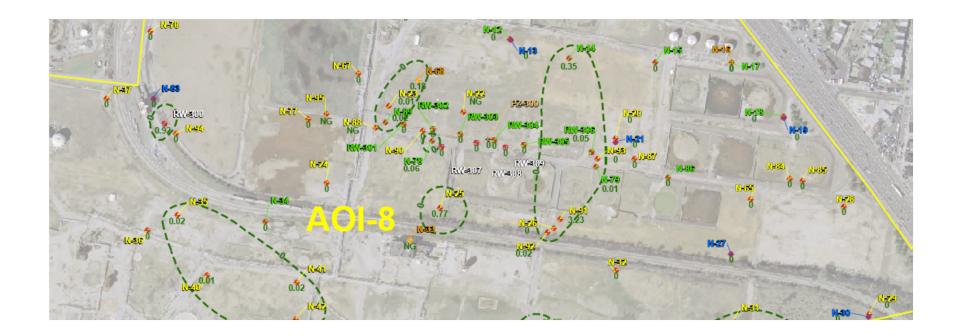
N-25 - Plume thickness decreased

Plume around N-35 returns and includes N-36

Point Breeze 2nd Quarter 2008 Report (pg. 32)

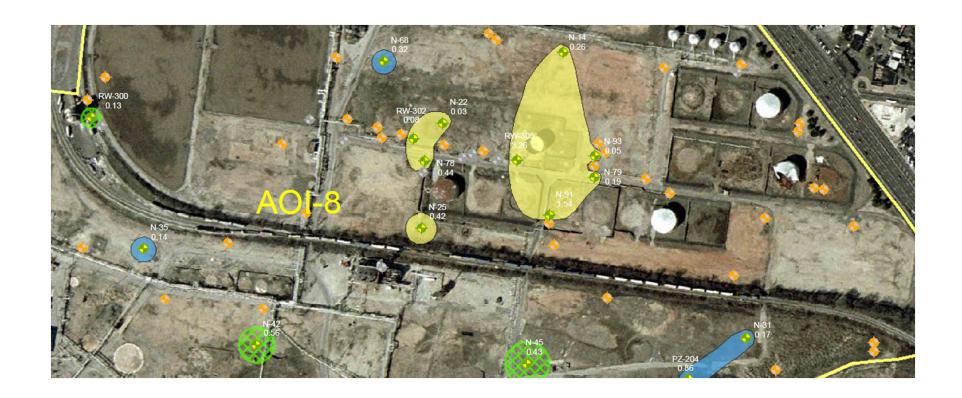
OBSERVATIONS

RW-300 and N-94- Plume thickness increased slightly but no longer includes N-94


N-89 plume returns and now includes N-23 and N-68

Plume N-78 thickness increased slightly

Plume N-14 combined with Plume RW-305, RW-306, N-91, N-79, N-93 now includes RW-309 and no longer includes N-92 and N-26


N-25 – Plume thickness decreased

Plume around N-35 and N-36 increases and now includes – N-35, N-40, N-45 and N-42

CCR - Figure 5 data collected 11/2003

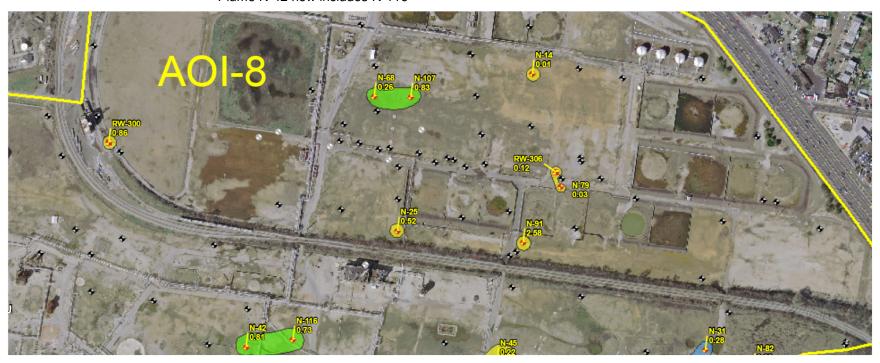
OBSERVATIONS
RW-300 Plume thickness decreased slightly
N-89, N-23 and N-68 plume no longer present
Plume N-78 now includes RW-302 and N-22
Plume N-14, RW-305, RW-306, N-91, N-79, N-93 RW-309 no longer includes RW-306, or RW-309
Plume N-25 thickness decreased slightly
Plume around N-35, N-36, N-35, N-40, N-45 and N-42 changes to 2 small plumes – plume N-35 and plume N-42

AOI 8 SCR - Figure 11 10/2003 **OBSERVATIONS**

RW-300 Plume thickness increased slightly

N-68 plume returns and includes N-107

Plume N-78, RW-302 and N-22 no longer present


Plume N-14, RW-305, N-91, N-79, N-93 now broken into smaller plumes - Plume N-14, Plume N-91 and

Plume N-79 and RW-306

Plume N-25 thickness increased slightly

Plume N-35 no longer present

Plume N-42 now includes N-116

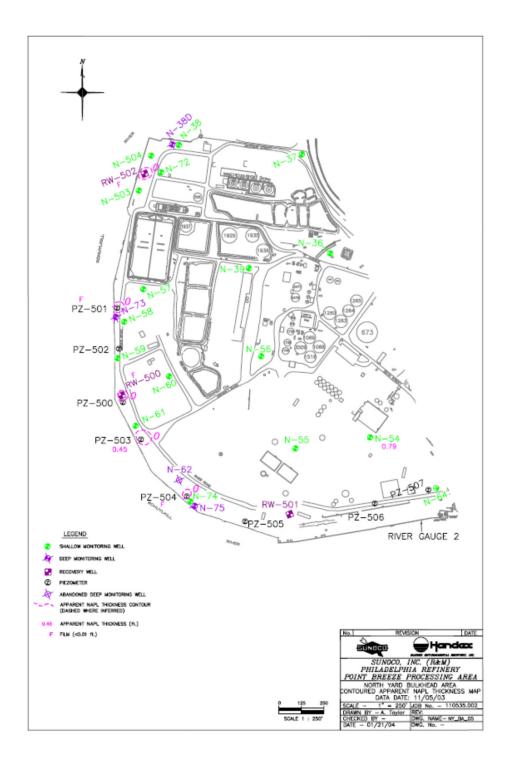
North Yard – Bulkhead Area Figures

2002 - 2008

Point Breeze 4th Quarter 2003 Report (pg. 97)

OBSERVATIONS

5 separate plumes present with thicknesses under .5ft


RW-502

PZ-501

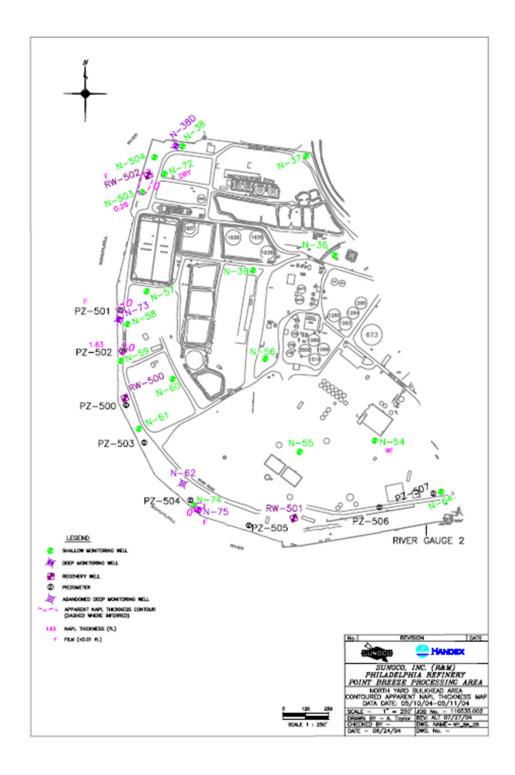
RW-500

PZ-503

PZ-504

Point Breeze 2nd Quarter 2004 Report (pg. 54)

OBSERVATIONS


Plume RW-502 now includes N-503

PZ-501 - no change

RW-500 - no plume present

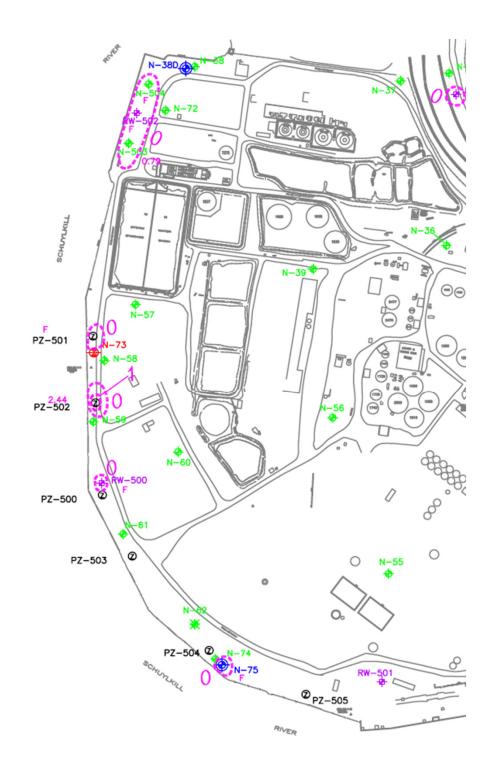
PZ-503 – no plume present

PZ-504 – no longer in plume – plume moved to N-75

Point Breeze 4th Quarter 2004 Report (pg. 257)

OBSERVATIONS

Plume RW-502 and N-503 now includes N-504


PZ-501 – no change

New Plume PZ-502 – more than 2 ft thick

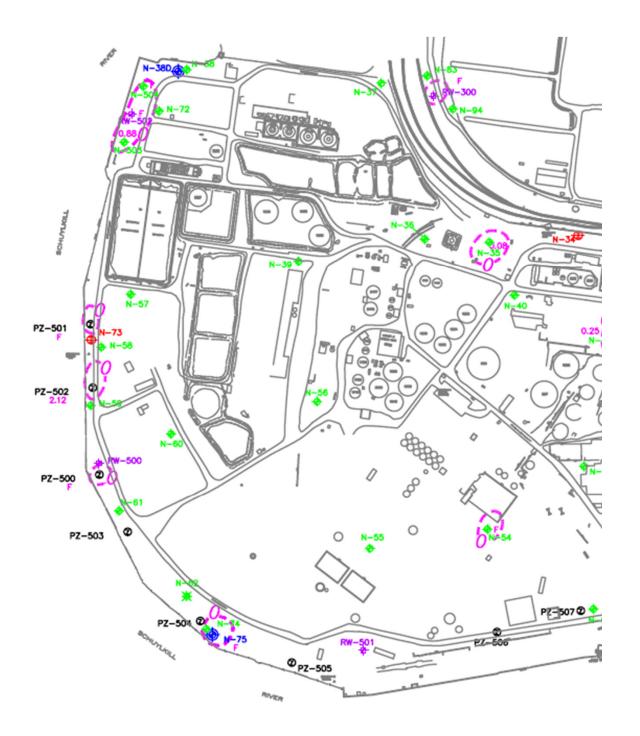
RW-500 -plume returns

PZ-503 – no plume present

Plume N-75 – no change

Point Breeze 2nd Quarter 2005 Report (pg. 83)

OBSERVATIONS


Plume RW-502, N-503 and N-504 – thickness increased slightly

Plume PZ-501 - no change

Plume PZ-502 – still more than 2 ft thick

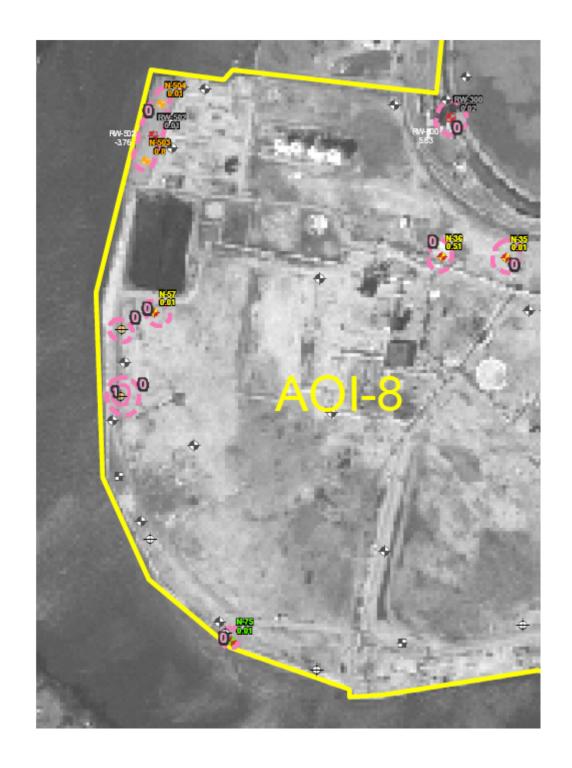
Plume RW-500 –plume moved to PZ-500

Plume N-75 – now includes N-74

Point Breeze 4th Quarter 2005 Report (pg. 50)

OBSERVATIONS

Plume RW-502, N-503 and N-504 – thickness decreased slightly


Plume PZ-501 - no change

New Plume N-57

Plume PZ-502 – thickness decreased to more than 1 ft thick

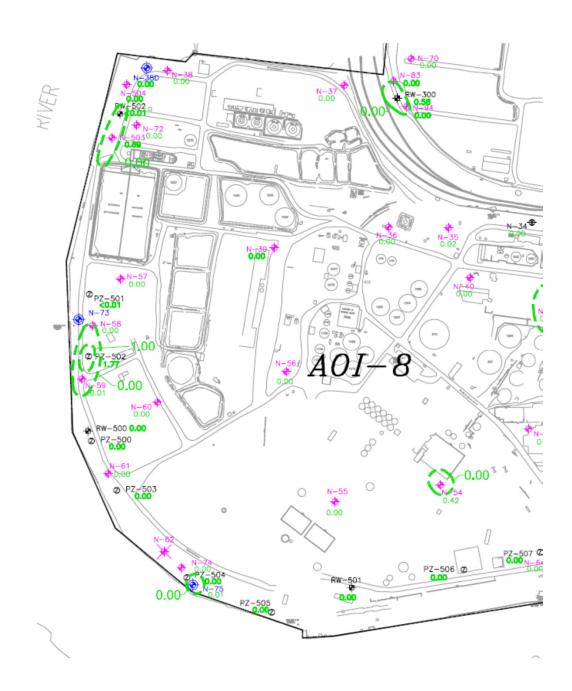
Plume PZ-500 – no longer present

Plume N-75, N-74 – decreased to only N-75

Point Breeze 2nd Quarter 2006 Report (pg. 97)

OBSERVATIONS

Plume RW-502, N-503 and N-504 – no longer includes N-504


Plume PZ-501 – no longer present

Plume N-57 – no longer present

Plume PZ-502 – now includes N-58 and N-59

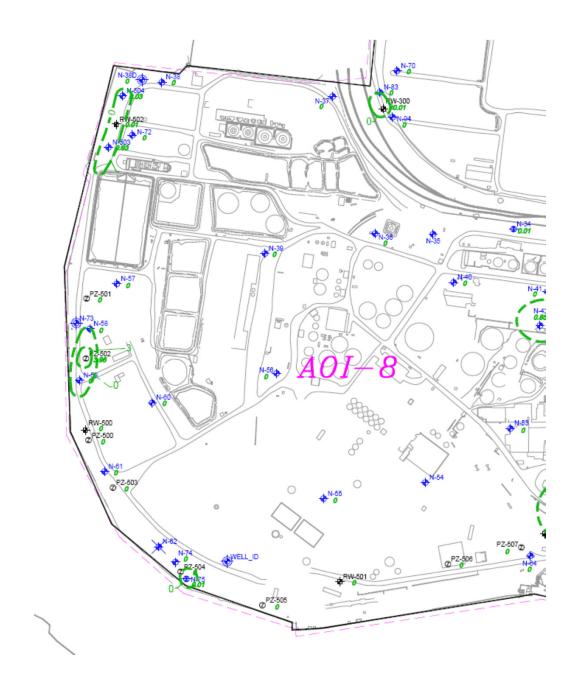
Plume PZ-500 – no longer present

Plume N-75 – no change

Point Breeze 4th Quarter 2006 Report (pg. 28)

OBSERVATIONS

Plume RW-502, N-503 - now includes N-504


Plume PZ-501 – no longer present

Plume N-57 – no longer present

Plume PZ-502, N-58 and N-59- thickness increased to more than 3 ft

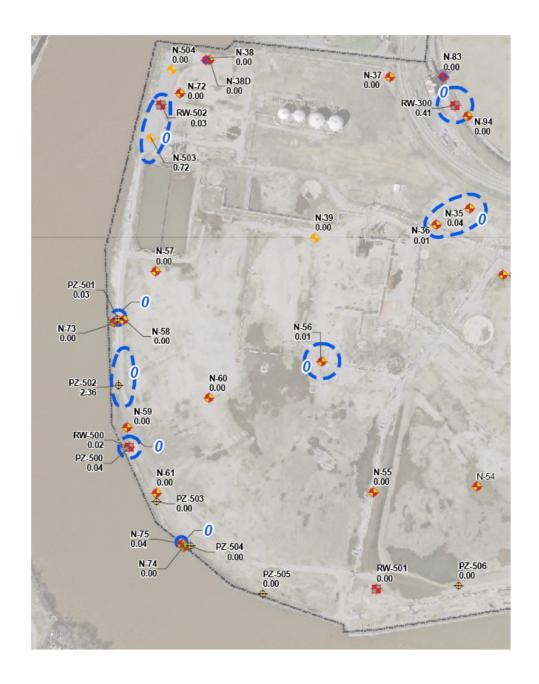
Plume PZ-500 – no longer present

Plume N-75 – no change

Point Breeze 4th Quarter 2007 Report (pg. 35)

OBSERVATIONS

Plume RW-502, N-503 and N-504 – no longer includes N-504


Plume PZ-501 - returned

Plume N-57 – no longer present

Plume PZ-502, N-58 and N-59- no longer includes N-58 and N-59

Plume PZ-500 – returned and includes RW-500

Plume N-75 – thickness increased slightly

Point Breeze 2nd Quarter 2008 Report (pg. 32)

OBSERVATIONS

Plume RW-502, N-503 and N-504 – no change

Plume PZ-501 – returned and now includes N-73

Plume N-57 – no longer present

Plume PZ-502, N-58 and N-59 – no longer includes N-58 or N-59

Plume PZ-500 – no longer present

Plume N-75 – slight increase in thickness

CCR - Figure 5 data collected 11/2003

OBSERVATIONS

Plume RW-502, N-503 and N-504 – no longer include RW-502 or N-504

Plume PZ-501 – no longer present

Plume N-57 – no longer present

Plume PZ-502 – increased in thickness slightly

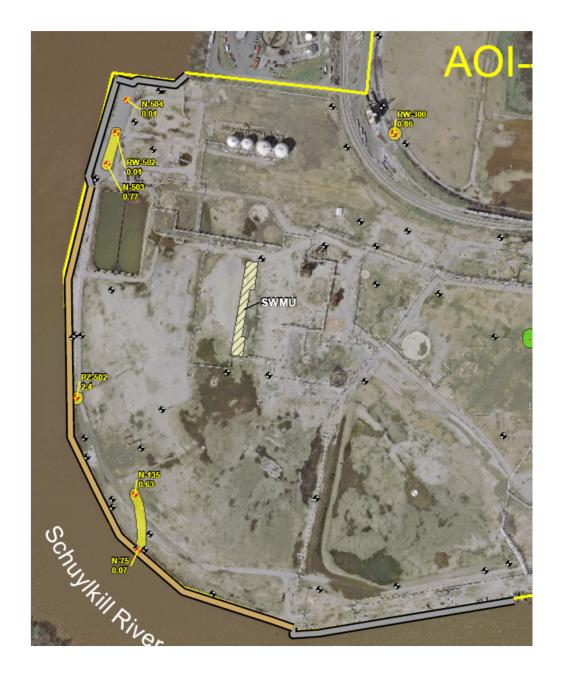
Plume PZ-500 – no longer present

Plume N-75 – slight decrease in thickness

AOI 8 SCR -Figure 11 10/2003

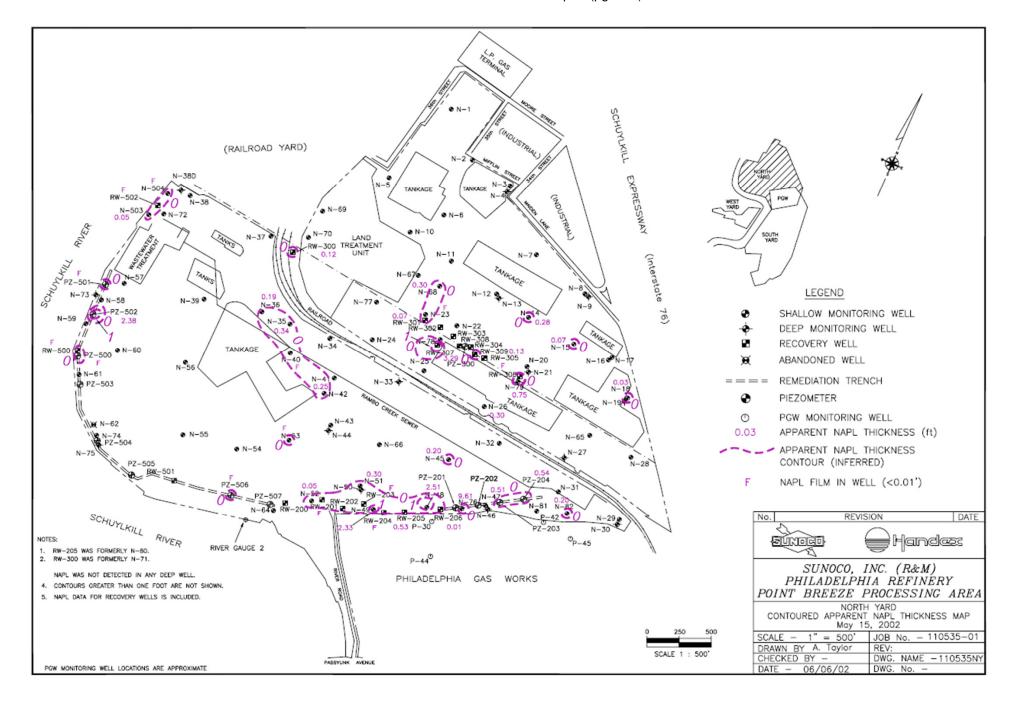
OBSERVATIONS

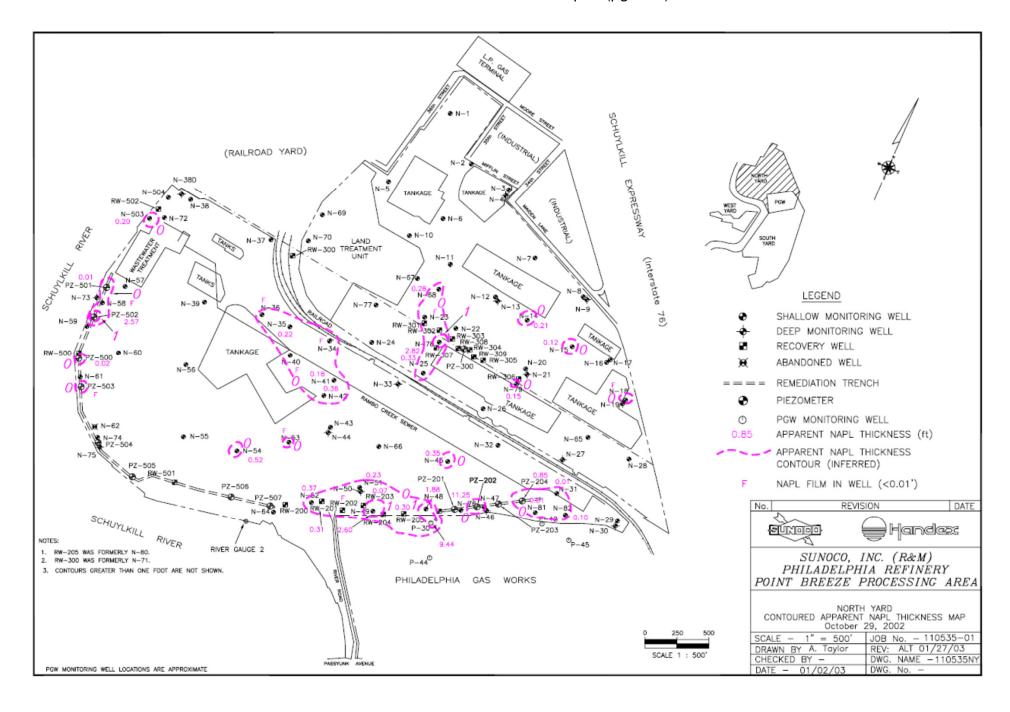
Plume N-503- now includes RW-502

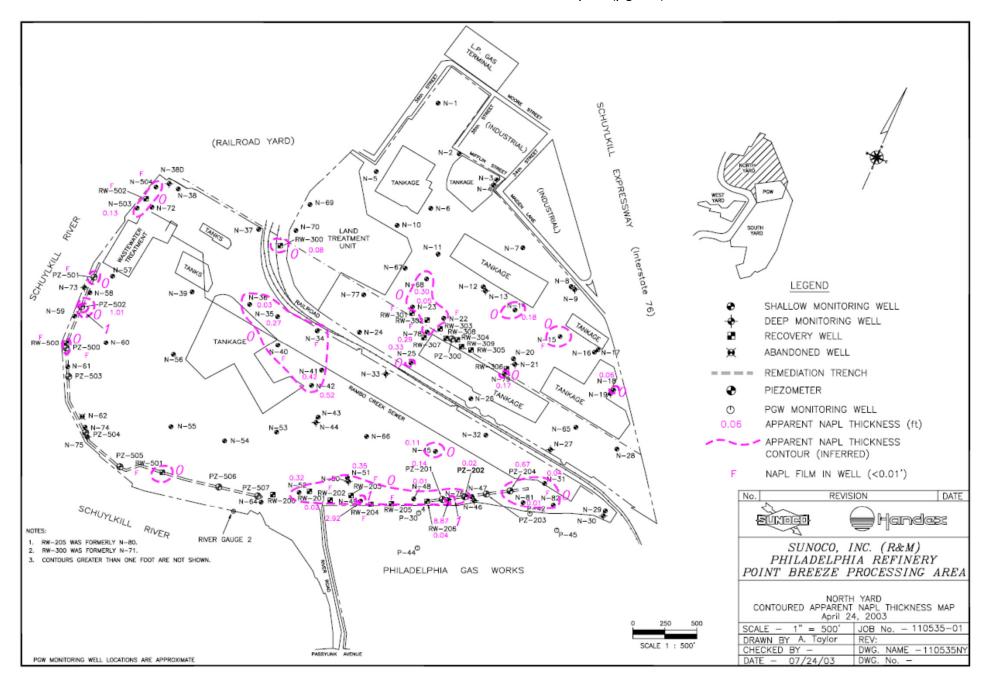

Plume PZ-501 – no longer present

Plume N-57 – no longer present

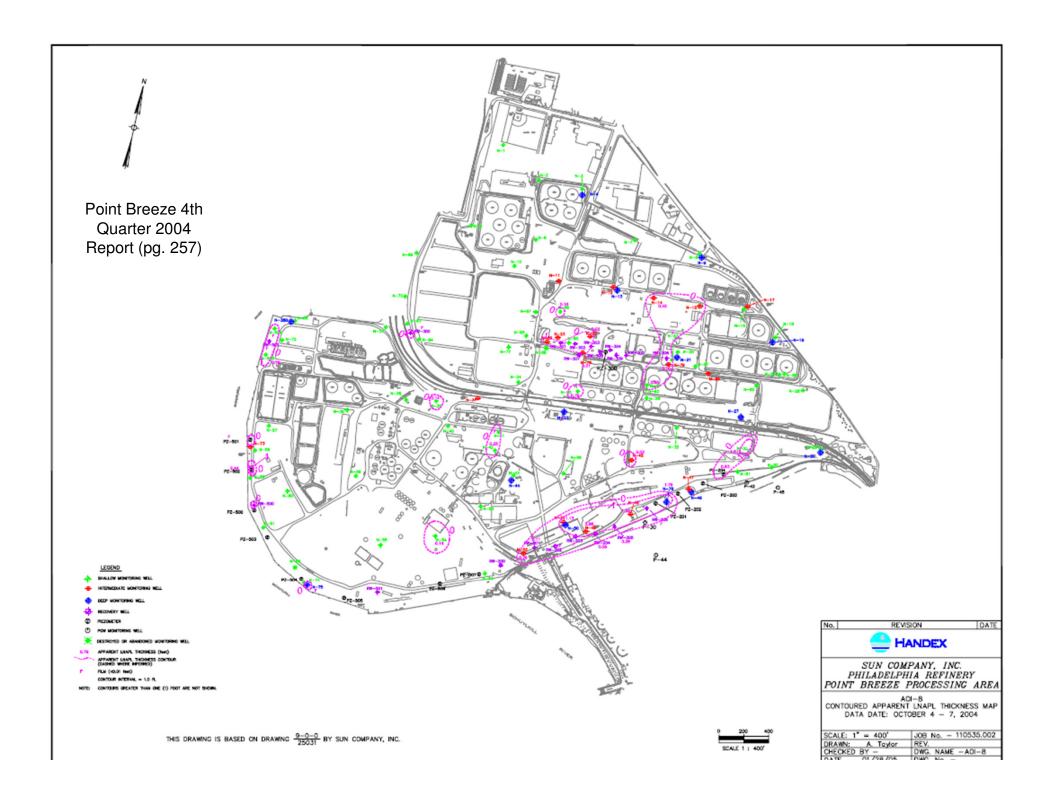
Plume PZ-502 – increased in thickness slightly

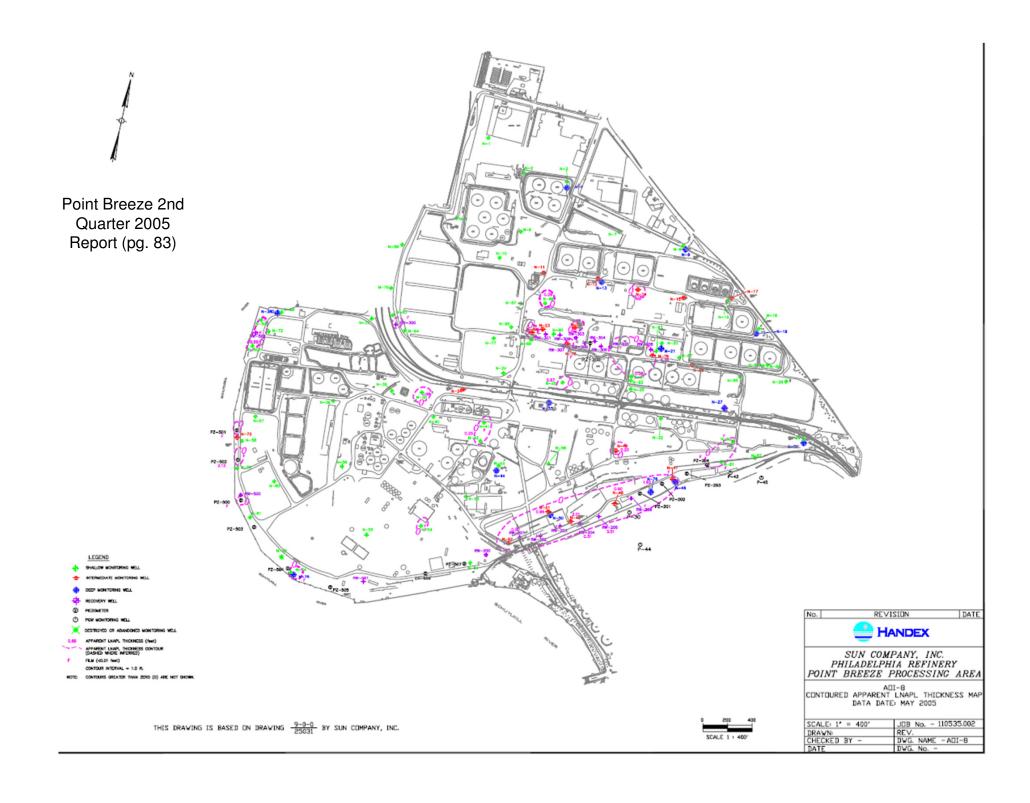

Plume PZ-500 – no longer present

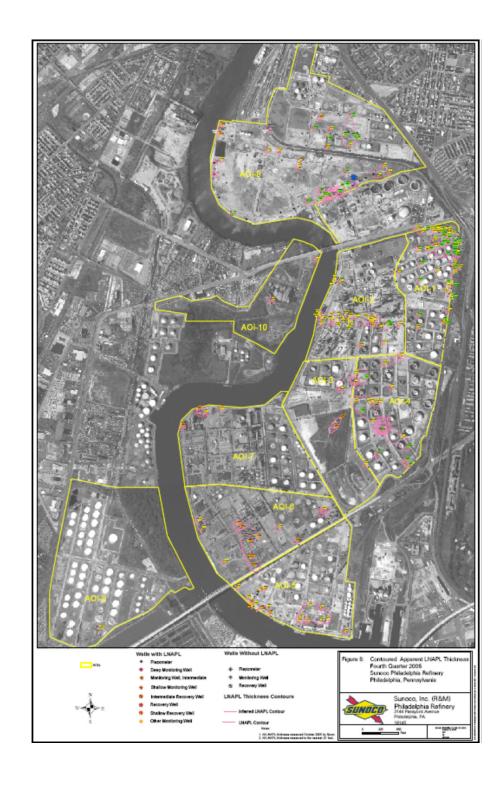

Plume N-75 – increase in thickness and now includes N-135

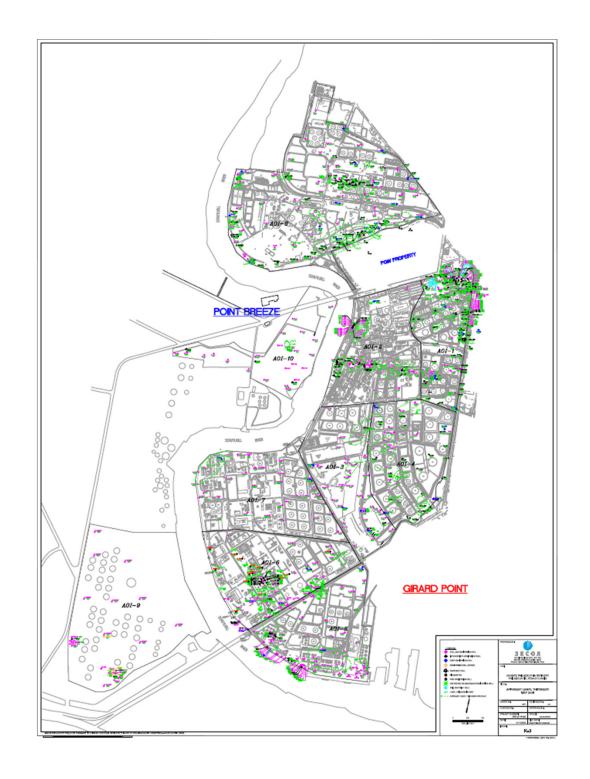

North Yard Figures

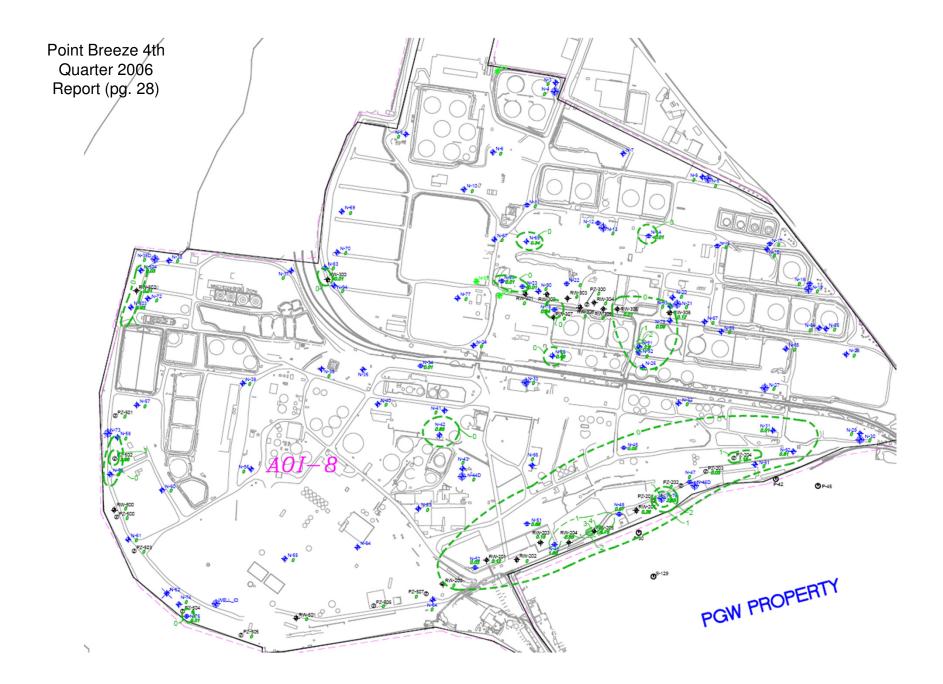
2002 - 2008



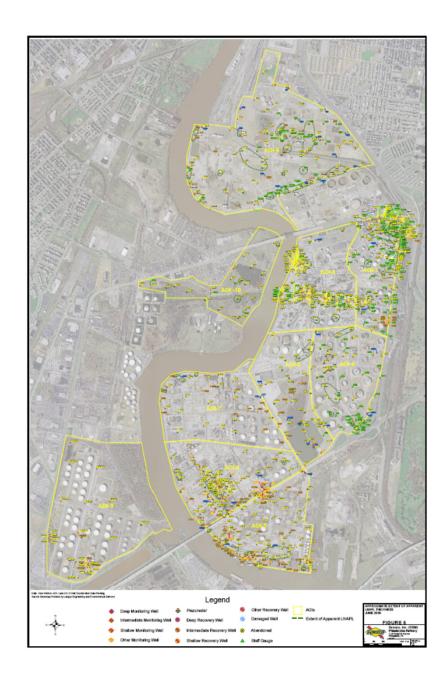

Point Breeze 2nd Quarter 2003 Report (pg. 87)


Point Breeze 4th Quarter 2003 Report (pg. 233) PZ-501 PZ-500 PZ-503 0 F - FEM (40.01 FEET) SUNCO, INC. (R&M)
PHILADELPHIA REFINERY
POINT BREEZE PROCESSING AREA
(NORTH YARD)
CONTOURED APPARENT NAFL THICKNESS MAP RIVER GAUGE 2

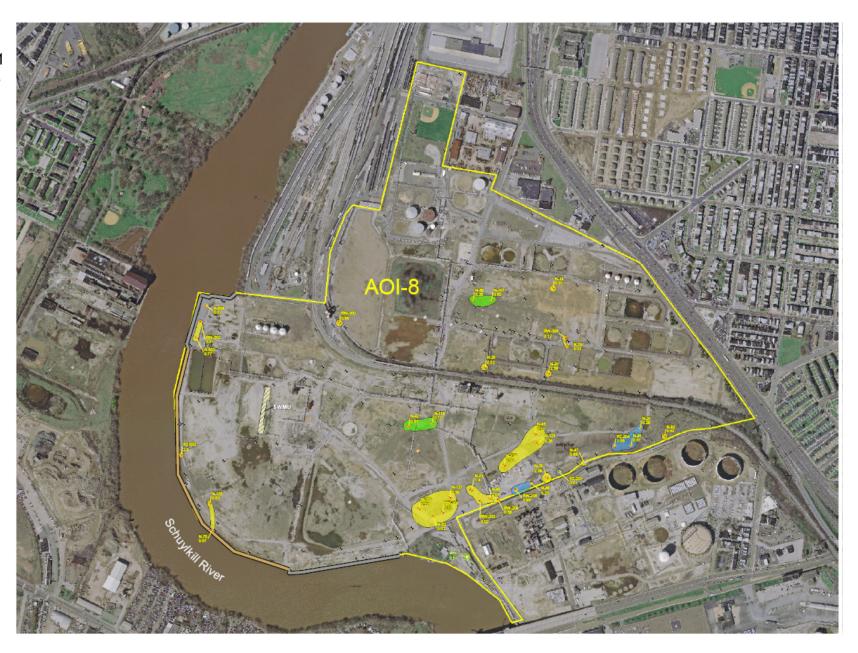


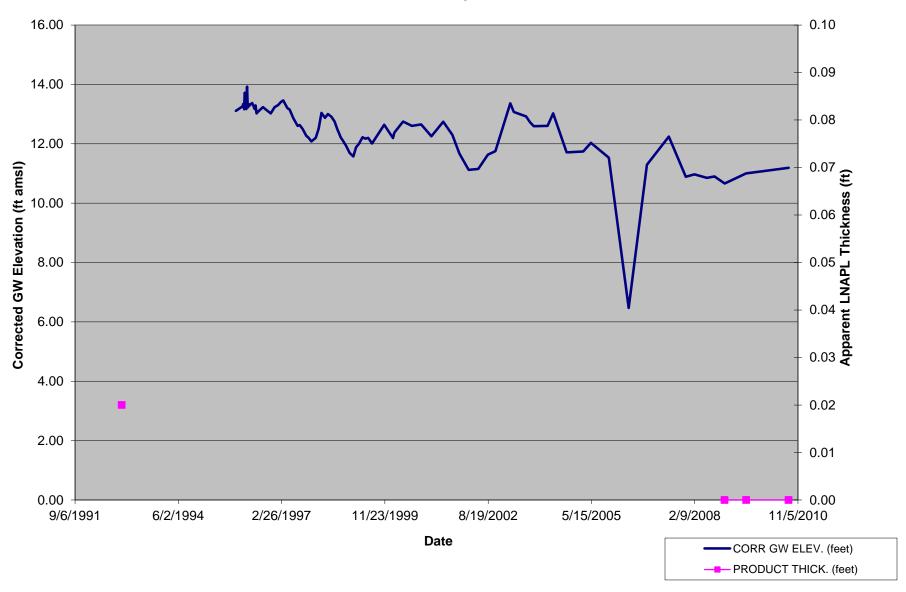


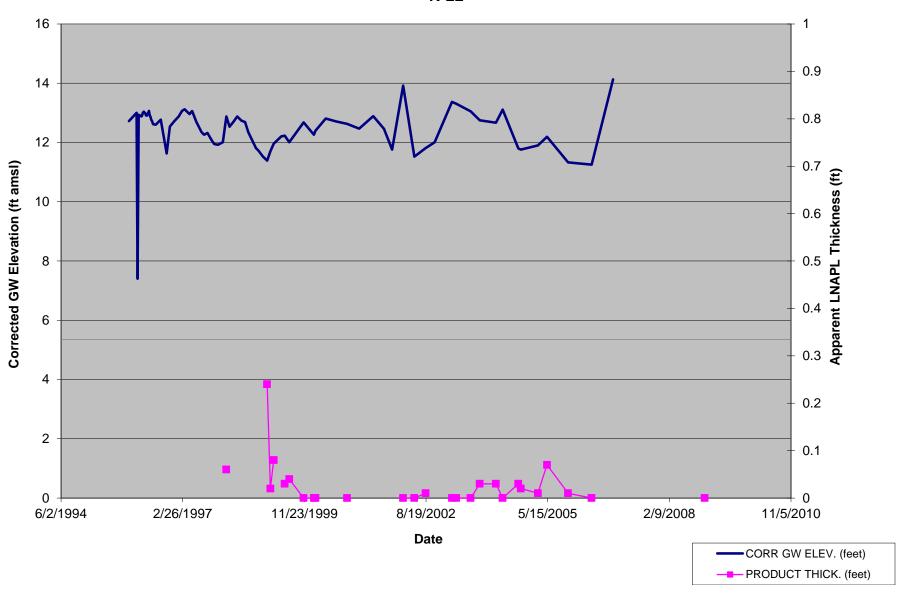
Point Breeze 4th Quarter 2005 Report (pg. 50)

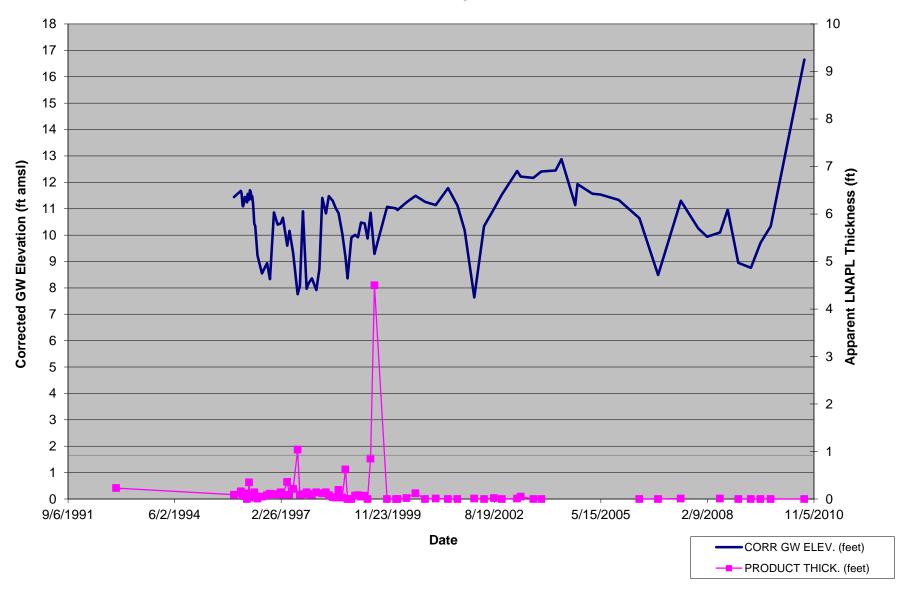


Point Breeze 2nd Quarter 2006 Report (pg. 97)

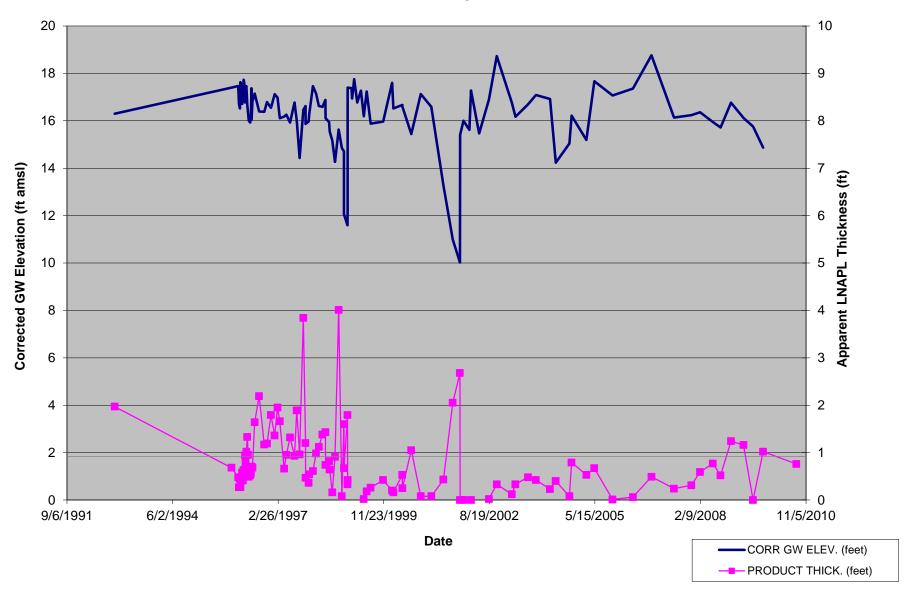

Point Breeze 2nd Quarter 2008 Report (pg. 32)

