SITE CHARACTERIZATION REPORT AOI 4

SUNOCO, INC. (R&M) PHILADELPHIA REFINERY PHILADELPHIA, PENNSYLVANIA

Sunoco, Inc. 1801 Market Street Ten Penn Center Philadelphia, Pennsylvania 19103-1699

> August 29, 2005 2574601

TABLE OF CONTENTS

Page No.

1.0	INTRODUCTION	1
2.0	ENVIRONMENTAL SETTING	2
2.1	CURRENT AND HISTORIC USE	2
2.2	GEOLOGY	2
2.3		
2.4		
3.0	SITE HISTORY AND BACKGROUND	
4.0	SELECTION OF COMPOUNDS OF CONCERN AND APPLICABLE STAND	ARDS 8
5.0	SITE CHARACTERIZATION ACTIVITIES	9
5.1	SHALLOW SOIL BORINGS AND SAMPLING	
5.2		
	5.2.1 Trenton Gravel (Intermediate) Groundwater Monitoring Wells	
5.3	5.2.2 Lower Sand (Deep) Groundwater Monitoring Wells	
5.4		
5.5		
5.6	SURVEYING ACTIVITIES	15
6.0	SITE CHARACTERIZATION ANALYTICAL RESULTS	17
6.1	Soil Results	17
6.2		
6.3		
7.0	REMEDIAL SYSTEM UPDATE	19
7.1	LNAPL RECOVERY SYSTEMS	19
7.2	PROPOSED RECOVERY SYSTEM	19
8.0	FATE AND TRANSPORT ANALYSIS	20
8.1	S0IL	20
8.2	Groundwater	20
8.3	LNAPL	21
9.0	SITE CONCEPTUAL MODEL	22
9.1	DESCRIPTION AND SITE USE	22
9.2		
9.3 9.4		_
9.4		
0.6		

10.0 HUMAN HEALTH EXPOSURE ASSESSMENT/RISK ASSESSMENT	25
10.1 Surface Water /Sediment	26
10.2 SURFICIAL SOILS (0-2 FEET BELOW GRADE)	
10.2.1 Soil to Groundwater	26
10.2.2 Direct Contact Exposure	26
10.3 GROUNDWATER	
10.4 LNAPL	27
10.5 VAPOR	27
11.0 ECOLOGICAL ASSESSMENT	28
12.0 CONCLUSIONS AND RECOMMENDATIONS	29
13.0 REFERENCES	30

LIST OF TABLES

Table 1 Table 2 Table 3	Compounds of Concern Summary of Soil Analytical Results Well Summary			
Table 4	Summary of AOI 4 Groundwater and LNAPL Elevations			
Table 5	Summary of Groundwater Analytical Results: Fill/Alluvium and Trenton Gravel Wells			
Table 6	Summary of Groundwater Analytical Results: Lower Sand Wells			
Table 7	API Calculated LNAPL Specific Volume and Calculated Seepage Velocity Summary			

LIST OF FIGURES

Figure 1	Site Boundary with AOI 4 Highlighted
Figure 2	Site Plan
Figure 3	Completed Activities
Figure 4	Cross Section Location Map
Figure 5	Geologic Cross Section P-P'
Figure 6	Fill/Alluvium and Trenton Gravel Groundwater Elevations
Figure 7	Lower Sand Groundwater Elevations
Figure 8	Summary of Groundwater Sample Exceedances: Fill/Alluvium and Trenton Gravel
	Wells in AOI 4 and Apparent LNAPL Occurrence
Figure 9	Apparent LNAPL Thickness
Figure 10	Fate and Transport Results Summary: Fill/Alluvium and Trenton Gravel Wells
Figure 11	Wells With Greatest Calculated LNAPL Mobility Values

LIST OF APPENDICES

Appendix A	Current and Historic Use Figures in AOI 4				
Appendix B	Soil Boring Logs/Monitoring Well Construction Summaries				
Appendix C	Soil and Groundwater Analytical Reports				
Appendix D	Field Sampling Reports				
Appendix E	LNAPL Sampling Analytical Data and Modeling Procedures				
Appendix F	Fate and Transport Modeling Procedures				
Appendix G	ppendix G Summary of AOI 4 Groundwater and LNAPL Elevations Used for Groundwat				
	Contouring				

1.0 INTRODUCTION

Sunoco Inc. (R&M) (Sunoco) and the Pennsylvania Department of Environmental Protection (PADEP) entered into a Consent Order & Agreement (CO&A) in December 2003 with respect to remedial activities associated with Sunoco's Philadelphia Refinery (Refinery). In accordance with the CO&A, a Current Conditions Report and Comprehensive Remedial Plan (CCR), dated June 30, 2004, was prepared by Sunoco. The CCR proposed Phase II site characterization and corrective action activities for the Refinery, including preparation of Site Characterization Reports for eleven individual Areas of Interest (AOIs). The CCR presented a prioritization of all AOIs based on specific risk factors. Based on this prioritization, AOI 4 was identified by Sunoco as the second area of the Refinery to be investigated.

Sunoco prepared a Site Characterization Work Plan (Work Plan) for AOIs 1 and 4 in January 2005 which was approved by the PADEP in March 2005. This Work Plan summarized proposed activities to be completed to characterize AOIs 1 and 4 in accordance with the objectives of the CCR.

This Site Characterization Report (SCR) has been prepared exclusively for AOI 4, and documents the results of the activities that were performed for AOI 4 in accordance with the Work Plan.

2.0 ENVIRONMENTAL SETTING

AOI 4 is bordered by Hartranft Street to the North, 26th Street to the East, Penrose Avenue to the South, and AOI 3 to the West (Figures 1 and 2). AOI 4 encompasses approximately 90 acres.

2.1 Current and Historic Use

Currently, AOI 4 is comprised of primarily Crude Oil and Gas Oil aboveground storage tanks (ASTs). Numerous below ground pipelines are active within AOI 4; this is the largest storage area in the refinery. Several pump houses are also present in AOI 4. As shown in the Current Use figure included in Appendix A, roads and tank berms are covered by surfaces which prevent direct contact with site soils.

Appendix I of the CCR described the current and historic usage for the Point Breeze South Yard, which includes AOI 4. These figures are still representative of current and historic usage in AOI 4. Therefore no significant modifications were made to the Point Breeze South Yard Current and Historic Use Figures.

2.2 Geology

The following paragraphs describe the geologic units encountered during Site characterization activities in AOI 4 beginning with the deepest units to the most shallow units:

Wissahickon Formation – Bedrock beneath AOI 4 is identified as the Wissahickon Schist. This formation beneath AOI 4 is a metamorphosed greenish-gray micaceous schist and quartzite. In most areas of AOI 4, the competent bedrock of the Wissahickon Formation is overlain by weathered bedrock consisting of a micaceous clay, which

becomes increasingly sandy as the degree of weathering lessens and competent bedrock is encountered.

Lower Sand Unit of the PRM - The Wissahickon Formation is overlain by the Lower Sand, which is the lowest member of the Potomac-Raritan Magothy System. The Lower Sand beneath AOI 4 is a green, brown, orange and/or red fine gravel and course sand that grades upward into medium to fine sands and may contain layers of silts and clay. Throughout AOI 4, the Lower Sand is overlain by the Middle/Lower Clay, as indicated by borings S-59D, S-38D, and S-119D.

Middle/Lower Clay – The Lower Sand is overlain by the Middle/Lower Clay unit. The Middle/Lower Clay is characterized by very low permeability reddish-brown, brown or gray clays, and may be sandy in places (Paulachok, 1991). Evidence of the Middle/Lower Clay unit was found along the eastern border of AOI 4, but this unit was found to be discontinuous in AOI 4.

Trenton Gravel - The Trenton Gravel overlies the Middle/Lower Clay beneath AOI 4. During Site characterization activities, the Trenton Gravel was observed as a very heterogeneous unit comprised of predominantly brown, reddish-brown, and gray sand and gravel, with minor amounts of silts and clays.

Recent Fill/Alluvium - Overlying the Trenton Gravel is recent fill/alluvium. The alluvium deposits generally consist of dark gray organic clayey mud or silt and fine sand. Fill type has historically varied across AOI 4 from various gravels to cinder ash.

As part of the Site characterization activities, 11 Trenton Gravel monitoring wells and two Lower Sand monitoring wells were installed in AOI 4 (Figure 3). The Trenton Gravel wells were installed to depths of up to 32 feet below grade. The Lower Sand wells were advanced to a maximum depth of 92 feet below grade for geologic characterization, however the well screens were set in the upper 15 feet of the Lower Sand unit at a maximum depth of up to 72 feet below grade. The data from these wells were combined with historical site information and utilized to generate an updated cross section (P-P') for AOI 4. The cross section location key for P-P' is provided as Figure 4 and the cross section is provided as Figure 5. Based on recent and historical characterization activities, the following observations can be made concerning AOI 4:

- The Fill/Alluvium, Trenton Gravel, Middle/Lower Clay, and the Lower Sand units all exist beneath AOI 4, but the Middle/Lower Clay is not continuous;
- The thickness of the Fill/Alluvium materials beneath AOI 4 ranges between
 5-15 feet;
- The thickness of the Trenton Gravel beneath AOI 4 ranges between 15-45 feet;
- The thickness of the discontinuous Middle/Lower Clay at the eastern border of AOI 4 is approximately 2-20 feet;
- The thickness of the Lower Sand beneath AOI 4 is approximately 15-45 feet;

2.3 Hydrogeology

Groundwater gauging data collected by Aquaterra in August 2005 was used to generate a groundwater flow figure for the Fill/Alluvium and Trenton Gravel (Intermediate) zone in

AOI 4 (Figure 6). This groundwater elevation data is provided as Appendix G. Groundwater flow in the northwestern portion of AOI 4 is towards the northwest, groundwater flow in the northeastern portion of AOI 4 is towards the east. Groundwater in the southern half of AOI 4 is influenced by a groundwater mound centered in the vicinity of well S-31. This mound may be due to the presence of fire water lines in this area. There is not a significant off-site component of flow in the southern portion of AOI 4.

Four Lower Sand wells are located in AOI 4: S-38I, S-38D, S-59D and S-119D. S-38I is screened in the upper portion of the Lower Sand and S-38D is screened in the lower portion of the Lower Sand and possibly into weathered bedrock. Groundwater gauging data collected by Aquaterra in August 2005 and provided in Appendix G was used to generate a groundwater flow figure for the Lower Sand (deep) zone in AOI 4 (Figure 7). Groundwater flow in the deep zone in AOI 4 is towards the southeast. Groundwater elevations in all four Lower Sand wells were lower than elevations observed in nearby Trenton Gravel wells, indicating a downward vertical gradient exists between the Trenton Gravel and the Lower Sand in AOI 4.

No aquifer testing was performed in AOI 4 since sufficient data was available from former aquifer tests (pumping tests, recovery tests, and slug tests) performed in similar geologic materials in AOI 1 by others (SECOR, 2003; USGS, 2001; URS, 2002; Chevron USA, Inc., 1992; USGS, 1988). The geometric mean of hydraulic conductivity values calculated using recovery data in Well RW-406 by SECOR in 2003 (SECOR, 2003) appears to be most representative of the Trenton Gravel. This value was calculated to be 24 feet/day and was used as representative of the Trenton Gravel in AOI 4 since the physical descriptions of the Trenton Gravel between AOI 1 and AOI 4 are consistent.

2.4 Surface Water

No surface water features are located in AOI 4. The nearest surface water body to AOI 4 is the Schuylkill River which is located approximately 1200 feet west of AOI 4. AOI 3 lies between the Schuylkill River and AOI 4.

3.0 SITE HISTORY AND BACKGROUND

The Sunoco Philadelphia Refinery is located on approximately 672 acres in southwest Philadelphia. The Facility has a long history of petroleum transportation, storage, and processing. The oldest portion of the Facility started petroleum related activities in the 1860's, when the Atlantic Refining Company established an oil distribution center. In the 1900's, crude oil processing began and full-scale gasoline production was initiated during World War II. In addition to refining crude oil, various chemicals, such as acids and ammonia, were also produced at the site for a time. Current operations at the refinery are limited to the production of fuels and basic petrochemicals for the chemical industry.

AOI 4 comprises the southeast portion of the Point Breeze Process Area South Yard (Figure 2). Results of a RCRA Facility Investigation (RFI) for the Point Breeze Process Area are summarized in a report by ENSR Consulting and Engineering (ENSR) dated September 1992. The primary purpose of the RFI was to examine potential contaminant releases to surrounding soils/sediments, surface water, and groundwater within three areas of the Point Breeze Processing Area. The investigation included the completion of soil borings and monitoring wells; sampling of groundwater and surface water sediments; sampling of waste materials, sampling of subsurface soils; geophysical surveys; bathymetric surveys, tidal surveys, and monthly water level monitoring.

The following activities were performed to support the development of the AOI 4 Work Plan for Site Characterization:

Aquaterra performed one round of gauging and sampling in AOI 4 between
October 12, 2004 and October 21, 2004 and an additional round of gauging in August 2005.
Groundwater samples were collected from all accessible AOI 4 wells, with the exception of
recovery wells and wells which contained measurable LNAPL. The samples were submitted
to STL for analysis of Site COCs. The results of these samples are presented in Table 2 of
the Work Plan.

- Recent reports generated for areas within AOI 4 were reviewed and the data evaluated to refine proposed Site characterization activities. These reports included:
 - Aboveground Storage Tank No.846 Site Assessment Revised Report, prepared by SECOR, dated January 20, 2004,
 - o 26th Street Border Progress Report, January 1, 2003 through March 31, 2004, prepared by SECOR, and
 - Storage Tanks PB-880 and PB-881 Site Assessment Report, dated October 6, 2004, prepared by SECOR.
- Semi-annual gauging of all wells and annual groundwater sampling of twenty perimeter monitoring wells was completed by HANDEX in accordance with the ongoing sitewide sampling program. Relevant data from these events was utilized in preparation of this report.

4.0 SELECTION OF COMPOUNDS OF CONCERN AND APPLICABLE STANDARDS

The compounds of concern (COCs) for soil and groundwater are listed in Table 1 of this report.

These COCs are the same as those listed in the Work Plan and the CCR.

The following sections describe the applicable standards that were used in evaluating the Site characterization data.

