

REPORT
INVESTIGATION OF AREA A
BALLFIELDS
CHEVRON REFINERY
PHILADELPHIA, PENNSYLVANIA

JUNE 10, 1988

120X

REPORT
INVESTIGATION OF AREA A
BALLFIELDS
CHEVRON REFINERY
PHILADELPHIA, PENNSYLVANIA

JUNE 10, 1988

Dames & Moore

CONTENTS

			Page
1.0	INTRO	DUCTION	1
	1.1	SITE LOCATION AND DESCRIPTION	1
	1.2	SITE BACKGROUND INFORMATION	1
2.0	OBJEC	TIVES AND SCOPE OF WORK	1
3.0	FIELD	PROCEDURES	2
	3.1	SAMPLING GRID PREPARATION	2 .
	3.2	SOIL SAMPLE COLLECTION	2
	3.3	FIELD OBSERVATIONS AND MEASUREMENTS	3
4.0	RESUL	TS	4
	4.1	PID HEADSPACE ANALYSIS	4
	4.2	CHEMICAL ANALYSIS	4
5.0	CONCL	USIONS	5
6.0	RECOM	MENDATIONS	
	TABLE	es e	
	FIGUR	RES	
	A DDEN	IDICES	

C 2 1

y

TABLES

<u>Table</u>								
1	General	Soil Sampling	Data					-
2	Summary	of Analytical	Laboratory	Data,	Area	A -	Phase	I
3	Summary	of Analytical	Laboratory	Data,	Area	A -	Phase	II

FIGURES

Figure	
1	Site Vicinity Map
2	Plot Plan, Ballfields - Area A
3	Trench Cross-Section B-B'(East Wall), Ballfields - Area A
4	Trench Cross-Section E-E'(South Wall), Ballfields - Area A
5	B/N Concentration Contour Map, Ballfields - Area A
6	Cyanide Concentration Contour Map, Ballfields - Area A
7	Phenolics Concentration Contour Map, Ballfields - Area A
8	Total VOC Concentrations and Area of PID Readings Greater than Background, Ballfields - Area A

APPENDICES

Appendix

A PID Calibration Data

B Laboratory Reports

1.0 INTRODUCTION

Dames & Moore is pleased to present our report entitled "Investigation of Area A - Ballfields, Chevron Refinery, Philadelphia, Pennsylvania." This investigation was conducted in accordance with our proposal dated October 23, 1987. The project was authorized on December 11, 1987, as Chevron Contract Number C-87-33-115. Site activities were planned and implemented in cooperation with Chevron representatives, who also provided Dames & Moore with historical background information.

1.1 SITE LOCATION AND DESCRIPTION

The Chevron Refinery is located in South Philadelphia approximately I mile north of the confluence of the Schuylkill and Delaware Rivers. The portion of the refinery known as the "Ballfields" is located east of the northern part of the Main Plant of the refinery (Figure 1).

Area A is a mound of soil 6 to 15 feet in height located near the center of the Ballfields. The mound covers approximately 30,000 square feet of surface area and contains approximately 10,000 cubic yards of soil.

1.2 SITE BACKGROUND INFORMATION

& Moore reviewed several historical Dames photographs (1959, 1965, 1970, 1975, 1980, and 1985) to evaluate the history of the Area A soils. The mound was not visible in the 1980 photograph. However, in the 1985 photograph, the mound is present. According to Chevron personnel, the soil may have been derived from the area near the Passyunk Avenue Bridge about feet north of the Ballfields (Figure 1). The aerial photographs indicate that the Passyunk Avenue Bridge was widened between 1980 and 1985.

2.0 OBJECTIVES AND SCOPE OF WORK

The objectives of this investigation were to:

- o Identify and quantify compounds present in Area A soils
- o Evaluate remedial alternatives, if necessary, for the Area A soils

To accomplish the project objectives, we performed a scope of work consisting of these tasks:

Task 1 - Sampling Grid Preparation

Task 2 - Soil Sample Collection

Task 3 - Laboratory Analysis

Task 4 - Data Evaluation

Task 5 - Remedial Alternative Evaluations

Task 6 - Report Preparation

Tasks 1 and 2 are discussed in Section 3.0. The results of Tasks 3 and 4 are presented in Section 4.0. Section 5.0 reviews our conclusions, and Section 6.0 discusses the remedial alternative evaluation and our recommendations.

3.0 FIELD PROCEDURES

To accomplish Tasks 1 and 2, Dames & Moore performed field procedures that involved sampling grid preparation, soil sampling, and field observations and measurements. This section discusses these procedures.

3.1 SAMPLING GRID PREPARATION

Dames & Moore collected soil samples for laboratory analysis by excavating five trenches across Area A (see Figure 2) using a backhoe. Excavation of the trenches began on January 19, 1988, and was completed by January 26, 1988. The trenches were approximately 8 to 12 feet wide and were dug to a depth of approximately 2 to 5 feet below the surrounding ground surface. Excavated soil was placed along the Area A perimeter and adjacent to the trench from which it was removed. In specified areas, the trench was widened and stepped so that field personnel could safely enter the trench to make observations and take samples.

3.2 SOIL SAMPLE COLLECTION

Soil samples were obtained for visual examination, photoionization detector (PID) headspace readings, and laboratory analysis from the 18 locations shown on Figure 2. At each location, samples were taken at approximate 3-foot depth intervals. Samples were collected directly from the sides of the trenches and from the center of the backhoe bucket. See Table 1 for sample point identification and depth.

Each sample was placed in a laboratory-prepared glass jar with a Teflon-lined cap. In addition, separate samples were placed in driller jars and transported to our soils laboratory in Trevose, Pennsylvania, where headspace measurements of volatile organic compounds (VOCs) were obtained using a PID (see Table 1 for PID headspace readings). Vertical PID scans were also conducted along the walls of each trench at each sample location (see Figures 3 and 4 for PID readings measured in the field). Photographs of all trenches were taken. The trenches were backfilled with excavated soil and the area was graded to a smooth surface.

For each of the 18 sampling locations, a vertical composite soil sample was prepared from the individual soil samples collected at that location. The 18 composite samples were packed in a cooler with ice and shipped to Century Laboratories of Thorofare, New Jersey, for chemical analysis as discussed under Section 4.2. The remaining individual samples were stored in Dames & Moore's laboratory until the analyses were completed.

Each day, prior to the commencement of field work, the PID was calibrated. The PID was also calibrated by Timely Environmental Service Technology of Trenton, New Jersey, prior to the beginning of field work. Timely Environmental's PID calibration graph and Dames & Moore's Equipment Calibration Maintenance and Repair Log are provided in Appendix A.

3.3 FIELD OBSERVATIONS AND MEASUREMENTS

Observations and measurements were made during excavation and sampling of the trenches. Our observations and measurements are:

- o The Area A soil mound ranges in height from approximately 6 to 8 feet in the northwest corner to approximately 12 to 15 feet in the southeast corner, and covers approximately 25,000 to 30,000 square feet of surface area.
- o Approximately 8,000 to 12,000 cubic yards of soil exist in the mound.
- o The mound was vegetated prior to our excavations.
- o No ponded water existed on top of the mound.
 - o The soil consists of a light-brown to brown silt with little clay, little to some gravel, and little sand.
 - o No stratification was observed in the mound.
 - o A coating was observed on rocks on the surface of Area A in the southwest corner. Reportedly, this coating was analyzed by Chevron and found to contain cyanide.
 - o Area A contains various types of debris scattered evenly throughout. The debris consists of metal, tires, rubber, concrete, macadam, wood, small nodules of thick tar, and other debris.
 - o The only PID reading greater than background measured in the field was 20 ppm (PID units) at sample location AlOD (see Figures 3, 4, and 8).
 - o Pockets of black, apparently oily soil with a higher clay content than the surrounding soil and petroleum odor were noticed in all trenches (no PID readings greater than background were measured).
 - o Area A is underlain by approximately 2 feet of light-brown silty sand with gravel and trace to little clay, which, in turn, is underlain by 1 to 2 feet of black silty sand with gravel, tar, slag, wood, and other debris (bed of old railroad yard). This layer has a petroleum odor and had a PID reading no higher than 5 ppm (PID units). The black silty sand is underlain by a brown silty sand.

Because the soil in Area A is fairly homogeneous, only two cross sections, B-B' and E-E', are illustrated. These sections are shown on Figures 3 and 4.

4.0 RESULTS

This section contains the results of PID headspace analyses and laboratory analyses performed on selected soil samples.

4.1 PID HEADSPACE ANALYSIS

All soil samples collected were transported to our laboratory in Trevose, Pennsylvania, for PID headspace analysis (see Table 1). Significant positive readings were obtained from several soil samples. These samples and their respective PID readings are: A7E (30 ppm), A9C (70 ppm), A10D (120 ppm), A10E (110 ppm), A12D (120 ppm), and A19A (30 ppm). Figure 8 shows the locations of these samples.

4.2 CHEMICAL ANALYSIS

Dames & Moore performed the laboratory analyses in two phases, with the testing parameters for the second phase determined by the results of the first phase.

The Phase I composite samples (A2, A4, A8, A10, A13, and A15) were collected at the intersections of the five trenches. The six composite samples were analyzed for:

- o EP toxicity metals, pesticides, and herbicides
- o Polychlorinated biphenyls (PCBs)
- o Total cyanide
- o Base/neutral-extractable organics (B/Ns)
- o Total phenols
- o Corrosivity (pH)
- o Reactivity
- o Ignitability
- o Volatile organic compounds (VOCs if detected in the field or during PID headspace analysis)

Table 1 presents the locations and depths of the individual samples that were composited into the six Phase I samples.

In addition, five samples were gathered for VOC analysis and three samples were gathered for total petroleum hydrocarbons (TPH) analysis. The samples for VOC analysis were selected based on PID field readings and PID headspace readings. Samples for TPH analysis were selected in areas with black, slightly oily soil and slight petroleum odor. Table 2 is a summary of the analytical laboratory data for the Phase I composite samples, and Appendix B contains the laboratory reports.

The results of the analyses show that low levels of total B/Ns (greatest concentration of 22.78 ppm in sample A15) and total cyanide (greatest concentration of 13 ppm in sample A13) are present in Area A soils. In addition, low levels of total phenols (greatest concentration of 1.1 ppm in sample A10), total VOCs (greatest concentration of 1.93 ppm in sample A10E), and TPH (greatest concentration of 740 ppm in sample A12D) are also present.

After evaluating the Phase I analytical results, we decided to have 12 Phase II composite samples (Al, A3, A6, A7, A9, A11, A12, A14, A16, A17, A18 and A19) analyzed for total cyanide. Again, low levels of cyanide were detected. The greatest concentration was 16 ppm in samples A14 and A17.

Table 1 presents the locations and depths of the individual samples that were composited into the 12 Phase II samples. Table 3 is a summary of the analytical laboratory data for the Phase II composite samples. Appendix B contains the laboratory report.

Figures 5, 6 and 7 show the concentrations of total B/Ns, cyanide, and phenolics, respectively. The greatest concentrations for all parameters occur in the south and southwest corner of Area A.

5.0 CONCLUSIONS

Based on the data gathered and analyzed during this investigation, our conclusions are:

- of brown silt with little clay, small lenses of black soil, and various types of debris. The debris consists of metal, bars, tires, concrete, macadam, wood, and other materials.
- o In comparison to cleanup guidelines or concentrations of concern typically used by state officials, the concentrations of B/Ns and cyanide are mostly low. However, eight samples (A4, A8, A10, A13, A14, A15, A16, and A17) slightly exceed these guidelines.
- o Total phenols were detected in four of the six composite samples tested. Based on our experience, the reported concentrations are low.
- o The total VOC concentrations are low and cover a small area (Figure 8). The TPH concentrations are low and confined to small lenses within the mound.
- o Based on the RCRA characterization analysis (see Appendix B), the soil appears to be non-hazardous.