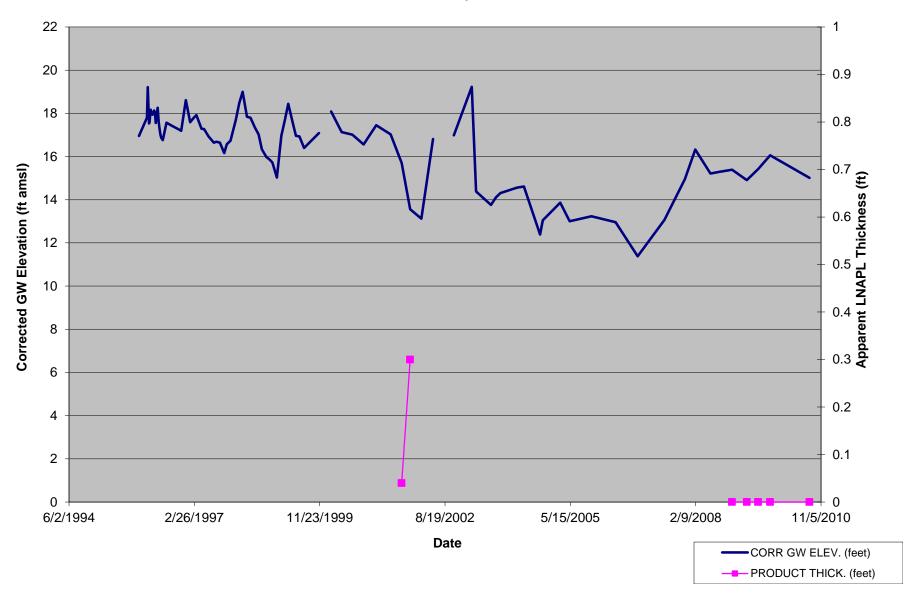


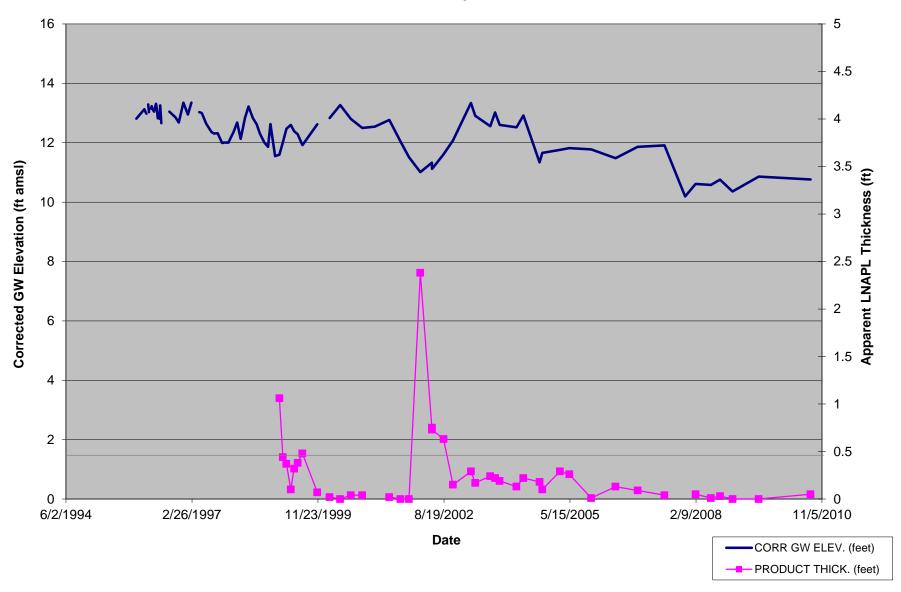

CCR -Figure 5 data collected 11/2003

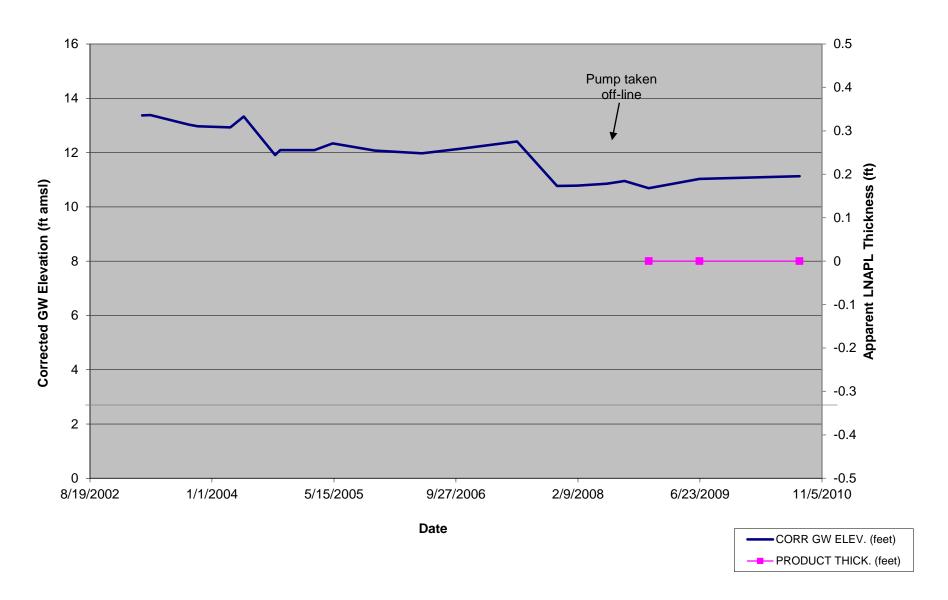


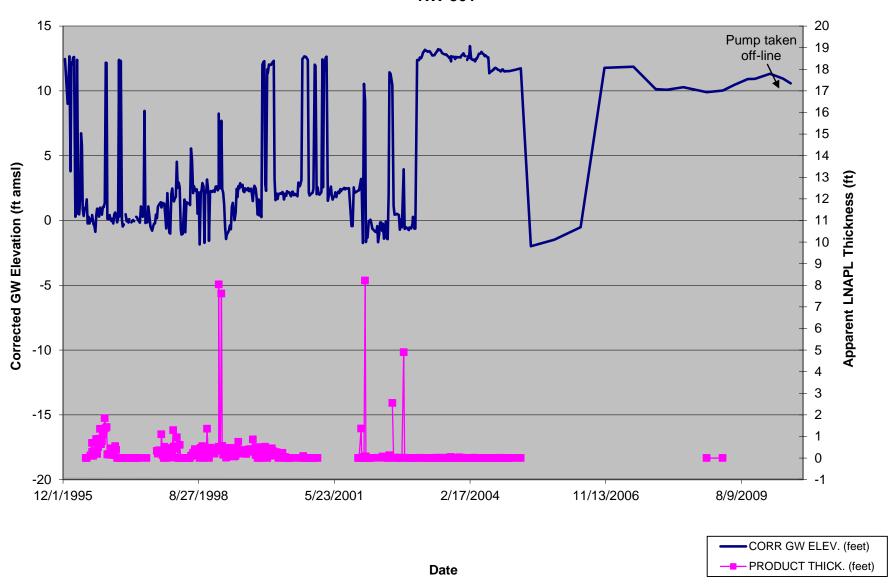
AOI 8 SCR -Figure 11 10/2003

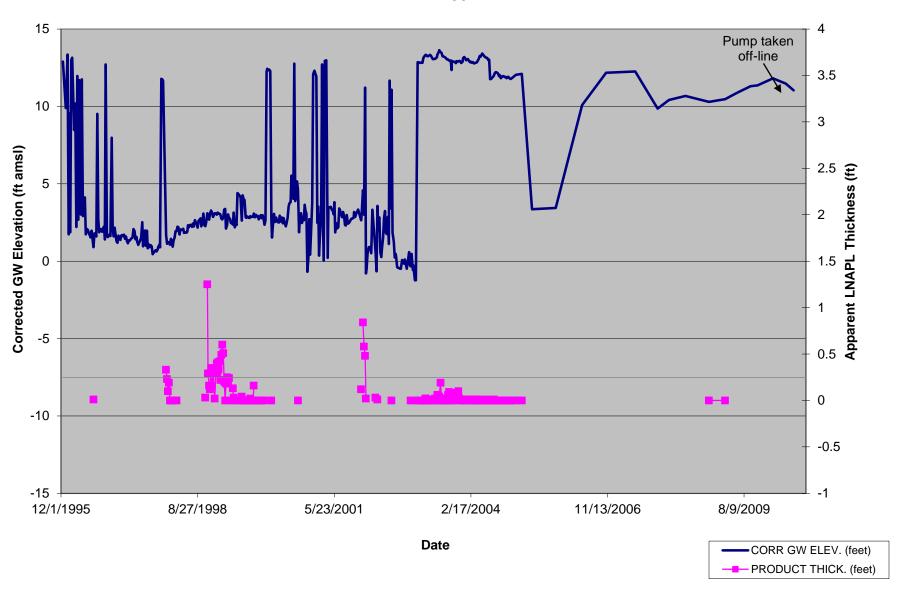


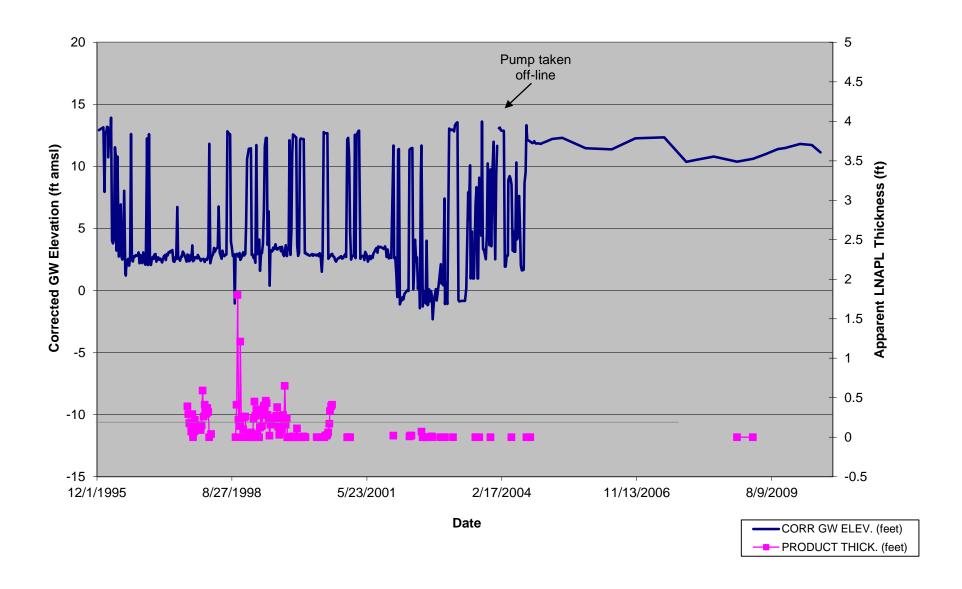




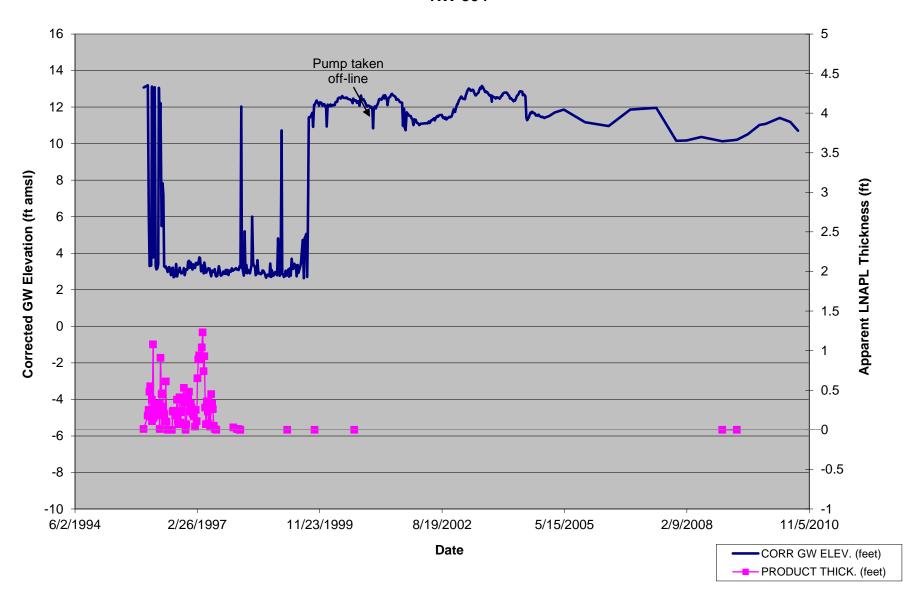




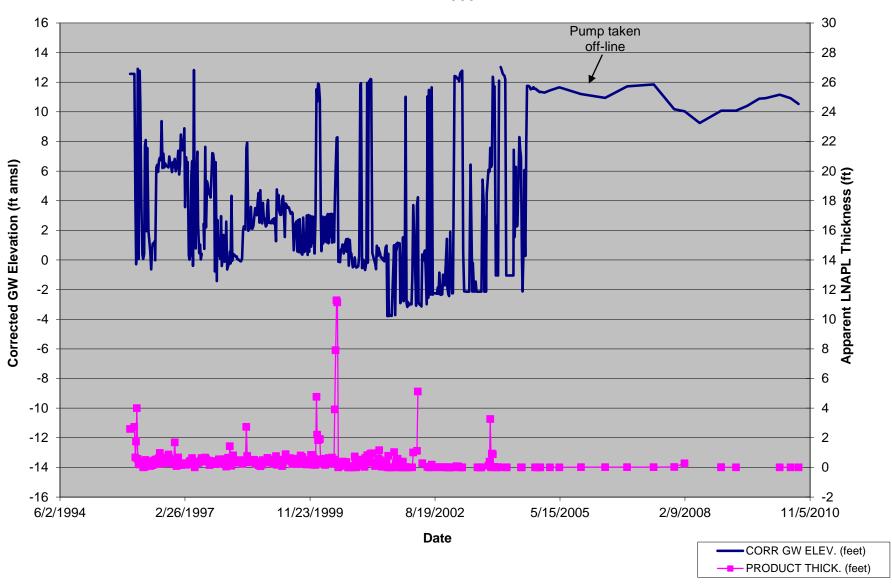


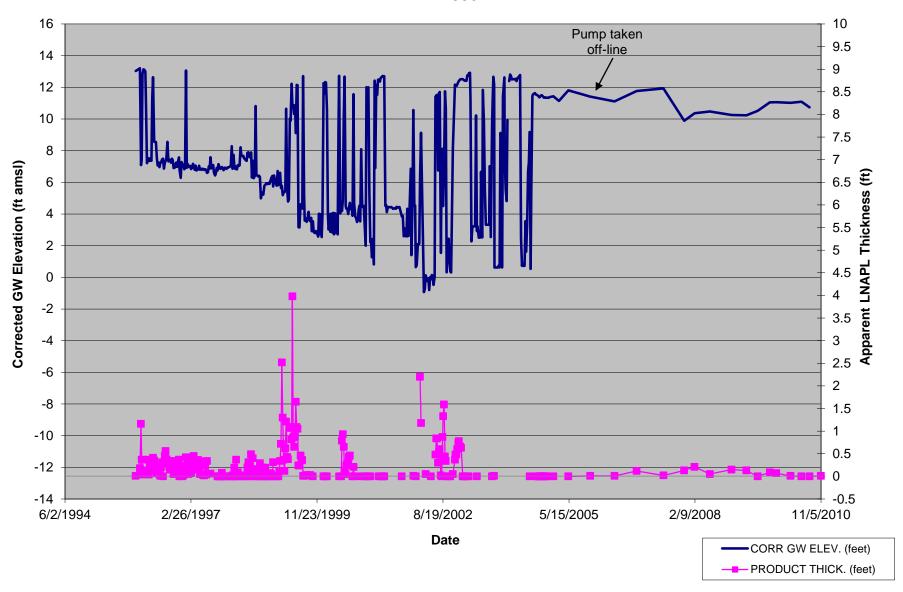


RW-301

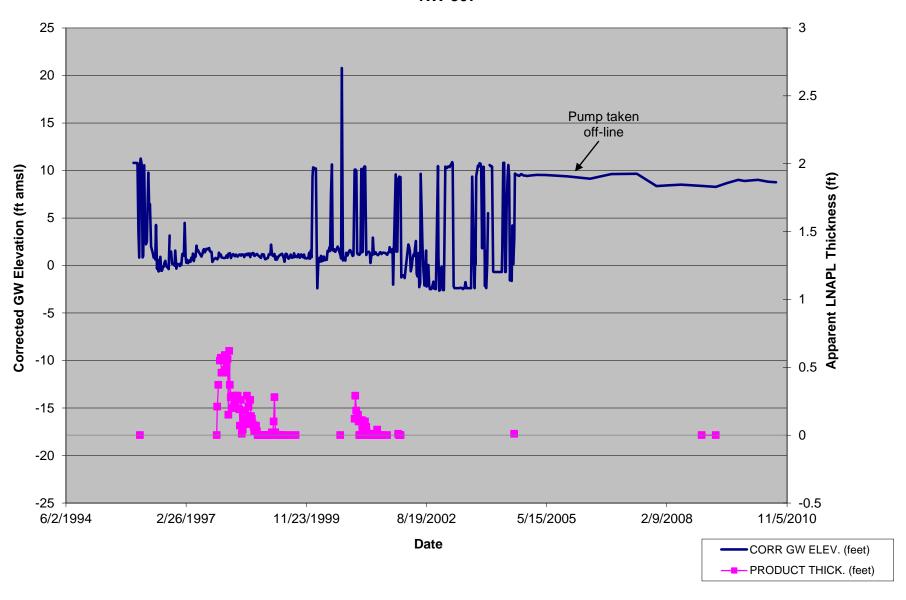


RW-302

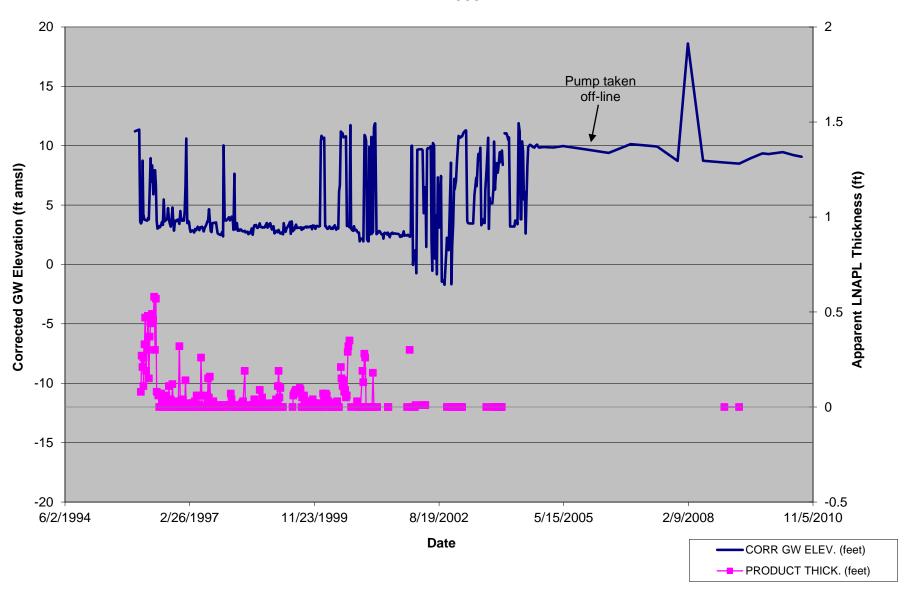


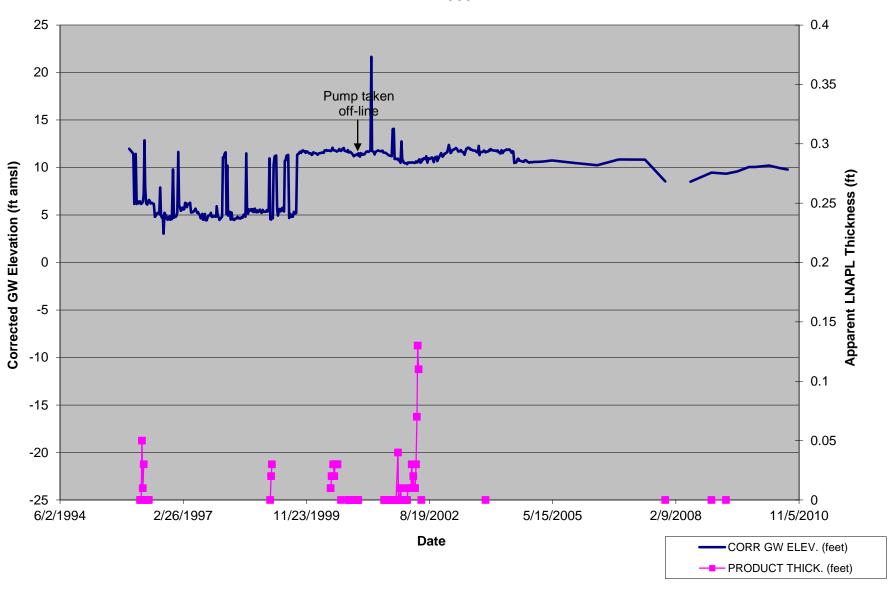


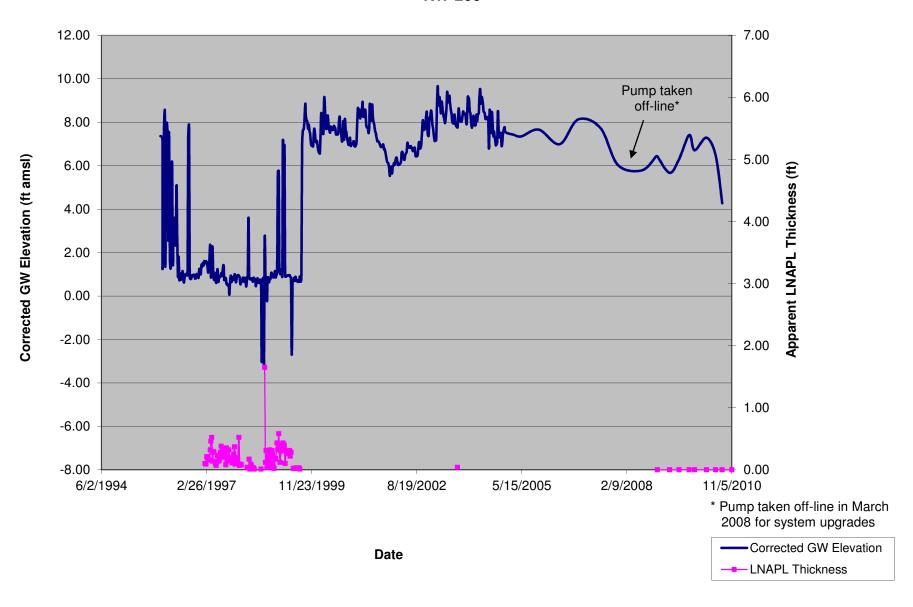
RW-304

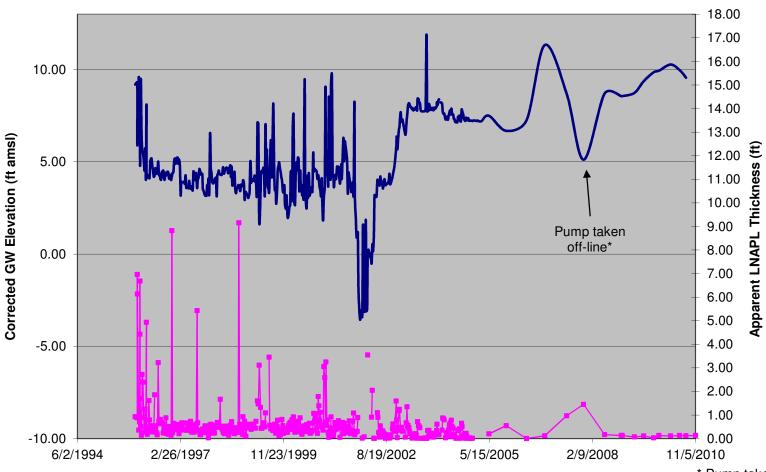


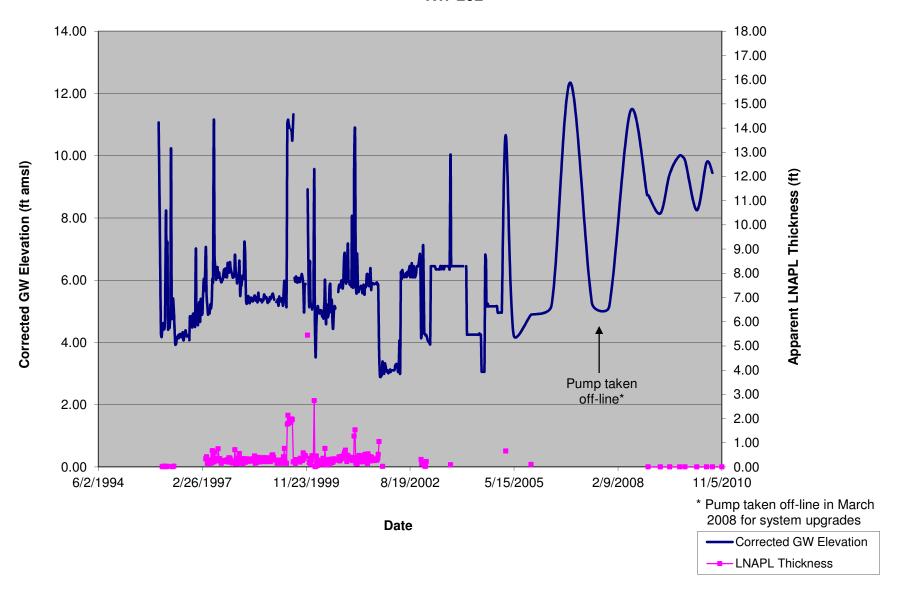
RW-305

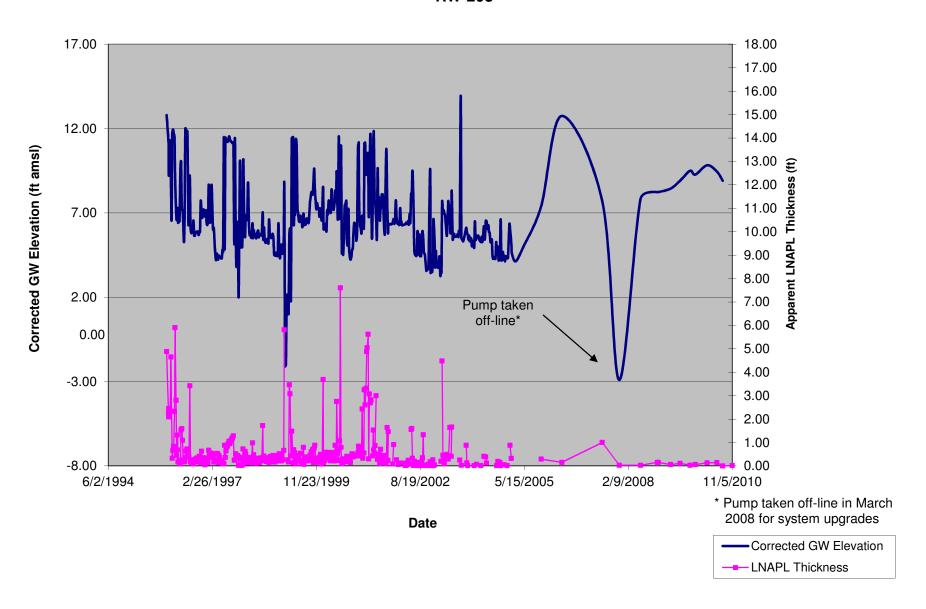


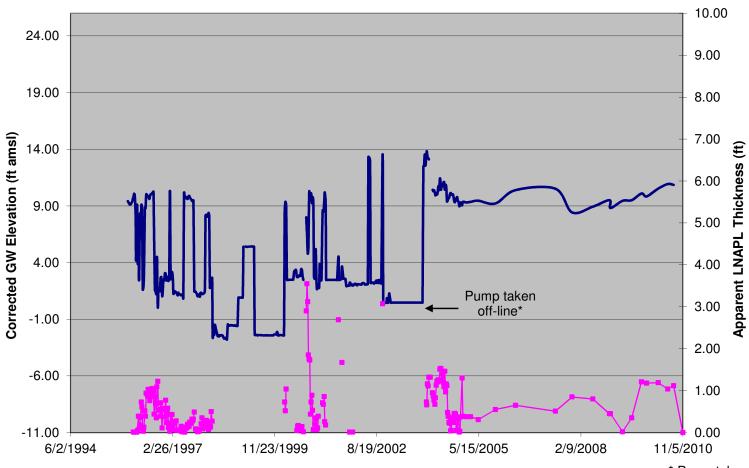

RW-307


RW-308



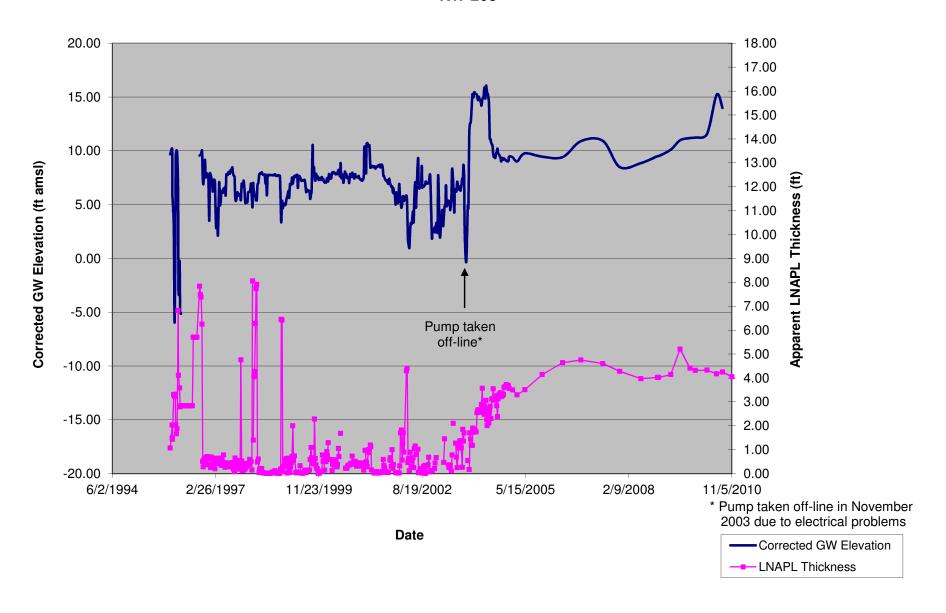

RW-200

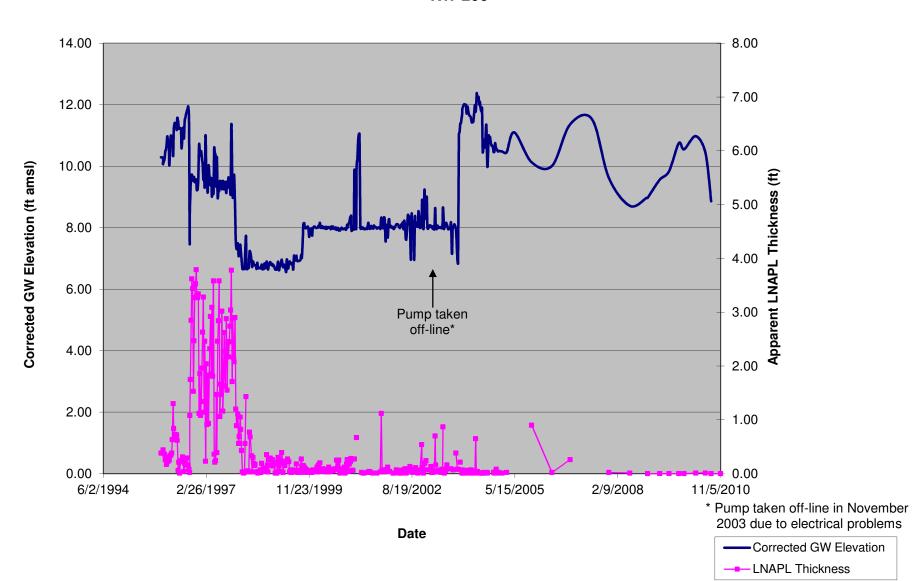


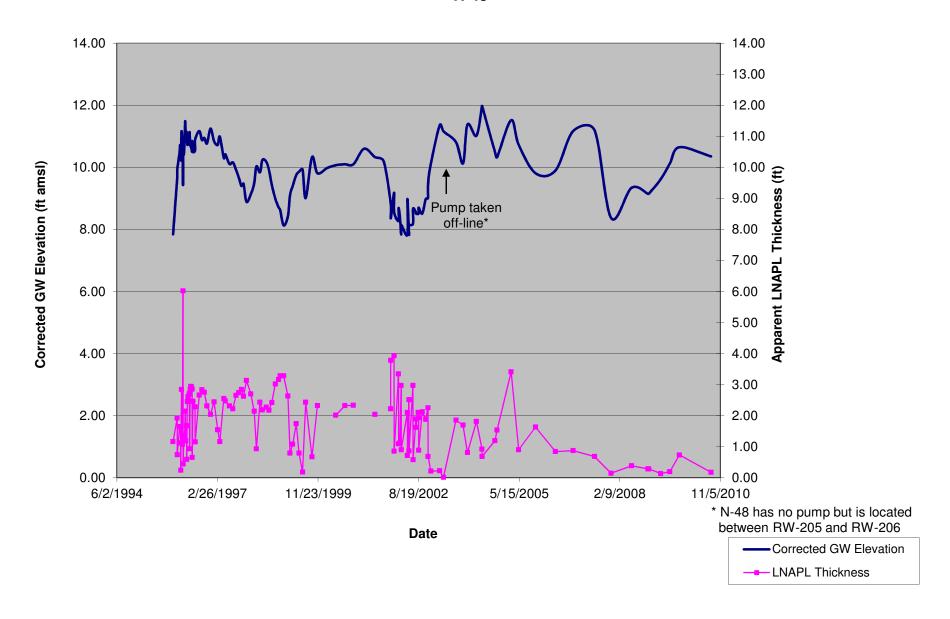


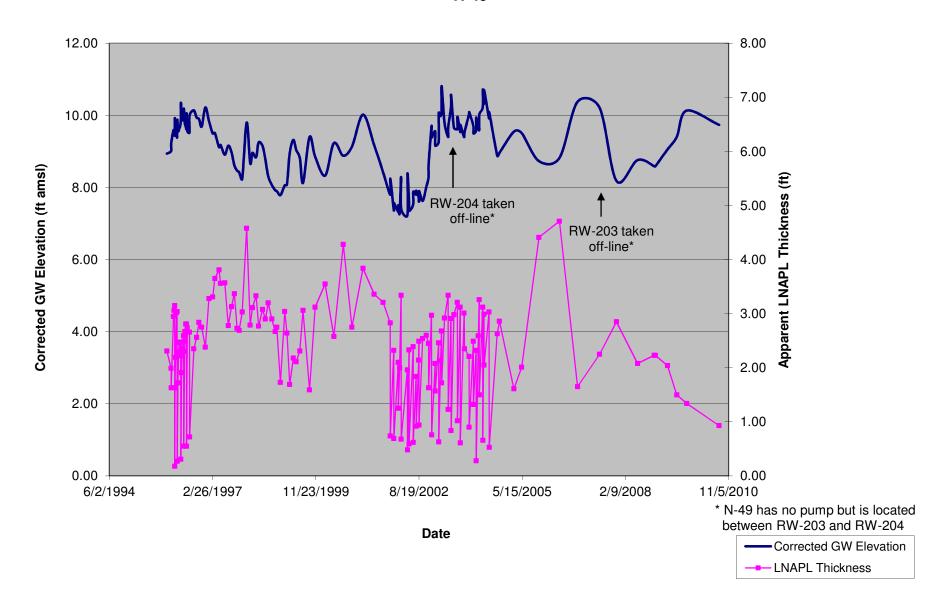
* Pump taken off-line in March 2008 for system upgrades

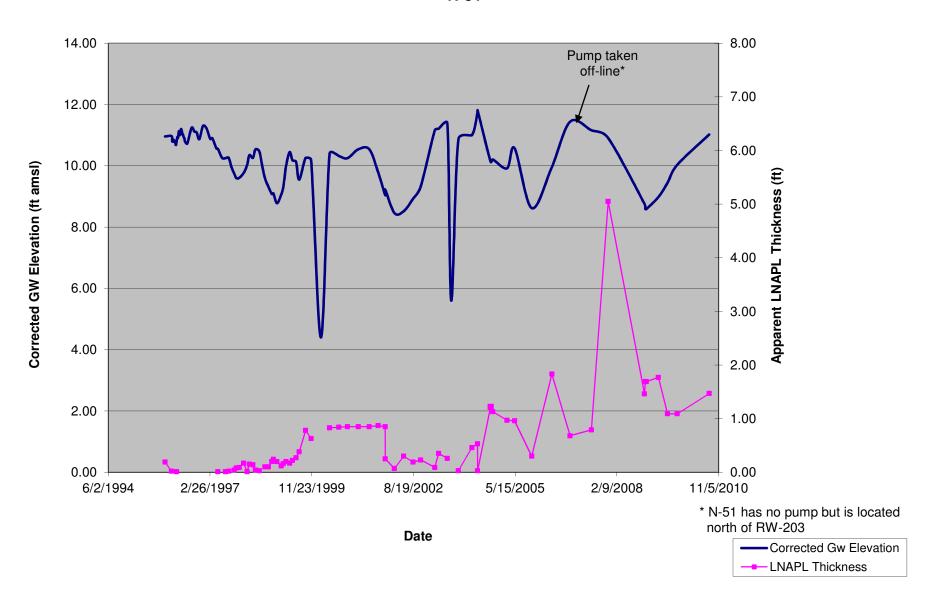
Date

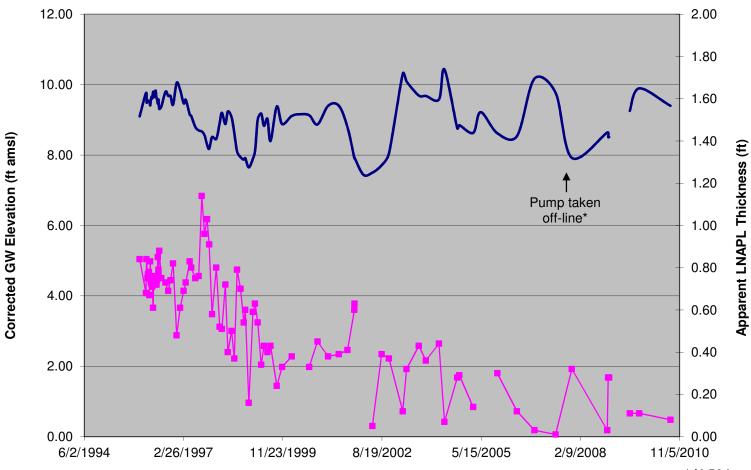




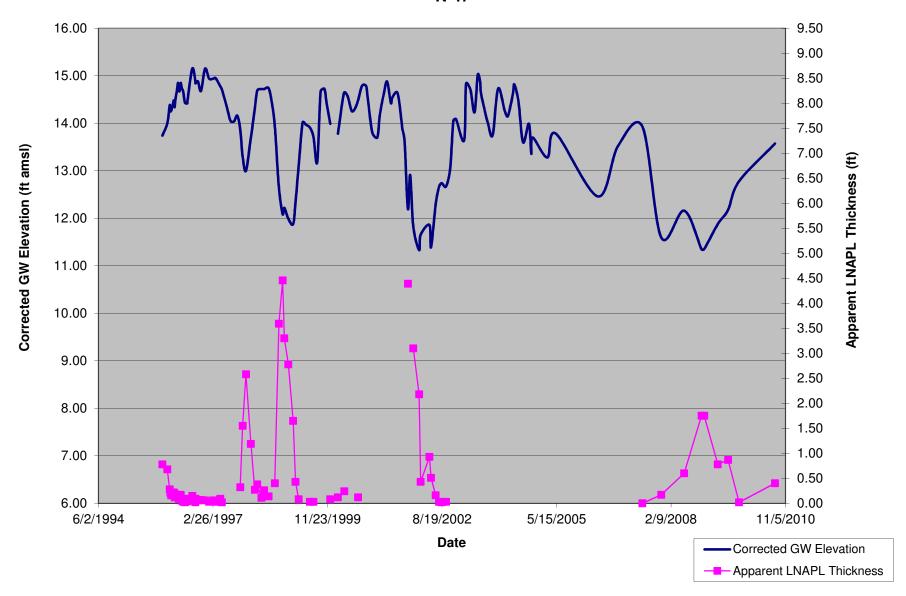

Date

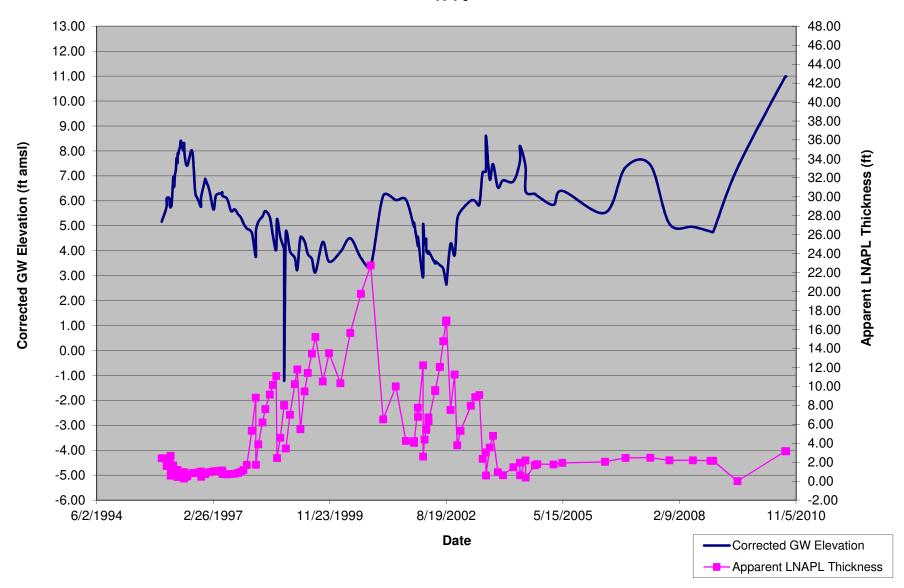

* Pump taken off-line in November 2003 due to electrical problems


Corrected GW Elevation
--- LNAPL Thickness









Date

* N-52 has no pump but is located between RW-200 and RW-201

APPENDIX J

FATE AND TRANSPORT MODELING PROCEDURES AOI 8: SUNOCO PHILADELPHIA REFINERY PHILADELPHIA, PENNSYLVNIA

J.1 INTRODUCTION

Fate and transport calculations were completed for groundwater in Area of Interest (AOI) 8 to evaluate potential migration pathways/potential impacts to receptors. Five compounds of concern (COCs) were detected in groundwater during the July 2008 groundwater sampling event at concentrations above their respective MSCs (Figure J.1). These COCs are benzene, pyrene, chrysene, phenanthrene and naphthalene. To address the potential future migration of these COCs, a fate and transport analysis was performed using three models developed by PADEP. The Quick Domenico Version 2 (QD) model and the SWLOAD model were used for fate and transport in groundwater. PENTOXSD was used when assessing potential impacts of groundwater on surface water. Site-specific data was used to complete the fate and transport calculations, when available.

J.2 QUICK DOMENICO AND SWLOAD MODEL OVERVIEW

The QD and SWLOAD models are Microsoft Excel spreadsheet applications based on the analytical contaminant transport equation developed by P.A. Domenico in "An Analytical Model For Multidimensional Transport of a Decaying Contaminant Species," Journal of Hydrology, 91 (1987), pp. 49-58. The QD model calculates contaminant concentrations at any down-gradient location after a specified interval of time. The SWLOAD model calculates groundwater contaminant concentrations just before discharge to surface water. Both models incorporate the processes of advection, first order decay, retardation, and dispersion to describe fate and transport of compounds.

J.3 MODEL LIMITATIONS

Limitations of the QD and SWLOAD models include:

- Groundwater flow is assumed to be steady state, and one-dimensional;
- Aquifer properties are assumed to be reasonably uniform;
- Applicable only to unconsolidated aguifers;
- Intended for use primarily with dissolved organic compounds;
- Does not account for the transformation of parent compounds into daughter products as the result of biodegradation;
- Compounds are considered individually, and are assumed to not react with each other; and
- The contaminant source is limited to a single and continuous source concentration.

J.4 SCREENING AND APPROACH TO FATE AND TRANSPORT ANALYSIS

Based on groundwater flow directions derived from May 2011 groundwater elevations (Figures 6 and 7) and the locations of potential off-site receptors AOI 8 were divided into three drainage areas for fate and transport analysis. Locations of each of these drainage areas are show on Figure J.1 of Appendix J.

- Drainage Area 1 is located in the eastern portion of AOI 8. The western boundary of Drainage Area 1 was defined as the groundwater divide where groundwater flow is generally east towards the AOI 8 property line. QD modeling was used to address potential off-site impacts along the AOI 8 northeast boundary.
- Drainage Area 2 consists of the central and western portions of AOI 8 where groundwater flow is generally towards the Schuylkill River. To address potential off-site impacts along the Schuylkill River the QD model was used first; then the SWLOAD model; then, as need, PENTOXSD.

 Drainage Area 3 was not defined hydraulically like Drainage Areas 1 and 2 but was used to delineate where active remediation will be conducted. Drainage Area 3 is located along the southern AOI 8 property boundary.

Groundwater concentrations at AOI 8 are assumed to be at or near steady-state for this analysis. A detailed description of the fate and transport modeling is presented below based on the three drainage areas and the July 2008 groundwater analytical results.

Drainage Area 1 Wells

- 1. Wells with exceedences of benzene, chrysene, pyrene and phenanthrene that are located hydraulically up-gradient of wells with non-exceedences of COCs and had stable groundwater trends did not undergo analysis by QD. The Drainage Area 1 wells that fall into this category include: N-11, N-106, N-12, N-102, N-103, N-104, N-20, N-21, and N-97. These wells are located up gradient of northeast property boundary wells N-3, N-4, N-8, N-16, N-17, N-19, N-84, N-85, N-28 and N-134 which do not contain COC concentrations above their respective MSCs.
- 2. N-9, N-12 and N-101, have exceedences of one or more COCs (benzene, pyrene, chrysene and phenanthrene) and are located up gradient of the northeast property boundary where no down gradient monitoring wells exist. To assess potential migration beyond the northeast property boundary for N-12 and N-101, a QD model was constructed. Fate and transport for benzene at deep well N-9 (screened in Lower Sand) was addressed in the AOI 11 report, where it was noted that benzene concentrations at N-9 exhibited decreasing trends to non-detect. Deep monitoring wells down gradient of N-9 also exhibited non-detects and was therefore not modeled.
- 3. As a check on the results of Drainage Area 1 fate and transport evaluation, a QD simulation was created for N-106 which had the highest benzene concentration in Drainage Area 1 (410 ug/l). Benzene is the most mobile of the COCs present therefore its ability to attenuate before it reaches N-98, near the northeast property line and where benzene was not detected, was further evaluated and the modeled results supported the observed groundwater concentrations.

4. At all sampled monitoring well locations in Drainage Area 1, laboratory RLs for chrysene were higher than the groundwater MSC of 1.9 ug/l. To ensure that the potential for chrysene to impact off-site groundwater was evaluated, an additional QD simulation was constructed using site conditions found at N-8 (located about 25 feet from the property boundary) using the most elevated, site-wide chrysene RL of 120 ug/l as the starting concentration.

Drainage Area 2 Wells

1. Benzene detections above the groundwater MSC in Drainage Area 2 wells could be found in two general areas. The first area was at the center of AOI 8 (which includes RW-301, RW-303, RW-304, RW-305, RW-307, RW-308, N-108, N-121, N-118, N-119, N-123, N-44D and PZ-300) and second area was near the Schuylkill River on the west side of Drainage Area 2 (which includes N-59, N-61, N-136, N-133, PZ-503, PZ-504, PZ-505 and RW-500). Fate and transport of benzene groundwater impacts originating in the center of AOI 8 were not modeled because benzene impacts were not detected hydraulically downgradient of this area. Four monitoring well locations (N-23, N-34, N-35 and N-36) at the center of AOI 8 had benzene RLs above the benzene groundwater MSC and were reported not detected. Well locations down-gradient of these four monitoring wells had no benzene detections above the groundwater MCS and therefore were not further evaluated.

Benzene groundwater impacts in wells located along the Schuylkill River were further evaluated with QD. Based on the July 2008 groundwater data, eight wells along the wooden bulkhead had detected benzene concentrations ranging from 13 ug/l to 10,000 ug/l. These eight wells are located along a 1,500 feet stretch of the Schuylkill River within approximately 250 feet from the bulkhead. A benzene isoconcentration map was constructed using the July 2008 data as shown in Figure J.3. The highest benzene concentration detected along the bulkhead was found near monitoring wells N-133 (10,000 ug/L) and N-61 (8,700 ug/L). Benzene concentrations decreased to the north and south of N-133 and N-61. To assess the entire 1,500 feet stretch of benzene impacts, the impacted

area was broken into four zones to better define the variation in benzene concentration within the plume. For each zone a QD and SWLOAD model was constructed. If the SWLOAD results still exceeded the benzene surface water quality criteria (SWQC), PENTOXSD was used to derive a site-specific benzene wasteload allocation to re-screen the SWLOAD results.

N-58 and PZ-506 located along the Schuylkill River had elevated benzene RLs but was listed as not detected. QD and SWLOAD simulations for benzene at N-58 and PZ-506 were constructed using the benzene RLs as the starting concentration.

- 2. Naphthalene concentrations were detected above the groundwater MSC at three Drainage Area 2 wells (N-23, N119, and N-123) and evaluated using QD. The naphthalene RL at N-36 was greater than its MSC but listed as a not detect. No modeling was performed for naphthalene at this location because it was located in the center of AOI 8 and naphthalene impacts were not detected down-gradient of this monitoring well.
- 3. Phenanthrene concentrations were detected above the groundwater MSC at two monitoring wells (N-112 and N-128) in Drainage Area 2. Wells located down gradient of N-112 and N-128 were not impacted by phenanthrene, therefore, no fate and transport modeling was performed.
- 4. Chrysene detections above the groundwater MSC are ubiquitous in AOI 8. Due to the low affinity for transport (strong tendency to sorb to aquifer materials) and stable groundwater trends in interior wells potential impacts of chrysene on surface water were assessed at locations along the Schuylkill River only. The wells included in this evaluation included N-111, N-60, PZ-503, PZ-505, PZ-506, PZ-507 and RW-200.

Chrysene impacts in Drainage Area 2 wells located along the Schuylkill River were first screened against the chrysene SWQC found in the PA Code Chapter

93.8c. Neither chronic nor acute SWQC for chrysene have been derived for the PA Code. Therefore additional screening was done with US EPA Lowest Observable Effect Level (LOELs) for acute exposure to chrysene in the marine environment of 300 ug/l. Screening results indicate that chrysene at present concentrations does not exceed the LOEL value along the bulkhead. Groundwater is impacted by chrysene near the Schuylkill River when compared to the human health SWQC of 0.0038 ug/l. Chrysene was assessed using QD and SWLOAD. If the SWLOAD results still exceeded the groundwater quality criteria, PENTOXSD was used to derive a site-specific wasteload allocation to rescreen the SWLOAD results.

Chrysene RLs at all sampled monitoring wells in Drainage Area 2 were higher than the chrysene groundwater MSC of 1.9 ug/l. To ensure chrysene will not impact off-site surface water, a simulation was constructed using site conditions found at PZ-504 (26 feet from the bulkhead) and the site-wide maximum chrysene RL of a 120 ug/l was used as the starting concentration. The result of this simulation was used to evaluate chrysene in Drainage Area 2 near the Schuylkill River.

5. Pyrene has a strong affinity to sorb to aquifer materials and a low affinity for transport. Therefore the assessment of pyrene for potential fate and transport was focused along the Schuylkill River.

Based on the July 2008 groundwater data, pyrene was detected above its groundwater MSC of a 130 ug/l at two monitoring well locations (N-111 and RW-200) along the Schuylkill River. Chronic and acute SWQC for pyrene were not developed in Pennsylvania. The PA Code human health SWQC for pyrene is 830 ug/l. Pyrene concentrations at RW-200 (300 ug/l) and N-111 (160 ug/l) do not exceed the human health SWQC. A screening concentration for chronic exposure to pyrene in fresh water of 0.025 ug/l was derived by Environment Canada which is below the detected pyrene concentration at N-111 and RW-200. Therefore, fate and transport modeling for pyrene was performed.

6. 1,2-dichloroethane RLs were elevated above its groundwater MSC of 5 ug/l at four monitoring well locations (N-58, N-61, N-133 and PZ-506) along the bulkhead, and one location (N-119) in the interior of Drainage Area 2. Wells located down gradient of N-119 did not contain 1,2-dichloroethane above its groundwater MSC and was therefore not modeled. To address the potential for 1,2-dichloroethane to impact surface water QD, SWLOAD and PENTOXSD models were constructed for the four locations along the bulkhead using each RL as the starting concentration.

Drainage Area 3 Wells

Drainage Area 3 wells will be addressed through active remediation and therefore were not modeled.

In summary, for Drainage Area 1 wells QD simulations were constructed for benzene, chrysene, pyrene and phenanthrene at N-12 and chrysene at N-101 to assess potential migration beyond the northeast property boundary; and at N-106 to assess the ability of the model to predict benzene attenuation. A chrysene simulation was constructed at N-8 to assess problems with the RL exceeding the groundwater MSC.

For Drainage Area 2 wells N-59, RW-500, N-61, PZ-503, N-136, N-133, PZ-504 and PZ-505 were separated into four zones based on the benzene plume along the bulkhead and four QD, SWLOAD and PENTOXSD models were created. Benzene simulations were also constructed for N-58 and PZ-506 to address RL issues. For Drainage Area 2 chrysene detected above its MSC and RL in wells N-111, N-60, PZ-503, PZ-505, PZ-506, PZ-507 and RW-200, were modeled using QD and SWLOAD. To address site-wide concerns over chrysene RLs a QD and SWLOAD simulation for PZ-504 (26 feet from bulkhead) was constructed using the maximum reported site RL. For pyrene at N-111 and RW-200 QD and SWLOAD simulations were constructed. To address concern with 1,2-dichloroethane RLs, simulations were

constructed for N-58, N-61, PZ-506 and N-133 using each locations RL as the starting concentration.

No simulations for Drainage Area 3 were constructed. Monitoring wells, compounds and input-output data for all simulations can be found in Table J.1.

J.5 MODEL INPUT PARAMTERS

In preparation of this report, input values for the QD and SWLOAD models were compiled from available site-specific data. When no site-specific data was available, estimated input values from the PADEP spreadsheet "Number Please!2011," which is based on PA Code, Chapter 250, Appendix A, Table 5; or other acceptable literature sources, were utilized. The input parameters are discussed in detail in the following sections. An Excel spreadsheet interface developed by Langan was used to construct the QD simulations. This interface allowed the simulation of multiple compounds simultaneously and saved in a single electronic file. Results of the QD and SWLOAD modeling can be found in Table J.1 in this appendix.

J.5.1 Source Concentration

Analytical results (detections and reporting limits) from the most recent AOI 8 site wide groundwater sampling (July 2008) were used as the starting concentrations for QD and SWLOAD simulations. For benzene impacts along the wooden bulkhead the maximum detected benzene concentration from the July 2008 groundwater sampling event in each zone (as defined above) was used as the source concentration for the QD and SWLOAD simulations. The benzene source concentration for Zone 1 is 300 ug/l (N-133); for Zone 2 is 8,700 ug/l (N-61); for Zone 3 is 2,400 ug/l (PZ-504) and for Zone 4 is 160 ug/l (PZ-505), respectively.

J.5.2 Distance to Location of Concern (x)

Distance to the Location of Concern (distance) for QD simulations is the distance from the subject well to the down gradient point where the predicted

groundwater concentration equals the groundwater screening standard. For SWLOAD the distance to the location of concern is the distance between the subject well and the Schuylkill River. Measurements were made using the GIS developed for the site. For benzene impacts along the wooden bulkhead the distance between the bulkhead and the closest well for each Zone was used as the distance to location of concern.

J.5.3 Dispersivity

Dispersivity is the tendency of a dissolved plume to "spread out" as it moves down-gradient.

- Longitudinal dispersivity (A_X) occurs in the direction parallel to groundwater flow;
- Transverse dispersivity (A_{γ}) occurs in the same plane as longitudinal dispersivity but perpendicular to the direction of groundwater flow; and
- Vertical dispersivity (A_Z) occurs in the upward direction, normal to the plane in which longitudinal and transverse dispersivity occur (Vertical dispersivity is usually negligible and is typically omitted from most QD analyses).

Dispersivity estimates are difficult to quantify and are commonly estimated from the following relationships:

- 1. $A_X = X/10$ (where, X is the distance a contaminant has traveled by advective transport)
- 2. $A_y = A_x/10$
- 3. $A_Z = A_X/20$ to $A_X/100$ (generally, it is recommended that A_Z be a small number (0.001) unless vertical monitoring can reliably justify a larger number. Additionally, a value of 0.0001 is suggested for un-calibrated or conceptual applications).

As stated above the value for A_Y was estimated to be 10 percent of A_X . A value of 0.0001 was used as a value for A_7 .

J.5.4 Lambda

Lambda is the first order decay constant. It is determined by dividing 0.693 by the half-life of the compound. The value can typically be estimated for shrinking plumes by evaluating at concentrations versus time or distance. Lambda can also sometimes be estimated for stable plumes by evaluating concentration versus time using the methodology outlined in Buscheck and Alcantar (1995). Important considerations to estimating Lambda from site data include:

- 1. Are the measured concentrations along the centerline of the plume?
- 2. Are the measured concentrations the result of the single source area?
- 3. Are there no remedial systems and/or activities that effected the migration of the plume during the time interval of evaluation?

If the answer is yes to these questions, the methodologies outlined in Buscheck and Alcantar may be utilized to estimate a site-specific lambda from site data.

Based on review of the available site data, the criteria necessary to calculate a site-specific lambda could not be met; therefore, a default value for lambda (when appropriate and available) was obtained from the PADEP spreadsheet "Number Please!2011" which is based on PA Code, Chapter 250, Appendix A, Table 5.

J.5.5 Source Dimensions

Source width is the maximum width of the area measured perpendicular to the direction of groundwater flow. Source thickness is the thickness of the soils below the water table that contribute contamination to groundwater.

In the absence of a well-defined source a width of 100 feet was used. For benzene impacts along the wooden bulkhead the source width of each zone was derived from the benzene isoconcentration map (Figure J.3). Zone 1 is 500 feet wide; Zone 2 is 200 feet wide; Zone 3 is 240 feet wide and Zone 4 is 630 feet wide.

To define the thickness fluctuations in groundwater elevation that may create a smear zone in the unsaturated portion of an aquifer was taken into account. For well N-12, N-101 and N-106, screened in the Trenton Gravel, a source thicknesses based on boring logs and cross-section T-T' of 18 feet was used. The source thickness used for wells in the alluvium along the bulkhead north of PZ-505 is 30 feet based on cross-sections S-S'. For the remaining wells along the wooden bulkhead a source thickness of 70 feet was used based on cross-section U-U'.

J.5.6 Hydraulic Conductivity (K) The hydraulic conductivity of a geologic material is a measure of its ability to transmit water. For the wells located in the Trenton Gravel, a hydraulic conductivity of 24 ft/d was used. These values are the average hydraulic conductivity of these materials obtained from site-specific aquifer testing referenced in the CCR. Along the steel and wooden bulkheads the migration of groundwater and contaminants through the alluvium/fill towards the Schuylkill River (the POC) is limited by the hydraulic conductivity of the bulkhead. Groundwater behind the bulkhead can move towards the Schuylkill River no faster than the bulkhead permits because the unsealed bulkhead hydraulic conductivity (0.283 ft/d or 10⁻⁵ cm/sec, Waterloo Barrier, Inc.) is lower than the alluvium/fill (4.64 ft/d). The lower hydraulic conductivity of the bulkhead compared to the alluvium/fill causes groundwater to mound up behind it. To account for the presence of the sheet pile wall in the QD and SWLOAD models the hydraulic conductivity used for simulating locations along the bulkhead was 0.283 ft/d (10⁻⁵ cm/sec). A hydraulic conductivity of 4.64 ft/d was used at RW-200 because it is screened in alluvium and not behind the bulkhead.

J.5.7 Hydraulic Gradient

Hydraulic gradient is the change in hydraulic head relative to the distance between head measurement locations. The hydraulic gradient is measured parallel to the direction of ground water flow assuming horizontal flow and a uniform gradient. Site specific hydraulic gradients were derived from May 2011 groundwater elevations at all modeled locations.

For the QD and SWLOAD benzene simulations for Zones 1 through 4 along the wooden bulkhead, the general groundwater gradient in the vicinity of the bulkhead was used.

J.5.8 Porosity (n)

Porosity is measured as the ratio of the volume of void space in a geologic material to the total volume of material. Porosity values used in the fate and transport modeling for AOI 8 were based on historical geotechnical analysis.

J.5.9 Soil Bulk Density (ρ_b)

Soil bulk density is the dry weight of a sample divided by the total volume of the sample in an undisturbed state. Soil bulk density can either be determined by a laboratory or by the equation

$$\rho_b = 2.65 * (1- n).$$

Soil bulk density values used in the fate and transport modeling were based on historical geotechnical analysis.

J.5.10 Organic Carbon Partition Coefficient (K_{oc})

The organic carbon partition coefficient is chemical specific and is provided in the PADEP EP spreadsheet "Number Please!2011" which is based on PA Code,

Chapter 250, Appendix A, Table 5. These values were used in the fate and transport modeling.

J.5.11 Fraction Organic Carbon (f_{oc})

The fraction of organic carbon is the organic carbon content of a soil. A laboratory using ASTM methods can determine this value. Samples for organic carbon are taken from the same soil horizon in which the contaminant occurs, but outside of the impacted area. Since no site specific fraction of organic carbon data was available for the site, the fate and transport modeling used the model-recommended default concentration of 0.005, which is a conservative value based on the description of site soils.

J.5.12 Time (t)

'Time zero' is the point at which contamination was introduced into the aquifer. Time since 'time zero' is measured in days. The final simulation time of 1×10^{99} days was used to ensure that a steady-state plume was simulated.

J.6 QD and SWLOAD Modeling Results

Drainage Area 1 Results

N-12

The QD modeling result for benzene, pyrene, chrysene and phenanthrene at N-12 indicates potential transport distances ranging from two to eight feet. N-12 is located 575 feet from the property line. These results indicate that there is little potential for these COCs to migrate beyond the property boundary. Individual QD and SWLOAD modeling spreadsheets can be found in Tables J.2 through J.5.

N-101

QD modeling results for chrysene at N-101 indicates potential transport distances of 4 feet. N-101 is located about 350 feet from the northeast property boundary, therefore

groundwater at N-101 impacted with chrysene is not likely to migrate to the AOI 8 northeast property boundary.

N-8

This simulation was constructed to address chrysene RL data quality issues. RLs for chrysene were not met in all AOI 8 groundwater analyzed from the July 2008 groundwater sampling event. RLs for chrysene ranged from 5 ug/l to 120 ug/l while the chrysene groundwater MSC is 1.9 ug/l. To address the potential impact of chrysene at concentrations between the groundwater MSC and the maximum RL, a QD model was constructed for N-8 because of its close proximity (25 feet) to the property boundary with a starting concentration of 120 ug/l (maximum RL for chrysene in July 2008 groundwater results). QD modeling results indicate that chrysene would attenuate to a concentration below its MSC within 11 feet from the source. Based on the distances of other site wells from the property boundary chrysene is not predicted to migrate beyond the property boundary above its respective MSC.

Drainage Area 2 Results

Chrysene

Chrysene starting concentrations used in the QD and SWLOAD modeling ranged from 8 ug/l to 120 ug/l for wells N-60, N-111, PZ-503, PZ-505, PZ-506, PZ-507 and RW-200 (Table J.1). Individual QD and SWLOAD modeling spreadsheets can be found in Tables J.6 through J.40. QD modeling results predicted chrysene transport under current aquifer conditions range from less than one to eleven feet before attenuating to its groundwater MSC of 1.9 ug/l. This suggests that chrysene at these locations will not impact the Schuylkill River.

To address RL issues with chrysene, the closest well to the Schuylkill River, PZ-504, was modeled with at starting concentration of 120 ug/l. QD modeling predicts that chrysene will attenuate below its groundwater MSC of 1.9 ug/l within eight feet of PZ-504. This suggests that chrysene in groundwater where the RLs were above the groundwater MSC will not impact the Schuylkill River.

Benzene

As discussed, the benzene concentrations in Drainage Area 2 were divided up into four "zones" based on the benzene isoconcentrations. Starting concentration for benzene in Zones 1 through 4 are, respectively, 300 ug/l (RW-500); 8,700 ug/l (N-61); 2,400 ug/l (PZ-504); and 160 ug/l (PZ-505). QD results for benzene in Zones 1 through 4 indicate that groundwater concentrations will attenuate below its groundwater MSC in 23 feet for Zone 1; 90 feet for Zone 2; 134 feet for Zone 3; and 59 feet for Zone 4. The distances to the Schuylkill River from the most down gradient impacted wells in each zone ranges between 26 to 29 feet. These results suggest that benzene in Zones 2 through 4 have the potential to migrate and reach the Schuylkill River at concentrations greater than the groundwater MSC. Benzene in Zone 1 does not have the potential to discharge to the Schuylkill River above its MSC. SWLOAD was then used to predict groundwater benzene concentration at the Schuylkill River for Zones 1 though 4.

SWLOAD modeling results for Zone 1 predicted a benzene concentration of 2.07 ug/l in groundwater at the Schuylkill River. This concentration does not exceed the groundwater MSC, therefore a PENTOXSD model was not needed for Zone 1.

The SWLOAD model predicted groundwater concentration for benzene in Zone 2 is 947.2 ug/l which exceeds the benzene groundwater MSC. This predicted concentration also exceeds the acute fish, chronic fish and human health SWQC. Therefore the groundwater discharge volume calculated by SWLOAD for Zone 2 was used to create a PENTOXSD model to derive acute fish, chronic fish and human health wasteload allocation for Zone 2.

The SWLOAD model predicted groundwater concentration for benzene in Zone 3 is 676.4 ug/l, which is above the benzene groundwater MSC. This value also exceeds the acute fish, chronic fish and human health SWQC. Therefore the groundwater discharge volume calculated by SWLOAD for Zone 3 was used to create a PENTOXSD model to derive acute fish, chronic fish and human health wasteload allocations for Zone 3.

The SWLOAD model predicted groundwater concentration for benzene in Zone 4 is 29.03 ug/l, which is above the benzene groundwater MSC. It does not exceed the acute or chronic fish SWQC, but does exceed the human health SWQC. Therefore the groundwater discharge volume calculated by SWLOAD for Zone 4 was used to create a PENTOXSD model to derive a human health wasteload allocation for Zone 4.

QD and SWLOAD results for benzene RL problems at N-58 and PZ-506 which used the maximum benzene RL of 10 ug/l, indicates that benzene will attenuate below its MSC (Tables J.1). within 41 feet of N-58 and 11 feet of PZ-506. N-58 is about 55 feet from the Schuylkill River and PZ-506 is 130 feet from the river; therefore, potential benzene impacts at N-58 and PZ-506 are not predicted to reach the river. SWLOAD predicted a benzene concentration in groundwater of 3.96 ug/l at N-58 and <0.001 at PZ-506 at the Schuylkill River.

1,2-Dichloroethane

Elevated RLs for 1,2-dichloroethane in Drainage Area 2 were found at N-58, N-61, N-133 and PZ-506. Because these wells are located close to the Schuylkill River, there is a possibility that groundwater could be impacted with a 1,2-dichloroethane concentration below the RL but above the MSC. This possibility was addressed by constructing QD and SWLOAD models with starting 1,2-dichloroethane concentrations equal to the RL for all four locations (10 ug/l). The groundwater MSC for 1,2-dichloroethane is 5 ug/l. QD and SWLOAD results for N-61, N-133 and PZ-506 indicate that 1,2-dichloroethane in groundwater attenuates to a concentration below the MSC before it reaches the Schuylkill River. 1,2-dichloroethane at N-58 required 75 feet to attenuate below the MSC while the distance to the Schuylkill River is 55 feet. SWLOAD calculated the 1,2-dichloroethane concentration in groundwater adjacent to the Schuylkill River at 5.97 ug/l. Therefore a PENTOXSD simulation was constructed using the SWLOAD calculated groundwater discharge rate for 1,2-dichloroethane at N-58.

Pyrene

Pyrene starting concentrations used in the QD and SWLOAD modeling was 160 ug/l at N-111 and 300 ug/l at RW-200. QD modeling results predicted pyrene transport

distance under current aquifer conditions would attenuate to its MSC of 130 ug/l at N-111 in <1 foot and nine feet for RW-200 (Table J.1). This suggests that pyrene at these locations will not impact the Schuylkill River.

J.7 Potential Impacts to Surface Water (PENTOXSD) Results

Three PENTOXSD simulations were constructed to address benzene groundwater impacts along the Schuylkill River on the west side of AOI 8. PENTOXSD models were constructed for Zone 2 (N-61, PZ-503), Zone 3 (N-133, PZ-504) and Zone 4 (PZ-505) (Figure J.4). Input parameters for PENTOXSD are summarized in Table J.41. As directed by PADEP the Schuylkill River Q_{7-10} flow was entered into PENTOXSD as 10% of the actual Q_{7-10} flow of 101 cubic feet per second (CFS); the harmonic mean flow for the Schuylkill River was entered in PENTOXSD as 10% of the actual harmonic mean flow of 807 CFS. The resulting wasteload allocations for benzene range from a minimum of 417,325 ug/l for human health cancer risk in Zone 3 to a maximum of 11,360,000 ug/l for chronic fish criterion in Zone 2. These results indicate that benzene groundwater concentrations near the bulkhead will not impact the Schuylkill River.

A fifth PENTOXSD model was created to address the elevated RL for 1,2-dichloroethane at N-58 for the July 2008. Flow in the Schuylkill River was identical to the previous PENTOXSD simulations. Input parameters for PENTOXSD are summarized in Table J.41. Wasteload allocations for 1,2-dichloroethane ranged from 165,191.1 ug/l (human health cancer risk level) to 1.04e8 ug/l (chronic fish criterion). PENTOXSD modeling results can be found in Tables J.41 through J.45.

J.8 Fate and Transport Modeling Summary

QD fate and transport analysis in Drainage Area 1 along the AOI 8 northeast property boundary indicate that groundwater concentrations of benzene, chrysene, pyrene and phenanthrene will not pose a threat to off-site receptors. All four of these compounds will attenuate below their respective groundwater MSCs within several feet of their source. The model constructed for benzene at N-106, which was used to gauge how

well QD predicted benzene distributions, resulted in a transport distance of 667 feet which is about 100 feet short of N-98 located down gradient of N-106; adjacent to the property boundary and non-detect for benzene in July 2008.

In Drainage Area 1 chrysene RLs were detected above the MSC of 1.9 ug/l throughout AOI 8 during the July 2008 event. Elevated RLs for chrysene were addressed by modeling chrysene transport at N-8 which is about 25 feet from the property line. The starting chrysene concentration used in the N-8 QD simulation was the maximum RL for chrysene (120 ug/l at N-23) from the July 2008 sampling. N-8 QD simulation results indicated that chrysene was immobile and would travel 11 feet from N-8. Therefore the potential presence of chrysene in groundwater at concentrations between the MSC and RL at other locations close to the property boundary should not pose a threat to off-site groundwater.

In Drainage Area 2; QD, SWLOAD and PENTOXSD fate and transport analysis of benzene and chrysene were performed. Simulations were also constructed to address elevated RLs for benzene, chrysene and 1,2-dichloroethane.

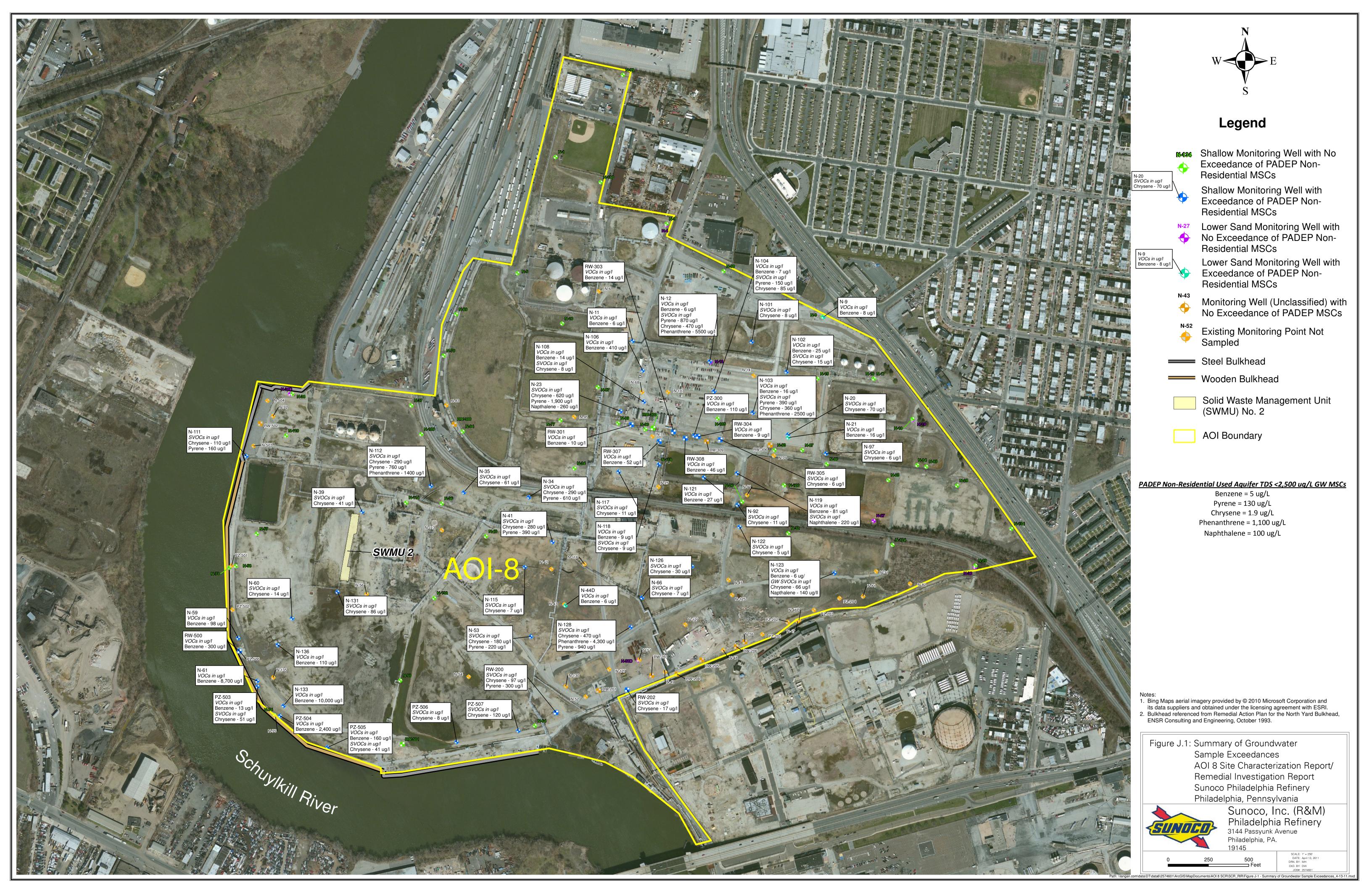
The benzene plume along the Schuylkill River in AOI 8 was simulated by grouping the impacted wells into four zones where each zone represents a different part of the plume and concentration nearest the bulkhead (Figure J.4). QD results indicated that benzene transport distances for Zones 1 through 4 were between 23 to 134 feet. In Zones 1 through 4, the distances between the bulkhead and the nearest impacted well ranged from 16 to 29 feet (Table J.1). Four SWLOAD models were created from which it was determined that PENTOXSD would be needed for Zones 2 through 4. PENTOXSD wasteload allocation results in Zones 2 through 4 indicated that benzene would not impact surface water quality based on the July 2008 groundwater sampling results. The lowest water quality criteria calculated by PENTOXSD for benzene was 417,325 ug/l (at the human health cancer risk level) while the maximum detected benzene concentration in AOI 8 was 10,000 ug/L at N-133 in Zone 3. The maximum predicted benzene groundwater concentration at the Schuylkill River was 947.20 ug/L in Zone 2.

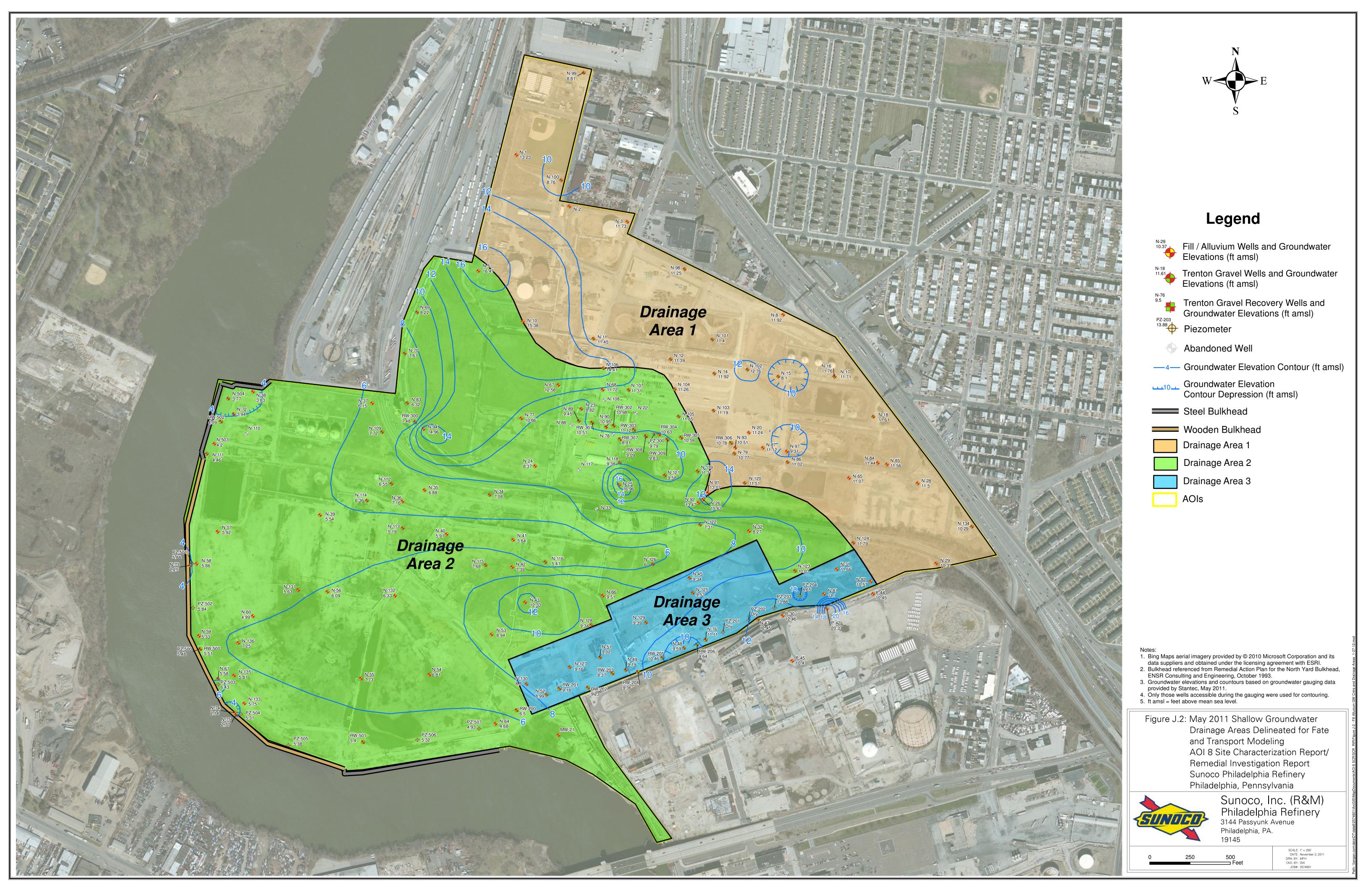
In Drainage Area 2 RLs for benzene at N-58 and PZ-506, which are located along the bulkhead but not included in any of the zones discussed previously were modeled using QD and SWLOAD with the maximum RL value of (10 ug/l) as the starting concentration. Modeling results indicate that benzene would attenuate below its respective groundwater MSC before reaching the bulkhead.

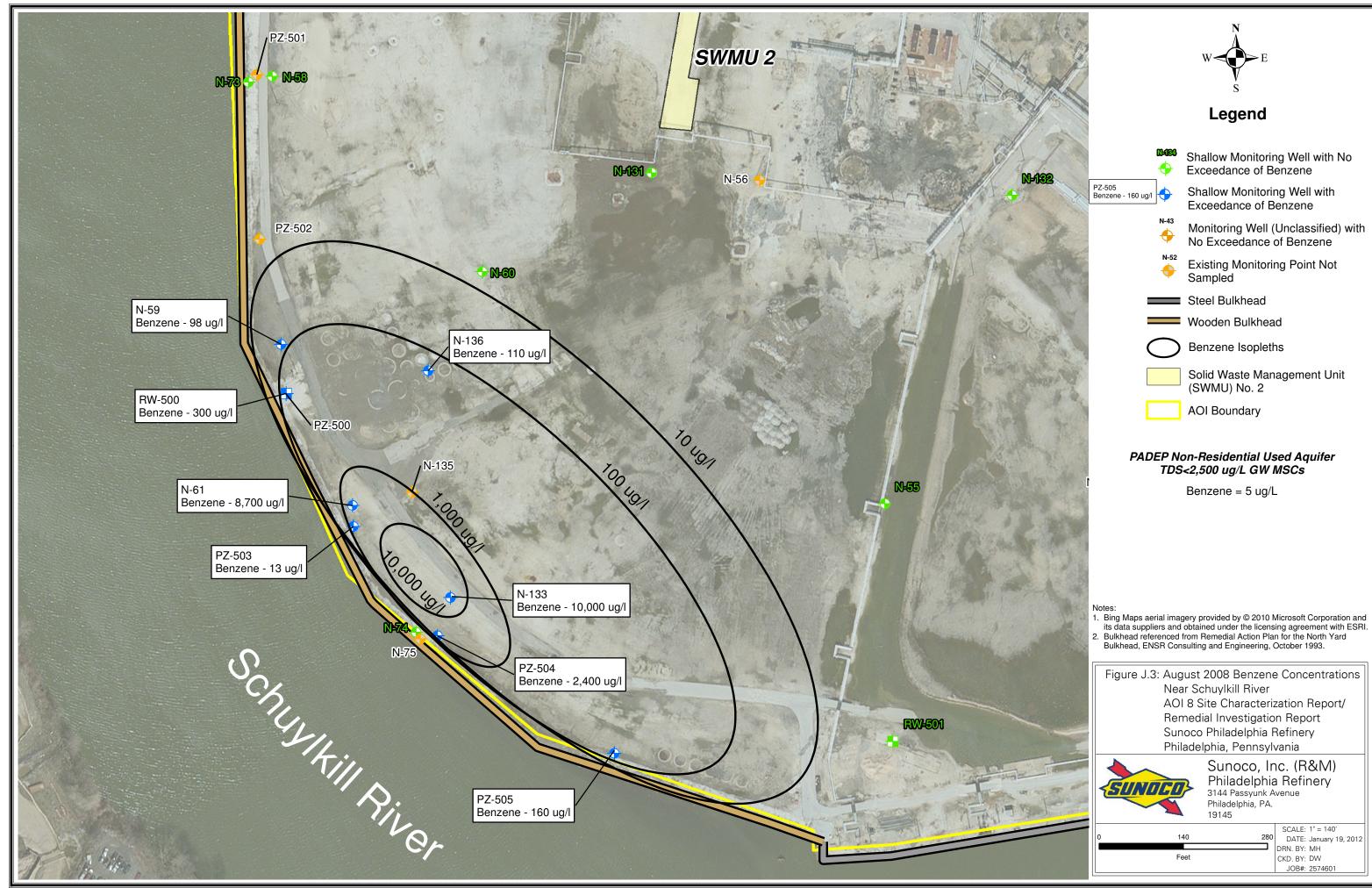
In Drainage Area 2 chrysene QD and SWLOAD results for wells with chrysene detected above its MSC (N-60, PZ-503, PZ-505, PZ-506, PZ-507 and RW-200) and wells with elevated RLs for chrysene (PZ-504) indicate that chrysene is immobile and will not reach the Schuylkill River.