Soil

Surface (0-2 feet) soil samples were collected at areas that are not covered with materials that prevent direct access in accordance with the Work Plan and screened against the non-residential statewide health medium-specific concentrations (MSCs) for soil (0-2 feet). Samples from these areas were compared to the non-residential statewide health MSCs for soil (2-15 feet). As summarized in the CCR, where statewide health MSCs are exceeded, Sunoco will apply either the site specific pathway elimination option or calculated risk-based site-specific standards for soil samples that exceed the statewide health MSCs. No calculated risk based numbers were generated for AOI 4 soils since no soil results exceeded the statewide health MSCs.

Groundwater

Groundwater sample results were screened against the non-residential, used-aquifer (TDS<2,500) statewide health groundwater MSCs. As summarized in the CCR, where statewide health MSCs are exceeded, Sunoco will apply either the site specific pathway elimination option or calculated risk-based site-specific standards for groundwater samples that exceed the statewide health MSCs. No calculated risk based numbers were generated for AOI 4 groundwater since the exceedances of the statewide health MSCs will be addressed by engineering controls, natural attenuation and pathway elimination.

5.0 SITE CHARACTERIZATION ACTIVITIES

The following sections summarize the Site characterization activities that were performed in AOI 4 in support of this report. All on-site activities were performed during April and May 2005 by Aquaterra.

5.1 Shallow Soil Borings and Sampling

A total of ten soil samples were collected at monitoring well boring locations shown on Figure 3 utilizing a stainless steel hand auger. Soil borings were advanced to a maximum depth of two feet below grade at each location. At well locations S-222, S-223, S-224, gravel was encountered between zero and two feet below the ground surface. Therefore, shallow soil samples were collected from borings advanced in the immediate vicinity of these wells as shown in Figure 3.

Prior to advancement, the hand auger was decontaminated by washing in an alconox and distilled water solution and then rinsed using distilled water. Soil samples were collected in laboratory-prepared bottleware and immediately placed on ice. Soil samples were submitted to Lancaster Laboratories, Inc. (LLI) of Lancaster, Pennsylvania for analysis of site COCs. A summary of the soil analytical results is provided as Table 2 and the results are discussed in Section 6.1. The laboratory analytical reports are provided as Appendix C.

5.2 Installation of Groundwater Monitoring Wells

Well installation activities were performed between March and June 2005. Intermediate wells were installed to monitor the Trenton Gravel unit and Deep wells were installed to monitor the Lower Sand unit. The well installation activities are discussed in detail in the following sections.

5.2.1 Trenton Gravel (Intermediate) Groundwater Monitoring Wells

Parratt Wolff, Inc of Syracuse, New York installed 12 Intermediate monitoring wells within the Trenton Gravel under the direct supervision of Aquaterra. All wells were installed and constructed in accordance with the Work Plan. Locations of these wells are shown on Figure 3. Prior to installation of the monitoring wells, a PA One Call was performed for marking out utilities. Monitoring well locations were cleared to a depth between six to ten feet below grade utilizing hydro excavation services provide by Environmental Industrial Services Corporation (EISCO) of Swedesboro, New Jersey. The Trenton Gravel wells were advanced utilizing 8.25-inch inside diameter hollow stem augers and split spoon samplers to record lithology. Split spoon samples were collected at five foot intervals throughout the borings, from 10 feet below grade to completion of the borehole. Monitoring wells were constructed to a maximum depth of 32 feet below grade with the screen interval of 15 feet set within the Trenton Gravel. Boring logs depicting monitoring well construction details and lithology are provided as Appendix B. Monitoring wells were constructed with a flush mount manhole cover or with three feet of stickup steel casing for protection. Well construction details are provided in Table 3.

Augers were steam-cleaned between boreholes to eliminate cross contamination. Following construction, the wells were developed using a submersible pump until recovered water was sediment free or a minimum of three well volumes was pumped from the well.

5.2.2 Lower Sand (Deep) Groundwater Monitoring Wells

Parratt Wolff installed two Deep monitoring wells within the Lower Sand in AOI 4 under the direct supervision of Aquaterra. These wells were screened to monitor the Lower Sand unit beneath the site. Locations of these wells are shown on Figure 3. Prior to installation of monitoring wells, a PA One Call was performed for marking out utilities. Monitoring well locations were cleared to a

depth between six to ten feet below grade utilizing hydro excavation services provide by EISCO. The Lower Sand wells were installed using a combination of 8.25-inch inside diameter hollow stem augers and mud rotary techniques with split spoon samplers. Augers and continuous split spoons were advanced into the middle clay no more than ten feet. Once the augers were advanced into the middle clay, 4-inch steel casing was set into the borehole and grouted in place to prevent vertical migration of groundwater from shallower water-bearing zones. The grout was allowed to set for at least one week before initiating the remaining drilling activities.

Once grout had set, mud-rotary drilling techniques were used to advance the borehole to bedrock using a bentonite-based fluid to keep the borehole open. The mud-rotary roller bit was advanced to the bottom of the steel casing at which point continuous split spoon sampling was resumed. Continuous split spoon sampling was performed until the Lower Sand was encountered. Once it was determined that the Lower Sand was encountered, split spoon samples were collected at five foot intervals until bedrock was encountered. Monitoring wells were constructed using 2-inch diameter PVC 0.020 slot screens and 2-inch diameter PVC risers. The screened interval at each well was set in the upper 15 feet of the Lower Sand Unit. The annular space beneath the screened interval was sealed with bentonite chips.

Boring logs depicting monitoring well construction details and lithology are provided as Appendix B. Monitoring wells were constructed with a flush mount manhole cover or with three feet of stickup steel casing for protection. Well construction details are provided in Table 3. Augers were steam-cleaned between boreholes to eliminate cross contamination. Following construction of the wells, the wells were developed using a submersible pump until recovered water was sediment free or a minimum of three well volumes was pumped from the well.

5.3 Groundwater Monitoring

On May 9 through May 11, 2005, Handex performed monitoring well gauging activities to collect liquid levels from monitoring wells within AOI-4 as part of the semi-annual refinery well gauging program. Monitoring wells were gauged for depth to water, and if applicable, depth to product in accordance with the Work Plan. All well gauging readings are summarized in Table 4.

The groundwater monitoring data from Aquaterra's August 2005 gauging event (Appendix G) for the fill/alluvium and Trenton Gravel wells in AOI 4 were used to generate a formational groundwater elevation contour map provided as Figure 6. Groundwater flow in the northwestern portion of AOI 4 is towards the northwest; groundwater flow in the northeastern portion of AOI 4 is towards the east. Groundwater in the southern half of AOI 4 is influenced by a groundwater mound centered in the vicinity of well S-31. This mound may be due to the presence of fire water lines in this area. Sunoco intends to further investigate the mounding conditions at S-31. There is not a significant off-site component of flow in the southern portion of AOI 4.

Four Lower Sand wells are located in AOI 4: S-38I, S-38D, S-59D and S-119D. S-38I is screened in the upper portion of the Lower Sand and S-38D is screened in the lower portion of the Lower Sand and possibly into weathered bedrock. Groundwater gauging data collected by Aquaterra in August 2005 was used to generate a groundwater flow figure for the Lower Sand (deep) zone in AOI 4 (Figure 7). Groundwater flow in the deep zone in AOI 4 is towards the southeast. Groundwater elevations in all four Lower Sand wells were lower than elevations observed in nearby Trenton Gravel wells, indicating a downward vertical gradient exists between the Trenton Gravel and the Lower Sand in AOI 4.

5.4 Groundwater Sampling

Aquaterra performed groundwater sampling activities for AOI-4 between April 28 and May 6, 2005. Wells S-96, S-223, S-224 and S-225 were sampled on August 1, 2005. All

groundwater sampling activities were completed in accordance with the Work Plan. Gauging data collected in April 2005 by Aquaterra was used in calculating the amount of water to be purged prior to sampling the monitoring wells. Three well volumes were purged from each well prior to sampling to remove stagnant water from the well and obtain a representative sample. Monitoring wells were sampled from least-to-most impacted based on historical groundwater analytical data. Well purging was performed by using either a submersible pump with disposable polyethylene tubing or by hand bailing using a disposable bailer. If a submersible pump was used for purging, the pump was decontaminated by rinsing in a distilled water and alconox solution and then rinsing in distilled water. Purge water was treated onsite using granular activated carbon. Well sampling data is presented in Appendix D.

Subsequent to purging, monitoring wells were allowed to recharge for no more than two hours prior to sampling. Samples were obtained by lowering a disposable bailer slowly into the well to minimize excess agitation. The bailer was filled with water from the top of the water table and retrieved. Samples were then collected in laboratory-prepared bottleware and immediately placed on ice. Samples were submitted to Lancaster Laboratories for analysis of site COCs. Once the sample was obtained, the bailer, bailer cord, and nitrile gloves used to obtain the sample were discarded. Sample date, time, number, and site name were recorded on the Chain-of-Custody and in field books. A summary of groundwater analytical results is presented in Tables 5 and 6 and laboratory analytical reports are included as Appendix C.

5.5 LNAPL Sampling

Aquaterra collected light non-aqueous phase liquid (LNAPL) samples from a total of six monitoring wells, including three newly installed monitoring wells. LNAPL samples were collected using a direct sampling or swabbing method. For direct sampling (ability to collect >10mL of LNAPL), a bailer was lowered into the well until it was approximately one foot below the water surface. The bailer was then retrieved and the LNAPL sample was placed in an unpreserved vial. For the swabbing method (<10mL of LNAPL), the bailer was lowered into the well as previously described. Once the bailer

was retrieved, a piece of sorbent pad was used to absorb the LNAPL present in the bailer from the surface of the groundwater sample. The swab was then placed into an unpreserved vial. The bailer, bailer cord, and nitrile gloves used for sampling each well were discarded after each sample was collected. Samples were packaged in certified hazardous material shipping boxes and sent via FedEx priority overnight to Torkelson Laboratories of Tulsa, Oklahoma for characterization. LNAPL characterization data included product types, density, proportions of product, degree of weathering, and similarities to other samples. Table E1 in Appendix E summarizes the LNAPL characterization results for all samples collected in AOI 4 and previous results from wells in AOI 4.

Aquaterra collected an additional LNAPL sample and groundwater sample from monitoring well S-34 (AOI 4) on May 3, 2005 to obtain AOI 4-specific LNAPL/soil saturation data for use with LNAPL modeling. Prior to collection of the LNAPL and groundwater samples, the well was gauged to determine depth to product, water, and product thickness. Samples were collected using Teflon®-lined polyethylene tubing and a peristaltic pump. The polyethylene tubing was lowered into the monitoring well and into the LNAPL layer. The peristaltic pump was set at a low flow rate during collection of the sample. A minimum of 200mL of LNAPL was collected in unpreserved laboratory-prepared bottleware. Once the LNAPL sample was collected, the polyethylene tubing was slowly lowered into the groundwater where no LNAPL was present. The polyethylene tubing was lowered no further than one foot below the bottom of the LNAPL/groundwater interface. A groundwater sample was then collected in unpreserved laboratory bottleware making sure no LNAPL was present in the sample.

Samples were then packaged in certified hazardous material shipping boxes and sent via FedEx priority overnight to PTS GeoLabs of Santa Fe Springs, California. The samples were analyzed via ASTM D445 and D1481 for fluid density of LNAPL and groundwater; surface tension of LNAPL and groundwater; viscosity of groundwater at 50°F, 60°F, and 100°F; and, viscosity of oil at 50°F, 60°F, and 100°F; interfacial tension of LNAPL to groundwater by ASTM D971, intrinsic permeability to both water by API RP 40/EPA 9100/ASTM D5084, LNAPL by API RP 40 and drainage capillary pressure by API

RP 40/ASTMD425M/EPA 9100. The results of the analyses were used to support the LNAPL modeling for AOI 4 which is discussed in Appendix E.

Aquaterra also collected one soil sample from a boring advanced adjacent to well S-34 to obtain additional site-specific LNAPL/soil saturation data for use with LNAPL modeling. Four continuous six-inch soil intervals were collected from the LNAPL-saturated area in this boring (20-22 feet beneath the ground surface) and were placed in brass soil rings with waxed end caps. The samples were then packaged in certified hazardous material shipping boxes and sent via FedEx priority overnight to PTS GeoLabs for photographing under white light and ultra-violet light. The six-inch sample interval with most LNAPL fluorescence (20.5-21 feet) was targeted and analyzed for the LNAPL parameters. Based on this depth of LNAPL saturation in soil, well S-34 is appropriately screened to intercept and monitor LNAPL in this area (screened 17-27 feet below the ground surface).

The samples were analyzed for pore space phase saturation (API RP 40) and porosity (API RP 40); grain size (ASTM D422 or D4464); Atterberg limits (ASTM D4318); total organic carbon by Walkly-Black; intrinsic permeability to both water (API RP 40/EPA9100/ASTM D5084) and LNAPL (API RP 40); and drainage capillary pressure (API RP 40/ASTM D425M/EPA 9100). The results of the analyses were used to support the LNAPL modeling discussed in Appendix E.

5.6 Surveying Activities

Re-Survey of S-27, S-31 and S-97

On May 16, 2005, Langan surveyors re-surveyed the casing and ground surface elevations at wells S-27, S-31 and S-97 in AOI 4 to verify these elevations and to determine if incorrect survey data was causing the historic groundwater mounding conditions observed at these areas. Variations in the survey data were observed and the new survey data for these wells was used to calculate water elevations in Table 4 and Figure 6.

Surveying of Newly Installed Monitoring Wells and Soil Boring Locations

Following completion of installation activities, the newly installed monitoring wells and the soil boring locations were surveyed by Langan to establish the location and elevation of the inner and outer casing and ground surface at each point. All well elevations were determined to the nearest 0.01 foot relative to mean sea level. All survey activities were performed by a Pennsylvania-licensed surveyor and tied to the NAVD 88 datum. The new survey data for these points is presented in Table 3.

6.0 SITE CHARACTERIZATION ANALYTICAL RESULTS

The following sections discuss the analytical results of the site characterization activities performed in AOI 4.

6.1 Soil Results

The results of the soil samples collected during this investigation are provided in Table 2. All of the soil samples were collected between zero and two feet below the ground surface and no saturated soils were observed at these depths. The results of the soil samples were screened against the non-residential MSCs for soil. Based on the results, no concentrations of COCs in soil exceeded the applicable MSCs.