6.0 RECOMMENDATIONS

Dames & Moore recommends that little or no action be taken until the entire Ballfields study is complete. Which areas of the Ballfields may need remediation is uncertain at this time. Other areas that require remediation could ultimately affect Area A. For example, if another area within the Ballfields requires excavation, Area A could possibly be used as backfill.

At this time, Dames & Moore does not believe that the concentrations of contaminants detected in Area A soils warrant the cleanup and removal of the soils. However, we do recommend that Chevron continue to maintain a policy of restricting access into the Ballfield Area, especially Area A. To ensure limited access, Chevron may wish to construct a temporary fence around the Area A soils. In addition, we recommend that the mound be graded and seeded to prevent erosion and dust emissions.

This report was prepared by:

DAMES & MOORE

A Professional Limited Partnership

Frank J. Vernese Partner, Ltd.

Palmh T Golia P.G.

Ralph T. Golia, P.G.

Project Manager

David J. Wagner Staff Geologist

FJV/RTG/DJW:jw 2284R

TABLE 1

GENERAL SOIL SAMPLING DATA

CHEVRON REFINERY AREA A PHILADELPHIA, PENNSYLVANIA 1/19/88 - 1/26/88

Sample Point I.D.	Approximate Depth (ft)	PID Headspace Readings <u>(PID units)</u>	Samples Composited For Phase I Laboratory <u>Analysis*</u>	Samples Composited For Phase II Laboratory —Analysis*
A1 A	0-4	. 0		÷
В	48	0		+
A2 A	3	4	х	
В	6	5	x	
С	9	6	x	
D	12	5	X	
Ē	15	14	X	
A3 A	0-4	0		+
В	4–8	0 .		· +
Ċ	8–12	1		+
A4 A	3	0	x	
В	6	3	X	
C	9	4	x	
D	12	9	×	
Ē	15	8		
A6 A	3	4		+
В	6	3		1
C	9	2		†
D	12	5		+
E	15	14	,	·
A7 A	3 .	4		+
В	6	5		• +
С	9	15		+
D	12	20		• +
E	16	30		•
F	18	11		
A 8 A	3	6	X	
В	6	11	x	
C	9	16	×	
	12	5	~	
E	15	10		

TABLE 1 (Cont'd)

GENERAL SOIL SAMPLING DATA

CHEVRON REFINERY AREA A PHILADELPHIA, PENNSYLVANIA 1/19/88 - 1/26/88

Sample Point I.D.	Approximate <u>Depth (ft)</u>	PID Headspace Readings <u>(PID units)</u>	Samples Composited For Phase I Laboratory Analysis*	Samples Composited For Phase II Laboratory Analysis*
A9 A	04	0		+
В	4-8	2		+
С	8–12	70		+
A O CA	3	0	x	
В	6	6	X	,
С	9	2	X	-
D	12	120	X	
E	15	110		
F	18	50		
A11 A	3	0		+
В	6	4		+
С	9	6		+
: D	12	9		+
Ε	15	0		
A12 A	3	4		+
8	6	5		+
С	9	7		+
D	12	120		+
E	15	2		
A13 A	3	4	x	
В	6	4	x	
C	9	б	X	
D	12	8	X	
A14 A	0–4	1		+
В	4–8	2		+
С	8–12	3	,	+
A15 A	3	3	Х	
В	6	3	X	
С	9	6	X	
Ð	12	9	X	
ε	15	22		4

TABLE 1 (Cont'd)

GENERAL SOIL SAMPLING DATA

CHEVRON REFINERY AREA A PHILADELPHIA, PENNSYLVANIA 1/19/88 - 1/26/88

Sample Po	oint I.D.	Approximate <u>Depth (ft)</u>	PID Headspace Readings (PID units)	Samples Composited For Phase I Laboratory Analysis*	Samples Composited For Phase II Laboratory Analysis*
A16	A	3	2		+ .
	В	6	5		+
	Ċ	9	12		+
	D	12	13		+
	Ε	16	3		
	F	17–20	3		
A17	A	0–4	3		+
	В	4–8	7		+
	С	8-12	7		+
A18	Α	0–4	0		+
,,,,	В	4-8	0		+
A19	Δ	0–4	30		+
AIS	B .	4-8	14		+

^{*} Example - A8A + A8B + A8C = Composite Sample A8

TABLE 2

SUMMARY OF ANALYTICAL LABORATORY DATA AREA A -- PHASE I

CHEVRON REFINERY PHILADELPHIA, PENNSYLVANIA 1/19/88 - 1/26/88

Composite						
Sample I.D.	<u>A2</u>	<u>A4</u>	<u> A8</u>	<u>A10</u>	<u>A13</u>	<u>A15</u>
<u>Parameters</u>						
Base/Neutral / Extractable Organic	<u>:s</u> (ug/kg)				·	
Acenaphthene	U	Ü	U	U	120	· U
Acenaphthylene	U	390	860	140	150	1,500
Anthracene	U	450	710	200	200	Ü
Benzo (a) Anthracene	U	1,200	1,100	430	960	j
Benzo (b) Fluoranthene	j	920	1,200	1,300	2,100	2,600
Benzo (g,h,i) Perylene	Ŭ	2,300	2,000	2,000	3,800	3,800
Benzo (a) Pyrene	190	1,400	1,400	850	1,900	2,000
Chrysene	190	1,500	1,400	540	1,400	1,700
Dibenz (a,h) Anthracene	U	Ü	Ū	U	U	3
Diethylphthalate	Ü	U	U	U	j	· Ū
Di-n-Butylphthalate	U	U	U	U	100	Ü
Fluoranthene	120	1,500	2,200	560	880 .	2,300
Fluorene	U	240	450	100	85	Ú
Ideno (1,2,3-cd) Pyrene	U	820	1,600	1,600	2,800	2,500
Naphthalene	j	660	2,500	700	400	880
Phenanthrene	ប	2,000	2,400	700	900	2,300
Pyrene	_290	3.500	<u>3.100</u>	1,100	<u>2.700</u>	3.200
Total (ug/kg)	790	16,880	20,920	10,220	18,500	22,780
Composite						
Sample I.O.	<u>A2</u>	<u>A4</u>	_ <u>A8</u>	<u>A10</u>	<u>A13</u>	<u>A15</u>
Conventional Analysis Data(mg/kg)						
Cyanide, Total	3.4	U	U	U	13	4.9
Phenolics, Total	U	U	0.19	0.78	0.56	1.1

TABLE 2 (Cont'd)

SUMMARY OF ANALYTICAL LABORATORY DATA AREA A - PHASE I.

CHEVRON REFINERY PHILADELPHIA, PENNSYLVANIA 1/19/88 - 1/26/88

Sample I.D.	<u>BVOA</u>	<u>A9C</u>	AIOE	<u>A12D</u>	<u> A158V0A</u>
Volatile Organics (ug/kg)					
Benzene	U	18	U	U	U
Ethylbenzene	Ü	45	940	U	11
Methylene Chloride	U	13	. U °	4	6В
Toluene	J	_110	<u>990</u>	<u> </u>	
Total (ug/kg)	0.00	186	1930	4	11
Sample I.D.	<u>врн</u>	<u>A120</u>	A15BPH		
<u>Total Petroleum Hydrocarbons</u> (mg/kg)	210	740	24		

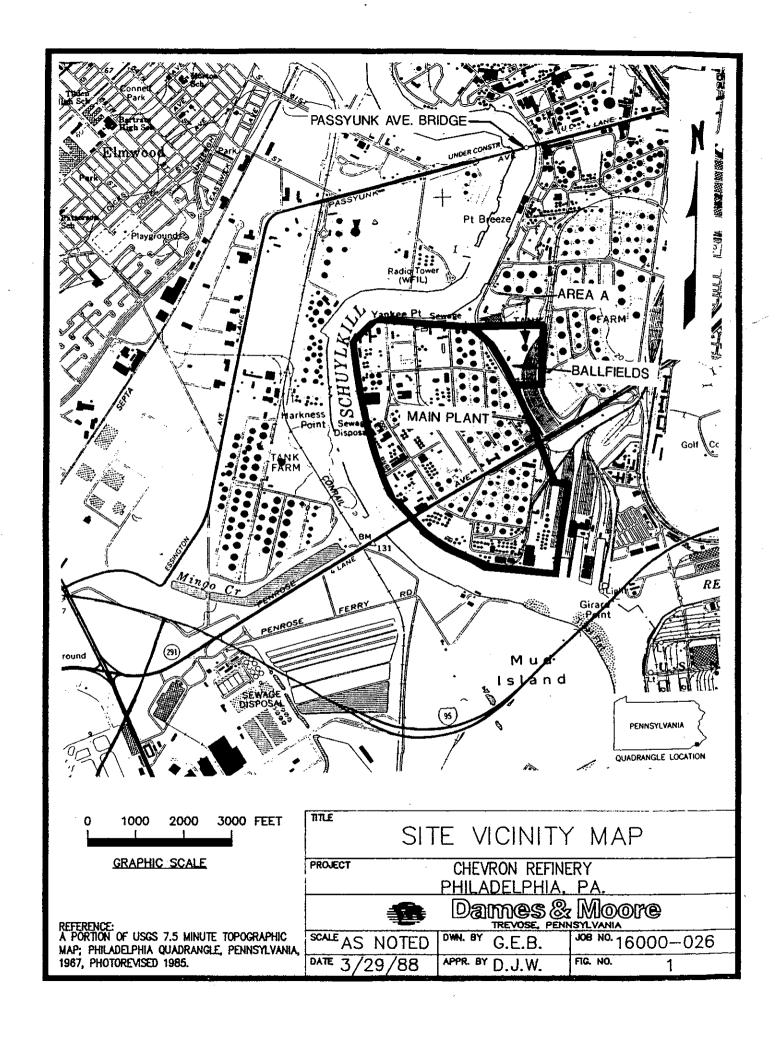
Explanation:

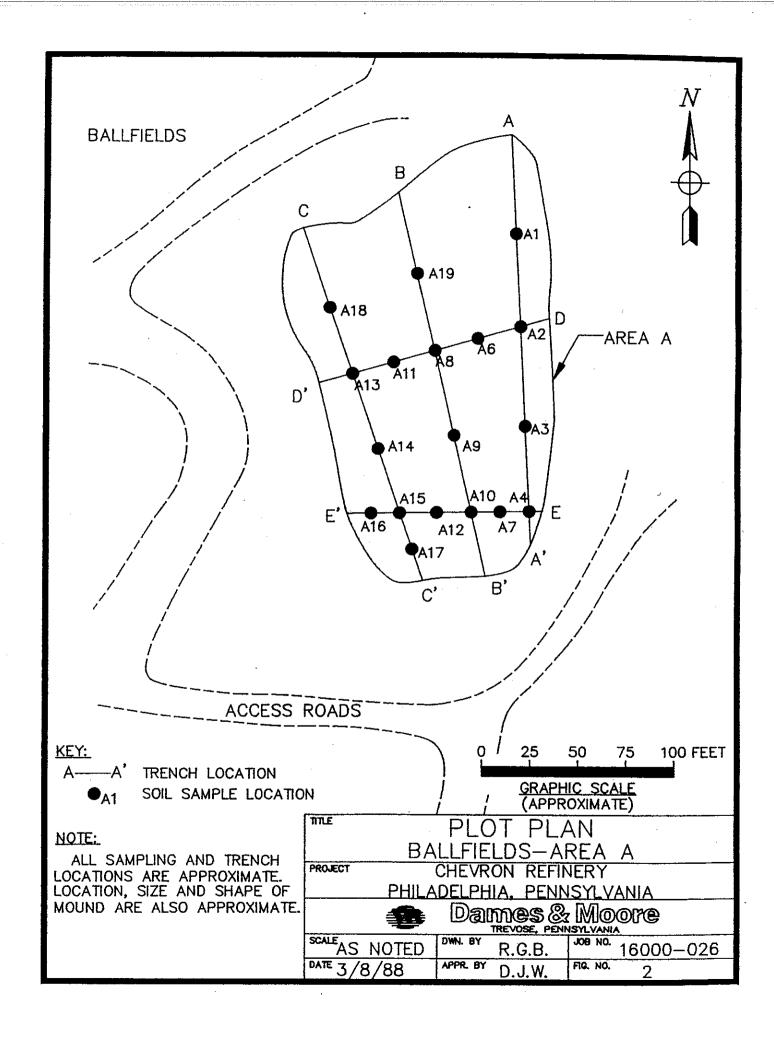
- U Compound was analyzed for but not detected.
- J Indicates an estimated value based on assumption of a 1:1 responses for tentatively identified compounds, or when mass spectral data indicate the presence of a compound at levels below the specified detection limit.
- B Indicates that the analyte is found in the blank as well as a sample. It indicates possible/probable contamination and warns the data user to take appropriate action.
- Note: 1. See Figures 3 and 4 for location of samples taken for volatile organic and total petroleum hydrocarbon analysis.
 - 2. Only the compounds that were detected are present on this table. For the complete list of compounds analyzed see Section 4.0. For the complete laboratory reports see Appendix B.