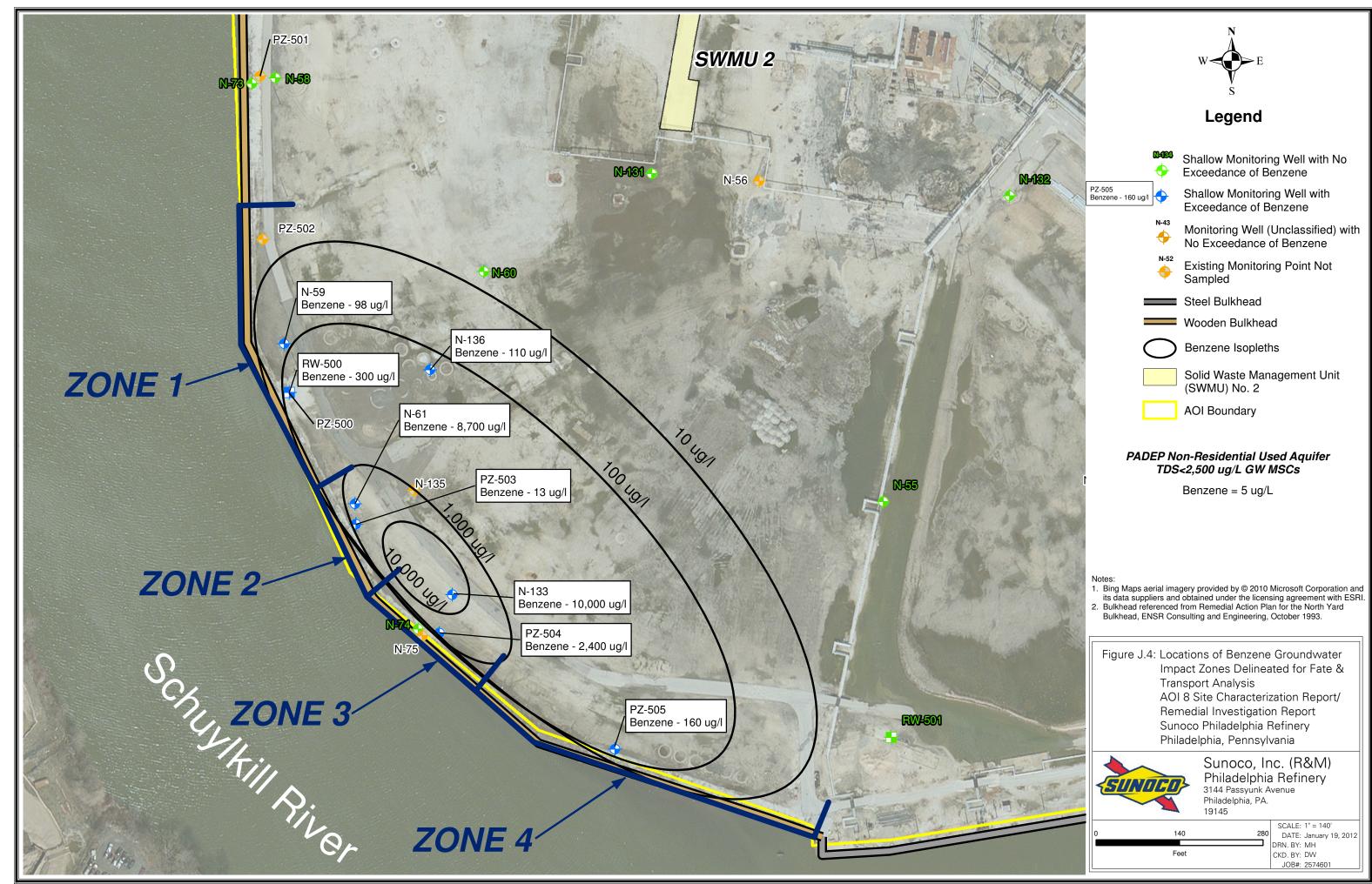
In Drainage Area 2, 1,2-dichloroethane had a RL above its groundwater MSC of 5 ug/l at four locations (N-58, N-61, N-133 and PZ-506). The maximum RL for 1,2-dichloroethane was 10 ug/l which was used as the starting concentration for the QD and SWLOAD simulations. QD and SWLOAD simulation results indicated that 1,2-dichloroethane would not impact the Schuylkill River at N-61, N-133 and PZ-506. PENTOXSD results for N-58 indicate that 1,2-dichloroethane would not impact the Schuylkill River because the calculated wasteload allocations (acute, chronic and human health) for 1,2-dichloroethane were all several orders of magnitude greater than the predicted discharge concentration of 5.97 ug/l.

Based on this modeling the presence of impacted groundwater on AOI 8 should not pose a threat to offsite groundwater or surface water receptors provided LNAPL in Drainage Zone 3 is actively captured.


J.9 Fate and Transport Modeling Conclusions


Drainage Area 1


Fate and Transport simulations indicate that groundwater concentrations of benzene, chrysene, pyrene and phenanthrene do not pose an unacceptable risk to off-site receptors.


<u>Drainage Area 2</u>

Fate and transport analysis of benzene, chrysene and 1,2-dichloroethane do not pose an unacceptable risk to off-site receptors.

Table J.1 Quick Domenico, SWLOAD and PENTOXSD Results Sunoco Philadehphia Refinery AOI 8 Philadelphia, Pennsylvania

Well ID	Compound	Group	Groundwater Medium Specific Concentratio n for QD	Groundwater Edge Criterion for SWLOAD ⁽¹⁾	Chronic Fish Criterion	Acute Fish Criterion	Human Health Risk Level	QD/SWLOAD Starting Groundwater Concentratio n	Measured Distance to Point of Concern		n at Receptor	Acute Fish Criterion Wasteload Allocation	Chronic Fish Criterion Wasteload Allocation	Human Health Level CRL Wasteload Allocation
			ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	feet	feet	ug/l	ug/l	ug/l	ug/l
	benzene	-	5					6	575	8				
N-12	pyrene	, ea	130					870	575	6				
1112	chrysene	Area	1.9					470	575	5				
	phenanthrene	age	1,100	NA	NA	NA	NA	5,500	575	2	NA	NA	NA	NA
N-101	chrysene	Drainage	1.9					8	350	4				
N-106	benzene	Dra	5					410	810	667				
N-8	chrysene (RL)		1.9					120	25	11				
N-58	benzene (RL)		5	5	130	640	1.2	10	55	41	3.96	NA	NA	NA
	12DCA (RL)		5	5	3,100	15,000	0.38	10	55	75	5.97	7.29E+07	1.04E+08	165,191.1
N-60	chrysene ⁽²⁾		1.9	0.477	NA	300	0.0038	14	400	<1	< 0.001			
N-61	12DCA (RL)		5	5	3,100	15,000	0.38	10	42	20	<0.001	4		i I
N-111	chrysene		1.9	0.477	NA	300	0.0038	110	33	<1	<0.001			
14-111	pyrene ⁽³⁾		130	130	0.025	300	830	160	33	<1	< 0.001			
N-133	12DCA (RL)		5	5	3,100	15,000	0.38	10	82	59	3.82			
PZ-503	chrysene	2	1.9	0.477	NA	300	0.0038	51	27	<1	< 0.001			
PZ-504	chrysene (RL)	Area	1.9	0.477	NA	300	0.0038	120	26	8	< 0.001			
PZ-505	chrysene	e A	1.9	0.477	NA	300	0.0038	41	35	1	< 0.001	NA	NA	NA
	chrysene	Drainage	1.9	0.477	NA	300	0.0038	8	130	<1	< 0.001			
PZ-506	benzene (RL)	rai	5	5	130	640	1.2	10	130	11	<0.001			
	12DCA (RL)		5	5	3,100	15,000	0.38	10	130	26	<0.001			
PZ-507	chrysene		1.9	0.477	NA	300	0.0038	120	150	2	< 0.001			
RW-200	chrysene		1.9	0.477	NA	300	0.0038	97	200	11	<0.001			
1100-200	pyrene		130	130	0.025	300	830	300	200	9	<0.001			
Zone 1	benzene		5	5	130	640	1.2	300	28	23	2.07			
Zone 2	benzene		5	5	130	640	1.2	8,700	27	90	947.20	8,070,000	11,360,000	1,330,000
Zone 3	benzene		5	5	130	640	1.2	2,400	26	134	676.40	2,510,000	3,540,000	417,325
Zone 4	benzene		5	5	130	640	1.2	160	29	59	29.03	3,130,000	4,400,000	521,656

NOTES:

Groundwater MSC = ACT 2 TGM, Appendix A, Table 1 MSC for a Non-residential Used Aquifer with Total Dissolved Solids less than or equal to 2500.

QD = Quick Domenico

- (1) For chrysene (ACT 2 TGM Table IV-3), If both the lowest surface water compliance value, LSWC, (0.0044 ug/l) and the Act 2 MSC
- For benzene, pyrene and 1,2-dichloroethane (Act 2 TGM Table IV-1) the edge criterion equals the non-rediential groundwater medium specific concentration of 5, 130 and 5 ug/l, respectively.
- For **phenanthrene** (Act 2 TGM Table IV-2) the edge criterion is the PQL which is 10 ug/L.
- (2) Marine acute criteria for chrysene in surface water is US-EPA Lowest Observed Effect Level.
- (3) Chronic fish criterion (fresh water) for pyrene in surface water is from Canadian Water Quality guidelines. Marine acute criteria for pyrene is US-EPA Lowest Observed Effect Level.

Bold = Maximum SWLOAD concentration exceeds the edge criterion and a PENTOXSD model is needed.

NA = Not Applicable.

RL = Reporting Limit

Table J.2 Quick Domenico Fate and Transport Model Input and Output N-12 Sunoco Philadehphia Refinery AOI 8 Philadelphia, Pennsylvania

2574601 - Sunoco Philadelphia Refinery TS 1/31/2012

Project Prepared by Date Prepared

	Data Source			
Source Identification (or Well ID)			N-12	
Sample Date			July-08	
Source Width		ft	100	Delineated LNAPL (100' default if no plume is
Source Thickness		ft	18	Trenton Gravel saturated thickness from Cross- Section T-T' at N-12/13
Longitudinal Dispersivity	A _x	ft	200	From CCR QD Simulations
Transverse Dispersivity	A,	ft	20.0	Quick Domenico User's Manual
Vertical Dispersivity	A ₂	ft	0.0001	Quick Domenico User's Manual
Hydraulic Conductivty	k	ft/day	24	Trenton Gravel
Hydraulic Gradient		ft/ft	0.00025	August 2010 Water Level Data for N-12 and N-98
Porosity		decimal fraction	0.35	Site soil analyses
Soil Bulk Density	p _b	g/cm3	1.7225	ACT 2 TGM Default
Fraction of Organic Carbon	foc	decimal fraction	0.005	ACT 2 TGM Default
Time		days	1.00E+99	Steady-State Conditions

Chemical	Data Source		
Sim 1			
Contaminant		Benzene	
Source Concentration (mg/L)	mg/L	0.0060	July-08
Lambda (per day)	day -1	0.001	PADEP Number Please!2011 Spreadsheet
кос		58	PADEP Number Please!2011 Spreadsheet
Sim 2			
Contaminant		Pyrene	
Source Concentration (mg/L)	mg/L	0.8700	July-08
Lambda (per day)	day -1	0.000	PADEP Number Please!2011 Spreadsheet
кос		68000	PADEP Number Please!2011 Spreadsheet
Sim 3			
Contaminant		Chrysene	
Source Concentration (mg/L)	mg/L	0.4700	July-08
Lambda (per day)	day -1	0.000	PADEP Number Please!2011 Spreadsheet
кос		490000	PADEP Number Please!2011 Spreadsheet
Sim 4			
Contaminant		Phenanthrene	
Source Concentration (mg/L)	mg/L	5.5000	July-08
Lambda (per day)	day -1	0.002	PADEP Number Please!2011 Spreadsheet
KOC		38000	PADEP Number Please!2011 Spreadsheet

Output (Distance from Source Where Concentration Equals Respective Ground Water MSC)							
Contaminant	Starting Concentration (mg/L)	GW MSC ¹ Non-Residential (mg/L)	Predicted Concentration (mg/L)	Predicted Distance to Meet Non-Residential GW MSC (Rounded to the Nearest foot)			
Sim 1 - Benzene	0.006000	0.005	0.005	8			
Sim 2 - Pyrene	0.870000	0.130	0.130	6			
Sim 3 - Chrysene	0.470000	0.0019	0.0019	5			
Sim 4 - Phenanthrene	5.500000	1.100	1.100	2			

¹ ACT 2 TGM, Appendix A, Table 1 MSC for a Non-residential Used Aquifer with Total Dissolved Solids less than or equal to 2500 ug/l.

ADVECTIVE TRANSPORT WITH THREE DIMENSIONAL DISPERSION.1ST ORDER DECAY and RETARDATION - WITH CALIBRATION TOOL Project: 2574601 - Sunoco Philadelphia Refinery Date: 1/31/2012 Prepared by: TS Benzene starting concentration = 0.006 mg/L NEW QUICK_DOMENICO.XLS Contaminant: SPREADSHEET APPLICATION OF SOURCE Ax Ay Αz LAMBDA SOURCE SOURCE Time (days) "AN ANALYTICAL MODEL FOR CONC (ft) (ft) (ft) WIDTH THICKNESS (days) MULTIDIMENSIONAL TRANSPORT OF A (MG/L) >=.001 day-1 (ft) (ft) **DECAYING CONTAMINANT SPECIES"** 2.00E+02 2.00E+01 1.00E-04 0.0009589 100 18 1E+99 P.A. Domenico (1987) Modified to Include Retardation Soil Bulk Hydraulic Hydraulic Frac. Retard-Gradient Porosity Cond Density KOC Org. Carb. ation (=K*i/n*R) (g/cm³⁾ (ft/day) (ft/ft) (dec. frac.) (R) (ft/day) 1.7225 2.40E+01 0.00025 58 5.00E-03 2.427214286 0.35 0.00706277 Centerline Plot (linear) Centerline Plot (log) **Point Concentration** x(ft) y(ft) z(ft) 0.01 1.000 Model - Model Output Output 7.54401584 0 0 0.00 0.100 Field Field Data Data 0.00 x(ft) v(ft) z(ft) conc conc 0.010 Conc. At 7.54401584 0.00 1E+99 days = at 0.005 0.001 0.00 mg/l 0.00 AREAL CALCULATION 0.000 0 50 100 150 50 distance MODEL **DOMAIN** 150 0 100 distance Length (ft) 100 Width (ft) 100 50 60 10 20 30 40 70 80 90 100 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 100 50 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.000 0.000 0.000 0.005 0.003 0.003 0.002 0.001 0.001 0.001 0.001 0.000 0.000 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.000 0.000 0.000 -50 -100 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Field Data: **Centerline C Concentration Distance from Source**

ADVECTIVE TRANSPORT WITH THREE DIMENSIONAL DISPERSION.1ST ORDER DECAY and RETARDATION - WITH CALIBRATION TOOL Project: 2574601 - Sunoco Philadelphia Refinery Date: 1/31/2012 Prepared by: TS NEW QUICK_DOMENICO.XLS Contaminant: Pyrene starting concentration = 0.87 mg/L SPREADSHEET APPLICATION OF SOURCE Ax Ay Αz LAMBDA SOURCE SOURCE Time (days) "AN ANALYTICAL MODEL FOR CONC (ft) (ft) (ft) WIDTH THICKNESS (days) MULTIDIMENSIONAL TRANSPORT OF A (MG/L) >=.001 day-1 (ft) (ft) **DECAYING CONTAMINANT SPECIES"** 2.00E+02 2.00E+01 1.00E-04 0.00019178 100 18 1E+99 P.A. Domenico (1987) Modified to Include Retardation Soil Bulk Hydraulic Hydraulic Frac. Retard-Gradient Porosity KOC Cond Density Org. Carb. ation (=K*i/n*R) (g/cm³⁾ (ft/day) (ft/ft) (dec. frac.) (R) (ft/day) 1.7225 2.40E+01 0.00025 68000 5.00E-03 1674.285714 0.35 1.02389E-05 Centerline Plot (linear) Centerline Plot (log) **Point Concentration** x(ft) y(ft) z(ft) 0.05 1.000 - Model Model 0.04 Output Output 6.257733609 0 0 0.100 0.04 Field Field 0.03 Data Data x(ft) v(ft) z(ft) 0.010 2 0.03 Conc. At 6.257733609 **8** 0.02 **©**001 1E+99 days = 0.02 at 0.130 0.01 0.000 mg/l 0.01 0.00 AREAL CALCULATION 0.000 0 50 100 150 MODEL **DOMAIN** 0 50 100 150 distance distance Length (ft) 100 Width (ft) 100 50 60 10 20 30 40 70 80 90 100 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 100 0.000 50 0.021 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.041 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.021 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -50 -100 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 **Centerline C Concentration** Field Data: **Distance from Source**

ADVECTIVE TRANSPORT WITH THREE DIMENSIONAL DISPERSION.1ST ORDER DECAY and RETARDATION - WITH CALIBRATION TOOL Project: 2574601 - Sunoco Philadelphia Refinery Date: 1/31/2012 Prepared by: TS NEW QUICK_DOMENICO.XLS Contaminant: Chrysene starting concentration = 0.47 mg/L SPREADSHEET APPLICATION OF SOURCE Ax Ay Αz LAMBDA SOURCE SOURCE Time (days) "AN ANALYTICAL MODEL FOR CONC (ft) (ft) (ft) WIDTH THICKNESS (days) MULTIDIMENSIONAL TRANSPORT OF A (MG/L) >=.001 day-1 (ft) (ft) **DECAYING CONTAMINANT SPECIES"** 2.00E+02 2.00E+01 1.00E-04 0.00035616 100 18 1E+99 P.A. Domenico (1987) Modified to Include Retardation Soil Bulk Hydraulic Hydraulic Frac. Retard-Gradient KOC Cond Porosity Density Org. Carb. ation (=K*i/n*R) (g/cm³⁾ (ft/day) (ft/ft) (dec. frac.) (R) (ft/day) 1.7225 2.40E+01 490000 5.00E-03 0.00025 0.35 12058.5 1.42164E-06 Centerline Plot (linear) Centerline Plot (log) **Point Concentration** x(ft) y(ft) z(ft) 0.00 0.000 - Model Model Output Output 0.00 4.934900854 0 0 Field Field 0.00 Data Data x(ft) v(ft) z(ft) 0.00 conc Conc. At 4.934900854 1E+99 days = 0.00 at 0.002 0.00 mg/l 0.00 AREAL CALCULATION 0.000 50 100 150 MODEL **DOMAIN** 0 20 40 60 80 100 120 distance distance Length (ft) 100 Width (ft) 100 50 60 10 20 30 40 70 80 90 100 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 100 0.000 50 0.000 -50 -100 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Field Data: **Centerline C Concentration Distance from Source**

ADVECTIVE TRANSPORT WITH THREE DIMENSIONAL DISPERSION.1ST ORDER DECAY and RETARDATION - WITH CALIBRATION TOOL Project: 2574601 - Sunoco Philadelphia Refinery Date: 1/31/2012 Prepared by: TS Phenanthrene starting concentration = 5.5 mg/L NEW QUICK_DOMENICO.XLS Contaminant: SPREADSHEET APPLICATION OF SOURCE Ax Ay Αz LAMBDA SOURCE SOURCE Time (days) "AN ANALYTICAL MODEL FOR CONC (ft) (ft) (ft) WIDTH THICKNESS (days) MULTIDIMENSIONAL TRANSPORT OF A (MG/L) >=.001 day-1 (ft) (ft) **DECAYING CONTAMINANT SPECIES"** 2.00E+02 2.00E+01 1.00E-04 0.00172603 100 18 1E+99 P.A. Domenico (1987) Modified to Include Retardation Soil Bulk Hydraulic Hydraulic Frac. Retard-Gradient Porosity KOC Org. Carb. Cond Density ation (=K*i/n*R) (g/cm³⁾ (ft/day) (ft/ft) (dec. frac.) (R) (ft/day) 1.7225 2.40E+01 0.00025 38000 5.00E-03 936.0714286 0.35 1.83136E-05 Centerline Plot (linear) Centerline Plot (log) **Point Concentration** x(ft) y(ft) z(ft) 3.00 10.000₁ - Model Model Output Output 2.50 2.353199999 0 0 1.000 Field Field 2.00 Data Data x(ft) v(ft) z(ft) 1.50 **2**0.100 Conc. At 2.353199999 1E+99 days = 1.00 at 1.100 0.010 0.50 mg/l 0.00 AREAL CALCULATION 0.001 5 10 15 MODEL **DOMAIN** 0 5 10 15 distance distance Length (ft) 10 Width (ft) 10 3 5 6 8 2 9 10 2.775 1.400 0.707 0.356 0.180 0.090 0.045 0.023 0.006 10 0.011 2.775 1.400 0.707 0.357 0.180 0.091 0.046 0.023 0.012 0.006 2.775 1.400 0.707 0.357 0.180 0.091 0.046 0.023 0.012 0.006 2.775 1.400 0.707 0.357 0.180 0.091 0.046 0.023 0.012 0.006 -5 2.775 1.400 0.707 0.356 0.180 0.090 0.045 0.023 0.011 0.006 -10 **Centerline C Concentration** Field Data: **Distance from Source**

Table J.3 **Quick Domenico**

Fate and Transport Model Input and Output N-101

Sunoco Philadehphia Refinery AOI 8 Philadelphia, Pennsylvania

AOI 8 SUNOCO Philadelphia Refinery TS 1/31/2012 Project

	Data Source			
Source Identification (or Well ID)			N-101	Jul-08
Sample Date			July-08	
Source Width		ft	100	Delineated LNAPL (100' if no plume is present)
Source Thickness		ft	18	Trenton Gravel saturated thickness (T-T') at N-103
Longitudinal Dispersivity	A _x	ft	200	From CCR QD Simulations
Transverse Dispersivity	A _y	ft	20.0	0.1 x Longitudinal Dispersivity (QD User's Guide)
Vertical Dispersivity	Az	ft	0.0001	negligible QD User's Guide
Hydraulic Conductivty	k	ft/day	24	Trenton Gravel Conductivity From CCR
Hydraulic Gradient		ft/ft	0.002	Derived from N-101 and N-14 (May 2011 groundwater contours)
Porosity		decimal fraction	0.35	Site soil analyses
Soil Bulk Density	p _b	g/cm3	1.7	ACT 2 TGM Default
Fraction of Organic Carbon	f _{oc}	decimal fraction	0.005	ACT 2 TGM Default
Time		days	1.00E+99	steady-state

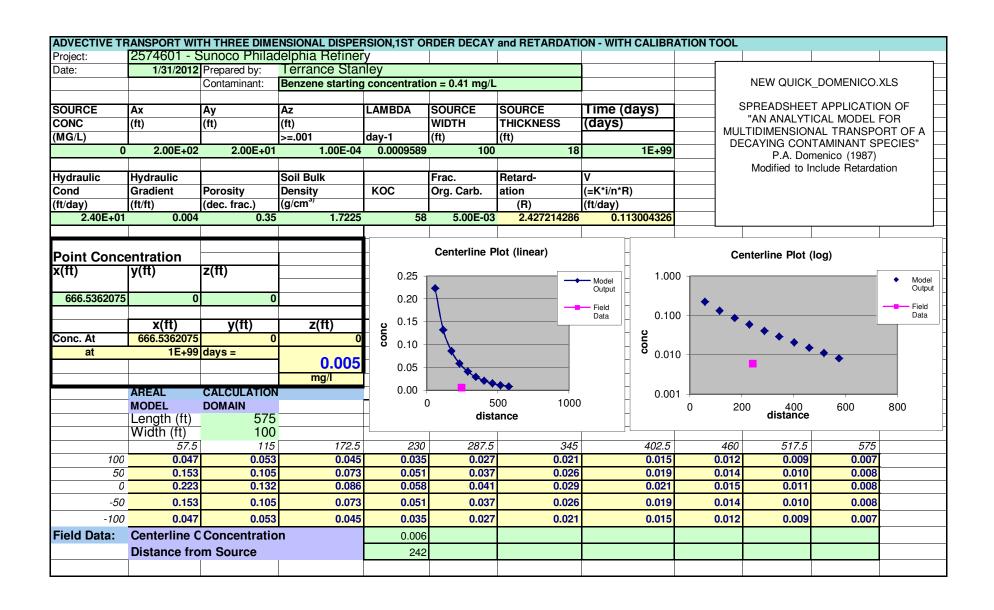
Chemic	Data Source		
Sim 1			
Contaminant		chrysene	N-101
Source Concentration (mg/L)	mg/L	0.0080	July-08
Lambda (per day)	day ⁻¹	0.000	Number Please!2011
кос		490000	Number Please!2011

Output (Distance from Source Where Concentration Equals Respective Ground Water MSC)								
Contaminant	Starting Concentration (mg/L)	GW MSC ¹ Non-Residential (mg/L)	Predicted Concentration (mg/L)	Predicted Distance to Meet Non-Residential GW MSC (Rounded to the Nearest foot)				
Sim 1 - chrysene	0.0080	0.002	0.002	4				

ACT 2 TGM, Appendix A, Table 1 MSC for a Non-residential Used Aquifer with Total Dissolved Solids less than or equal to 2500.

ADVECTIVE TRANSPORT WITH THREE DIMENSIONAL DISPERSION.1ST ORDER DECAY and RETARDATION - WITH CALIBRATION TOOL Project: AOI 8 SUNOCO Philadelphia Refinery Date: 1/31/2012 Prepared by: TS chrysene starting concentration = 0.008 mg/L NEW QUICK_DOMENICO.XLS Contaminant: SPREADSHEET APPLICATION OF SOURCE Ax Ay Αz LAMBDA SOURCE SOURCE Time (days) "AN ANALYTICAL MODEL FOR CONC (ft) (ft) (ft) WIDTH THICKNESS (days) MULTIDIMENSIONAL TRANSPORT OF A (MG/L) >=.001 day-1 (ft) (ft) **DECAYING CONTAMINANT SPECIES"** 2.00E+02 2.00E+01 1.00E-04 0.00035616 100 18 1E+99 P.A. Domenico (1987) Modified to Include Retardation Soil Bulk Hydraulic Hydraulic Frac. Retard-Porosity KOC Cond Gradient Density Org. Carb. ation (=K*i/n*R) (g/cm³⁾ (ft/day) (ft/ft) (dec. frac.) (R) (ft/day) 2.40E+01 0.002 490000 5.00E-03 0.35 1.7 11901 1.15236E-05 Centerline Plot (linear) Centerline Plot (log) Point Concentration x(ft) y(ft) z(ft) 0.01 1.000 - Model Model Output Output 0.01 3.551286359 0 0 0.100 Field Field 0.00 Data Data x(ft) v(ft) z(ft) 0.00 0.010 Conc. At 3.551286359 1E+99 days = 0.00 at 0.002 0.001 0.00 mg/l 0.00 AREAL CALCULATION 0.000 0 5 10 15 MODEL **DOMAIN** 0 5 10 15 distance distance Length (ft) 10 Width (ft) 10 3 5 6 8 2 7 10 0.005 0.004 0.002 0.002 0.001 0.001 0.001 0.000 0.000 0.000 10 0.000 0.005 0.004 0.002 0.002 0.001 0.001 0.001 0.000 0.000 0.005 0.004 0.002 0.002 0.001 0.001 0.001 0.000 0.000 0.000 0.005 0.004 0.002 0.002 0.001 0.001 0.001 0.000 0.000 0.000 -5 0.005 0.004 0.002 0.002 0.001 0.001 0.001 0.000 0.000 0.000 -10 **Centerline C Concentration** Field Data: **Distance from Source**

Table J.4 Quick Domenico Fate and Transport Model Input and Output N-106 Sunoco Philadelphia Refinery AOI 8 Philadelphia, Pennsylvania


Project Prepared by Date Prepared 2574601 - Sunoco Philadelphia Refinery Terrance Stanley 1/31/2012

	Data Source			
Source Identification (or Well ID)			N-106	
Sample Date				Jul-08
Source Width		ft	100	Delineated LNAPL (100' default if no plume is present)
Source Thickness		ft	18	Trenton Gravel saturated thickness from Cross- Section T-T' at N-12/13
Longitudinal Dispersivity	A _x	ft	200	From CCR QD Simulations
Transverse Dispersivity	A _y	ft	20.0	Quick Domenico User's Manual
Vertical Dispersivity	A _z	ft	0.0001	Quick Domenico User's Manual
Hydraulic Conductivty	k	ft/day	24	Trenton Gravel Conductivity From CCR
Hydraulic Gradient		ft/ft	0.004	Derived from N-106 and N-98 (May 2011 groundwater contours)
Porosity		decimal fraction	0.35	Site soil analyses
Soil Bulk Density	Pb	g/cm3	1.7225	ACT 2 TGM Default
Fraction of Organic Carbon	foc	decimal fraction	0.005	ACT 2 TGM Default
Time		days	1.00E+99	Steady-State Conditions

Chemical	Data Source		
Sim 1			
Contaminant		Benzene	
Source Concentration (mg/L)	mg/L	0.4100	July-08
Lambda (per day)	day ⁻¹	0.001	PADEP Number Please!2011 Spreadsheet
кос		58	PADEP Number Please!2011 Spreadsheet

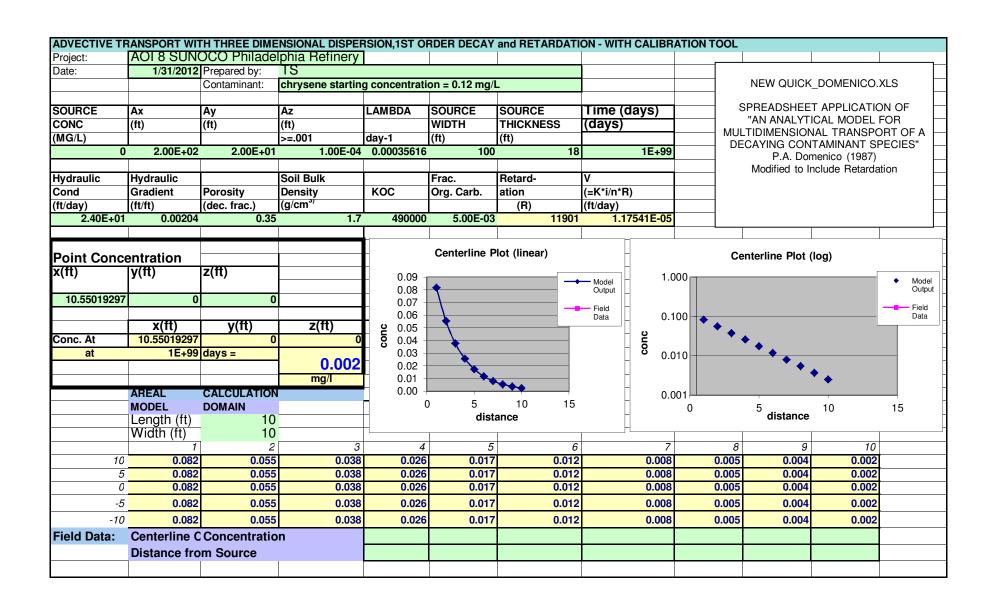
Output (Distance from Source Where Concentration Equals Respective Ground Water MSC)						
Contaminant	Starting Concentration (mg/L)	GW MSC ¹ Non-Residential (mg/L)	Predicted Concentration (mg/L)	Predicted Distance to Meet Non-Residential GW MSC (Rounded Upward to the Nearest foot)		
Sim 1 - Benzene	0.410000	0.005	0.005	667		

ACT 2 TGM, Appendix A, Table 1 MSC for a Non-residential Used Aquifer with Total Dissolved Solids less than or equal to 2500 ug/l.

Table J.5 **Quick Domenico**

Fate and Transport Model Input and Output

Sunoco Philadehphia Refinery AOI 8 Philadelphia, Pennsylvania


AOI 8 SUNOCO Philadelphia Refinery TS 1/31/2012 Project

	Data Source			
Source Identification (or Well ID)			N-8	Jul-08
Sample Date			July-08	
Source Width		ft	100	Delineated LNAPL (100' if no plume is present)
Source Thickness		ft	18	Trenton Gravel saturated thickness (T-T') at N-103
Longitudinal Dispersivity	A _x	ft	200	From CCR QD Simulations
Transverse Dispersivity	A _y	ft	20.0	0.1 x Longitudinal Dispersivity (QD User's Guide)
Vertical Dispersivity	Az	ft	0.0001	negligible QD User's Guide
Hydraulic Conductivty	k	ft/day	24	Trenton Gravel Conductivity From CCR
Hydraulic Gradient		ft/ft	0.00204	Derived fromN-8 and N-102 (May 2011 groundwater contours)
Porosity		decimal fraction	0.35	Site soil analyses
Soil Bulk Density	p _b	g/cm3	1.7	ACT 2 TGM Default
Fraction of Organic Carbon	f _{OC}	decimal fraction	0.005	ACT 2 TGM Default
Time		days	1.00E+99	steady-state

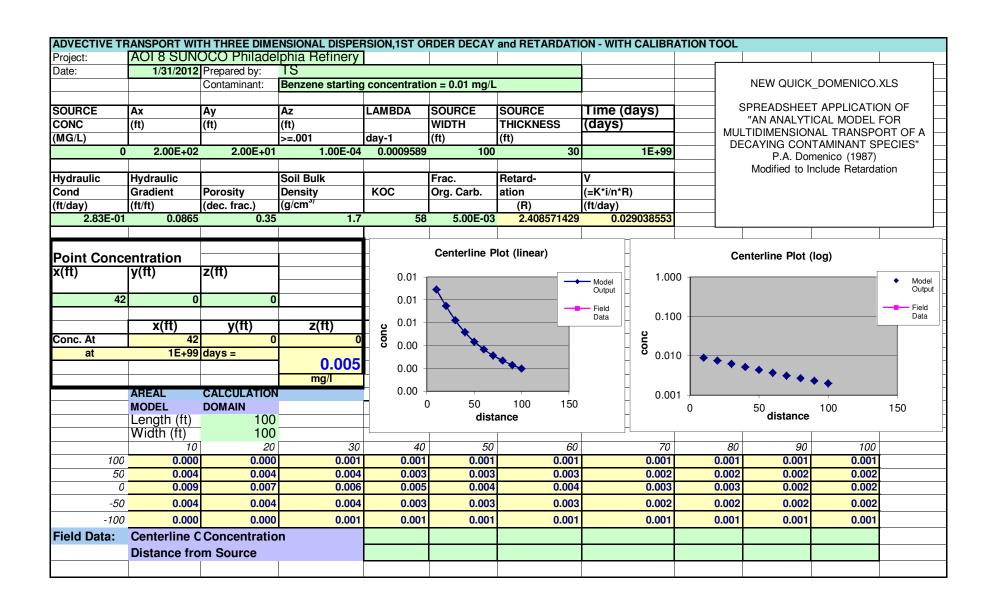
Chemica	Data Source		
Sim 1			
Contaminant		chrysene	N-8
Source Concentration (mg/L)	mg/L	0.1200	Max Reporting Limit
Lambda (per day)	day ⁻¹	3.562E-04	Number Please!2011
KOC		490000	Number Please!2011

Output (Distance from Source Where Concentration Equals Respective Ground Water MSC)										
Contaminant	Starting Concentration (mg/L)	GW MSC ¹ Non-Residential (mg/L)	Predicted Concentration (mg/L)	Predicted Distance to Meet Non-Residential GW MSC (Rounded to the Nearest foot)						
Sim 1 - chrysene	0.1200	0.002	0.002	11						

ACT 2 TGM, Appendix A, Table 1 MSC for a Non-residential Used Aquifer with Total Dissolved Solids less than or equal to 2500.

Table J.6 **Quick Domenico**

Fate and Transport Model Input and Output N-58


Sunoco Philadehphia Refinery AOI 8 Philadelphia, Pennsylvania

AOI 8 SUNOCO Philadelphia Refinery TS 1/31/2012 Project

	Generic Input Par	ameters		Data Source
Source Identification (or Well ID)			N-58	Jul-08
Sample Date			July-08	
Source Width		ft	100	Delineated LNAPL (100' if no plume is present)
Source Thickness		ft	30	Alluvium Thickness from X-Sections
Longitudinal Dispersivity	A _x	ft	200	From CCR QD Simulations
Transverse Dispersivity	A _y	ft	20.0	0.1 x Longitudinal Dispersivity (QD User's Guide)
Vertical Dispersivity	Az	ft	0.0001	negligible QD User's Guide
Hydraulic Conductivty	k	ft/day	0.283	Estimated Barrier Wall Permeability
Hydraulic Gradient		ft/ft	0.0865	N-58/N-73
Porosity		decimal fraction	0.35	Site soil analyses
Soil Bulk Density	p _b	g/cm3	1.7	ACT 2 TGM Default
Fraction of Organic Carbon	f _{OC}	decimal fraction	0.005	ACT 2 TGM Default
Time		days	1.00E+99	steady-state

Che	emical Specific Input	Parameters		Data Source
Sim 1				
Contaminant			Benzene	
Source Concentration (mg/L)		mg/L	0.0100	N-58 Reporting Limit
Lambda (per day)		day ⁻¹	0.001	Number Please!2011
кос			58	Number Please!2011
Sim 2	•			
Contaminant			1,2-dichloroethane	
Source Concentration (mg/L)		mg/L	0.0100	N-58 Reporting Limit
Lambda (per day)		day ⁻¹	0.000	Number Please!2011
KOC			38	Number Please!2011
Output (Dis	stance from Source \	Where Concentra	ation Equals Respective Gro	und Water MSC)
Contaminant	Starting Concentration (mg/L)	GW MSC ¹ Non-Residential (mg/L)	Predicted Concentration (mg/L)	Predicted Distance to Meet Non-Residential GW MSC (Rounded to the Nearest foot)
Sim 1 - Benzene	0.0100	0.005	0.005	42
Sim 2 - 1,2-dichloroethane	0.0100	0.005	0.005	76

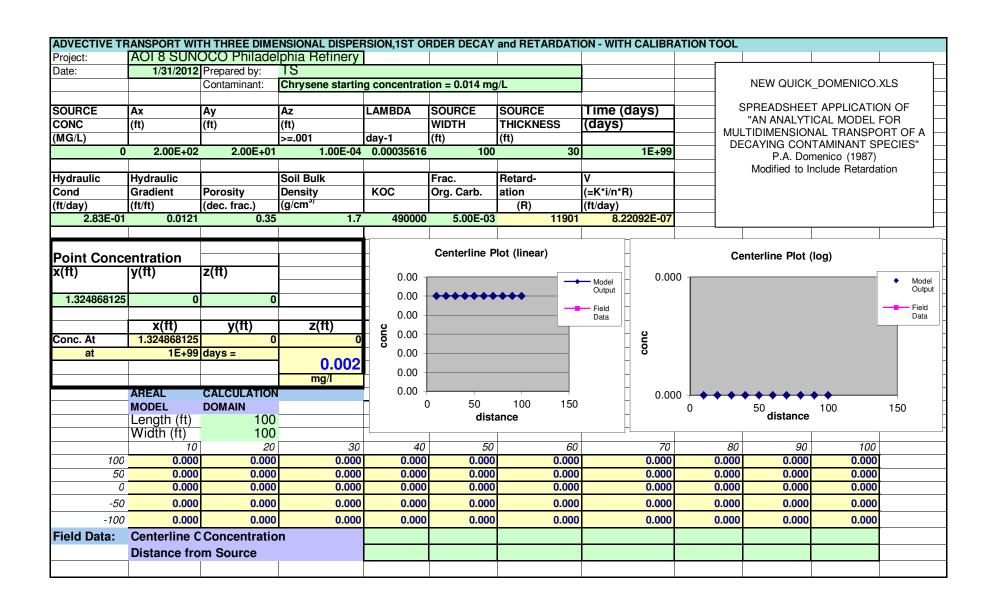
ACT 2 TGM, Appendix A, Table 1 MSC for a Non-residential Used Aquifer with Total Dissolved Solids less than or equal to 2500.

METHOD FOI	R ESTIMATNG FL	OW, AVERA	GE CONCE	NTRATION	AND MASS	LOADING T	TO SURFACI	E WATER FR	OM GROUNI	OWATER				
Project:	SWLOAD5B													
Date:	1/11/2012										PA DEP	ARTMENT		
Contaminant:	N-58 Benzene			Prepared by	y:	TS			I.	OF E	OF ENVIRONMENTAL PROTECTION			
SOURCE												AD5B.XLS		
CONC	Ax	Ay	Az	LAMBDA	SOURCE	SOURCE						OR ESTIMA		
(units)	(ft)	(ft)	(ft)		WIDTH	THICKNESS	Time			COMIA		DADING TO: ATER	SURFACE	
mg/l	>.0001	>.0001	>=.0001	day-1	(ft)	(ft)	(days)					sed on		
0.01	200	20	1.00E-04	9.59E-04	100	30	1.00E+99					enico (1987)		
										\square		clude Retard		
Hydraulic	Hydraulic		Soil Bulk		Frac.	Retard-	٧							
Cond	Gradient	Porosity	Density	KOC	Org. Carb.	ation	(=K*i/n*R)							
(ft/day)	(ft/ft)	(dec. frac.)	(g/cm ³⁾			(R)	(ft/day)							
2.83E-01	0.085	0.35	1.7	58	5.00E-03	2.408571	0.028535			•				
				-93.875		-56.325	-37.55	-18.775	0	18.775			75.1	93.875
Edge Criterio		0.005		0.0000		0.002413		0.00375205		0.003752		0.0024128	0.001623	0.000964
Higest mo	deled conc.	0.00396	-1.0438	0.000964		0.002413		0.00375205		0.003752			0.001623	
			-2.0876	0.000964		0.002413				0.003752	0.0031845		0.001623	
	ATER LOADING G		-3.1314	0.000964		0.002413		0.00375205		0.003752			0.001623	
Distance to S		55		0.000964		0.002413		0.00375205		0.003752			0.001623	
Plume View V	` '	187.75		0.000964		0.002413		0.00375205		0.003752			0.001623	
Plume View D	Depth (ft)	10.438	-6.2628	0.000964		0.002413				0.003752			0.001623	
			-7.3066	0.000964		0.002413				0.003752			0.001623	
			-8.3504	0.000964		0.002413				0.003752			0.001623	
PENTOX N	NOT NEEDED		-9.3942	0.000964	0.0016234	0.002413		0.00375205		0.003752	0.0031845		0.001623	0.000964
			-10.438	0.000964	0.0016234	0.002413	0.0031845	0.00375205	0.00396109	0.003752	0.0031845	0.0024128	0.001623	0.000964
				Average	Groundwa	ter Conce	ntration	0.00253	mg/l					
				Diverse -				0.00054	-1-	0.0000	MCD			
				Plume F	iow			0.00054	CIS	0.00035	MGD			
				Macelo	ading to	Stroom		2.20	ma/day					
				IVIASS LO	ading to	Sireaiii		3.38	mg/day					<u> </u>

METHOD FO	R ESTIMATNG FL	OW, AVERA	GE CONCE	NTRATION	AND MASS	LOADING	TO SURFACI	E WATER FR	OM GROUNI	OWATER				
Project:	SWLOAD5B			1										
Date:	1/11/2012										PA DEP	ARTMENT		
Contaminant:	N-58 12DCA			Prepared by	y:	TS			1	OF E	OF ENVIRONMENTAL PROTECTION			
SOURCE												AD5B.XLS		
CONC	Ax	Ay	Az	LAMBDA	SOURCE	SOURCE				_ I		OR ESTIMA		
(units)	(ft)	(ft)	(ft)		WIDTH	THICKNESS	Time			T COMTA	-	DADING TO: ATER	SURFACE	
mg/l	>.0001	>.0001	>=.0001	day-1	(ft)	(ft)	(days)					sed on		
0.01	200	20	1.00E-04	1.92E-04	100	30	1.00E+99					enico (1987)		
										\neg		clude Retard		
Hydraulic	Hydraulic		Soil Bulk		Frac.	Retard-	V							
Cond	Gradient	Porosity	Density	кос	Org. Carb.	ation	(=K*i/n*R)							
(ft/day)	(ft/ft)	(dec. frac.)	(g/cm³)			(R)	(ft/day)							
2.83E-01	0.085	0.35	1.7	38	5.00E-03	1.922857	0.0357429							
				-32.5	_		-13	-6.5	0	6.5	_		26	32.5
Edge Criterio		0.005		0.005068					0.00596645	0.0059279				0.005068
Higest mo	deled conc.	0.00597	-1.0438	0.005068			0.0058135		0.00596645	0.0059279			0.005376	
			-2.0876	0.005068		0.005627	0.0058135		0.00596645	0.0059279			0.005376	
	ATER LOADING G		-3.1314	0.005068		0.005627		0.00592787		0.0059279				0.005068
Distance to S		55		0.005068		0.005627			0.00596645	0.0059279			0.005376	
Plume View V		65		0.005068					0.00596645	0.0059279			0.005376	
Plume View I	Depth (ft)	10.438		0.005068			0.0058135		0.00596645	0.0059279				0.005068
			-7.3066	0.005068		0.005627	0.0058135		0.00596645	0.0059279			0.005376	
			-8.3504	0.005068			0.0058135			0.0059279			0.005376	
PENTOX N	NEEDED		-9.3942	0.005068		0.005627	0.0058135		0.00596645	0.0059279		0.0056275	0.005376	
			-10.438	0.005068	0.0053762	0.005627	0.0058135	0.00592787	0.00596645	0.0059279	0.0058135	0.0056275	0.005376	0.005068
				Average	Groundwa	ter Conce	ntration	0.0056	mg/l					
				-				0.00010		0.00020	MOD			
				Plume F	low			0.00019	CTS	0.00012	MGD			
				K	13	01								
				Mass Lo	ading to	Stream		2.59	mg/day					

Table J.9 **Quick Domenico**

Fate and Transport Model Input and Output N-60


Sunoco Philadehphia Refinery AOI 8 Philadelphia, Pennsylvania

AOI 8 SUNOCO Philadelphia Refinery TS 1/31/2012 Project

	Generic Input Par	ameters		Data Source
Source Identification (or Well ID)			N-60	Jul-08
Sample Date			July-08	
Source Width		ft	100	Delineated LNAPL (100' if no plume is present)
Source Thickness		ft	30	Alluvium Thickness from X-Sections
Longitudinal Dispersivity	A _x	ft	200	From CCR QD Simulations
Transverse Dispersivity	A _y	ft	20.0	0.1 x Longitudinal Dispersivity (QD User's Guide)
Vertical Dispersivity	Az	ft	0.0001	negligible QD User's Guide
Hydraulic Conductivty	k	ft/day	0.283	Estimated Barrier Wall Permeability
Hydraulic Gradient		ft/ft	0.0121	N-60/N-136
Porosity		decimal fraction	0.35	Site soil analyses
Soil Bulk Density	p _b	g/cm3	1.7	ACT 2 TGM Default
Fraction of Organic Carbon	f _{oc}	decimal fraction	0.005	ACT 2 TGM Default
Time		days	1.00E+99	steady-state

(Chemical Specific Input Parameters									
Sim 1										
Contaminant			Chrysene	N-60						
Source Concentration (mg/L)		mg/L	0.0140	July-08						
Lambda (per day)		day ⁻¹	3.562E-04	Number Please!2011						
KOC			490000	Number Please!2011						
Output (Distance from Source \	Where Concentra	ation Equals Respective Gro	und Water MSC)						
Contaminant	Starting Concentration (mg/L)	GW MSC ¹ Non-Residential (mg/L)	Predicted Concentration (mg/L)	Predicted Distance to Meet Non-Residential GW MSC (Rounded to the Nearest foot)						
Sim 1 - Chrysene	0.0140	0.002	0.002	1						

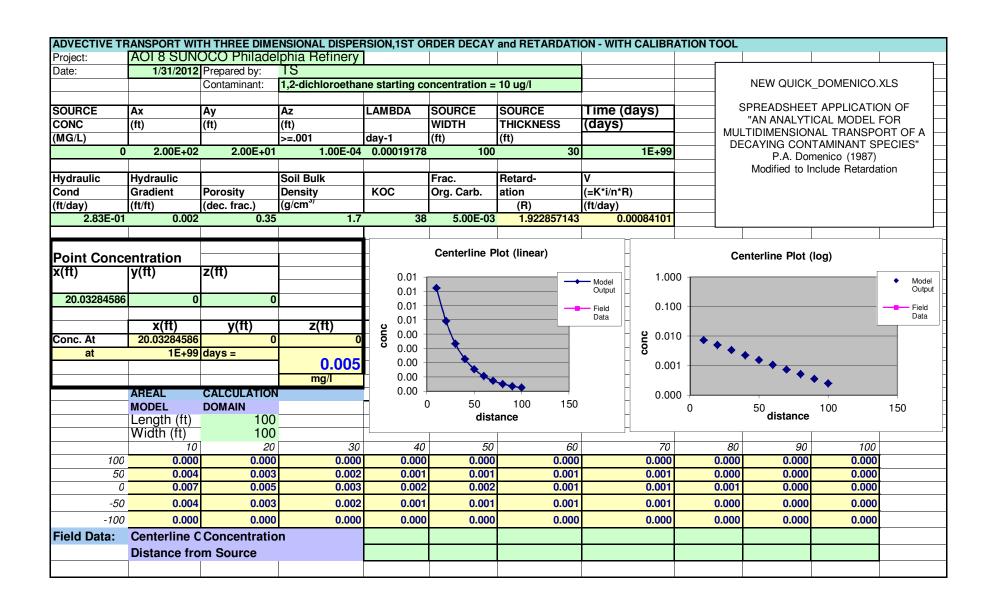
¹ ACT 2 TGM, Appendix A, Table 1 MSC for a Non-residential Used Aquifer with Total Dissolved Solids less than or equal to 2500.

METHOD FOR	R ESTIMATNG FL	OW, AVERA	GE CONCE	NTRATION	AND MASS	LOADING	TO SURFAC	E WATER FF	ROM GROUND	WATER				
Project:	Sunoco Philac	delphia AO	18 N-60											_
Date:	10/21/2011									7	PA DEP	ARTMENT		
Contaminant:	N-60 Chrysene			Prepared by	<i>r</i> :	TS				OF E	NVIRONME	_	ECTION	
SOURCE										٦.	SWLOAD5B.XLS			
CONC	Ax	Ay	Az	LAMBDA	SOURCE	SOURCE				1	METHOD FO	-		
(units)	(ft)	(ft)	(ft)		WIDTH	THICKNESS	Time			T COMTA	AMINANT LC	ATER	SURFACE	
mg/l	>.0001	>.0001	>=.0001	day-1	(ft)	(ft)	(days)			1		ed on		
0.014	200	20	1.00E-04	3.56E-04	100	30	1.00E+99					enico (1987)		
											lodified to Inc			
Hydraulic	Hydraulic		Soil Bulk		Frac.	Retard-	٧			7 "			a	
Cond	Gradient	Porosity	Density	KOC	Org. Carb.	ation	(=K*i/n*R)			1				
(ft/day)	(ft/ft)	(dec. frac.)	(g/cm³)			(R)	(ft/day)							
2.83E-01	0.0121	0.35	1.7	490000	5.00E-03	11901	8.221E-07			-				
				-50	-40	-30	-20	-10	0	10	20	30	40	50
Edge Criterio		0.00048	0	2.6E-258	2.68E-258	2.7E-258	2.77E-258	2.798E-258	2.806E-258	2.8E-258	2.77E-258	2.73E-258	2.7E-258	2.6E-258
Higest mod	deled conc.	3E-258	-3	2.6E-258	2.68E-258	2.7E-258	2.77E-258	2.798E-258	2.806E-258	2.8E-258	2.77E-258	2.73E-258	2.7E-258	2.6E-258
_			-6	2.6E-258	2.68E-258	2.7E-258	2.77E-258	2.798E-258	2.806E-258	2.8E-258	2.77E-258	2.73E-258	2.7E-258	2.6E-258
SURFACE WA	ATER LOADING G	RID	-9	2.6E-258	2.68E-258	2.7E-258	2.77E-258	2.798E-258	2.806E-258	2.8E-258	2.77E-258	2.73E-258	2.7E-258	2.6E-258
Distance to S	tream (ft)	400	-12	2.6E-258	2.68E-258	2.7E-258	2.77E-258	2.798E-258	2.806E-258	2.8E-258			2.7E-258	2.6E-258
Plume View W	Vidth (ft)	100	-15	2.6E-258	2.68E-258	2.7E-258	2.77E-258	2.798E-258	2.806E-258	2.8E-258	2.77E-258	2.73E-258	2.7E-258	2.6E-258
Plume View D	epth (ft)	30	-18	2.6E-258	2.68E-258	2.7E-258	2.77E-258	2.798E-258	2.806E-258	2.8E-258	2.77E-258	2.73E-258	2.7E-258	2.6E-258
			-21	2.6E-258	2.68E-258	2.7E-258	2.77E-258	2.798E-258	2.806E-258	2.8E-258	2.77E-258	2.73E-258	2.7E-258	2.6E-258
			-24	2.6E-258	2.68E-258	2.7E-258	2.77E-258	2.798E-258	2.806E-258	2.8E-258	2.77E-258	2.73E-258	2.7E-258	2.6E-258
PENTOX N	OT NEEDED		-27	2.6E-258	2.68E-258	2.7E-258	2.77E-258	2.798E-258	2.806E-258	2.8E-258	2.77E-258	2.73E-258	2.7E-258	2.6E-258
			-30	1.3E-258	1.34E-258	1.4E-258	1.39E-258	1.399E-258	1.403E-258	1.4E-258	1.39E-258	1.37E-258	1.3E-258	1.3E-258
				Average (Groundwa	ter Conce	ntration	#DIV/0!	ma/l					
				3					<u> </u>					
				Plume F	low			0.00000	cfs	0	MGD			
				Mass Lo	ading to	Stream	#DI	V/0!	mg/day					

Table J.11

Quick Domenico Fate and Transport Model Input and Output

N-61


Sunoco Philadehphia Refinery AOI 8 Philadelphia, Pennsylvania

AOI 8 SUNOCO Philadelphia Refinery TS 1/31/2012 Project

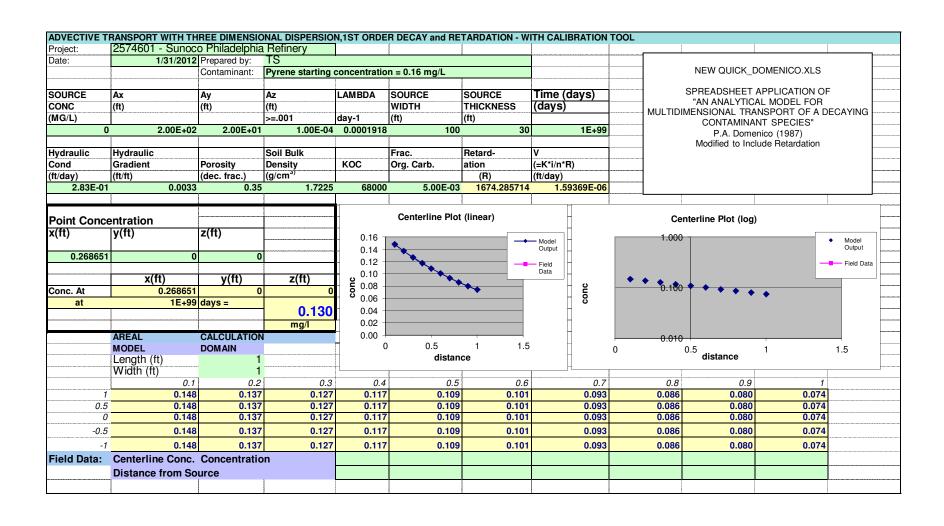
	Generic Input Par	ameters		Data Source
Source Identification (or Well ID)			N-61	Jul-08
Sample Date			July-08	
Source Width		ft	100	Delineated LNAPL (100' if no plume is present)
Source Thickness		ft	30	Alluvium Thickness from X-Sections
Longitudinal Dispersivity	A _x	ft	200	From CCR QD Simulations
Transverse Dispersivity	A _y	ft	20.0	0.1 x Longitudinal Dispersivity (QD User's Guide)
Vertical Dispersivity	Az	ft	0.0001	negligible QD User's Guide
Hydraulic Conductivty	k	ft/day	0.283	Estimated Barrier Wall Permeability
Hydraulic Gradient		ft/ft	0.002	N-61/N-135
Porosity		decimal fraction	0.35	Site soil analyses
Soil Bulk Density	p _b	g/cm3	1.7	ACT 2 TGM Default
Fraction of Organic Carbon	f _{oc}	decimal fraction	0.005	ACT 2 TGM Default
Time		days	1.00E+99	steady-state

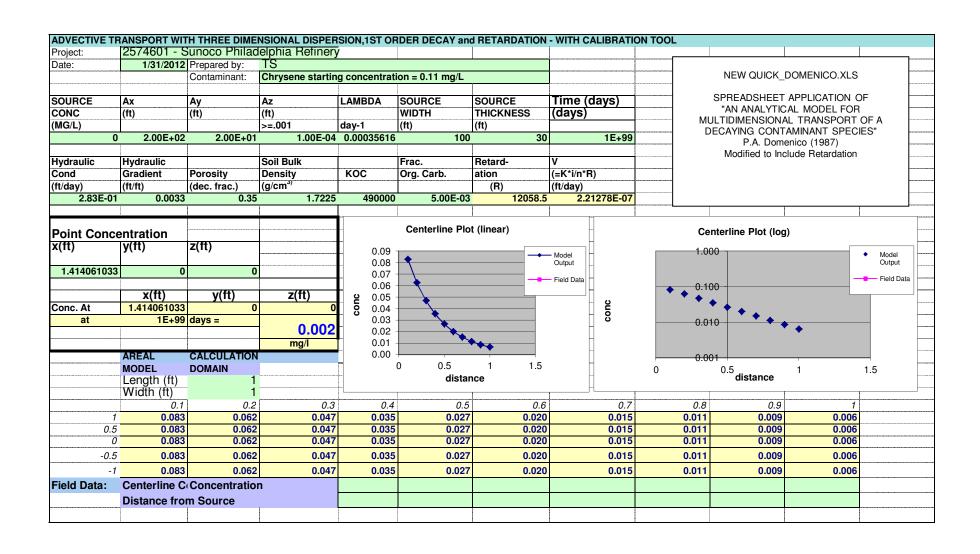
	Chemical Specific Input	Parameters		Data Source
Sim 1				
Contaminant			1,2-dichloroethane	
Source Concentration (mg/L)		mg/L	0.0100	N-61 Reporting Limit
Lambda (per day)		day ⁻¹	0.000	Number Please!2011
KOC			38	Number Please!2011
Output	Distance from Source	Where Concentra	tion Equals Respective Gro	und Water MSC)
Contaminant	Starting Concentration (mg/L)	GW MSC ¹ Non-Residential (mg/L)	Predicted Concentration (mg/L)	Predicted Distance to Meet Non-Residential GW MSC (Rounded to the Nearest foot)
Sim 1 - 1,2-dichloroethane	0.0100	0.005	0.005	20

¹ ACT 2 TGM, Appendix A, Table 1 MSC for a Non-residential Used Aquifer with Total Dissolved Solids less than or equal to 2500.

METHOD FOR	R ESTIMATNG FL	OW. AVERA	GE CONCE	NTRATION	I AND MASS	LOADING T	TO SURFACE	WATER FR	OM GROUNE	WATER				
	SWLOAD5B													
Date:	1/11/2012										PA DEP	ARTMENT		
Contaminant:	N-61 12DCA			Prepared by	y:	TS		Į.		OF E	NVIRONMEN	_	ECTION	
SOURCE												AD5B.XLS		
CONC	Ax	Ay	Az	LAMBDA	SOURCE	SOURCE					METHOD FC	_		
(units)	(ft)	(ft)	(ft)		WIDTH	THICKNES!	Time			COMIA	AMINANT LO	ADING TO S ATER	SURFACE	
mg/l	>.0001	>.0001	>=.0001	day-1	(ft)	(ft)	(days)					ed on		
0.01	200	20	1.00E-04	1.92E-04	100	30	1.00E+99					enico (1987)		
										_ ν	lodified to Inc	,	ation	
Hydraulic	Hydraulic		Soil Bulk		Frac.	Retard-	V							
Cond	Gradient	Porosity	Density	KOC	Org. Carb.	ation	(=K*i/n*R)							
(ft/day)	(ft/ft)	(dec. frac.)	(g/cm³)			(R)	(ft/day)							
2.83E-01	0.002	0.35	1.7	38	5.00E-03	1.922857	0.000841							
				-20	_	-12	-8	-4	0	4	8	12	16	-
Edge Criterio		0.005		0.000238			0.000246	0.0002472	0.0002476	0.0002472	0.000246	0.000244		0.000238
Higest mo	deled conc.	0.00025	-1.0438	0.000238		0.000244	0.000246	0.0002472	0.0002476	0.0002472	0.000246	0.000244	0.000241	0.000238
			-2.0876	0.000238		0.000244	0.000246	0.0002472	0.0002476	0.0002472	0.000246	0.000244	0.000241	0.000238
	ATER LOADING G		-3.1314	0.000238		0.000244	0.000246	0.0002472	0.0002476	0.0002472	0.000246	0.000244	0.000241	0.000238
Distance to S		100		0.000238		0.000244	0.000246	0.0002472	0.0002476	0.0002472	0.000246	0.000244	0.000241	0.000238
Plume View V		40	0.2.0	0.000238			0.000246	0.0002472	0.0002476	0.0002472	0.000246	0.000244	0.000241	0.000238
Plume View D	epth (ft)	10.438		0.000238		0.000244	0.000246	0.0002472	0.0002476	0.0002472	0.000246	0.000244	0.000241	0.000238
			-7.3066	0.000238		0.000244	0.000246	0.0002472	0.0002476	0.0002472	0.000246	0.000244	0.000241	0.000238
			-8.3504	0.000238		0.000244	0.000246	0.0002472	0.0002476	0.0002472	0.000246	0.000244	0.000241	0.000238
PENTOX N	NOT NEEDED		-9.3942	0.000238		0.000244	0.000246	0.0002472	0.0002476	0.0002472	0.000246	0.000244	0.000241	0.000238
			-10.438	0.000238	0.0002413	0.000244	0.000246	0.0002472	0.0002476	0.0002472	0.000246	0.000244	0.000241	0.000238
				Average	Groundwa	ter Conce	ntration	#DIV/0!	mg/l					
-		-												
				Plume F	low			0.00000	cts	0	MGD			
				,	ļ.,				,					
				Mass Lo	ading to	Stream	#DI\	//0!	mg/day					

Table J.13 Quick Domenico Fate and Transport Model Input and Output Sunoco Philadelphia Refinery AOI 8 N-111 Philadelphia, Pennsylvania


Project Prepared by Date Prepared 2574601 - Sunoco Philadelphia Refinery TS 1/31/2012


	Generic Input Parameters									
Source Identification (or Well ID)			N-111							
Sample Date				Jul-08						
Source Width		ft	100	Delineated LNAPL (100' default if no plume is present)						
Source Thickness		ft	30	Alluvium Thickness from X-Sections						
Longitudinal Dispersivity	A _x	ft	200	From CCR QD Simulations						
Transverse Dispersivity	A _y	ft	20.0	Quick Domenico User's Manual						
Vertical Dispersivity	Az	ft	0.0001	Quick Domenico User's Manual						
Hydraulic Conductivty	k	ft/day	0.283	Unsealed sheet pile (Waterloo Barrier, Inc.)						
Hydraulic Gradient		ft/ft	0.0033	Derived from N-111 and N-503 (May 2011 groundwater contours)						
Porosity		decimal fraction	0.35	Site soil analyses						
Soil Bulk Density	P _b	g/cm3	1.7225	ACT 2 TGM Default						
Fraction of Organic Carbon	f _{oc}	decimal fraction	0.005	ACT 2 TGM Default						
Time		days	1.00E+99	Steady-State Conditions						

Chemi	Data Source		
Sim 1			
Contaminant		Chrysene	
Source Concentration (mg/L)	mg/L	0.1100	July-08
Lambda (per day)	day -1	0.000	PADEP Number Please!2011 Spreadsheet
кос		490000	PADEP Number Please!2011 Spreadsheet
Sim 2			
Contaminant		Pyrene	
Source Concentration (mg/L)	mg/L	0.1600	July-08
Lambda (per day)	day -1	0.000	PADEP Number Please!2011 Spreadsheet
кос		68000	PADEP Number Please!2011 Spreadsheet

Output (Distance from Source Where Concentration Equals Respective Ground Water MSC)									
Contaminant	Starting Concentration (mg/L)	GW MSC ¹ Non-Residential (mg/L)	Predicted Concentration (mg/L)	Predicted Distance to Meet Non-Residential GW MSC (Rounded to the Nearest foot)					
Sim 1 - Chrysene	0.110000	0.002	0.002	1					
Sim 2 - Pyrene	0.160000	0.130	0.130	0					

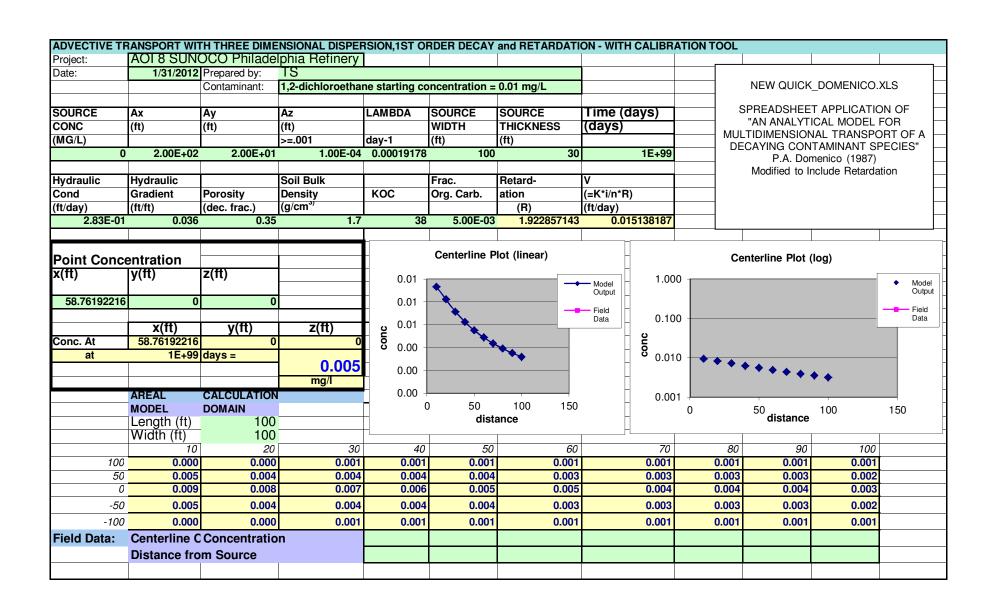
ACT 2 TGM, Appendix A, Table 1 MSC for a Non-residential Used Aquifer with Total Dissolved Solids less than or equal to 2500 ug/l.