6.2 Groundwater Results

Fill/Alluvium and Trenton Gravel Wells

The results of the groundwater samples collected from monitoring wells in the Fill/Alluvium and Trenton Gravel formations are provided in Table 5. The results were screened against the non-residential used aquifer (TDS>2,500) groundwater MSCs; exceedances of the MSCs are illustrated in Figure 8.

General comments regarding the results of the groundwater samples are summarized in the following:

- COCs which were detected in AOI 4 groundwater which exceed the non-residential MSCs include: benzene, toluene, ethylbenzene, ethylene dibromide, 1,2-dichloroethane, MTBE, chrysene, and naphthalene.
- Cumene, fluorene, phenanthrene, pyrene, total xylenes and total lead were not detected in AOI 4 groundwater at concentrations exceeding the non-residential MSCs.

Lower Sand Wells

The results of the groundwater samples collected from monitoring wells in the Lower Sand are provided in Table 6. The results were screened against the non-residential used aquifer (TDS>2,500) groundwater MSCs; no COCs exceeded the MSCs in the groundwater samples.

6.3 LNAPL Characterization Results

LNAPL characterization results are presented in a summary table in Table E1 of Appendix E. This table includes previous LNAPL characterization data for AOI 4 which was gathered as part of the CCR, and new data collected during the AOI 4 Site characterization activities. The LNAPL types for all wells in AOI 4 and the apparent thickness of LNAPL measured during Handex's May 2005 gauging event are illustrated in Figure 9.

The new LNAPL characterization data, along with the additional soil, LNAPL and groundwater data collected at select locations as described in Section 5.5, were used to model LNAPL for determining specific volume and mobility, which are summarized on Table 7 and Figure 11. LNAPL modeling procedures are described in detail in Appendix E. Major conclusions regarding the results of the LNAPL characterization and modeling are discussed below:

- Three different types or mixtures of LNAPL were identified in AOI 4. The LNAPL
 types include middle distillate, middle distillate/light-end feedstocks and
 gasoline/middle distillate.
- The absence of LNAPL along the majority of the AOI 4 boundary correlates with the lack of COC concentrations in exceedance of the MSC in the majority of the wells along the AOI 4 border.

7.0 REMEDIAL SYSTEM UPDATE

7.1 LNAPL Recovery Systems

Two active recovery wells, S-30 and S-36, are located in AOI 4. The remediation program consists of LNAPL recovery only from these wells. Sunoco is currently evaluating the expansion of the LNAPL recovery system in the vicinity of S-36 to include two additional LNAPL bearing wells into the same product recovery system. Completion of this remediation system is planned for the 4th quarter of 2005. The system will consist of four recovery wells, S-30, S-34, S-35 and S-36, equipped with pneumatic submersible skimming pumps.

7.2 Proposed Recovery System

A groundwater control/recovery system will be evaluated in the southern portion of the AOI 4 near S-223. Sunoco anticipates submitting a Work Plan for the groundwater remediation system to the PADEP in the 1st Quarter 2006 with an anticipated installation in 4th Quarter 2006 dependent upon discharge permitting.

8.0 FATE AND TRANSPORT ANALYSIS

The following sections describe fate and transport modeling activities performed as part of AOI 4 Site characterization.

8.1 Soil

No fate and transport modeling was completed for the soil analytical results since there were no exceedances of the PADEP non-residential MSCs.

8.2 Groundwater

Fate and transport calculations were completed for groundwater in AOI 4 to support refinement of the Site Conceptual Model and the Exposure Assessment. Appendix F discusses the details of the fate and transport modeling activities in AOI 4. The results of the modeling are discussed below:

- As shown in Figure 8, four wells along the AOI 4 eastern boundary (S-26, S-40, S-223, and S-224) have concentrations of COCs in groundwater which exceed their respective MSCs and are not delineated by AOI 4 boundary wells. Therefore, concentrations of COCs in these wells which exceeded the MSC were modeled for a 30 year simulation period. The results of the modeling indicate that dissolved phase COCs extend, or have the potential to extend off-site along 26th Street in the vicinity of Well S-40, and off-site along Penrose Avenue in the vicinity of Wells S-223, and S-224, as illustrated in Figure 10.
- The maximum offsite distance for this potential migration of dissolved COCs in fill/alluvium and Trenton Gravel wells is approximately 959 feet (based on benzene in Well S-223).

 No fate and transport modeling was completed for the Deep groundwater since no COCs were detected in AOI 4 deep wells at concentrations which exceed the non-residential groundwater MSCs.

8.3 LNAPL

As discussed in Section 5.5 of this report, additional LNAPL data was collected to further refine LNAPL type, occurrence, volume and mobility throughout AOI 4, and to support LNAPL modeling activities discussed in Appendix E.

For the LNAPL modeling at AOI 4, Langan utilized the American Petroleum Institute (API) Publication Number 4682, "Free-Product Recovery of Petroleum Hydrocarbon Liquids," dated June 1999, as a guide for assessing LNAPL volume and mobility. Site-specific LNAPL data were collected as described in Section 5.5 of this report and used as input parameters for modeling where applicable. These parameters and the API model were utilized to estimate the specific volume and mobility of LNAPL at AOI 4 as discussed in Appendix E. The calculated LNAPL specific volume and seepage velocity for all wells included in the modeling is presented in Table 7. The results of this modeling refined the LNAPL volumes and mobilities that were presented in the CCR. These data indicated that LNAPL with the greatest mobility is located in S-29, S-30, S-33, S-34, S-35, and S-103 (Figure 11).

9.0 SITE CONCEPTUAL MODEL

A preliminary site conceptual model (SCM) for the Refinery was presented in the CCR. Data collected from the Site characterization activities performed in AOI 4 were used to refine the SCM for this area. The SCM for AOI 4 is described below:

9.1 Description and Site Use

AOI 4 is bordered by Hartranft Street to the North, 26th Street to the East, Penrose Avenue to the South, and AOI 3 to the West (Figures 1 and 2) and encompasses approximately 90 acres. Currently, AOI 4 is comprised of primarily Crude Oil and Gas Oil ASTs. Numerous below ground pipelines are active within AOI 4; this is the largest storage area in the refinery.

9.2 Geology and Hydrogeology

The following summarizes the relevant information concerning geology and hydrogeology in AOI 4:

- The Fill/Alluvium, Trenton Gravel, Middle/Lower Clay, and the Lower Sand all exist beneath AOI 4, but the Middle Clay/Lower Clay is not continuous;
- Groundwater flow in the Fill/Alluvium and Trenton Gravel zone is generally not towards the off-site boundaries in AOI 4 as shown in Figure 6;
- Groundwater flow in the Lower Sand (Deep) zone is towards the southeast as shown in Figure 7; and
- Vertical groundwater flow between the Trenton Gravel and the Lower Sand is downward.

9.3 Compounds of Concern

The following summarizes the relevant information concerning COCs in AOI 4:

- There are no COCs for shallow soil.
- The COCs for groundwater include benzene, toluene, ethylbenzene, ethylene dibromide, 1,2-dichloroethane, MTBE, chrysene, and naphthalene.
- There are no COCs for deep groundwater.

9.4 LNAPL Distribution and LNAPL Mobility

The following summarizes the relevant information concerning LNAPL distribution in AOI 4:

- Three LNAPL types or mixtures have been identified in AOI 4 (Gasoline, Middle Distillate, and Light-end Feedstocks). The apparent thickness and specific volumes of each LNAPL plume in AOI 4 are provided in Figure 9 and Table 7, respectively.
- LNAPL in AOI 4 with the greatest potential mobility (Figure 11) is located in the vicinity of Wells S-29, S-30, S-33, S-34, S-35, and S-103.
- The majority of LNAPL in AOI 4 is within the AOI boundaries, with the exception of S-223 area where it has the potential to extend off-site.

9.5 Fate and Transport of COCs

The following summarizes the relevant information concerning the results of the fate and transport of the dissolved phase COCs in groundwater in AOI 4:

Dissolved phase COCs extend, or have the potential to extend off-site along 26th
 Street in the vicinity of Well S-40, and off-site along Penrose Avenue in the vicinity of Wells S-223, and S-224, as illustrated in Figure 10.

 No fate and transport modeling was completed for the deep groundwater unit since no COCs were detected in groundwater from deep wells at concentrations exceeding the non-residential MSCs.

9.6 Potential Migration Pathways and Site Receptors

The following summarizes the relevant information concerning the potential pathways and site receptors for AOI 4.

- Figure 16 of the CCR illustrated general areas of the Refinery that are covered with surfaces that prevent direct contact with site soils. Throughout the Site characterization activities for AOI 4, this figure was refined to increase accuracy. This updated figure is provided as Figure A3 in Attachment A. Only a small area in the southwest corner of AOI 4 was modified and shown as an uncovered area.
- AOI 4 is located within a fenced secured area, to prevent unauthorized access.
 Direct contact to site soils is governed by on-site procedures and PPE requirements.
- No human health groundwater receptors exist for the Refinery.
- All of AOI 4 operates under OSHA regulations with periodic air monitoring.
- LNAPL and dissolved COCs in groundwater extend, or have the potential to extend off-site in the vicinity of wells S-40, S-223, and S-224.

10.0 HUMAN HEALTH EXPOSURE ASSESSMENT/RISK ASSESSMENT

Based on the current and future intended non-residential site use, an exposure assessment was conducted for all compounds which exceeded the non-residential statewide health standards. Potential human health exposures for the Refinery are for an industrial worker scenario. Potential human health receptors for AOI 4 include direct contact with soils, groundwater, and LNAPL. Direct contact issues with soil, groundwater and LNAPL for the industrial scenario are addressed through Sunoco's established excavation procedures, PPE requirements and soil handling procedures described in Appendix K of the CCR. Since direct contact to surface soils could occur outside of excavation activities, shallow soil samples were collected at areas in AOI 4 that were covered by soils that prevented direct contact for evaluation of this potential exposure pathway.

The following table serves to summarize potential pathways that can be reasonably expected under the current and intended future non-residential use for the site. The table lists potentially contaminated media, potential receptors for these media, and a summary of whether any potential pathways exist at the site from the media to these receptors. A more detailed evaluation of each of these pathways is presented in the following sections.

Potential for Complete Exposure Pathways

Contaminated Media	Residents	Workers	DayCare	Construction	Trespassers	Recreation	Food
Groundwater	Na	No ⁽¹⁾	Na	No ⁽³⁾	No	Na	Na
Air (indoor)	Na	No	Na	No	No	Na	Na
Soil <2 feet bgs.	Na	No	Na	No	No	Na	Na
Surface Water	Na	Na	Na	Na	Na	Na	Na
Sediment	Na	Na	Na	Na	Na	Na	Na
LNAPL	Na	No ⁽¹⁾	Na	No ⁽⁴⁾	Na	Na	Na

Notes:

- (1) No complete groundwater or LNAPL pathways exist for workers that are not addressed through on-site procedures and PPE.
- (2) No complete pathway for site soil > 2 feet deep due to on-site procedures and PPE.
- (3) No complete groundwater or LNAPL pathway exists for construction workers due to PPE requirements and Standard Operating Procedures.
- (4) No complete pathway exists for site soil > 2 feet deep due to PPE requirements and Standard Operating Procedures.
- Na Not applicable.
- No No potential complete exposure pathway
- Yes Potential complete exposure pathway

10.1 Surface Water / Sediment

No surface water/sediments are located in AOI 4. Groundwater in AOI 4 does not interface with surface water/sediment, therefore there are no potential surface water receptors and/or exposure pathways in AOI 4.

10.2 Surficial Soils (0-2 Feet Below Grade)

10.2.1 Soil to Groundwater

No COCs in surface soil were detected at concentrations exceeding the MSCs. The soil to groundwater pathway is being addressed through the groundwater pathway discussed in Section 10.3.

10.2.2 Direct Contact Exposure

No COCs in surface soil were detected at concentrations exceeding the PADEP non-residential direct contact MSCs.

10.3 Groundwater

Benzene, toluene, ethylbenzene, ethylene dibromide, 1,2-dichloroethane, MTBE, chrysene, and naphthalene have been detected in exceedance of the non-residential MSCs. Previous investigations (URS, 2002) verified that no wells within 1.5 miles of the Refinery are used for drinking water or agricultural use. There are no complete direct contact exposure pathways for groundwater within AOI 4 because of on-site procedures and required PPE. Based on fate and transport calculations, the plume has the potential to extend offsite in the vicinity of wells S-40, S-223, and S-224. There is no potential direct contact exposure to impacted groundwater due to the depth of groundwater moving off-site, which is greater than 15 feet below grade.

10.4 LNAPL

There are no complete direct contact exposure pathways for LNAPL within AOI 4 because of on-site procedures and required PPE. There are no complete direct contact pathways for LNAPL off-site due to the depth to potential LNAPL, which is greater than 15 feet below grade.

10.5 Vapor

There are no complete indoor air vapor pathways from site soils, groundwater or LNAPL. No soils results exceeded the screening criteria in the PADEP's vapor guidance. Indoor air samples were collected at the only identified potential indoor air receptor (#15 Pumphouse) in accordance with the on-site OSHA sampling program. Site COCs were not above OHSA PELs in all of the indoor air samples that were collected in the #15 Pumphouse.

No potential indoor air receptors were identified offsite within the projected offsite distance of the dissolved groundwater plumes, but to be conservative, the dissolved groundwater concentrations that have the potential migrate offsite were evaluated in accordance with the PADEP vapor guidance. This was accomplished by screening the QD model-predicted offsite COC concentrations in groundwater from monitoring wells S-40, S-26, S-222 and S-223 against the residential volatilization into indoor air screen default values for groundwater listed in the current PADEP vapor guidance. Based on the results of this evaluation, there is no complete vapor pathway from the potential offsite migration of groundwater at these locations. Since LNAPL is not predicted to extend offsite there is no potential for indoor air vapor impacts from LNAPL to offsite receptors.

11.0 ECOLOGICAL ASSESSMENT

The majority of AOI 4 is impervious or covered with gravel (Figure A3 in Appendix A) and the non-covered portions of AOI 4 are not likely to serve as a breeding area, migratory stopover, or primary habitat for wildlife. In 2002, a survey of endangered, threatened and special concern wildlife was conducted by reviewing maps provided at the Pennsylvania Department of Conservation and Natural Resources. No endangered, threatened and special concern wildlife were identified using these maps or during historical investigations. Based on this information, there are no ecological receptors of concern for AOI 4 and no related assessment was necessary.