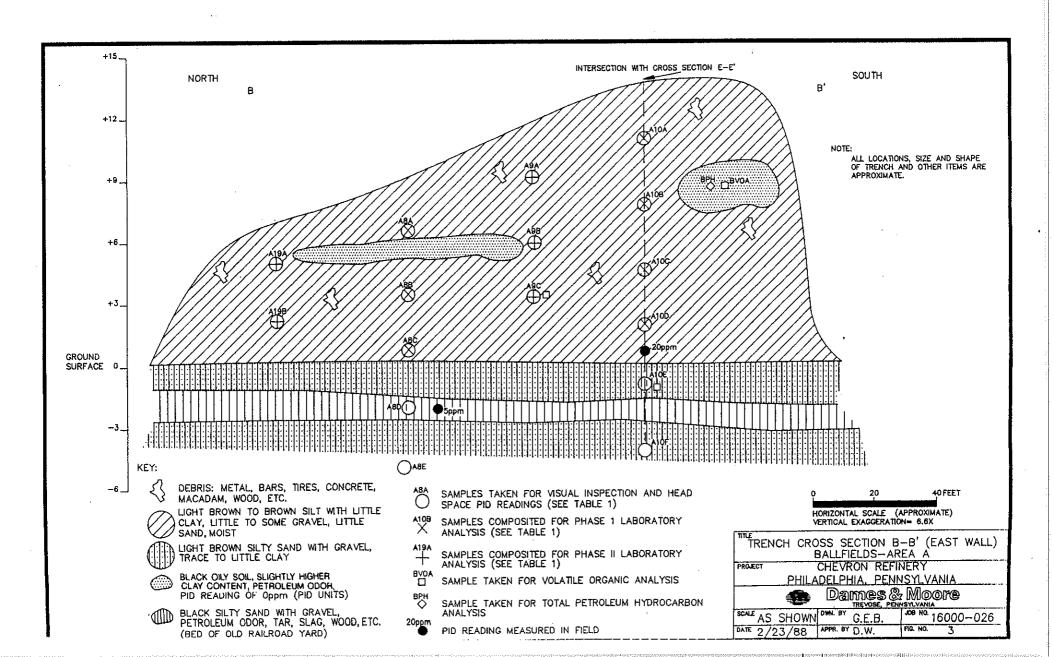
TABLE 3

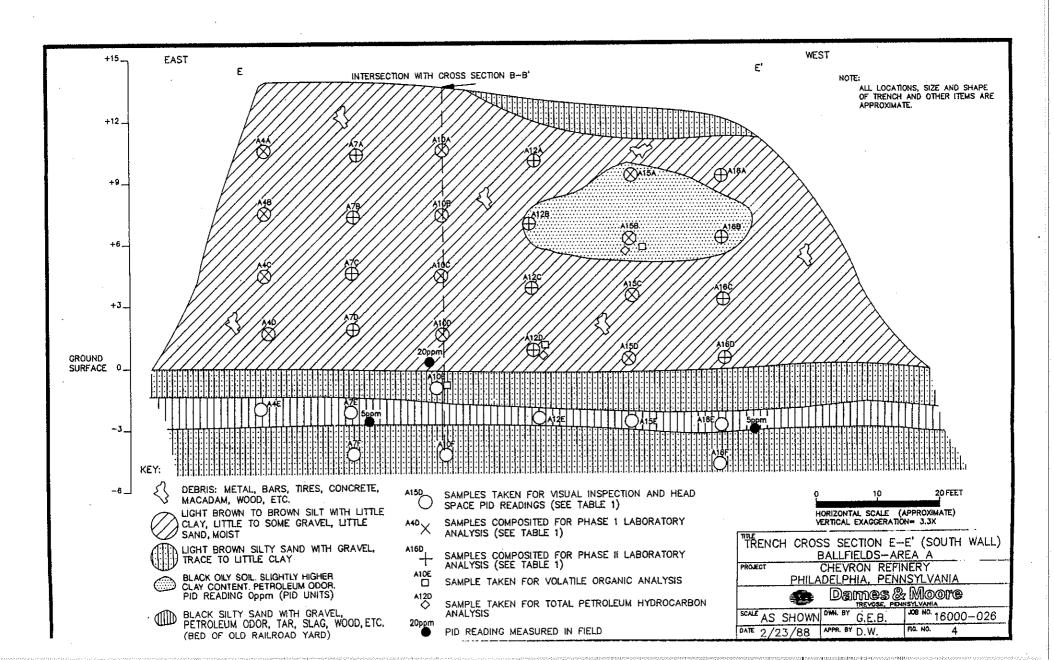
SUMMARY OF ANALYTICAL LABORATORY DATA AREA A - PHASE II

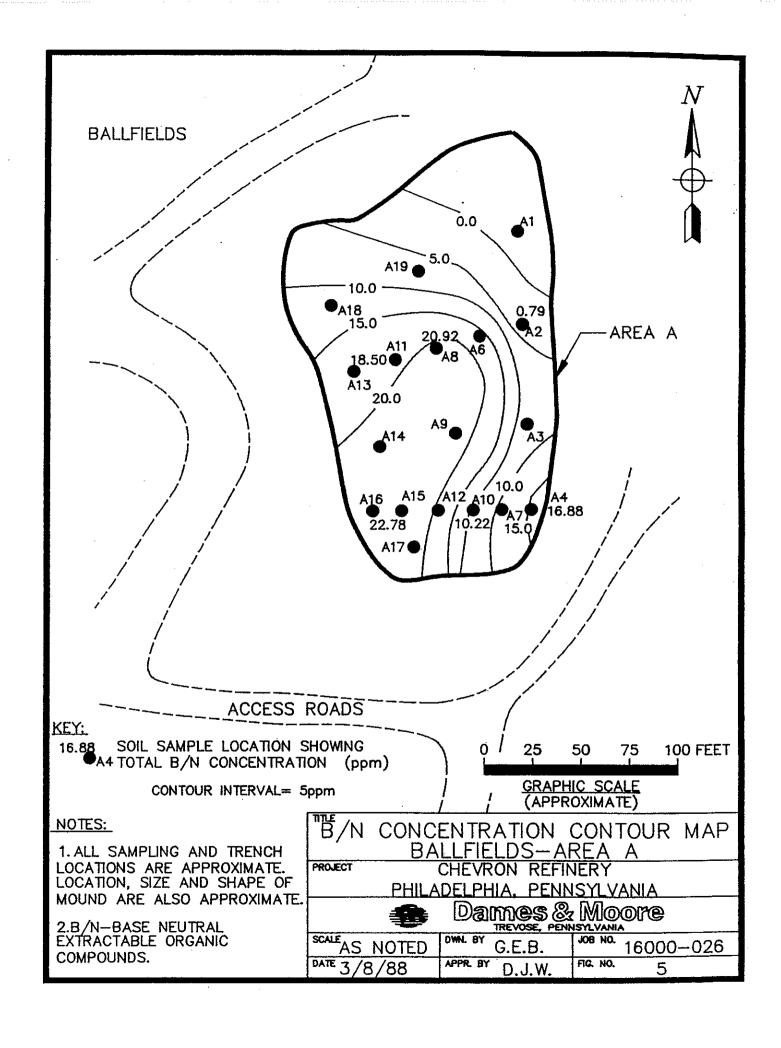
CHEVRON REFINERY PHILADELPHIA, PENNSYLVANIA 1/19/88 - 1/26/88

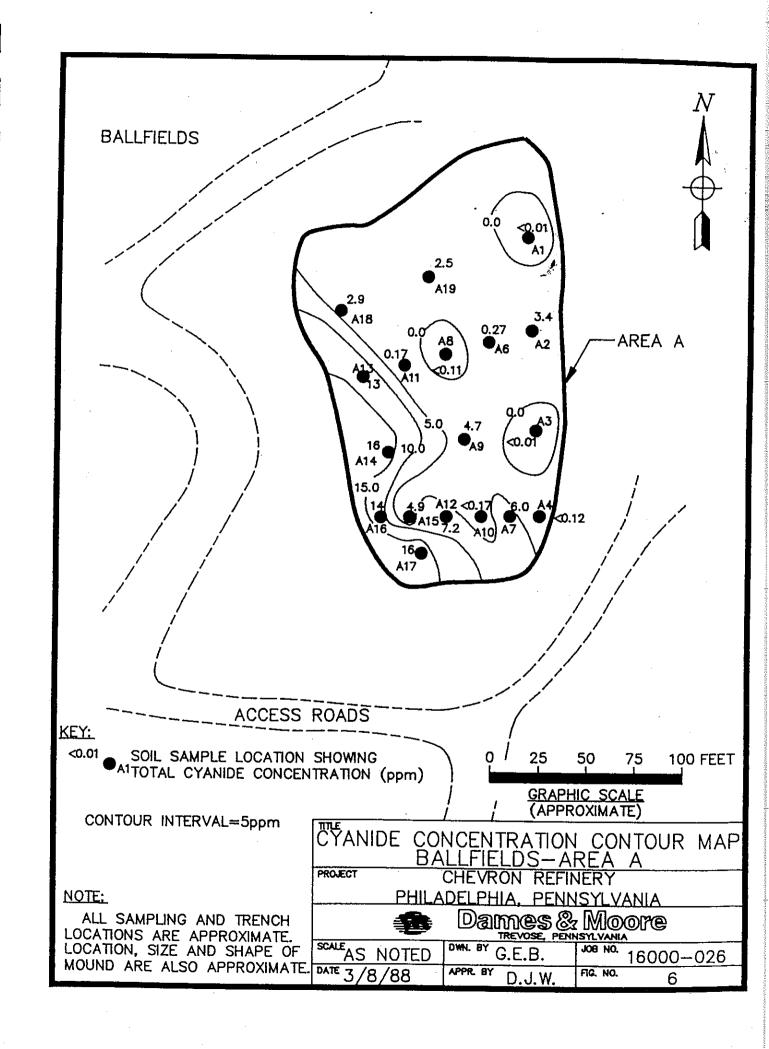

Composite <pre>Sample I.D.</pre>	<u>A1</u>	<u>A3</u>	<u>A6</u>	<u>A7</u>	<u>A9</u>	- <u>A11</u>	<u>A12</u>	<u>A14</u>	<u>A16</u>	<u>A17</u>	<u>818</u>	<u>A19</u>
Conventional Analysis <u>Data (mg/kg)</u>						,						
Cyanide, Total	ប	U	0.27	6.0	4.7	0.17	7.2	16	14	16	2.9	2.5