METHOD FOR	R ESTIMATNG FL	OW, AVERA	GE CONCE	NTRATION	AND MASS	LOADING	TO SURFACI	E WATER FR	OM GROUND	WATER				
Project:	Sunoco Philad	delphia AO	18 N-11	1										_
Date:	10/21/2011										PA DEP	ARTMENT		
Contaminant:	N-111 Chrysene			Prepared by	<i>'</i> :	TS				OF E	OF ENVIRONMENTAL PROTECTION			
SOURCE										T		AD5B.XLS		
CONC	Ax	Ay	Az	LAMBDA	SOURCE	SOURCE				A METHOD FOR ESTIMATING				
(units)	(ft)	(ft)	(ft)		WIDTH	THICKNESS	Time			COMTAMINANT LOADING TO SURFACE WATER				
mg/l	>.0001	>.0001	>=.0001	day-1	(ft)	(ft)	(days)					ed on		
0.11	200	20	1.00E-04	3.56E-04	100	30	1.00E+99					enico (1987)		
										П м		clude Retarda		
Hydraulic	Hydraulic		Soil Bulk		Frac.	Retard-	V			T				
Cond	Gradient	Porosity	Density	KOC	Org. Carb.	ation	(=K*i/n*R)							
(ft/day)	(ft/ft)	(dec. frac.)	(g/cm³)			(R)	(ft/day)							
2.83E-01	0.0033	0.35	1.7	490000	5.00E-03	11901	2.242E-07							
				-101	-80.8		-40.4	-20.2	-	20.2	40.4	60.6	80.8	101
Edge Criterio		0.00048	0	3.98E-43	9.83E-43	1.91E-42	2.966E-42	3.8066E-42	4.1239E-42	3.807E-42	2.966E-42	1.905E-42	9.83E-43	3.98E-43
Higest mod	deled conc.	4.1E-42	-3	3.98E-43	9.83E-43		2.966E-42	3.8066E-42	4.1239E-42	3.807E-42	2.966E-42	1.905E-42	9.83E-43	
			-6	0.000	9.83E-43		2.966E-42		4.1239E-42	3.807E-42	2.966E-42		9.83E-43	
SURFACE WA	ATER LOADING G		-9	0.000	9.83E-43		2.966E-42		4.1239E-42	3.807E-42	2.966E-42	1.905E-42		3.98E-43
Distance to St		33	-12		9.83E-43		2.966E-42		4.1239E-42	3.807E-42				3.98E-43
Plume View W		202	-15		9.83E-43	_	2.966E-42		4.1239E-42	3.807E-42			9.83E-43	
Plume View D	epth (ft)	30	-18	3.98E-43	9.83E-43	_	2.966E-42		4.1239E-42	3.807E-42	2.966E-42	1.905E-42	9.83E-43	
			-21	3.98E-43	9.83E-43		2.966E-42		4.1239E-42	3.807E-42	2.966E-42		9.83E-43	
			-24	3.98E-43	9.83E-43	_	2.966E-42		4.1239E-42	3.807E-42			9.83E-43	
PENTOX N	IOT NEEDED		-27	3.98E-43	9.83E-43	_	2.966E-42		4.1239E-42	3.807E-42	2.966E-42		9.83E-43	
			-30	1.99E-43	4.915E-43	9.53E-43	1.483E-42	1.9033E-42	2.0619E-42	1.903E-42	1.483E-42	9.527E-43	4.91E-43	1.99E-43
				Average (Groundwa	ter Conce	ntration	#DIV/0!	mg/l					
				Dlumo E				0.00000	ofo		MCD			
				Plume F	IOW			0.00000	CIS	U	MGD			
				Mooolo	adina ta	Ctroom	ארטו	V//OI	ma/dov					
				IVIASS LO	aumy to	Mass Loading to Stream #DIV/0! mg/day								

METHOD FOR	R ESTIMATNG FL	OW, AVERA	GE CONCE	NTRATION	AND MASS	LOADING '	TO SURFAC	E WATER FR	OM GROUNE	OWATER				
Project:	Sunoco Philad	delphia AO	18 N-11	1										
Date:	10/21/2011	<u>'</u>									PA DEP	ARTMENT		
Contaminant:	N-111 Pyrene			Prepared by	/:	TS	l .	I.		OF E		NTAL PROT	ECTION	
SOURCE										٦.		AD5B.XLS		
CONC	Ax	Ау	Az	LAMBDA	SOURCE	SOURCE				I	A METHOD FOR ESTIMATING			
(units)	(ft)	(ft)	(ft)		WIDTH	THICKNESS	Time			COMTAMINANT LOADING TO SURFACE WATER				
mg/l	>.0001	>.0001	>=.0001	day-1	(ft)	(ft)	(days)				WATER based on			
0.16	200	20	1.00E-04	1.92E-04	100	30	1.00E+99					enico (1987)		
										\neg		clude Retard		
Hydraulic	Hydraulic		Soil Bulk		Frac.	Retard-	٧							
Cond	Gradient	Porosity	Density	кос	Org. Carb.	ation	(=K*i/n*R)							
(ft/day)	(ft/ft)	(dec. frac.)	(g/cm ³⁾			(R)	(ft/day)							
2.83E-01	0.0033	0.35	1.7	68000	5.00E-03	1652.429	1.615E-06							
				-101	-80.8	-60.6	-40.4	-20.2		20.2	40.4	60.6	80.8	101
Edge Criterio		130	0	1.26E-13	3.11E-13	6.03E-13	9.383E-13		1.3047E-12	1.204E-12	9.383E-13	6.028E-13	3.11E-13	1.26E-13
Higest mo	deled conc.	1.3E-12	-3		3.11E-13		9.383E-13			1.204E-12			3.11E-13	
			-6		3.11E-13		9.383E-13			1.204E-12		6.028E-13	3.11E-13	1.26E-13
SURFACE W	E WATER LOADING GRID -9			3.11E-13			1.2044E-12		1.204E-12				1.26E-13	
Distance to S	` ,	33	-12		3.11E-13				1.3047E-12					1.26E-13
Plume View V		202	-15						1.3047E-12				3.11E-13	
Plume View D	Depth (ft)	30	-18		3.11E-13		9.383E-13			1.204E-12			3.11E-13	
			-21	1.26E-13	3.11E-13	6.03E-13	9.383E-13	1.2044E-12	1.3047E-12	1.204E-12	9.383E-13	6.028E-13	3.11E-13	1.26E-13
			-24	1.26E-13	3.11E-13		9.383E-13			1.204E-12	9.383E-13			1.26E-13
PENTOX N	OT NEEDED		-27	1.26E-13	3.11E-13	6.03E-13	9.383E-13	1.2044E-12	1.3047E-12	1.204E-12			3.11E-13	1.26E-13
			-30	6.29E-14	1.555E-13	3.01E-13	4.691E-13	6.0218E-13	6.5237E-13	6.022E-13	4.691E-13	3.014E-13	1.55E-13	6.29E-14
				Average	Groundwa	ter Conce	ntration	#DIV/0!	mg/l					
				Diumo Flow			0.00000	oto	0	MGD				
				Plume Flow				0.00000	CIS	U	MGD			
				Macelo	ading to	Stroom	#01	V/0!	ma/day					
				IVIASS LO	auling to	Sueam	#DI	V/U!	mg/day					

Table J.16 **Quick Domenico**

Fate and Transport Model Input and Output N-133


Sunoco Philadehphia Refinery AOI 8 Philadelphia, Pennsylvania

AOI 8 SUNOCO Philadelphia Refinery TS 1/31/2012 Project

	Data Source			
Source Identification (or Well ID)			N-133	Jul-08
Sample Date			July-08	
Source Width		ft	100	Delineated LNAPL (100' if no plume is present)
Source Thickness		ft	30	Alluvium Thickness from X-Sections
Longitudinal Dispersivity	A _x	ft	200	From CCR QD Simulations
Transverse Dispersivity	A _y	ft	20.0	0.1 x Longitudinal Dispersivity (QD User's Guide)
Vertical Dispersivity	Az	ft	0.0001	negligible QD User's Guide
Hydraulic Conductivty	k	ft/day	0.283	Estimated Barrier Wall Permeability
Hydraulic Gradient		ft/ft	0.036	N-133/N-74
Porosity		decimal fraction	0.35	Site soil analyses
Soil Bulk Density	p _b	g/cm3	1.7	ACT 2 TGM Default
Fraction of Organic Carbon	f _{oc}	decimal fraction	0.005	ACT 2 TGM Default
Time		days	1.00E+99	steady-state

	Data Source			
Sim 1				
Contaminant			1,2-dichloroethane	N-60
Source Concentration (mg/L)		mg/L	0.0100	July-08
Lambda (per day)		day ⁻¹	1.918E-04	Number Please!2011
KOC			38	Number Please!2011
Output	(Distance from Source \	Where Concentra	ntion Equals Respective Gro	und Water MSC)
Contaminant	Starting Concentration (mg/L)	GW MSC ¹ Non-Residential (mg/L)	Predicted Concentration (mg/L)	Predicted Distance to Meet Non-Residential GW MSC (Rounded to the Nearest foot)
Sim 1 - 1,2-dichloroethane	0.0100	0.005	0.005	59

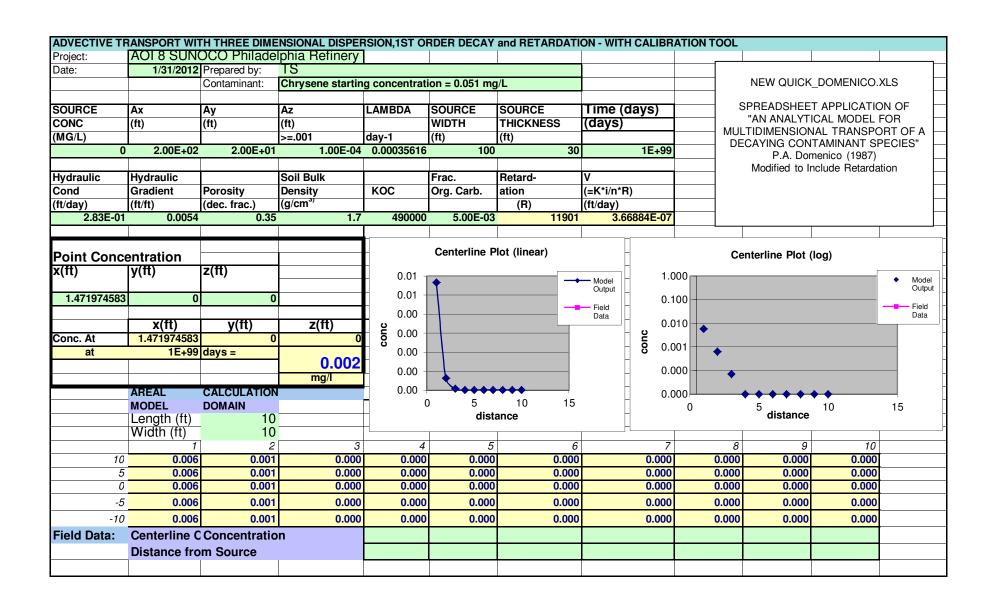
¹ ACT 2 TGM, Appendix A, Table 1 MSC for a Non-residential Used Aquifer with Total Dissolved Solids less than or equal to 2500.

METHOD FOR	R ESTIMATNG FL	OW. AVERA	GE CONCE	NTRATION	AND MASS	LOADING	TO SURFAC	E WATER FR	OM GROUNI	OWATER				
Project:	SWLOAD5B			1										
Date:	1/11/2012										PA DEF	PARTMENT		
Contaminant:	N-133 12DCA			Prepared by	/ :	TS	L	l.		OF E	NVIRONME	NTAL PROT	ECTION	
SOURCE											SWLOAD5B.XLS			
CONC	Ax	Ay	Az	LAMBDA	SOURCE	SOURCE				1	A METHOD FOR ESTIMATING			
(units)	(ft)	(ft)	(ft)		WIDTH	THICKNESS	Time			COMIA	COMTAMINANT LOADING TO SURFACE WATER based on			
mg/l	>.0001	>.0001	>=.0001	day-1	(ft)	(ft)	(days)							
0.01	200	20	1.00E-04	1.92E-04	100	30	1.00E+99					ienico (1987)		
												clude Retard		
Hydraulic	Hydraulic		Soil Bulk		Frac.	Retard-	V							
Cond	Gradient	Porosity	Density	KOC	Org. Carb.	ation	(=K*i/n*R)							
(ft/day)	(ft/ft)	(dec. frac.)	(g/cm ³⁾			(R)	(ft/day)							
2.83E-01	0.036	0.35	1.7	38	5.00E-03	1.922857	0.0151382							
				-32.5	_		-13			6.5	_		26	
Edge Criterio		0.005		0.000		0.003655	0.0037471		0.00382232	0.0038034	0.0037471	0.0036552	0.00353	
Higest mo	deled conc.	0.00382	-1.0438	0.003375		0.003655	0.0037471		0.00382232	0.0038034	0.0037471	0.0036552	0.00353	
			-2.0876			0.003655	0.0037471			0.0038034	0.0037471	0.0036552	0.00353	
	ATER LOADING G		-3.1314	0.003375		0.003655	0.0037471			0.0038034	0.0037471		0.00353	
Distance to S		82		0.003375		0.003655	0.0037471		0.00382232	0.0038034	0.0037471	0.0036552	0.00353	
Plume View V	` '	65				0.003655	0.0037471		0.00382232	0.0038034				0.003375
Plume View D	epth (ft)	10.438		0.003375		0.003655	0.0037471		0.00382232	0.0038034	0.0037471	0.0036552	0.00353	
			-7.3066	0.003375		0.003655	0.0037471		0.00382232	0.0038034	0.0037471	0.0036552	0.00353	
			-8.3504	0.003375		0.003655	0.0037471		0.00382232	0.0038034	0.0037471	0.0036552	0.00353	
PENTOX N	NOT NEEDED		-9.3942	0.003375		0.003655	0.0037471		0.00382232	0.0038034	0.0037471	0.0036552	0.00353	
			-10.438	0.003375	0.0035301	0.003655	0.0037471	0.00380339	0.00382232	0.0038034	0.0037471	0.0036552	0.00353	0.003375
				Average	Groundwa	ter Conce	ntration	0.00364	mg/l					
				Plume F	low			0.00008	cfs	5.2E-05	MGD			
		Mass Loading to Stream 0.71 mg/day												

Quick Domenico

Fate and Transport Model Input and Output PZ-503

Sunoco Philadehphia Refinery AOI 8 Philadelphia, Pennsylvania


AOI 8 SUNOCO Philadelphia Refinery TS 1/31/2012 Project

	Generic Input Parameters							
Source Identification (or Well ID)			PZ-503	Jul-08				
Sample Date			July-08					
Source Width		ft	100	Delineated LNAPL (100' if no plume is present)				
Source Thickness		ft	30	Alluvium Thickness from X-Sections				
Longitudinal Dispersivity	A _x	ft	200	From CCR QD Simulations				
Transverse Dispersivity	A _y	ft	20.0	0.1 x Longitudinal Dispersivity (QD User's Guide)				
Vertical Dispersivity	Az	ft	0.0001	negligible QD User's Guide				
Hydraulic Conductivty	k	ft/day	0.283	Estimated Barrier Wall Permeability				
Hydraulic Gradient		ft/ft	0.0054	N-135/PZ-503				
Porosity		decimal fraction	0.35	Site soil analyses				
Soil Bulk Density	p _b	g/cm3	1.7	ACT 2 TGM Default				
Fraction of Organic Carbon	f _{OC}	decimal fraction	0.005	ACT 2 TGM Default				
Time		days	1.00E+99	steady-state				

Chemical	Data Source		
Sim 1			
Contaminant		Chrysene	PZ-503
Source Concentration (mg/L)	mg/L	0.0510	July-08
Lambda (per day)	day ⁻¹	0.000	Number Please!2011
KOC		490000	Number Please!2011

Output (Distance from Source Where Concentration Equals Respective Ground Water MSC)										
Contaminant	Contaminant Starting Concentration (mg/L) Contaminant Contaminant Concentration (mg/L) Starting Concentration (mg/L) Predicted Concentration (mg/L) Predicted Concentration (mg/L) Predicted Concentration (mg/L) Predicted Concentration (mg/L)									
Sim 1 - Chrysene	0.0510	0.002	0.002	1						

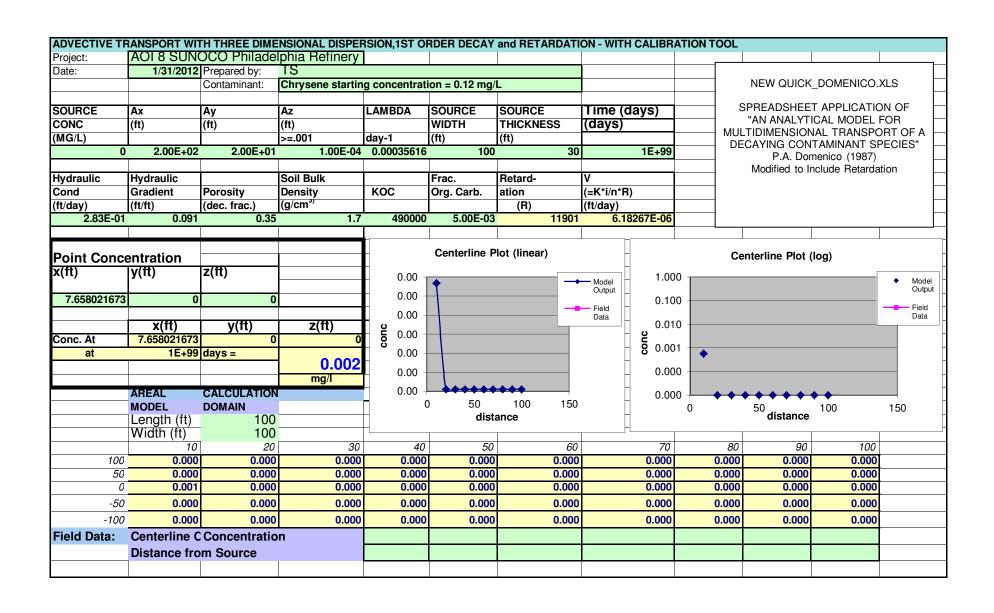
ACT 2 TGM, Appendix A, Table 1 MSC for a Non-residential Used Aquifer with Total Dissolved Solids less than or equal to 2500.

METHOD FOR	R ESTIMATNG FL	OW, AVERA	GE CONCE	NTRATION	AND MASS	LOADING	TO SURFAC	E WATER FF	ROM GROUNE	WATER				
	Sunoco Philac													
Date:	10/21/2011											ARTMENT		
Contaminant:	PZ-503 Chrysene	,		Prepared by	<i>/</i> :	TS				OF E		NTAL PROT	ECTION	
SOURCE											SWLOAD5B.XLS			
CONC	Ax	Ay	Az	LAMBDA	SOURCE	SOURCE					A METHOD FOR ESTIMATING COMTAMINANT LOADING TO SURFACE WATER based on			
(units)	(ft)	(ft)	(ft)		WIDTH	THICKNESS	Time			COMIA				
mg/l	>.0001	>.0001	>=.0001	day-1	(ft)	(ft)	(days)							
0.051	200	20	1.00E-04	3.56E-04	100	30	1.00E+99					enico (1987)		
										\neg		clude Retarda		
Hydraulic	Hydraulic		Soil Bulk		Frac.	Retard-	٧							
Cond	Gradient	Porosity	Density	KOC	Org. Carb.	ation	(=K*i/n*R)							
(ft/day)	(ft/ft)	(dec. frac.)	(g/cm³)			(R)	(ft/day)							
2.83E-01	0.0054	0.35	1.7	490000	5.00E-03	11901	3.669E-07							
				-50	-40	-30	-20	-10	0	10	20	30	40	50
Edge Criterio		0.00048	0	4.04E-28	4.996E-28	5.84E-28	6.505E-28	6.923E-28	7.0654E-28	6.923E-28	6.505E-28	5.844E-28	5E-28	4.04E-28
Higest mod	deled conc.	7.1E-28	-3	4.04E-28	4.996E-28	5.84E-28	6.505E-28	6.923E-28	7.0654E-28	6.923E-28	6.505E-28	5.844E-28	5E-28	4.04E-28
			-6	4.04E-28	4.996E-28	5.84E-28	6.505E-28	6.923E-28	7.0654E-28	6.923E-28	6.505E-28	5.844E-28	5E-28	4.04E-28
SURFACE WA	ATER LOADING G		-9	4.04E-28	4.996E-28	5.84E-28	6.505E-28	6.923E-28	7.0654E-28	6.923E-28	6.505E-28	5.844E-28	5E-28	4.04E-28
Distance to St	tream (ft)	27	-12	4.04E-28	4.996E-28	5.84E-28	6.505E-28	6.923E-28	7.0654E-28	6.923E-28	6.505E-28	5.844E-28	5E-28	4.04E-28
Plume View W	Vidth (ft)	100	-15	4.04E-28	4.996E-28	5.84E-28	6.505E-28	6.923E-28	7.0654E-28	6.923E-28	6.505E-28	5.844E-28	5E-28	4.04E-28
Plume View D	epth (ft)	30	-18	4.04E-28	4.996E-28	5.84E-28	6.505E-28	6.923E-28	7.0654E-28	6.923E-28	6.505E-28	5.844E-28	5E-28	4.04E-28
			-21	4.04E-28	4.996E-28	5.84E-28	6.505E-28		7.0654E-28	6.923E-28	6.505E-28	5.844E-28	5E-28	4.04E-28
			-24	4.04E-28	4.996E-28	5.84E-28	6.505E-28	6.923E-28	7.0654E-28	6.923E-28	6.505E-28	5.844E-28	5E-28	4.04E-28
PENTOX N	OT NEEDED		-27	4.04E-28	4.996E-28	5.84E-28	6.505E-28	6.923E-28	7.0654E-28	6.923E-28	6.505E-28	5.844E-28	5E-28	4.04E-28
			-30	2.02E-28	2.498E-28	2.92E-28	3.253E-28	3.4615E-28	3.5327E-28	3.462E-28	3.253E-28	2.922E-28	2.5E-28	2.02E-28
				Average	Groundwa	ter Conce	ntration	#DIV/0!	mg/l					
				Plume F	low			0.00000	cts	0	MGD			
						1/01								
				Mass Lo	ading to	Stream	#DI	V/0!	mg/day					

Table J.20 **Quick Domenico**

Fate and Transport Model Input and Output PZ-504

Sunoco Philadehphia Refinery AOI 8 Philadelphia, Pennsylvania


AOI 8 SUNOCO Philadelphia Refinery TS 1/31/2012 Project

	Generic Input Parameters							
Source Identification (or Well ID)			PZ-504	Jul-08				
Sample Date			July-08					
Source Width		ft	100	Delineated LNAPL (100' if no plume is present)				
Source Thickness		ft	30	Alluvium Thickness from X-Sections				
Longitudinal Dispersivity	A _x	ft	200	From CCR QD Simulations				
Transverse Dispersivity	A _y	ft	20.0	0.1 x Longitudinal Dispersivity (QD User's Guide)				
Vertical Dispersivity	Az	ft	0.0001	negligible QD User's Guide				
Hydraulic Conductivty	k	ft/day	0.283	Estimated Barrier Wall Permeability				
Hydraulic Gradient		ft/ft	0.091	N-75/PZ-504				
Porosity		decimal fraction	0.35	Site soil analyses				
Soil Bulk Density	p _b	g/cm3	1.7	ACT 2 TGM Default				
Fraction of Organic Carbon	f _{OC}	decimal fraction	0.005	ACT 2 TGM Default				
Time		days	1.00E+99	steady-state				

Chemic	Chemical Specific Input Parameters								
Sim 1									
Contaminant			Chrysene	N-101					
Source Concentration (mg/L)		mg/L	0.1200	July-08					
Lambda (per day)		day ⁻¹	0.000	Number Please!2011					
KOC			490000	Number Please!2011					

Output (Distance from Source Where Concentration Equals Respective Ground Water MSC)										
Contaminant Starting GW MSC ¹ Non-Residential (mg/L) Predicted Concentration (mg/L) Predicted Distance to Meet Non-Residential GW MSC (Rounded to the Nearest foot)										
Sim 1 - Chrysene	0.1200	0.002	0.002	8						

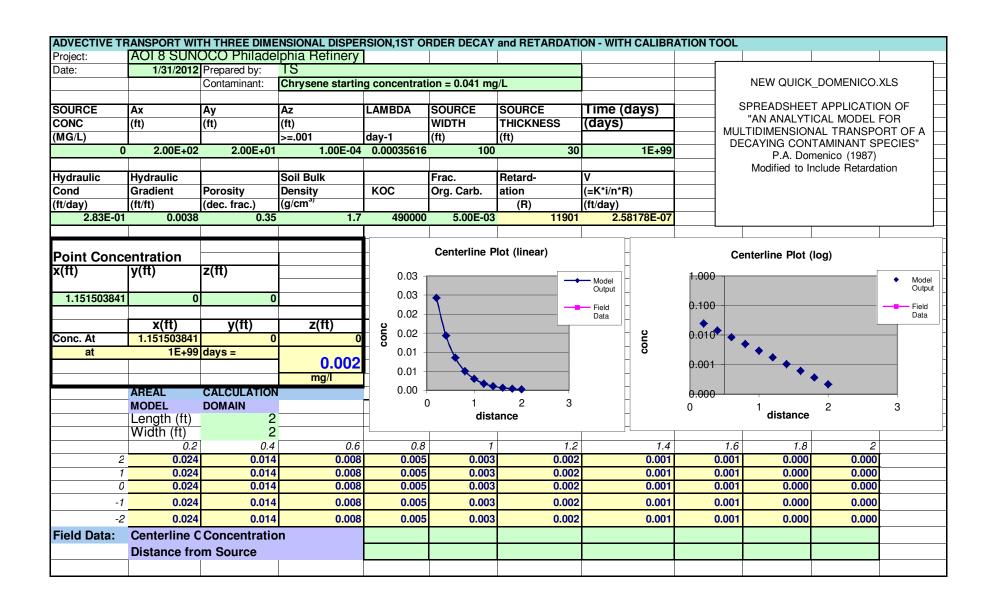
ACT 2 TGM, Appendix A, Table 1 MSC for a Non-residential Used Aquifer with Total Dissolved Solids less than or equal to 2500.

METHOD FOR	R ESTIMATNG FL	OW, AVERA	GE CONCE	NTRATION	AND MASS	LOADING 1	TO SURFAC	E WATER FR	OM GROUNE	WATER				
Project:	Sunoco Philad	delphia AO	18 PZ-50)4										_
Date:	10/21/2011	•									PA DEP	ARTMENT		
Contaminant:	PZ-503 Chrysene			Prepared by	<i>'</i> :	TS			•	OF E	NVIRONMEN	_	ECTION	
SOURCE											SWLOAD5B.XLS			
CONC	Ax	Ay	Az	LAMBDA	SOURCE	SOURCE				I	METHOD FO	-		
(units)	(ft)	(ft)	(ft)		WIDTH	THICKNESS	Time			T COMIA	COMTAMINANT LOADING TO SURFACE WATER based on			
mg/l	>.0001	>.0001	>=.0001	day-1	(ft)	(ft)	(days)							
0.12	200	20	1.00E-04	3.56E-04	100	30	1.00E+99					enico (1987)		
										Π м	lodified to Inc	,		
Hydraulic	Hydraulic		Soil Bulk		Frac.	Retard-	V			7			a	
Cond	Gradient	Porosity	Density	KOC	Org. Carb.	ation	(=K*i/n*R)							
(ft/day)	(ft/ft)	(dec. frac.)	(g/cm³)			(R)	(ft/day)							
2.83E-01	0.091	0.35	1.7	490000	5.00E-03	11901	6.183E-06			_				
				-50	-40	-30	-20	-10	0	10	20	30	40	50
Edge Criterio		0.00048	0	1.92E-08	2.36E-08	2.75E-08	3.063E-08	3.2576E-08	3.3242E-08	3.258E-08	3.063E-08	2.754E-08	2.36E-08	1.92E-08
Higest mod	deled conc.	3.3E-08	-3	1.92E-08	2.36E-08	2.75E-08	3.063E-08	3.2576E-08	3.3242E-08	3.258E-08	3.063E-08	2.754E-08	2.36E-08	1.92E-08
_			-6	1.92E-08	2.36E-08	2.75E-08	3.063E-08	3.2576E-08	3.3242E-08	3.258E-08	3.063E-08	2.754E-08	2.36E-08	1.92E-08
SURFACE WA	ATER LOADING G	RID	-9	1.92E-08	2.36E-08	2.75E-08	3.063E-08	3.2576E-08	3.3242E-08	3.258E-08	3.063E-08	2.754E-08	2.36E-08	1.92E-08
Distance to St	tream (ft)	28	-12	1.92E-08	2.36E-08	2.75E-08	3.063E-08	3.2576E-08	3.3242E-08	3.258E-08	3.063E-08	2.754E-08	2.36E-08	1.92E-08
Plume View W	Vidth (ft)	100	-15	1.92E-08	2.36E-08	2.75E-08	3.063E-08	3.2576E-08	3.3242E-08	3.258E-08	3.063E-08	2.754E-08	2.36E-08	1.92E-08
Plume View D	epth (ft)	30	-18	1.92E-08	2.36E-08	2.75E-08	3.063E-08	3.2576E-08	3.3242E-08	3.258E-08	3.063E-08	2.754E-08	2.36E-08	1.92E-08
			-21	1.92E-08	2.36E-08	2.75E-08	3.063E-08	3.2576E-08	3.3242E-08	3.258E-08	3.063E-08	2.754E-08	2.36E-08	1.92E-08
			-24	1.92E-08	2.36E-08	2.75E-08	3.063E-08	3.2576E-08	3.3242E-08	3.258E-08	3.063E-08	2.754E-08	2.36E-08	1.92E-08
PENTOX N	IOT NEEDED		-27	1.92E-08	2.36E-08	2.75E-08	3.063E-08	3.2576E-08	3.3242E-08	3.258E-08	3.063E-08	2.754E-08	2.36E-08	1.92E-08
			-30	9.58E-09	1.18E-08	1.38E-08	1.531E-08	1.6288E-08	1.6621E-08	1.629E-08	1.531E-08	1.377E-08	1.18E-08	9.58E-09
				Average (Groundwa	ter Conce	ntration	#DIV/0!	mg/l					
				Plume F	low			0.00000	cfs	0	MGD			
		Mass Loading to Stream				"51) //OI	res er/el es r						
				Wass Lo	ading to	Stream	#DI	V/0!	mg/day					

Table J.22 **Quick Domenico**

Fate and Transport Model Input and Output PZ-505

Sunoco Philadehphia Refinery AOI 8 Philadelphia, Pennsylvania


AOI 8 SUNOCO Philadelphia Refinery TS 1/31/2012 Project

	Generic Input Parameters							
Source Identification (or Well ID)			PZ-505	Jul-08				
Sample Date			July-08					
Source Width		ft	100	Delineated LNAPL (100' if no plume is present)				
Source Thickness		ft	30	Alluvium Thickness from X-Sections				
Longitudinal Dispersivity	A _x	ft	200	From CCR QD Simulations				
Transverse Dispersivity	A _y	ft	20.0	0.1 x Longitudinal Dispersivity (QD User's Guide)				
Vertical Dispersivity	Az	ft	0.0001	negligible QD User's Guide				
Hydraulic Conductivty	k	ft/day	0.283	Estimated Barrier Wall Permeability				
Hydraulic Gradient		ft/ft	0.0038	N-55/PZ-505				
Porosity		decimal fraction	0.35	Site soil analyses				
Soil Bulk Density	p _b	g/cm3	1.7	ACT 2 TGM Default				
Fraction of Organic Carbon	f _{OC}	decimal fraction	0.005	ACT 2 TGM Default				
Time		days	1.00E+99	steady-state				

Chemic	Chemical Specific Input Parameters								
Sim 1									
Contaminant			Chrysene	PZ-505					
Source Concentration (mg/L)		mg/L	0.0410	July-08					
Lambda (per day)		day ⁻¹	0.000	Number Please!2011					
KOC			490000	Number Please!2011					

Output (Distance from Source Where Concentration Equals Respective Ground Water MSC)										
Contaminant Starting Concentration (mg/L) Conteminant Starting Concentration (mg/L) Concentration (mg/L) Predicted Concentration (mg/L) Predicted Concentration (mg/L) Predicted Concentration (mg/L)										
Sim 1 - Chrysene	0.0410	0.002	0.002	1						

ACT 2 TGM, Appendix A, Table 1 MSC for a Non-residential Used Aquifer with Total Dissolved Solids less than or equal to 2500.

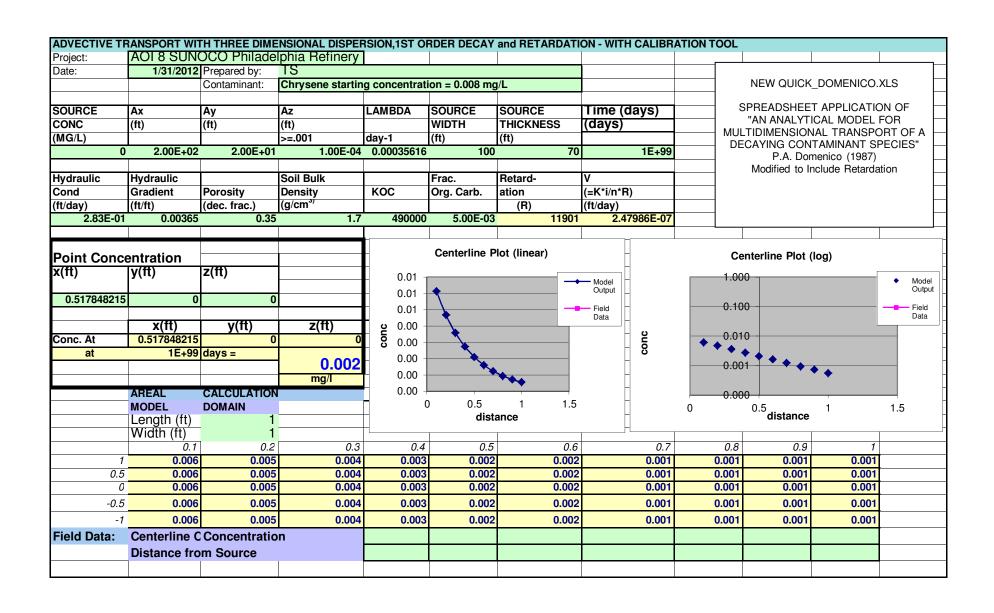
METHOD FOR	R ESTIMATNG FL	OW, AVERA	GE CONCE	NTRATION	AND MASS	LOADING T	TO SURFACI	E WATER FR	OM GROUNE	WATER				
Project:	Sunoco Philac	delphia AO	18 PZ-50	0 5										
Date:	10/21/2011	'									PA DEP	ARTMENT		
Contaminant:	PZ-505 Chrysene			Prepared by	y:	TS				OF E	-	NTAL PROT	ECTION	
SOURCE											SWLOAD5B.XLS			
CONC	Ax	Ay	Az	LAMBDA	SOURCE	SOURCE				A METHOD FOR ESTIMATING				
(units)	(ft)	(ft)	(ft)		WIDTH	THICKNESS	Time			COMTA	-	ADING TO	SURFACE	
mg/l	>.0001	>.0001	>=.0001	day-1	(ft)	(ft)	(days)					ATER sed on		
0.041	200	20	1.00E-04	3.56E-04	100	30	1.00E+99					enico (1987)		
										— м		clude Retarda		
Hydraulic	Hydraulic		Soil Bulk		Frac.	Retard-	V			┤ '*'	iodined to int	Jidde Tieldidi	ation	
Cond	Gradient	Porosity	Density	KOC	Org. Carb.	ation	(=K*i/n*R)							
(ft/day)	(ft/ft)	(dec. frac.)	(g/cm ³⁾			(R)	(ft/day)							
2.83E-01	0.0038	0.35	1.7	490000	5.00E-03	11901	2.582E-07							
				-50	-40	-30	-20	-10	0	10	20	30	40	50
Edge Criterio	n (mg/l)	0.00048	0	2.72E-42	3.273E-42	3.77E-42	4.154E-42	4.4011E-42	4.4859E-42	4.401E-42	4.154E-42	3.766E-42	3.27E-42	2.72E-42
Higest mo	deled conc.	4.5E-42	-3	2.72E-42	3.273E-42	3.77E-42	4.154E-42	4.4011E-42	4.4859E-42	4.401E-42	4.154E-42	3.766E-42	3.27E-42	2.72E-42
			-6	2.72E-42	3.273E-42	3.77E-42	4.154E-42	4.4011E-42	4.4859E-42	4.401E-42	4.154E-42	3.766E-42	3.27E-42	2.72E-42
SURFACE WA	ATER LOADING G	RID	-9	2.72E-42	3.273E-42	3.77E-42	4.154E-42	4.4011E-42	4.4859E-42	4.401E-42	4.154E-42	3.766E-42	3.27E-42	2.72E-42
Distance to S	tream (ft)	35	-12	2.72E-42	3.273E-42	3.77E-42	4.154E-42	4.4011E-42	4.4859E-42	4.401E-42	4.154E-42	3.766E-42	3.27E-42	2.72E-42
Plume View V	Vidth (ft)	100	-15	2.72E-42	3.273E-42	3.77E-42	4.154E-42	4.4011E-42	4.4859E-42	4.401E-42	4.154E-42	3.766E-42	3.27E-42	2.72E-42
Plume View D	epth (ft)	30	-18	2.72E-42	3.273E-42	3.77E-42	4.154E-42	4.4011E-42	4.4859E-42	4.401E-42	4.154E-42	3.766E-42	3.27E-42	2.72E-42
			-21	2.72E-42	3.273E-42	3.77E-42	4.154E-42	4.4011E-42	4.4859E-42	4.401E-42	4.154E-42	3.766E-42	3.27E-42	2.72E-42
			-24	2.72E-42	3.273E-42	3.77E-42	4.154E-42	4.4011E-42	4.4859E-42	4.401E-42	4.154E-42	3.766E-42	3.27E-42	2.72E-42
PENTOX N	OT NEEDED		-27	2.72E-42	3.273E-42	3.77E-42	4.154E-42	4.4011E-42	4.4859E-42	4.401E-42	4.154E-42	3.766E-42	3.27E-42	2.72E-42
			-30	1.36E-42	1.637E-42	1.88E-42	2.077E-42	2.2005E-42	2.2429E-42	2.201E-42	2.077E-42	1.883E-42	1.64E-42	1.36E-42
				Average	Groundwa	ter Conce	ntration	#DIV/0!	ma/l					
									<u> </u>					
	Plume Flow 0.00000 cfs		cfs	0	MGD									
				Mass Lo	ading to	Stream	#DI	V/0!	mg/day		-			

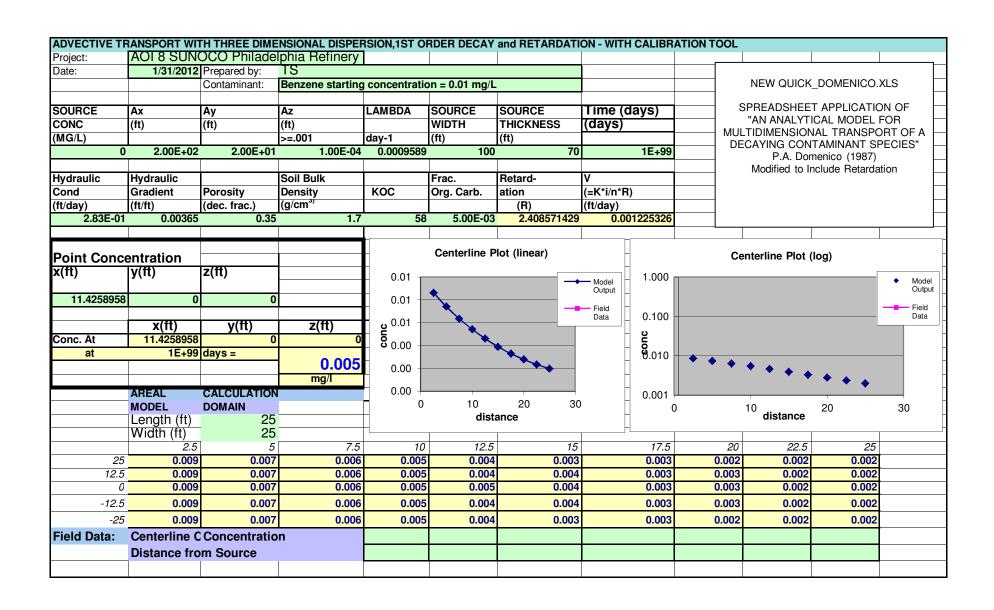
Table J.24 **Quick Domenico**

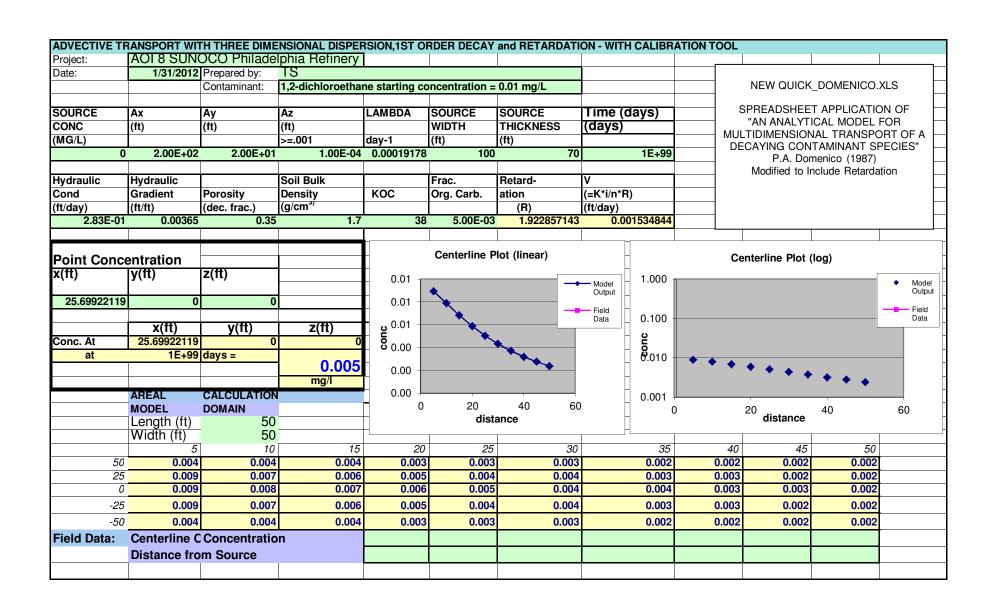
Fate and Transport Model Input and Output PZ-506

Sunoco Philadehphia Refinery AOI 8 Philadelphia, Pennsylvania

AOI 8 SUNOCO Philadelphia Refinery TS 1/31/2012


Project Prepared by Date Prepared


	Generic Input Parameters									
Source Identification (or Well ID)			PZ-506	Jul-08						
Sample Date			July-08							
Source Width		ft	100	Delineated LNAPL (100' if no plume is present)						
Source Thickness		ft	70	Alluvium Thickness from X-Sections						
Longitudinal Dispersivity	A _x	ft	200	From CCR QD Simulations						
Transverse Dispersivity	A _y	ft	20.0	0.1 x Longitudinal Dispersivity (QD User's Guide)						
Vertical Dispersivity	A _z	ft	0.0001	negligible QD User's Guide						
Hydraulic Conductivty	k	ft/day	0.283	Estimated Barrier Wall Permeability						
Hydraulic Gradient		ft/ft	0.00365	N-54/PZ-506						
Porosity		decimal fraction	0.35	Site soil analyses						
Soil Bulk Density	p _b	g/cm3	1.7	ACT 2 TGM Default						
Fraction of Organic Carbon	f _{OC}	decimal fraction	0.005	ACT 2 TGM Default						
Time		days	1.00E+99	steady-state						
Length of Grid Dimension		ft								
Width of Grid Dimension		ft								


Chemical	Specific Input Parameters		Data Source
Sim 1			
Contaminant		Chrysene	PZ-506
Source Concentration (mg/L)	mg/L	0.0080	July-08
Lambda (per day)	day ⁻¹	3.562E-04	Number Please!2011
KOC		490000	Number Please!2011
Sim 2			
Contaminant		Benzene	PZ-506 Reporting Limit
Source Concentration (mg/L)	mg/L	0.0100	July-08
Lambda (per day)	day ⁻¹	9.589E-04	Number Please!2011
KOC		58	Number Please!2011
Sim 3	•		
Contaminant		1,2-dichloroethane	PZ-506 Reporting Limit
Source Concentration (mg/L)	mg/L	0.0100	July-08
Lambda (per day)	day -1	1.918E-04	Number Please!2011
KOC		38	Number Please!2011

Output (Distance from Source Where Concentration Equals Respective Ground Water MSC)											
Contaminant	Starting Concentration (mg/L)	GW MSC ¹ Non-Residential (mg/L)	Predicted Concentration (mg/L)	Predicted Distance to Meet Non-Residential GW MSC (Rounded to the Nearest foot)							
Sim 1 - Chrysene	0.0080	0.002	0.002	1							
Sim 2 - Benzene	0.0100	0.005	0.005	11							
Sim 3 - 1,2-dichloroethane	0.0100	0.005	0.005	26							

ACT 2 TGM, Appendix A, Table 1 MSC for a Non-residential Used Aquifer with Total Dissolved Solids less than or equal to 2500.

METHOD FOR	R ESTIMATNG FL	OW. AVERA	GE CONCE	ENTRATION	I AND MASS	LOADING	TO SURFACE	WATER FF	ROM GROUNE	WATER					
	Sunoco Philac														
Date:	10/21/2011										PA DEP	ARTMENT			
Contaminant:	PZ-506 Chrysene)	ı	Prepared by	y:	TS				OF ENVIRONMENTAL PROTECTION					
SOURCE	•										SWLOAD5B.XLS				
CONC	Ax	Ay	Az	LAMBDA	SOURCE	SOURCE					A METHOD FOR ESTIMATING COMTAMINANT LOADING TO SURFACE				
(units)	(ft)	(ft)	(ft)		WIDTH	THICKNESS	Time			COMIA	-		SURFACE		
mg/l	>.0001	>.0001	>=.0001	day-1	(ft)	(ft)	(days)					ATER sed on			
0.008	200	20	1.00E-04	3.56E-04	100	30	1.00E+99					enico (1987)			
												clude Retard			
Hydraulic	Hydraulic		Soil Bulk		Frac.	Retard-	V								
Cond	Gradient	Porosity	Density	KOC	Org. Carb.	ation	(=K*i/n*R)								
(ft/day)	(ft/ft)	(dec. frac.)	(g/cm³)			(R)	(ft/day)								
2.83E-01	0.00365	0.35	1.7	490000	5.00E-03	11901	2.48E-07			-					
				-50	_		-20	-10		10			40		
Edge Criterio		0.00048	0	2.5E-154	2.73E-154			3.09E-154	3.115E-154	3.09E-154	3.02E-154	2.89E-154	2.7E-154	2.5E-154	
Higest mo	deled conc.	3E-154	-3	2.5E-154	2.73E-154	2.9E-154		3.09E-154	3.115E-154	3.09E-154			2.7E-154		
			-6	2.5E-154			3.02E-154		3.115E-154	3.09E-154			2.7E-154		
SURFACE WA	ATER LOADING G		-9	2.5E-154					3.115E-154	3.09E-154			2.7E-154		
Distance to S		130	. —	2.5E-154					3.115E-154	3.09E-154			2.7E-154		
Plume View V		100							3.115E-154	3.09E-154			2.7E-154		
Plume View D	Depth (ft)	30	-18	2.5E-154	2.73E-154				3.115E-154	3.09E-154			2.7E-154		
			-21	2.5E-154					3.115E-154	3.09E-154			2.7E-154		
			-24	2.5E-154					3.115E-154	3.09E-154			2.7E-154		
PENTOX N	NOT NEEDED		-27	2.5E-154					3.115E-154	3.09E-154			2.7E-154		
			-30	1.3E-154	1.37E-154	1.4E-154	1.51E-154	1.545E-154	1.558E-154	1.54E-154	1.51E-154	1.45E-154	1.4E-154	1.3E-154	
				Average	Groundwa	ter Conce	ntration	#DIV/0!	mg/l						
				Plume F	low			0.00000	cfe	Λ	MGD				
				riuille F	IOW			0.00000	CIS	U	MGD				
				Mass Lo	ading to	Stream	#DI	V/0!	mg/day						

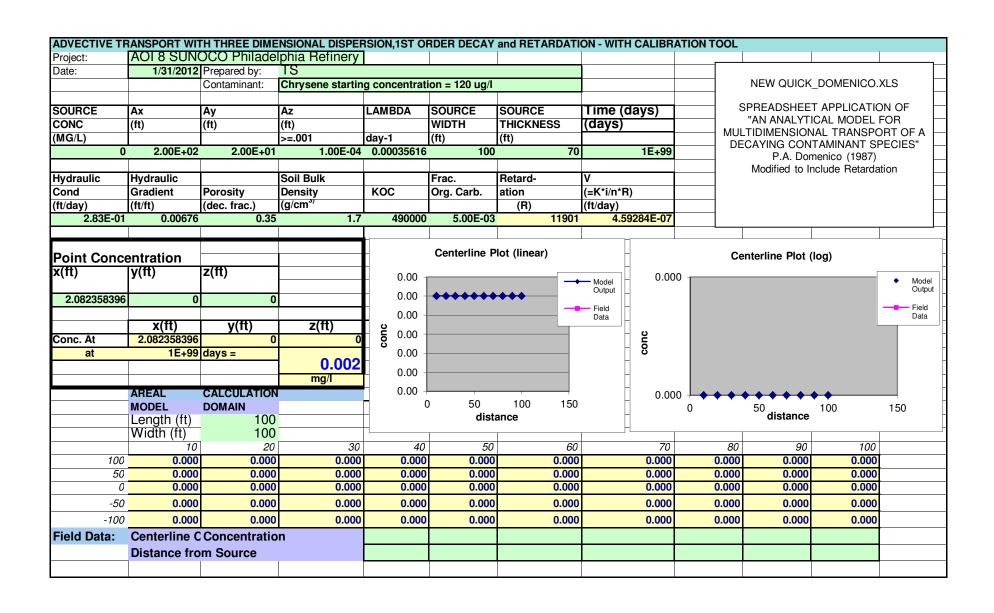
METHOD FO	R ESTIMATNG FL	OW, AVERA	GE CONCE	NTRATION	AND MASS	LOADING T	TO SURFACE	WATER FF	ROM GROUND	WATER				
Project:	Sunoco Philac	delphia AO	18 PZ-50	06										_
Date:	10/21/2011										PA DEP	ARTMENT		
Contaminant:	PZ-506 Benzene	RL		Prepared by	y:	TS	<u>'</u>			OF ENVIRONMENTAL PROTECTION				
SOURCE												AD5B.XLS		
CONC	Ax	Ay	Az	LAMBDA	SOURCE	SOURCE				I	METHOD FO	-		
(units)	(ft)	(ft)	(ft)		WIDTH	THICKNESS	Time			COMIA	AMINANT LC	ATER	SURFACE	
mg/l	>.0001	>.0001	>=.0001	day-1	(ft)	(ft)	(days)					ed on		
0.01	200	20	1.00E-04	9.59E-04	100	30	1.00E+99					enico (1987)		
										\neg	lodified to Inc	,	ation	
Hydraulic	Hydraulic		Soil Bulk		Frac.	Retard-	V							
Cond	Gradient	Porosity	Density	KOC	Org. Carb.	ation	(=K*i/n*R)							
(ft/day)	(ft/ft)	(dec. frac.)	(g/cm³)			(R)	(ft/day)							
2.83E-01	0.00365	0.35	1.7	58	5.00E-03	2.408571	0.0012253							
				-50		-30	-20	-10		10			40	50
Edge Criterio		0.00048	0	1.69E-06	1.815E-06	1.92E-06	2.002E-06	2.052E-06	2.0689E-06	2.052E-06	2.002E-06	1.922E-06	1.82E-06	1.69E-06
Higest mo	deled conc.	2.1E-06	-3	1.69E-06	1.815E-06	1.92E-06	2.002E-06	2.052E-06		2.052E-06			1.82E-06	
			-6	1.69E-06	1.815E-06	1.92E-06	2.002E-06	2.052E-06		2.052E-06		1.922E-06	1.82E-06	1.69E-06
SURFACE W	ATER LOADING G		-9	1.69E-06		1.92E-06	2.002E-06		2.0689E-06	2.052E-06			1.82E-06	
Distance to S		130	-12	1.69E-06					2.0689E-06	2.052E-06			1.82E-06	
Plume View V	` '	100	-15						2.0689E-06	2.052E-06			1.82E-06	
Plume View D	Depth (ft)	30	-18	1.69E-06		1.92E-06			2.0689E-06	2.052E-06		1.922E-06	1.82E-06	
			-21	1.69E-06	1.815E-06	1.92E-06	2.002E-06	2.052E-06	2.0689E-06	2.052E-06	2.002E-06	1.922E-06	1.82E-06	1.69E-06
			-24	1.69E-06		1.92E-06	2.002E-06		2.0689E-06	2.052E-06		1.922E-06	1.82E-06	1.69E-06
PENTOX N	NOT NEEDED		-27	1.69E-06	1.815E-06	1.92E-06	2.002E-06	2.052E-06	2.0689E-06	2.052E-06	2.002E-06	1.922E-06	1.82E-06	1.69E-06
			-30	8.43E-07	9.076E-07	9.61E-07	1.001E-06	1.026E-06	1.0344E-06	1.026E-06	1.001E-06	9.611E-07	9.08E-07	8.43E-07
				Average	Groundwa	ter Conce	ntration	#DIV/0!	mg/l					
								0.00000	oto		MCD			
				Plume F	IOW			0.00000	CIS	0	MGD			
				Maga	ading to	Ctroom	#50	1//01	ma/day					
				IVIASS LO	ading to	Sireaiii	#DI	V/U!	mg/day					

METHOD FOR	R ESTIMATNG FL	OW, AVERA	GE CONCE	NTRATION	AND MASS	LOADING	TO SURFAC	E WATER FF	ROM GROUNE	WATER				
	Sunoco Philad													
Date:	10/21/2011	•									PA DEP	ARTMENT		
Contaminant:	PZ-506 Chrysene			Prepared by	<i>/</i> :	TS				OF E	NVIRONMEN	_	ECTION	
SOURCE												AD5B.XLS		
CONC	Ax	Ay	Az	LAMBDA	SOURCE	SOURCE				_ I	A METHOD FOR ESTIMATING COMTAMINANT LOADING TO SURFACE			
(units)	(ft)	(ft)	(ft)		WIDTH	THICKNESS	Time			T COMTA	_	ATER	SURFACE	
mg/l	>.0001	>.0001	>=.0001	day-1	(ft)	(ft)	(days)					ed on		
0.008	200	20	1.00E-04	1.92E-04	100	30	1.00E+99					enico (1987)		
										\neg	lodified to Inc			
Hydraulic	Hydraulic		Soil Bulk		Frac.	Retard-	٧			T			a	
Cond	Gradient	Porosity	Density	KOC	Org. Carb.	ation	(=K*i/n*R)							
(ft/day)	(ft/ft)	(dec. frac.)	(g/cm³)			(R)	(ft/day)							
2.83E-01	0.00365	0.35	1.7	38	5.00E-03	1.922857	0.0015348			_				
				-50	-40	-30	-20	-10	0	10	20	30	40	50
Edge Criterio		0.00048	0	0.000176	0.0001898	0.000201	0.0002094	0.00021459	0.00021635	0.0002146	0.0002094	0.000201	0.00019	0.000176
Higest mod	deled conc.	0.00022	-3	0.000176	0.0001898	0.000201	0.0002094	0.00021459	0.00021635	0.0002146	0.0002094	0.000201	0.00019	0.000176
_			-6	0.000176	0.0001898	0.000201	0.0002094	0.00021459	0.00021635	0.0002146	0.0002094	0.000201	0.00019	0.000176
SURFACE WA	ATER LOADING G	RID	-9	0.000176	0.0001898	0.000201	0.0002094	0.00021459	0.00021635	0.0002146	0.0002094	0.000201	0.00019	0.000176
Distance to St	tream (ft)	130	-12	0.000176	0.0001898	0.000201	0.0002094	0.00021459	0.00021635	0.0002146	0.0002094	0.000201	0.00019	0.000176
Plume View W	` '	100	-15	0.000176	0.0001898	0.000201	0.0002094		0.00021635	0.0002146		0.000201		0.000176
Plume View D	epth (ft)	30	-18	0.000176	0.0001898	0.000201	0.0002094	0.00021459	0.00021635	0.0002146	0.0002094	0.000201	0.00019	
			-21	0.000176	0.0001898	0.000201	0.0002094	0.00021459	0.00021635	0.0002146	0.0002094	0.000201	0.00019	0.000176
			-24	0.000176	0.0001898	0.000201	0.0002094	0.00021459	0.00021635	0.0002146	0.0002094	0.000201	0.00019	0.000176
PENTOX N	IOT NEEDED		-27	0.000176	0.0001898	0.000201	0.0002094	0.00021459	0.00021635	0.0002146	0.0002094	0.000201	0.00019	0.000176
			-30	8.82E-05	9.491E-05	0.000101	0.0001047	0.00010729	0.00010817	0.0001073	0.0001047	0.0001005	9.49E-05	8.82E-05
				Average (Groundwa	ter Conce	ntration	#DIV/0!	mg/l					
				Diverse F				0.00000	-1-		MCD			
				Plume F	iow			0.00000	CIS	0	MGD			
				Mass	adina ta	Ctroom	,,,,,,) //OI	ma/dov					
				Wass Lo	ading to	Stream	#DI	V/0!	mg/day					

Table J.28 **Quick Domenico**

Fate and Transport Model Input and Output PZ-507

Sunoco Philadehphia Refinery AOI 8 Philadelphia, Pennsylvania


AOI 8 SUNOCO Philadelphia Refinery TS 1/31/2012 Project

	Generic Input Par	ameters		Data Source
Source Identification (or Well ID)			PZ-507	Jul-08
Sample Date			July-08	
Source Width		ft	100	Delineated LNAPL (100' if no plume is present)
Source Thickness		ft	70	Alluvium Thickness from X-Sections
Longitudinal Dispersivity	A _x	ft	200	From CCR QD Simulations
Transverse Dispersivity	A _y	ft	20.0	0.1 x Longitudinal Dispersivity (QD User's Guide)
Vertical Dispersivity	Az	ft	0.0001	negligible QD User's Guide
Hydraulic Conductivty	k	ft/day	0.283	Estimated Barrier Wall Permeability
Hydraulic Gradient		ft/ft	0.00676	PZ-507/N-53
Porosity		decimal fraction	0.35	Site soil analyses
Soil Bulk Density	p _b	g/cm3	1.7	ACT 2 TGM Default
Fraction of Organic Carbon	f _{oc}	decimal fraction	0.005	ACT 2 TGM Default
Time		days	1.00E+99	steady-state

Chemica	Chemical Specific Input Parameters								
Sim 1									
Contaminant		Chrysene	PZ-507						
Source Concentration (mg/L)	mg/L	0.1200	July-08						
Lambda (per day)	day ⁻¹	3.562E-04	Number Please!2011						
KOC		490000	Number Please!2011						

Output (Distance from Source Where Concentration Equals Respective Ground Water MSC)										
Contaminant	Starting Concentration (mg/L)	GW MSC ¹ Non-Residential (mg/L)	Predicted Concentration (mg/L)	Predicted Distance to Meet Non-Residential GW MSC (Rounded to the Nearest foot)						
Sim 1 - Chrysene	0.1200	0.002	0.002	2						

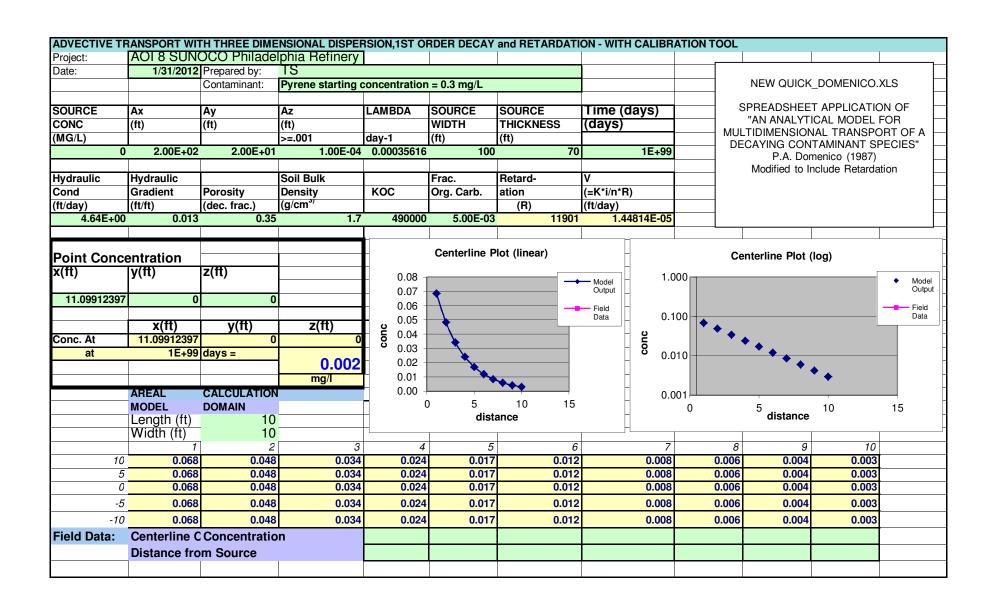
ACT 2 TGM, Appendix A, Table 1 MSC for a Non-residential Used Aquifer with Total Dissolved Solids less than or equal to 2500.