12.0 CONCLUSIONS AND RECOMMENDATIONS

Based on the results of the completed activities, the following conclusions and recommendations have been developed:

- Soil to groundwater issues are addressed through lack of completed pathways. Based on the shallow soil sample results, there are no direct contact issues.
- The LNAPL in the vicinity of S-30 and S-36 will be addressed by the ongoing remedial activities with the addition of two more recovery wells in the 4th Quarter 2005.
- Potential offsite impacts identified along the southern AOI 4 boundary in the vicinity of wells S-221, and S-124 will be addressed through a remedial system with a target installation of 2006. All other potential offsite impacts will be addressed through natural attenuation and pathway elimination.

13.0 REFERENCES

U.S. Department of the Interior, Geohydrology and Ground-Water Resources of Philadelphia, Pennsylvania, U.S. Geological Survey, Water-Supply Paper 2346.

Schreffler, C. L., 2001, U.S. Department of the Interior, Simulation of Ground-Water Flow in the Potomac-Raritan-Magothy Aquifer System Near the Defense Supply Center Philadelphia, and the Point Breeze Refinery, Southern Philadelphia County, Pennsylvania, Water-Resources Investigations Report 01-4218, 20 pp.

URS Corporation, 2002, Act 2 Combined Report, Philadelphia Energy Center, Sunoco Philadelphia Refinery, Girard Point Processing Area.

Moffitt, G. R., Chevron, 1992, RCRA Verification Investigation Final Report.

Sloto, R. A., 1988, Simulation of Ground-Water Flow in the Lower Sand Unit of the Potomac-Raritan-Magothy Aquifer System, Philadelphia, Pennsylvania, U.S. Geological Survey, Water-Resources Investigations Report 86-4055.

Pennsylvania Department of Environmental Protection, 2003, Document Number 253-0300-100, Land Recycling Program Technical Guidance Manual – Section IV.A.4. Vapor Intrusion Into Buildings From Groundwater and Soil Under the Act 2 Statewide Health Standard.

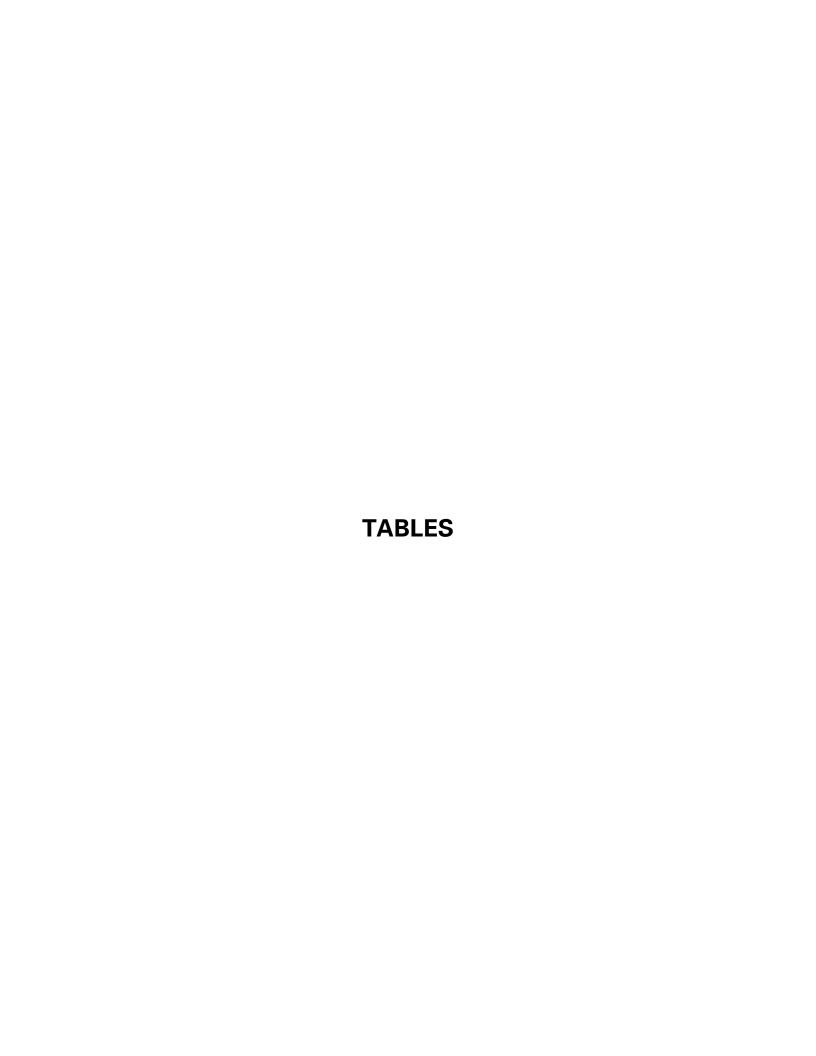


Table 1
Compounds of Concern
AOI 4 Site Chracterization Report
Sunoco Philadelphia Refinery
Philadelphia, Pennsylvania

SOIL				
METALS	CAS No.			
Lead (total)	7439-92-1			
VOLATILE ORGANIC	CAS No.			
COMPOUNDS	0,10,110.			
1,2-dichloroethane	107-06-2			
Benzene	71-43-2			
Cumene	98-82-8			
Ethylbenzene	100-41-4			
Ethylene dibromide	106-93-4			
Methyl tertiary butyl ether	1634-04-4			
Toluene	108-88-3			
Xylenes (total)	1330-20-7			
SEMI-VOLATILE	CAC N-			
ORGANIC COMPOUNDS	CAS No.			
Anthracene	120-12-7			
Benzo(a)anthracene	56-55-3			
Benzo (g,h,i) perylene	191-24-2			
Benzo(a)pyrene	50-32-8			
Benzo(b)fluoranthene	205-99-2			
Chrysene	218-01-9			
Fluorene	86-73-7			
Naphthalene	91-20-3			
Phenanthrene	85-01-8			
Pyrene	129-00-0			

Notes

^{1.} Constituents are from Pennsylvania Corrective Action Process (CAP) Regulation Amendments effective December 1, 2001; provided in Chapter VI, Section E (pgs. 29-30) of PADEP Document, Closure Requirements for Underground Storage Tank Systems, effective April 1, 1998.

Table 1 (continued) Compounds of Concern AOI 4 Site Characterization Report Sunoco Philadelphia Refinery Philadelphia, Pennsylvania

GROU	INDWATER
METALS	CAS No.
Lead (dissolved)	7439-92-1
VOLATILE ORGANIC COMPOUNDS	CAS No.
1,2-dichloroethane	107-06-2
Benzene	71-43-2
Cumene	98-82-8
Ethylbenzene	100-41-4
Ethylene dibromide	106-93-4
Methyl tertiary butyl ether	1634-04-4
Toluene	108-88-3
Xylenes (total)	1330-20-7
SEMI-VOLATILE ORGANIC COMPOUNDS	CAS No.
Chrysene	218-01-9
Fluorene	86-73-7
Naphthalene	91-20-3
Phenanthrene	85-01-8
Pyrene	129-00-0

Notes:

^{1.} Constituents are from Pennsylvania Corrective Action Process (CAP) Regulation Amendments effective December 1, 2001; provided in Chapter VI, Section E (pgs. 29-30) of PADEP Document, Closure Requirements for Underground Storage Tank Systems, effective April 1, 1998.

Table 2 **Summary of Soil Analytical Results** Sunoco Philadelphia Refinery - AOI 4 Philadelphia, Pennsylvania

		DADED Nor	n-Residential	Location ID	S	-119D		S-216			S-217		S-219			S-220			S-221			S-222			S-223			S-224			S-229	
				Sample ID	BHS119D	-040105-1-	1.5 BH-	S216-0325	05-1-1.5	BH-S21	7-040105-1-1	5 BH-S21	9-03250	5-1-1.5	BH-S22	20-0401	05-1-1.5	BH-S22	1-03250	5-1.5-2	BH-S22	2-08040	5-1-1.5	BH-S2	223-08040	05-1.5-2	BH-S22	24-08040	05-1-1.5	BH-S22	29-03250	5-1.5-2
	CAS No	M	SCs	Sample Matrix		Soil		Soil			Soil		Soil			Soil			Soil			Soil			Soil			Soil			Soil	
		0-2' Dry	2'-15' Dry	Sample Interval		1-1.5		1.5-2.0)		1.5-2.0		1.5-2.0			1.5-2.0)		1.5-2.0			1-1.5			1.5-2.0			1-1.5			1.5-2.0	
		U-Z DIY	2-15 DIY	Sample Date	4/	1/2005		3/25/20)5	4	/1/2005	3	3/25/2005	5	4	4/1/200	5	3	/25/2005	i	8	3/4/2005			8/4/2005	5		8/4/2005	5	3	3/25/2005	5
Volatile Organic Compounds				Unit	Result	Q RI	Res	ılt Q	RL	Result	Q RL	Result	Q	RL	Result	Q	RL	Result	Q	RL	Result	Q	RL	Result	Q	RL	Result	Q	RL	Result	Q	RL
Ethylene dibromide (EDB)	106-93-4	5	5	ug/kg	ND	U 5	NI) U	5	ND	U 5	ND	U	5	ND	U	5	ND	U	5	ND	U	5	ND	U	6	ND	U	5	ND	U	5
1,2-Dichloroethane	107-06-2	500	500	ug/kg	ND	U 5	NI) U	5	ND	U 5	ND	U	5	ND	U	5	ND	U	5	ND	U	5	ND	U	6	ND	U	5	ND	U	5
Benzene	71-43-2	500	500	ug/kg	ND	U 5	NI) U	5	ND	U 5	ND	U	5	ND	U	5	ND	U	5	ND	U	5	ND	U	6	ND	U	5	ND	U	5
Ethylbenzene	100-41-4	70000	70000	ug/kg	ND	U 5	NI) U	5	ND	U 5	ND	U	5	ND	U	5	ND	U	5	ND	U	5	ND	U	6	ND	U	5	ND	U	5
Cumene	98-82-8	1600000	1600000	ug/kg	ND	U 5	NI) U	5	ND	U 5	ND	U	5	ND	U	5	ND	U	5	ND	U	5	ND	U	6	ND	U	5	ND	U	5
Methyl Tertiary Butyl Ether	1634-04-4	2000	2000	ug/kg	ND	U 5	NI) U	5	ND	U 5	ND	U	5	ND	U	5	ND	U	5	ND	U	5	ND	U	6	ND	U	5	14		5
Toluene	108-88-3	100000	100000	ug/kg	ND	U 5	NI) U	5	ND	U 5	ND	U	5	ND	U	5	ND	U	5	ND	U	5	ND	U	6	ND	U	5	ND	U	5
Xylene (Total)	1330-20-7	1000000	1000000	ug/kg	ND	U 5	NI) U	5	ND	U 5	ND	U	5	ND	U	5	ND	U	5	ND	U	5	ND	U	6	ND	U	5	ND	U	5
Semi Volatile Organic Compounds																																
Chrysene	218-01-9	230000	230000	ug/kg	ND	U 38	0 NI) U	380	ND	U 400	ND	U	400	ND	U	410	ND	U	390	ND	U	190	ND	U	230	490		190	ND	U	370
Anthracene	120-12-7	350000	350000	ug/kg	ND	U 38	0 NI) U	380	ND	U 400	ND	U	400	ND	U	410	ND	U	390	ND	U	190	ND	U	230	ND	U	190	ND	U	370
Benzo(a)anthracene	56-55-3	110000	320000	ug/kg	ND	U 38	0 NI) U	380	ND	U 400	ND	U	400	ND	U	410	ND	U	390	ND	U	190	ND	U	230	490		190	ND	U	370
	50-32-8	11000	46000	ug/kg	ND	U 38	-) U	380	ND	U 400	ND	U	400	ND	U	410	460		390	ND	U	190	ND	U	230	550		190	ND	U	370
Benzo(b)fluoranthene	205-99-2	110000	170000	ug/kg	ND	U 38	0 NI) U	380	ND	U 400	ND	U	400	ND	U	410	560		390	ND	U	190	ND	U	230	700		190	ND	U	370
Benzo(g,h,i)perylene	191-24-2	180000	180000	ug/kg	ND	U 38	0 NI) U	380	ND	U 400	ND	U	400	ND	U	410	ND	U	390	ND	U	190	ND	U	230	430		190	ND	U	370
	86-73-7	3800000	3800000	ug/kg	ND	U 38	0 NI) U	380	ND	U 400	ND	U	400	ND	U	410	ND	U	390	ND	U	190	ND	U	230	ND	U	190	ND	U	370
	91-20-3	25000	25000	ug/kg	ND	U 38	0 NI) U	380	ND	U 400	ND	U	400	ND	U	410	ND	U	390	ND	U	190	ND	U	230	ND	U	190	ND	U	370
Phenanthrene	85-01-8	10000000	10000000	ug/kg	ND	U 38			380	ND	U 400	ND	U	400	460		410	390		390	ND	U	190	ND	U	230	300		190	ND	U	370
Pyrene	129-00-0	2200000	2200000	ug/kg	ND	U 38	0 NI) U	380	ND	U 400	ND	U	400	ND	U	410	530		390	ND	U	190	ND	U	230	900		190	ND	U	370
Metals				•												,	,		,	,			,	·				,	,			
Lead (Total)	7439-92-1	450000	450000	ug/kg	24900	22	10 608	00	2260	10200	2390	8990		2370	7580		2360	102000		2290	143000		2210	18200		2730	192000		2240	16700		2160

Notes:

PADEP - Pennsylvania Department of Environmental Protection ug/kg - Microgram per kilogram

MSC - PADEP's Medium Specific Concentration for Soil

RL - Reporting Limit
(1) All Soil Samples Collected and Analyzed were Unsaturated ND - Not Detected

Qualifiers: Q - Qualifier

U - The Analyte Was Analyzed But Not Detected

- Exceedance Summary:

 10 Reporting Limit Exceeds the PADEP Non-Residential Soil MSC

 10 Compound Exceeds the PADEP Non-Residential Soil MSC

Table 3 Well Summary AOI 4 Site Characterization Report Sunoco Philadelphia Refinery Philadelphia, Pennsylvania