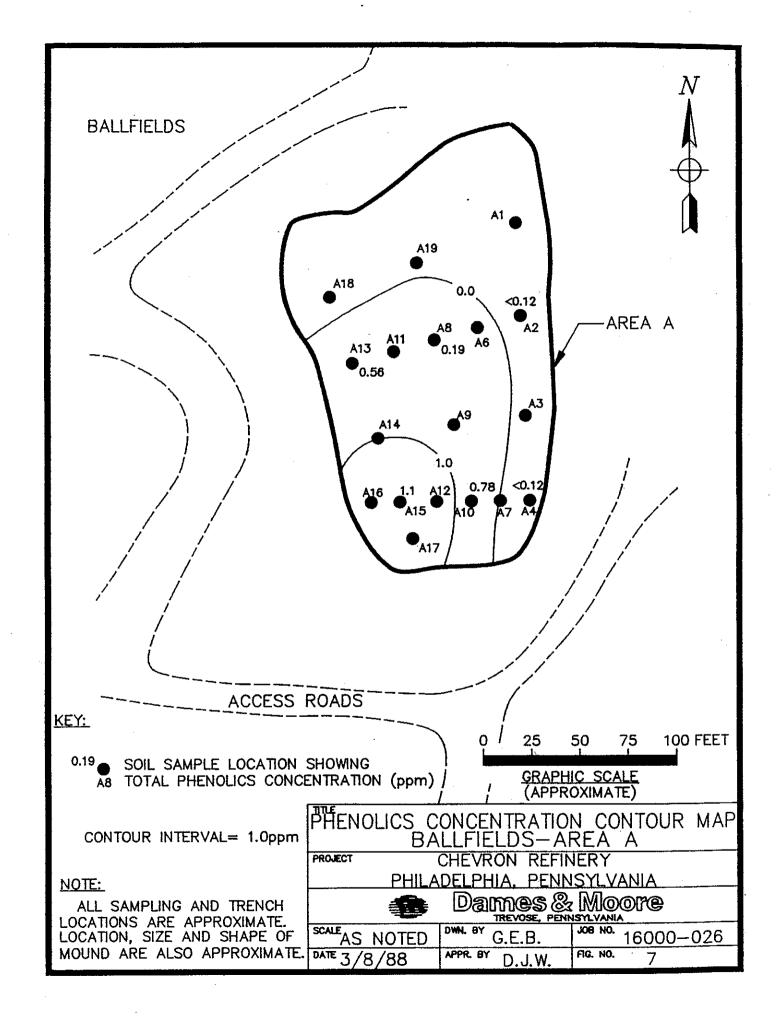

Explanation:

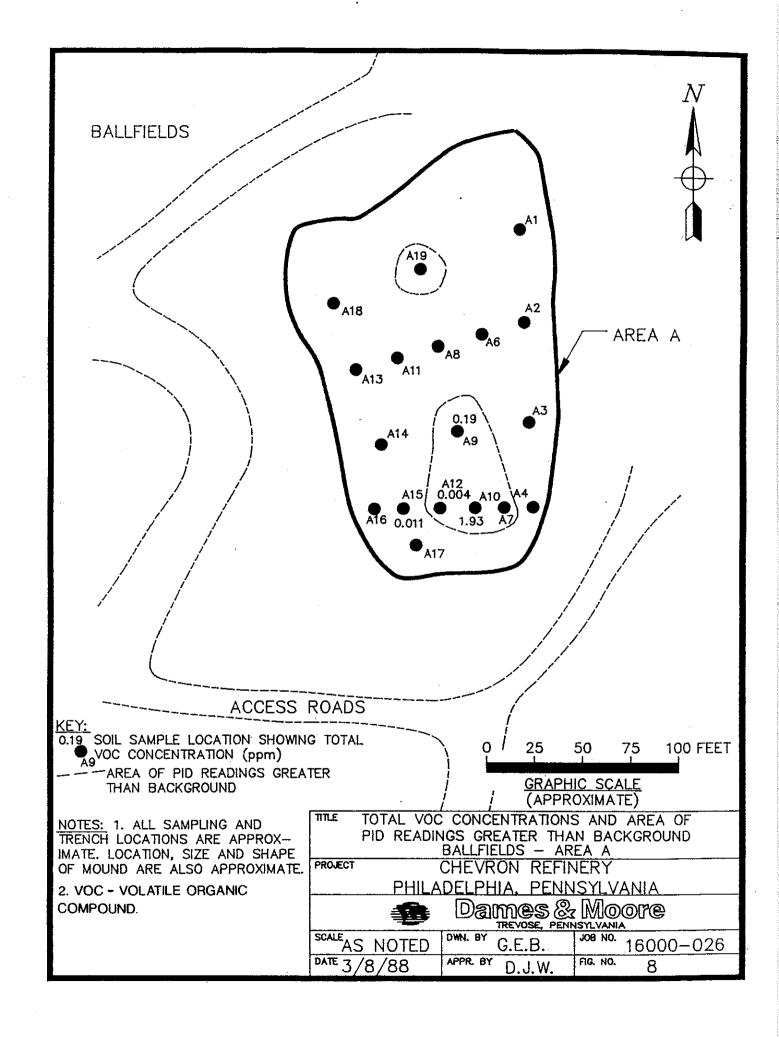

U - Compound was analyzed for but not detected.


Note:


Laboratory reports are provided in Appendix B.







APPENDIX A

PID Calibration Data

TRENTON, NEW JERSEY 88620 11181 אריי). (609) 888-8605

P.I.D. CALIBRATION GRAPH

CLIENT

: DAMES AND MOORE ,PA.

MODEL NO.

: HNU PI -101

SERIAL NO(S) .: 52095

52073

D&M 2 2713

LAMP

: 10.2EV

DATE

: 12-29-87

SPAN POT SETTING

: 9.3

TIME

: 17:00

TECHNICIAN : TED WHITE

CALIBRATION TEMP

BENZENE **METER** STANDARD RESPONSE INTRODUCED RANGE (ppm) (ppm) (ppm) 13.20 10.67 8-20 51.99 49.72 0 - 286

95.24 503.90

96.00 489.00

9-299 0-2999

800 799

100

0 0

RESPONSE

(ppm)

600 500

400 300 200

100

200 300 400 500 CALIBRATION STANDARD INTRODUCED

700 800 600 (ppm)

Instrument responded as per calibration graph above. TIMELY ENVIRONMENTAL SERVICE TECHNOLOGY will not take responsibility for instrument performance after time and date stated above.

	TYPE	OF EQUIP	MENT: HOT	NOITAFINAL O	V DETRIBE (PD)
•	M.	ANUFACT	URER: HA	UU SYSTE	MS C
				, PI-	
			IAL #: Z		<u>, </u>
	700 TATA A A A GARAGE				<u> </u>
MAIN	TENANCI	E PROCED	URES: CAL	IBRATE	DAILY - IF WIT
. —	7/070	CAL	13RATION	CLEAN	BULBARD OTHER PARTS
	- hid- p		SCEPTIBLE	E 10 GR	une. CHARLE BOTTOTY
. —		VEEDES	2 C~Q C	LEXY to	N WHEN NEEDED.
			· · · · · · · · · · · · · · · · · · ·		
					
		<u> </u>	· · · · · · · · · · · · · · · · · · ·		
DATE				OPERATING PROCEDURES	1 this this is the LACED!
USED	BY	JOB #	CALIBRATION YES/NO	ATTACHED YES/NO	DESCRIBE (i.e. replaced membrane, cleaned hoses, etc.)
1/19/88	ST.W.	6300-	Y	N	NSTRUMET READ 60 ppm
_					SO PPM
					
1/21/88	D.W	17	Y	N	CALIBOTION DID NOT CHANGE
1/22/88	5.2/	j 1	N	N	The state of the s
/25/88		12	У	N	INSTRUMENT DIETY - BULK CLEANED AND
1/26/88	52/	/1	Ý	N	CALICOATIN CLECKIO - RIAO 59pm
/ /					RESORT CHANGED TO 60ppm
	-	,			
					
					

APPENDIX B

Laboratory Reports

1501 Grandview Ave., Thorofare, NJ 08086 609/848-3939

REPORT #: 88-0150

DATE: 03/15/88

REVISED

CLIENT

DAMES & MOORE 4620 Street Road

Trevose, Pennsylvania 19047

SUBJECT

Five (5) samples submitted by the client on January 27, 1988 and identified as: Project-Chevron Ballfields (1) BVOA, (2) BPH, (3) A8, (4) A10 and (5) A4. *(See attached sheet)

AUTHORIZATION

David Wagner

PURPOSE

Chemical Analysis

PROCEDURE

Samples were analyzed in accordance with procedures presented in the following:

- "Test Methods for Evaluating Solid Waste -Physical/Chemical Methods", 2nd Ed., 1984 U.S. Environmental Protection Agency (SW-846)
- "Methods for the Chemical Analysis of Water and Wastes", March, 1979, U.S. Environmental Protection Agency (EPA-600/4-79-020)
- "Interim Method For The Determination of Reactive Cyanide and Sulfide Containing Wastes", NJDEP Division of Waste Management.
- 4. Flash Point ASTM D-5 6

CENTURY LABORATORIES, INC.

Rodney T. Miller

1h

NJ DEP CERTIFICATION NO: 08153

As per client request, sample identifications were changed from the original chain of custody. Sample identified as 2VOA was changed to BVOA and sample identified as 1PH was changed to BPH.

CENTURY LABORATORIES, INC. Report of Results

VOLATILE DREANICS ANALYSIS

Client: DAMES & MOORE Sample ID: BVOA % Moisture: 19.00 Report #: 0150 Century ID: 2745

	ug/kg		ug/k	g
Chloromethane	12 U	1,2-Dichloropropane	7 6	U
Bromomethane Vinyl chloride	12 U 12 U	trans-1,3-Dichloropropene Trichloroethene		U
Chloroethane	12 U 3 U	Chlorodibromomethane 1,1,2-Trichloroethane	4	U
Methylene chloride Benzene	3 บ 5 บ	cis-1,3-Dichloropropene	6	U
1,1-Dichloroethene 1,1-Dichloroethane	3 U 6 U	2-Chloroethyl vinyl ether Bromoform	12 6	U
trans-1,2-Dichloroethene	5 N ,	Chloroform	2 5	_
1,2-Dichloroethane 1,1,2,2-Tetrachloroethane	. 3 U 9 U	Tetrachloroethene 1,1,1-Trichloroethane	5	U
Toluene	4 J	Carbon tetrachloride Ethylbenzene	3 9	-
Chlorobenzene Browodichlorowethane	7 U 3 U	1,2-\$1,4-Dichlorobenzenes	12	U
1,3-Dichlorobenzene	6 U	Trichlorofluoromethane	2	U

U Indicates compound was analyzed for but not detected (eg. 180), based on necessary concentration/dilution.
The number is the minimum attainable detection limit for the sample.

This flag is used when the analyte is found in the blank as well as a sample. It indicates possible/probable contamination and warms the data user to take appropriate action.

Indicates an estimated value, based on assumption of a 1:1 response for tentatively identified compounds, or when mass spectral data indicate the presence of a compound at levels below the specified detection limit.

CENTURY LABORATORIES, INC.

REVISED

CLIENT: Dames & Moore

REPORT #: 88-0150

CLIENT I.D.: Chevron Ballfields

BPH

PARAMETER

RESULTS

February 29, 1988

(mg/kg)

Petroleum Hydrocarbons

210

CENTURY LABORATORIES, INC.

Report #: 88-0150

Client: Dames & Moore

February 29, 1988

Client ID: 01/26/88 A8

<u>Parameter</u>	<u>Results</u> (mg/kg)
Cyanide	<0.11
Phenols	0.19

CENTURY LABORATORIES, INC.