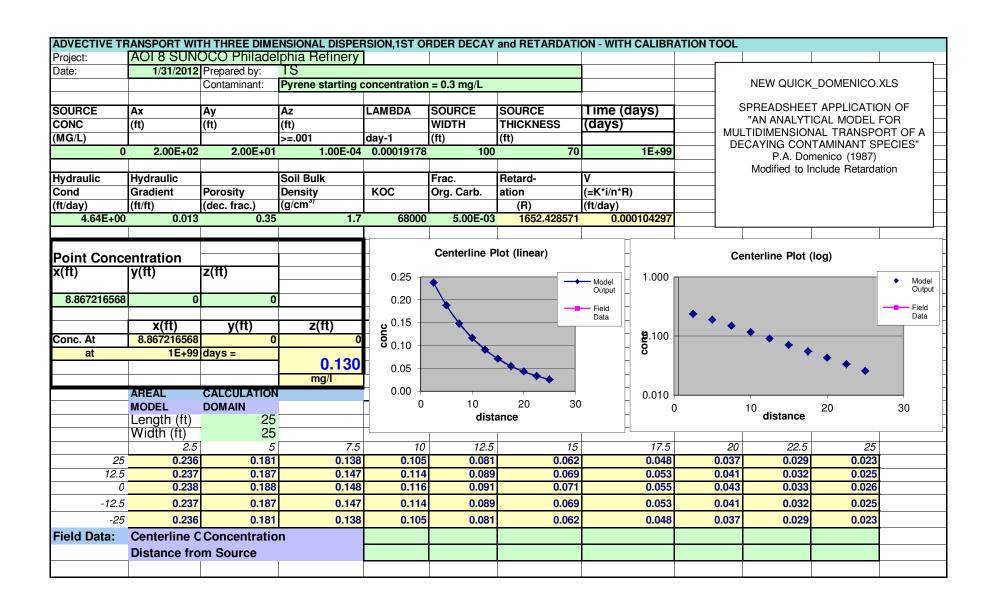
METHOD FOR	R ESTIMATNG FL	OW, AVERA	GE CONCE	NTRATION	AND MASS	LOADING	TO SURFAC	E WATER FR	OM GROUND	WATER				
Project:	Sunoco Philac	delphia AO	18 PZ-50	07										_
Date:	10/21/2011										PA DEP	ARTMENT		
Contaminant:	PZ-507 Chrysene		I .	Prepared by	/:	TS	l .	I.		OF ENVIRONMENTAL PROTECTION SWLOAD5B.XLS				
SOURCE														
CONC	Ax	Ay	Az	LAMBDA	SOURCE	SOURCE					A METHOD FOR ESTIMATING COMTAMINANT LOADING TO SURFACE			
(units)	(ft)	(ft)	(ft)		WIDTH	THICKNESS	Time			COMIA		ATER	SURFACE	
mg/l	>.0001	>.0001	>=.0001	day-1	(ft)	(ft)	(days)					ed on		
0.12	200	20	1.00E-04	3.56E-04	100	30	1.00E+99					enico (1987)		
										\neg		clude Retarda		
Hydraulic	Hydraulic		Soil Bulk		Frac.	Retard-	V							
Cond	Gradient	Porosity	Density	KOC	Org. Carb.	ation	(=K*i/n*R)			7				
(ft/day)	(ft/ft)	(dec. frac.)	(g/cm ³⁾			(R)	(ft/day)							
2.83E-01	0.00676	0.35	1.7	490000	5.00E-03	11901	4.593E-07							
				-50	-40	-30	-20	-10	0	10	20	30	40	50
Edge Criterio		0.00048	0	4E-130	4.24E-130	4.5E-130	4.63E-130	4.732E-130	4.766E-130	4.73E-130	4.63E-130	4.47E-130	4.2E-130	4E-130
Higest mo	deled conc.	5E-130	-3	4E-130	4.24E-130	4.5E-130	4.63E-130	4.732E-130	4.766E-130	4.73E-130	4.63E-130	4.47E-130	4.2E-130	4E-130
			-6	4E-130	4.24E-130	4.5E-130	4.63E-130	4.732E-130	4.766E-130	4.73E-130	4.63E-130	4.47E-130	4.2E-130	4E-130
SURFACE WA	ATER LOADING G		-9	4E-130	4.24E-130	4.5E-130	4.63E-130	4.732E-130	4.766E-130	4.73E-130	4.63E-130	4.47E-130	4.2E-130	4E-130
Distance to S		150							4.766E-130	4.73E-130			4.2E-130	4E-130
Plume View V	Vidth (ft)	100		4E-130	4.24E-130	4.5E-130			4.766E-130	4.73E-130	4.63E-130	4.47E-130	4.2E-130	4E-130
Plume View D	epth (ft)	30	-18	4E-130	4.24E-130	4.5E-130	4.63E-130	4.732E-130	4.766E-130	4.73E-130	4.63E-130	4.47E-130	4.2E-130	4E-130
			-21	4E-130	4.24E-130	4.5E-130	4.63E-130	4.732E-130	4.766E-130	4.73E-130	4.63E-130	4.47E-130	4.2E-130	4E-130
			-24	4E-130	4.24E-130	4.5E-130	4.63E-130	4.732E-130	4.766E-130	4.73E-130	4.63E-130	4.47E-130	4.2E-130	4E-130
PENTOX N	OT NEEDED		-27	4E-130	4.24E-130	4.5E-130	4.63E-130	4.732E-130	4.766E-130	4.73E-130	4.63E-130	4.47E-130	4.2E-130	4E-130
			-30	2E-130	2.12E-130	2.2E-130	2.32E-130	2.366E-130	2.383E-130	2.37E-130	2.32E-130	2.23E-130	2.1E-130	2E-130
				Average	Groundwa	ter Conce	ntration	#DIV/0!	mg/l					
				Plume F	low			0.00000	cfe		MGD			
				Plume Flow				0.00000	CIS	U	IVIGE			
				Mass Loading to Stream			#DI	V/0!	mg/day					
					iado Eduarrig to Otrourri #DIV/0: mg/day									

Table J.30 **Quick Domenico**

Fate and Transport Model Input and Output RW-200 Sunoco Philadehphia Refinery AOI 8

Philadelphia, Pennsylvania


AOI 8 SUNOCO Philadelphia Refinery TS 1/31/2012 Project


	Generic Input Par	rameters		Data Source
Source Identification (or Well ID)			RW-200	Jul-08
Sample Date			July-08	
Source Width		ft	100	Delineated LNAPL (100' if no plume is present)
Source Thickness		ft	70	Alluvium Thickness from X-Sections
Longitudinal Dispersivity	A _x	ft	200	From CCR QD Simulations
Transverse Dispersivity	A _y	ft	20.0	0.1 x Longitudinal Dispersivity (QD User's Guide)
Vertical Dispersivity	Az	ft	0.0001	negligible QD User's Guide
Hydraulic Conductivty	k	ft/day	4.64	Alluvium (barrier wall not present)
Hydraulic Gradient		ft/ft	0.013	RW-200/N-130
Porosity		decimal fraction	0.35	Site soil analyses
Soil Bulk Density	p _b	g/cm3	1.7	ACT 2 TGM Default
Fraction of Organic Carbon	f _{OC}	decimal fraction	0.005	ACT 2 TGM Default
Time		days	1.00E+99	steady-state

Chemical	Specific Input Parameters		Data Source
Sim 1			
Contaminant		Chrysene	
Source Concentration (mg/L)	mg/L	0.0970	July-08
Lambda (per day)	day ⁻¹	3.562E-04	Number Please!2011
KOC		490000	Number Please!2011
Sim 2			
Contaminant		Pyrene	PZ-506 RL
Source Concentration (mg/L)	mg/L	0.3000	July-08
Lambda (per day)	day ⁻¹	1.918E-04	Number Please!2011
KOC		68000	Number Please!2011

Output (Distance from Source Where Concentration Equals Respective Ground Water MSC)											
Contaminant	Starting Concentration (mg/L)	GW MSC ¹ Non-Residential (mg/L)	Predicted Concentration (mg/L)	Predicted Distance to Meet Non-Residential GW MSC (Rounded to the Nearest foot)							
Sim 1 - Chrysene	0.0970	0.002	0.002	11							
Sim 2 - Pyrene	0.3000	0.130	0.130	9							

¹ ACT 2 TGM, Appendix A, Table 1 MSC for a Non-residential Used Aquifer with Total Dissolved Solids less than or equal to 2500.

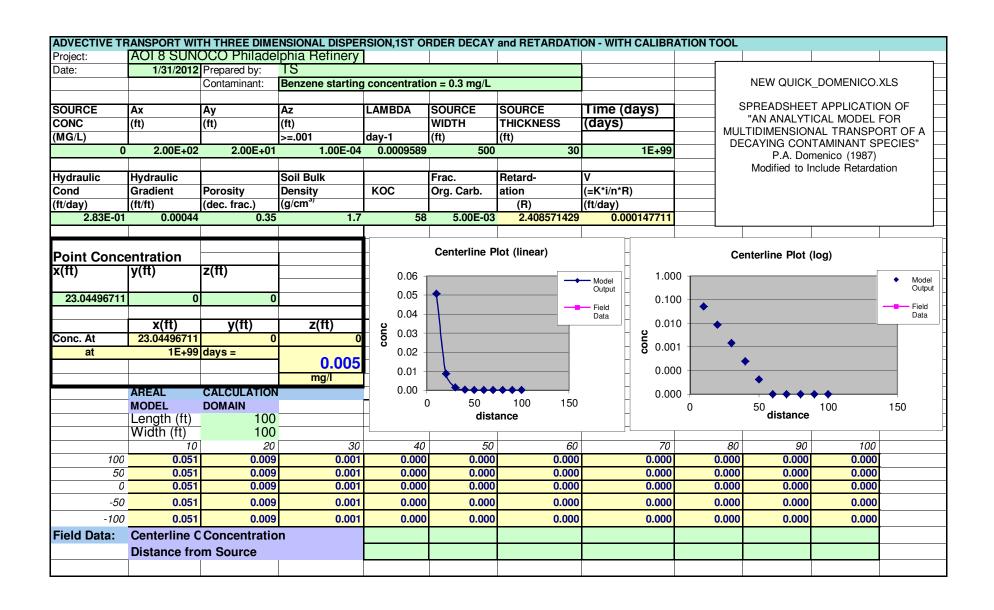
METHOD FOR	R ESTIMATNG FL	OW, AVERA	GE CONCE	ENTRATION	AND MASS	LOADING	TO SURFAC	E WATER FR	OM GROUNI	OWATER						
	Sunoco Philad															
Date:	10/21/2011	'									PA DEP	ARTMENT				
Contaminant:	RW-200 Chrysen	е		Prepared by	<i>/</i> :	TS	L.			OF E		NTAL PROT	ECTION			
SOURCE												AD5B.XLS				
CONC	Ax	Ay	Az	LAMBDA	SOURCE	SOURCE					TING					
(units)	(ft)	(ft)	(ft)		WIDTH	THICKNESS	Time			T COMIA	COMTAMINANT LOADING TO SURFACE WATER					
mg/l	>.0001	>.0001	>=.0001	day-1	(ft)	(ft)	(days)									
0.097	200	20	1.00E-04	3.56E-04	100	30	1.00E+99				based on P.A. Domenico (1987) Modified to Include Retardation					
										\neg						
Hydraulic	Hydraulic		Soil Bulk		Frac.	Retard-	V									
Cond	Gradient	Porosity	Density	кос	Org. Carb.	ation	(=K*i/n*R)									
(ft/day)	(ft/ft)	(dec. frac.)	(g/cm ³⁾			(R)	(ft/day)									
2.83E-01	0.013	0.35	1.7	490000	5.00E-03	11901	8.832E-07							-		
				-50	-40			-10		10	20		40	50		
Edge Criterio		0.00048	0	2.9E-125	3.06E-125	3.2E-125	3.27E-125	3.328E-125	3.347E-125	3.33E-125	3.27E-125	3.18E-125	3.1E-125	2.9E-125		
Higest mo	deled conc.	3E-125	-3	2.9E-125					3.347E-125	3.33E-125			3.1E-125			
			-6	2.9E-125			3.27E-125		3.347E-125	3.33E-125			3.1E-125			
SURFACE W	ATER LOADING G		-9				3.27E-125		3.347E-125	3.33E-125		3.18E-125	_	2.9E-125		
Distance to S	` '	200	-12						3.347E-125	3.33E-125				2.9E-125		
Plume View V		100	-15	2.9E-125					3.347E-125	3.33E-125			3.1E-125			
Plume View D	Depth (ft)	30	-18	2.9E-125	3.06E-125	3.2E-125	3.27E-125	3.328E-125	3.347E-125	3.33E-125	3.27E-125	3.18E-125	3.1E-125	2.9E-125		
			-21	2.9E-125	3.06E-125	3.2E-125	3.27E-125	3.328E-125	3.347E-125	3.33E-125	3.27E-125	3.18E-125	3.1E-125	2.9E-125		
			-24	2.9E-125	3.06E-125	3.2E-125	3.27E-125	3.328E-125	3.347E-125	3.33E-125	3.27E-125	3.18E-125	3.1E-125	2.9E-125		
PENTOX N	NOT NEEDED		-27	2.9E-125	3.06E-125			3.328E-125	3.347E-125	3.33E-125	3.27E-125	3.18E-125		2.9E-125		
			-30	1.5E-125	1.53E-125	1.6E-125	1.64E-125	1.664E-125	1.674E-125	1.66E-125	1.64E-125	1.59E-125	1.5E-125	1.5E-125		
				Average	Groundwa	ter Conce	ntration	#DIV/0!	mg/l							
				Plume F	low			0.00000	ofe	0	MGD					
				FIUITIE F	1044			0.00000	CIS	U	MGD					
				Macelo	ading to	Stroam	#01	V/0!	ma/day							
				IVIASS LU	aumy to	Jutani	#01	V/U!	mg/day							

METHOD FOR	R ESTIMATNG FL	OW, AVERA	GE CONCE	NTRATION	AND MASS	LOADING	TO SURFAC	E WATER FF	OM GROUNE	WATER				
Project:	Sunoco Philad	delphia AO	18 RW-2	200										_
Date:	10/21/2011										PA DEP	ARTMENT		
Contaminant:	RW-200 Chrysen	е		Prepared by	<i>/</i> :	TS				OF E	NVIRONMEN	_	ECTION	
SOURCE										Π.		AD5B.XLS		
CONC	Ax	Ay	Az	LAMBDA	SOURCE	SOURCE					METHOD FO			
(units)	(ft)	(ft)	(ft)		WIDTH	THICKNESS	Time			T COMIA	AMINANT LC W	SURFACE		
mg/l	>.0001	>.0001	>=.0001	day-1	(ft)	(ft)	(days)				bas			
300	200	20	1.00E-04	1.92E-04	100	30	1.00E+99					enico (1987)		
										□	lodified to Inc	,		
Hydraulic	Hydraulic		Soil Bulk		Frac.	Retard-	٧			┨ "				
Cond	Gradient	Porosity	Density	KOC	Org. Carb.	ation	(=K*i/n*R)							
(ft/day)	(ft/ft)	(dec. frac.)	(g/cm³)			(R)	(ft/day)							
4.64E+00	0.013	0.35	1.7	68000	5.00E-03	1652.429	0.0001043			_				
				-50	-40	-30	-20		-	10	20	30	40	50
Edge Criterio		130	0	8.49E-07	8.935E-07	9.29E-07	9.559E-07	9.7214E-07	9.7762E-07	9.721E-07	9.559E-07	9.294E-07	8.93E-07	8.49E-07
Higest mo	deled conc.	9.8E-07	-3	8.49E-07	8.935E-07	9.29E-07	9.559E-07	9.7214E-07	9.7762E-07	9.721E-07	9.559E-07	9.294E-07	8.93E-07	8.49E-07
			-6	8.49E-07	8.935E-07	9.29E-07	9.559E-07	9.7214E-07	9.7762E-07	9.721E-07	9.559E-07	9.294E-07	8.93E-07	8.49E-07
SURFACE WA	ATER LOADING O	RID	-9	8.49E-07	8.935E-07	9.29E-07	9.559E-07	9.7214E-07	9.7762E-07	9.721E-07	9.559E-07	9.294E-07	8.93E-07	8.49E-07
Distance to S	tream (ft)	200	-12	8.49E-07	8.935E-07	9.29E-07	9.559E-07	9.7214E-07	9.7762E-07	9.721E-07	9.559E-07	9.294E-07	8.93E-07	8.49E-07
Plume View V	Vidth (ft)	100	-15	8.49E-07	8.935E-07	9.29E-07	9.559E-07		9.7762E-07	9.721E-07	9.559E-07	9.294E-07	8.93E-07	8.49E-07
Plume View D	epth (ft)	30	-18	8.49E-07	8.935E-07	9.29E-07	9.559E-07	9.7214E-07	9.7762E-07	9.721E-07	9.559E-07	9.294E-07	8.93E-07	8.49E-07
			-21	8.49E-07	8.935E-07	9.29E-07	9.559E-07	9.7214E-07	9.7762E-07	9.721E-07	9.559E-07	9.294E-07	8.93E-07	8.49E-07
			-24	8.49E-07	8.935E-07	9.29E-07	9.559E-07	9.7214E-07	9.7762E-07	9.721E-07	9.559E-07	9.294E-07	8.93E-07	8.49E-07
PENTOX N	OT NEEDED		-27	8.49E-07	8.935E-07	9.29E-07	9.559E-07	9.7214E-07	9.7762E-07	9.721E-07	9.559E-07	9.294E-07	8.93E-07	8.49E-07
			-30	4.25E-07	4.467E-07	4.65E-07	4.779E-07	4.8607E-07	4.8881E-07	4.861E-07	4.779E-07	4.647E-07	4.47E-07	4.25E-07
				Average (Groundwa	ter Conce	ntration	#DIV/0!	mg/l					
				Plume F	low			0.00000	cfs	0	MGD			
				Mooolo	adina ta	Ctroom	, ארטיי,	1//01	lma/dov					
				IVIASS LO	ading to	Stream	#DI	V/0!	mg/day					

Quick Domenico

Fate and Transport Model Input and Output Zone 1

Sunoco Philadehphia Refinery AOI 8 Philadelphia, Pennsylvania


AOI 8 SUNOCO Philadelphia Refinery TS 1/31/2012 Project

	Generic Input Par	rameters		Data Source
Source Identification (or Well ID)			Zone 1	Jul-08
Sample Date			July-08	
Source Width		ft	500	2008 benzene isocontour map
Source Thickness		ft	30	Alluvium Thickness from X-Sections
Longitudinal Dispersivity	A _x	ft	200	From CCR QD Simulations
Transverse Dispersivity	A _y	ft	20.0	0.1 x Longitudinal Dispersivity (QD User's Guide)
Vertical Dispersivity	Az	ft	0.0001	negligible QD User's Guide
Hydraulic Conductivty	k	ft/day	0.283	Estimated Barrier Wall Permeability
Hydraulic Gradient		ft/ft	0.00044	N-59/N-73
Porosity		decimal fraction	0.35	Site soil analyses
Soil Bulk Density	p _b	g/cm3	1.7	ACT 2 TGM Default
Fraction of Organic Carbon	f _{OC}	decimal fraction	0.005	ACT 2 TGM Default
Time		days	1.00E+99	steady-state

Chemic	Chemical Specific Input Parameters							
Sim 1								
Contaminant			Benzene	RW-500				
Source Concentration (mg/L)		mg/L	0.3000	July-08				
Lambda (per day)		day ⁻¹	0.001	Number Please!2011				
кос			58	Number Please!2011				

Output (Distance from Source Where Concentration Equals Respective Ground Water MSC)											
Contaminant	Starting Concentration (mg/L)	GW MSC ¹ Non-Residential (mg/L)	Predicted Concentration (mg/L)	Predicted Distance to Meet Non-Residential GW MSC (Rounded to the Nearest foot)							
Sim 1 - Benzene	0.3000	0.005	0.005	23							

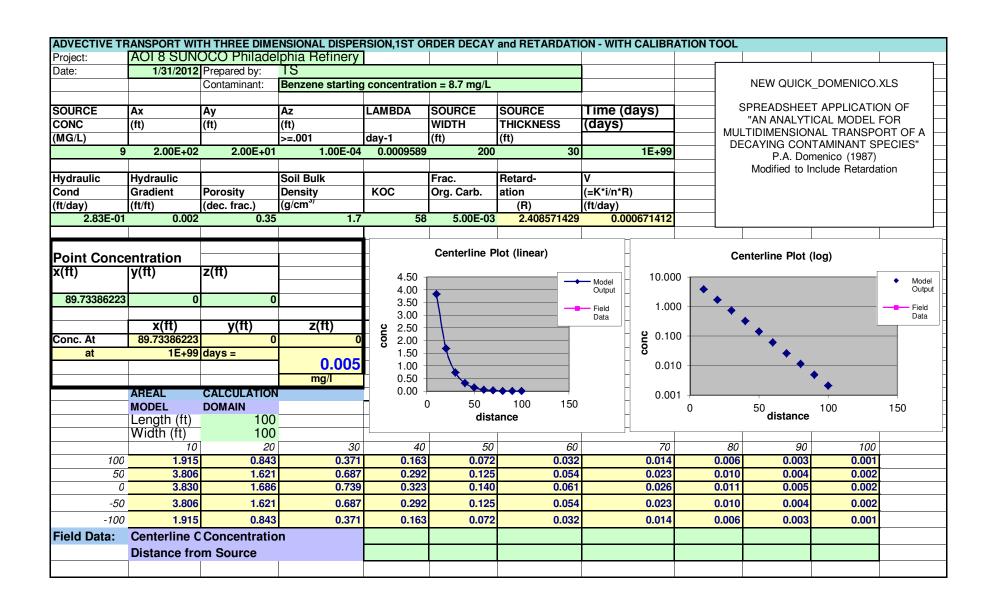
ACT 2 TGM, Appendix A, Table 1 MSC for a Non-residential Used Aquifer with Total Dissolved Solids less than or equal to 2500.

METHOD FO	R ESTIMATNG FL	OW. AVERA	GE CONCE	NTRATION	AND MASS	LOADING T	TO SURFACE	WATER FR	OM GROUNI	WATER					
	SWLOAD5B	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,													
Date:	1/11/2012										PA DEP	ARTMENT			
Contaminant:	Zone 1 Benzene			Prepared by	/:	TS				OF ENVIRONMENTAL PROTECTION					
SOURCE												AD5B.XLS			
CONC	Ax	Ay	Az	LAMBDA	SOURCE	SOURCE				_ I	METHOD FO	-			
(units)	(ft)	(ft)	(ft)		WIDTH	THICKNESS	Time								
mg/l	>.0001	>.0001	>=.0001	day-1	(ft)	(ft)	(days)				WATER based on				
0.3	200	20	1.00E-04	1.00E-04 9.59E-04 500 30							P.A. Domenico (1987) Modified to Include Retardation				
				Coil Bulk Eroo Botond						N					
Hydraulic	Hydraulic		Soil Bulk		Frac.	Retard-	V								
Cond	Gradient	Porosity	Density	KOC	Org. Carb.	ation	(=K*i/n*R)								
(ft/day)	(ft/ft)	(dec. frac.)	(g/cm ³⁾			(R)	(ft/day)								
2.83E-01	0.00044	0.35	1.7	58	5.00E-03	2.408571	0.0001477								
									_						
		0.005	_	-347	-277.6		-138.8	-69.4	0	69.4	138.8	208.2	277.6	347	
Edge Criterio		0.005	0	3.89E-06			0.002071	0.0020719	0.0020719	0.0020719	0.002071	0.0018526	0.000424		
Higest mo	deled conc.	0.00207	-3	3.89E-06	0.0004243	0.001853	0.002071	0.0020719	0.0020719	0.0020719	0.002071	0.0018526	0.000424		
0110540514	475D 0 4 DINO 0		-6	3.89E-06	0.0004243	0.001853	0.002071	0.0020719	0.0020719	0.0020719	0.002071	0.0018526	0.000424	3.89E-06	
	ATER LOADING G		-9	3.89E-06		0.001853	0.002071	0.0020719	0.0020719	0.0020719	0.002071	0.0018526	0.000424		
Distance to S	` '	28	-12	3.89E-06			0.002071	0.0020719	0.0020719	0.0020719	0.002071	0.0018526	0.000424		
Plume View V		694	-15				0.002071	0.0020719	0.0020719	0.0020719	0.002071	0.0018526	0.000424		
Plume View D	Jeptn (tt)	30	-18	3.89E-06		0.001853	0.002071	0.0020719	0.0020719	0.0020719	0.002071	0.0018526	0.000424		
			-21 -24	3.89E-06 3.89E-06		0.001853 0.001853	0.002071 0.002071	0.0020719 0.0020719	0.0020719 0.0020719	0.0020719	0.002071 0.002071	0.0018526 0.0018526	0.000424		
DENTOY	OT NEEDED		-24	3.89E-06		0.001853	0.002071	0.0020719	0.0020719	0.0020719	0.002071	0.0018526	0.000424		
LINIOXI	OI NEEDED		-30	1.94E-06		0.001833	0.002071		0.0020719	0.0020719			0.000424		
			-30	1.346-00	0.0002121	0.000320	0.0010355	0.00103395	0.00103395	0.001030	0.0010333	0.0003203	0.000212	1.346-00	
				_		_									
				Average	Groundwa	ter Conce	ntration	0.00192	mg/l						
				Plume F	low/			0.00002	oto	1.2E-05	MCD				
				riuille F	IUW			0.00002	UIS	1.25-03	IVIGD				
				Massla	ading to	Stream		0.08	mg/day						
				wass LU	ading to	Stream		0.06	mg/uay						

Quick Domenico

Fate and Transport Model Input and Output Zone 2

Sunoco Philadehphia Refinery AOI 8 Philadelphia, Pennsylvania


AOI 8 SUNOCO Philadelphia Refinery TS 1/31/2012 Project

	Generic Input Par	rameters		Data Source
Source Identification (or Well ID)			Zone 2	Jul-08
Sample Date			July-08	
Source Width		ft	200	July 2011 benzene isocontour map
Source Thickness		ft	30	Alluvium Thickness from X-Sections
Longitudinal Dispersivity	A _x	ft	200	From CCR QD Simulations
Transverse Dispersivity	A _y	ft	20.0	0.1 x Longitudinal Dispersivity (QD User's Guide)
Vertical Dispersivity	Az	ft	0.0001	negligible QD User's Guide
Hydraulic Conductivty	k	ft/day	0.283	Estimated Barrier Wall Permeability
Hydraulic Gradient		ft/ft	0.002	N-61/N-135
Porosity		decimal fraction	0.35	Site soil analyses
Soil Bulk Density	p _b	g/cm3	1.7	ACT 2 TGM Default
Fraction of Organic Carbon	f _{OC}	decimal fraction	0.005	ACT 2 TGM Default
Time		days	1.00E+99	steady-state

Chemic	Chemical Specific Input Parameters								
Sim 1	m 1								
Contaminant			Benzene	N-61					
Source Concentration (mg/L)		mg/L	8.7000	July-08					
Lambda (per day)		day ⁻¹	0.001	Number Please!2011					
кос			58	Number Please!2011					

Output (Distance from Source Where Concentration Equals Respective Ground Water MSC)											
Contaminant	Starting Concentration (mg/L)	GW MSC ¹ Non-Residential (mg/L)	Predicted Concentration (mg/L)	Predicted Distance to Meet Non-Residential GW MSC (Rounded to the Nearest foot)							
Sim 1 - Benzene	8.7000	0.005	0.005	90							

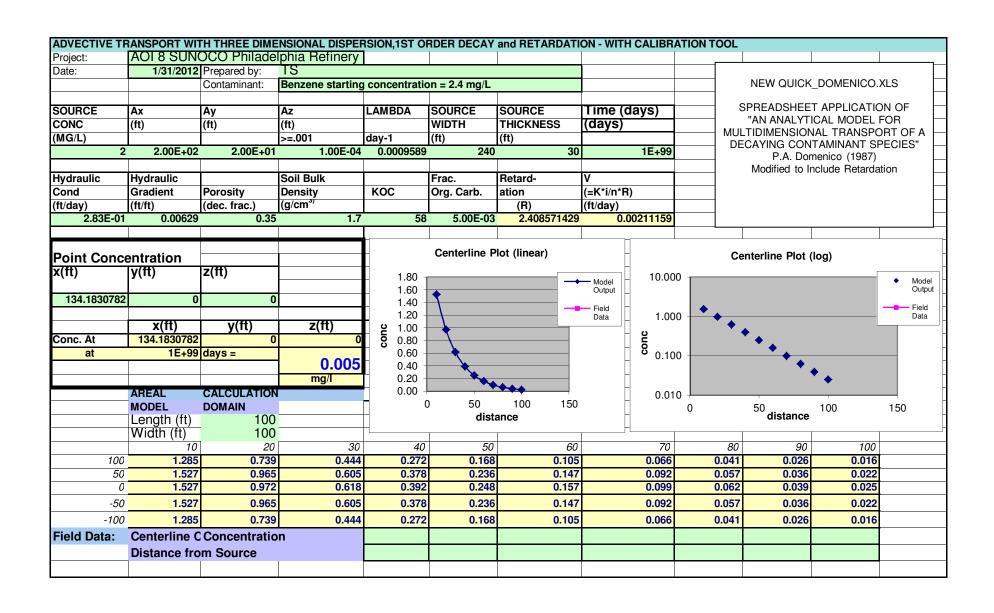
ACT 2 TGM, Appendix A, Table 1 MSC for a Non-residential Used Aquifer with Total Dissolved Solids less than or equal to 2500.

METHOD FOR	R ESTIMATNG FL	OW, AVERA	GE CONCE	NTRATION	I AND MASS	LOADING 1	TO SURFACI	E WATER FR	OM GROUND	OWATER				
	SWLOAD5B													
Date:	1/11/2012										PA DEP	ARTMENT		
Contaminant:	Zone 2 Benzene			Prepared by	y:	TS				OF E	OF ENVIRONMENTAL PROTECTION			
SOURCE											AD5B.XLS			
CONC	Ax	Ay	Az	LAMBDA SOURCE SOURCE					_ I		OR ESTIMA			
(units)	(ft)	(ft)	(ft)		WIDTH	THICKNESS	Time			COMIA	-	DADING TO: ATER	SURFACE	
mg/l	>.0001	>.0001	>=.0001	day-1	(ft)	(ft)	(days)					ed on		
8.7	200	20	1.00E-04	9.59E-04	200	30	1.00E+99					enico (1987)		
									\neg		clude Retard			
Hydraulic	Hydraulic		Soil Bulk		Frac. Retard- V				T			a		
Cond	Gradient	Porosity	Density	KOC	Org. Carb.	ation	(=K*i/n*R)							
(ft/day)	(ft/ft)	(dec. frac.)	(g/cm³)			(R)	(ft/day)							
2.83E-01	0.002	0.35	1.7	58	5.00E-03	2.408571	0.0006714			_				
				-184	-147.2	-110.4	-73.6	-36.8	0	36.8	73.6	110.4	147.2	184
Edge Criterio	n (mg/l)	0.005	0	0.005026	0.0716487	0.356817	0.7491955	0.92355157	0.94719737	0.9235516	0.7491955	0.3568174	0.071649	0.005026
Higest mod	deled conc.	0.9472	-3	0.005026	0.0716487	0.356817	0.7491955	0.92355157	0.94719737	0.9235516	0.7491955	0.3568174	0.071649	0.005026
			-6	0.005026	0.0716487	0.356817	0.7491955	0.92355157	0.94719737	0.9235516	0.7491955	0.3568174	0.071649	0.005026
SURFACE WA	ATER LOADING G		-9	0.005026	0.0716487	0.356817	0.7491955	0.92355157	0.94719737	0.9235516	0.7491955	0.3568174	0.071649	0.005026
Distance to S		27	-12	0.005026	0.0716487	0.356817	0.7491955	0.92355157	0.94719737	0.9235516	0.7491955	0.3568174	0.071649	0.005026
Plume View W	Vidth (ft)	368	-15	0.005026	0.0716487	0.356817	0.7491955	0.92355157	0.94719737	0.9235516	0.7491955	0.3568174	0.071649	0.005026
Plume View D	epth (ft)	30	-18	0.005026	0.0716487	0.356817	0.7491955	0.92355157	0.94719737	0.9235516	0.7491955	0.3568174	0.071649	0.005026
			-21	0.005026	0.0716487	0.356817	0.7491955	0.92355157	0.94719737	0.9235516	0.7491955	0.3568174	0.071649	0.005026
			-24	0.005026	0.0716487	0.356817	0.7491955	0.92355157	0.94719737	0.9235516	0.7491955	0.3568174	0.071649	0.005026
PENTOX N	IEEDED		-27	0.005026	0.0716487	0.356817	0.7491955	0.92355157	0.94719737	0.9235516	0.7491955	0.3568174	0.071649	0.005026
			-30	0.002513	0.0358243	0.178409	0.3745977	0.46177578	0.47359868	0.4617758	0.3745977	0.1784087	0.035824	0.002513
							_							
				Average	Groundwa	ter Conce	ntration	0.44774	mg/l					
				Plume F	low			0.00007	cts	4.7E-05	MGD			
				Mass Lo	ading to	Stream		79.23	mg/day					

Quick Domenico

Fate and Transport Model Input and Output Zone 3

Sunoco Philadehphia Refinery AOI 8 Philadelphia, Pennsylvania


AOI 8 SUNOCO Philadelphia Refinery TS 1/31/2012 Project

	Data Source			
Source Identification (or Well ID)			Zone 3	Jul-08
Sample Date			July-08	
Source Width		ft	240	July 2008 benzene isocontour map
Source Thickness		ft	30	Alluvium Thickness from X-Sections
Longitudinal Dispersivity	A _x	ft	200	From CCR QD Simulations
Transverse Dispersivity	A _y	ft	20.0	0.1 x Longitudinal Dispersivity (QD User's Guide)
Vertical Dispersivity	Az	ft	0.0001	negligible QD User's Guide
Hydraulic Conductivty	k	ft/day	0.283	Estimated Barrier Wall Permeability
Hydraulic Gradient		ft/ft	0.00629	N-133/PZ-504
Porosity		decimal fraction	0.35	Site soil analyses
Soil Bulk Density	p _b	g/cm3	1.7	ACT 2 TGM Default
Fraction of Organic Carbon	f _{oc}	decimal fraction	0.005	ACT 2 TGM Default
Time		days	1.00E+99	steady-state

Chemic	Data Source			
Sim 1				
Contaminant	Benzene			
Source Concentration (mg/L)		mg/L	2.4000	July-08
Lambda (per day)		day ⁻¹	0.001	Number Please!2011
кос			58	Number Please!2011

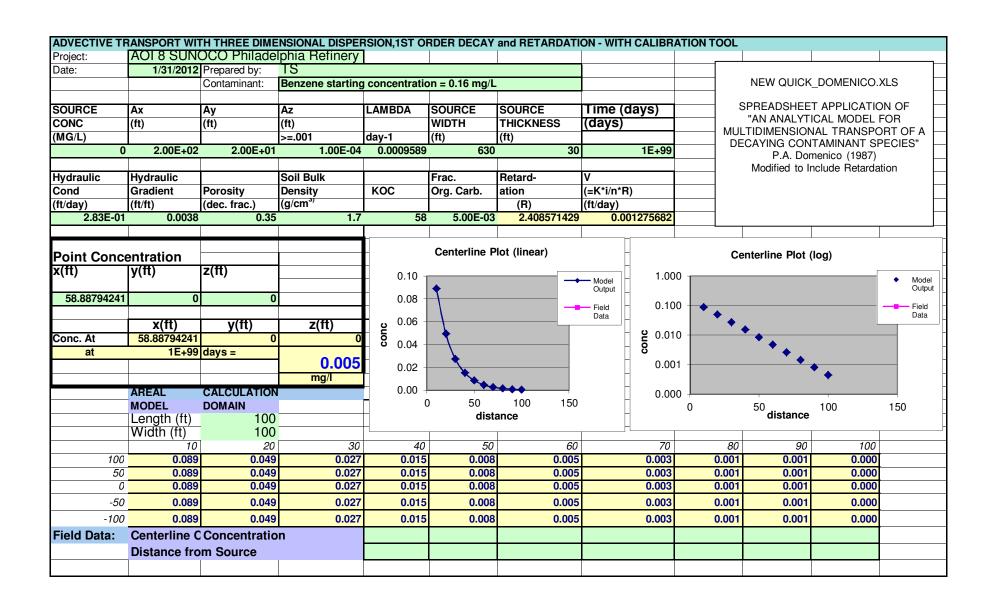
Output (Distance from Source Where Concentration Equals Respective Ground Water MSC)								
Contaminant Starting Concentration (mg/L) Contaminant Starting Concentration (mg/L) Starting Concentration (mg/L) Predicted Concentration (mg/L) Predicted Concentration (mg/L) GW MSC (Rounded to the Nearest foot)								
Sim 1 - Benzene	2.4000	0.005	0.005	134				

ACT 2 TGM, Appendix A, Table 1 MSC for a Non-residential Used Aquifer with Total Dissolved Solids less than or equal to 2500.

METHOD FOI	R ESTIMATNG FL	OW, AVERA	GE CONCE	NTRATION	AND MASS	LOADING T	TO SURFACI	E WATER FR	OM GROUNI	OWATER				
Project:	SWLOAD5B	<u> </u>												
Date:	1/11/2012										PA DEP	ARTMENT		
Contaminant:	Zone 3 Benzene			Prepared by	y:	TS	I.			OF E	-	NTAL PROT	ECTION	
SOURCE										T		AD5B.XLS		
CONC	Ax	Ay	Az	LAMBDA	SOURCE	SOURCE				I	A METHOD FOR ESTIMATING COMTAMINANT LOADING TO SURFACE			
(units)	(ft)	(ft)	(ft)		WIDTH	THICKNESS	Time			T COMIA			SURFACE	
mg/l	>.0001	>.0001	>=.0001	day-1	(ft)	(ft)	(days)				WATER based on			
2.4	200	20	1.00E-04	9.59E-04	240	30	1.00E+99					enico (1987)		
										Modified to Include Retardation				
Hydraulic	Hydraulic		Soil Bulk		Frac.	Retard-	٧			7				
Cond	Gradient	Porosity	Density	KOC	Org. Carb.	ation	(=K*i/n*R)							
(ft/day)	(ft/ft)	(dec. frac.)	(g/cm³)			(R)	(ft/day)							
2.83E-01	0.00629	0.35	1.7	58	5.00E-03	2.408571	0.0021116							
				-240.5	_	-144.3	-96.2	-48.1	0	48.1	96.2	144.3	192.4	240.5
Edge Criterio		0.005	0	0.000107	0.0103229	0.158253		0.66590056		0.6659006	0.51525		0.010323	0.000107
Higest mo	deled conc.	0.67639	-3	0.000107	0.0103229	0.158253		0.66590056		0.6659006	0.51525		0.010323	
			-6	0.000107	0.0103229	0.158253		0.66590056		0.6659006	0.51525	0.1582531	0.010323	
SURFACE WATER LOADING GRID		-9	0.000107	0.0103229	0.158253		0.66590056		0.6659006	0.51525			0.000107	
Distance to S		28		0.000107	0.0103229	0.158253		0.66590056		0.6659006		0.1582531	0.010323	
Plume View V	` '	481	-15		0.0103229	0.158253		0.66590056		0.6659006	0.51525		0.010323	
Plume View D	epth (ft)	30		0.000107	0.0103229	0.158253		0.66590056		0.6659006	0.51525	0.1582531	0.010323	
			-21	0.000107	0.0103229	0.158253	0.51525			0.6659006	0.51525		0.010323	
			-24	0.000107	0.0103229	0.158253		0.66590056		0.6659006	0.51525		0.010323	
PENTOX N	IEEDED		-27	0.000107	0.0103229	0.158253		0.66590056		0.6659006		0.1582531	0.010323	
			-30	5.37E-05	0.0051614	0.079127	0.257625	0.33295028	0.33819538	0.3329503	0.257625	0.0791265	0.005161	5.37E-05
				Average	Groundwa	ter Conce	ntration	0.35804	mg/l					
				Diverse				0.00004		0.0001	MCD			
				Plume F	iow			0.00024	CIS	0.00015	MGD			
				Mana ! -	- din a t -	D1		200 55						
	Mass Loading to Stream 208.36 mg/day				mg/day									

Quick Domenico

Fate and Transport Model Input and Output Zone 4


Sunoco Philadehphia Refinery AOI 8 Philadelphia, Pennsylvania

AOI 8 SUNOCO Philadelphia Refinery TS 1/31/2012 Project

	Data Source			
Source Identification (or Well ID)			Zone 4	Jul-08
Sample Date			July-08	
Source Width		ft	630	July 2008 benzene isocontours
Source Thickness		ft	30	Alluvium Thickness from X-Sections
Longitudinal Dispersivity	A _x	ft	200	From CCR QD Simulations
Transverse Dispersivity	A _y	ft	20.0	0.1 x Longitudinal Dispersivity (QD User's Guide)
Vertical Dispersivity	Az	ft	0.0001	negligible QD User's Guide
Hydraulic Conductivty	k	ft/day	0.283	Estimated Barrier Wall Permeability
Hydraulic Gradient		ft/ft	0.0038	PZ-505/N-55
Porosity		decimal fraction	0.35	Site soil analyses
Soil Bulk Density	p _b	g/cm3	1.7	ACT 2 TGM Default
Fraction of Organic Carbon	f _{OC}	decimal fraction	0.005	ACT 2 TGM Default
Time		days	1.00E+99	steady-state

	Data Source			
Sim 1				
Contaminant			Benzene	PZ-505
Source Concentration (mg/L)		mg/L	0.1600	July-08
Lambda (per day)		day ⁻¹	0.001	Number Please!2011
KOC			58	Number Please!2011
Output	(Distance from Source)	Where Concentra	tion Equals Respective Gro	und Water MSC)
Contaminant	Starting Concentration (mg/L)	GW MSC ¹ Non-Residential (mg/L)	Predicted Concentration (mg/L)	Predicted Distance to Meet Non-Residential GW MSC (Rounded to the Nearest foot)
Sim 1 - Benzene	0.1600	0.005	0.005	59

¹ ACT 2 TGM, Appendix A, Table 1 MSC for a Non-residential Used Aquifer with Total Dissolved Solids less than or equal to 2500.

METHOD FOR	R ESTIMATNG FL	OW, AVERA	GE CONCE	NTRATION	AND MASS	LOADING T	TO SURFAC	E WATER FR	OM GROUNI	OWATER				
	SWLOAD5B													L
Date:	1/11/2012										PA DEP	ARTMENT		
Contaminant:	Zone 4 Benzene			Prepared by	/:	TS				OF E	-	NTAL PROT	ECTION	
SOURCE												AD5B.XLS		
CONC	Ax	Ay	Az	LAMBDA	SOURCE	SOURCE						OR ESTIMA		
(units)	(ft)	(ft)	(ft)		WIDTH	THICKNESS	Time			T COMTA		ADING TO:	SURFACE	
mg/l	>.0001	>.0001	>=.0001	day-1	(ft)	(ft)	(days)					ed on		
0.16	200	20	1.00E-04	9.59E-04	630	30	1.00E+99					enico (1987)		
										\neg		clude Retard		
Hydraulic	Hydraulic		Soil Bulk		Frac.	Retard-	٧							
Cond	Gradient	Porosity	Density	KOC	Org. Carb.	ation	(=K*i/n*R)							
(ft/day)	(ft/ft)	(dec. frac.)	(g/cm³)			(R)	(ft/day)							
2.83E-01	0.0038	0.35	1.7	58	5.00E-03	2.408571	0.0012757			-				
				-257.5	-206	-154.5	-103	-51.5	-	51.5	103	154.5	206	257.5
Edge Criterion		0.005	0	0.027701	0.0290075	0.029027	0.0290274	0.02902739	0.02902739	0.0290274	0.0290274	0.0290274	0.029007	0.027701
Higest mod	deled conc.	0.02903	-3	0.027701	0.0290075		0.0290274		0.02902739	0.0290274	0.0290274	0.0290274	0.029007	0.027701
			-6	0.027701	0.0290075	0.029027	0.0290274		0.02902739	0.0290274	0.0290274	0.0290274	0.029007	0.027701
	ATER LOADING G		-9	0.027701	0.0290075	0.029027	0.0290274		0.02902739	0.0290274	0.0290274	0.0290274	0.029007	
Distance to St		29	-12		0.0290075		0.0290274		0.02902739	0.0290274	0.0290274	0.0290274	0.029007	0.027701
Plume View W		515	-15		0.0290075		0.0290274		0.02902739	0.0290274	0.0290274	0.0290274	0.029007	0.027701
Plume View D	epth (ft)	30	-18		0.0290075	0.029027	0.0290274		0.02902739	0.0290274		0.0290274	0.029007	0.027701
			-21	0.027701	0.0290075	0.029027	0.0290274		0.02902739	0.0290274	0.0290274	0.0290274	0.029007	0.027701
			-24	0.027701	0.0290075		0.0290274		0.02902739	0.0290274	0.0290274	0.0290274	0.029007	0.027701
PENTOX N	IEEDED		-27	0.027701	0.0290075	0.029027	0.0290274			0.0290274	0.0290274	0.0290274	0.029007	0.027701
			-30	0.013851	0.0145037	0.014514	0.0145137	0.0145137	0.0145137	0.0145137	0.0145137	0.0145137	0.014504	0.013851
				Average (Groundwa	ter Conce	ntration	0.02747	mg/l					
				Plume F	low			0.00019	cfs	0.00012	MGD			
				Mass Lo	ading to	Stream		12.93	mg/day					

Table J.41 Input Parameters for PENTOXSD Simulation 8 IOA

Sunoco Philadelphia Refinery Philadelphia, Pennsylvania

Parameter	Unit	Zone 2	Zone 3	Zone 4	N-58	Source
River Mile Index (at discharge point)	mile	3.92	4	4.08	4.2	Estimated Using ArcGIS
River Stage Elevation (at discharge point	ft	•		1		Estimated from USGS Philadelphia Quadrangle Map
Drainage Area	mi ²			1906		Estimated Using USGS Penrose Avenue & Chestnut Street River Gauge Data
Q ₇₋₁₀ Stream Flow	ft ³ /s			10.1		Specified by PADEP as 10% of actual Q ₇₋₁₀ Flow
Q _h Stream Flow	ft ³ /s			80.7		Specified by PADEP as 10% of actual Q _n Flow
River Mile Index (at confluence)	mile			0.001		Measured using ArcGIS
River Stage Elevation (at confluence)	ft			0.5		Estimated from USGS Philadelphia quadrangle map
Drainage Area	mi ²			1910		USGS Penrose Avenue River Gauge Web Site
Diffuse Groundwater Flow (1)	million gallons per day	0.00005	0.00015	0.00012	0.00012	Calculated by SWLOAD

NOTES:

All additional hydraulic parameters were calculated by PENTOXSD.

Table J.42 PENTOXSD Zone 2

PENTOXSD

Modeling Input Data

Strea Cod		Elevation (ft)	Drainage Area (sq mi)		PWS V				ply FC				
8	33 3.92	1.00		0.00000		0.00		6	/				
					1	Stream Da	ta						
	LFY		ream Wi Flow Ra		Rch Depth	Rch Velocity	Rch Trav Time	<u>Tributar</u> Hard	У pH	<u>Stream</u> Hard	pH	Analysis Hard	<u>s</u> pH
	(cfsm)	(cfs)	(cfs)	(ft)	(ft)	(fps)		(mg/L)		(mg/L)		(mg/L)	
Q7-10	0.1	0	10.1	0 0	0	0	0	100	7	0	0	0	0
- Qh		0	80.7	0 0	0	0	0	100	7	0	0	0	0
					D	ischarge D	ata						
	Name	Permit Number	Existing Disc Flow	Permitted Disc Flow	Design Disc Flow	Reserve Factor	AFC PMF	CFC PMF	THH PMF	CRL PMF	Disc Hard	Disc pH	
			(mgd)	(mgd)	(mgd)						(mg/L)		
AC	Ol 8 Zone 2	2574601	4.7E-05	0	0	0	0	0	0	0	100	7	
					Pa	arameter D							
	Parameter N	Name	Dis Coi (µg/	nc Conc	CV	Hourly	Steam Cond (µg/L	CV	Fate Coef		Crit Mod	Max Disc Conc (µg/L)	
BENZE	:NE		87		0.	5 0.5		0	0	0	1	0	
Strea Cod		Elevation (ft)	Drainage Area (sq mi)		PWS (mg				oply FC				
8	33 0.00	0.5		00 0.00000)	0.00		[~				
						Stream Da	ıta						
	LFY		tream W Flow Ra		Rch Depth	Rch Velocity	Rch Trav Time	<u>Tributaı</u> Hard	ry pH	<u>Stream</u> Hard	pH	<u>Analysi</u> Hard	<u>s</u> pH
	(cfsm)	(cfs)	(cfs)	(ft)	(ft)	(fps)	(days)	(mg/L)		(mg/L)		(mg/L)	
Q7-10	0.1	0	0	0 0	0	0	0	100	7	0	0	0	0
Qh		0	0	0 0	0	0	0	100	7	0	0	0	0
					D	ischarge [
	Name	Permit Number		Permitted Disc Flow	Design Disc Flow	Reserve Factor	AFC PMF	CFC PMF	THH PMF	CRL PMF	Disc Hard	Disc pH	
			(mgd)	(mgd)	(mgd)						(mg/L)		
			0	0	0	0	0	0	0	0	100	7	
						arameter D							
	Parameter I	Name	Dis Co	nc Cond	C/	/ Hourl	y Cond	c CV	Fate Coe		Crit Mod	Max I Disc Conc (µg/L)	
			(µg/	L) (µg/L	-)		(µg/L	-/				(49,5)	

Table J.42 PENTOXSD Zone 2

PENTOXSD Analysis Results

Hydrodynamics

S	WP Basir	1	<u>Strear</u>	n Code:			<u>Strea</u>	m Name	<u>:</u>		
	03F		8	33			SCHUY	KILL RIV	/ER		
RMI	Stream Flow (cfs)	PWS With (cfs)	Net Stream Flow (cfs)	Disc Analysis Flow (cfs)	Reach Slope	Depth (ft)	Width (ft)	WD Ratio	Velocity (fps)	Reach Trav Time (days)	CMT (min)
					Q7	-10 Hy	drodyn	amics			
3.920	10.1	(10.1	0.00007	2.4E-05	1,10383	86.9429	78.7645	0.10524	2.27567	1000+
0.001	10.5	(10.5	NA NA	0	0	0	0	0	0	NA
					C	h Hydi	rodyna	mics			
3.920	80.7	(80.7	0.00007	2.4E-05	2.75439	86.9429	31.5652	0.33699	0.71069	461.08
0.001	82.6362	(82.6362	. NA	0	0	0	0	0	0	NA

Table J.42 PENTOXSD Zone 2

PENTOXSD Analysis Results

Wasteload Allocations

RMI	Name	Permit N	lumber						
3.92	AOI 8 Zone 2	25746	601						
					AFC				
Q7-1	0: CCT (m	in) 15	PMF	0.09	Analysis	pH 7	Analysis	Hardness	100
	Parameter		Stream Conc (µg/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)
	BENZENE		0	0	0	0	640	640	8070000
				c	FC				
Q7-10:	CCT (mi	n) 720	PMF	0.629	Analysis	рH 7	Analysi	s Hardness	100
	Parameter		Stream Conc.	Stream CV	Trib Conc.	Fate Coef	WQC	WQ Obj	WLA
			(µg/L)	_	(µg/L)		(µg/L)	(µg/L)	(µg/L)
	BENZENE		0	0	0	0	130	130	1.136E+07
				Т	тнн				
Q7-10:	CCT (mi	n) 720	PMF	NA	Analysi	spH NA	Analysi	s Hardness	NA
	Parameter		Stream Conc	Stream CV	Trib Conc	Fate Coef	WQC	WQ Obj	WLA
			(µg/L)		(µg/L)		(µg/L)	(µg/L)	(µg/L)
	BENZENE		0	0	0	0	NA	NA	NA
					CRL				
Qh:	CCT (mi	in) 461.	.08 PMF	1					
	Parameter		Stream	Stream CV	Trib Conc	Fate Coef	WQC	WQ Obj	WLA
			(µg/L)		(µg/L)		(µg/L)	(µg/L)	(µg/L)
	BENZENE		0	0	0	0	1.2	1.2	1330000

Table J.43 PENTOXSD Zone 3

PENTOXSD

Modeling Input Data

Strea Cod		Elevation (ft)	Draina Are (sq.1	a	Slope	PWS \ (mg				ply FC				
8	33 4.00	1.0			0.00000		0.00		-	/				
							Stream Da	ıta						
	LFY	Trib S Flow	Stream Flow	WD Ratio	Rch Width	Rch Depth	Rch Velocity	Rch Trav	<u>Tributar</u> Hard	Υ pH	<u>Stream</u> Hard	<u>ı</u> pH	Analysis Hard	E DH
	(cfsm)	(cfs)	(cfs)		(ft)	(ft)	(fps)	Time (days)	(mg/L)		(mg/L)		(mg/L)	
Q7-10	0.1		10.1	0	0	0	0	0	100	7	0	0	0	0
Qh		0	80.7	0	0	0	0	0	100	7	0	0	0	0
						D	ischarge D)ata						
	Name	Permit Numbe		,	ermitted Disc Flow	Design Disc Flow	Reserve Factor		CFC PMF	THH PMF	CRL PMF	Disc Hard	Disc pH	
			(mg	-	(mgd)	(mgd)						(mg/L)		e
AC	Ol 8 Zone 3	257460	1 0.000	15	0	0	0	0	0	0	0	100	7	
						Pa	arameter D	ata						
	Parameter	Name		Disc Conc µg/L)	Trib Conc (μg/L)	CV	Hourl		: CV	Fate Coe		Crit Mod	Max Disc Conc (μg/L)	
BENZE	NE			2400	(µg/L)	0.	5 0.5		0	0	0	1	0	
Strea Cod		Elevation (ft)	Drain Are (sq 1	a	Slope	PWS (mg				oply FC				
8	33 0.00	0.5			0.00000		0.00		{	v				
							Stream Da	ata						
	LFY	Trib S Flow	Stream Flow	WD Ratio	Rch Width	Rch Depth	Rch Velocity	Rch Trav Time	<u>Tributa</u> Hard	<u>rv</u> pH	<u>Stream</u> Hard	<u>p</u> H	<u>Analysis</u> Hard	<u>§</u> pH
	(cfsm)	(cfs)	(cfs)		(ft)	(ft)	(fps)	(days)	(mg/L)		(mg/L)		(mg/L)	
Q7-10	0.1	0	0	0	0	0	0	0	100	7	0	0	0	0
Qh		0	0	0	0	0	0	0	100	7	0	0	0	0
						D	ischarge [Data						
	Name	Permit Numbe		Č	ermitted Disc Flow	Design Disc Flow	Reserve Factor	AFC PMF	CFC PMF	THH PMF	CRL PMF	Disc Hard	Disc pH	
			(mg	d)	(mgd)	(mgd)						(mg/L)		2
			0		0	0	0	0	0	0	0	100	7	
							arameter D							
	Parameter	Name		Disc Conc	Trib Conc	CV	/ Hourl	y Cond	c CV	Fate Coe		Crit Mod	Conc	
DENZE	-NIT		(μg/L) 0	(μg/L 0	0.	5 0.5	(μg/l	_)	0	0	1	(μg/L) 0	-
BENZE	INE			U	U	υ.	J 0.5	, 0		0	U	- 4		

Version 2.0c

Monday, January 30, 2012

Page 1 of 1

Table J.43 PENTOXSD Zone 3

PENTOXSD Analysis Results

Hydrodynamics

<u>s</u>	WP Basir	1	Stream	n Code:			Stream	<u>n Name</u>			
	03F		8	33			SCHUYL	KILL RIV	/ER		
RMI	Stream Flow (cfs)	PWS With (cfs)	Net Stream Flow (cfs)	Disc Analysis Flow (cfs)	Reach Slope	Depth (ft)	Width (ft)	WD Ratio	Velocity (fps)	Reach Trav Time (days)	CMT (min)
					Q7-	-10 Hyd	drodyna	amics			
4.000	10.1	0	10.1	0.00023	2E-05	1.1044	86.992	78.765	0.1051	2.3247	1000+
0.001	10.5	0	10.5	NA	0	0	0	0	0	0	NA
					Q	h Hydr	odynan	nics			
4.000	80.7	0	80.7	0.00023	2E-05	2.7559	86.992	31.566	0.3366	0.7260	465.904
0.001	82.636	0	82.636	NA	0	0	0	. 0	0	0	NA

Table J.43 PENTOXSD Zone 3

PENTOXSD Analysis Results

Wasteload Allocations

RMI	Name	Permit No	umber						
4.00	AOI 8 Zone 3	25746	01						
				,	AFC				
Q7-10	CCT (min)	15	PMF	0.09	Analysis	pH 7	Analysis	Hardness	100
	Parameter		Stream Conc (µg/L)	Stream CV	Trib Conc (μg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (μg/L)
	BENZENE		0	0	0	0	640	640	2510000
				c	FC				
Q7-10:	CCT (min)	720	PMF	0.626	Analysis	pH 7	Analysi	s Hardness	100
	Parameter		Stream Conc.	Stream CV	Trib Conc.	Fate Coef	wqc	WQ Obj	WLA
			(μg/L)		(μg/L)		(µg/L)	(µg/L)	(μg/L)
	BENZENE		0	0	0	0	130	130	3540000
				Т	нн				
Q7-10:	CCT (min)	720	PMF	NA	Analysis	spH NA	Analysi	s Hardness	NA
	Parameter		Stream Conc (µg/L)	Stream CV	Trib Conc (μg/L)	Fate Coef	WQC (µg/L)	WQ Obj (μg/L)	WLA (μg/L)
	BENZENE		0	0	0	0	NA	NA	NA
				(CRL				
Qh:	CCT (min)	465.9	04 PMF	1					
	Parameter		Stream Conc (µg/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)
	BENZENE		0	0	0	0	1.2	1.2	417325

Table J.44 PENTOXSD Zone 4

PENTOXSD

Modeling Input Data

Strea Cod		Elevation (ft)	Drainag Area (sq mi		pe l	PWS W (mgd				ply C				
8	33 4.08	1.0		.00 0.0	0000		0.00		6	/				
						S	tream Da	ta						
	LFY						elocity		<u>Tributar</u> Hard	у pH	<u>Stream</u> Hard	pH	<u>Analysis</u> Hard	<u>s</u> pH
	(cfsm)	(cfs)	(cfs)	(ft)	(ft)		Time (days) (mg/L)		(mg/L)		(mg/L)	
Q7-10	0.1	0	10.1	0	0	0	0	0	100	7	0	0	0	0
Qh		0	80.7	0	0	0	0	0	100	7	0	0	0	0
						Dis	charge D	ata						
	Name	Permit Number	Existing r Disc Flow	Permit Dise Flow	c I	esign Disc Flow	Reserve Factor	AFC PMF	CFC PMF	THH PMF	CRL PMF	Disc Hard	Disc pH	
			(mgd)	(mgc	l) (mgd)						(mg/L)		
AC	OI 8 Zone 4	257460°	1 0.00012	2 0		0	0	0	0	0	0	100	7	
						Par	ameter D	ata						
	Parameter I	Name		onc (Trib Conc	Disc Daily CV	Disc Hourly CV		CV	Fate Coef	FOS	Crit Mod	Conc	
BENZE	NE		(µg	/L) 60	(µg/L) 0	0.5	0.5	(µg/L 0	0	0	0	1	(µg/L) 0	
Strea		Elevation				PWS W			101					
Cod	le	(ft)	Area (sq mi)		(mgd)			pply FC				
8	333 0.00	0.5	50 1910	.00 0.0	0000		0.00		T.	V				-
							tream Da							
	LFY					Rch epth V	Rch elocity	Rch Trav Time	<u>Tributar</u> Hard	у pH	<u>Stream</u> Hard	рН		<u>s</u> pH
	(cfsm)	(cfs)	(cfs)	(ft)	(ft)	(fps)	(days)	(mg/L)		(mg/L)		(mg/L)	
Q7-10	0.1	0	0	0	0	0	0	0	100	7	0	0	0	C
Qh		0	0	0	0	0	0	0	100	7	0	0	0	C
						Dis	charge D	ata						
	Name	Permit Numbe		Permi Dis Flow	С	esign Disc Flow	Reserve Factor	AFC PMF	CFC PMF	THH PMF	CRL PMF	Disc Hard	Disc pH	
			(mgd)	(mgd	d) (t	(mgd)						(mg/L)		
			0	0		0	0	0	0	0	0	100	7	
						Pai	ameter D							
	Parameter l	Name	Co	onc	Trib Conc (µg/L)	Disc Daily CV	Disc Hourly CV	Steam Cond (µg/L	: CV	Fate Coe		Crit Mod	Max I Disc Conc (µg/L)	
			\F8	·,	0			/L-9, -	,			1		

Table J.44 PENTOXSD Zone 4

PENTOXSD Analysis Results

Hydrodynamics

<u>s</u>	WP Basir	1	Stream	n Code:			Strea	m Name:	es		
	03F		8	33			SCHUYL	KILL RIV	'ER		
RMI	Stream Flow	PWS With	Flow	Disc Analysis Flow	Reach Slope	Depth	Width	WD Ratio	Velocity	Reach Trav Time	CMT
	(cfs)	(cfs)	(cfs)	(cfs)		(ft)	(ft)		(fps)	(days)	(min)
					Q7	-10 Hy	drodyna	amics			
4.080	10.1	C	10.1	0.00018	2.3E-05	1.10504	87.0396	78.7658	0.10501	2.37378	1000+
0.001	10.5	C	10.5	NA	0	0	0	0	0	0	NA
					Q	h Hydr	odynar	nics			
4.080	80.7	C	80.7	0.00018	2.3E-05	2.75739	87.0396	31.5659	0.33625	0.74134	470.673
0.001	82.6362	C	82.6362	NA	0	0	0	0	0	0	NA

Table J.44 PENTOXSD Zone 4

PENTOXSD Analysis Results

Wasteload Allocations

RMI	Name I	Permit N	lumber						
4.08	AOI 8 Zone 4	2574	601						
				,	AFC				
Q7-10:	CCT (min)	15	PMF	0.089	Analysis	pH 7	Analysis	Hardness	100
	Parameter		Stream Conc (µg/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)
	BENZENE		0	0	0	0	640	640	3130000
				c	FC				2
Q7-10:	CCT (min)	720	PMF	0.622	Analysis	p H 7	Analysi	s Hardness	100
	Parameter		Stream Conc.	Stream CV	Trib Conc.	Fate Coef	WQC	WQ Obj	WLA
			(µg/L)		(µg/L)		(µg/L)	(µg/L)	(µg/L)
	BENZENE		0	0	0	0	130	130	4400000
				Т	тнн				
Q7-10:	CCT (min)	720	PMF	NA	Analysis	pH NA	Analysi	s Hardness	NA
	Parameter		Stream Conc (µg/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (μg/L)	WLA (µg/L)
	BENZENE		0	0	0	0	NA	NA NA	NA
				(CRL				
Qh:	CCT (min)	470.6	673 PMF		-				
	Parameter		Stream Conc	Stream CV	Trib Conc	Fate Coef	WQC	WQ Obj	WLA
	BENZENE		(µg/L)	0	(µg/L)	0	(µg/L)	(μg/L) 1.2	(μg/L) 521656
	DENZENE		U	U	U	U	1.2	1.4	52 1050

Table J.45 PENTOXSD N-58

PENTOXSD

Modeling Input Data

Strea		RMI	Elevatio (ft)	Α	nage rea mi)	Slope	PWS (mg				oply FC				
8	333	4.20	1			0.00000		0.00			~	•			
								Stream Da	ıta						
	L	_FY	Trib Flow	Stream Flow	WD Ratio	Rch Width	Rch Depth	Rch Velocity	Rch Trav Time	<u>Tributar</u> Hard	Υ pH	Strean Hard	<u>n</u> pH	<u>Analysi</u> Hard	<u>s</u> pH
	(c	fsm)	(cfs)	(cfs)		(ft)	(ft)	(fps)		(mg/L)		(mg/L)		(mg/L)	
Q7-10		0.1	10.1	0	0	0	0	0	0	100	7	0	0	0	C
Qh			80.7	0	0	0	0	0	0	100	7	0	0	0	0
							D	ischarge D	ata						
	Name	е	Permi Numb	er Di	sc	ermitted Disc Flow	Design Disc Flow	Reserve Factor	AFC PMF	CFC PMF	THH PMF	CRL PMF	Disc Hard	Disc pH	
				(m	gd) ((mgd)	(mgd)						(mg/L)		***
	N-58	3	25746	0.00	0012	0	0	0	0	0	0	0	100	7	
							P	arameter D	ata						
	Para	ameter N	lame		Disc Conc (µg/L)	Trib Conc (µg/L)	Dis Daily C\	/ Hourly	Steam Cond (µg/L	CV	Fate Coe		Crit Mod	Max I Disc Conc (µg/L)	
1,2-DIC	CHLOR	OETHA	NE		10	0	0.	5 0.5		0	0	0	1	0	
Strea		RMI	Elevatio (ft)	Α	nage rea mi)	Slope	PWS (mg				oply FC				
8	333	0.00	0			0.00000		0.00			V				
								Stream Da	ıta						
	L	.FY	Trib Flow	Stream Flow	WD Ratio	Rch Width	Rch Depth	Rch Velocity	Rch Trav Time	<u>Tributar</u> Hard	Σ pH	<u>Strean</u> Hard	n pH	<u>Analysi</u> Hard	i <u>s</u> pH
	(C	fsm)	(cfs)	(cfs)		(ft)	(ft)	(fps)	(days)	(mg/L)		(mg/L)		(mg/L)	
Q7-10		0.1	0	0	0	0	0	0	0	100	7	0	0	0	C
Qh			0	0	0	0	0	0	0	100	7	0	0	0	0
							D	ischarge D	ata						
	Name	е	Permi Numb	er Di	sc	ermitted Disc Flow	Design Disc Flow	Reserve Factor	AFC PMF	CFC PMF	THH PMF	CRL PMF	Disc Hard	Disc pH	
				(m	gd) ((mgd)	(mgd)						(mg/L)		
					0	0	0	0	0	0	0	0	100	7	
							P	arameter D	ata						
	Para	ımeter N	lame		Disc Conc (µg/L)	Trib Conc (µg/L)	Dis Daily C\	/ Hourly		CV	Fate Coe		Crit Mod	Max I Disc Conc (μg/L)	
1.2-DIC	CHLOR	OETHA	NE		(µg/L)	(µg/L)	0.	5 0.5		-)	0	0	1	(µg/L)	
-,			· · -										115		

Table J.45 PENTOXSD N-58

PENTOXSD Analysis Results

Hydrodynamics

SWP Basin Stream Code:			Stream Name:								
	03F		8	333		SCHUYLKILL RIVER					
RMI	Stream Flow (cfs)	PWS With (cfs)	Net Stream Flow (cfs)	Disc Analysis Flow (cfs)	Reach Slope	Depth (ft)	Width (ft)	WD Ratio	Velocity (fps)	Reach Trav Time (days)	CMT (min)
					Q7	-10 Hy	drodyn	amics			
4.200	10.1	0	10.1	0.00018	2.3E-05	1.10592	87.1094	78.7666	0.10484	2.44751	1000+
0.001	10.5	0	10.5	NA NA	0	0	0	0	0	0	NA
					Q	h Hydi	odynai	mics			
4.200	80.7	0	80.7	0.00018	2.3E-05	2.75958	87.1094	31.5662	0.33571	0.76436	477.745
0.001	82.6362	0	82.6362	NA.	0	0	0	0	0	0	NA

Table J.45 PENTOXSD N-58

PENTOXSD Analysis Results

Wasteload Allocations

RMI	Name	Permit N	lumber						
4.20	N-58	2574	601						
				,	AFC				
Q7-	10: CCT (m	in) 15	PMF	0.089	Analysis	pH 7	Analysis	Hardness	100
	Parameter		Stream Conc (µg/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)
_									
1,2	2-DICHLOROETH/	ANE	0	0	0	0	15000	15000	7.285E+07
				c	FC				
Q7-10:	CCT (mi	n) 720	PMF	0.618	Analysis	pH 7	Analysi	s Hardness	100
	Parameter		Stream Conc.	Stream CV	Trib Conc.	Fate Coef	WQC	WQ Obj	WLA
			(µg/L)		(µg/L)		(µg/L)	(µg/L)	(µg/L)
1,2	-DICHLOROETHA	NE	0	0	0	0	3100	3100	1.0429E+08
				т	нн				
Q7-10:	CCT (mi	n) 720	PMF	NA	Analysis	spH NA	NA Analysis Hardness		NA
	Parameter		Stream Conc	Stream CV	Trib Conc	Fate Coef	WQC	WQ Obj	WLA
			(µg/L)		(µg/L)		(µg/L)	(µg/L)	(µg/L)
1,2	2-DICHLOROETHA	ANE	0	0	0	0	NA	NA	NA
				(CRL				
Qh:	CCT (mi	n) 477.	745 PM F	1					
	Parameter		Stream Conc	Stream CV	Trib Conc	Fate Coef	WQC	WQ Obj	WLA
			(µg/L)		(µg/L)		(µg/L)	(µg/L)	(µg/L)
1,	2-DICHLOROETH	ANE	0	0	0	0	0.38	0.38	165191.1

APPENDIX K DEVELOPMENT OF SITE-SPECIFIC STANDARDS AOI 8: SUNOCO PHILADELPHIA REFINERY PHILADELPHIA, PENNSYLVANIA

Based on the current and future intended non-residential site use, an exposure assessment was conducted for all compounds in surficial soil (0-2 feet) which exceeded the nonresidential direct contact statewide health standards in AOI 8. Potential human health exposures for the Refinery are evaluated for an industrial worker scenario.