											Well Construction	on Details ^{1,4}			
Well ID	Former Well ID ²	AOI#	Well Type ³	Well Classification (Shallow, Intermediate, Deep)	Soil Boring Log Available (Y/N)	Construction Detail Available (Y/N)	Date of Well Completion	Well Completion Depth (ft. bgs)	Well Diameter (in)	Casing Elevation (ft. msl) (NGVD 29)	Ground Surface Elevation¹ (ft.) (NAVD88)	Top of Screen Elevation (ft) (NAVD88)	Bottom of Screen Elevation (ft) (NAVD88)	Depth to Screen (ft. bgs)	Screen Length (ft.)
AS-9	-	4	Piezometer		Y	Υ	2/15/82	33.25	3	19.51	-	-	-	23.25	10
MW-1	-	4	Temporary Well Point Location	Shallow	Y	Υ	5/29/03	20	-		11.54	9.04	-5.96	2.5	15
MW-3		4	Temporary Well Point Location	Shallow	Υ	Υ	5/29/03	20	-		11.45	8.45	-6.55	3	15
MW-4		4	Temporary Well Point Location	Shallow	Y	Υ	5/29/03	16	-	-	-	-	-	7	10
S-102	-	4	Monitoring Well	Shallow	Y	Υ	10/17/95	20	2	20.39	15.63	10.63	-4.37	5	15
S-103	-	4	Monitoring Well	Shallow	Y	Υ	10/17/95	25	2	28.31	23.55	13.55	-1.45	10	15
S-104	-	4	Monitoring Well	Shallow	Y	Υ	10/17/95	20	2	20.38	15.05	5.05	-4.95	10	10
S-111	-	4	Monitoring Well	Shallow	Y	Υ	7/23/96	39.58	2		19.46	14.96	-20.04	4.5	35
S-119	MW-E	4	Monitoring Well	Intermediate	Y	Υ	8/15/02	34	4		23.82	9.82	-10.18	14	20
S-119D		4	Monitoring Well	Deep	Y	Υ	4/4/05	72	2	25.1		-31.9	-46.9	57	15
S-120	MW-F	4	Monitoring Well	Intermediate	Y	Υ	8/16/02	30	4		16.47	6.47	-13.53	10	20
S-121	MW-G	4	Monitoring Well	Intermediate	Y	Υ	8/22/02	30	4		18.53	8.53	-11.47	10	20
S-122	MW-H	4	Monitoring Well	Intermediate	Y	Υ	8/19/02	34.6	4		25.05	10.05	-9.95	15	20
S-123	MW-I	4	Monitoring Well	Intermediate	Y	Υ	8/20/02	30	4		19.23	9.23	-10.77	10	20
S-124	MW-J	4	Monitoring Well	Intermediate	Y	Y	8/22/02	30	4	-	20.46	10.46	-9.54	10	20
S-26	SM-33	4	Monitoring Well	Intermediate	Y	N	12/17/84	24	-	-	17.6	-	-		-
S-27	SM-42	4	Monitoring Well	Intermediate	Y	Y	3/19/85	34.75	-	-	22	-	#VALUE!		30
S-28	SM-29	4	Monitoring Well	Shallow	Y	N	12/17/84	25	-	-	22.66	-	-		-
S-29	59	4	Monitoring Well	Intermediate	Y	Υ	12/8/86	40	-	-	21.83	3.83	-18.17	18	22
S-30	-	4	Recovery Well - Active	-	-	-	-	-	-	-	21.64	-	-	-	-
S-31	SM-53	4	Monitoring Well	Shallow	Y	N	7/31/85	25	-	-	21.24	-	-	-	-
S-32	SM-27	4	Monitoring Well	Shallow	Y	N	12/17/84	25	-	-	21.29	-	-	-	-
S-33	SM-54	4	Monitoring Well	Shallow	Y	N	7/30/85	28	-		21.25	-	-		
S-34	PN-1	4	Monitoring Well	Shallow	Y	Υ	5/25/87	29	6		21.46	4.46	-5.54	17	10
S-35	PN-2	4	Monitoring Well	Shallow	Y	Υ	5/28/87	29	6	-	21.74	4.74	-5.26	17	10
S-36	SM-34	4	Monitoring Well	Shallow	Y	N	12/18/84	21.5	-	-	21.91	_	_		
S-37	SM-25	4	Monitoring Well	Shallow	Y	N	12/17/85	30	-	-	27.99	_	-		
S-38	SM-31	4	Monitoring Well	Shallow	Y	N	12/19/84	23.2	-	-	15.97	_	_		
S-38D	-	4	Monitoring Well	Deep	N	N	3/14/94	130	2	21	15.88	-104.12	-114.12	120	10
S-38I	-	4	Monitoring Well	Deep	N	N	3/17/94	80	2	21	15.84	-54.16	-64.16	70	10
S-39	AS-7	4	Monitoring Well	Intermediate	Υ	Y	2/4/84	37	3	22.08	21.25	-3.75	-15.25	25	11.5
S-40	SM-55	4	Monitoring Well	Shallow	Υ	N	7/31/85	28	_		21.67	-	-		_
S-55	SM-20	4	Monitoring Well	Shallow	Υ	N	12/17/84	19.6	_	-	12.93	_	_		_
S-56	62	4	Monitoring Well	Shallow	Υ	Y	12/13/86	29	2	-	13.45	-0.55	-15.55	14	15
S-57	SM-24	4	Monitoring Well	Shallow	Υ	N	12/18/84	14	_	-	10.13	-	-		_
S-58	RW-1	4	Recovery Well - Inactive		Y	Y	6/23/87	33	-		-	-	_	10	20
S-58D		4	Monitoring Well	Deep	Y	Y	4/13/05	56	2	17.15	_	-23.88	-38.88	41	15
S-67	SM-22	4	-		Y	-	12/18/84	20	_	-	_	-	-	-	-
S-96	-	4	Monitoring Well	Shallow	-		-	-	-		15.94	-	_		-
S-97	_	4	Monitoring Well	Shallow	Υ	Υ	4/4/94	35	4	33.33	28.74	8.74	-6.26	20	15
\$416			Abandoned	onanov.			4,40.			00.00	18.43	0.74	0.20		
S-216		4	Monitoring Well	Intermediate	Y	<i> </i>	4/19/05	26	4	15.76	_	4.76	-10.24	11	15
S-217		4	Monitoring Well	Intermediate	Y	Y	3/29/05	27	4	11.53	_	-0.47	-15.47	12	15
S-217	-	4	Monitoring Well	Intermediate	Y	Y	4/20/05	30	4	25.74	_	10.74	-4.26	15	15
S-219	-	4	Monitoring Well	Intermediate	· ·	Y	3/25/05	27	4	23.09	_	11.09	-4.26	12	15
S-219	-	4	Monitoring Well	Intermediate	Y	Y	4/20/05	30	4	20.81	_	5.81	-9.19	15	15
S-220		4	Monitoring Well	Intermediate	' '	Y	4/21/05	30	4	22.98		7.98	-9.19 -7.02	15	15
S-221	-	4	Monitoring Well	Intermediate	Y	Y	006/09/05	28	4	16.3	16.00			13	15
S-222 S-223		4	-		Y	Y	6/8/05	30	4	15.88	16.89 16.48	3.3	-11.7	15	15
	-		Monitoring Well	Intermediate	· ·	,						1.48	-13.52		1
S-224		4	Monitoring Well	Intermediate	Y	Y	6/6/05	32	4	16.04	16.54	4.54	-15.46	12	20
S-225			Monitoring Well	Intermediate	·	·	3/29/05	27	4	16.86	-	4.86	-10.14	12	15
S-229		4	Monitoring Well	Intermediate	Y	Y	3/23/05	30	4	22.73	-	7.73	-7.27	15	15
PH-66			Abandoned								-				-
PH-67	-	4	Abandoned	-	-	-		-	-	-	-	-	-	-	+

Data could not be located or determined based on available reports

Abandoned wells.

NOTES:

AOI - Area of Interest

ft. - feet

bgs - below ground surface

in. - inches

msl - elevation relative to mean sea level

- 1. Well construction details were taken directly from well boring logs provided by Handex, Aquaterra, or collected from available historic reports. Where no well boring logs exist, no well construction or lithologic data exis
- 2. Former well IDs were derived from handwritten notes on the logs themselves or the referenced report.
- 3. Well type was chosen based on the formation in which the well was screened. Wells screened within the Lower Sand were classified as deep wells.
- Based on their total depth, wells screened above the Middle Clay were classified as either a shallow or intermediate well.
- 4. Top of Inner Casing (TIC) and other relevant elevation datum for wells were obtained from J.M. Stewart Surveying, Inc., dated May 21, 2003, or Langan's Survey, May 2005. The surveys are based on the Horizontal Datum: Pennsylvania State Plane Coordinates NAD 83 / South, Zone, Vertical Datum: NAVD 88

Q:\Data62574601\Office Data\Reports\Site Characterization Reports\Q014\Final Reports\Q014

Table 4 Summary of AOI 4 Groundwater and LNAPL Elevations

AOI 4 Site Characterization Report Sunoco Philadelphia Refinery Philadelphia, Pennsylvania

Monitoring Point	AOI	Specific G	ravity (g/cc)		Depth to	Depth to	LNAPL	LNAPL	GW	Corrected GW
ID		S.G. ¹	Source ²	Notes	Product	Water ³ (ft)	Thickness ³ (ft)	Elevation ³ (ft amsl)	Elevation ^{3,4} (ft amsl)	Elevation (ft amsl)
					AOI 4					
MW-1	AOI 4				NM	NM	NA	NA	NA	NA
MW-3	AOI 4				NM	NM	NA	NA	NA	NA
MW-4	AOI 4				NM	NM	NA	NA	NA	NA
S-102	AOI 4				NP	17.09	0	NA	1.13	1.13
S-103	AOI 4	0.7978	S-103		24.72	24.90	0.18	1.39	1.21	1.35
S-104	AOI 4	0.8787	S-104		16.67	17.17	0.50	1.44	0.94	1.38
S-111	AOI 4				NM	NM	0	NA	NA	NA
S-119	AOI 4				NP	25.46	0	NA	1.14	1.14
S-119D ⁶	AOI 4				NP	25.41	0	NA	-0.31	-0.31
S-120	AOI 4				NP	18.14	0	NA	1.68	1.68
S-121	AOI 4				NP	19.45	0	NA	1.67	1.67
S-122	AOI 4				NP	23.96	0	NA	1.75	1.75
S-123	AOI 4				NP	20.58	0	NA	1.55	1.55
S-124	AOI 4	0.8223	S-124		21.52	21.85	0.33	1.68	1.35	1.62
S-26	AOI 4				NP	19.00	0	NA	1.76	1.76
S-27	AOI 4				NP	23.10	0	NA	1.73	1.73
S-28	AOI 4				NP	22.59	0	NA	3.15	3.15
S-29	AOI 4	0.8550	S-29		19.92	26.28	6.36	3.38	-2.98	2.46
S-30	AOI 4	0.8550	S-29		20.66	27.81	7.15	2.47	-4.68	1.43
S-31	AOI 4				NP	18.05	0	NA	3.65	3.65
S-32	AOI 4	0.8665	S-32		22.77	22.78	0.01	1.43	1.42	1.43
S-33	AOI 4	0.8575	S-33		20.37	21.22	0.85	1.08	0.23	0.96
S-34	AOI 4	0.8575	S-33		22.29	22.95	0.66	1.01	0.35	0.92
S-35	AOI 4	0.8665	S-35		23.66	24.34	0.68	1.03	0.35	0.94
S-36	AOI 4	0.8575	S-33		23.25	23.30	0.05	0.98	0.93	0.97
S-37	AOI 4	0.8639	S-37		24.81	24.93	0.12	1.09	0.97	1.07
S-38	AOI 4				NP	17.39	0	NA	1.56	1.56
S-38D ⁶	AOI 4				NP	19.27	0	NA	-1.57	-1.57
S-38I	AOI 4				NP	18.10	0	NA	0.09	0.09
S-39	AOI 4				NP	21.15	0	NA	1.73	1.73
S-40	AOI 4				NP	23.30	0	NA	1.16	1.16
S-55	AOI 4				NM	NM	NA	NA	NA	NA
S-56	AOI 4	0.8684	S-56		14.62	14.63	0.01	0.38	0.37	0.38
S-57	AOI 4	0.8620	S-57		11.52	11.90	0.38	0.98	0.60	0.93
S-58	AOI 4				NM	NM	NA	NA	NA	NA
S-59D ⁶	AOI 4				NP	17.11	0	NA	0.01	0.01
S-67	AOI 4				NM	NM	NA	NA	NM	NM
S-96	AOI 4				NP	18.64	0	NA	1.13	1.13
S-97	AOI 4	0.8653	S-97		NP	28.04	0	NA	1.51	1.51
S-216	AOI 4				NP	14.48	0	NA	1.28	1.28
S-217	AOI 4	0.8578	S-33		10.84	10.85	0.01	0.69	0.68	0.69
S-218	AOI 4				NP	24.14	0	NA	1.60	1.60
S-219	AOI 4				NP	21.46	0	NA	1.63	1.63
S-220	AOI 4	0.8550	S-29		19.02	19.10	0.08	1.79	1.71	1.78
S-221	AOI 4	0.8223	S-124		21.34	21.35	0.01	1.64	1.63	1.64
S-222	AOI 4				NP	16.79	0	0	-0.49	-0.49
S-223	AOI 4				NP	15.62	0	0	0.26	0.26
S-224	AOI 4				NP	15.80	0	0	0.24	0.24
S-225	AOI 4				NP	15.45	0	NA	1.41	1.41
S-229	AOI 4				NP	21.87	0	NA	0.86	0.86

- Notes:

 1. Specific Gravity (S.G.) values were determined from LNAPL samples taken by Aquaterra on February 27th and March 1st, 2004, or from samples collected by SECOR in 1999-2000.
- 2. For wells with no direct S.G. measurements, the S.G. value in the nearest well with a direct S.G was used.
- 3. Depth to Water and Depth to LNAPL provided by Handex May 9th-11th, 2005.
- 4. All Groundwater elevations collected during the month of May 2005. Only wells accessible during gauging event are listed.
- 5. Elevations for S-56, S-222, S-223, S-244 collected on 08/01/05 6. Elevation for deep wells collected on 7/26/05

AOI = Area of Interest

g/cc = grams per cubic centimeter

LNAPL = Light Non-Aqueous Phase Liquid

amsl = above mean sea level

GW = Groundwater

F = Film or trace product

NA = Not applicable

NM = Not Measured

Table 5 Summary of Groundwater Analytical Results: Fill/Alluvium and Trenton Gravel Wells Sunoco Philadelphia Refinery - AOI 4 Philadelphia, Pennsylvania