Dames & Moore

REPORT #: 88-0150

CLIENT:

CERTIFICATE OF ANALYSIS RESOURCE CONSERVATION AND RECOVERY ACT (RCRA)

DATE:

02/29/88

TOTAL SAMPLE ANALYSIS (mg/kg):	*MAL	Chevron Ballfields A8
Corrosivity (pH standard units) Ignitability	2 - 12.5 60° C	6.8 >60° C
Reactivities:		
Cyanide	N.A.	<1
Sulfide	N.A.	<1
LEACHATE ANALYSIS (mg/l):		•
Arsenic	5.0	0.011
Barium	100.0	0.35
Cadmium	1.0	<0.005
Chromium	5.0	<0.01
Lead	5.0	<0.10
Mercury	0.2	<0.0002
Selenium	1.0	<0.002
Silver	5.0	<0.01
Endrin	0.02	0.002 บ
Lindane	0.4	0.04 U
Methoxychlor	10.0	1.0 U
Toxaphene	0.5	0.05 ซ
** 2,4-D	10.0	0.01 U
** 2,4,5-TP (Silvex)	1.0	0.003 U

*MAL - Maximum allowable level, as per 40 CFR 261

N.A. - Not applicable

< - Less than. Parameter not detected at or above value shown.

** - This analysis was subcontracted to another laboratory.

DEFINITIONS:

Value If the result is a value greater than or equal to the detection limit, report the value.

U Compound was analyzed for but not detected. The number is the minimum attainable detection limit for the sample.

BASE/NEUTRAL ORGANICS ANALYSIS

Client: DAMES & MODRE

Hexachlorocyclopentadiene

Benzo(b)Fluoranthene

2-Chloronaphthalene

Indeno(1,2,3-cd)Pyrene

Dibenz(a,h)Anthracene

Benzo(g, h, i)Perylene

Sample ID: A8 * Moisture: 11.96

Report #: 0150 Century ID: 2747

95 U

95 U

1400

866

61

	ug/k	g		ug/k	g
Acenaphthene	72	U	bis(2-Chloroethyl)Ether	220	U
1,3-Dichlorobenzene	72	ម	1,4-Dichlorobenzene	170	U
2,4-Dinitrotoluene	228	U	2,6-Dinitrotoluene	72	U
1,2-Dichlorobenzene	72	IJ	Diethylphthalate	72	U
4-Chlorophenyl-phenylether	168	ប	bis(2-chloroisopropyl)Ether	550	U
Fluorene	458		N-Nitroso-Di-n-Propylamine	380	IJ
Hexachloroethane	61	U	N-Nitrosodiphenylamine (1)	72	U
Nitrobenzene	72	U	4-Bromophenyl-phenylether	72	U
Isophoro ne	83	U	Hexach Lorobenzene	72	U
Phenanthrene	2400		Anthracene	710	
bis(2-Chloroethoxy)Methane	200	U	Di-n-Butylphthalate	9 5	U
Fluoranthene	2290		1, 2, 4-Trichlorobenzene	72	U
Pyrene	3100		Naphthalene	2500	
Butylbenzylphthalate	95	U -	3, 31 -Dichlorobenzidine	520	IJ
Hexachlorobutadiene	34	U	Benzo(a) Anthracene	1100	
bis(2-ethylhexyl)phthalate	95	U	Chrysene	1498	

380 U

72 U

95 U

1200

1600

2000

Di-m-Octyl Phthalate

Benzo(k)Fluoranthene

Dimethyl Phthalate

Benzo(a)Pyrene

Acenaphthylene

- U Indicates compound was analyzed for but not detected (eg. 180), based on necessary concentration/dilution.

 The number is the minimum attainable detection limit for the sample.
- B This flag is used when the analyte is found in the blank as well as a sample. It indicates possible/probable contamination and warms the data user to take appropriate action.
- J Indicates an estimated value, based on assumption of a 1:1 response for tentatively identified compounds, or when mass spectral data indicate the presence of a compound at levels below the specified detection limit.
- (1) Cannot be separated from diphenylamine

Client: Dames & Moore

Report #: 88-0150

February 29, 1988

Client ID: 01/26/88 Al0

<u>Parameter</u>	<u>Results</u> (mg/kg)
Cyanide	<0.12
Phonole	0.78

Dames & Moore

REPORT #: 88-0150

CLIENT:

CERTIFICATE OF ANALYSIS RESOURCE CONSERVATION AND RECOVERY ACT (RCRA)

DATE: 02/29/88

•	*MAL	Chevron Ballfields
TOTAL SAMPLE ANALYSIS (mg/kg):	"MAL	<u>A10</u>
Corrosivity (pH standard units) Ignitability	2 - 12.5 60° C	7.0° >60° C
Reactivities:		
Cyanide	N.A.	<1
Sulfide	N.A.	<1
LEACHATE ANALYSIS (mg/l):		
Arsenic	5.0	<0.004
Barium	100.0	0.40
Cadmium	1.0	<0.005
Chromium	5.0	<0.01
Lead	5.0	<0.10
Mercury	0.2	<0.0002
Selenium	1.0	<0.002
Silver	5.0	<0.01
Endrin	0.02	0.002 U
Lindane	0.4	0.04 U
Methoxychlor	10.0	1.0 ប
Toxaphene	0.5	0.05 U
** 2,4-D	10.0	0.01 U
** 2,4,5-TP (Silvex)	1.0	0.003 U

*MAL - Maximum allowable level, as per 40 CFR 261

N.A. - Not applicable

< - Less than. Parameter not detected at or above value shown.

** - This analysis was subcontracted to another laboratory.

DEFINITIONS:

Value If the result is a value greater than or equal to the detection limit, report the value.

U Compound was analyzed for but not detected. The number is the minimum attainable detection limit for the sample.

BASE/NEUTRAL ORGANICS ANALYSIS

Client: DAMES & MOORE Sample ID: A10 % Moisture: 14.90 Report #: 0150

Century ID: 2748

	ug/k	g		ug/k	g
Acenaphthene	74	U	bis(2-Chloroethy1)Ether	220	U
1,3-Dichlorobenzene	74	U	1,4-Dichlorobenzene	170	U
2,4-Dinitrotoluene	228	g ·	2,6-Dinitrotoluene	74	U
1,2-Dichlorobenzene	74	Ü	Diethylphthalate	74	U
4-Chlorophenyl-phenylether	168	U	bis(2-chloroisopropyl)Ether	220	U.
Fluorene	100		N-Nitroso-Di-n-Propylamine	390	U
Hexachloroethane	63	U	N-Nitrosodiphenylamine (1)	74	IJ
Nitrobenzene	74	U	4-Bromophenyl-phenylether	74	U
Isophorone	86	U	Hexachlorobenzene	74	IJ
Phenanthrene	708		Anthracene	200	
bis(2-Chloroethoxy)Methane	210	U	Di-n-Butylphthalate	38	U
Fluoranthene	568		1,2,4-Trichlorobenzene	74	U
Pyrene	1100		Naphthalene	700	
Butylbenzylphthalate	98	IJ	3,3'-Dichlorobenzidine	6 50	U
Hexachlorobutadiene	35	U	Benzo(a)Anthracene	438	
bis(2-ethylhexyl)phthalate	98	U	Chrysene	540	
Hexachlorocyclopentadiene	3 36	U	Di-n-Octyl Phthalate	98	U
Benzo(b)Fluoranthene	13 00		Benzo(k)Fluoranthene	98	U
2-Chloronaphthalene	74	IJ	Benzo(a)Pyrene	856	
Indeno(1,2,3-cd)Pyrene	1688		Dimethyl Phthalate	63	U
Dibenz(a,h)Anthracene	98	IJ	Acenaphthylene	140	
Benzo(g,h,i)Perylene	2000				

J Indicates an estimated value, based on assumption of a 1:1 response for tentatively identified compounds, or when mass spectral data indicate the presence of a compound at levels below the specified detection limit.

U Indicates compound was analyzed for but not detected (eg. 10U), based on necessary concentration/dilution.

The number is the minimum attainable detection limit for the sample.

B This flag is used when the analyte is found in the blank as well as a sample. It indicates possible/probable contamination and warns the data user to take appropriate action.

Client: Dames & Moore

Report #: 88-0150

February 29, 1988

Client ID: 01/26/88 A4

<u>Parameter</u>	Results (mg/kg)
Cyanide	< 0.12
Phenols	<0.12

INC. DATE: 02/29/88

CLIENT: Dames & Moore REPORT #: 88-0150

CERTIFICATE OF ANALYSIS RESOURCE CONSERVATION AND RECOVERY ACT (RCRA)

	*MAL	Chevron Ballfields
TOTAL SAMPLE ANALYSIS (mg/kg):	<u></u>	<u>A4</u>
Corrosivity (pH standard units) Ignitability	2 - 12.5 60° C	7.1 >60° C
Reactivities:		
Cyanide	N.A.	<1
Sulfide	N.A.	<1
LEACHATE ANALYSIS (mg/l):		
Arsenic	5.0	0.006
Barium	100.0	0.16
Cadmium	1.0	<0.005
Chromium	5.0	<0.01
Lead	5.0	<0.10
Mercury	0.2	<0.0002
Selenium	1.0	<0.002
Silver	5.0	<0.01
Endrin	0.02	0.002 U
Lindane	0.4	0.04 U
Methoxychlor	10.0	1.0 U
Toxaphene	0.5	0.05 ซ
** 2,4-D	10.0	0.01 U
** 2,4,5-TP (Silvex)	1.0	0.003 U

*MAL = Maximum allowable level, as per 40 CFR 261

N.A. - Not applicable

< - Less than. Parameter not detected at or above value shown.

** - This analysis was subcontracted to another laboratory.

DEFINITIONS:

Value If the result is a value greater than or equal to the detection limit, report the value.

U Compound was analyzed for but not detected. The number is the minimum attainable detection limit for the sample.

BASE/NEUTRAL ORGANICS ANALYSIS

Client: DAMES & MOORE

Sample ID: A4 * Moisture: 13.45 Report ***: %15%**Century ID: 2749

	ug/l	Q	•	นฎ/ไ	۷g
Acenaphthene	73	ប	bis(2-Chloroethyl)Ether	226	U
1,3-Dichlorobenzene	73	IJ	1,4-Dichlorobenzene	170	IJ
2,4-Dinitrotoluene	229	U	2,6-Dinitrotoluene	73	U
1,2-Dichlorobenzene	73	U	Diethylphthalate	73	U
4-Chlorophenyl-phenylether	160	U	bis(2-chloroisopropyl)Ether	220	U
Fluorene	240		N-Nitroso-Di-n-Propylamine	390	U
Hexachloroethane	62	U	N-Nitrosodiphenylamine (1)	73	U
Nitrobenzene	73	U	4-Bromophenyl-phenylether	73	U
Isophorone	85	U	Hexachlorobenzene	73	U
Phenanthrene	2000		Anthracene	450	
bis(2-Chloroethoxy)Methane	200	U	Di-n-Butylphthalate	96	U
Fluoranthene	1500		1,2,4-Trichlorobenzene	73	U
Pyrene	3500		Naphthalene	66 0	
Butylbenzylphthalate	96	U	3,3'-Dichlorobenzidine	640	U
Hexachlorobutadiene	35	U	Benzo (a) Anthracene	1200	
bis(2-ethylhexyl)phthalate	96	IJ	Chrysene	1500	
Hexachlorocyclopentadiene	390	U	Di-n-Octyl Phthalate	36	U
Benzo(b)Fluoranthene	920		Benzo(k)Fluoranthene	96	U
2-Chloronaphthalene	73	IJ	Benzo(a)Pyrene	1400	
Indeno(1,2,3-cd)Pyrene	820		Dimethyl Phthalate	62	U
Dibenz(a,h)Anthracene	96	U ·	Acenaphthylene	390	
Benzo(g,h,i)Perylene	2300				

Indicates compound was analyzed for but not detected (eg. 100), based on necessary concentration/dilution.
The number is the minimum attainable detection limit for the sample.

B This flag is used when the analyte is found in the blank as well as a sample. It indicates possible/probable contamination and warns the data user to take appropriate action.

Indicates an estimated value, based on assumption of a 1:1 response for tentatively identified compounds, or when mass spectral data indicate the presence of a compound at levels below the specified detection limit.