Direct contact exposure pathways to surface soil, groundwater, and LNAPL is for the industrial scenario because of Sunoco's established excavation procedures, PPE requirements and soil handling procedures, as they are described in Appendix K of the 2004 Current Conditions Report (CCR). However, because direct contact to surface soils could occur outside of excavation activities, shallow soil samples were collected in AOI 8 to further evaluate this pathway under a non-residential (on-site worker) scenario.

Based on the recent characterization data collected, concentrations of benzene naphthalene, benzo(a)pyrene, and lead were detected above the non-residential soil MSCs in surficial soil (0-2 feet). In accordance with Section IV of the PADEP's Technical Guidance Manual (TGM) (dated June 8, 2002), the COCs listed above were further screened against the EPA Region III Risk-Based Concentrations (RBCs) (aka, EPA Regional Screening Levels) for industrial soil to potentially reduce the list of compounds carried through the risk assessment.

For all compounds that exceed both the non-residential statewide health standards and EPA Region III RBCs, site-specific standards were calculated using PADEP default intake parameters for an on-site worker and, where appropriate, a risk level of 10⁻⁴. For calculating a site-specific standard for on-site workers exposed to lead, Sunoco used the Society of Environmental Geochemistry and Health (SEGH) model used by PADEP to develop the non-residential MSC. The input parameters used to develop the site-specific standards for benzene and lead are provided in Tables K-1 through K-4.

The site-specific standards for the organic compounds (calculated in Tables K-1 through K-4) are as follows:

Compound	Calculated Site-Specific Standard (mg/kg)
Benzene	2,160
Naphthalene	56,780
Benzo(a)pyrene	109
Lead	1,708

The site-specific screening level for benzene was calculated for inhalation based on the calculation specified in 25 Pa. Code § 250.307(b), and for naphthalene and benzo(a)pyrene for ingestion based on the calculations specified in 25 Pa. Code § 250.306(b). These calculations used the PADEP's default parameters and an updated target risk level of 1E-4, in consideration of the site-specific conditions (PADEP's default target risk level is 1E-5).

As presented in Table K-1 through K-4, based on the revised target risk level, the derived site-specific standards for benzene, naphthalene and benzo(a)pyrene are calculated for an onsite worker and are consistent with the values used in the previous Act 2 reports submitted for the Refinery. Concentrations of benzene, naphthalene and benzo(a)pyrene detected in the surface soil samples collected in AOI 8 are below the site-specific standards and, therefore, risk to an on-site worker due to exposure is considered to be within the acceptable Act 2 range.

The site-specific screening level for lead was calculated for ingestion. As presented in 25 Pa. Code § 250.306(e), Appendix A, Table 7, the non-residential soil screening value for lead is based on the method presented in the report 'The Society for Environmental Geochemistry and Health (SEGH) Task Force Approach to the Assessment of Lead in Soil' (Wixson, 1991). The model used by the PADEP and developed by SEGH was also used to calculate the site specific criterion for the refinery. Based on the SEGH model and PADEP's default parameters, PADEP's non-residential direct contact MSC default value for lead in surface soil is 1,000 mg/kg. To develop a site-specific criteria for lead,

some of the parameters used by the PADEP were updated in consideration of sitespecific conditions and updated lead data collected from recent studies. These parameters are discussed in the following paragraphs.

Target blood lead concentration (T) – The default target blood lead concentration used by the PADEP to develop the non-residential MSC is 20 ug/dL; however, the Center for Disease Control (CDC) recommends that worker blood lead levels be maintained below 25 ug/dL (NIOSH, 2008) to prevent adverse health effects for most workers from exposure to lead throughout a working lifetime. Based on conversations between representatives of Sunoco and EPA, the target lead blood level identified by the CDC is used in the site-specific calculation in Tables F-4 and F-5.

Geometric mean background blood lead concentration (B) – B is the background blood lead concentration in the target population from sources other than soil and dust. The PADEP's default value for B is 4 ug/dL and, as summarized in PADEPs reference document (Wixson, 1991), is based on data gathered in the United Kingdom from young children. The US Center for Disease Control and Prevention (CDC) in Atlanta, GA has monitored blood lead levels in US children and adults since 1976 and, based on the most recent results published by the National Center for Environmental Health of the CDC (NCEH, 2005), the mean blood lead concentration for an adult 20 years of age or older is 1.56 ug/dL. Based on the more recent study by the US CDC, the value used for B in the site specific calculation has been revised to 1.56 ug/dL.

CONCLUSIONS

As presented in Table K-4, based on the revised parameters, the derived site-specific standard for lead in soil is 1,708 mg/kg for a refinery worker. Concentrations of lead detected in the surface soil samples collected in AOI 8 are below the site-specific standard and, therefore, risk to an on-site worker due to exposure to lead is considered to be within the acceptable Act 2 range.

In addition to calculating the site-specific standards for benzene, naphthalene,

Table K-1 Derivation of Site-Specific Soil Value for Benzene¹

AOI 8 Site Characterization/Remedial Investigation Report Sunoco Philadelphia Refinery Philadelphia, Pennsylvania

Parameter	Abbreviation	Assumption	Units	Source
Transport Factor	TF	13,100	mg/kg / mg/m ³	25 Pa. Code § 250, Appendix A Table 5
Absorption	Abs	1	unitless	25 Pa. Code § 250.307(d)
Exposure Time	ET	8	hr/day	25 Pa. Code § 250.307(d)
Exposure Frequency	EF	180	d/yr	25 Pa. Code § 250.307(d)
Target Risk ²	TR	0.0001	mg/kg	
Inhalation Cancer Slope Factor	CSF _I	0.027	mg/kg-day ⁻¹	25 Pa. Code § 250, Appendix A Table 5
Averaging Time for Carcinogens	AT _C	70	yr	25 Pa. Code § 250.307(d)
Inhalation Factor	IF _{ADJ}	0.4	unitless	25 Pa. Code § 250.307(d)

Site-Specific, Non-Residential (Onsite Worker) Screening Value

2,160 mg/kg

Notes:

The site specific screening value was calculated for inhalation based on the calculation specified in 25 Pa. Code 250.307(b)(1)

MSC (mg/kg) = TR x AT_C x 365 days/year x TE

CSF_I x Abs x ET x EF x IF_{ADJ}

2. The target risk level was modified from PADEP's default (1E-5) to 1E-4.

Table K-2 Derivation of Site-Specific Soil Value for Naphthalene¹

AOI 8 Site Characterization/Remedial Investigation Report Sunoco Philadelphia Refinery Philadelphia, Pennsylvania

Parameter	Abbreviation	Assumption	Units	Source
Target Health Quotient	TR	1		25 Pa. Code § 250.306(d)
Oral Reference Dose	RfD _o	0.02	mg/kg-day ⁻¹	25 Pa. Code § 250, Appendix A Table 5
Body Weight	BW	70	kg	25 Pa. Code § 250.306(d)
Averaging Time	AT _{DC}	25	yr	25 Pa. Code § 250.306(d)
Absorption	Abs	1	unitless	25 Pa. Code § 250.306(d)
Exposure Frequency	EF	180	d/yr	25 Pa. Code § 250.306(d)
Exposure Duration	ED	25	yr	25 Pa. Code § 250.306(d)
Conversion Factor	CF	1.00E-06	kg/day	25 Pa. Code § 250.306(d)
Ingestion Rate	IngR	50	mg/day	25 Pa. Code § 250.306(d)

Site-Specific, Non-Residential (Onsite Worker) Screening Value

56,780 mg/kg

Notes:

The site specific screening value was calculated for ingestion based on the calculation specified in 25 Pa. Code 250.306(b)
 MSC (mg/kg) = THQ x RFDo x BW x AT_{DC} x 365 days/year
 Abs x EF x ED x IngR x CF

Table K-3 Derivation of Site-Specific Soil Value for Benzo(a)pyrene¹

AOI 8 Site Characterization/Remedial Investigation Report Sunoco Philadelphia Refinery Philadelphia, Pennsylvania

Parameter	Abbreviation	Assumption	Units	Source
Absorption	ABS	1	unitless	25 Pa. Code § 250.306(d)
Exposure Frequency	EF	180	d/yr	25 Pa. Code § 250.306(d)
Conversion Factor	CF	1.00E-06	kg/day	25 Pa. Code § 250.306(d)
Target Risk ²	TR	1.00E-04	mg/kg	
Oral Cancer Slope Factor	CSF₀	7.3	mg/kg-day ⁻¹	25 Pa. Code § 250, Appendix A Table 5
Averaging Time for Carcinogens	AT _c	70	yr	25 Pa. Code § 250.306(d)
Ingestion Factor	IFadj	17.9	mg-yr/kg-day	25 Pa. Code § 250.306(d)

Site-Specific, Non-Residential (Onsite Worker) Screening Value

109 mg/kg

Notes:

The site specific screening value was calculated for ingestion based on the calculation specified in 25 Pa. Code 250.306(b)

MSC (mg/kg) = TR x AT_C x 365 days/year

CSF_O x Abs x EF x IF_{ADJ} x CF

2. The target risk level was modified from PADEP's default (1E-5) to 1E-4.

Table K-4 Derivation of Site-Specific Soil Value for Lead¹

AOI 8 Site Characterization/Remedial Investigation Report Sunoco Philadelphia Refinery Philadelphia, Pennsylvania

Parameter	Abbreviation	Assumption	Units	Source ²
Blood lead target concentration	Т	25	ug/dL	CDC - ABLES (NIOSH, 2008)
Geometric standard deviation of the blood lead distribution	G	1.4	unitless	25 Pa. Code § 250, Appendix A Table 7
Background blood lead concentration in the population from sources other than soil or dust	В	1.56	ug/dL	NCEH Pub. No. 05-0570 (NCEH, 2005)
Number of standard deviations corresponding to the degree of protection required for the population at risk	n	1.645	unitless	25 Pa. Code § 250, Appendix A Table 7
Response of the blood lead versus soil lead relationship	δ	7.5	ug/dL blood / ug/g soil	25 Pa. Code § 250, Appendix A Table 7

Site-Specific, Non-Residential (Onsite Worker) Screening Value

1,708 ug/g (mg/kg)

Notes:

1. The site specific screening value for lead was calculated for ingestion based on the SEGH model as specified by 25 Pa. Code 250.306(e)

 $MSC (mg/kg) = \underline{[(T/G^n) - B] \times 1000}$

2. Sources for blood lead target level (T) based on conversation between James Oppenheim of Sunoco and Hon Lee of EPA in November 2010.

NIOSH (2008). Adult Blood Lead Epidemiology and Surveillance (ABLES). http://www.cdc.gov/niosh/topics/ABLES

NCEH (2005). Third National Report on Human Exposure to Environmental Chemicals. Centers for Disease Control and Prevention, National Center for Environmental Health, Division of Laboratory Sciences. Atlanta, Georgia. NCEH. Pub. No. 05-0570.

Table K-5 **Summary of Site Specific Cumulative Risk Evaluation** AOI 8 Site Characterization/Remedial Investigation Report Sunoco Philadelphia Refinery Philadelphia, Pennsylvania

				Benzene	e (71-43-2)	Naphthal	ene (91-20-3)	Benzo(a)py	rene (50-32-8)	Lead	(7439-92-1)
Location ID	Sample ID	Sample Interval	Sample Date	Reported Result (mg/kg)	Calculated Risk	Reported Result (mg/kg)	Calculated Hazard Quotient	Reported Result (mg/kg)	Calculated Risk	Reported Result (mg/kg)	Blood Lead Concentration ⁴ (ug/dL)
BH-08-01	BH-08-01_1.0-2.0	1.0-2.0	6/17/2008	ND		ND		ND		69.7	3.6
BH-08-02	BH-08-02_1.0-2.0	1.0-2.0	5/7/2008	ND		ND		ND		138	4.5
BH-08-03	BH-08-03_1.0-2.0	1.0-2.0	5/7/2008	0.58	2.69E-08	ND		ND		291	6.5
BH-08-04	BH-08-04_1.0-2.0	1.0-2.0	5/8/2008	3.3	1.53E-07	12	0.00021	ND		829	13.5
BH-08-07 BH-08-08	BH-08-07_1.0-2.0 BH-08-08 1.0-2.0	1.0-2.0	5/8/2008 5/7/2008	1.4	6.51E-08 8.83E-08	15 ND	0.00026	ND ND		519 637	9.5
BH-08-09	BH-08-09 1.0-2.0	1.0-2.0	5/7/2008	3.2	1.49E-07	5.9	0.00010	ND		262	6.1
BH-08-10	BH-08-10 1.0-2.0	1.0-2.0	5/7/2008	ND		ND		2.6	2.39E-06	428	8.3
BH-08-11	BH-08-11_1.0-2.0	1.0-2.0	5/7/2008	0.31	1.44E-08	ND		ND		131	4.4
BH-08-12	BH-08-12_1.0-2.0	1.0-2.0	5/6/2008	3.1	1.44E-07	2.7	0.00005	ND		1250	19.0
BH-08-13	BH-08-13_1.0-2.0	1.0-2.0	5/6/2008	ND		ND		1.3	1.20E-06	314	6.8
BH-08-14	BH-08-14_1.0-2.0	1.0-2.0	5/6/2008	ND		ND		ND		78.8	3.7
BH-08-15	BH-08-15_1.0-2.0	1.0-2.0	5/6/2008	ND		ND		ND		22.8	3.0
BH-08-16	BH-08-16_1.0-2.0	1.0-2.0	5/7/2008	3.1	1.44E-07	18 ND	0.00032	ND		1380	20.7
BH-08-17 BH-08-18	BH-08-17_1.0-2.0 BH-08-18 1.0-2.0	1.0-2.0	5/7/2008 5/7/2008	ND ND		ND ND		ND ND		102 22.2	3.0
BH-08-21	BH-08-18_1.0-2.0	1.0-2.0	5/7/2008	ND ND		ND ND	 	ND ND		540	9.8
BH-08-22	BH-08-22 1.0-2.0	1.0-2.0	5/7/2008	ND		ND		ND		213	5.5
BH-08-23	BH-08-23_1.0-2.0	1.0-2.0	5/7/2008	ND		ND		ND		374	7.6
BH-08-24	BH-08-24_1.0-2.0	1.0-2.0	5/7/2008	ND		ND		ND		172	5.0
BH-08-25	BH-08-25_1.0-2.0	1.0-2.0	5/7/2008	ND		ND		ND		223	5.6
BH-08-26	BH-08-26_1.0-2.0	1.0-2.0	5/8/2008	9	4.18E-07	ND		ND		261	6.1
BH-08-27	BH-08-27_1.0-2.0	1.0-2.0	5/6/2008	ND		ND		0.4	3.68E-07	89.7	3.9
BH-08-28	BH-08-28_1.0-2.0	1.0-2.0	5/6/2008	ND		ND		ND		132	4.4
BH-08-29 BH-08-31	BH-08-29_1.0-2.0	1.0-2.0	5/6/2008	ND ND		ND		ND	1.01E-05	96.4	4.0
BH-08-32	BH-08-31_1.0-2.0 BH-08-32 0.0-2.0	1.0-2.0 0-2.0	5/6/2008 7/3/2008	ND ND		ND ND		11 0.9	8.29E-07	1300 128	19.7
BH-08-33	BH-08-33 1.5-2.0	1.5-2.0	5/6/2008	ND		0.36	0.00001	3.6	3.31E-06	172	4.4 5.0
BH-08-34	BH-08-34_1.5-2.0	1.5-2.0	5/6/2008	ND		ND		29	2.67E-05	354	7.3
BH-08-35	BH-08-35_1.0-2.0	1.0-2.0	5/6/2008	ND		ND		ND		14.3	2.9
N-98	N-98_1.0-2.0	1.0-2.0	6/2/2008	ND		1	0.00002	ND		94.5	3.9
N-99	N-99_1.0-2.0	1.0-2.0	6/17/2008	ND		53	0.00093	61	5.62E-05	146	4.6
N-100	N-100_0.0-2.0	0.0-2.0	6/11/2008	ND		ND		ND		135	4.5
N-101	N-101_1.0-2.0	1.0-2.0	6/16/2008	ND		ND		ND	 1 04E 07	78.1	3.7
N-102 N-103	N-102_1.0-2.0 N-103_1.0-2.0	1.0-2.0	6/5/2008 6/6/2008	ND ND		ND ND		0.2 ND	1.84E-07 	24.7 174	3.0 5.0
N-104	N-104_1.0-2.0	1.0-2.0	6/17/2008	ND		ND ND		ND ND		164	4.9
N-105	N-105_1.0-2.0	1.0-2.0	6/17/2008	ND		ND		ND		36.4	3.2
N-106	N-106_1.0-2.0	1.0-2.0	6/5/2008	ND		ND		0.19	1.75E-07	76.7	3.7
N-107	N-107_1.0-2.0	1.0-2.0	6/17/2008	0.74	3.44E-08	ND		ND		173	5.0
N-108	N-108_1.0-2.0	1.0-2.0	5/29/2008	ND		ND		5.4	4.97E-06	147	4.6
N-109	N-109_1.0-2.0	1.0-2.0	6/17/2008	ND		ND		ND		294	6.5
N-110	N-110_1.0-2.0	1.0-2.0	5/14/2008	ND		ND		ND		15	2.9
N-111	N-111_1.0-2.0	1.0-2.0	5/14/2008	ND		ND		ND		117	4.2
N-112 N-113	N-112_1.0-2.0 N-113_1.0-2.0	1.0-2.0	5/8/2008 5/15/2008	ND ND		ND		ND		11.6	2.9
N-114	N-114_1.0-2.0	1.0-2.0	5/8/2008	0.51	2.37E-08	ND ND		ND ND		77.9 139	3.7 4.5
N-115	N-115_0.0-2.0	0.0-2.0	5/28/2008	ND		ND ND		6.5	5.98E-06	1250	19.0
N-116	N-116_1.0-2.0	1.0-2.0	5/20/2008	ND		ND		ND		340	7.1
N-117	N-117_1.0-2.0	1.0-2.0	6/4/2008	ND		ND		0.63	5.80E-07	219	5.6
N-118	N-118_1.0-2.0	1.0-2.0	5/23/2008	ND		ND		ND		200	5.3
N-119	N-119_1.0-2.0	1.0-2.0	6/17/2008	ND		ND		0.43	3.96E-07	101	4.0
N-120	N-120_1.0-2.0	1.0-2.0	5/22/2008	ND		ND		ND		181	5.1
N-121 N-122	N-121_1.0-2.0	1.0-2.0	6/9/2008 5/7/2008	ND ND		ND		ND		64	3.5
N-122 N-123	N-122_1.0-2.0 N-123_1.0-2.0	1.0-2.0	5/7/2008	ND ND		ND ND		ND 13	1.20E-05	207	5.4
N-123	N-124_1.0-2.0	1.0-2.0	5/20/2008	ND		ND ND		13 ND		254 43.9	6.0 3.3
N-125	N-125_1.0-2.0	1.0-2.0	6/17/2008	ND		ND ND		1.5	1.38E-06	150	4.7
N-126	N-126_1.0-2.0	1.0-2.0	6/17/2008	ND		ND		ND		912	14.6
N-127	N-127_1.0-2.0	1.0-2.0	5/22/2008	ND		ND		ND		191	5.2
N-128	N-128_1.0-2.0	1.0-2.0	5/20/2008	1.9	8.83E-08	2.2	0.00004	6	5.52E-06	61.4	3.5
N-129	N-129_1.0-2.0	1.0-2.0	6/17/2008	ND		ND		ND		31.3	3.1
N-130	N-130_0.0-2.0	0.0-2.0	5/16/2008	ND		ND		ND		670	11.5
N-131	N-131_1.0-2.0	1.0-2.0	6/17/2008	ND		ND		ND		88.8	3.9
N-132 N-133	N-132_1.0-2.0	1.0-2.0	5/13/2008 5/15/2008	ND 3.7	 1.72E-07	ND ND		ND		94.9	4.0
	N-133_1.0-2.0 N-134_1.0-2.0	1.0-2.0	5/15/2008	3.7 ND	1./2E-0/	ND 4.7		ND 37	3.41E-05	865 74.6	14.0
N-134 N-135	N-135_1.0-2.0	1.0-2.0	5/15/2008	ND		4.7 2.1	0.00008	37 1.5	1.38E-06	74.6 273	3.7 6.3
N-136	N-136_1.0-2.0	1.0-2.0	5/15/2008	0.7	3.25E-08	ND		ND		320	6.9
<u> </u>			Cumulative Tota		1.55E-06		2.06E-03		1.68E-04		<u> </u>

Maximum Total Cumulative Risk for Carcinogens:

0.0021

1.69E-04 > 1 in 10,000

< 1

Notes:

ND - Not Detected Above Lab Reporting Limit
(1) All soil samples collected and analyzed were unsaturated.

Maximum Hazard Index for Non-Carcinogens:

(2) all samples are located outside SWMU areas.

(3) Maximum Total Cumulative Risk is the combined risk of exposure to the detected concentrations of carcinogenic compounds benzene and BaP and should be less

(4) Calculated based on site specific parameters provided in Table F-4. The CDC (NIOSH, 2008) recommends that blood lead levels be maintained below 25 ug/dL.

WORK PLAN FOR SITE CHARACTERIZATION AREA OF INTEREST 8

SUNOCO PHILADELPHIA REFINERY PHILADELPHIA, PENNSYLVANIA

Sunoco, Inc. (R&M) 3144 Passyunk Avenue Philadelphia, Pennsylvania

TABLE OF CONTENTS

1.0 I	NTRODUCTION	1
1.1	Objectives	2
1.2	OVERVIEW OF INVESTIGATIVE FRAMEWORK AND REMEDIAL APPROACH FOR AOI 8	
1.2	2.1 Overview of RCRA Corrective Action Program in AOI 8	4
1.2	2.2 Overview of Proposed Approach for SWMU 2	6
1.2	2.3 Overview of Proposed Approach in Non-RCRA Areas of AOI 8	6
1.2	2.4 Overview of the Land Farm Treatment Unit (LTU) in AOI 8	7
1.3	OVERVIEW OF EXISTING PHASE I ACTIVITIES IN AOI 8	7
1.4	Work Plan Support Activities	8
2.0 F	PROPOSED SITE CHARACTERIZATION ACTIVITIES	11
2.1	SHALLOW SOIL BORINGS AND SOIL SAMPLING	
2.1	TASK 2: INSTALLATION OF SHALLOW/INTERMEDIATE GROUNDWATER MONITORING WELLS	
2.3	TASK 2: INSTALLATION OF SHALLOW/INTERMEDIATE GROUNDWATER WONTONING WELLS	
2.3 2.3		_
	2.2 Groundwater Normtoning	
2.4	TASK 4: COLLECTION AND CHARACTERIZATION OF LNAPL SAMPLES	
2.5	TASK 5: REVIEW OF AVAILABLE AQUIFER TEST DATA	
2.6	TASK 6: EVALUATION OF THE POTENTIAL VAPOR INTRUSION (VI) INTO INDOOR AIR PATHWAY	
2.7	Task 7: Fate and Transport Analysis of Dissolved COCs in Groundwater	
2.8	TASK 8: EXPOSURE AND RISK ASSESSMENT	
2.9	Task 9: Surveying	
2.10	TASK 10: DATA EVALUATION AND SITE CONCEPTUAL MODEL	
2.11	TASK 11: REPORTING	
3.0 I	MPLEMENTATION SCHEDULE	17
4.0 F	REFERENCES	18

LIST OF TABLES

Table 1	Constituents of Concern for Soil and Groundwater
Table 2a	Summary of Shallow/Intermediate Groundwater Results: February 2008
Table 2b	Summary of Lower Sand Groundwater Results: February 2008
Table 3	Summary of Proposed Site Characterization Activities for AOI 8

LIST OF FIGURES

Figure 1	Site Location Map: AOI 8
Figure 2	Summary of Proposed Site Characterization Activities for AOI 8

LIST OF APPENDICES

Appendix A	Revised Phase II Corrective Action Activities Schedule
Appendix B	PA One Cleanup Program Meeting Letter
A 1: 0	E. 11D

Appendix C Field Procedures

1.0 INTRODUCTION

The Current Conditions Report and Comprehensive Remedial Plan (CCR) prepared by Sunoco Inc. (R&M) (Sunoco), dated June 30, 2004, proposed Phase II site characterization and corrective action activities for Sunoco's Philadelphia Refinery (Refinery), including preparation of Site Characterization Reports for individual Areas of Interest (AOIs). The CCR presented a prioritization of all eleven AOIs based on specific risk factors. To date, site characterization activities have been completed for four AOIs at the Refinery. These include AOI 1 (Belmont Terminal, #1 Tank Farm and #2 Tank Farm), AOI 4 (#4 Tank Farm), AOI 6 (Girard Point Chemicals Processing Area), and AOI 5 (Girard Point South Tank Field Area). Site characterization work plans and site characterization reports for these four AOIs were submitted to the Pennsylvania Department of Environment Protection (PADEP) and the United States Environmental Protection Agency (US EPA).

This site characterization work plan (work plan) has been prepared specifically for AOI 8, the next AOI to be characterized in accordance with the revised Phase II Corrective Action Schedule which is included as Appendix A.

AOI 8 is the northern most area of the Refinery and is known as the Point Breeze Process Area North Yard. AOI 8 is bound by the Philadelphia Gas Works (PGW) plant to the south, the Schuylkill River to the west, industrial properties to the north, and urban streets to the east (Figure 1). AOI 8 encompasses approximately 250 acres.

The North Yard was an active Refinery process area since the early twentieth century with significant process areas and above ground storage tanks (ASTs). The north yard also included the former lube, asphalt, soap, and wax plants. The majority of AOI 8 structures were demolished between 1975 and 1980. Subsequent to decommissioning of most of the process areas, a Land Treatment Unit ("LTU") was operated from 1986 through 2000. Currently, the only remaining active facilities in AOI 8 are the asphalt dock, the boiler house, a storm water separator, fuel oil storage, butane and propane storage area, and loading and unloading facilities. Much of AOI 8 is unoccupied and many of the ASTs have been demolished. The majority of the land surface in AOI 8 is not covered by impervious surfaces.

The existing monitoring well network in AOI 8 includes a total of 95 monitoring wells, 13 piezometers, and 20 recovery wells. Of the 20 recovery wells, nine are active. These nine active recovery wells are associated with three remedial systems; they include the the PGW Border Total Fluids Recovery System, the Jackson Street Sewer Total Fluids Recovery System,

and the North Yard Bulkhead / No. 3 Tank Farm Separator Total Fluids Recovery System. These remedial systems are discussed in detail in Section 1.3 of this Work Plan.

Ground water gauging of selected wells in AOI 8 occurs on a quarterly basis and is supplemented by a more comprehensive gauging event that is completed semi-annually. Sunoco samples select wells for constituents of concern (COCs) established in the CCR in AOI 8 on an annual basis. Quarterly, semi-annual and annual gauging and sampling activities, as well as the routine operation and maintenance data for the AOI 8 remedial systems, are reported to the PADEP and US EPA in Quarterly Reports.

1.1 Objectives

The objective of the proposed activities in this work plan is to characterize current environmental conditions at AOI 8 in accordance with the 2003 Consent Order and Agreement (CO&A) between Sunoco and the PADEP and the 2004 CCR. This work plan also includes activities to address any remaining issues pertaining to the characterization of the Resource, Conservation and Recovery Act (RCRA) Solid Waste Management Unit (SWMU) in AOI 8 known as SWMU 2 – Former Leaded Tank Bottoms Sludge Weathering Pad. This SWMU is discussed in detail in Section 1.2.1 of this work plan. The LTU was closed under a Consent Order and Agreement (CO&A) between PADEP and Sunoco and is currently undergoing post-closure monitoring activities. Therefore, no characterization work is proposed in the LTU.

Below is a list of the general site characterization activities proposed at AOI 8 and discussed in this work plan:

- Review of all available historical environmental reports relating to AOI 8;
- Evaluate performance of existing remediation systems;
- Advance shallow soil borings and collect shallow soil samples for laboratory analysis
 of Site compounds of concern (COCs);
- Install shallow groundwater monitoring wells;
- Survey all new wells and soil boring locations;
- Collect groundwater samples for laboratory analysis of Site COCs from all new and existing shallow and deep groundwater monitoring wells;
- Collect samples for characterization of light non-aqueous phase liquid (LNAPL) from select newly-installed monitoring wells;
- Complete LNAPL modeling to evaluate LNAPL specific volume and mobility;

- Evaluate potential vapor migration pathways using the PADEP's vapor intrusion guidance;
- Complete fate and transport modeling of dissolved COCs in site groundwater;
- Complete exposure and risk assessment activities, if necessary; and
- Prepare a Site Characterization Report detailing the results of the characterization activities.

The COCs for the proposed investigation activities include all constituents listed in Tables 5a and 5b of the CCR, and are included as Table 1 of this work plan. Data collected from the above activities will be evaluated as part of the AOI 8 site characterization process. This data will be presented in the Site Characterization Report for AOI 8 which is anticipated to be submitted to PADEP and US EPA by September 30, 2008 in accordance with the revised Phase II Corrective Action Schedule (Appendix A).

1.2 Overview of Investigative Framework and Remedial Approach for AOI 8

The current remediation program for the Refinery is performed under the 2003 CO&A between PADEP and Sunoco. In April 2004, the PADEP and US EPA signed an agreement entitled "One Cleanup Program Memorandum of Agreement (MOA or One-Cleanup Program)," which clarifies how sites remediated under Pennsylvania's Act 2 program may satisfy RCRA corrective action requirements through characterization and attainment of Act 2 remediation standards pursuant to Pennsylvania's Act 2. On November 22, 2005, Sunoco and its representatives met with officials of the PADEP and US EPA to discuss the applicability of the Sunoco Philadelphia Refinery to the One Cleanup Program. During the November 22, 2005 meeting, all parties agreed that the One Cleanup Program would benefit the project by merging the remediation obligations under the various programs into one streamlined approach which would be conducted under the existing 2003 CO&A. As a follow up to the meeting, Sunoco submitted a letter dated December 2, 2005 to US EPA and PADEP documenting the discussions at the meeting (Appendix B). As summarized in this letter, the major aspects of including the Philadelphia Refinery in the One-Cleanup Program include:

1. Submittal of a Notice of Intent to Remediate (NIR) under the PADEP Act 2 Program. Sunoco submitted a NIR for the Refinery, excluding the Belmont Terminal, to the PADEP on October 12, 2006. The NIR was accompanied by a cover letter which requested that the Refinery be included in the PA One-

Cleanup Program and that all remediation work will be completed under the 2003 CO&A. RCRA corrective action measures will be addressed concurrently with work performed under the CO&A and within the Act 2 program. The City of Philadelphia requested that a Public Involvement Plan be prepared in response to the NIR. Sunoco held a public involvement meeting in South Philadelphia on September 19, 2007.

2. Sunoco is currently in the process of revising the corrective action permit for the Philadelphia Refinery to embody the Pennsylvania One Cleanup Plan elements.

An overview of the RCRA corrective action program for the Point Breeze North Yard (AOI 8) portion of the Philadelphia Refinery is provided in the following section.

1.2.1 Overview of RCRA Corrective Action Program in AOI 8

A number of RCRA investigations were completed in AOI 8 between 1986 and 1988 on behalf of Atlantic Refining and Marketing (Atlantic), the subsidiary of Sunoco, Inc. that owns the Point Breeze portion of the Philadelphia Refinery. Atlantic has leased the Point Breeze portion of the Philadelphia Refinery to Sunoco, Inc. (R&M), a subsidiary that operates the Philadelphia Refinery. These investigations included a Phase I Preliminary Review of SWMU's, a RCRA Facility Assessment, and a RCRA Verification Work Plan. On December 9, 1988, US EPA issued a Corrective Action and Waste Minimization Permit for the Point Breeze portion of the Refinery that identified six SWMUs. This permit required additional investigation of the SWMUs to determine if corrective action was One of the SWMUs (SWMU 2 - Leaded Tank Bottoms Sludge Weathering Pad) is located in AOI 8; the remaining SWMUs are located in other AOIs at the Refinery. In 1991, a RCRA Facility Investigation (RFI) Work Plan was prepared by CH2MHill for the Refinery. The RFI Work Plan described SWMU 2 as a 50-foot by 100-foot area on which leaded gasoline storage tank bottoms sludge was placed and allowed to weather. SWMU 2 is shown in Figure 2. The startup date of the SWMU was not known, however, according to previous reports (A.T. Kearney, Inc, 1986 and NUS Corporation, 1988), the unit was reportedly constructed of naturally occurring soil and fill material and was closed in the mid-1960s. According to GES (GES, 1989), the area served as a leaded sludge weathering pad during two distinct time periods. Prior to 1959, leaded sludges were deposited in a pit at the location of the weathering pad. A Refinery building occupied this area from 1959 to 1975. In 1975, the building was razed and the remaining concrete slab foundation was used to weather leaded tank bottoms sludge. The sludge weathering area was closed again in 1980 by transferring weathered sludges to a new sludge weathering unit. The concrete pad was reportedly swept clean of residual materials and covered with clean gravel (GES, 1989). The RFI Work Plan recommended that a geophysical survey be completed in the area to determine the orientation and location of the former sludge weathering pad. The RFI Work Plan also recommended that soil samples be collected from four test trenches to be excavated around the perimeter of the pad after the pad boundary is delineated by the geophysical survey.

The results of the RCRA Facility Investigation were presented in a report prepared by ENSR Consulting and Engineering dated September 1992 (RFI). The RFI was conducted in accordance with CH2MHill's 1991 RFI Work Plan. As part of the RFI, a geophysical survey was completed to delineate the extent of the concrete pad. The RFI documented that the dimensions of the former sludge weathering pad (SWMU 2) in AOI 8 was 50 by 400 feet, not 50 by 100 feet as described in the RFI Work Plan. Nine test trenches were then excavated around the perimeter of the pad on March 4 and 5, 1992. A total of 17 soil samples were collected from the trenches and submitted for laboratory analysis and the results are described in the RFI. No soil samples were collected from soil between zero and two feet beneath the ground surface around the perimeter of the pad. Concentrations of lead in two of the 17 soil samples collected at depths greater than two feet exceeded the current PADEP Medium Specific Concentration (MSC) of 450 mg/kg; all other samples exhibited lead concentrations below 450 mg/kg.

This Work Plan includes a plan to characterize soil at this SWMU in accordance with the objectives of the 2003 CO&A, the CCR and the PA One Cleanup Program. SWMU 2 is identified as the only SWMU in AOI 8 requiring further investigation. The approach to investigating SWMU 2 is described in detail in Section 1.2.2. If site characterization and or remediation are completed at SWMU 2 in accordance with the approach discussed herein, the RCRA obligations for this area in AOI 8 will be satisfied if the PADEP and US EPA have approved of the work completed as documented in the Site Characterization Report.

1.2.2 Overview of Proposed Approach for SWMU 2

The proposed approach to address soils within SWMU 2 will support a RCRA final remedial measure, as well as support attainment of an Act 2 remediation standard, consistent with the One Cleanup Plan. The proposed approach is consistent with the approach used for other AOIs which have been previously characterized and contain leaded tank bottom SWMUs (i.e., AOI 5 and AOI 6).

Leaded Tank Bottom materials are distinguished by distinctive rust/red to black, metallic mostly oxidized scale materials. Leaded Tank Bottoms are also sometimes in a matrix of petroleum wax sludge. If materials are encountered in soil within the leaded tank bottom areas matching the physical description of the leaded tank bottoms, then Sunoco will collect samples for total lead. If the total lead results exceed 450 parts per million (ppm) (PADEP's non-residential soil MSC for lead), then the samples will be analyzed for lead via Toxicity Characteristic Leaching Procedure, EPA Test Method 1311. Delineated areas that have soils that physically resemble leaded tank bottoms, have concentrations of total lead exceeding 450 ppm, and are hazardous for lead, will retain the leaded tank bottom designation. If no soils are encountered that meet all three of these criteria, then the area will no longer be classified as a leaded tank bottom area. Sunoco will certify that these areas will no longer contain leaded tank bottoms materials, based on the procedures above, in the Site Characterization Report. The proposed soil sampling program for this portion of SWMU 2 is presented in detail in Section 2.1.

1.2.3 Overview of Proposed Approach in Non-RCRA Areas of AOI 8

The proposed approach to address groundwater and soils in the remainder of AOI 8 is in accordance with the Act 2 program. Sampling will be focused to further characterize the volume and mobility of LNAPL and the extent of site COCs in soil and groundwater. Additional soil borings or well installations may also be completed throughout AOI 8 to ensure that site soils and groundwater are fully characterized in accordance with the Act 2 program.

1.2.4 Overview of the Land Farm Treatment Unit (LTU) in AOI 8

The LTU is located in the northwestern portion of AOI 8 and encompasses approximately 20 acres. The LTU was closed under a Consent Order and Agreement (CO&A) between PADEP and Sunoco and is currently undergoing post-closure monitoring activities. Therefore, no characterization work is proposed in the LTU. A narrative describing the history and current status of the LTU will be provided in the Site Characterization Report to be prepared for AOI 8 following implementation of this work plan.

1.3 Overview of Existing Phase I Activities in AOI 8

Currently four active remediation systems operate in the North Yard. These systems are: the PGW Border Total Fluids Recovery System, the Jackson Street Sewer Total Fluids Recovery System, the North Yard Bulkhead / No. 3 Tank Farm Separator Total Fluids Recovery System, and the Jackson Street Sewer Water Curtain. These remediation systems are discussed below. Remediation system performance and monitoring data is summarized in quarterly reports that are provided to the PADEP and US EPA.

The PGW Border Total Fluids Recovery System is composed of recovery wells numbered RW-200 through RW-205 and an interceptor trench with a recovery sump (RW-206). The system was installed to address offsite migration of LNAPL. The system recovery network consists of total fluids recovery utilizing electric submersible pumps equipped with individual timers to control the on and off cycle of each pump. Total fluids are extracted from wells RW-201, RW-202, and RW-203. Total fluids produced by the 200 series pumps are routed to the North Yard 10,000-gallon holding tank where a flow meter measures incoming fluids produced by the three recovery wells. Groundwater is passed through the tank and routed to the Point Breeze Processing Area Wastewater Treatment Plant. Accumulated LNAPL is pumped out of the 10,000-gallon holding tank as needed by a vacuum truck.

The Jackson Street Sewer Total Fluids Recovery System network consists of total fluids (groundwater and LNAPL) recovery utilizing electric submersible pumps equipped with individual timers to control the pumping at each recovery well. The system was installed to address LNAPL migration to the Jackson Street Sewer and the Schuylkill River. The recovery network includes a total of three wells, RW-300, RW-301, and RW-302. Total fluids produced from the wells are routed to the North Yard 10,000-gallon

holding tank where a flow meter records the combined total fluids produced from the Jackson Street recovery well network. Recovered water is passed through the tank and routed to the Point Breeze Processing Area Wastewater Treatment Plant. Accumulated LNAPL is pumped out of the 10,000-gallon holding tank as needed by a vacuum truck.

The North Yard Bulkhead Total Fluids Recovery System consists of a 3,400-foot long interceptor trench with two recovery sumps (RW-500 and RW-501). The No. 3 Tank Farm Separator Total Fluids Recovery System consists of one recovery system RW-502 located in the center of the capped closed separator. This system was installed to address LNAPL migration to the Schuylkill River. RW-500, RW-501 and RW-502 utilize electric submersible pumps controlled by a timer to recover total fluids. The total fluids from the three recovery wells are pumped to the North Yard 10,000-gallon holding tank where a flow meter measures incoming fluids produced by the recovery wells. Groundwater is passed through the tank and routed to the Point Breeze Processing Area Wastewater Treatment Plant. Accumulated LNAPL is pumped out of the 10,000-gallon holding tank as needed by a vacuum truck.

In addition to the four remediation systems, a water curtain in Jackson Street Sewer was installed during 4th quarter 2003. The water curtain is designed to reduce hydrocarbon odors potentially migrating from Jackson Street sewer to the surrounding areas. The water curtain apparatus is located in the first manhole west of the interceptor chamber along 26th Street and consists of a single centrally located nozzle that emits a radial spray pattern. Recovered water is supplied to the water curtain apparatus from the North Yard fire water system. Heat trace was run along the water feed line allowing winter operation of the water curtain.

No additional Phase I corrective action activities are proposed in this work plan. The effectiveness of the existing AOI 8 remedial systems and the need to perform additional active remediation in AOI 8 will be evaluated following completion of the proposed site characterization activities.

1.4 Work Plan Support Activities

Several activities were performed to support the development of this work plan. These activities are summarized on the following page:

- Aquaterra Technologies, Inc. (Aquaterra) performed a round of groundwater monitoring and sampling in AOI 8 between February 4 and 8, 2008. All accessible wells in AOI 8 were gauged and select wells (40 total) were sampled for site COCs. The wells for sampling were selected to obtain a spatial representation of groundwater quality throughout AOI 8. The groundwater samples were submitted to Lancaster Laboratories of Lancaster, Pennsylvania (Act 2-certified) for analysis of site COCs. The results of these samples are presented in Tables 2a and 2b of this work plan. This data was obtained to enhance the Site Conceptual Model for AOI 8 and to refine site characterization activities proposed in this work plan;
- Aquaterra collected LNAPL from select wells which contained measurable (<0.01) LNAPL and submitted the samples to Torkelson Geochemistry, of Tulsa, Oklahoma for LNAPL characterization. This data was obtained to enhance the Site Conceptual Model for AOI 8 and to refine site characterization activities proposed in this work plan;
- Available historical aerial photographs with coverage of AOI 8 were obtained and reviewed to identify specific areas for characterization and to assist in determining previous industrial uses of AOI 8. Aerial photos were reviewed for the following years: 1928, 1930, 1943, 1959, 1965, 1970, 1973, 1975, 1980, 1985, 1986, 1990, 1992, 1995; and
- Historic reports and reports used in development of the CCR were reviewed to evaluate and refine site characterization activities proposed in this work plan. Key reports included:
 - The Atlantic Lead Weathering Pad Final Closure Report, Sun Refining and Marketing Company, Atlantic Refining and Marketing Corporation, Philadelphia Refinery, prepared by K.W. Brown & Associates, Inc., dated March 1991;
 - RCRA Facility Investigation Work Plan, Philadelphia Refinery, Sun Refining and Marketing Company, Philadelphia Pennsylvania, prepared by CH2MHILL, dated May 1991;
 - Comprehensive Remedial Plan, Philadelphia Refinery, Sun Company (R&M), prepared by ENSR Consulting and Engineering, dated September 1993;

- Remedial Action Plan for the No. 3 Tank Farm Separator, Sun Company (R&M), Philadelphia Refinery, prepared by ENSR Consulting and Engineering, dated October 1993;
- Remedial Action Plan for the North Yard Bulkhead, Sun Company (R&M), Philadelphia Refinery, prepared by ENSR Consulting and Engineering, dated October 1993;
- Remedial Action Plan for the North Yard Southern Property Boundary, Sun Company (R&M), Philadelphia Refinery, prepared by ENSR Consulting and Engineering, dated December 1993;
- Consent Order and Agreement by and between the Commonwealth of Pennsylvania, Department of Environmental Protection, Atlantic Refining & Marketing Corporation and Sunoco Company, Inc. (R&M), dated August 1996, and amended December 2000 and July 2004;
- Corrective Measures Study Work Plan, Sun Company, Inc. (R&M), Philadelphia, Pennsylvania, prepared by ENSR Consulting and Engineering, dated April 1997;
- Landfarm Treatment Unit Closure Activation Report, Philadelphia Refinery Point Breeze Processing Area, prepared by Blazosky Associates, Inc., dated November 2000:
- Amended Closure Plan, Sunoco, Inc. Philadelphia Refinery, Point Breeze Processing Area, Land Treatment Unit, prepared by Blazosky Associates, Inc., originally dated November 1988 and amended November 2002 and May 2004; and
- Amended Post-Closure Plan, Sunoco, Inc. Philadelphia Refinery, Point Breeze Processing Area, Land Treatment Unit, prepared by Blazosky Associates, Inc., originally dated November 1988 and amended June 2003 and May 2004.

2.0 PROPOSED SITE CHARACTERIZATION ACTIVITIES

Based on the identified data collection needs for AOI 8, the following site characterization tasks are proposed and included in this work plan:

- Task 1: Shallow Soil Borings and Sampling
- Task 2 Installation of Shallow/Intermediate Groundwater Monitoring Wells and Deep Soil Borings
- Task 3: Groundwater Monitoring and Sampling
- Task 4: Collection and Characterization of LNAPL Samples
- Task 5: Review of Available Aquifer Test Data
- Task 6: Evaluation of the Potential Vapor Intrusion into Indoor Air Pathway
- Task 7: Fate and Transport Analysis of Dissolved COCs in Groundwater
- Task 8: Exposure and Risk Assessment
- Task 9: Surveying
- Task 10: Data Evaluation and Site Conceptual Model
- Task 11: Reporting

The individual site characterization tasks included in this work plan are discussed in detail in the following sections.

2.1 Shallow Soil Borings and Soil Sampling

To further characterize shallow soil conditions within AOI 8, a total of 37 shallow soil borings will be completed. The locations of the borings are shown on Figure 2. Twenty-four of the 37 soil boring locations were selected to characterize shallow soil at areas with possible historic environmental concerns, including former process and tank areas, and other areas identified from reviewing historic reports and aerial photographs. The remaining soil boring locations were selected in a random manner to spatially represent other areas of AOI 8. Each shallow soil boring will be advanced from zero to two feet beneath the ground surface and one soil sample will be collected from each boring for laboratory analysis of site COCs. One shallow soil sample will also be collected from zero to two feet beneath the ground surface at each proposed groundwater monitoring well location (see Section 2.2). Soil samples will only be collected from those areas that are not covered by impervious surfaces. Soil boring and sample collection procedures are outlined in Section C.3 of Appendix C and the

proposed soil boring locations are shown on Figure 2. A summary of the proposed soil sampling activities is included in Table 3.

SWMU 2 - Former Leaded Tank Bottoms Sludge Weathering Pad

Four soil borings will be advanced around the perimeter of the existing concrete pad and two soil samples will be advanced through the northern portion of the existing concrete pad (at the location of the former sludge pit beneath the pad) at SWMU 2 in accordance with Section 1.2.2 of this work plan. These soil borings will be advanced to a depth of six feet beneath the ground surface using a hand-auger or geoprobe. Soil samples will be collected from SWMU 2 in accordance with the procedures described in section C.3 of Appendix C. If necessary, soil samples will be submitted to Lancaster Laboratories for analysis of total lead, and for TCLP lead analysis in accordance with Section 1.2.2.

2.2 Task 2: Installation of Shallow/Intermediate Groundwater Monitoring Wells

Thirty-nine fill and alluvium (shallow) or Trenton gravel (intermediate) groundwater monitoring wells are proposed to be installed in AOI 8 as shown on Figure 2 and summarized on Table 3. At four well locations, the well borings will be advanced to the top of bedrock for characterization of geology. The well borings will be advanced using hollow stem auger drilling methods and screened within the shallow or intermediate zone. All wells will be installed so that the screened interval intercepts the groundwater table, allowing for appropriate measurement of apparent LNAPL thickness. Each well will be developed subsequent to completion. All well installation, well development, and waste handling activities will be performed in accordance with the procedures described in Appendix C of this work plan.

Fourteen deep (Lower Sand) groundwater monitoring wells exist in AOI 8. These wells include N-13, N-19, N-21, N-27, N-30, N-38D, N-4, N-43, N-46D, N-50D, N-69, N-79, N-83, and N-9. As part of AOI 8 characterization, the classification of these wells will be re-evaluated considering geology and well construction. Any changes to the classifications of these wells will be described in the Site Characterization Report for AOI 8. No additional deep groundwater monitoring wells are proposed to be installed in AOI 8 as part of this work plan.

2.3 Task 3: Groundwater Monitoring and Sampling

2.3.1 Groundwater Monitoring

Upon completion of the monitoring well installations and development in AOI 8, a complete round of groundwater water elevation gauging will be performed from all accessible new and existing monitoring wells in AOI 8. All well gauging activities will be performed in accordance with the Liquid Level Gauging Procedures described in Appendix C of this work plan. Monitoring well gauging data collected during this event will be used to evaluate groundwater flow conditions and the occurrence and extent of apparent LNAPL in AOI 8.

2.3.2 Groundwater Sampling

Following completion of the groundwater gauging activities in the AOI 8, a full round of groundwater sampling will be conducted from all accessible new and existing monitoring wells that do not contain measurable LNAPL. All groundwater samples will be submitted to Lancaster Laboratories for analysis of site COCs, as listed in Table 1. Groundwater sampling will be conducted in accordance with well sampling procedures described in Appendix C of this Work Plan. Groundwater samples will not be collected from wells containing LNAPL and may not be collected from active recovery wells.

2.4 Task 4: Collection and Characterization of LNAPL Samples

LNAPL characterization data exists for 22 wells in AOI 8. LNAPL from 11 wells (N-14, N-25, N-31, N-35, N-48, N-52, N-68, N-78, N-79, PZ-204 and PZ-502) was characterized in support of the CCR and LNAPL from 11 wells (N-42, N-47, N-51, N-75, N-76, N-82, N-91, N-503, RW-205, RW-300 and RW-305) was collected by Aquaterra and characterized in support of this Work Plan.

As part of implementation of this Work Plan, additional LNAPL samples will be collected from existing or newly installed monitoring wells that have measurable LNAPL thicknesses and are not located in the immediate vicinity of a well with known LNAPL type. All LNAPL sampling activities will be completed in accordance with the section C.4 in Appendix C of this Work Plan. The LNAPL samples will be submitted to Torkelson Geochemistry of Tulsa, Oklahoma for characterization. The results of the LNAPL characterization analysis will be used to separate LNAPL plumes by product type

and to assist in evaluating specific LNAPL volume and mobility. All LNAPL data for AOI 8 will be summarized in the Site Characterization Report.

2.5 Task 5: Review of Available Aquifer Test Data

Langan reviewed relevant historical documents prepared for AOI 8 to determine if specific aquifer data that may have been collected during previous environmental investigations was available. Based on the review, sufficient aquifer data exists, including data from numerous bail-down tests, slug tests, and step and constant rate pumping tests completed in AOI 8 by others. These data will be further evaluated and summarized as a part of the Site Characterization Report. Based on the sufficiency of this data, no further aquifer testing is proposed to be completed in AOI 8 as part of this Work Plan.

2.6 Task 6: Evaluation of the Potential Vapor Intrusion (VI) into Indoor Air Pathway

As presented in the CCR, there are three potential indoor air receptors in AOI 8. The boiler house building is located in the center of AOI 8 and is operated by Sunoco. As such, this building is covered under the Refinery's OSHA monitoring plan. The other two buildings are located in the southwest portion of AOI 8 and are currently used by the U.S. Coast Guard. These buildings are not covered under the Refinery's OSHA monitoring plan.

Sunoco will be sampling indoor air within the boiler house to evaluate the potential VI pathway. The results of the sampling will be compared to the OSHA permissible exposure limits. The results of this sampling will determine whether further investigation will be performed to assess the potential VI pathway at this building. The potential VI pathway at the two Coast Guard buildings will be evaluated in accordance with the PADEP's VI guidance. The results of the VI evaluations for all receptors will be summarized in the Site Characterization Report.

2.7 Task 7: Fate and Transport Analysis of Dissolved COCs in Groundwater

Fate and transport calculations will be completed for groundwater to evaluate potential migration pathways and potential impacts to receptors, as necessary. Fate and transport modeling will be conducted for the constituents listed in Table 1 using PADEP approved analytical models (QUICK_DOMENICO.XLS and FATBACK.XLS and PENTOXSD). To support the fate and transport analyses, Sunoco will provide all assumptions, data and information used in the analytical modeling. The parameters used in the analyses will either be site-specific data obtained during previous investigations, values collected as part of future site characterization activities, and/or default parameters provided in the Act 2 regulations or guidance manual.

2.8 Task 8: Exposure and Risk Assessment

In accordance with Title 25, Chapter 250, Subchapter F, a detailed exposure assessment will be performed for AOI 8 based on the completed site characterization activities. This exposure assessment will be based on an assumed non-residential current and future site use. If completed exposure pathways are identified, then risk assessment activities will be completed in accordance with Act 2.

2.9 Task 9: Surveying

Sunoco surveyed all existing wells in AOI 8 in November 2007 in support of this work plan. Following completion of proposed soil boring and groundwater monitoring well installation activities, the new boring and well locations will be surveyed to establish the location and elevation at each boring, and the elevations of the inner and outer casing and ground surface (for wells). The well elevations will be determined to the nearest 0.01 foot relative to mean sea level. All survey activities will be performed by a Pennsylvania-licensed surveyor and referenced to the NAVD 88 datum.

2.10 Task 10: Data Evaluation and Site Conceptual Model

Data collected from the site characterization activities will be compiled and evaluated in accordance with the objectives of the 2003 CO&A and the CCR. This data will also be used to modify and refine the Site Conceptual Model. Site characterization activities described in this work plan will provide the following information to be used in refining the Site Conceptual Model:

- Soil data collected between zero and two feet below the ground surface from select soil borings will further characterize the potential direct contact exposure pathway for soil;
- Soil data collected from within SWMU 2 will further characterize conditions in accordance with Section 1.2.2;
- Installation, monitoring and sampling of new groundwater monitoring wells will further characterize groundwater quality and flow in AOI 8;
- New and existing LNAPL data in AOI 8 will allow for more accurate LNAPL classification and distribution estimates, and will refine the LNAPL specific volume and mobility modeling predictions for these areas. This data may support the optimization of existing remedial systems in AOI 8 or the design of new remedial systems in AOI 8, if necessary;
- Fate and transport modeling of dissolved phase COCs in groundwater will further characterize the potential for migration of dissolved phase COCs in groundwater in AOI 8;
- Updated survey data will allow for accurate depiction and evaluation of data points;
 and
- Throughout the characterization process of AOI 8, additional information regarding
 the current and historic uses of these areas will be obtained from available sources.
 Information obtained will be used to generate more detailed Current and Historic
 Usage figures that may be included in the Site Characterization Report, if necessary.

Data collected during this characterization process will be used to augment the existing geographic information system (GIS) database for the Refinery. The GIS will be used to further evaluate characterization needs and to visually depict current and future site conditions.

2.11 Task 11: Reporting

Following completion of the activities listed above in Tasks 1 through 10, a Site Characterization Report will be prepared for AOI 8 documenting the results of all work plan-related activities. Copies of the report will be submitted to the PADEP and US EPA for review and approval. The report will include an executive summary, description of physical site characteristics, summary of field investigation and modeling activities, supporting maps, figures and data summary tables, an exposure assessment, refinement of the Site Conceptual Model based on field investigations, and conclusions and recommendations for future site characterization and/or remedial activities, if any.

All data gathered with respect to the deep aquifer, AOI 11, will be presented in the respective AOI reports; however, a formal characterization report for AOI 11 will be compiled at the conclusion of all other AOI characterization efforts.

3.0 IMPLEMENTATION SCHEDULE

Site characterization activities described in this work plan are anticipated to begin in May 2008. It is anticipated that all field activities will be completed by June 2008. The Site Characterization Report for AOI 8 will be submitted to the PADEP and US EPA by September 30, 2008. This schedule is consistent with the revised Phase II Corrective Action Activities Schedule, which is included as Appendix A.

During the Work Plan implementation, if any significant deviations are required from the proposed scope of work, the PADEP and US EPA will be notified prior to implementation of any changes to the work scope.

4.0 REFERENCES

RCRA Facility Investigation Work Plan, Philadelphia Refinery, Sun Refining and Marketing Company, Philadelphia Pennsylvania, CHM2HILL, May 1991;

The Atlantic Lead Weathering Pad Final Closure Report, Sun Refining and marketing Company, Atlantic Refining and marketing Corporation, Philadelphia Refinery, K.W. Brown & Associates, Inc., March 1991;

Comprehensive Remedial Plan, Philadelphia Refinery, Sun Company (R&M), September 1993, ENSR Consulting and Engineering;

Remedial Action Plan for the NO.3 Tank Farm Separator, Sun Company (R&M), Philadelphia Refinery, October 1993, ENSR Consulting and Engineering;

Remedial Action Plan for the North Yard Bulkhead, Sun Company (R&M), Philadelphia Refinery, October 1993, ENSR Consulting and Engineering;

Remedial Action Plan for the North Yard Southern Property Boundary, Sun Company (R&M), Philadelphia Refinery, December 1993, ENSR Consulting and Engineering;

Consent Order and Agreement by and between the Commonwealth of Pennsylvania, Department of Environmental Protection, Atlantic Refining & Marketing Corporation and Sunoco Company, Inc. (R&M), August 1996, and amended December 2000 and July 2004;

Corrective Measures Study Work Plan, Sun Company, Inc. (R&M), Philadelphia, PA, April 1997, ENSR Consulting and Engineering;

Landfarm Treatment Unit Closure Activation Report, Philadelphia Refinery Point Breeze Processing Area, November 2000, Blazosky Associates, Inc.;

Amended Closure Plan, Sunoco, Inc. Philadelphia Refinery, Point Breeze Processing Area, Land Treatment Unit, November 1988 and amended November 2002 and May 2004, Blazosky Associates, Inc; and

Amended Post-Closure Plan, Sunoco, Inc. Philadelphia Refinery, Point Breeze Processing Area, Land Treatment Unit, November 1988 and amended June 2003 and May 2004, Blazosky Associates, Inc.

Table 1 **Constituents of Concern for Groundwater AOI 8 Work Plan for Site Characterization Sunoco Philadelphia Refinery** Philadelphia, Pennsylvania

METALS	CAS No.
Lead (dissolved)	7439-92-1

VOLATILE ORGANIC COMPOUNDS	CAS No.
1,2-dichloroethane	107-06-2
Benzene	71-43-2
Cumene	98-82-8
Ethylbenzene	100-41-4
Ethylene dibromide	106-93-4
Methyl tertiary butyl ether	1634-04-4
Toluene	108-88-3
Xylenes (total)	1330-20-7

SEMI-VOLATILE ORGANIC COMPOUNDS	CAS No.
Chrysene	218-01-9
Fluorene	86-73-7
Naphthalene	91-20-3
Phenanthrene	85-01-8
Pyrene	129-00-0

Notes:

1. Constituents are from Pennsylvania Corrective Action Process (CAP) Regulation Amendments effective December 1, 2001; provided in Chapter VI, Section E (pgs. 29-30) of PADEP Document, Closure Requirements for Underground Storage Tank Systems, effective April 1, 1998.

Table 1 (continued)

Constituents of Concern for Soil AOI 8 Work Plan for Site Characterization Sunoco Philadelphia Refinery Philadelphia, Pennsylvania

METALS	CAS No.
Lead (total)	7439-92-1

VOLATILE ORGANIC COMPOUNDS	CAS No.
1,2-dichloroethane	107-06-2
Benzene	71-43-2
Cumene	98-82-8
Ethylbenzene	100-41-4
Ethylene dibromide	106-93-4
Methyl tertiary butyl ether	1634-04-4
Toluene	108-88-3
Xylenes (total)	1330-20-7

SEMI-VOLATILE ORGANIC COMPOUNDS	CAS No.
Anthracene	120-12-7
Benzo(a)anthracene	56-55-3
Benzo (g,h,i) perylene	191-24-2
Benzo(a)pyrene	50-32-8
Benzo(b)fluoranthene	205-99-2
Chrysene	218-01-9
Fluorene	86-73-7
Naphthalene	91-20-3
Phenanthrene	85-01-8
Pyrene	129-00-0

Notes:

^{1.} Constituents are from Pennsylvania Corrective Action Process (CAP) Regulation Amendments effective December 1, 2001; provided in Chapter VI, Section E (pgs. 29-30) of PADEP Document, Closure Requirements for Underground Storage Tank Systems, effective April 1, 1998.

Table 2a Summary of Fill / Alluvium Groundwater Analytical Results **AOI 8 Workplan** Sunoco Philadelphia Refinery Philadelphia, Pennsylvania February 2008

	CAS No	PADEP Non-Residential Used Aquifer MSC for Groundwater TDS<2,500	Sample ID Sample Date Sample Matrix		Field Blank 2/8/2008 roundwate			N-1 2/6/2008 oundwate	er		N-10 2/6/2008 oundwate	er		N-11 2/6/2008 roundwat		G	N-12 2/7/2008 Groundwa		(N-16 2/6/2008 Groundwat			N-17 2/6/2008 oundwate		G	N-18 2/6/2008 roundwate			N-20 2/7/2008 Groundwat	
Volatile Organic Compounds			Unit	Result	Q	RL	Result	Q	RL	Result	Q	RL	Result	Q	RL	Result	Q	RL	Result	Q	RL	Result	Q	RL	Result	Q	RL	Result	Q	RL
Ethylbenzene	100-41-4	700	ug/l	ND	U	1.00	ND	U	1.00	ND	U	1.00	1.00		1.00	1.00		1.00	ND	U	1.00	ND	U	1.00	2.00		1.00	1.00	U	1.00
Ethylene dibromide (EDB)	106-93-4	0.05	ug/l	ND	U	0.03	ND	U	0.03	ND	U	0.03	0.03	U	0.03	0.03		0.03	ND	U	0.03	ND	U	0.03	ND	U	0.03	0.03	U	0.03
1,2-Dichloroethane	107-06-2	5	ug/l	ND	U	1.00	ND	U	1.00	ND	U	1.00	1.00	U	1.00	1.00	U	1.00	ND	U	1.00	ND	U	1.00	ND	U	1.00	1.00	U	1.00
Γoluene	108-88-3	1000	ug/l	ND	U	1.00	ND	U	1.00	ND	U	1.00	11.00		1.00	9.00		1.00	ND	U	1.00	ND	U	1.00	3.00		1.00	1.00	U	1.00
Kylene (Total)	1330-20-7	10000	ug/l	ND	U	1.00	ND	U	1.00	ND	U	1.00	15.00		1.00	12.00		1.00	ND	U	1.00	ND	U	1.00	2.00		1.00	1.00	U	1.00
Methyl Tertiary Butyl Ether	1634-04-4	20	ug/l	ND	U	1.00	ND	U	1.00	ND	U	1.00	1.00	J	1.00	1.00	U	1.00	ND	U	1.00	ND	U	1.00	ND	U	1.00	1.00	U	1.00
Benzene	71-43-2	5	ug/l	ND	U	1.00	ND	U	1.00	ND	U	1.00	10.00		1.00	6.00		1.00	ND	U	1.00	ND	U	1.00	5.00		1.00	1.00	U	1.00
Cumene	98-82-8	2300	ug/l	ND	U	2.00	ND	U	2.00	12.00		2.00	45.00		2.00	14.00		2.00	ND	U	2.00	ND	U	2.00	75.00		2.00	42.00		2.00
Semi-Volatile Organic Compou	nds																													
Pyrene	129-00-0	130	ug/l	ND	U	5.00	ND	U	5.00	13.00		5.00	3.00	J	5.00	160.00		50.00	ND	U	5.00	15.00		5.00	9.00		5.00	73.00		50.00
Chrysene	218-01-9	1.9	ug/l	ND	U	5.00	ND	U	5.00	8.00		5.00	1.00	J	5.00	74.00		50.00	ND	U	5.00	2.00	J	5.00	6.00		5.00	54.00		50.00
Phenanthrene	85-01-8	1100	ug/l	ND	U	5.00	ND	U	5.00	6.00		5.00	12.00		5.00	690.00		50.00	ND	U	5.00	ND	U	5.00	15.00		5.00	50.00	U	50.00
Fluorene	86-73-7	1900	ug/l	ND	U	5.00	ND	U	5.00	ND	U	5.00	8.00		5.00	190.00		50.00	ND	U	5.00	ND	U	5.00	10.00		5.00	62.00		50.00
Naphthalene	91-20-3	100	ug/l	ND	U	5.00	ND	U	5.00	ND	U	5.00	5.00	U	5.00	50.00	U	50.00	ND	U	5.00	ND	U	5.00	ND	U	5.00	50.00	U	50.00
Vietals																														
_ead (Total)	7439-92-1	5	mg/l	ND	U	0.00100	ND	U	0.00100	0.00071	·	0.00100	0.00100	Ū	0.00100	0.00100	U	0.00100	ND	U	0.00100	ND	U	0.00100	0.00011	J	0.00100	0.03820		0.0010

	CAS No	PADEP Non-Residential Used Aquifer MSC for Groundwater TDS<2,500	Sample ID Sample Date Sample Matrix		N-28 2/6/2008 roundwate	er		N-29 2/7/2008 oundwat			N-3 2/7/2008 oundwat	er		N-32 2/7/2008 roundwa		C	N-36 2/7/200 Groundw		G	N-37 2/7/2008 roundwate	er		N-38 2/7/2008 roundwat			N-40 2/8/2008 Groundwa			N-41 2/8/2008 Groundwa	
Volatile Organic Compounds			Unit	Result	Q	RL	Result	Q	RL	Result	Q	RL	Result	Q	RL	Result	Q	RL	Result	Q	RL	Result	Q	RL	Result	Q	RL	Result	Q	RL
Ethylbenzene	100-41-4	700	ug/l	ND	U	1.00	ND	U	1.00	ND	U	1.00	ND	U	1.00	ND	U	1.00	ND	U	1.00	ND	U	1.00	ND	U	1.00	ND	U	1.00
Ethylene dibromide (EDB)	106-93-4	0.05	ug/l	ND	U	0.03	ND	U	0.03	ND	U	0.03	ND	U	0.03	ND	U	0.03	ND	U	0.03	ND	U	0.03	ND	U	0.03	ND	U	0.03
1,2-Dichloroethane	107-06-2	5	ug/l	ND	U	1.00	ND	U	1.00	ND	U	1.00	ND	U	1.00	ND	U	1.00	ND	U	1.00	ND	U	1.00	ND	U	1.00	ND	U	1.00
Toluene	108-88-3	1000	ug/l	ND	U	1.00	ND	U	1.00	ND	U	1.00	ND	U	1.00	ND	U	1.00	ND	U	1.00	ND	U	1.00	ND	U	1.00	ND	U	1.00
Xylene (Total)	1330-20-7	10000	ug/l	ND	U	1.00	ND	U	1.00	ND	U	1.00	ND	U	1.00	ND	U	1.00	ND	U	1.00	ND	U	1.00	1.00		1.00	ND	U	1.00
Methyl Tertiary Butyl Ether	1634-04-4	20	ug/l	ND	U	1.00	ND	U	1.00	ND	U	1.00	ND	U	1.00	ND	U	1.00	ND	U	1.00	0.60	J	1.00	ND	U	1.00	ND	U	1.00
Benzene	71-43-2	5	ug/l	ND	U	1.00	ND	U	1.00	ND	U	1.00	ND	U	1.00	ND	U	1.00	ND	U	1.00	ND	U	1.00	ND	U	1.00	ND	U	1.00
Cumene	98-82-8	2300	ug/l	ND	U	2.00	ND	U	2.00	ND	U	2.00	ND	U	2.00	2.00	J	2.00	ND	U	2.00	0.80	J	2.00	5.00		2.00	7.00		2.00
Semi-Volatile Organic Compour	nds																													
Pyrene	129-00-0	130	ug/l	2.00	J	5.00	ND	U	50.00	170.00	170	50.00	ND	U	50.00	110.00		5.00	ND	U	5.00	3.00	J	5.00	31.00		5.00	250.00		50.00
Chrysene	218-01-9	1.9	ug/l	1.00	J	5.00	ND	U	50.00	47.00		50.00	ND	U	50.00	60.00		9.00	ND	U	5.00	1.00	J	5.00	15.00		5.00	150.00		50.00
Phenanthrene	85-01-8	1100	ug/l	ND	U	5.00	ND	U	50.00	ND	U	50.00	ND	U	50.00	23.00		5.00	ND	U	5.00	ND	U	5.00	39.00		5.00	660.00		50.00
Fluorene	86-73-7	1900	ug/l	ND	U	5.00	ND	U	50.00	ND	U	50.00	ND	U	50.00	20.00		5.00	ND	U	5.00	ND	U	5.00	23.00		5.00	280.00		50.00
Naphthalene	91-20-3	100	ug/l	ND	U	5.00	ND	U	50.00	ND	U	50.00	ND	U	50.00	1.00	J	5.00	ND	U	5.00	ND	U	5.00	3.00	J	5.00	33.00	J	50.00
Metals				-			-			_			-			-			-			-								
Lead (Total)	7439-92-1	5	ma/l	0.00042		0.00100	0.00005		0.00100	0.00038		0.00100	ND	U	0.00100	0.00015	j J	0.00100	ND	U	0.00100	ND	U	0.00100	0.00100	U	0.00100	0.00011		0.00100

Notes:

PADEP - Pennsylvania Department of Environmental Protection
ug/l - Micrograms per liter
mg/l - Milligrams per liter
MSC - PADEP's Medium Specific Concentration for Impact to Groundwater

RL - Reporting limit (limit of quantitation)

ND - Not detected.