	CAS No	PADEP Non-Residential Used Aquifer MSC for	Sample ID Sample Date		5-042805 28/2005			6-042805 8/2005		\$218-042 4/28/20			3219-04280 4/28/2005	05 i		2-080105 1/2005			3-080105 1/2005	5		-080105 /2005		S229- 4/28	042805 /2005		S31-050 5/2/20			\$27-05020 5/2/2005	5		526-0502 5/2/2005			S40-05030 5/3/2005	5		96-080105 8/1/2005		5/3	9-050305 3/2005
	CASINO	Groundwater TDS<2,500	Sample Matrix Unit	Gro	undwater ug/l		Grou	ındwater ug/l		Groundw ug/l	ater	G	iroundwate ug/l	er	Gro	undwater ug/l		Grou	ındwate ug/l	r	Gro	ndwater ug/l		Grour	ndwater g/I		Ground ug/	water I	(Groundwat ug/l	er	G	roundwa ug/l	ater	G	Froundwat ug/l	.er	Gr	roundwater ug/l			undwater ug/l
Volatile Organic Compounds			Unit	Result	Q	RL	Result	Q F	RL Re	sult Q	RL	Result	Q	RL	Result	Q	RL	Result	Q	RL	Result	Q RI	L R	lesult	Q RL	. Resul	lt Q	RL	Result	Q	RL	Result	Q	RL	Result	Q	RL	Result	Q	RL	Result	Q RL
Ethylene dibromide (EDB)	106-93-4	0.05	ug/l	ND	U 0	029	0.029	U 0.	0.0	052	0.029	ND	U	0.029	ND	U 0	.029	ND	U	0.029	ND	U 0.02	29	0.033	0.02	29 ND	U	0.028	ND	U	0.029	ND	U	0.029	ND	U	0.03	ND	U	0.029	ND	U 0.028
1,2-Dichloroethane	107-06-2	5	ug/l	ND	U	5	ND	U 1	0 0	ID U	50	ND	U	5	ND	U	5	ND	U	50	ND	U 10	0	ND	U 50	ND	U	5	ND	U	5	ND	U	5	ND	U	5	ND	U	5	ND	U 5
Benzene	71-43-2	5	ug/l	24		5	290		0 22	200	50	23		5	ND	U	5	6,100		500	2,000	13	30	1900	50	53		5	ND	U	5	ND	U	5	370		25	ND	U	5	ND	U 5
Ethylbenzene	100-41-4	700	ug/l	ND	U	5	110		0 13	800	50	ND	U	5	ND	U	5	1,300		50	690	13	30	350	50	39		5	ND	U	5	ND	U	5	21		5	ND	U	5	ND	U 5
Cumene	98-82-8	2300	ug/l	87		5	73		0 0	ID U	50	ND	U	5	ND	U	5	ND	U	50	44	10	0	150	50	6		5	5		5	ND	U	5	40		5	ND	U	5	ND	U 5
Methyl Tertiary Butyl Ether	1634-04-4	20	ug/l	ND	U	5	210		0 0	ID U	50	ND	U	5	ND	U	5	ND	U	50	ND	U 10	0	ND	U 50	170		5	ND	U	5	32		5	ND	U	5	ND	U	5	ND	U 5
Toluene	108-88-3	1000	ug/l	10		5	48		0 3	60	50	ND	U	5	ND	U	5	9,600		500	2,800	13	30	ND	U 50	40		5	ND	U	5	ND	U	5	14		5	ND	U	5	ND	U 5
Xylene (Total)	1330-20-7	10000	ug/l	11		5	240	1	0 24	100	50	6		5	10		5	6,900		50	3,500	13	30	630	50	150		5	26		5	ND	U	5	10		5	ND	U	5	ND	U 5
Semi-Volatile Organic Compou	ınds																																									
Chrysene	218-01-9	1.9	ug/l	ND	U	10	ND	U ʻ	0 0	ID U	10	ND	U	10	ND	U	6	ND	U	5	ND	U 5	5	ND	U 10	NA.			ND	U	10	ND	U	10	ND	U	10	ND	U	5	ND	U 10
Fluorene	86-73-7	1900	ug/l	56		10	60		0 0	ID U	10	ND	U	10	ND	U	6	ND	U	5	ND	5	5	11	10	NA.			ND	U	10	ND	U	10	ND	U	10	ND	U	5	ND	U 10
Naphthalene	91-20-3	100	ug/l	ND	U	10	150		50 2	50	51	ND	U	10	ND	U	6	430		26	ND	5	5	220	51	NA			14		10	ND	U	10	ND	U	10	ND	U	5	ND	U 10
Phenanthrene	85-01-8	1100	ug/l	71		10	87		0 0	ID U	10	ND	U	10	ND	U	6	ND	U	5	ND	5	5	15	10	NA.			ND	U	10	ND	U	10	16		10	ND	U	5	ND	U 10
Pyrene	129-00-0	130	ug/l	ND	U	10	10	U 1	0 0	ID U	10	ND	U	10	ND	U	6	ND	U	5	ND	U 5	5	ND	U 10	NA.			ND	U	10	ND	U	10	ND	U	10	ND	U	5	ND	U 10
Metals																																										
Lead (Total)	7439-92-1	5	ua/l	ND	U	1	ND	U	1 N	ID U	1	ND	U	1	ND	U (0.18	ND	U	0.18	1.4	1		ND	U 1	ND	U	1	ND	U	1	ND	U	1	ND	U	1	ND	U	0.18	ND	U 1

Notes:
PADEP - Pennsylvania Department of Environmental Protection
ugf - Micrograms Per Liter
MSC - PADEP's Medium Specific Concentration for Impact to Groundwater
RL - Reporting Limit
ND - Not Detected
* Due to limited sample volume in S-31 SVOCS were not collected for analysis

Qualifiers: Q - Qualifier U - The Analyte Was Analyzed But Not Detected

Exceedance Summary:

10 - Reporting Limit Exceeds the PADEP Non-Residential Used Aquifer MSC for Groundwater TDS<2,500

10 - Compound Exceeds the PADEP Non-Residential Used Aquifer MSC for Groundwater TDS<2,500

Table 5 Summary of Groundwater Analytical Results: Fill/Alluvium and Trenton Gravel Wells Sunoco Philadelphia Refinery - AOI 4 Philadelphia, Pennsylvania

		PADEP Non-Residential	Sample ID	S1	20-0503	05	S12	22-050305	5	S	39-05030	5	S	38-0503	05	S	28-05040	5	S1	23-05040	05	S	97-050405		S12	21-05040	5	MW	1-050605		S1	102-050605	;	M	IW4-05060	5
	CAS No	Used Aquifer MSC for	Sample Date		5/3/2005	i	5	/3/2005			5/3/2005			5/3/2005	5		5/4/2005			5/4/2005			5/4/2005		5	/4/2005		5.	/6/2005			5/6/2005		i	5/6/2005	
	CAS NO	Groundwater TDS<2,500	Sample Matrix	Gr	oundwa	ter	Gro	undwate	r	Gr	oundwat	er	Gr	oundwa	iter	Gr	oundwat	er	Gr	oundwat	ter	Gr	oundwater		Gro	undwate	r	Gro	undwater		Gr	oundwater	r	G G	roundwat	er
		Groundwater 1D5<2,500	Unit		ug/l			ug/l			ug/l			ug/l			ug/l			ug/l			ug/l			ug/l			ug/l			ug/l		i	ug/l	
Volatile Organic Compounds			Unit	Result	Q	RL	Result	Q	RL	Result	Q	RL	Result	Q	RL	Result	Q	RL	Result	Q	RL	Result	Q	RL	Result	Q	RL	Result	Q	RL	Result	Q	RL	Result	Q	RL
Ethylene dibromide (EDB)	106-93-4	0.05	ug/l	ND	U	0.029	ND	U	0.029	ND	U	0.029	ND	U	0.029	ND	U	0.029	ND	U	0.028	ND	U	0.028	ND	U	0.028	ND	U (.028	ND	U	0.028	ND	U	0.028
1,2-Dichloroethane	107-06-2	5	ug/l	ND	U	5	ND	U	5	ND	U	5	ND	U	5	ND	U	5	ND	U	5	ND	U	50	ND	U	5	ND	U	5	ND	U	5	ND	U	5
Benzene	71-43-2	5	ug/l	ND	U	5	ND	U	5	ND	U	5	ND	U	5	51		5	8		5	600		50	ND	U	5	100		5	ND	U	5	ND	U	5
Ethylbenzene	100-41-4	700	ug/l	ND	U	5	ND	U	5	ND	U	5	ND	U	5	12		5	68		5	63		50	ND	U	5	19		5	ND	U	5	ND	U	5
Cumene	98-82-8	2300	ug/l	ND	U	5	ND	U	5	ND	U	5	ND	U	5	6		5	10		5	ND	U	50	ND	U	5	10		5	ND	U	5	ND	U	5
Methyl Tertiary Butyl Ether	1634-04-4	20	ug/l	ND	U	5	ND	U	5	ND	U	5	ND	U	5	270		25	ND	U	5	ND	U	50	ND	U	5	ND	U	5	ND	U	5	ND	U	5
Toluene	108-88-3	1000	ug/l	ND	U	5	ND	U	5	ND	U	5	ND	U	5	ND	U	5	190		5	ND	U	50	ND	U	5	10		5	ND	U	5	ND	U	5
Xylene (Total)	1330-20-7	10000	ug/l	ND	U	5	ND	U	5	ND	U	5	ND	U	5	13		5	250		5	230		50	ND	U	5	27		5	ND	U	5	ND	U	5
Semi-Volatile Organic Compou	ınds																																	1 /		
Chrysene	218-01-9	1.9	ug/l	ND	U	10	ND	U	10	ND	U	10	ND	U	10	ND	U	10	ND	U	10	ND	U	10	ND	U	10	ND	U	10	ND	U	10	ND	U	10
Fluorene	86-73-7	1900	ug/l	ND	U	10	ND	U	10	ND	U	10	ND	U	10	12		10	13		10	25		10	ND	U	10	ND	U	10	ND	U	10	ND	U	10
Naphthalene	91-20-3	100	ug/l	ND	U	10	ND	U	10	ND	U	10	ND	U	10	12		10	26		10	110		10	ND	U	10	32		10	ND	U	10	ND	U	10
Phenanthrene	85-01-8	1100	ug/l	ND	U	10	ND	U	10	ND	U	10	ND	U	10	26		10	34		10	47		10	ND	U	10	ND	U	10	ND	U	10	ND	U	10
Pyrene	129-00-0	130	ug/l	ND	U	10	ND	U	10	ND	U	10	ND	U	10	ND	U	10	ND	U	10	ND	U	10	ND	U	10	ND	U	10	ND	U	10	ND	U	10
Metals																																		7		
Lead (Total)	7439-92-1	5	ug/l	ND	U	1	ND	U	1	ND	Ü	1	ND	U	1	ND	Ü	1	ND	U	1	ND	U	1	ND	U	1	ND	U	1	ND	U	1	ND	Ü	1

Notes:

PADEP - Pennsylvania Department of Environmental Protection
ugl - Micrograms Per Liter
MSC - PADEP's Medium Specific Concentration for Impact to Groundwater
RL - Reporting Limit
ND - Not Detected

* Due to limited sample volume in S-31 SVOCS were not collected for analysis

Qualifiers: Q - Qualifier U - The Analyte Was Analyzed But Not Detected

Exceedance Summary:

10 - Reporting Limit Exceeds the PADEP Non-Residential Used Aquifer MSC for Groundwater TDS</br>
10 - Compound Exceeds the PADEP Non-Residential Used Aquifer MSC for Groundwater TDS<2,50

Table 6 Summary of Groundwater Analytical Results: Lower Sand Wells Sunoco Philadelphia Refinery - AOI 4 Philadelphia, Pennsylvania

	CAS No	PADEP Non-Residential Used Aquifer MSC for Groundwater TDS<2,500	Sample ID Sample Date Sample Matrix Unit		19D-050 5/3/2005 oundwa ug/l		5	8I-0503 5/3/2005 bundwa ug/I	;	5	8D-0503 5/3/2005 oundwa ug/l	5		9D-0506 5/6/2005 oundwa ug/l	5
Volatile Organic Compounds			Unit	Result	Q	RL									
Ethylene dibromide (EDB)	106-93-4	0.05	ug/l	ND	U	0.029	ND	U	0.029	ND	U	0.029	ND	U	0.028
1,2-Dichloroethane	107-06-2	5	ug/l	ND	U	5									
Benzene	71-43-2	5	ug/l	ND	U	5									
Ethylbenzene	100-41-4	700	ug/l	ND	U	5									
Cumene	98-82-8	2300	ug/l	ND	U	5									
Methyl Tertiary Butyl Ether	1634-04-4	20	ug/l	ND	U	5									
Toluene	108-88-3	1000	ug/l	ND	U	5									
Xylene (Total)	1330-20-7	10000	ug/l	ND	U	5									
Semi-Volatile Organic Compour	nds														
Chrysene	218-01-9	1.9	ug/l	ND	U	10									
Fluorene	86-73-7	1900	ug/l	ND	U	10									
Naphthalene	91-20-3	100	ug/l	ND	U	10									
Phenanthrene	85-01-8	1100	ug/l	ND	U	10									
Pyrene	129-00-0	130	ug/l	ND	U	10									
Metals															
Lead (Total)	7439-92-1	5	ug/l	ND	U	1									

Notes:

PADEP - Pennsylvania Department of Environmental Protection

ug/l - Micrograms Per Liter

MSC - PADEP's Medium Specific Concentration for Impact to Groundwater

RL - Reporting Limit

ND - Not Detected

Qualifiers:

Q - Qualifier

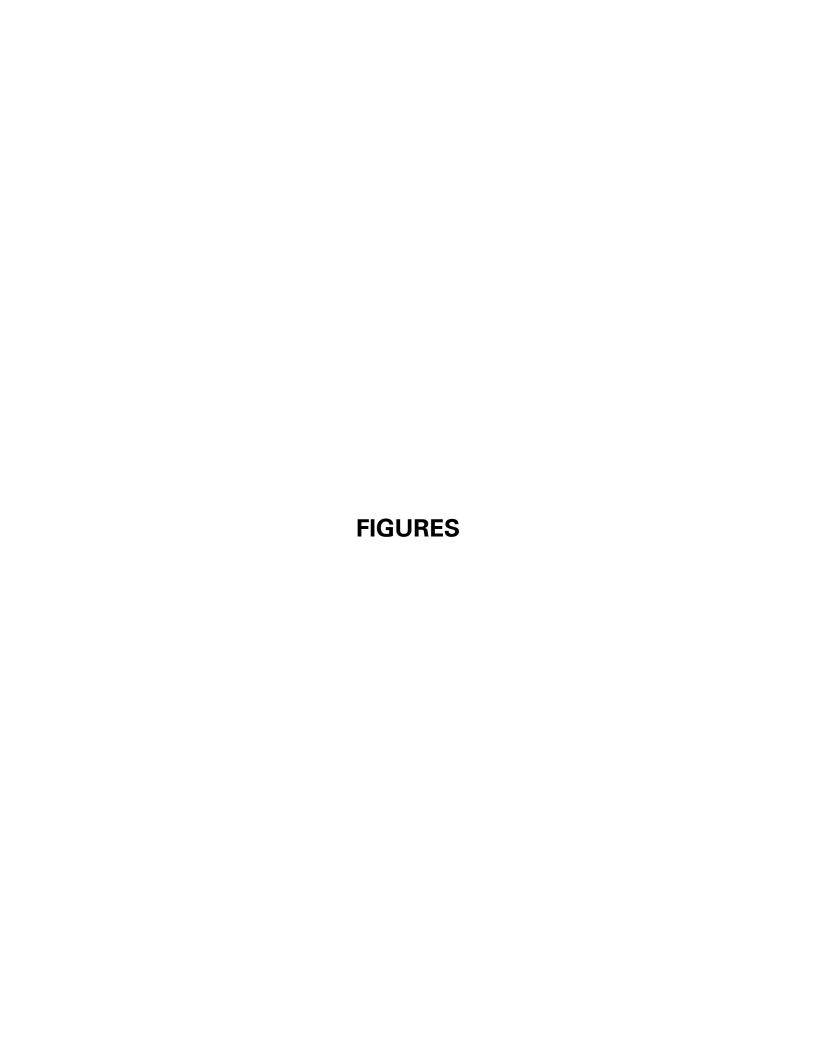
U - The Analyte Was Analyzed But Not Detected

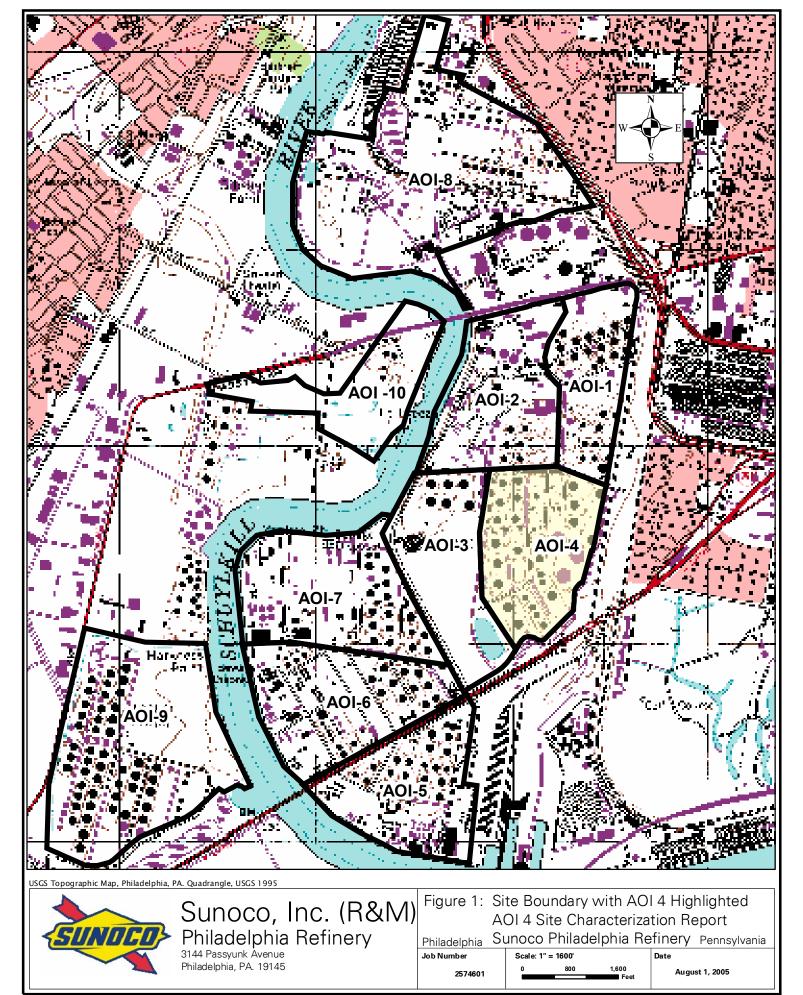
Exceedance Summary:

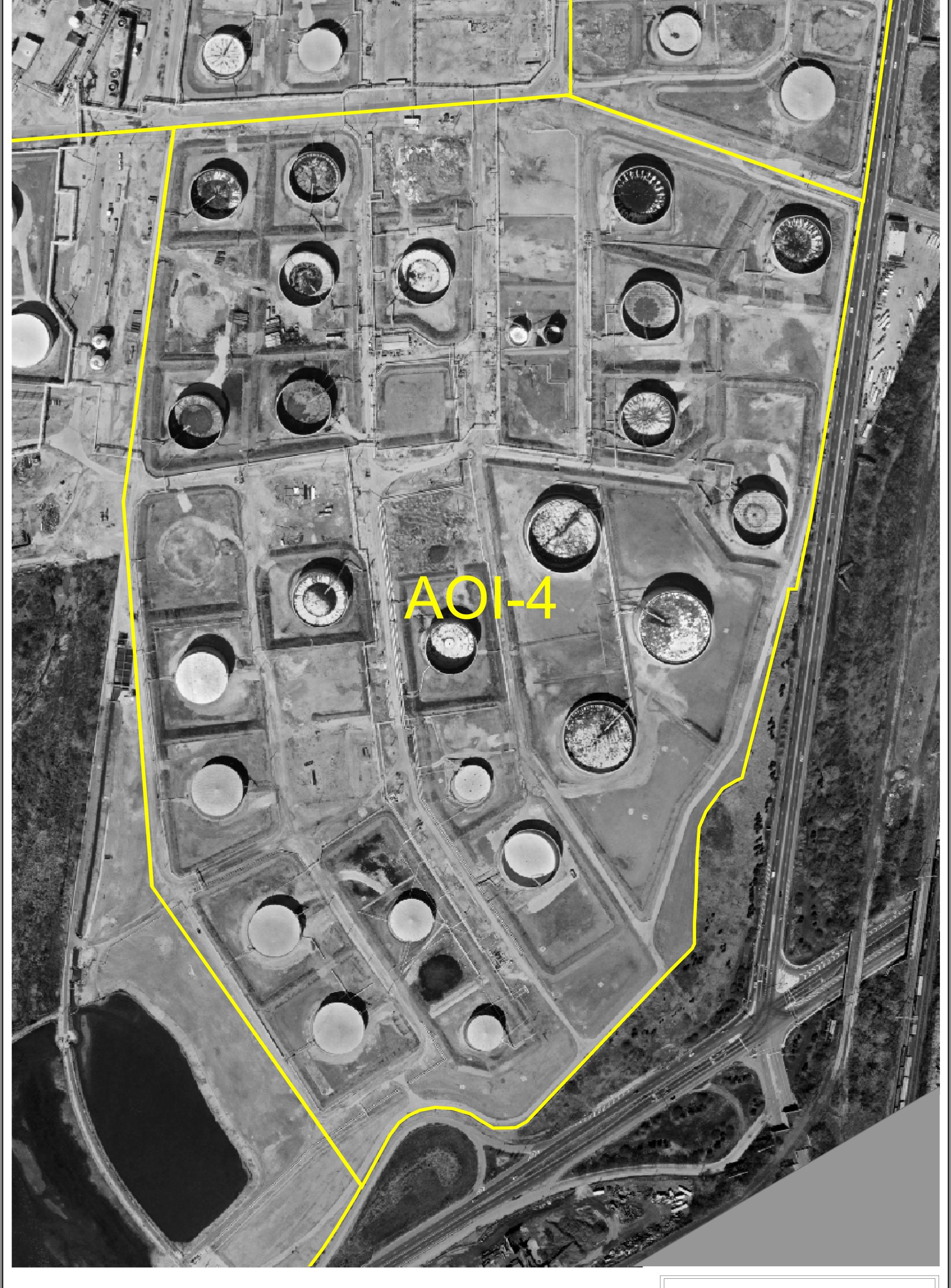
- 10 Reporting Limit Exceeds the PADEP Non-Residential Used Aquifer MSC for Groundwater TDS<2,500
- 10 Compound Exceeds the PADEP Non-Residential Used Aquifer MSC for Groundwater TDS<2,500

Table 7

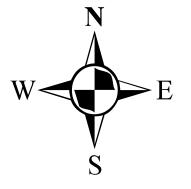
API Calculated LNAPL Specific Volume and Calculated Seepage Velocity Summary


AOI 4: Sunoco Philadelphia Refinery


Philadephia, Pennsylvania


Well ID	LNAPL Thickness	Specific Volume	Relative Permeability	LNAPL Seepage Velocity
	feet	feet	unitless	cm/sec
S-103	0.18	2.16E-03	5.90E-03	1.59E-07
S-124	0.33	1.51E-03	2.63E-03	7.09E-08
S-217	0.01	4.05E-09	8.74E-12	3.89E-16
S-220	0.08	1.61E-04	7.62E-04	3.52E-08
S-221	0.01	1.23E-08	5.59E-11	2.49E-15
S-104	0.50	3.21E-03	4.56E-03	2.74E-08
S-29	6.36	2.20E+00	7.91E-01	8.25E-06
S-30	7.15	2.51E+00	8.08E-01	8.42E-06
S-32	0.01	3.84E-08	6.81E-08	4.10E-13
S-33	0.85	2.05E-02	2.89E-02	1.74E-07
S-34	0.66	1.05E-02	1.56E-02	1.69E-07
S-35	0.68	9.69E-03	1.40E-02	1.52E-07
S-36	0.05	4.64E-06	9.44E-06	1.02E-10
S-37	0.12	7.36E-05	1.28E-04	7.72E-10
S-56	0.01	1.26E-09	9.79E-13	1.02E-17
S-57	0.38	2.22E-03	3.23E-03	2.14E-08
S-97	0.01	1.40E-09	1.18E-12	1.23E-17

Notes:


- 1. Groundwater and LNAPL gauging event performed by Handex in May 2005
- 2. The Specific Volume and Seepage Velocity Values were calculated unsing the API model.
- 3. A groundwater gradient of 0.0035 was used in the calculation of these values.

Legend

AOI 4

Figure 2: Site Plan
AOI 4 Site Characterization Report
Sunoco Philadelphia Refinery
Philadelphia, Pennsylvania

Sunoco, Inc. (R&M)
Philadelphia Refinery
3144 Passyunk Avenue
Philadelphia, PA.
19145

125 250 Feet

SCALE: DATE1 DBN. BY: 0KD. BY: JOB#: August 22, 2005 JSC JH 2574601

59D

New Lower Sand Monitoring Well

S-119D BH-S119D-1.0-1.5

New Lower Sand Monitoring Well with Soil Sample

BH-S222-1.0-1.5

Shallow Soil Sample Locations

AOI Boundaries

S-206

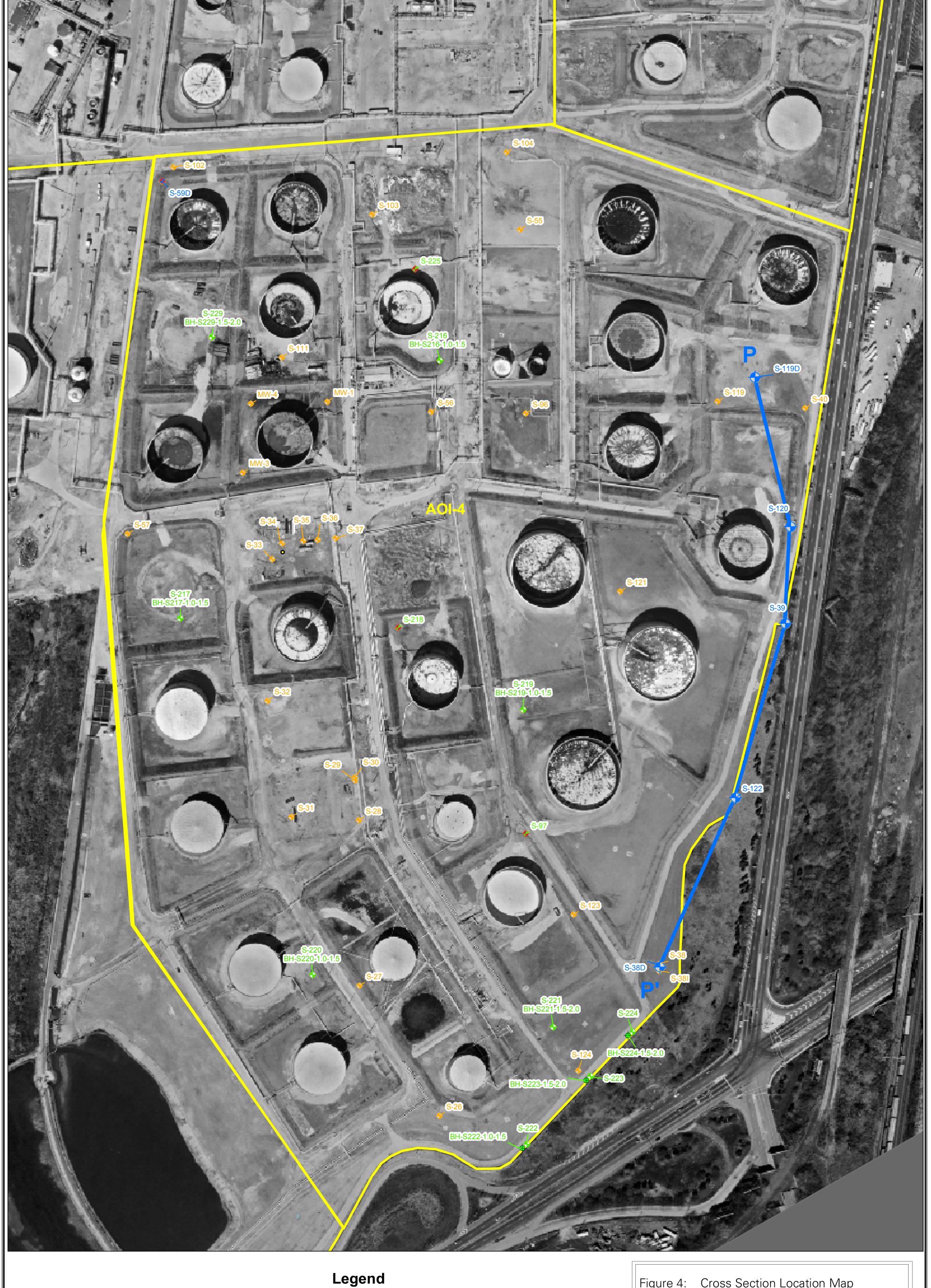
New Trenton Gravel Monitoring Well

S-206 BH-S206-1.0-1.5

New Trenton Gravel Monitoring Well with Soil Boring

S-76

All Existing Monitoring Points


igure 3: Completed Activities
AOI 4 Site Characterization Report
Sunoco Philadelphia Refinery
Philadelphia, Pennsylvania


Sunoco, Inc. (R&M) Philadelphia Refinery 3144 Passyunk Avenue Philadelphia, PA.