⁽¹⁾ Cannot be separated from diphenylamine

Report #: 88-0150

February 29, 1988

CLIENT: Dames & Moores

LABORATORY ANALYSIS - PCB's (AROCLORS)

Results (ug/kg)

Chevron Ballfields

<u>Parameter</u>	<u>A8</u>	<u>A10</u>	<u>A4</u>
Aroclor 1016	1,000 U	350 บ	690 บ
Aroclor 1221	1,000 U	1,200 U	690 U
Aroclor 1232	1,000 U	350 บ	690 U
Aroclor 1242	1,000 U	350 บ	690 บ
Aroclor 1248	1,000 U	350 บั	350 U
Aroclor 1254	1,000 U	350 บ	350 U
Aroclor 1260	1,000 U	350 U	350 บ
Aroclor 1268	1,000 U	350 U	350 ປ

DEFINITIONS:

Value

If the result is a value greater than or equal to the detection limit, report the value.

IJ

Compound was analyzed for but not detected. The number is the minimum attainable detection limit for the sample.

DAMES & MOORE CHAIN-OF-CUSTODY RECORD

Sample	Source	& Client	$C\lambda$	ievicon	_	3066 +	162	05		Fie	eld Personnel (S	ignatur	é)
Projec				47.05	501 <u>2</u>	Pie	A	Job No. 1600	0-07	6	David	ina	7/
Date	Time	Samp I.D. N	le	Sample Type		No. of ontaine	rs	Sampling S			. Remark	(S	7
/26/P		Z VO,		SOIL.	2	2				N		ONDUNI	
126/28		164	/			<i>/</i>				14	riperum Hyproi	Ango-13	Tuesa
1		A8	·····		_	/				/£	asest Tunnonou	IND Pos	SINCE
		AIC			ļ	,					1 1 1 1 1		\ <u>`</u>
		14) 				/ _	31 35		<i>1</i> /
11				/						<u> </u>	Y	<u>-</u>	
1/				()					,		<u>\</u> •		
											ANDLYT (F		
·	<u> </u>										P TOX META		
				· · · · · ·	<u> </u>				\ 		ers. PCB	5 TO	TOC
					<u> </u>	·			·	<u></u>	lersi, PCB.	עס, /	PrIOL
								 	•	1 6	MOSIVITY, =	IGNIT	<u> </u>
											OCTIVITY, -P	H	
	<u></u>]-		· ·		<u> </u>	·		<u> </u>		∦			
- I I no ut	ished by:	Date	Time	Received	hve I D	ite :	rine l	Relinquished by:	Date		Received by:	Date	Time
(Signa			/	(Signatur				(Signature)			(Signature)		
Davis	Non	1/1240]		11/1/2/	4	168 2	25			.			
	shed by:	Date	Time	Received		te 7	inc	Relinquished by:	Date	Time	Received by:	Date	Time
(Signa	iture)			(Signatur	د)	• }		(Signature)			(Signature)		
lingui	shed by:	Date	Time	£≥celved	by: Da	te T	ime	Relinquished by:	Date	Time	Received by:	Date	Time
(Signa	iture)			(Signatur	*	•		(Signature)] [(Signature)		
•		1 1		•	1	l	j	·		1 1	· .		

1501 Grandview Ave., Thorofare, NJ 08086 609/848-3939

REPORT #: 88-0139 DATE: 02/29/88

CLIENT

DAMES & MOORE 4620 Street Road Trevose, Pa. 19047

SUBJECT

Four (4) Samples submitted by the client on 01/25/88, and identified as: 01/25/88 (1) A12D-Pile A Ballfield-Pile A-Chevron, (2) A15BPH-Pile A-Ballfield-Chevron, (3) A15BVOA-Pile A-Ballfield-Chevron, (4) A15-Pile A-Ballfield-Chevron.

AUTHORIZATION

David Wagner

PURPOSE

Chemical Analysis

PROCEDURE

Samples were analyzed in accordance with procedures presented in the following:

- 1. "Methods for the Chemical Analysis of Water and Wastes", March, 1979, U.S. Environmental Protection Agency (EPA-600/4-79-020)
- 2. "Test Methods for Evaluating Solid Waste Physical/Chemical Methods", 2nd Ed., 1984 U.S. Environmental Protection Agency (SW-846)
- 3. "Interim Method For The Determination of Reactive Cyanide and Sulfide Containing Wastes", NJDEP Division of Waste Management.

CENTURY LABORATORIES, INC.

Rodney T. Miller

1h

NJ DEP CERTIFICATION NO: 08153

REPORT NARRATIVE

Sample A-15 Pile A Ballfield Chevron in the PCB analysis required a dilution. This raised the detection limits for the sample. The problem was excessive early eluting matrix which obscured the early aroclors and made identification of late ones difficult.

REPORT OF ANALYSIS

Client: DAMES & MOORE

Date: 02-29-88

. Job No: 88-0139

Date Received: 01-25-88 1149

Project: Chevron

Sample ID: A15 - Pile A Ballfield 01/25/88

<u>Parameter</u>	<u>Results</u>	<u>Units</u>
Cyanide	4.9	mg/kg
Phenols	1.1	mg/kg

Sample ID:		Petroleum Hydrocarbons	<u>Units</u>
01/21/88	Al2D Ballfield Pile A	740	mg/kg
01/25/88	Al5PH Ballfield Pile	A 24	mg/kg

DATE: 02/29/88

CLIENT: Dames & Moore

REPORT #: 88-0139

CLIENT ID: A15 - PILE A

BALLFIELD-CHEVRON

CERTIFICATE OF ANALYSIS RESOURCE CONSERVATION AND RECOVERY ACT (RCRA)

•	*MAL	RESULTS
TOTAL SAMPLE ANALYSIS (mg/kg):		
Corrosivity (pH standard units Ignitability	2 - 12.5 60°C	4.8 >60°C
Reactivities:		
Cyanide	N.A.	<1.2
Sulfide	N.A.	<1.2
LEACHATE ANALYSIS (mg/1):		
Arsenic	5.0	0.01
Barium	100.0	0.30
Cadmium	1.0	<0.005
Chromium	5.0	<0.01
Lead	5.0	<0.10
Mercury	0.2	<0.0002
Selenium	1.0	<0.002
Silver	5.0	<0.01
Endrin	0.02	0.0002 U
Lindane	0.4	0.0001 U
Methoxychlor	10.0	0.002 บ
Toxaphene	0.5	0.010 U
** 2,4-D	10.0	0.01 U
** 2,4,5-TP (Silvex)	1.0	0.003 U

^{*}MAL - Maximum allowable level, as per 40 CFR 261

N.A. - Not applicable

DEFINITIONS:

Value If the result is a value greater than or equal to the detection limit, report the value.

U Compound was analyzed for but not detected. The number is the minimum attainable detection limit for the sample.

< - Less than. Parameter not detected at or above value shown.

^{** -} Herbicides were sub-contracted to another laboratory.

VOLATILE ORGANICS ANALYSIS

Client: Dames & Moore Sample ID: A15BVOA-Pile-A

Report #: 0139 Century ID: 2704

Ballfield-Chevron

* Moisture: 17.50

ug/kg ug/kg Chloromethane 12 U 1,2-Dichloropropane 7 0 Bromomethane 12 0 trans-1,3-Dichloropropene 6 tt Vinyl chloride 12 U Trichloroethene Chloroethane 12 U Chlorodibromomethane ΰ Methylene chloride 6 B (B=3) 1,1,2-Trichloroethane 6 U Benzene 5 U cis-1,3-Dichloropropene 6 U 3 U 2-Chloroethyl vinyl ether 1.1-Dichloroethene 12 U 1,1-Dic Proethame 6 - U Bromoform 6 U trans-1,2-Dichloroethene 2 0 Chloroform 2 U 1,2-Dichloroethane 3 U Tetrachloroethene 5 IJ 8 U. 1,1,2,2-Tetrachloroethane 1,1,1-Trichloroethane 5 U Toluene 6 J Carbon tetrachloride 3 U 7. U Chlorobenzene Ethylbenzene 11 **Bromodichloromethane** 3 U 1,2-81,4-Dichlorobenzenes 12 U 1.3-Dichlorobenzene 6 U Trichlorofluoromethane 2 0

Indicates compound was analyzed for but not detected (eg. 100), based on necessary concentration/dilution.

The number is the minimum attainable detection limit for the sample.

B This flag is used when the analyte is found in the blank as well as a sample. It indicates possible/probable contamination and warns the data user to take appropriate action.

J Indicates an estimated value, based on assumption of a 1:1 response for tentatively identified compounds, when mass spectral data indicate the presence of a compound at levels below the specified detection limit.

BASE/NEUTRAL ORGANICS ANALYSIS

Client: Dames & Moore

Report #: 8139

Sample ID: A-15-Pile A Ballfield - Chevron Century ID: 2705

% Moisture: 13.85

	ug/k	9		ug/I	(B
Acenaphthene	446	U	bis(2-Chloroethyl)Ether	1300	Ü
1,3-Dichlorobenzene	448	U	1,4-Dichlorobenzene	1000	U
2,4-Dinitrotoluene	1396	Ü	2,6-Dinitrotoluene	440	U
1,2-Dichlorobenzene	440	U	Diethylphthalate	440	U
4-Chlorophenyl-phenylether	988	U	bis(2-chloroisopropy1)Ether	1300	U
Fluorene	448	U	N-Nitroso-Di-m-Propylamine	2300	U
Hexachloroethame	370	U	N-Nitrosodiphenylamine (1)	440	U
Nitrobenzene	440	U	4-Bromophenyl-phenylether	440	U
Isophorone	510	U	Hexach1orobenzene	440	IJ
Phenanthrene	2300		Anthracene	440	U
bis(2-Chloroethoxy)Methane	1200	U	Di-n-Butylphthalate	588	Ü
Fluoranthene	2300		1,2,4-Trichlorobenzene	440	U
Pyrene	3200		Naphthalene	888	
Butylbenzylphthalate	580	U	3,3°-Dichlorobenzidine	3800	U
Hexachlorobutadiene	210	U	Benzo(a) Anthracene	1300	J
bis(2-ethylhexyl)phthalate	58 0	IJ	Chrysene	1798	
Hexachlorocyclopentadiene	2390	U	Di- n-O ctyl Phthalate	58 8	Ü
Benzo(b)Fluoranthene	2600		Benzo(k)Fluoranthene	580	U
2-Chloronaphthalene	440	IJ	Benzo (a) Pyrene	2000	
Indeno(1, 2, 3-cd)Pyrene	2500		Dimethyl Phthalate	370	U
Dibenz(a,h)Anthracene	460	J	Acenaphthylene	1500	
Benzo(g,h,ì)Perylene	3800				

U Indicates compound was analyzed for but not detected (eg. 1880), based on necessary concentration/dilution.

The number is the minimum attainable detection limit for the sample.

B This flag is used when the analyte is found in the blank as well as a sample. It indicates possible/probable contamination and warns the data user to take appropriate action.

Indicates an estimated value, based on assumption of a 1:1 response for tentatively identified compounds, or when mass spectral data indicate the presence of a compound at levels below the specified detection limit.

⁽¹⁾ Cannot be separated from diphenylamine

Report #: 88-0139

CLIENT: Dames & Moore

February 29, 1988

LABORATORY ANALYSIS - PCB's (AROCLORS)

Results (ug/kg)

<u>Parameter</u>	A-15 - Pile A <u>Ballfield - Chevron</u>
Aroclor 1016	1,400 U
Aroclor 1221	2,800 U
Aroclor 1232	1,400 U
Aroclor 1242	1,400 U
Aroclor 1248	1,400 U
Aroclor 1254	1,400 U
Aroclor 1260	1,400 U
Aroclor 1268	1,400 U

DEFINITIONS:

Value If the result is a value greater than or equal to the detection limit, report the value.

U Compound was analyzed for but not detected. The number is the minimum attainable detection limit for the sample.