Organic Qualifiers: Q - Qualifier

- U Analyte was analyzed but not detected.
 J Compound present. Reported value may not be accurate or precise.
 UD Compound analyzed at dilution, but not detected.
- JD Compound analyzed at dilution. Compound present, but reported value may not be accurate or precise.
- D Compound analyzed at dilution.

Inorganic Qualifiers:

- U Analyte was analyzed but not detected.
- B Compound present. Reported value may not be accurate or precise.

- Exceedance Summary:

 10 Reporting limit exceeds the PADEP Non-Residential Used Aquifer MSC for Groundwater TDS<2,500.

 10 Compound exceeds the PADEP Non-Residential Used Aquifer MSC for Groundwater TDS<2,500.

Table 2a Summary of Fill / Alluvium Groundwater Analytical Results **AOI 8 Workplan** Sunoco Philadelphia Refinery Philadelphia, Pennsylvania February 2008

	CAS No	PADEP Non-Residential Used Aquifer MSC for Groundwater TDS<2,500	Sample ID Sample Date Sample Matrix	(N-24 2/7/2008 Groundwat			N-55 2/8/2008 roundwater		N-56 2/8/2008 Groundwate	r	2/7/	57 2008 dwater	G	N-58 2/7/2008 Groundwater		2/7/	-60 2008 dwater	C	N-61 2/7/2008 Groundwat		1	N-64 2/8/2008 Groundwat			N-65 2/6/2008 roundwater	
Volatile Organic Compounds			Unit	Result	Q	RL	Result	Q RL	Result	t Q	RL	Result		Result	Q F	RL Re	sult (Q RL	Result	Q	RL	Result	Q	RL	Result		RL
Ethylbenzene	100-41-4	700	ug/l	ND	U	1.00	ND	U 1.00		U	1.00	2.00	1.00	ND	-		ID	U 1.00	15.00		1.00	ND	U	1.00	ND		1.00
Ethylene dibromide (EDB)	106-93-4	0.05	ug/l	ND	U	0.03	ND	U 0.03		U	0.03	ND	J 0.03	ND			ID I	U 0.03	ND	U	0.03	ND	U	0.03	ND		0.03
1,2-Dichloroethane	107-06-2	5	ug/l	ND	U	1.00	ND	U 1.00		U	1.00	ND	J 1.00	ND			ID I	U 1.00	ND	U	1.00	ND	U	1.00	ND		1.00
Toluene	108-88-3	1000	ug/l	ND	U	1.00	ND	U 1.00		U	1.00	0.80	J 1.00	0.80			ID	U 1.00	9.00		1.00	ND	U	1.00	ND		1.00
Xylene (Total)	1330-20-7	10000	ug/l	1.00		1.00	ND	U 1.00		U	1.00	230.00	1.00	140.00			ID I	U 1.00	52.00		1.00	ND	U	1.00	ND		1.00
Methyl Tertiary Butyl Ether	1634-04-4	20	ug/l	ND	U	1.00	ND	U 1.00		U	1.00	ND	J 1.00	ND			ID I	U 1.00	ND	U	1.00	ND	U	1.00	ND		1.00
Benzene	71-43-2	5	ug/l	0.80	J	1.00	ND	U 1.00		U	1.00	2.00	1.00	2.00			60	J 1.00	21000.00	E	100.00	ND	U	1.00	ND		1.00
Cumene	98-82-8	2300	ug/l	19.00		2.00	ND	U 2.00	3.00		2.00	4.00	2.00	10.00	2.	۱ 00	ID	U 2.00	11.00		2.00	ND	U	2.00	ND	U 2	2.00
Semi-Volatile Organic Compou																											
Pyrene	129-00-0	130	ug/l	ND	U	50.00	ND	U 5.00			10.00	3.00	J 5.00	3.00			.00	5.00	6.00		5.00	ND	U	5.00	ND		25.00
Chrysene	218-01-9	1.9	ug/l	ND	U	50.00	ND	U 5.00			10.00	2.00	J 5.00	1.00			.00	5.00	2.00	J	5.00	ND	U	5.00	ND		25.00
Phenanthrene	85-01-8	1100	ug/l	ND	U	50.00	ND	U 5.00			10.00		J 5.00	ND			00	J 5.00	ND	U	5.00	ND	U	5.00	ND		25.00
Fluorene	86-73-7	1900	ug/l	ND	U	50.00	ND	U 5.00			10.00		J 5.00	ND			00	J 5.00	3.00	J	5.00	2.00	J	5.00	ND		25.00
Naphthalene	91-20-3	100	ug/l	ND	U	50.00	ND	U 5.00	2.00	J	10.00	ND	J 5.00	ND	U 5.	00 2	00	J 5.00	1.00	J	5.00	ND	U	5.00	ND	U 2	25.00
Metals																											
Lead (Total)	7439-92-1	5	mg/l	0.00029	J	0.00100	0.00040	J 0.001	00 ND	U	0.00100	ND	J 0.00100) ND	U 0.00	0100 N	ID	U 0.00100) ND	U	0.00100	ND	U	0.00100	0.00006	J 0.0	00100
	CAS No	PADEP Non-Residential Used Aquifer MSC for Groundwater TDS<2,500	Sample ID Sample Date Sample Matrix	(N-66 2/8/2008 Groundwat			N-5 2/6/2008 roundwater		N-67 2/8/2008 Groundwate	r	2/7/	.73 2008 dwater	G	N-74 2/7/2008 Groundwater		2/7/	-77 2008 dwater	C	N-8 2/7/2008 Groundwat			N-85 2/6/2008 Groundwat			N-9 2/7/2008 roundwater	
Volatile Organic Compounds	CAS No	Aquifer MSC for Groundwater	Sample Date	Result	2/8/2008			2/6/2008	Resul	2/8/2008 Groundwate	r RL	2/7/	2008 dwater	Result	2/7/2008 Groundwater	RL Re	2/7/ Groun	2008 dwater	Result	2/7/2008		Result	2/6/2008			2/7/2008 roundwater	RL
Ethylbenzene	100-41-4	Aquifer MSC for Groundwater TDS<2,500	Sample Date Sample Matrix	Result ND	2/8/2008	RL 1.00	G Result ND	2/6/2008 roundwater 2 RL U 1.00) ND	2/8/2008 Groundwate t Q U	RL 1.00	2/7/ Groun	2008 dwater 2 RL J 1.00	Result ND	2/7/2008 Groundwater	00 N	2/7/ Groun	2008 dwater 20 RL U 1.00	Result ND	2/7/2008 Groundwat	RL 1.00	Result ND	2/6/2008 Groundwat	RL 1.00	Result ND	2/7/2008 roundwater Q U 1	1.00
Ethylbenzene Ethylene dibromide (EDB)	100-41-4 106-93-4	Aquifer MSC for Groundwater TDS<2,500	Sample Date Sample Matrix Unit	Result ND ND	2/8/2008	RL 1.00 0.03	Result ND ND	2/6/2008 roundwater Q RL U 1.00 U 0.00	ND ND	2/8/2008 Groundwate t Q U U	RL 1.00 0.03	Groun Result ND ND	2008 dwater 20 RL J 1.00 J 0.03	Result ND ND	2/7/2008 Groundwater Q F U 1. U 0.	00 N	2/7/ Groun	2008 dwater 2 RL U 1.00 U 0.03	Result ND ND	2/7/2008 Groundwat	RL 1.00 0.03	Result ND ND	2/6/2008 Groundwat	RL 1.00 0.03	Result ND ND	2/7/2008 roundwater 0 U 1 U 0	1.00 0.03
Ethylbenzene Ethylene dibromide (EDB) 1,2-Dichloroethane	100-41-4 106-93-4 107-06-2	Aquifer MSC for Groundwater TDS<2,500 700 0.05 5	Sample Date Sample Matrix Unit ug/I ug/I ug/I	Result ND ND ND	2/8/2008	RL 1.00 0.03 1.00	Result ND ND ND ND	2/6/2008 roundwater Q RL U 1.00 U 0.03 U 1.00	ND ND ND ND	2/8/2008 Groundwate t Q U U U	RL 1.00 0.03 1.00	2/7/ Ground Result ND ND ND	2008 dwater 20 RL J 1.00 J 0.03 J 1.00	Result ND ND ND	2/7/2008 Groundwater Q F U 1. U 0. U 1.	00 N 03 N 00 N	2/7/ Groun sult ID ID	2008 dwater 20 RL U 1.00 U 0.03 U 1.00	Result ND ND ND	2/7/2008 Groundwat	RL 1.00 0.03 1.00	Result ND ND ND	2/6/2008 Groundwat Q U U U	RL 1.00 0.03 1.00	Result ND ND ND ND	2/7/2008 roundwater 0 U 1 U 0 U 1	1.00 0.03 1.00
Ethylbenzene Ethylene dibromide (EDB) 1,2-Dichloroethane Toluene	100-41-4 106-93-4 107-06-2 108-88-3	Aquifer MSC for Groundwater TDS<2,500 700 0.05 5 1000	Sample Date Sample Matrix Unit ug/l ug/l ug/l ug/l ug/l	Result ND ND ND ND ND	2/8/2008	RL 1.00 0.03 1.00 1.00	Result ND ND ND ND ND ND	2/6/2008 roundwater Q RL U 1.00 U 0.03 U 1.00 U 1.00 U 1.00	ND ND ND ND ND	2/8/2008 Groundwate t Q U U U	RL 1.00 0.03 1.00 1.00	Result ND ND ND ND ND	2008 dwater 2 RL J 1.00 J 0.03 J 1.00 J 1.00 J 1.00	Result ND ND ND ND ND	2/7/2008 Groundwater	00 N 03 N 00 N	2/7/ Groun	2008 dwater 20 RL U 1.00 U 0.03 U 1.00 U 1.00 U 1.00	Result ND ND ND ND ND	2/7/2008 Groundwat	RL 1.00 0.03 1.00 1.00	Result ND ND ND ND ND	2/6/2008 Groundwat Q U U	RL 1.00 0.03 1.00 1.00	Result ND ND ND ND ND ND	2/7/2008 roundwater 0 U 1 U 0 U 1 U 1	1.00 0.03 1.00 1.00
Ethylbenzene Ethylene dibromide (EDB) 1,2-Dichloroethane Toluene Xylene (Total)	100-41-4 106-93-4 107-06-2 108-88-3 1330-20-7	Aquifer MSC for Groundwater TDS<2,500 700 0.05 5 1000 10000	Sample Date Sample Matrix Unit ug/l ug/l ug/l ug/l ug/l ug/l	Result ND ND ND ND ND ND ND ND	2/8/2008	RL 1.00 0.03 1.00 1.00 1.00	Result ND ND ND ND ND ND ND ND	2/6/2008 roundwater	ND ND ND ND ND ND ND	2/8/2008 Groundwate t Q U U U U U	RL 1.00 0.03 1.00 1.00 1.00	Result ND ND ND ND ND ND 1.00	2008 dwater 2 RL J 1.00 J 0.03 J 1.00 J 1.00 J 1.00	Result ND ND ND ND ND ND ND	2/7/2008 Groundwater	00 N 03 N 00 N 00 N	2/7/ Groun	2008 dwater 20 RL U 1.00 U 0.03 U 1.00 U 1.00 U 1.00 J 1.00	Result ND ND ND ND ND ND ND ND	2/7/2008 Groundwat	RL 1.00 0.03 1.00 1.00 1.00	Result ND ND ND ND ND ND ND	2/6/2008 Groundwat Q U U U	RL 1.00 0.03 1.00 1.00 1.00	Result ND ND ND ND ND ND ND ND ND	2/7/2008 roundwater Q U 1 U 0 U 1 U 1 U 1	1.00 0.03 1.00 1.00 1.00
Ethylbenzene Ethylene dibromide (EDB) 1,2-Dichloroethane Toluene Xylene (Total) Methyl Tertiary Butyl Ether	100-41-4 106-93-4 107-06-2 108-88-3 1330-20-7 1634-04-4	Aquifer MSC for Groundwater TDS<2,500 700 0.05 5 1000 10000 20	Sample Date Sample Matrix Unit ug/l ug/l ug/l ug/l ug/l ug/l ug/l	Result ND ND ND ND ND ND ND ND ND ND ND ND	2/8/2008	RL 1.00 0.03 1.00 1.00 1.00 1.00	Result ND ND ND ND ND ND ND ND ND ND ND ND	2/6/2008 roundwater	ND ND ND ND ND ND ND ND	2/8/2008 Groundwate t Q U U U U U U	RL 1.00 0.03 1.00 1.00 1.00	2/7/ Groun	2008 dwater Page 1.00 J 0.03 J 1.00 J 1.00 J 1.00 J 1.00 J 1.00 J 1.00	Result ND ND ND ND ND ND ND ND ND ND ND	2/7/2008 Groundwater Q F U 1. U 0. U 1. U 1. U 1. U 1. U 1.	00 N 03 N 00 N 00 N 00 O	2/7/ Groun	2008 dwater RL U 1.00 U 0.03 U 1.00 U 1.00 J 1.00 U 1.00 U 1.00	Result ND ND ND ND ND ND ND ND ND ND ND ND	2/7/2008 Groundwat	RL 1.00 0.03 1.00 1.00 1.00	Result ND ND ND ND ND ND ND ND ND N	2/6/2008 Groundwat Q U U U	RL 1.00 0.03 1.00 1.00 1.00 1.00	Result ND ND ND ND ND ND ND ND ND N	2/7/2008 roundwater Q	1.00 0.03 1.00 1.00 1.00
Ethylbenzene Ethylene dibromide (EDB) 1,2-Dichloroethane Toluene Xylene (Total) Methyl Tertiary Butyl Ether Benzene	100-41-4 106-93-4 107-06-2 108-88-3 1330-20-7 1634-04-4 71-43-2	Aquifer MSC for Groundwater TDS<2,500 700 0.05 5 1000 10000 20 5	Sample Date Sample Matrix Unit ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/	Result ND ND ND ND ND ND ND ND ND N	2/8/2008	RL 1.00 0.03 1.00 1.00 1.00 1.00	Result ND ND ND ND ND ND ND ND ND ND ND ND ND	2/6/2008 roundwater Q RL U 1.00 U 0.03 U 1.00 U 1.00 U 1.00 U 1.00 U 1.00 U 1.00 U 1.00	ND ND ND ND ND ND ND ND ND	2/8/2008 Groundwate t Q U U U U U	RL 1.00 0.03 1.00 1.00 1.00 1.00	Pesult ND ND ND ND ND ND ND ND ND ND ND ND ND	2008 dwater D RL J 1.00 J 0.03 J 1.00 J 1.00 J 1.00 J 1.00 J 1.00 J 1.00 J 1.00	Result ND ND ND ND ND ND ND ND 25.00	2/7/2008 Groundwater Q F U 1. U 0. U 1. U 1. U 1. U 1. U 1. U 1.	00 N 03 N 00 N 00 N 00 O 00 N	2/7/ Groun	2008 dwater 0 RL U 1.00 U 0.03 U 1.00 U 1.00 U 1.00 U 1.00 U 1.00 U 1.00 U 1.00	Result ND ND ND ND ND ND ND ND ND ND ND ND	2/7/2008 Groundwat	RL 1.00 0.03 1.00 1.00 1.00 1.00	Result ND ND ND ND ND ND ND ND ND N	2/6/2008 Groundwat Q U U U	RL 1.00 0.03 1.00 1.00 1.00 1.00	Result ND ND ND ND ND ND ND ND ND ND ND ND ND	2/7/2008 roundwater Q	1.00 0.03 1.00 1.00 1.00 1.00
Ethylbenzene Ethylene dibromide (EDB) 1,2-Dichloroethane Toluene Xylene (Total) Methyl Tertiary Butyl Ether Benzene Cumene	100-41-4 106-93-4 107-06-2 108-88-3 1330-20-7 1634-04-4 71-43-2 98-82-8	Aquifer MSC for Groundwater TDS<2,500 700 0.05 5 1000 10000 20	Sample Date Sample Matrix Unit ug/l ug/l ug/l ug/l ug/l ug/l ug/l	Result ND ND ND ND ND ND ND ND ND ND ND ND	2/8/2008	RL 1.00 0.03 1.00 1.00 1.00 1.00	Result ND ND ND ND ND ND ND ND ND ND ND ND	2/6/2008 roundwater	ND ND ND ND ND ND ND ND ND	2/8/2008 Groundwate t Q U U U U U U	RL 1.00 0.03 1.00 1.00 1.00	2/7/ Groun	2008 dwater Page 1.00 J 0.03 J 1.00 J 1.00 J 1.00 J 1.00 J 1.00 J 1.00	Result ND ND ND ND ND ND ND ND ND ND ND	2/7/2008 Groundwater Q F U 1. U 0. U 1. U 1. U 1. U 1. U 1. U 1.	00 N 03 N 00 N 00 N 00 O 00 N	2/7/ Groun	2008 dwater RL U 1.00 U 0.03 U 1.00 U 1.00 J 1.00 U 1.00 U 1.00	Result ND ND ND ND ND ND ND ND ND ND ND ND	2/7/2008 Groundwat	RL 1.00 0.03 1.00 1.00 1.00	Result ND ND ND ND ND ND ND ND ND N	2/6/2008 Groundwat Q U U U	RL 1.00 0.03 1.00 1.00 1.00 1.00	Result ND ND ND ND ND ND ND ND ND N	2/7/2008 roundwater Q	1.00 0.03 1.00 1.00 1.00
Ethylbenzene Ethylene dibromide (EDB) 1,2-Dichloroethane Toluene Xylene (Total) Methyl Tertiary Butyl Ether Benzene Cumene Semi-Volatile Organic Compou	100-41-4 106-93-4 107-06-2 108-88-3 1330-20-7 1634-04-4 71-43-2 98-82-8	Aquifer MSC for Groundwater TDS<2,500 700 0.05 5 1000 10000 20 5 2300	Sample Date Sample Matrix Unit ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/	Result ND ND ND ND ND ND ND ND ND ND ND ND ND	2/8/2008	RL 1.00 0.03 1.00 1.00 1.00 1.00 1.00 2.00	Result ND ND ND ND ND ND ND ND ND ND ND ND ND	2/6/2008 roundwater Q RL U 1.00 U 0.00 U 1.00 U 1.00 U 1.00 U 1.00 U 1.00 U 1.00 U 1.00 U 1.00	ND ND ND ND ND ND ND ND ND ND ND ND ND	2/8/2008 Groundwate t Q U U U U U U	RL 1.00 0.03 1.00 1.00 1.00 1.00 1.00 2.00	Result ND ND ND ND 1.00 ND ND ND ND	2008 dwater 2 RL 1.00 J 0.03 J 1.00 J 1.00 J 1.00 J 1.00 J 1.00 J 1.00 J 1.00 J 1.00 J 2.00	Result ND ND ND ND ND ND ND ND ND ND ND ND ND	2/7/2008 Groundwater Q F U 1. U 0. U 1. U 1. U 1. U 1. U 1. U 2.	00 N 03 N 00 N 00 N 00 O 00 O 00 N 00 N 00 N	2/7/ Groun	2008 dwater D RL U 1.00 U 0.03 U 1.00 U 1.00 U 1.00 U 1.00 U 1.00 U 1.00 U 1.00	Result ND ND ND ND ND ND ND ND ND ND ND ND ND	2/7/2008 Groundwat	RL 1.00 0.03 1.00 1.00 1.00 1.00 1.00 2.00	Result ND ND ND ND ND ND ND ND ND N	2/6/2008 Groundwat Q U U U	RL 1.00 0.03 1.00 1.00 1.00 1.00 1.00 2.00	Result ND ND ND ND ND ND ND ND ND ND ND ND ND	2/7/2008 roundwater Q U 1 U 0 U 1 U 1 U 1 U 1 U 1 U 1 U 1	1.00 0.03 1.00 1.00 1.00 1.00 1.00 2.00
Ethylbenzene Ethylene dibromide (EDB) 1,2-Dichloroethane Toluene Xylene (Total) Methyl Tertiary Butyl Ether Benzene Cumene	100-41-4 106-93-4 107-06-2 108-88-3 1330-20-7 1634-04-4 71-43-2 98-82-8 nds	Aquifer MSC for Groundwater TDS<2,500 700 0.05 5 1000 10000 20 5 2300	Sample Date Sample Matrix Unit ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/	Result ND ND ND ND ND ND ND ND ND N	2/8/2008	RL 1.00 0.03 1.00 1.00 1.00 1.00 2.00	Result ND ND ND ND ND ND ND ND ND ND ND ND ND	2/6/2008 roundwater Q RL U 1.00 U 0.00 U 1.00 U 1.00 U 1.00 U 1.00 U 1.00 U 1.00 U 1.00 U 3.00	ND ND ND ND ND ND ND ND ND ND ND ND ND N	2/8/2008 Groundwate t	RL 1.00 0.03 1.00 1.00 1.00 1.00 1.00 2.00	Result ND ND ND 1.00 ND ND ND ND ND ND ND ND ND ND ND ND ND	2008 dwater 2 RL 1.00 J 0.03 J 1.00 J 1.00 J 1.00 J 1.00 J 1.00 J 1.00 J 1.00 J 5.00	Result	2/7/2008 Groundwater Q F U 1. U 0. U 1. U 1. U 1. U 1. U 2.	00 N 03 N 00 N 00 N 00 O 00 N 00 N 00 N	2/7/ Groun	2008 dwater	Result ND ND ND ND ND ND ND ND ND ND ND ND ND	2/7/2008 Groundwat	RL 1.00 0.03 1.00 1.00 1.00 1.00 2.00	Result ND ND ND ND ND ND ND ND ND ND ND ND ND	2/6/2008 Groundwat Q U U U	RL 1.00 0.03 1.00 1.00 1.00 1.00 1.00 2.00	Result ND ND ND ND ND ND ND ND ND ND ND ND ND	2/7/2008 roundwater Q U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	1.00 0.03 1.00 1.00 1.00 1.00 1.00 2.00
Ethylbenzene Ethylene dibromide (EDB) 1,2-Dichloroethane Toluene Xylene (Total) Methyl Tertiary Butyl Ether Benzene Cumene Semi-Volatile Organic Compou Pyrene Chrysene	100-41-4 106-93-4 107-06-2 108-88-3 1330-20-7 1634-04-4 71-43-2 98-82-8 129-00-0 218-01-9	Aquifer MSC for Groundwater TDS<2,500 700 0.05 5 1000 10000 20 5 2300	Sample Date Sample Matrix Unit ug/I ug/I ug/I ug/I ug/I ug/I ug/I ug/I ug/I ug/I ug/I ug/I ug/I ug/I ug/I	Result	2/8/2008	RL 1.00 0.03 1.00 1.00 1.00 1.00 2.00	Result ND ND ND ND ND ND ND ND ND ND ND ND ND	2/6/2008 roundwater Q RL U 1.00 U 0.03 U 1.00 U 1.00 U 1.00 U 1.00 U 1.00 U 1.00 U 1.00 J 5.00 J 5.00	ND ND ND ND ND ND ND ND ND ND ND ND ND N	2/8/2008 Groundwate t Q U U U U U U U U U U U U U U U U U U U	RL 1.00 0.03 1.00 1.00 1.00 1.00 2.00	Result ND ND ND ND ND ND ND ND ND ND ND ND ND	2008 dwater 2 RL J 1.00 J 0.03 J 1.00 J 1.00 J 1.00 J 1.00 J 1.00 J 1.00 J 1.00 J 5.00 J 5.00 J 5.00	Result ND ND ND ND ND ND ND ND ND ND ND ND ND	2/7/2008 Groundwater Q F U 1. U 0. U 1. U 1. U 1. U 1. U 2. J 5. U 5.	00 N 03 N 00 N 00 N 00 O 00 N 00 N 00 N 00 N	2/7/ Groun sult (ID ID ID ID ID ID ID ID	2008 dwater D RL U 1.00 U 0.03 U 1.00 U 1.00 U 1.00 U 1.00 U 1.00 U 1.00 U 5.00 U 5.00	Result ND ND ND ND ND ND ND ND ND ND ND ND ND	2/7/2008 Groundwate	RL 1.00 0.03 1.00 1.00 1.00 1.00 2.00	Result ND ND ND ND ND ND ND ND ND ND ND ND ND	2/6/2008 Groundwat	RL 1.00 0.03 1.00 1.00 1.00 1.00 2.00	Result ND ND ND ND ND ND ND ND ND ND ND ND ND	2/7/2008 roundwater Q	1.00 0.03 1.00 1.00 1.00 1.00 1.00 2.00 5.00
Ethylbenzene Ethylene dibromide (EDB) 1,2-Dichloroethane Toluene Xylene (Total) Methyl Tertiary Butyl Ether Benzene Cumene Semi-Volatile Organic Compour	100-41-4 106-93-4 107-06-2 108-88-3 1330-20-7 1634-04-4 71-43-2 98-82-8 129-00-0 218-01-9 85-01-8	Aquifer MSC for Groundwater TDS<2,500 700 0.05 5 1000 10000 20 5 2300 130 1.9 1100	Sample Date Sample Matrix Unit ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/	Result ND ND ND ND ND ND ND N	2/8/2008	RL 1.00 0.03 1.00 1.00 1.00 1.00 2.00	Result ND ND ND ND ND ND ND ND ND N	2/6/2008 roundwater Q RL U 1.00 U 0.03 U 1.00 U 1.00 U 1.00 U 1.00 U 1.00 U 1.00 U 1.00 J 5.00 J 5.00 J 5.00	ND ND ND ND ND ND ND ND ND ND ND ND ND N	2/8/2008 Groundwate t	RL 1.00 0.03 1.00 1.00 1.00 1.00 1.00 2.00	Result ND ND ND ND 1.00 ND ND ND ND ND ND ND ND ND ND ND ND ND	2008 dwater 2 RL J 1.00 J 0.03 J 1.00 J 1.00 J 1.00 J 1.00 J 1.00 J 1.00 J 1.00 J 5.00 J 5.00 J 5.00 J 5.00	Result ND ND ND ND ND ND ND ND ND ND ND ND ND	2/7/2008 Groundwater Q F U 1. U 0. U 1. U 1. U 1. U 2. J 5. U 5.	00 N 03 N 00 N 00 N 00 O 00 N 00 N 00 N 00 N 00	2/7/ Groun sult ID ID ID ID ID ID ID ID ID I	2008 dwater Q RL U 1.00 U 0.03 U 1.00 U 1.00 U 1.00 U 1.00 U 1.00 U 1.00 U 5.00 U 5.00 U 5.00 U 5.00	Result ND ND ND ND ND ND ND ND ND ND ND ND ND	2/7/2008 Groundwat	RL 1.00 0.03 1.00 1.00 1.00 1.00 2.00	Result ND ND ND ND ND ND ND ND ND ND ND ND ND	2/6/2008 Groundwat	RL 1.00 0.03 1.00 1.00 1.00 1.00 2.00	Result ND ND ND ND ND ND ND ND ND ND ND ND ND	2/7/2008 roundwater Q U 1 U 0 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 5 U 5 U 5	1.00 0.03 1.00 1.00 1.00 1.00 1.00 2.00 5.00 5.00
Ethylbenzene Ethylene dibromide (EDB) 1,2-Dichloroethane Toluene Xylene (Total) Methyl Tertiary Butyl Ether Benzene Cumene Semi-Volatile Organic Compou Pyrene Chrysene Phenanthrene Fluorene	100-41-4 106-93-4 107-06-2 108-88-3 1330-20-7 1634-04-4 71-43-2 98-82-8 nds 129-00-0 218-01-9 85-01-8 86-73-7	Aquifer MSC for Groundwater TDS<2,500 700 0.05 5 1000 10000 20 5 2300 130 1.9 1100 1900	Sample Date Sample Matrix Unit ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/	Result ND ND ND ND ND ND ND N	2/8/2008	RL 1.00 0.03 1.00 1.00 1.00 1.00 2.00	Result ND ND ND ND ND ND ND ND ND N	2/6/2008 roundwater Q RL U 1.00 U 0.03 U 1.00 U 1.00 U 1.00 U 1.00 U 1.00 U 1.00 U 1.00 U 5.00 U 5.00 U 5.00	ND ND ND ND ND ND ND ND ND ND ND ND ND N	2/8/2008 Groundwate t	RL 1.00 0.03 1.00 1.00 1.00 1.00 2.00 5.00 5.00 5.00	Result ND ND ND ND ND ND ND ND ND ND ND ND ND	2008 dwater D RL J 1.00 J 0.03 J 1.00 J 1.00 J 1.00 J 1.00 J 1.00 J 5.00 J 5.00 J 5.00 J 5.00 J 5.00	Result	2/7/2008 Groundwater Q F U 1. U 0. U 1. U 1. U 1. U 2. J 5. U 5. J 5.	00 N 03 N 00 N 00 N 00 O 00 N 00 N 00 N 00 N 00	2/7/ Groun sult ID ID ID ID ID ID ID ID ID I	2008 dwater 2 RL 1.00 U 1.00 U 0.03 U 1.00 U 1.00 U 1.00 U 1.00 U 5.00 U 5.00 U 5.00 U 5.00 U 5.00	Result ND ND ND ND ND ND ND ND ND ND ND ND ND	2/7/2008 Groundwate	RL 1.00 0.03 1.00 1.00 1.00 1.00 2.00 5.00 5.00 5.00	Result ND ND ND ND ND ND ND ND ND ND ND ND ND	2/6/2008 Groundwat	RL 1.00 0.03 1.00 1.00 1.00 1.00 2.00 5.00 5.00 5.00	Result ND ND ND ND ND ND ND ND ND ND ND ND ND	2/7/2008 roundwater Q	1.00 0.03 1.00 1.00 1.00 1.00 1.00 2.00 5.00 5.00 5.00 5.00
Ethylbenzene Ethylene dibromide (EDB) 1,2-Dichloroethane Toluene Xylene (Total) Methyl Tertiary Butyl Ether Benzene Cumene Semi-Volatile Organic Compou Pyrene Chrysene Phenanthrene Fluorene Naphthalene	100-41-4 106-93-4 107-06-2 108-88-3 1330-20-7 1634-04-4 71-43-2 98-82-8 129-00-0 218-01-9 85-01-8	Aquifer MSC for Groundwater TDS<2,500 700 0.05 5 1000 10000 20 5 2300 130 1.9 1100	Sample Date Sample Matrix Unit ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/	Result ND ND ND ND ND ND ND N	2/8/2008	RL 1.00 0.03 1.00 1.00 1.00 1.00 2.00	Result ND ND ND ND ND ND ND ND ND N	2/6/2008 roundwater Q RL U 1.00 U 0.03 U 1.00 U 1.00 U 1.00 U 1.00 U 1.00 U 1.00 U 1.00 J 5.00 J 5.00 J 5.00	ND ND ND ND ND ND ND ND ND ND ND ND ND N	2/8/2008 Groundwate t	RL 1.00 0.03 1.00 1.00 1.00 1.00 1.00 2.00	Result ND ND ND ND 1.00 ND ND ND ND ND ND ND ND ND ND ND ND ND	2008 dwater 2 RL J 1.00 J 0.03 J 1.00 J 1.00 J 1.00 J 1.00 J 1.00 J 1.00 J 1.00 J 5.00 J 5.00 J 5.00 J 5.00	Result ND ND ND ND ND ND ND ND ND ND ND ND ND	2/7/2008 Groundwater Q F U 1. U 0. U 1. U 1. U 1. U 2. J 5. U 5. J 5.	00 N 03 N 00 N 00 N 00 O 00 N 00 N 00 N 00 N 00	2/7/ Groun sult ID ID ID ID ID ID ID ID ID I	2008 dwater Q RL U 1.00 U 0.03 U 1.00 U 1.00 U 1.00 U 1.00 U 1.00 U 1.00 U 5.00 U 5.00 U 5.00 U 5.00	Result ND ND ND ND ND ND ND ND ND ND ND ND ND	2/7/2008 Groundwat	RL 1.00 0.03 1.00 1.00 1.00 1.00 2.00	Result ND ND ND ND ND ND ND ND ND ND ND ND ND	2/6/2008 Groundwat	RL 1.00 0.03 1.00 1.00 1.00 1.00 2.00	Result ND ND ND ND ND ND ND ND ND ND ND ND ND	2/7/2008 roundwater Q	1.00 0.03 1.00 1.00 1.00 1.00 1.00 2.00 5.00 5.00
Ethylbenzene Ethylene dibromide (EDB) 1,2-Dichloroethane Toluene Xylene (Total) Methyl Tertiary Butyl Ether Benzene Cumene Semi-Volatile Organic Compou Pyrene Chrysene Phenanthrene Fluorene	100-41-4 106-93-4 107-06-2 108-88-3 1330-20-7 1634-04-4 71-43-2 98-82-8 nds 129-00-0 218-01-9 85-01-8 86-73-7	Aquifer MSC for Groundwater TDS<2,500 700 0.05 5 1000 10000 20 5 2300 130 1.9 1100 1900	Sample Date Sample Matrix Unit ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/	Result ND ND ND ND ND ND ND N	2/8/2008	RL 1.00 0.03 1.00 1.00 1.00 1.00 2.00	Result ND ND ND ND ND ND ND ND ND N	2/6/2008 roundwater Q RL U 1.00 U 0.03 U 1.00 U 1.00 U 1.00 U 1.00 U 1.00 U 1.00 U 1.00 U 5.00 U 5.00 U 5.00	ND ND ND ND ND ND ND ND ND ND ND ND ND N	2/8/2008 Groundwate t	RL 1.00 0.03 1.00 1.00 1.00 1.00 2.00 5.00 5.00 5.00	Result ND ND ND ND ND ND ND ND ND ND ND ND ND	2008 dwater D RL J 1.00 J 0.03 J 1.00 J 1.00 J 1.00 J 1.00 J 1.00 J 5.00 J 5.00 J 5.00 J 5.00 J 5.00	Result	2/7/2008 Groundwater Q F U 1. U 1. U 1. U 1. U 1. U 1. U 5. U 5. U 5. U 5.	00 N 03 N 00 N 00 N 00 O 00 N 00 N 00 N 00 N 00	2/7/ Groun sult ID ID ID ID ID ID ID ID ID I	2008 dwater 2 RL 1.00 U 1.00 U 0.03 U 1.00 U 1.00 U 1.00 U 1.00 U 5.00 U 5.00 U 5.00 U 5.00 U 5.00	Result ND ND ND ND ND ND ND ND ND ND ND ND ND	2/7/2008 Groundwat	RL 1.00 0.03 1.00 1.00 1.00 1.00 2.00 5.00 5.00 5.00	Result ND ND ND ND ND ND ND ND ND ND ND ND ND	2/6/2008 Groundwat	RL 1.00 0.03 1.00 1.00 1.00 1.00 2.00 5.00 5.00 5.00	Result ND ND ND ND ND ND ND ND ND ND ND ND ND	2/7/2008 roundwater Q U 1 U 0 U 1 U 1 U 1 U 1 U 1 U 5 U 5 U 5 U 5 U 5	1.00 0.03 1.00 1.00 1.00 1.00 1.00 2.00 5.00 5.00 5.00 5.00

Notes:

PADEP - Pennsylvania Department of Environmental Protection
ug/l - Micrograms per liter
mg/l - Milligrams per liter
MSC - PADEP's Medium Specific Concentration for Impact to Groundwater

RL - Reporting limit (limit of quantitation)

ND - Not detected.

Organic Qualifiers:

Q - Qualifier

- U Analyte was analyzed but not detected.
 J Compound present. Reported value may not be accurate or precise.
 UD Compound analyzed at dilution, but not detected.
- JD Compound analyzed at dilution. Compound present, but reported value may not be accurate or precise.
- D Compound analyzed at dilution.

Inorganic Qualifiers:

- U Analyte was analyzed but not detected.
- B Compound present. Reported value may not be accurate or precise.

- Exceedance Summary:

 10 Reporting limit exceeds the PADEP Non-Residential Used Aquifer MSC for Groundwater TDS<2,500.

 10 Compound exceeds the PADEP Non-Residential Used Aquifer MSC for Groundwater TDS<2,500.

Table 2a Summary of Fill / Alluvium Groundwater Analytical Results **AOI 8 Workplan** Sunoco Philadelphia Refinery Philadelphia, Pennsylvania February 2008

	CAS No	PADEP Non-Residential Used Aquifer MSC for Groundwater TDS<2,500	Sample ID Sample Date Sample Matrix		N-90 2/8/2008 roundwa			N-92 2/7/2008 roundwa	-		N-94 2/6/2008 oundwat			PZ-505 2/7/2008 oundwa	3	2	PZ-506 2/8/2008 oundwa	3
Volatile Organic Compounds			Unit	Result	Q	RL	Result	Q	RL	Result	Q	RL	Result	Q	RL	Result	Q	RL
Ethylbenzene	100-41-4	700	ug/l	ND	U	1.00	ND	U	1.00	ND	U	1.00	ND	U	1.00	ND	U	1.00
Ethylene dibromide (EDB)	106-93-4	0.05	ug/l	ND	U	0.03	ND	U	0.03	ND	U	0.03	ND	U	0.03	ND	U	0.03
1,2-Dichloroethane	107-06-2	5	ug/l	ND	U	1.00	ND	U	1.00	ND	U	1.00	ND	U	1.00	ND	U	1.00
Toluene	108-88-3	1000	ug/l	1.00		1.00	ND	U	1.00	ND	U	1.00	ND	U	1.00	ND	U	1.00
Xylene (Total)	1330-20-7	10000	ug/l	2.00		1.00	ND	U	1.00	ND	U	1.00	ND	U	1.00	ND	U	1.00
Methyl Tertiary Butyl Ether	1634-04-4	20	ug/l	ND	U	1.00	ND	U	1.00	0.60	J	1.00	ND	U	1.00	ND	U	1.00
Benzene	71-43-2	5	ug/l	2.00		1.00	ND	U	1.00	ND	U	1.00	ND	U	1.00	ND	U	1.00
Cumene	98-82-8	2300	ug/l	3.00		2.00	0.50	J	2.00	ND	U	2.00	2.00	J	2.00	ND	U	2.00
Semi-Volatile Organic Compour	nds																	
Pyrene	129-00-0	130	ug/l	ND	U	5.00	54.00		10.00	2.00	J	5.00	21.00		5.00	27.00		5.00
Chrysene	218-01-9	1.9	ug/l	ND	U	5.00	19.00		10.00	1.00	J	5.00	15.00		5.00	20.00		5.00
Phenanthrene	85-01-8	1100	ug/l	ND	U	5.00	ND	U	10.00	ND	J	5.00	2.00	J	5.00	9.00		5.00
Fluorene	86-73-7	1900	ug/l	ND	U	5.00	28.00		10.00	ND	U	5.00	3.00	J	5.00	5.00		5.00
Naphthalene	91-20-3	100	ug/l	ND	U	5.00	ND	U	10.00	ND	U	5.00	2.00	J	5.00	ND	U	5.00
Metals																		
Lead (Total)	7439-92-1	5	mg/l	ND	U	0.00100	ND	Ū	0.00100	ND	Ü	0.00100	0.00031	J	0.00100	0.00008	J	0.00100

Notes:PADEP - Pennsylvania Department of Environmental Protection

ug/l - Micrograms per liter

mg/l - Milligrams per liter
MSC - PADEP's Medium Specific Concentration for Impact to Groundwater

RL - Reporting limit (limit of quantitation)

ND - Not detected.

Organic Qualifiers:

Q - Qualifier

- U Analyte was analyzed but not detected.
- J Compound present. Reported value may not be accurate or precise.
- UD Compound analyzed at dilution, but not detected.
- JD Compound analyzed at dilution. Compound present, but reported value may not be accurate or precise.
- D Compound analyzed at dilution.

- Inorganic Qualifiers:

 U Analyte was analyzed but not detected.

 B Compound present. Reported value may not be accurate or precise.

Exceedance Summary:

- 10 Reporting limit exceeds the PADEP Non-Residential Used Aquifer MSC for Groundwater TDS<2,500.

 10 Compound exceeds the PADEP Non-Residential Used Aquifer MSC for Groundwater TDS<2,500.

Table 2b **Summary of Lower Sand Groundwater Analytical Results** AOI 8 Workplan Sunoco Philadelphia Refinery Philadelphia, Pennsylvania February 2008

	CAS No	PADEP Non-Residential Used Aquifer MSC for Groundwater TDS<2,500	Sample ID Sample Date Sample Matrix		N-13 2/7/2008 roundwa		2/6	N-19 6/2008 Indwater		N-2 2/7/20 Ground	800	2/	N-27 6/2008 undwat			N-4 2/7/2008 oundwate	r	2	N-38D /7/2008 undwater	1	N-50 2/8/20 oundv	800	(N-69 2/6/20 Groundv	08		N-70 :/6/2008 bundwater		N- 2/6/2 Groun	2008
Volatile Organic Compounds			Unit	Result	Q	RL	Result	Q RL	Re	sult Q	RL	Result	Q	RL	Result	Q	RL	Result	Q RL	Result	: Q	RL	Resu	ılt Q	RL	Result	Q R	L F	Result Q	RL
Ethylbenzene	100-41-4	700	ug/l	ND	U	1	ND	U 1	N	ND U	1	ND	U	1	1		1	ND	U 1	ND	U	1	ND	U	1	0.8	J 1		ND U	1
Ethylene dibromide (EDB)	106-93-4	0.05	ug/l	ND	U	0.029	ND	U 0.02	9 N	ND U	0.029	ND	U	0.029	ND	U 0	.028	ND	U 0.029	ND	U	0.028	ND	U	0.029	ND	U 0.0	03	ND U	0.029
1,2-Dichloroethane	107-06-2	5	ug/l	ND	U	1	ND	U 1	١	ND U	1	ND	U	1	ND	U	1	ND	U 1	ND	U	1	ND	U	1	ND	U 1		ND U	1
Toluene	108-88-3	1000	ug/l	ND	U	1	ND	U 1	١	ND U	1	ND	U	1	4		1	ND	U 1	ND	U	1	ND	U	1	ND	U 1		ND U	1
Xylene (Total)	1330-20-7	10000	ug/l	ND	U	1	ND	U 1		3	1	ND	U	1	7		1	ND	U 1	ND	U	1	ND	U	1	0.7	J 1		ND U	1
Methyl Tertiary Butyl Ether	1634-04-4	20	ug/l	2		1	ND	U 1	١	ND U	1	ND	U	1	0.6	J	1	ND	U 1	ND	U	1	ND	U	1	ND	U 1		ND U	1
Benzene	71-43-2	5	ug/l	ND	U	1	ND	U 1		2	1	ND	U	1	71		1	ND	U 1	4		1	ND	U	1	ND	U 1		ND U	1
Cumene	98-82-8	2300	ug/l	ND	U	2	ND	U 2	1	10	2	ND	U	2	29		2	ND	U 2	ND	U	2	5		2	23	2	2	0.8 J	2
Semi-Volatile Organic Compour	nds																													
Pyrene	129-00-0	130	ug/l	ND	U	5	ND	U 5	N	ND U	5	ND	U	5	ND	U	5	ND	U 5	13		5	ND	U	5	ND	U 5	5	6	5
Chrysene	218-01-9	1.9	ug/l	ND	U	5	ND	U 5	N	ND U	5	ND	U	5	ND	U	5	ND	U 5	9		5	ND	U	5	ND	U 5	5	3 J	5
Phenanthrene	85-01-8	1100	ug/l	ND	U	5	ND	U 5	N	ND U	5	ND	U	5	ND	U	5	ND	U 5	3	J	5	ND	U	5	ND	U 5	5	ND U	5
Fluorene	86-73-7	1900	ug/l	ND	U	5	ND	U 5	١	ND U	5	ND	U	5	ND	U	5	ND	U 5	ND	U	5	ND	U	5	ND	U 5	5	1 J	5
Naphthalene	91-20-3	100	ug/l	ND	U	5	ND	U 5	N	ND U	5	ND	U	5	ND	U	5	ND	U 5	ND	U	5	ND	U	5	ND	U 5	5	ND U	5
Metals																														
Lead (Total)	7439-92-1	5	mg/l	0.00008	J	0.00100	0.00007	J 0.001	۱ 00	ND U	0.00100	0.00007	J 0	.00100	0.00023	J 0.0	00100	0.00005	J 0.00100	0.00012	2 J	0.00100	0.000	12 J	0.00100	ND	U 0.00	100	ND U	0.00100

Notes:
PADEP - Pennsylvania Department of Environmental Protection

ug/l - Micrograms per liter

mg/l - Milligrams per liter
MSC - PADEP's Medium Specific Concentration for Impact to Groundwater
RL - Reporting limit (limit of quantitation)

ND - Not detected.

Organic Qualifiers: Q - Qualifier

- U Analyte was analyzed but not detected.
- J Compound present. Reported value may not be accurate or precise.
- UD Compound analyzed at dilution, but not detected.
- JD Compound analyzed at dilution. Compound present, but reported value may not be accurate or precise.
- D Compound analyzed at dilution.

- Inorganic Qualifiers:

 U Analyte was analyzed but not detected.

 B Compound present. Reported value may not be accurate or precise.

Exceedance Summary:

- 10 Reporting limit exceeds the PADEP Non-Residential Used Aquifer MSC for Groundwater TDS<2,500.

 10 Compound exceeds the PADEP Non-Residential Used Aquifer MSC for Groundwater TDS<2,500.

TABLE 3

Summary of Proposed Site Characterization Activities for AOI 8 AOI 8 Work Plan for Site Characterization

Sunoco Philadelphia Refinery Philadelphia, Pennsylvania

Location ID	Existing	Proposed	Media	Collection of Soil Sample from 0-2 ft For Site COCs (Non- SWMU Location)	Observation for Leaded Tank Bottom Materials in Shallow Soil Borings ²	Estimated Completion Depth for Proposed Monitoring Wells and Soil Borings	LNAPL Data Exists	COCs	Objective of Proposed Activity
N-1	X		Groundwater					1	Characterize Groundwater in AOI 8
N-10	X		Groundwater					1	Characterize Groundwater in AOI 8
N-11	X		Groundwater					1	Characterize Groundwater in AOI 8
N-12	X		Groundwater					1	Characterize Groundwater in AOI 8
N-13	X		Groundwater					1	Characterize Deep Groundwater in AOI 8
N-14	X		Groundwater				X	1	Characterize Groundwater in AOI 8
N-15	X		Groundwater					1	Characterize Groundwater in AOI 8
N-16	X		Groundwater					1	Characterize Groundwater in AOI 8
N-17	X		Groundwater					1	Characterize Groundwater in AOI 8
N-18	X		Groundwater					1	Characterize Groundwater in AOI 8
N-19	X		Groundwater					1	Characterize Deep Groundwater in AOI 8
N-20	X		Groundwater					1	Characterize Groundwater in AOI 8
N-21	X		Groundwater					1	Characterize Deep Groundwater in AOI 8
N-22	X		Groundwater					1	Characterize Groundwater in AOI 8
N-23	X		Groundwater					1	Characterize Groundwater in AOI 8
N-24	X		Groundwater	1				1	Characterize Groundwater in AOI 8
N-25	X		Groundwater	1			X	1	Characterize Groundwater in AOI 8
N-26	X		Groundwater					1	Characterize Groundwater in AOI 8
N-27	X		Groundwater					1	Characterize Deep Groundwater in AOI 8
N-28 N-29	X		Groundwater					1	Characterize Groundwater in AOI 8
	X		Groundwater					1	Characterize Groundwater in AOI 8
N-3 N-30	X		Groundwater					1	Characterize Groundwater in AOI 8 Characterize Deep Groundwater in AOI 8
N-30 N-31	X		Groundwater Groundwater				X	1	Characterize Deep Groundwater in AOI 8 Characterize Groundwater in AOI 8
N-32	X		Groundwater				^	1	Characterize Groundwater in AOI 8
N-34	X		Groundwater					1	Characterize Groundwater in AOI 8
N-35	X		Groundwater				X	1	Characterize Groundwater in AOI 8
N-36	X		Groundwater				^	1	Characterize Groundwater in AOI 8
N-37	X		Groundwater					1	Characterize Groundwater in AOI 8
N-38	X		Groundwater					1	Characterize Groundwater in AOI 8
N-38D	X		Groundwater					1	Characterize Deep Groundwater in AOI 8
N-4	X		Groundwater					1	Characterize Deep Groundwater in AOI 8
N-40	X		Groundwater					1	Characterize Groundwater in AOI 8
N-41	X		Groundwater					1	Characterize Groundwater in AOI 8
N-42	X		Groundwater				Х	1	Characterize Groundwater in AOI 8
N-43	X		Groundwater					1	Characterize Deep Groundwater in AOI 8
N-44D	X		Groundwater					1	Characterize Groundwater in AOI 8
N-45	X		Groundwater					1	Characterize Groundwater in AOI 8
N-46D	X		Groundwater					1	Characterize Deep Groundwater in AOI 8
N-47	X		Groundwater				X	1	Characterize Groundwater in AOI 8
N-48	X		Groundwater				X	1	Characterize Groundwater in AOI 8
N-49	X		Groundwater					1	Characterize Groundwater in AOI 8
N-5	X		Groundwater					1	Characterize Groundwater in AOI 8
N-503	X		Groundwater				X	1	Characterize Groundwater in AOI 8
N-504	X		Groundwater					1	Characterize Groundwater in AOI 8
N-50D	X		Groundwater					1	Characterize Deep Groundwater in AOI 8
N-51	X		Groundwater				X	1	Characterize Groundwater in AOI 8
N-52	X		Groundwater				X	1	Characterize Groundwater in AOI 8
N-53	X		Groundwater					1	Characterize Groundwater in AOI 8
N-54	X		Groundwater	<u> </u>				1	Characterize Groundwater in AOI 8
N-55	X		Groundwater					1	Characterize Groundwater in AOI 8
N-56	X		Groundwater					1	Characterize Groundwater in AOI 8
N-57	X		Groundwater					1	Characterize Groundwater in AOI 8
N-58	X		Groundwater					1	Characterize Groundwater in AOI 8
N-59	X		Groundwater					1	Characterize Groundwater in AOI 8
N-6	X		Groundwater					1	Characterize Groundwater in AOI 8
N-60 N-61	X		Groundwater Groundwater					1	Characterize Groundwater in AOI 8 Characterize Groundwater in AOI 8

Notes:

Final depth of well and screen placement to be determined by geologist based on field observation while completing the boring.
Field procedures will be performed in accordance with Appendix C of the Workplan.
It bgs = feet below ground surface
COCs = Constituents of Concern
1 = Analysis of COCs listed in Table 1 of the Work Plan.
2 = Analysis for Total Lead in shallow soil only if leaded tank bottom materials are observed by the field geologist
SWMU = Solid Waste Management Unit
LNAPL = Light Non-Aqueous Phase Liquid

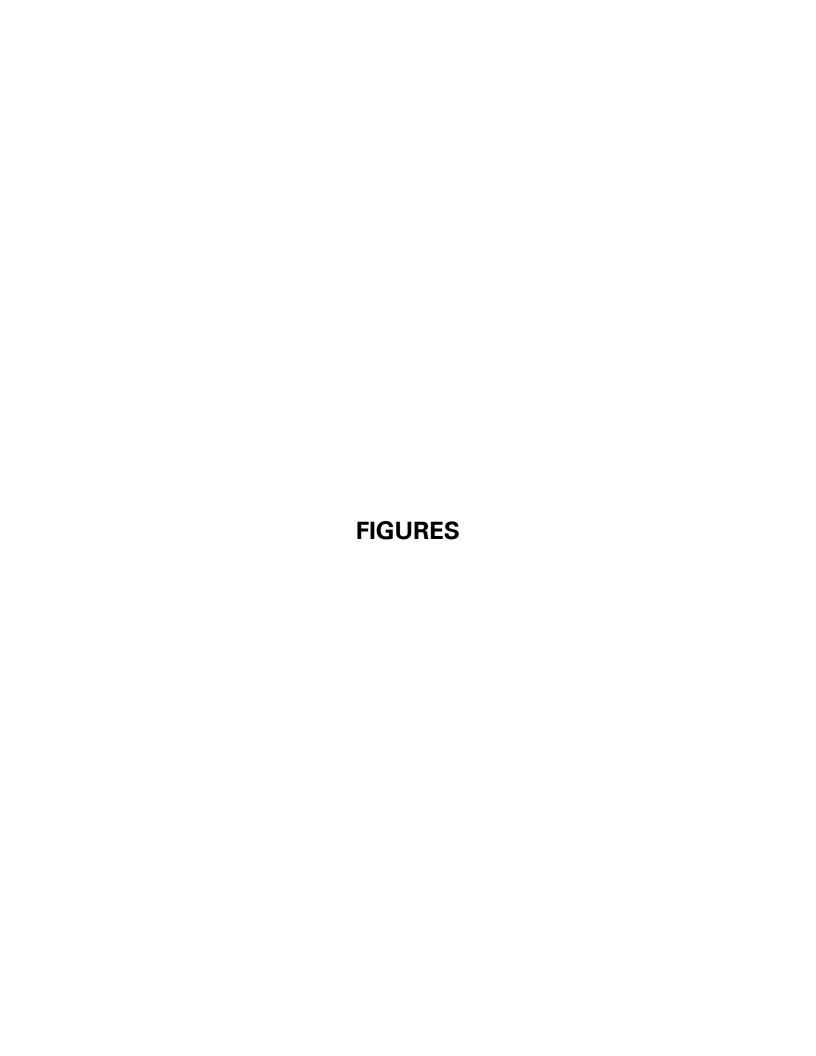
TABLE 3

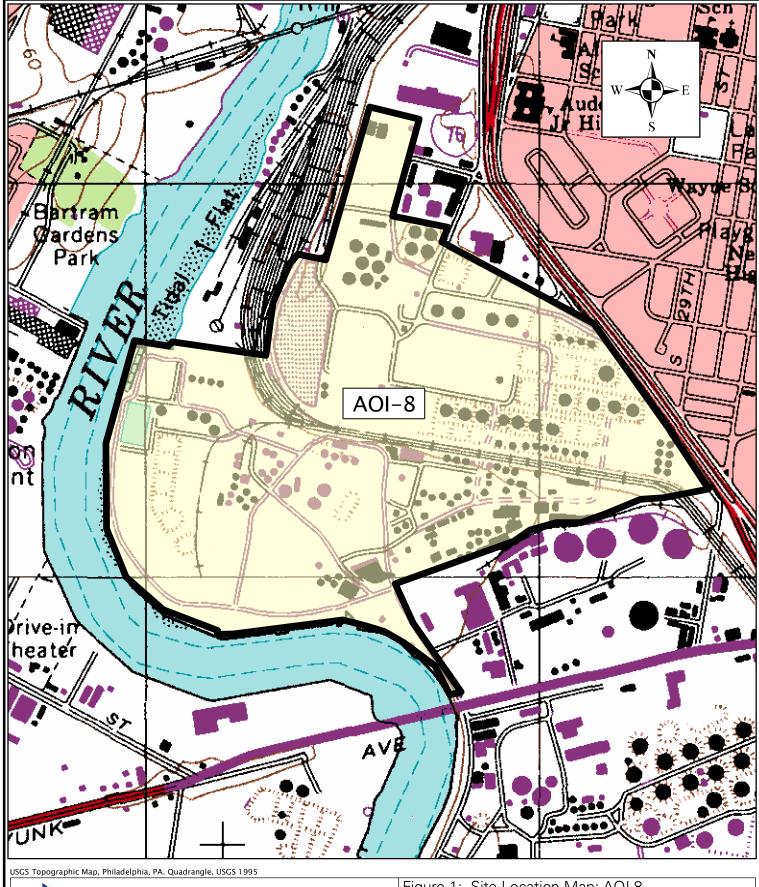
Summary of Proposed Site Characterization Activities for AOI 8 AOI 8 Work Plan for Site Characterization Sunoco Philadelphia Refinery Philadelphia, Pennsylvania

Location ID	Existing	Proposed	Media	Collection of Soil Sample from 0-2 ft For Site COCs (Non- SWMU Location)	Observation for Leaded Tank Bottom Materials in Shallow Soil Borings ²	Estimated Completion Depth for Proposed Monitoring Wells and Soil Borings	LNAPL Data Exists	COCs	Objective of Proposed Activity		
N-64	Х		Groundwater					1	Characterize Groundwater in AOI 8		
N-65	X		Groundwater					1	Characterize Groundwater in AOI 8		
N-66	X		Groundwater					1	Characterize Groundwater in AOI 8		
N-67	X		Groundwater					1	Characterize Groundwater in AOI 8		
N-68 N-69	X		Groundwater Groundwater				X	1	Characterize Groundwater in AOI 8		
N-7	X		Groundwater					1	Characterize Deep Groundwater in AOI 8 Characterize Groundwater in AOI 8		
N-70	X		Groundwater					1	Characterize Groundwater in AOI 8		
N-72	X		Groundwater					1	Characterize Groundwater in AOI 8		
N-73	Х		Groundwater					1	Characterize Groundwater in AOI 8		
N-74	X		Groundwater					1	Characterize Groundwater in AOI 8		
N-75	X		Groundwater				X	1	Characterize Groundwater in AOI 8		
N-76	X		Groundwater				X	1	Characterize Deep Groundwater in AOI 8		
N-77	X		Groundwater					1	Characterize Groundwater in AOI 8		
N-77 N-78	X		Groundwater Groundwater				X	1	Characterize Groundwater in AOI 8 Characterize Groundwater in AOI 8		
N-79	X		Groundwater				X	1	Characterize Groundwater in AOI 8		
N-8	X		Groundwater					1	Characterize Groundwater in AOI 8		
N-81	X		Groundwater					1	Characterize Groundwater in AOI 8		
N-82	X		Groundwater	<u> </u>			X	1_	Characterize Groundwater in AOI 8		
N-83	X		Groundwater					1	Characterize Deep Groundwater in AOI 8		
N-84	X		Groundwater					1	Characterize Groundwater in AOI 8		
N-85	X		Groundwater					1	Characterize Groundwater in AOI 8		
N-86 N-87	X		Groundwater Groundwater					1	Characterize Groundwater in AOI 8 Characterize Groundwater in AOI 8		
N-88	X		Groundwater					1	Characterize Groundwater in AOI 8		
N-89	X		Groundwater					1	Characterize Groundwater in AOI 8		
N-9	X		Groundwater					1	Characterize Deep Groundwater in AOI 8		
N-90	X		Groundwater					1	Characterize Groundwater in AOI 8		
N-91	X		Groundwater				X	1	Characterize Groundwater in AOI 8		
N-92	X		Groundwater					1	Characterize Groundwater in AOI 8		
N-93	X		Groundwater					1	Characterize Groundwater in AOI 8		
N-94	X		Groundwater					1	Characterize Groundwater in AOI 8		
N-95 PZ-201	X		Groundwater Groundwater					1	Characterize Groundwater in AOI 8 Characterize Groundwater in AOI 8		
PZ-202	X		Groundwater					1	Characterize Groundwater in AOI 8		
PZ-203	X		Groundwater					1	Characterize Groundwater in AOI 8		
PZ-204	Х		Groundwater				X	1	Characterize Groundwater in AOI 8		
PZ-300	X		Groundwater					1	Characterize Groundwater in AOI 8		
PZ-500	X		Groundwater					1	Characterize Groundwater in AOI 8		
PZ-501	X		Groundwater					1	Characterize Groundwater in AOI 8		
PZ-502	X		Groundwater				Х	1	Characterize Groundwater in AOI 8		
PZ-503 PZ-504	X		Groundwater Groundwater					1	Characterize Groundwater in AOI 8 Characterize Groundwater in AOI 8		
PZ-504	X		Groundwater					1	Characterize Groundwater in AOI 8		
PZ-506	X		Groundwater					1	Characterize Groundwater in AOI 8		
PZ-507	X		Groundwater					1	Characterize Groundwater in AOI 8		
RW-200	X		Groundwater		_			1	Characterize Groundwater in AOI 8		
RW-201	X	_	NA						No Samples - Active Recovery Well		
RW-202	X		NA						No Samples - Active Recovery Well		
RW-203	X		NA Groundwater		ļ		 	1	No Samples - Active Recovery Well		
RW-204 RW-205	X		Groundwater Groundwater	1			X	1	Characterize Groundwater in AOI 8 Characterize Groundwater in AOI 8		
RW-206	×		Groundwater	1			^	1	Characterize Groundwater in AOI 8 Characterize Groundwater in AOI 8		
RW-300	X		NA				X	'	No Samples - Active Recovery Well		
RW-301	X		NA NA				<u> </u>		No Samples - Active Recovery Well		
RW-302	X		NA	İ					No Samples - Active Recovery Well		
RW-303	X		Groundwater					1	Characterize Groundwater in AOI 8		
RW-304	X		Groundwater					1	Characterize Groundwater in AOI 8		
RW-305	X		Groundwater				Х	1	Characterize Groundwater in AOI 8		
RW-306	X		Groundwater					1	Characterize Groundwater in AOI 8		
RW-307	X		Groundwater	 				1	Characterize Groundwater in AOI 8		
RW-308 RW-309	X		Groundwater	1				1	Characterize Groundwater in AOI 8		
RW-500	X		Groundwater NA	 			 	1	Characterize Groundwater in AOI 8 No Samples - Active Recovery Well		
RW-501	X		NA NA				+		No Samples - Active Recovery Well		
RW-502	X		NA						No Samples - Active Recovery Well		
N-98	i e	X	Soil / Groundwater	X		25 ft bgs	1	1	Characterize Soil and Groundwater in AOI 8		

Notes:
Final depth of well and screen placement to be determined by geologist based on field observation while completing the boring.
Field procedures will be performed in accordance with Appendix C of the Workplan.
It bgs = feet below ground surface
COCs = Constituents of Concern
1 = Analysis of COCs listed in Table 1 of the Work Plan.
2 = Analysis for Total Lead in shallow soil only if leaded tank bottom materials are observed by the field geologist
SWMU = Solid Waste Management Unit
LNAPL = Light Non-Aqueous Phase Liquid

TABLE 3

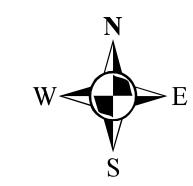

Summary of Proposed Site Characterization Activities for AOI 8 AOI 8 Work Plan for Site Characterization Sunoco Philadelphia Refinery Philadelphia, Pennsylvania


Location ID	Existing	Proposed	Media	Collection of Soil Sample from 0-2 ft For Site COCs (Non- SWMU Location)	Observation for Leaded Tank Bottom Materials in Shallow Soil Borings ²	Estimated Completion Depth for Proposed Monitoring Wells and Soil Borings	LNAPL Data Exists	COCs	Objective of Proposed Activity			
N-99		X	Soil / Groundwater	X		25 ft bgs		1	Characterize Soil and Groundwater in AOI 8			
N-100		X	Soil / Groundwater	X		85 ft bgs		1	Characterize Soil and Groundwater in AOI 8			
N-101		X	Soil / Groundwater	X		25 ft bgs		1	Characterize Soil and Groundwater in AOI 8			
N-102		X	Soil / Groundwater	X		25 ft bgs		1	Characterize Soil and Groundwater in AOI 8			
N-103		X	Soil / Groundwater	X		25 ft bgs		1	Characterize Soil and Groundwater in AOI 8			
N-104		X	Soil / Groundwater	X		25 ft bgs		1	Characterize Soil and Groundwater in AOI 8			
N-105		X	Soil / Groundwater	X		25 ft bgs		1	Characterize Soil and Groundwater in AOI 8			
N-106		X	Soil / Groundwater	X		25 ft bgs		1	Characterize Soil and Groundwater in AOI 8			
N-107		X	Soil / Groundwater	X		25 ft bgs		1	Characterize Soil and Groundwater in AOI 8			
N-108		X	Soil / Groundwater	X		25 ft bgs		1	Characterize Soil and Groundwater in AOI 8			
N-109 N-110		X	Soil / Groundwater	X		85 ft bgs 25 ft bgs		1	Characterize Soil and Groundwater in AOI 8 Characterize Soil and Groundwater in AOI 8			
N-110		X	Soil / Groundwater Soil / Groundwater	X		25 ft bgs		1	Characterize Soil and Groundwater in AOI 8			
N-112		X	Soil / Groundwater	X		25 ft bgs		1	Characterize Soil and Groundwater in AOI 8			
N-113		X	Soil / Groundwater	X		25 ft bgs		1	Characterize Soil and Groundwater in AOI 8			
N-114		X	Soil / Groundwater	X		25 ft bgs		1	Characterize Soil and Groundwater in AOI 8			
N-114 N-115		X	Soil / Groundwater	X		25 ft bgs		1	Characterize Soil and Groundwater in AOI 8			
N-116		X	Soil / Groundwater	X		25 ft bgs	 	1	Characterize Soil and Groundwater in AOI 8			
N-117		X	Soil / Groundwater	X		25 ft bgs		1	Characterize Soil and Groundwater in AOI 8			
N-118		X	Soil / Groundwater	X		25 ft bgs		1	Characterize Soil and Groundwater in AOI 8			
N-119		X	Soil / Groundwater	X		25 ft bgs		1	Characterize Soil and Groundwater in AOI 8			
N-120		X	Soil / Groundwater	X		25 ft bgs		1	Characterize Soil and Groundwater in AOI 8			
N-121		X	Soil / Groundwater	X		25 ft bgs		1	Characterize Soil and Groundwater in AOI 8			
N-122		X	Soil / Groundwater	X		25 ft bgs		1	Characterize Soil and Groundwater in AOI 8			
N-123		X	Soil / Groundwater	X		25 ft bgs		1	Characterize Soil and Groundwater in AOI 8			
N-124		X	Soil / Groundwater	X		25 ft bgs		1	Characterize Soil and Groundwater in AOI 8			
N-125		X	Soil / Groundwater	X		25 ft bgs		1	Characterize Soil and Groundwater in AOI 8			
N-126		X	Soil / Groundwater	X		25 ft bgs		1	Characterize Soil and Groundwater in AOI 8			
N-127		X	Soil / Groundwater	X		25 ft bgs		1	Characterize Soil and Groundwater in AOI 8			
N-128		X	Soil / Groundwater	X		25 ft bgs		1	Characterize Soil and Groundwater in AOI 8			
N-129		X	Soil / Groundwater	X		85 ft bgs		1	Characterize Soil and Groundwater in AOI 8			
N-130		X	Soil / Groundwater	X		25 ft bgs		1	Characterize Soil and Groundwater in AOI 8			
N-131		X	Soil / Groundwater	X		85 ft bgs		1	Characterize Soil and Groundwater in AOI 8			
N-132		X	Soil / Groundwater	X		25 ft bgs		1	Characterize Soil and Groundwater in AOI 8			
N-133		X	Soil / Groundwater	X		25 ft bgs		1	Characterize Soil and Groundwater in AOI 8			
N-134		X	Soil / Groundwater	X		25 ft bgs		1	Characterize Soil and Groundwater in AOI 8			
N-135		X	Soil / Groundwater	X		25 ft bgs		1	Characterize Soil and Groundwater in AOI 8			
N-136		X	Soil / Groundwater	X		25 ft bgs		1	Characterize Soil and Groundwater in AOI 8			
BH-08-01		X	Soil	X		2 ft bgs		1	Characterize Soil in AOI 8			
BH-08-02		X	Soil	X		2 ft bgs		1	Characterize Soil in AOI 8			
3H-08-03		X	Soil	X		2 ft bgs		1	Characterize Soil in AOI 8			
BH-08-04		X	Soil	X		2 ft bgs		11	Characterize Soil in AOI 8			
3H-08-05		X	Soil		X	8 ft bgs		2	Characterize Soil in AOI 8: SWMU 2			
3H-08-06		X	Soil	V	X	8 ft bgs		2	Characterize Soil in AOI 8: SWMU 2			
3H-08-07		X	Soil	X		2 ft bgs			Characterize Soil in AOI 8			
3H-08-08		X	Soil	X		2 ft bgs		1	Characterize Soil in AOI 8			
3H-08-09		X	Soil	X		2 ft bgs		1	Characterize Soil in AOI 8			
3H-08-10		X	Soil	X		2 ft bgs		1	Characterize Soil in AOI 8			
3H-08-11 3H-08-12		X	Soil	X		2 ft bgs		1 1	Characterize Soil in AOI 8			
3H-08-12 3H-08-13		X	Soil Soil	X		2 ft bgs 2 ft bgs		1	Characterize Soil in AOI 8 Characterize Soil in AOI 8			
3H-08-14		X	Soil	X		2 ft bgs		1	Characterize Soil in AOI 8 Characterize Soil in AOI 8			
3H-08-14		X	Soil	X		2 ft bgs		1	Characterize Soil in AOI 8			
3H-08-16		X	Soil	X		2 ft bgs		1	Characterize Soil in AOI 8			
3H-08-17		X	Soil	X		2 ft bgs			Characterize Soil in AOI 8			
3H-08-17		X	Soil	X		2 ft bgs		<u> </u>	Characterize Soil in AOI 8			
3H-08-19		X	Soil	'	X	8 ft bgs		2	Characterize Soil in AOI 8: SWMU 2			
3H-08-20		X	Soil	1	X	8 ft bgs		2	Characterize Soil in AOI 8: SWMU 2			
3H-08-21		X	Soil	Х		2 ft bgs		1	Characterize Soil in AOI 8			
3H-08-22		X	Soil	X		2 ft bgs		1	Characterize Soil in AOI 8			
3H-08-23		X	Soil	X		2 ft bgs		1	Characterize Soil in AOI 8			
3H-08-24		X	Soil	X		2 ft bgs		1	Characterize Soil in AOI 8			
3H-08-25		X	Soil	X		2 ft bgs		1	Characterize Soil in AOI 8			
3H-08-26		X	Soil	X		2 ft bgs		1	Characterize Soil in AOI 8			
3H-08-27		X	Soil	X		2 ft bgs		1	Characterize Soil in AOI 8			
3H-08-28		X	Soil	X		2 ft bgs		1	Characterize Soil in AOI 8			
3H-08-29		X	Soil	X		2 ft bgs		1	Characterize Soil in AOI 8			
3H-08-30		X	Soil	X		2 ft bgs		1	Characterize Soil in AOI 8			
3H-08-31		X	Soil	X		2 ft bgs		1	Characterize Soil in AOI 8			
3H-08-32		X	Soil	X		2 ft bgs		1	Characterize Soil in AOI 8			
3H-08-33		X	Soil	X		2 ft bgs		1	Characterize Soil in AOI 8			
3H-08-34		X	Soil	X		2 ft bgs		1	Characterize Soil in AOI 8			
3H-08-35		X	Soil	X		2 ft bgs		1	Characterize Soil in AOI 8			
3H-08-36		X	Soil		X	8 ft bgs		2	Characterize Soil in AOI 8: SWMU 2			
3H-08-37		X	Soil		X	8 ft bgs		2	Characterize Soil in AOI 8: SWMU 2			

Notes:
Final depth of well and screen placement to be determined by geologist based on field observation while completing the boring. Field procedures will be performed in accordance with Appendix C of the Workplan. It bys = feet below ground surface COCs = Constituents of Concern

1 = Analysis of COCs listed in Table 1 of the Work Plan.