DAMES & MOORE CHAIN-OF-CUSTODY RECORD

Sa	mpl	e Sou	rce &	Client	CN	esain	BOLLF	10.0 5	oil file A		Fie	ld Personnel (Si	gnature)
Pro	ojec	1 Till	e /	BOLL	FILZO		Pice	A	Job No. 1602	00-07	1 5	Jan 1/2	home	
Da	le	Tim	е	Samı I.D.	ple No.	Sample Type		lo, of ntainers	Sampling	Site		, Romark	s :	1
	1/88			AIZK	2	Soil.		/	BALLFIE	r.		PIT. NYA K	benot	Tur 10.
11/	26/5	· ·	12	1120	SPY	5016						F17 "	// ·	1 //
42	10	<u> </u>		100	271	5016		2				VOA -NOAM	OT TO	14.401 N.
L			ΔL											()
1/	2/	8.		A15		SOIL		/			سر ا	Fret TUX	NORD	Oil
_											<u> </u>	·	•	
									,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			1 NAXLY	TE	OR
			$\sqrt{2}$	115/31	P41					, -		500 DY	Camer	ers
•												pr 10 15	TNO	35%
		, .	<u>.</u>	A15B	VOA							,,	2/-,1	1
						·	<u> </u>					112 +450	A.L	3
													····	:
,														
			_	·							<u>.</u>			
	<u>. </u>													i i
		Lohed	-	Date	Time	Received		to Time	Relinquished by	Date	Time	Received by: (Signature)	Date	Time
	180	ul A	1 mir	1,-5/61	145	(Signatur Bul Jak	. ,	6. 11451	(Signature)	İ			1/25/8	11.8%
					11				Relinquished by	5-4-	lime	Received by:	Date	11me
		ished ature		Date	Time	Received (Signatur	•	e Tinc	(Signature)	pate	1 TIME	(Signature)		
•	- J · ·		•]. ·									
Reli	ngu	l elied	by:	Date	Tine	Racelved	by: Dat	o Time	Reilingulated by:	Date	Time	Received by:	Date	110e
		ature				(Signatur	7	•	(Signature)			(Signature)		
, i		,		1	ļ	•	7							13

1501 Grandview Ave., Thorofare, NJ 08086 609/848-3939

REPORT #: 88-0137 DATE: 02/29/88

CLIENT

DAMES & MOORE 4620 Street Road

Trevose, Pennsylvania 19047

SUBJECT

Four (4) samples submitted by the client on January 23, 1988 and identified as: Project Title- Chevron Ballfields- (1) Al0 E, (2) Al2 D, (3) A2, and (4) Al3.

AUTHORIZATION

Mr. David Wagner

PURPOSE

Chemical Analysis

PROCEDURE

Samples were analyzed in accordance with procedures presented in the following:

- "Test Methods for Evaluating Solid Waste -Physical/Chemical Methods", 2nd Ed., 1984 U.S. Environmental Protection Agency (SW-846)
- "Methods for the Chemical Analysis of Water and Wastes", March, 1979, U.S. Environmental Protection Agency (EPA-600/4-79-020)
- "Interim Method For The Determination of Reactive Cyanide and Sulfide Containing Wastes", NJDEP Division of Waste Management.
- 4. Flash Point- ASTM D-56

CENTURY LABORATORIES, INC.

Rodney T. Melle

Rodney T. Miller

jnf

NJ DEP CERTIFICATION NO: 08153

Report Narrative

The sample identified as Chevron A10E was prepped as a volatile organic medium level sample to get target compounds into the linear range of the instrument. Detection limits were higher because of the procedure outlined above.

VOLATILE ORGANICS ANALYSIS

Client: Dames & Moore

Sample ID: A10 E Ballfield-Chevron

¼ Moisture: 14.06

Report #: 0137 Century ID: 2690

	u <u>n</u> /k	0		ug/l	ξĝ
Chloromethane	1500	U	1,2-Dichloropropa ne	870	U
Bromomethane	1500	U	trans-1,3-Dichloropropene	730	U
Vinyl chloride	1500	U	Trichloroethene	288	U
Chloroethane	1500	U	Chlorodibromomethane	450	U
Methylene chloride	410	U	1,1,2-Trichloroethane	730	U
Benzene	54 0	U	cis-1,3-Dichloropropene	730	U
1,1-Dichloroethene	410	U	2-Chloroethyl vinyl ether	1500	Ü
1,1-Dichloroethane	680	U	Bromoform	680	U
trans-1,2-Dichloroethene	230	U	Chloroform	239	IJ
1,2-Dichloroethane	410	U	Tetrachloroethene	600	U
1,1,2,2-Tetrachloroethane	1900	U	1,1,1-Trichloroethane	550	U
Toluene	990		Carbon tetrachloride	410	Ü
Chlorobenzene	870	U	Ethylbenzene	940	
Bromodichloromethane	320	U	1,2-&1,4-Dichlorobenzenes	1500	U
1,3-Dichlorobenzene	730	U	Trichlorofluoromethane	298	U

U Indicates compound was analyzed for but not detected (eg. 100), based on necessary concentration/dilution. The number is the minimum attainable detection limit for the sample.

B This flag is used when the analyte is found in the blank as well as a sample. It indicates possible/probabl contamination and warns the data user to take appropriate action.

Indicates an estimated value, based on assumption of a 1:1 response for tentatively identified compounds, when mass spectral data indicate the presence of a compound at levels below the specified detection limit

VOLATILE ORGANICS ANALYSIS

Client: Dames & Moore

Sample ID: A12-D Ballfield-Chevron

* Moisture: 16.05

Report #: 0137 Century ID: 2691

ug/i	kg		ug/kg			
Chloromethane 12	U	1,2-Dichloropropane	7	U		
Bromomethane 12	U	trans-1,3-Dichloropropene	6	U		
Vinyl chloride 12	U	Trichloroethene	2	U		
Chloroethane 12	U	Chlorodibromomethane	4	U		
Methylene chloride 4		1,1,2-Trichloroethane	6	U		
Benzene 5	U	cis-1,3-Dichloropropene	6	U		
1,1-Dichloroethene 3	U	2-Chloroethyl vinyl ether	12	U		
1,1-Dichloroethane 5	U	Bronoform	6	U		
trans-1,2-Dichloroethene 2	U	Chloroform	2	U		
1,2-Dichloroethane 3	ប	Tetrachloroethene	5	U		
1,1,2,2-Tetrachloroethane 8	U	1,1,1-Trichloroethane	5	U		
Toluene 3	J	Carbon tetrachloride	3	U		
Chlorobenzene 7	·U	Ethylbenzene	9	U		
Bromodichloromethane 3	U	1,2-\$1,4-Dichlorobenzenes	12	U		
1,3-Dichlorobenzene 6	U	Trichlorofluoromethane	2	U		

U Indicates compound was analyzed for but not detected (eg. 100), based on necessary concentration/dilution. The number is the minimum attainable detection limit for the sample.

B This flag is used when the analyte is found in the blank as well as a sample. It indicates possible/probable contamination and warns the data user to take appropriate action.

Indicates an estimated value, based on assumption of a 1:1 response for tentatively identified compounds, c when mass spectral data indicate the presence of a compound at levels below the specified detection limit

Report #: 88-0137

Client: Dames & Moore

Februrary 29, 1988

Date Collected: 01-22-88 Date Received: 01-23-88

Results mg/kg

Sample Identification:	<u>Cyanide</u>	<u>Phenols</u>
A2 Ballfields- Chevron	3.4	<0.12
Al3 Ballfields- Chevron	13	0.56

DATE: 02/29/88

CLIENT:

Dames & Moore

REPORT #: 8

88-0137

CERTIFICATE OF ANALYSIS RESOURCE CONSERVATION AND RECOVERY ACT (RCRA)

	* <u>MAL</u>	<u>Chevron P</u> Ballfie	
TOTAL SAMPLE ANALYSIS (mg/kg):		<u>A2</u>	<u>A13</u>
Corrosivity (pH standard units) Ignitability	2 - 12.5 60° C	5.5 >60° C	6.3 >60° C
Reactivities:			
Cyanide Sulfide	N.A. N.A.	<1.2 <1.2	<1.2 <1.2
LEACHATE ANALYSIS (mg/l):			
Arsenic	5.0	<0.004	<0.004
Barium	100.0	0.19	0.29
Cadmium	1.0	<0.005	<0.005
Chromium	5.0	<0.01	<0.01
Lead	5.0	<0.10	<0.10
Mercury	0.2	<0.0002	<0.0002
Selenium	1.0	<0.002	<0.002
Silver	5.0	<0.01	<0.01
Endrin	0.02	0.0002 U	0.0002 U
Lindane	0.4	0.0001 U	0.0001 U
Methoxychlor	10.0	0.002 U	0.002 U
Toxaphene	0.5	0.010 U	0.010 U
** 2,4-D	10.0	0.01 U	0.01 U
** 2,4,5-TP (Silvex)	1.0	0.003 U	0.003 U

*MAL - Maximum allowable level, as per 40 CFR 261

N.A. - Not applicable

- Less than. Parameter not detected at or above value shown.

** - This analysis was subcontracted to another laboratory.

DEFINITIONS:

Value If the result is a value greater than or equal to the detection limit, report the value.

U Compound was analyzed for but not detected. The number is the minimum attainable detection limit for the sample.

Report #: 88-0137

Client: Dames & Moore

February 29, 1988

LABORATORY ANALYSIS - PCB's (AROCLORS)

Results (ug/kg)

<u>Parameter</u>	<u>Chevron Pr</u> Ballfiel	
	<u>A2</u>	<u>A13</u>
Aroclor 1016	900 ∙u	1,200 U
Aroclor 1221	900 U	1,200 U
Aroclor 1232	900 U	1,200 U
Aroclor 1242	900 U	1,200 U
Aroclor 1248	300 U	300 U
Aroclor 1254	300 U	300 U
Aroclor 1260	300 U	300 U
Aroclor 1268	300 U	300 U

DEFINITIONS:

Value

If the result is a value greater than or equal to the detection limit, report the value.

U

Compound was analyzed for but not detected. The number is the minimum attainable detection limit for the sample.

BASE/NEUTRAL ORGANICS ANALYSIS

Client: Dames & Moore Sample ID: A2 Ballfields Report #: 0137 Century ID: 2692

Chevron

% Moisture: 16.04

	ug/k	ğ		ug/k	g
Acenaphthene	75	Ü	bis(2-Chloroethy1)Ether	230	U
1,3-Dichlorobenzene	75	U	1,4-Dichlorobenzene	170	U
2,4-Dinitrotoluene	238	U	2,6-Dinitrotoluene	75	U
1,2-Dichlorobenzene	75	U	Diethylphthalate	75	U
4-Chlorophenyl-phenylether	170	U	bis(2-chloroisopropyl)Ether	238	U
Fluorene	75	U	N-Nitroso-Di-n-Propylamine	400	U
Hexachloroethane	64	U	N-Nitrosodiphenylamine (1)	75	U
Nitrobenzene	75	U	4-Bromophenyl-phenylether	75	U
Isophorone	87	U.	Hexach Lorobenzene	75	U
Phenanthrene	210	U	Anthracene	75	U
bis(2-Chloroethoxy)Methane	210	U	Di- n-B utylphthalate	99	U
Fluoranthene	120		1,2,4-Trichlorobenzene	75	U
Pyrene	298		Naphthalene	24	J
Butylbenzylphthalate	99	U	3,3°-Dichlorobenzidine	668	U
Hexachlorobutadiene	- 36	U	Benzo (a) Anthracene	310	٠U
bis(2-ethylhexyl)phthalate	99	IJ	Chrysene	190	
Hexachlorocyclopentadiene	400	U	Di-n-Octyl Phthalate	99	U
Benzo(b)Fluoranthene	160	J	Benzo(k)Fluoranthene	99	U
2-Chloronaphthalene	75	U	Benzo (a) Pyrene	190	
Indeno(1, 2, 3-cd)Pyrene	150	U	Dimethyl Phthalate	64	IJ
Dibenz (a, h) Anthracene	99	U	Acenaphthylene	140	U
Benzo(g, h, i)Perylene	160	U			

Indicates compound was analyzed for but not detected (eg. 100), based on necessary concentration/dilution.

The number is the minimum attainable detection limit for the sample.

B This flag is used when the analyte is found in the blank as well as a sample. It indicates possible/probable contamination and warns the data user to take appropriate action.

J Indicates an estimated value, based on assumption of a 1:1 response for tentatively identified compounds, or when mass spectral data indicate the presence of a compound at levels below the specified detection limit.

⁽¹⁾ Cannot be separated from diphenylamin

BASE/NEUTRAL DRGANICS ANALYSIS

Client: Dames & Moore Sample ID: A13 Ballfields Report #: 0137 Century ID: 2693

Chevron

⊀ Moisture: 13.81

	ug/k	g		ug/k	Q
Acenaphthene	129	-	bis(2-Chloroethyl)Ether	226	IJ
1,3-Dichlorobenzene	73	U	1,4-Dichlorobenzene	170	U
2,4-Dinitrotoluene	226	U	2,6-Dinitrotoluene	73	U
1,2-Dichlorobenzene	73	Ü	Diethylphthalate	66	J
4-Chlorophenyl-phenylether	160	U	bis(2-chloroisopropyl)Ether	550	U
Fluorene	85		N-Nitroso-Di-n-Propylamine	398	U
Hexachloroethane	62	U	N-Nitrosodiphenylamine (1)	73	U
Nitrobenzene	73	U	4-Bromophenyl-phenylether	73	U
Isophorone	85	U	Hexach Lorobenzene	73	U
Phenanthrene	988		Anthracene	288	
bis(2-Chloroethoxy)Methane	288	U	Di-n-Butylphthalate	100	
Fluoranthene	888		1,2,4-Trichlorobenzene	73	U
Pyrene	2700		Naphthalene	400	
Butylbenzylphthalate	97	U	3, 3'-Dichlorobenzidine	540	U
Hexachlorobutadiene	35	U	Benzo(a)Anthracene	968	
bis(2-ethylhexyl)phthalate	97	U	Chrysene	1400	
Hexachlorocyclopentadiene	390	U	Di-n-Octyl Phthalate	97	U
Benzo(b)Fluoranthene	2198		Benzo(k)Fluoranthene	97	U
2-Chloronaphthalene	73	U	Benzo (a) Pyrene	1900	
Indeno(1, 2, 3-cd)Pyrene	28 90		Dimethyl Phthalate	62	U
Dibenz (a, h) Anthracene	97	Ü	Acenaphthylene	15 0	
Benzo(g, h, i)Perylene	3800		· ·		

U Indicates compound was analyzed for but not detected (eg. 100), based on necessary concentration/dilution. The number is the minimum attainable detection limit for the sample.

This flag is used when the analyte is found in the blank as well as a sample. It indicates possible/probable contamination and warms the data user to take appropriate action.

J Indicates an estimated value, based on assumption of a 1:1 response for tentatively identified compounds, o when mass spectral data indicate the presence of a compound at levels below the specified detection limit.

ANDLYRE FOR - I'CES

- Base Monday For Le

- Base Monday - Porce Sin

DAMES & MOORE CHAIN-OF-CUSTODY RECORD

Sample	e Source	& Client	ر ا	Boice	9620	كرا	-' <i>C</i> N	EVRON			old Personnel (S	ignature	2)
Projec	t Title ¿	18/110~	رمک	i Price	· A			Job No.			Darid	War	m
Date	Time	Sam I.D.	ple	Sampl Type		No. Conta	of iners	Samplin	g Site		, Remark		<u> </u>
1/24/88		AZ	·	AZ	SOIL	/		BOLLEY	0.05		EST TURNOTO	U~10	\angle
127/80		28		18		1					11 /1	•	
1/21/8	<i>,</i> .	A13		AH3		1					y		- <u>1:</u> y†
Liks		AIUE		SOIL		2				/	Voande Ti	100000	10A un l
12/8	8	AIZI	2	SOIL		2_	·				11 VOA	,/	,1
//											•	 	
											•		
	<u> </u>					· · · · · · · · · · · · · · · · · · ·		V					
									 		•		
												·	
						,	·	_					
							 	_			· · · · · · · · · · · · · · · · · · ·		
								·	·	·		 	
					<u> </u>	,	,					T	
	ished by ature)		Time.	Receiv (Signa	-	Date	Time	Relinquished (Signature)	y: Date	Time	Received by: (Signature)	Date	Time
stfuda:	ished by:	Date	Time	Receiv (Signa		Date	Time	Relinquished b	y: Date	Time	Received by: (Signature)	Date	Time
	ished by: ature)	Date	Time	Keceive (Signal		Date .	Time	Relinquished b (Signature)	y: Date	Time.	Received by: (Signature)	Date	Time

Broken Lynecey,

1501 Grandview Ave., Thorofare, NJ 08086 609/848-3939

REPORT #: 88-0166 DATE: 03/15/88

REVISED

CLIENT

DAMES & MOORE 4620 Street Road Trevose, PA. 19047

SUBJECT

One (1) sample submitted by the client on 01/28/88, and identified as: 01/26/88 A9C (* See attached sheet).

AUTHORIZATION

David Wagner

PURPOSE

Chemical Analysis

PROCEDURE

Samples were analyzed in accordance with procedures presented in the following:

40 CFR 136, "Guidelines Establishing Test Methods for the Analysis of Pollutants Under the Clean Water Act: Final Rule and Interim Final Rule and Proposed Rule", October 26, 1984 (Method 601-Volatile Halogenated Organics, Method 602-Volatile Aromatic Organics, Method 603-Acrolein and Acrylonitrile, Method 608-Pesticides/PCB's, Method 624-Purgeable Organics, Method 625-Acid & Base Neutral Extractable Organics)

CENTURY LABORATORIES, INC.

Rodney T. Mille.

lh

NJ DEP CERTIFICATION NO: 08153

As per client request, sample identification was changed from the orginal chain of custody. Samle identified as A9CVOA was changed to A9C.

VOLATILE ORGANICS ANALYSIS

Client: Dames & Moore

Sample ID: A9C % Moisture: 14.13 Report #: 0166 Century ID: 288

	ug/kg		ug/kị	3
Chloromethane Bromomethane Vinyl chloride Chloroethane Methylene chloride Benzene 1,1-Dichloroethene 1,1-Dichloroethane trans-1,2-Dichloroethene 1,2-Dichloroethane 1,1,2,2-Tetrachloroethane Toluene Chlorobenzene Bromodichloromethane	12 U 12 U 12 U 12 U 13 U 13 U 5 U 2 U 3 U 8 U 110 U	1,2-Dichloropropane trans-1,3-Dichloropropene Trichloroethene Chlorodibromomethane 1,1,2-Trichloroethane cis-1,3-Dichloropropene 2-Chloroethyl vinyl ether Bromoform Chloroform Tetrachloroethene 1,1,1-Trichloroethane Carbon tetrachloride Ethylbenzene 1,2-&1,4-Dichlorobenzenes Trichlorofluoromethane	6 2 4 6 6 12 5 2 5 4 3	U
1,3-Dichlorobenzene	6 U			

U Indicates compound was analyzed for but not detected (eg. 188), based on necessary concentration/dilution.

The number is the minimum attainable detection limit for the sample.

This flag is used when the analyte is found in the blank as well as a sample. It indicates possible/probable contamination and warms the data user to take appropriate action.

Indicates an estimated value, based on assumption of a 1:1 response for tentatively identified compounds, o when mass spectral data indicate the presence of a compound at levels below the specified detection limit.

DAMES & MOORE CHAIN-OF-CUSTODY RECORD

Sample	Source	& Clien	1 C	Herion	- BA	LLFIO	1,p2		Fi	eld Personnel (S	ignatur	e)
Projec	t Title	BOLLF.	وععه		PILC A		Job No. /6 DO	DO-07	4	Daviel	han	7
Date	Time	Sam I.D.	ple No.	Sample No. of Containers		Sampling	Sampling Site		. Remarks			
126/80		A9CVDA		501L.	2		Bocc ¥18i	BOLL = 152.05		Normal TURNORD		۵ سرو
											<u> </u>	
		-					N .		- -		•	
									-	•		
										•		
•		, , , , , , , , , , , , , , , , , , , 								•		····
		· · . · . · . · . · . · . · . · . ·			<u></u>				-	•	·	
			· · ·					•	╢	·····		
elingul (Signa Davio	lahed by: sture)	Date	Time	Received (Signatur		Time	Relinquished by (Signature)	Date	Time	Received by: (Signature)	Date .	Time
lingui (Signa	shed by: iture)	Date	Time	Received (Signatur	by: Date	Time	Relinquished by: (Signature)	Date	Time	Received by: (Signature)	Date	Time
linqui (Signa	shed by:	Date	Time	Received (Signature		Time	Relinquished by: (Signature)	Date	lime	Received by: (Signature)	Date	Time

1501 Grandview Ave., Thorofare, NJ 08086 609/848-3939

REPORT #: 88-0247 DATE: 02/19/88

CLIENT

DAMES & MOORE

4620 Street Road

Trevose, Pennsylvania 19047

SUBJECT

Twelve (12) samples submitted by the client on February 5, 1988 and identified as: Project- Chevron Ballfields, Job #:

16000-026.

AUTHORIZATION

Mr. David Wagner

PURPOSE

Chemical Analysis for Cyanide.

PROCEDURE

Samples were analyzed in accordance with procedures presented in the following:

"Test Methods for Evaluating Solid Waste-Physical/Chemical Methods", 2nd Ed., 1984 U.S. Environmental Protection Agency (SW846)

CENTURY LABORATORIES, INC.

Rodney T. Miller

NJ DEP CERTIFICATION #: 08153

jnf

REPORT OF ANALYSIS

Client: DAMES & MOORE

Date:

02-19-88

Date Received: 02-05-88 1552

Job No:

88-0247

Century	<u>Cyanide</u>		
Sample No.	Sample Description	Results	<u>Units</u>
	01/25/88 CHEVRON BALLFIELDS		
3094	A1	<0.01	mg/kg
3095	A3	<0.01	mg/kg
3096	A6	0.27	mg/kg
3097	A7	6.0	mg/kg
3098	A9	4.7	mg/kg
3099	A11	0.17	mg/kg
3100	A12	7.2	mg/kg
3101	A14	16	mg/kg
3102	A16	14	mg/kg
3103	A17	16	mg/kg
3104	A18	2.9	mg/kg
3105	A19	2.5	mg/kg

DAMES & MOORE CHAIN-OF-CUSTODY RECORD

Sample	Source &	Client	CNI	VROW 1	S 0.	UFILE	05		př.		ld Personnel (S	- · /)	
	I Tille /		-		خ ہ	D P	Jose II	Job No. 1600	0-626	, c	David	Wa	γ	
Date	Time	Sample I.D. No.		Sample Type	No. of Containers		ı f	Sampling Site			- Remarks			
1/25/48		121		SOIL.				(]	CYDYINY, TOTOCHI					
1/25/88		A3		1						lorne	TURNO	2022		
12/81		A6				1						1	·	
12/100		17										1		
124/08		19									./			
22/01		111									<u> </u>		:	
1/2		AIZ												
Toda		214											,	
112/8	,	4/1						·				, ì		
1/22/08 A17 1/25/08 A18														
			/ /					N / 1919						
/2/80		A/1		V.							/	1	<i></i>	
7.3											V		<u> </u>	
										<u>· </u>				
(Sign	itehed by: inture)	11/1	Time	Received (Signatur	e)	Date 1586		Relinquished by: (Signature)		Time	Received by: (Signature)	Date	Tie	
	lehed by:		Time	Received	by:	Date	Time	Relinquished by	Date	Time	Received by:	Date	Tim	
	ature)			(Signatur	e)	٠		(Signature)			(Signature)			
	ilehed by:	Date	Time	Raceived (Signature		Date	Time	Relinquished by: (Signature)	Date	Time	Received by: (Signature)	Date	Tie	