2 = Analysis for Total Lead in shallow soil only if leaded tank bottom materials are observed by the field geologist SWMU = Solid Waste Management Unit LNAPL = Light Non-Aqueous Phase Liquid


Sunoco, Inc. (R&M)
Philadelphia Refinery
3144 Passyunk Avenue

Philadelphia, PA. 19145

Figure 1: Site Location Map: AOI 8 AOI 8 Work Plan for Site Characterization Philadelphia Sunoco Philadelphia Refinery Pennsylvania

Job Number 2574601

Legend

Proposed Activities

- Shallow Soil Boring Locations (0-2 feet)
- New Shallow/Intermediate
 Groundwater Monitoring
 Well Locations

New Shallow/Intermediate
Groundwater Monitoring
Well Locations with
Deep Soil Borings

Existing Features

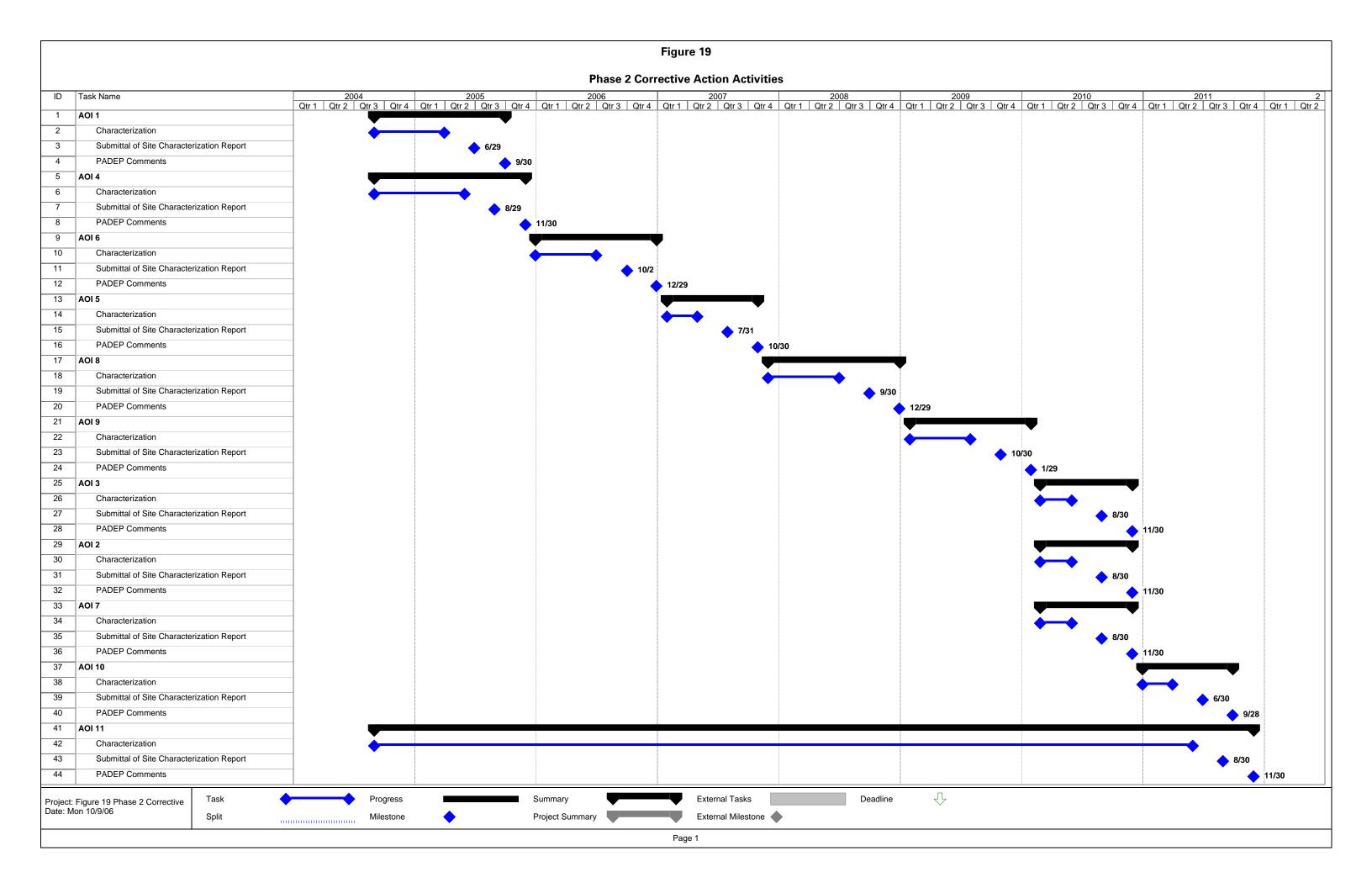
- Existing Monitoring Point
- Existing Recovery Well
- Lead Weathering Pad Solid Waste Management Unit (SWMU 2)
- AOI Boundary

Figure 2: Summary of Proposed Site
Characterization Activities for AOI 8
AOI 8 Work Plan for Site
Characterization
Sunoco Philadelphia Refinery
Philadelphia, Pennsylvania

Sunoco, Inc. (R&M)
Philadelphia Refinery
3144 Passyunk Avenue
Philadelphia, PA.
19145

19145

230 460
Feet Scale: 1° = 230°


DATE: April 16, 2008

DRN. BY: JSC

CKD. BY: JDH

JOR#: 2574601

APPENDIX A REVISED PHASE II CORRECTIVE ACTION ACTIVITIES SCHEDULE

APPENDIX B

PA-ONE CLEANUP PROGRAM MEETING LETTER

Sunoco Inc. 100 Green Street PO Box 426 Marcus Hook PA 19061 610 859 1700

December 2, 2005

Mr. Paul Gotthold Chief, Pennsylvania Operations Branch U.S. Environmental Protection Agency Region 3 Regional Office 1650 Arch Street Philadelphia, PA 19103-2029

Mr. Dave Hess Chief, Voluntary Cleanup and Standards Section PADEP Rachel Carson State Office Building P.O. Box 8471 Harrisburg, PA 17105-8471

SUBJECT: One Clean-up Program

Applicability for Sunoco Philadelphia Refinery

Dear Gentlemen:

Thank you for taking the time to meet with us regarding the subject site. As we discussed, Sunoco, Inc. (R&M) ("Sunoco") is interested in the applicability of the One-Clean-Up Program to streamline the remediation program at our Philadelphia Refinery under the EPA RCRA program, the PADEP Act 2 program, and the existing PADEP Consent Order. It is our understanding that both of you and your respective agencies also see a benefit to merging the remediation obligations under the various programs under one consistent approach that has been in place and working for a number of years for our facility. We agreed that the One-Clean-Up program would work best if it covered the entire Philadelphia Refinery, including areas that are under separate corrective action permits, even though report submittals, field work, and remedial decision making is made on a area-by-area basis as defined in the Consent Order. Sunoco believes that this approach maintains the flexibility, and prioritization approach that is a hallmark of our existing remedial program, while gaining the benefits of having the entire facility dealt with under the overall One-Clean-Up plan.

As a result of our discussions we identified the following approach:

- a) Sunoco would submit a Notice of Intent to Remediate (NIR) under the PADEP Act 2 program. The NIR would specifically reference the Consent Order, including its Area of Interest approach.
- b) EPA will provide copies of previous letters signifying approval with the Act 2 process from other sites that have been through the One-Cleanup program.
- c) EPA will provide to Sunoco a copy of a recently completed Corrective Action permit for another facility.
- d) Sunoco will work on a first draft of a proposed corrective action permit that would cover the Philadelphia Refinery.

Sunoco believes the meeting was fruitful and that the One-Clean-up program offers some significant advantages to move the facility's remedial programs towards clean-up. We look forward to working cooperatively together on this important program. We would appreciate confirmation from both of you that you agree with the above approach.

Thank you again for taking the opportunity to discuss these issues with us. I have attached the sign-in sheet from our meeting. Please call me at 610-859-1628 with any questions.

Very truly yours,

Steven Coladonato, PE

Remediation Services Manager

Sunoco, Inc. (R&M)

cc:

S. O'Neil, PADEP

W. Pavne, PADEP

D. Burke, PADEP

H. Lee, USEPA

J. Oppenheim, Sunoco, Inc.

E. Ciechon, Sunoco, Inc.

C. Costello, Langan

J. Hanna, Langan

COMMONWEALTH OF PENNSYLVANIA DEPARTMENT OF ENVIRONMENTAL PROTECTION Southeast Regional Office A CALL CAN

Recycled Paper

onshohocken, PA 19428 555 North

LI KENDOY	<u>.</u>	PHONE #														-	
June - Mill	ADM	PROGRAM/COMPANY															
Jerry	ERC	PROGR															
Subject:	SWM	TITE															
	WSW	FI															
MEETING LOG	WOW	NAME															
MEETI	ECP	29 7888	7285-052-484	180	0057-164-518	829-1628	814-3419	814-3410	484-280-579/	12 penheim SUNOCO (610) 299-5136	4519-666 (517)						
· ^.	CRC	7	4-250	717-783-9480	4-512				¥-25	2(019)	19/21						
2	₩ 	PROGRAM/COMPANY		717	0,	-019 020NJ	EM Ra 3 215-	Reed 3	币金	NOCO ()	السا					-
777	- AQC -	PROGR	PADEP	PABER	Langar	h l	ERH (EPA	- TABLE	ein Bu	SUNOCO	DKO) PAD					
CW	Programs Attending: RD	TILE HOLL		Acss P	Hanna 1	۷.		aul Gotthold	HORTHUM	2ppenh	ED CIECITON	Steve Oneil (by ohove, 1940s)	1 1		-		
Date:	ns Atter	NAME SIROM (NOTPILE)	DAVID BURKE	A JELL	ason t	teve (ton LEE	l Get	MR-1	5,m (CIE	One					,

APPENDIX C FIELD PROCEDURES

APPENDIX C FIELD PROCEDURES AOI 8 WORK PLAN FOR SITE CHARACTERIZATION SUNOCO PHILADELPHIA REFINERY PHILADELPHIA, PENNSYLVANIA

C.1. LIQUID LEVEL ACQUISITION

Responsible Personnel: Technicians and Geologists

Training Qualifications:

All field personnel involved in liquid level acquisition shall have, as a minimum, completed OSHA 40 HOUR HAZWOPER training and completed the 3-day minimum field training requirements as specified within the Corporate Health and Safety Plan. Prior to solo performance of liquid levels, all field personnel will have performed a minimum of three site visits under the direct supervision of experienced personnel.

Health and Safety Requirements:

Personal Protective Equipment (PPE) Required:

Level D attire including steel toe/steel shank boots. Based on previous site visits or current air monitoring results, Level C attire may be required. The PPE required to upgrade to Level C may include: nitrile gloves, disposable outerboots, Tyvek coveralls, and a respirator. Safety glasses or hard hats may also be required in certain areas.

Site Controls:

Safety cones and or caution tape should be used in high traffic areas. The "Buddy system" may also be employed in high traffic areas.

Potential Hazards:

Traffic, pinch and trip, chemical (airborne and physical contact) and biological. Additional hazards are mentioned in site-specific HASP.

Materials and Equipment Necessary for Task Completion:

Electronic oil/water interface probe or conductivity water line, decontamination supplies (Liquinox, deionized-distilled water, appropriate containers, scrub brush, and sorbent pads or paper towels), air monitoring instrument (optional, based on previous site visits).

Methodology:

The task involves the deployment of a liquid sensing probe into a well (in most cases), recording the reading, and decontaminating the probe. The recorded field readings can then be

utilized for one of several applications including: well sampling, water table gradient mapping, separate-phase hydrocarbon occurrence, thickness, and or gradient mapping, and various testing procedures.

The proper procedure for liquid level acquisition from a well is as follows:

- 1) The wells should be gauged in order of least to most contaminated based on existing sampling data or separate-phase hydrocarbon occurrence.
- 2) The gauging instrument is decontaminated prior to initial deployment and after each well to prevent cross contamination between wells.
- 3) Decontamination procedures include the following steps:
 - a) Remove gross contaminants with sorbent pad or towel.
 - b) Rinse/scrub equipment with water.
 - c) Scrub equipment in Liquinox@/deionized-distilled water solution.
 - d) Double rinse with deionized-distilled water.
 - e) Air dry.
- 4) The well(s) to be gauged may need to be marked off with safety cones and or caution tape in order to protect personnel from auto traffic; the "Buddy system" may also be employed.
- 5) The manhole cover is then lifted off of the well head. A pry bar may be needed to prevent personal injury in the case of large manhole covers.
- 6) The probe is lowered into the well until the instrument signals contact with liquid.
- 7) The corresponding reading is recorded when the instrument signals either water or product. A clear bailer may be used to verify the existence or approximate amount and appearance of product.
- 8) The probe is then retracted from the well and decontaminated accordingly.
- 9) The well is then secured appropriately.
- 10) Note the start and stop time for gauging round in the field book.

C.2. GROUNDWATER MONITORING PROCEDURES

Responsible Personnel: Technicians and Geologists

Health and Safety Requirements:

Site specific HASP must be completed and reviewed by field personnel. Ambient air monitoring will be performed quarterly at all treatment areas to determine the necessity of PPE upgrade. As a minimum, level "D" attire will be worn.

Training Qualifications:

All field personnel involved in groundwater monitoring shall have, as a minimum completed OSHA 40 HOUR HAZWOPER training and completed the 3 day minimum field training requirements. Prior to groundwater monitoring, all field personnel will have sampled a minimum of three sites under the direct supervision of experienced personnel. Field personnel

will also have experience in vapor monitoring techniques and sampling equipment decontamination.

Materials and Equipment Necessary for Task Completion:

A list of equipment required to access, gauge, purge, and sample site monitoring wells is presented below. Also listed are materials necessary to store, label, preserve, and transport groundwater samples.

- Current site map detailing well locations.
- Field data book for recording site data.
- Liquid level gauging device (graduated, optical interface probe).
- Keys and tools to provide well access.
- Appropriate sample containers and labels: volatile samples will be collected in laboratory provided 40 milliliter (ml) glass vials with plastic caps fitted with Teflon ® lined septa; all sample bottles will be laboratory sterilized and will contain the appropriate preservative, if applicable.
- Appropriate well purging apparatus as determined by volume of groundwater to be purged and compounds to be analyzed.
- Teflon ® (or equivalent) bottom-loading bailer to extract groundwater sample.
- Clean nylon or polypropylene bailer cord.
- Disposable nitrile sampling gloves.
- Decontamination supplies.
- Calibrated five-gallon bucket and watch or stopwatch to determine discharge rate during purging.
- Blank chain-of-custody forms.
- Cooler and ice for sample preservation.

Methodology for Three Well Volume Sampling:

Prior to actual site visitation for the groundwater sampling event, the following data will be reviewed to ensure proper preparation for field activities:

- Most recent liquid level data from all wells.
- Most recent analytical data from all wells to determine gauging and sampling sequence.
- Well construction characteristics.

Each monitoring well to be sampled will be gauged to obtain liquid level data immediately prior to initiation of the sampling process. Refer to Liquid Level Gauging SOP for appropriate well gauging procedures. Liquid level data will be recorded in a field book. Should free-phase petroleum product be detected by the gauging process and verified through inspection in a pre-cleaned acrylic bailer, groundwater sampling will not be conducted at that location.

The sampling procedure will be initiated by purging from the well a minimum of three well volumes, except in cases where the well is pumped dry, as referenced below. Well purging is performed to remove stagnant water and to draw representative water from the aquifer into the well for subsequent sampling and analysis for the established parameters. In extreme

cases where a well is pumped dry and/or shows little recharge capacity, the well will be evacuated once prior to sample procurement. Well volume calculations will be based on total well depth as determined during well installation and depth-to-water measurements obtained immediately prior to sampling.

Well purging is performed with various equipment including 1) a dedicated bailer for hand bailing low volumes of water, 2) a surface mounted electric centrifugal pump with dedicated polyethylene tubing, or 3) submersible pump (when the depth to water is greater than 20 feet) with dedicated polyethylene tubing. During pumping, the intake will be placed directly below the static water surface and slowly lowered during the purging process. This procedure may not prove necessary in low-yielding wells but is important in high-yielding, permeable strata where an intake initially placed deep in a well may draw laterally and have little influence in exchanging water from shallower depths within the well bore.

Flow rate during well purging will be approximated by the bucket and stop watch method. The duration of pumping required to remove three well volumes will be calculated directly from this flow rate. After purging, the well will be allowed to recover for a period of approximately two hours prior to sample collection. This action will permit a consistent groundwater flux into each well and allow for VOC stabilization prior to sample extraction. All fluids removed during purging will be treated on-site with activated carbon.

The sequence of obtaining site groundwater samples will be based upon available historical site data for existing wells and soil organic vapor analyzer (OVA) readings for newly installed wells. Site wells will be sampled in order from the lowest to highest concentration of water quality indicator parameters based upon the most recent available set of laboratory analyses to reduce the potential for sample cross-contamination. Groundwater samples will not be obtained for analysis from any well containing a measurable free product layer.

The following sequence of procedures will be implemented for the collection of groundwater samples from monitoring wells.

- 1) Establish a clean work area where sampling equipment will not come in contact with the ground or any potentially contaminated surfaces.
- 2) Use a laboratory, pre-cleaned Teflon@ sampling bailer for each well.
- 3) Don an unused, clean pair of nitrile gloves.
- 4) Attach an appropriate length of unused, clean nylon or polypropylene cord to the designated sampling bailer.
- 5) Select appropriate laboratory-sterilized sample containers.
- 6) Slowly lower sampling bailer into well until water surface is encountered; continue to lower the sampling bailer into the standing water column to one foot below the water surface.
- 7) Retrieve bailer at a steady rate to avoid excess agitation.
- 8) Visually inspect bailed sample to ensure that no free product or organic detritus has been collected
- 9) Uncap first designated sample vial and fill from bailer as rapidly as possible but minimizing agitation; secure septum and lid.
- 10) Inspect sealed sample for entrapped air; if air is present within sample vial. Remove lid and repeat vial filling, sealing and inspection process until no air is present.

- 11) Repeat Steps 9 and 10 for the second designated vial; all volatile parameter samples will be collected in duplicate.
- 12) Complete and attach labels to sample containers noting sample collector, date, time, and location of sample; record same data in field book.
- 13) Place samples in ice-filled cooler in such a manner as to avoid breakage. Samples collected for VOC analysis will be maintained at a temperature of 4°C.

Discard gloves and bailer cord and move to next sample location.

Methodology for Low-Flow Purging and Sampling:

For wells that will be Low-Flow purged and sampled, the USEPA Region III Bulletin QAD023: Procedure for Low-Flow Purging and Sampling of Groundwater Monitoring Wells will be followed. The following data will be reviewed for each well in order to set the pump intake for the low flow sampling:

- Soil boring (lithologic) log and continuous soil sample PID;
- Well construction log showing the screened interval;
- Identification of the most permeable zone screened by the well;
- Approximate depth to static water;
- Proposed pump intake setting; and,
- Technical rationale for the pump intake setting, preferably across from the most impacted/contaminated subsurface interval.

Equipment

Adjustable rate, submersible, bladder pumps in conjunction with Teflon or Teflon-lined polyethylene tubing for purging and sampling will be used. The tubing diameter will be between 3/16-inch to ½-inch inner diameter and the length of the tubing extended outside the well will be minimized. Flow through cells will be used to evaluate parameters during sampling. Monitoring well information, equipment specifications, water level measurements, parameter readings, and other pertinent information will be recorded during monitoring well purging and sampling.

Sampling Procedure

The following protocol details the low-flow sampling procedure that will be used for sampling the monitoring wells.

1. <u>PID Screening of Well</u>. A PID measurement will be collected at the rim of the well immediately after the well cap will be removed and recorded on the sampling form.

- 2. <u>Depth to Water Measurement</u>. A depth to water measurement will be collected and recorded. To avoid disturbing accumulated sediment and to prevent the inadvertent mixing of stagnant water, measuring the total depth of the well will be done at the completion of sampling on an annual basis.
- 3. Low Stress Purging Startup. Water pumping will commence at a rate of 100 to 400 milliliters per minute (mL/min). This pumping should cause very little drawdown in the well (less than 0.2-0.3 feet) and the water level should stabilize. Water level measurements are made continuously and will be recorded in milliliters per minute on the sampling form.
- 4. Low Stress Purging and Sampling. The water level and pumping rate will be monitored and recorded every five minutes during purging, and any pumping rate adjustments will be recorded. During the early phase of purging, emphasis will be placed on minimizing and stabilizing pumping stress, and recording any necessary adjustments. Adjustments, when necessary, will be made in the first 15 minutes of purging. If necessary, pumping rates will be reduced to the minimum capabilities of the pump to avoid well dewatering. If the minimal drawdown exceeds 0.3 feet, but the water level stabilizes above the pump intake setting, purging will continue until indicator field parameters stabilized, as detailed in Step 5 below. If the water level drops below the pump intake setting at the absolute minimum purge rate, the pump will remain in place and the water level will be allowed to recover repeatedly until there will be sufficient water volume in the well to permit the collection of samples.
- 5. <u>Indicator Field Parameters Monitoring</u>. During well purging, indicator field parameters (DO, turbidity, pH, specific conductance, and redox potential) will be monitored every five minutes (or less frequently, if appropriate). Purging will be considered complete and sampling began when all the aforementioned indicator field parameters had stabilized. Stabilization will be achieved when three consecutive readings, taken at five (5) minute intervals (or less frequently, if appropriate), are within the following limits:
 - DO (±10 percent)
 - turbidity (±10 percent)
 - specific conductance (±3 percent)
 - pH (± 0.1 unit)
 - redox potential [Eh] ±10 mv)

Temperature and depth to water will be also monitored during purging. Should any of the parameter-reading components of the flow-through meter fail during sampling, the sampling team will attempt to locate a replacement flow-through meter. If none is available, the sampling team will measure that parameter with an individual criteria meter. Any other field observations relating to sample quality, such as odor, foaming, effervescence, and sheens, will also be recorded on the sampling form.

6. <u>Collection of Ground Water Samples</u>. Water samples for laboratory analyses will be collected before the groundwater had passed through the flow-through cell by either using a by-pass assembly or by temporarily disconnecting the flow-through cell. All sample containers will be filled by allowing the pump discharge to flow gently down the inside of

the container with minimal turbulence. During purging and sampling, the tubing remains filled with water in order to minimize possible changes in water chemistry upon contact with the atmosphere. Methods employed to ensure that the outlet tubing will be filled include (i) adjusting the tubing angle upward to completely fill the tubing and (ii) restricting the diameter of the tubing near the outlet of the tubing.

The order in which samples will be collected is as follows:

- Volatile organics
- Gas sensitive (e.g., Fe⁺², CH₄, H₂S/HS)
- Base/Neutrals or PAHs
- Total Petroleum Hydrocarbons
- Total metals
- Dissolved metals
- Cyanide
- Sulfate and chloride
- Nitrate and ammonia
- Preserved inorganic
- Non-preserved inorganic
- Bacteria

Decontamination Requirements:

Numerous practices are employed throughout the processes of site investigation and sampling to assure the integrity of the resulting data. Of particular significance to the procedures of groundwater measurement and sampling is the limitation, whenever possible, of materials inserted into a well bore and, even more importantly, of materials transferred from well to well.

Many items can be discarded between well sampling and/or gauging locations without significantly impacting project costs. Dedicated sampling equipment which can be discarded between well sampling locations without significantly impacting project costs, will be used whenever possible to preclude decontamination requirements. Sampling equipment included in this category are Teflon ® bailers, nitrile gloves, and bailer cord. However, other investigative and sampling equipment, including such items as liquid level probes, must be reused from well to well.

The danger in multi-well equipment applications lies in the potential of cross-contamination. While the threat of cross-contamination is always present, it can be minimized through the implementation of a consistent decontamination program during sensitive site measurement and data collection activities. The decontamination procedure is outlined below:

All site equipment used in a multi-well capacity will be decontaminated immediately prior to initial use and between each well. Standard site decontamination procedures for the optical interface probes between wells will be performed according to the following schedule:

- Initial rinse with clean tap water to remove excess residuals.
- Scrub equipment with sponge or clean, soft cloth in a distilled water/Liquinox@ (or equivalent) solution.
- Double rinse with deionized/distilled water.

Rinse water generated during decontamination procedures will be treated on-site by passing the water through a bucket filled with activated carbon prior to disposal.

C.3. SOIL SAMPLING & WELL INSTALLATION

Responsible Personnel: Geologist

Training Qualifications: All field personnel supervising drilling activities shall have completed OSHA 40-Hour training, and three days of field training. Personnel supervising the well installation shall have observed drilling procedures for a minimum of three under the direct supervision of experienced personnel. Field personnel will have experience in operating the following field equipment: interface probe and photo-ionization detector (PID). Personnel should be able to describe soils encountered during drilling for generation of well logs.

Health and Safety Requirements:

A site specific HASP must be completed and reviewed by all field personnel. Prior to deploying a rig to the site, a utility call must be made (i.e. Pennsylvania One-Call) to allow mark-out of known subsurface utilities and associated laterals proximal to the site. Site plans, if available, should be reviewed to document and avoid the location of on-site utilities. No drilling should occur on retails sites within the exclusion zone. This zone is defined as the area between the pumps, the tank field and the station building. The area is excluded from drilling activities due to the likely occurrence of subsurface petroleum distribution lines. After review of all known mapped and marked utilities, a site reconnaissance will be performed to document the location of utility meters and storm sewer drains. In addition, the location of overhead utilities must be documented. After completing the subsurface and overhead utility review, the area to drill may be observed as clear or the location may be adjusted to a "clear" location.

Once the drilling location is established, the area must be marked with cones to alert area traffic of the work area. Other health and safety concerns include slip/trip hazards, working with heavy equipment and overhead work hazards. During drilling activities, a minimum of protective work gloves, steel toed boots, hard hats, and safety goggles must be worn.

A final health and safety requirement includes hand clearing the borehole, prior to advancing the borehole with the drill rig. To ensure the safety of workers, the borehole will be cleared by hand or air knife, to depth of 5 feet below ground surface. This will serve to clear the area of utilities, prior to drilling.

Decontamination Requirements:

All down-hole equipment must be steamed cleaned prior to drilling at each boring/well location. All soil sampling equipment must be cleaned with detergent and rinsed with distilled water prior to deployment into the borehole. All well construction materials (i.e. PVC well casing, PVC well screen, sand pack, bentonite seal) should be clean and dedicated to each hole.

Methodology for Borings outside RCRA Areas in AOI 8:

1) Borehole Advancement

During soil sampling or well installation activities, a borehole is advanced into the unconsolidated subsurface materials or bedrock via a drill rig (or similar). Various types of drilling methods could be deployed to advance the hole. A description of each drilling method is included below:

a) Hollow Stem Auger

A spiral tool form is used to move material from the subsurface to the surface. A bit at the bottom cuts into the subsurface material. Spiral augers on outside convey the material to the surface while spinning. The center of the auger is hollow like a straw when the inner drive rods and plug are removed. During drilling or formation cutting, the center is filled with rods connected to a plug at the bottom bit. Once the desired drilling depth is reached, the center plug and rods can be pulled out, leaving the hollow augers in place. The hollow augers hold the borehole to remain open for sediment sampling and well installation.

b) Air Rotary

A drill bit at the bottom of rods is used to cut into the subsurface material. Air injected into the drill rods escapes through small holes in the drill bit and conveys the drill cuttings to the surface.

c) Geoprobe®

The geoprobe® sampling allows collection of soil by directly pushing (through hydraulic hammering) a sampling device lined with a plastic macrocore into the soil column.

d) Hand Auger

A stainless steel or aluminum hand auger will be physically advanced to the desired soil sampling depth.

2) Soil Sampling

Soil samples will be obtained for lithologic logging and laboratory analysis for chemical contaminants with one of three different sampling devices: Split barrel spoon sampler, hand auger or Geoprobe® soil sampler. For either method, the sampling devices are lowered through

the hollow-stem augers or open borehole to allow sampling of the undisturbed sediments below the auger bit. Soil samples will be collected at intervals which appear to be visually impacted or from intervals which exhibit the highest deflections on the screening device (PID or similar).

a) Split barrel spoon sampler (split spoon)

The split spoon sampler will be driven into the soil column in accordance with ASTM Standard Method D1586 (Reference A6, Appendix E). Soil sampling by split barrel spoon will entail drilling a borehole with a hollow-stem auger to the desired sampling depth (standard five foot intervals). After augering to the desired depth, slowly and carefully lower the split barrel spoon sampler attached to the drill rod extension into the borehole. Drive the sampler into the soil by repeated blows from a 140 Lb. hammer with 30 inch travel. Record the blow counts required to drive the split spoon sampler each successive six inch interval. Remove sampler for borehole, split barrel open, remove soil sample utilizing a stainless steel knife to trim the top and edges of the sample and containerize sample in appropriate sample jar.

b) Geoprobe®

The geoprobe® liner is dedicated to each soil sampling interval. After retrieval of the sample, the liner may be sliced open and the soil sample can be logged and containerized in the appropriate sample jar. During shallow soil sampling from fine-grained sediments, the geoprobe® can advance the sampler directly into the ground, without the advance of an augered borehole.

c) Hand Auger

The hand auger allows for soil from the desired interval to be collected directly by removing the soil column that is contained in the auger portion of the device.

All soil samples collected for Site COC's will be collected using discrete soil sampling methods such as Geoprobe® macro cores or split spoons samplers.

Methodology for Borings Around the Perimeter of Former Leaded Tank Bottoms Weathering Pad, SWMU 2, in AOI 8:

1) Borehole Advancement

During soil sampling activities at SWMU 2, boreholes will be advanced in areas surrounding the perimeter of the existing concrete pad via a geoprobe® or hand auger. Actual leaded tank bottom materials are distinguished by distinctive rust/red to black, metallic mostly oxidized scale materials. Leaded tank bottoms are also sometimes in a matrix of petroleum wax sludge. Borings will be completed around the perimeter of SWMU 2 to a depth of two feet below ground surface. If materials encountered match the physical description stated above, they will be delineated through additional borings and sampling.

2) Soil Sampling

Soil samples will be obtained for lithologic logging and laboratory analysis for chemical contaminants with one of two different sampling devices: Geoprobe® soil sampler or hand auger. Soil samples will be collected at intervals which appear to be visually impacted or from intervals which exhibit the highest deflections on the screening device (PID or similar). If soil samples are collected in the SWMU area and exhibit total lead concentrations exceeding 450 mg/kg (Act 2 non-residential MSC for lead), then the samples will be submitted for hazardous characteristic analysis under RCRA.

3) Well Construction

After drilling to the desired depth or the desired interval, permanent monitoring wells can be installed to allow groundwater sampling. In general, wells are constructed with slotted screen, which allows groundwater to flow into the well at the desired monitored interval and well casing, which restricts groundwater flow into the well from undesired interval. In most cases the well materials are constructed of PVC. In conditions where the shallowest groundwater interval is monitored, a single case construction monitoring well is installed. In conditions where multiple water bearing units occur and deep groundwater conditions are selected for monitoring, a double cased well is installed.

a) Single Casing Construction

The construction details of a monitoring well are determined by soil type, depth to groundwater and relative fluctuation of groundwater level. After drilling to the desired depth, a monitoring well is constructed for installation into the evacuated borehole. The well consists of a bottom cap, a length of screen and length of well casing. To determine the length of screen used, seasonal groundwater table or tidal fluctuations should be considered to allow the water table to intercept the well screen throughout the year. The assembled well is then inserted into the borehole.

The annular space between the well screen and subsurface is filled with a sand pack, which consists of clean, sorted sand. The sand pack allows water flow into the well but acts as a filter to prevent subsurface sediments from silting in the well. The sand pack extends one to two feet above the top of well screen. Above the sand pack, a seal is installed in the annular space between the well casing and the subsurface. The seal is comprised of hydrated bentonite and prevents surface water from infiltrating the well screen. Above the well seal, the annular space is backfilled with drill cuttings or cement. A cap is placed on the top of the well to further prevent infiltration of the surface water. The top of the well is protected with either a stand-up pipe or a locking, flush mount box.

b) Double Casing Construction

In cases where multiple water bearing zones occur, a double case well is installed to allow monitoring of the deeper water bearing zones. Construction of a double cased well is similar to that of a single case well; however, to prevent groundwater infiltration from shallower water bearing zones, a second casing is installed. This type of construction requires drilling two different diameter boreholes.

During drilling through the shallower groundwater zones, large diameter augers/bits are used to create a large diameter borehole. The borehole is advanced through the shallower water bearing area which will not be monitored. An outer casing is installed to seal the deeper monitoring well from infiltration from the shallow water bearing zones. After the outer casing is installed, the borehole is advanced deeper with smaller diameter auger/bit. The outside diameter of second augers fit within the inside diameter of the outer casing. The borehole is advanced to allow monitoring of the deeper water bearing zone. Once the desired depth is obtained, a monitoring well is installed within the outer casing, using similar methods as described in the single casing construction (3a, above). The outside casing prevents shallow groundwater infiltration into the well. The inside casing prevents surface water infiltration into the well.

4) Soil Cutting Handling

Cuttings generated from drilling will be containerized or stock-piled, undercover, until appropriate disposal is determined. In the case the soils are not impacted, the cuttings may remain on-site. Impacted soils will be removed using appropriate hazardous waste handling procedures and disposed of with an approved hazardous waste handler.

5) Well Development

After installation, monitoring wells are developed to remove residual sediments within the well and annular space. Water is pumped from the well a low flow rate (to minimize turbulence within the well and associated sand pack) until groundwater flowing from the well appears relatively free of sediments.

Documentation:

All site activities should be detailed in the site investigators fieldbook. The entry shall include the date, time, weather, address, and persons present on-site. In addition, data required to create well construction logs or boring logs (if no well is constructed) should be collected. This data includes soil type, relative moisture content, depth of water table, observed impact, soil screening measurements (if PID is used), blow counts (if split spoon samples are collected), sample recovery, depth of borehole, length of well screen, length of well casing(s), sand pack interval, well seal interval. The site investigator should identify the relative location and number.

C.4. NON-AQUEOUS PHASE LIQUID (NAPL) SAMPLING PROCEDURES

Responsible Personnel: Technicians and Geologists

Training Qualifications:

All field personnel involved NAPL sampling, as a minimum completed OSHA 40 HOUR HAZWOPER training. Prior to NAPL sampling, all field personnel will have worked a minimum of three sites under the direct supervision of experienced personnel. Field personnel will also have experience in sampling and vapor monitoring techniques and sampling equipment decontamination.

Materials and Equipment Necessary for Task Completion:

A list of equipment required to sample NAPL from a monitoring well is presented below:

- Current site map detailing well locations.
- Field data book for recording site data.
- Liquid level gauging device (graduated, optical interface probe).
- Keys and tools to provide well access.
- Appropriate sample containers and labels. NAPL samples will be collected in laboratory provided 40 milliliter (ml) glass vials with plastic caps fitted with Teflon ® lined septa; all sample bottles will be laboratory sterilized and will contain the appropriate preservative, if applicable. A minimum of 10 ml is required for laboratory analysis. In the case that sufficient volume is not obtained, a swabbing technique (described below) will be used.
- Sorbent pads (required for swabbing technique).
- Teflon ® (or equivalent) bottom-loading bailer to obtain NAPL sample.
- Clean nylon or polypropylene bailer cord.
- Decontamination supplies.
- H&S supplies (tyvek, nitrile gloves, safety goggles).
- Blank chain-of-custody forms.
- Cooler and ice for sample preservation.

Health and Safety Requirements:

Site specific HASP must be completed and reviewed by field personnel. As a minimum, modified Level "D" attire will be worn. Individuals performing NAPL sampling are required to wear safety goggles, tyvek suit, and nitrile sampling gloves.

Decontamination Requirements:

During NAPL sampling activities, dedicated sampling equipment (i.e. Teflon ® bailers, nitrile gloves, and bailer cord) are utilized; thereby, eliminating decontamination requirements. The interface probe, used to record the presence of NAPL and relative thickness prior to sampling, does require decontamination between sampling locations.

All site equipment used in a multi-well capacity will be decontaminated immediately prior to initial use and between each well. Standard site decontamination procedures for the optical interface probes between wells will be performed according to the following schedule:

- Initial rinse with clean tap water to remove excess residuals.
- Scrub equipment with sponge or clean, soft cloth in a distilled water/Liquinox@ (or equivalent) solution.
- Double rinse with deionized/distilled water.

Methodology:

Each monitoring well to be sampled will be gauged to obtain liquid level and relative NAPL thickness immediately prior to initiation of the sampling process. Refer to SOP No. 1 for appropriate well gauging procedures. Liquid level data will be recorded in a field book.

Sampling of the NAPL will occur via two different methods: 1) direct sample or 2) swabbing.

The following sequence of procedures will be implemented for the collection of groundwater samples from monitoring wells.

- 1) Establish a clean work area where sampling equipment will not come in contact with the ground or any potentially contaminated surfaces.
- 2) Use a laboratory, pre-cleaned Teflon@ sampling bailer for each well.
- 3) Don an unused, clean pair of nitrile gloves.
- 4) Attach an appropriate length of unused, clean nylon or polypropylene cord to the designated sampling bailer.
- 5) Select appropriate laboratory-sterilized sample containers.
- 6) Slowly lower sampling bailer into well until water surface is encountered; continue to lower the sampling bailer into the standing water column to one foot below the water surface.
- 7) Retrieve bailer at a steady rate to avoid excess agitation.
- 8) Visually inspect bailed sample to ensure for relative thickness of NAPL. If sufficient volume is present (>10 ml) place a direct sample of the NAPL into the laboratory vial. If less than 10 ml of NAPL is present, use a sorbent pad to absorb the NAPL from the surface of the groundwater sample. Place is swab sample into the laboratory vial.
- 9) Complete and attach labels to sample containers noting sample collector and date, time, and location of sample; record same data in field book.
- 10) Place samples in ice-filled cooler in such a manner as to avoid breakage. Samples collected for VOC analysis will be maintained at a temperature of 4°C.
- 11) Discard gloves and bailer cord and move to next sample location.

Documentation:

All site activities should be detailed in the site investigators fieldbook. The entry shall include the date, time, weather, address, persons present on-site, and the aforementioned parameters. Only relevant observations should be recorded. The nature of the work being performed is also appropriate.

C.5. PUMPING TESTS

Responsible Personnel: Hydrogeologists, Engineers and Technicians.

Training Qualifications: All field personnel performing pumping tests shall have completed OSHA 40-Hour training, and three days of field training. Personnel directing the pumping test shall have assisted with a minimum of three tests under the direct supervision of experienced personnel. Field personnel will have experience in operating the following field equipment: interface probe, data logger, submersible pump, related piping and fittings, flow meter and portable generator.

Health and Safety Requirements:

A site specific HASP must be completed and reviewed by all field personnel. Caution must be exercised in set up of electrical equipment, particularly the placement of pumps in a well which could be impacted by floating product. Other health and safety concerns include slip/trip hazards, and area traffic.

Decontamination Requirements:

Pump, discharge lines, hand held probes and all pressure transducers must be cleaned with Alconox and distilled water prior to installation in wells at site, and again following removal. Any water sampling activities to be incorporated during the test must be prepared and used in accordance with the Groundwater Monitoring SOP.

Methodology:

1) Pre-test Considerations:

Some site specific information regarding the geology and hydrogeology of the subject site is needed to determine the most appropriate type of pumping test and to estimate the reliability of the test results. Lithologic logs of the subject site will indicate whether the zone of interest is an unconsolidated formation or a bedrock formation. They should also give a strong indication as to whether the zone of interest is a water table formation, a confined formation or a leaky-confined formation, and whether any preferential (vertical or horizontal) transmissivity may be expected. Logs and/or slug test data will also provide indications as to what test yield is sustainable, and provide a rough indication of the areal extent pumping will influence. Additional pre-test considerations include any obvious positive or negative hydraulic barriers, any tidal effects, and /or any influence from other wells pumping in the area.

Often times, budget considerations and/or time limitations will necessitate the use of a monitoring well as the test pumping well. While this is generally acceptable, the well must be screened deep enough to allow design drawdown to be achieved and friction losses (well loss) in the pumping well must be taken into consideration when the test data are analyzed. A minimum of three monitoring wells in the vicinity of the test pumping well are needed to evaluate formation response. Ideally, the wells should all be at varying distances from the test pumping well and screened across the same zone.

Pumping tests are broken into two general classifications: step tests and constant rate tests. Step tests involve pumping a well at progressively higher rates, at set intervals of one or two hours per step. They are often used to determine the yield a well will sustain during a constant rate test and to evaluate well loss (frictional head loss between the screen/gravel pack and the formation). Constant rate tests are used primarily to evaluate aquifer coefficients for design of groundwater treatment systems and/or water supply purposes. In high sensitivity sites, where budgets permit, the best method is to do a step test first, to evaluate well loss and long term sustainable yield, allow 24 hours of recovery and then initiate the constant rate test.

The test duration is subject to site specific data requirements (i.e. sensitivity. required test goals, etc.) and to budget considerations. Optimally, a constant rate test will be run until all drawdowns have stabilized, and gravity drainage effects are curtailed; however, this is seldom practical due to time limitations. In most instances, an 8 hour constant rate test will be adequate, and a 24 hour test will be sufficient for higher sensitivity sites. Occasionally a 72 hour pumping test is warranted, though this is usually reserved for large scale water supply work. If there are any unexplained water level anomalies observed toward the scheduled end of a test, the test should be continued if at all possible.

The approximate test flow rate needs to be determined in advance for proper pump and discharge design selection. If it is not appropriate to perform a step test, sustainable yield can be estimated from slug test data or a brief (<30 minutes) pumping episode the day before the actual test. Generally, it is best to pump the well at as high a rate as is feasible order to obtain the greatest formation response data from the test. However, if floating product is present at or near the pumping well, drawdown needs to be limited so as not to impact uncontaminated soils below the water table. In these instances drawdown should be limited to less than 5 feet. In water table formations, if there is no concern regarding floating product, drawdown should not exceed two-thirds of the wetted screen depth due to the effects of friction loss.

If the test discharge is contaminated, it must either 1) treated prior to discharge or 2) containerized for off-site disposal. If it is to be discharged directly on- site and allowed to re-infiltrate (verses discharged to a catch basin) it must be routed sufficiently far enough from the test area as to avoid any artificial recharge effects. All appropriate discharge permits must be obtained and complied with. If discharge water is to be treated on-site, proper contaminant loading calculations for the test flow rate, approximate contaminant loading and test duration must be done in advance to insure treatment is completely effective. Any on-site treatment should also have at least one discharge effluent sample lab analyzed to document treatment effectiveness.

2) Pumping Test Set Up:

Prior to starting the test, all well measuring points (i.e. top of casing) should be clearly marked and vertically surveyed to the nearest 0.01 feet. The horizontal distance and orientation of all wells should be surveyed to the nearest 0.1 feet, and illustrated on the site base map. If there are any surface water bodies in the vicinity, a staff gauge should be set up and surveyed in to evaluate possible influences.

The preferred pump to be used for a pumping test is a submersible centrifugal pump ("Grundfos", or equivalent), run off either existing site power or a portable generator. These pumps are not explosion proof, so a conductivity probe must be tied into the pump controls to alleviate any possibility of product coming into contact with the pump. If the test pump is designed to pump total fluids (e.g. air operated double diaphragm pump, jack pumps, etc.) discharge must either be containerized, or treatment must include an oil/water separator to handle any floating product. The submersible pump should be positioned just above the bottom of the well, using a handling line to support the pumps weight.

NOTE: extreme care must be taken that the power cord is neither bearing any of the pumps weight, nor damaged during installation due to the potential for sever electric shock.

Discharge piping from the pump should include a flow meter (preferably with totalizer), followed by a flow adjustment valve. The flow meter should be installed in a straight section of hard piping of sufficient length to avoid meter distortion caused by turbulence (typically about 10 pipe diameters on either side of the meter). In low flow pumping tests, flow rate can be calculated by measuring the exact time required to fill a known sized container.

Ideally, groundwater levels should be static prior to starting the test, so that pumping influences alone can be readily evaluated. Water levels in all monitoring wells and/or nearby surface waters should be gauged a minimum of two times during the 24 hours prior to starting test pumping; readings should not have varied by more than 0.10 feet. Any significant precipitation events within the previous several days will usually result in noticeable water level changes (barometric changes have significant influences in confined and semi-confined formations). If there are any major water level changes that cannot be accounted for prior to test pumping, additional investigation into possible area influences (e.g. local well pumping or construction de-watering) should be conducted.

Exact water level measurements (to the nearest 0.01 feet) and exact time denotations during the test are critical to achieving accurate test results. All personnel involved with taking measurements during the test should have watches with a second hand, and they should all be calibrated to the same time. Adequate liquid level measurements can be obtained using an interface probe ("ORS", "Solinst", etc.) for those wells with floating product. In wells clear of floating product, an electric water level detector ("Solinst", "Hazco", "M-Scope", etc.) or chalked steel tape will provide accurate measurements. All non-dedicated probes must be properly decontaminated after each level reading to prevent any possibility of cross contamination between wells.

Automatic water level recorders are typically used during pumping tests to augment hand measurements and to obtain reliable early time-drawdown data. A pressure transducer allows measure of changes in groundwater levels by measuring differences in pressure experienced by the transducer. The pressure transducers are manufactured by "In-Situ" and are available with many types of data loggers. Some data loggers are capable of connecting to several transducers (Hermits) while others collected data from one transducer (Trolls and Mini-Trolls). The measured depth data for each probe is digitally stored in the data logger as depth (in feet)

at a specific elapsed time. At the conclusion of the test, the data logger is brought back to the office, and the test data is down loaded into a computer for analysis.

The transducer is installed in each well to a depth several feet lower than the greatest drawdown depth anticipated. The transducer cable is secured at this depth with duct tape or cable ties attached to the well head, and the transducer is plugged into the data logger. The transducer must not be submerged deeper than the allowable operating pressure, which is noted on each transducer cable spool in PSI. Care must be taken that the transducer cable is not damaged from rough edges at the well head, and that no vehicles run over the cable. In addition, any wells with floating product require an inner PVC stilling well to be installed to prevent the transducer cable from being damaged from contact with product. The stilling well will also eliminate the need for any water level corrections for product thickness.

In terms of prioritization, transducers should be utilized in the wells closest to the pumping well and then pumping well. Wells further from the pumping well can be successfully monitored by hand, due to the reduced likelihood that early time drawdown will be critical. Despite having transducers in given wells, back up hand readings should be taken at least hourly during the first 8 hours of the test, and then at least every 3 hours, to verify the transducer levels.

After the transducers are installed in the wells, and connected to the data logger, hand measurements are taken at each well with a transducer. These levels are then entered into the data logger as initial reference points for comparison to the depths measured by the transducers. Readings from the transducers are not completely reliable until they have been emerged for at least 30 minutes, due to the effects of probe temperature equilibrium.

3) Running the Test:

Prior to starting the pumping test, the data logger must be completely formatted for that particular test, and the operator must be completely familiar with the start up sequence. If possible, the pump discharge control valve should be pre-set to the desired flow rate prior to turning on the pump. However, depending on the test pumps performance curves, minor flow rate adjustments are generally needed during the first hour or two of the test to correct for the additional head experienced by the pump due to increasing drawdown. In addition, movement of the discharge hose after the test has been started should be avoided, since any change in the elevation of the discharge will affect the pumping rate. All changes in flow rate should be recorded with the exact time noted.

A minimum of two field personnel are needed to run a pumping test, with additional personnel required for tests with high complexity. One person should be designated to turn on the pump, adjust the flow rate, check on discharge treatment, etc. The second person should be stationed at the data logger to turn it on at the exact moment the pump is turned on. The data logger will record liquid levels very rapidly during the first part of the test, dropping off logarithmically to what ever intervals are formatted (one measurement every 20 minutes is normal). When the data logger has been activated and is running, early time drawdown measurements should be taken by hand from any wells near the pumping well that do not have transducers.

Any hand monitored wells near the pumping well should be measured frequently during the first few hours of the test, with less frequent measurements during the remainder of the test. A rough rule of thumb is one measurement every half minute during the first 5 to 10 minutes, one every 3 to 5 minutes during the first hour, and one every 10 to 20 minutes for the second hour, and then each well hourly. After the test has been running for a few hours, the transducer level readings should be compared to the hand measurements for verification, or later correction.

It is essential that some data reduction be accomplished in the field, so that major water level trends are recognized during the test. At a minimum, drawdown trends from the pumping well and two of the nearest monitoring wells need to be semi-log plotted against time so that deviations indicative of boundary conditions can be discerned before pumping is ceased. This will allow decisions to be made about whether the test should go for longer than planned.

Generally, water quality samples are taken during a test for laboratory analysis of compounds of interest. These are generally taken after the first hour of pumping and just prior to pump shutdown. If the test is of more than 24 hours duration, it is advisable to get running samples during the middle of the test as well. All samples should be obtained following sampling SOP's.

At the conclusion of the test, water level recovery data should be taken. The recovery data should plot out to an approximate inverse mirror image of the drawdown curve, with feet of recovery measured from the theoretical drawdown that would have been observed if pumping had continued. Recovery data behaves as if there were a nearby well recharging the formation, following image well theory. It has the advantage that there are no variations in the curve produced by variations in pumping rate. In water table aquifers, however, the effects of formation de-watering can cause the recovery trends to be substantially different from drawdown trends. Consequently, recovery data should be used for comparison purposes only, but not relied upon as heavily as drawdown data.

1) Data Analysis:

The data produced by pumping tests are analyzed to estimate aquifer performance characteristics, such as transmissivity, conductivity and storage, which in turn are used to predict groundwater flow under various circumstances. One of the more useful analytical products is a determination of capture zone, which is widely utilized in aquifer contamination work. Capture zone (Keely & Tsang, 1983) calculations describe the radial area (down gradient and side gradient) that a pumping well will draw groundwater in from. In the case of a contamination site, this equals to that portion of the plume a given recovery well(s) will influence, at a given pumping rate(s). Aquifer coefficients determined from a pumping test can be applied to a capture zone analysis for the determination of the best recovery system for a given plume. When the recovery system is operational, capture zone calculations can then be used to evaluate the effectiveness of the system at addressing the contamination plume, what pumping rate is optimal for controlling the plume, and the need for any additional wells. It must be noted, however, that capture zone calculations are relatively simplistic, and far from absolute. Consequently, they should be used with considerable margin for safety, and employed with a large measure of common sense.

The mathematical solutions used in pumping test analysis include many assumptions typical "real world" formations violate in one or more way (e.g., "the formation is of uniform thickness and of infinite areal extent"). In addition, some of the values incorporated into typical pumping test solutions are not actually measured, but are educated estimates (e.g. porosity based on lithology, etc.). Consequently, even the most carefully designed and executed pumping tests have severe precision limitations, and the solutions should never be considered absolute. This is why groundwater flow evaluations are generally conceded to be "a mixture of science and art", and all solutions require a strong application of common sense and experience.

Many problems associated with pumping test data evaluation are due to not recognizing, and/or correcting for, deviations from the theoretical solution employed. Some of the more common errors occur due to: partial penetration effects, formation de-watering effects, casing storage effects, poor pumping well efficiency and/or the application of incorrect equations or units. Consequently, a thorough understanding of the underlying assumptions inherent to the solution employed is required before the validity of the results can be trusted. There are numerous references that describe pumping test analyses. Some of the more recommended references include: Driscoll's "Groundwater & Wells" (1986); Lohmans "Ground-water Hydraulics" USGS Professional Paper 708 (1979) and Fetter's "Applied Hydrogeology" (1980). In addition, the USGS published "Aquifer-test Design, Observation, and Data Analysis" in 1983 by Robert W. Stallman (Applications of Hydraulics, Book 3, Chapter B 1). This is an excellent, common sense, guide to pumping test set up, measurements and data analysis.

Two of the more common pumping test equations used and their applications are listed below:

- 1) Cooper-Jacob (1946); time-drawdown & distance-drawdown methods: Test data is plotted on semi-log paper, and the slope is used in the solution. Both solutions assume the formation is confined; however, this distinction lessens over time as drawdown becomes stabilized. Distance-drawdown has an added advantage in that it allows water level to respond from across the site to be used, which accounts for some lithologic variations.
- 2) Boulton (1963), modified by Neuman (1975): This solution is used for determining aquifer coefficients in water table formations, taking gravity drainage (delayed yield) effects into account. Time- drawdown data is plotted on log-log paper and two Theis type curves are matched to get early time-drawdown and late time drawdown, respectively. While this solution most closely matches typical floating product recovery work, it is difficult to apply and often subjective, due to the inherent nature of curve matching solutions.

It is usually appropriate to analyze pumping test data by more than one solution to get a range of aquifer performance values. These values can be averaged, or the most conservative value can be used, or the best fit based on experience can be presented. The computer program "Aqtesolv", produced by Geraghty & Miller, is a very useful tool for solving pumping test solutions. Data from an Insitu data logger can be imputed to the Aqtesolv, and curve matching solutions can be produced automatically, or with some adjustments.

C.6. SLUG TESTS

Responsible Personnel: Hydrogeologists, Engineers, and Technicians

Training Qualifications:

All field personnel performing pumping tests shall have completed 40 HOUR OSHA training and 3 day field requirements. Personnel directing slug tests shall have assisted in at least 3 previous slug tests under the supervision of experienced personnel.

Materials and Equipment Necessary for Task Completion:

"Insitu" Hermit data logger, with one pressure transducer; interface tape or equivalent water level measuring device; "slug in" water displacement cylinder, or large bailer, 5 gallon pail, traffic cones and/or barricades, decontamination water and brush, alconox and decontamination pail.

Health and Safety Requirements:

A site specific HASP must be completed and reviewed by all field personnel. Caution must be exercised in test set up, particularly regarding vehicular traffic. Other concerns regard possible handling of free product, and slip/trip hazards.

Decontamination Requirements:

Any water level measuring probes, bailers and the water displacement cylinder must be cleaned with alconox and distilled water prior to use, and between uses at each well monitoring. Any groundwater and/or free product bailed must be disposed of in an approved manner, preferably in a properly installed, on-site holding tank.

Methodology:

Slug tests are utilized to obtain rough estimates of aquifer performance coefficients. They involve calculations based on the water level response of a well to the addition or subtraction of a known volume. They can be broken into two basic types of field exercises: slug-in tests and slug-out tests. As their names imply, slug-in tests involve the addition of water (volume) to the well, while slug-out tests involve the removal of water (volume). Water level response is monitored immediately following the displacement change, and for the next hour or so until the well has returned to approximately 90% of its original static level. Water level responses can be measured either rapidly by hand or with an "Insitu" Hermit data logger (or equivalent).

1) Field Procedures:

Exact well completion details are needed to perform slug test calculations. These include: total depth, total screened interval, depth to static water, casing diameter, screen diameter, gravel pack diameter and gravel pack interval. While these details should be documented on the well log, static water level and total depth should be field confirmed before the test. Where possible, several wells per site should be slug tested to obtain an average conductivity value for

a site, or to evaluate lithologic variables across a site. Addition data comparisons are accomplished by performing both slug-in and slug-out tests on the same well, where time permits.

Slug-In Tests: The slug-in method is best accomplished by lowering a cylinder of known volume into the well, and measuring the water level response over time. The displacement volume should be sufficient to cause a several foot initial change in the water level. In the case of a typical 4 inch diameter monitoring well, a simple displacement cylinder can be constructed using a 3 inch diameter PVC casing, capped at both ends and filled with clean sand. An over all length of 5 feet provides adequate displacement volume for a typical water table well having about 10 feet of standing water. A steel eye should be bolted into one cylinder cap for attachment of a disposable lowering rope (discard lowering rope between wells to prevent any cross contamination).

If a Hermit data logger is to be used for a slug-in test, the transducer should be set in the well at least one foot below where the bottom of the displacement cylinder will rest upon insertion, but not lying on the bottom (beware of silt clogging the transducer tip). Depth to water should be measured and compared to the transducer reading for correlation. When the Hermit has been properly imputed for the slug test, the hermit should be activated and the displacement cylinder should be rapidly, but carefully, lowered into the well to below the water surface. NOTE: Take particular care that insertion of the displacement cylinder does not damage the transducer or cable. When activated, the Hermit will be automatically recording time and water levels, starting at 6 readings per second, then decreasing exponentially over time. If water level changes are to be taken by hand, they must be carefully obtained at least every minute. When the well has recovered to about 90% of its original static level, the test may be concluded. If the test has proceeded for an hour and not recovered to at least 90% of the original static, additional data will be of marginal value and the test may be concluded.

2) Slug-out Tests:

Slug-out tests are performed in the same basic manner as slug-In tests, only by removing a known volume from the subject well. In wells that recharge rapidly during slug-in tests, a slug-out test can be performed by merely resetting the Hermit and extracting the displacement cylinder. The more conventional method of performing a slug-out test is to use a single long hand bailer to remove a known volume of water from the well. Typical bailers used for 4 inch diameter monitoring wells are either long steel bailers (similar to those often used by drillers to develop monitoring wells) or 2 Lexan sample bailers joined end to end to form one single long bailer. The bailer is lowered into the well prior to starting the Hermit, and the slight water level rise from the bailer is allowed to stabilize back to static. The Hermit is then activated, and the bailer is rapidly removed from the well, thereby creating the instantaneous. The test is run to 90% recovery, or one hour, like the slug-in test. If the bailed water is contaminated, it must be disposed of properly via either storage in an on site holding tank or on-site treatment with a portable carbon treatment container.

The validity of slug test values are highly field dependant. Some of the more common field oriented problems arise from:

- a) Subject wells are not adequately developed prior to testing.
- b) Formation slough occurred during drilling, so gravel pack volume is underestimated.
- c) Water displacement is not instantaneous due to the bailer leaking during extraction.
- d) The pressure transducer is jarred during water displacement.
- e) Water level changes are too rapid to get accurate measurements.

3) Data Analysis:

Field data from slug tests can be analyzed by hand or using "Geraghty & Millers" Aqtesolv computer program. If the field data was taken with the Hermit, the data can be transferred to Aqtesolv for analysis, saving considerable time over hand analysis. There are four well recognized analytical methodologies general employed. These methods and their assumptions are listed below:

<u>Application</u>	<u>Hvorslev</u>	Bouwer & Rice	<u>Cooper</u>	Nguygen-Pinder
Confined Fm.	X	X	X	Х
Unconfined Fm.	X	X		Х
Screened across		X		
water level				
Accounts for	X	X		X
partial				
penetration				
Specific storage			X	X
>0				
Allows for	X			
anisotropy				
Assumes infinite	X	X	X	Х
borehole storage				

As illustrated on the chart above, slug tests performed in water table formations can be solved using either Hvorslev or Bouwer & Rice methods. The Bouwer & Rice method has the advantage of accounting for screening across the water table, while the Hvorslev method allows for anisotropy. Confined formation slug tests can be analyzed by any of the four methods, though the Cooper method is most often used. It is often beneficial to solve slug tests by more than one method to evaluate possible conductivity ranges.

It must be stressed that slug test data is very approximate and limited in its accuracy. It is generally conceded that conductivity' values derived from slug tests are usually within an order of magnitude of the real conductivity, and therefore are only approximations. Consequently, any judgments based on slug test values must be used with extreme caution and incorporate a large measure of common sense and experience.

Q:\Data6\2574601\Office Data\Reports\Workplans\AOI 8 Work Plan\Appendices\Appendix C_Field Procedures_040208.doc