19145

125 250 SCALE: 1" = 125'
DATE: July 25, 2005
DRN. BY: JSC
CKD. BY: JH
JOB#: 2574601

Cross Section P - P'

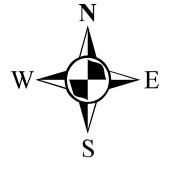
Monitoring Well Used In Cross Section

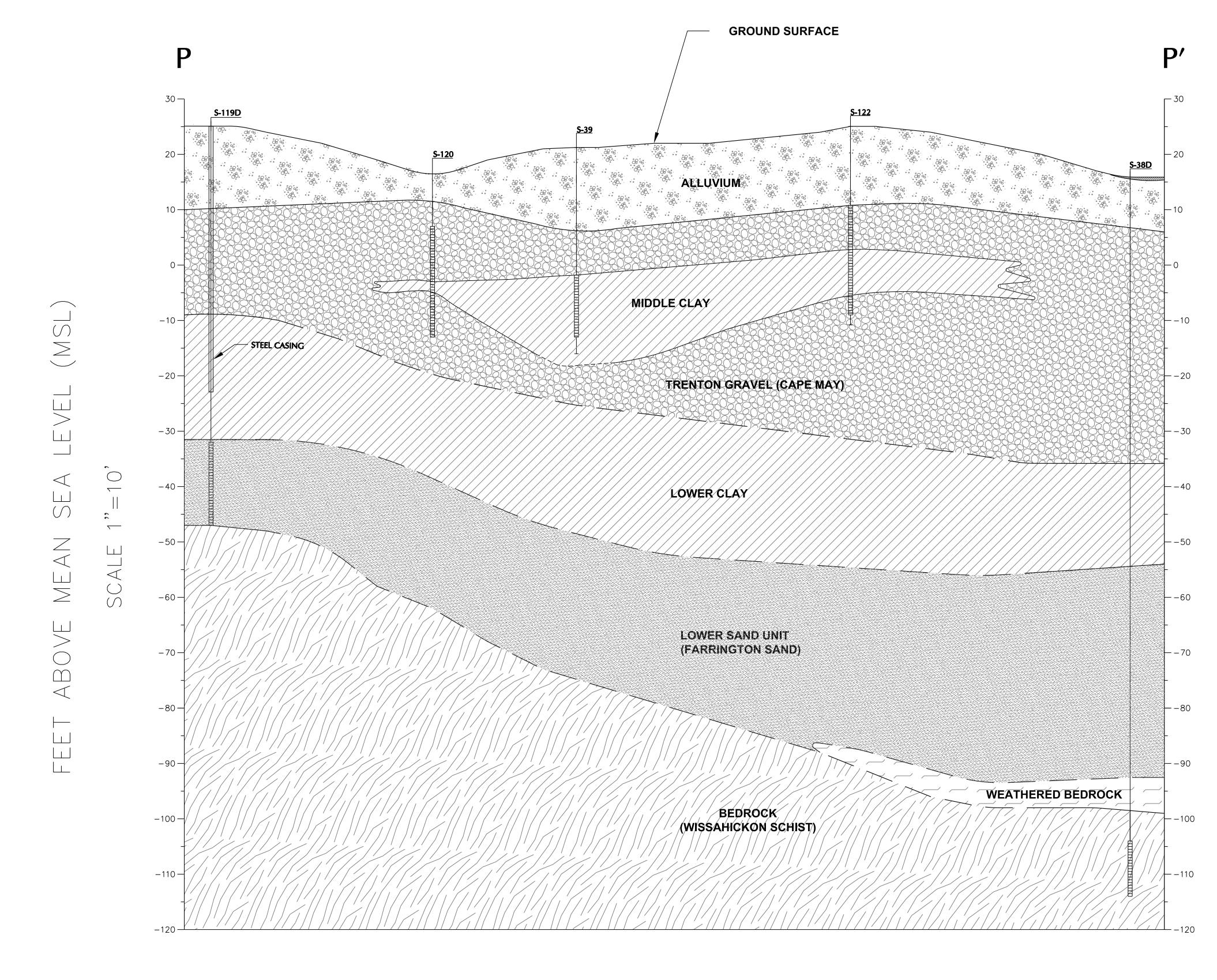
Soil Sample Locations

AOI Boundaries

New Lower Sand Monitoring Well

New Trenton Gravel Monitoring Well



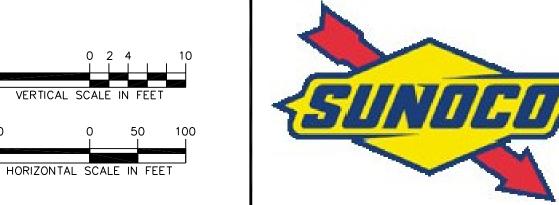

Figure 4: Cross Section Location Map AOI 4 Site Characterization Report Sunoco Philadelphia Refinery Philadelphia, Pennsylvania

Sunoco, Inc. (R&M) Philadelphia Refinery 3144 Passyunk Avenue Philadelphia, PA. 19145

SCALE: 1" = 125'
DATE: August 8, 2005
DRN. BY: JSC
CKD. BY: JH
JOB#: 2574601 250

FILL

ALL VIUM


SAND AND GRAVEL

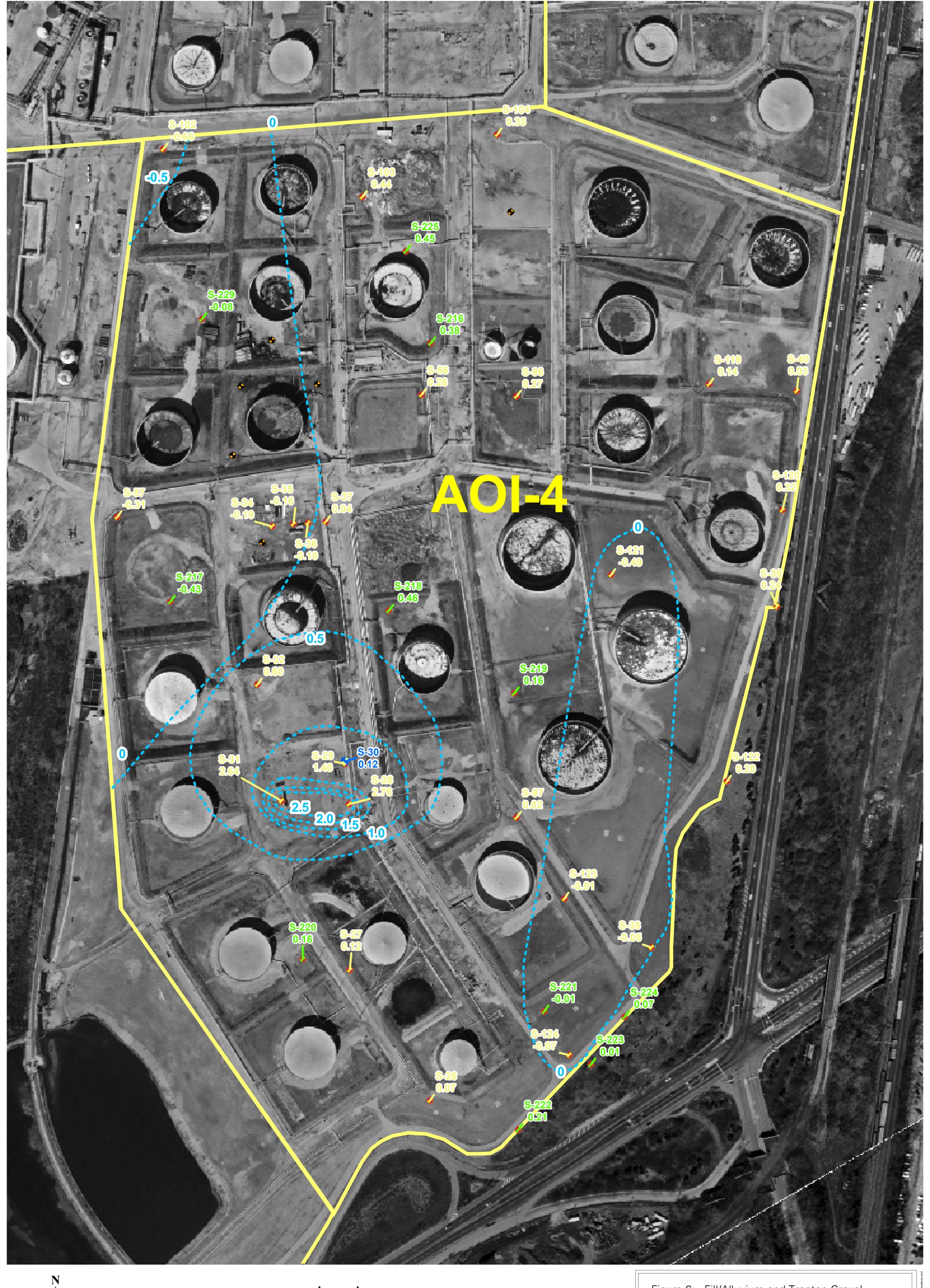
CLAY/SILI AND SOME SAND

SAND
WTATHERED BEDROCK

WELL SCREEN

WELL SCREEN

	-
Drawing Title	Project
GEOLOGIC CROSS	Date
SECTION P-P'	Scale
SUNOCO PHILADELPHIA REFINERY AND BELMONT TERMINAL	Drn. By
	Last Re


Filename: Q: \Data6\2574601\Cadd Data — 2574601\Dwg\Environmental\Figure5_P-P'.dwg Date: 8/25/2005 Time: 10:00 User: ssmith Style Table: Langan.stb Layout: E Size Sheet (Bottom)

10 AUGUST 05

AS SHOWN

25 AUGUST 05

1 Of 1

Inferred Groundwater Contour

Legend

Trenton Gravel Wells and Groundwater Elevations (ft amsl)

Trenton Gravel Recovery Wells and Groundwater Elevations (ft amsl)

Fill / Alluvium Wells and Groundwater Elevations (ft amsl)

Fill / Alluvium Recovery Wells and Groundwater Elevations (ft amsl)

Recovery Wells

Other Existing Wells

Other Existing Recovery Wells

Figure 6: Fill/Alluvium and Trenton Gravel **Groundwater Elevations** AOI 4 Site Characterization Report Sunoco Philadelphia Refinery Philadelphia, Pennsylvania

Sunoco, Inc. (R&M)
Philadelphia Refinery
3144 Passyunk Avenue
Philadelphia, PA.

19145 SCALE: 1" = 125'
DATE: August 23, 2005
DRN. BY: JSC
CKD. BY: JH
JOB#: 2574601 250 ☐ Feet

Notes:
1. Only wells with simulations extendong beyond the refinery boundary are shown.

Legend

-38D |.98

Lower Sand Wells and Groundwater Elevations (ft amsl)

AOI Boundaries

-1.5

Inferred Groundwater Contour

Notes:

Notes:
1. All Groundwater elevations collected by Aquaterra, August 12, 2005.
Only wells accessible during gauging event are listed.

Figure 7: Lower Sand Groundwater Elevations
AOI 4 Site Characterization Report
Sunoco Philadelphia Refinery
Philadelphia, Pennsylvania

Sunoco, Inc. (R&M)
Philadelphia Refinery
3144 Passyunk Avenue
Philadelphia, PA.
19145

0 125 250 Feet

SCALE: 1" = 125'
DATE: August 22, 2005
DRN. BY: JSC
CKD. BY: JH
JOB#: 2574601

Groundwater Sampling Location With Exceedance Of PADEP MSC

Groundwater Sampling Location Not Sampled (Active Recovery Well Or LNAPL Present)

AOI 4 Boundary

Gasoline / Middle Distillate

Middle Distillate

Middle Distillate / Light End Feed Stock

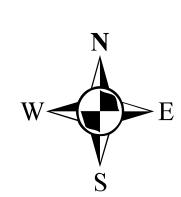
Notes: 1. Well S-97 historically contained LNAPL.

	CAS No	PADEP Non- Residential Used Aquifer MSC for Groundwater TDS<2,500 (ug/l)
Volatile Organic Compounds		
Ethylene dibromide (EDB)	106-93-4	0.05
1,2-Dichloroethane	107-06-2	5
Benzene	71-43-2	5
Ethylbenzene	100-41-4	700
Cumene	98-82-8	2300
Methyl Tertiary Butyl Ether	1634-04-4	20
Toluene	108-88-3	1000
Xylene (Total)	1330-20-7	10000
Semi-Volatile Organic Compounds		
Chrysene	218-01-9	1.9
Fluorene	86-73-7	1900
Naphthalene	91-20-3	100
Phenanthrene	85-01-8	1100
Pyrene	129-00-0	130
Metals		

7439-92-1

Lead (Total)

Sunoco Philadelphia Refinery Philadelphia, Pennsylvania


Sunoco, Inc. (R&M) Philadelphia Refinery 3144 Passyunk Avenue Philadelphia, PA. 19145

SCALE: 1" = 125'
DATE: August 8, 2005
DRN. BY: JSC
CKD. BY: JH
JOB#: 2574601

Monitoring PointsWith No LNAPL

Monitoring Points with LNAPL

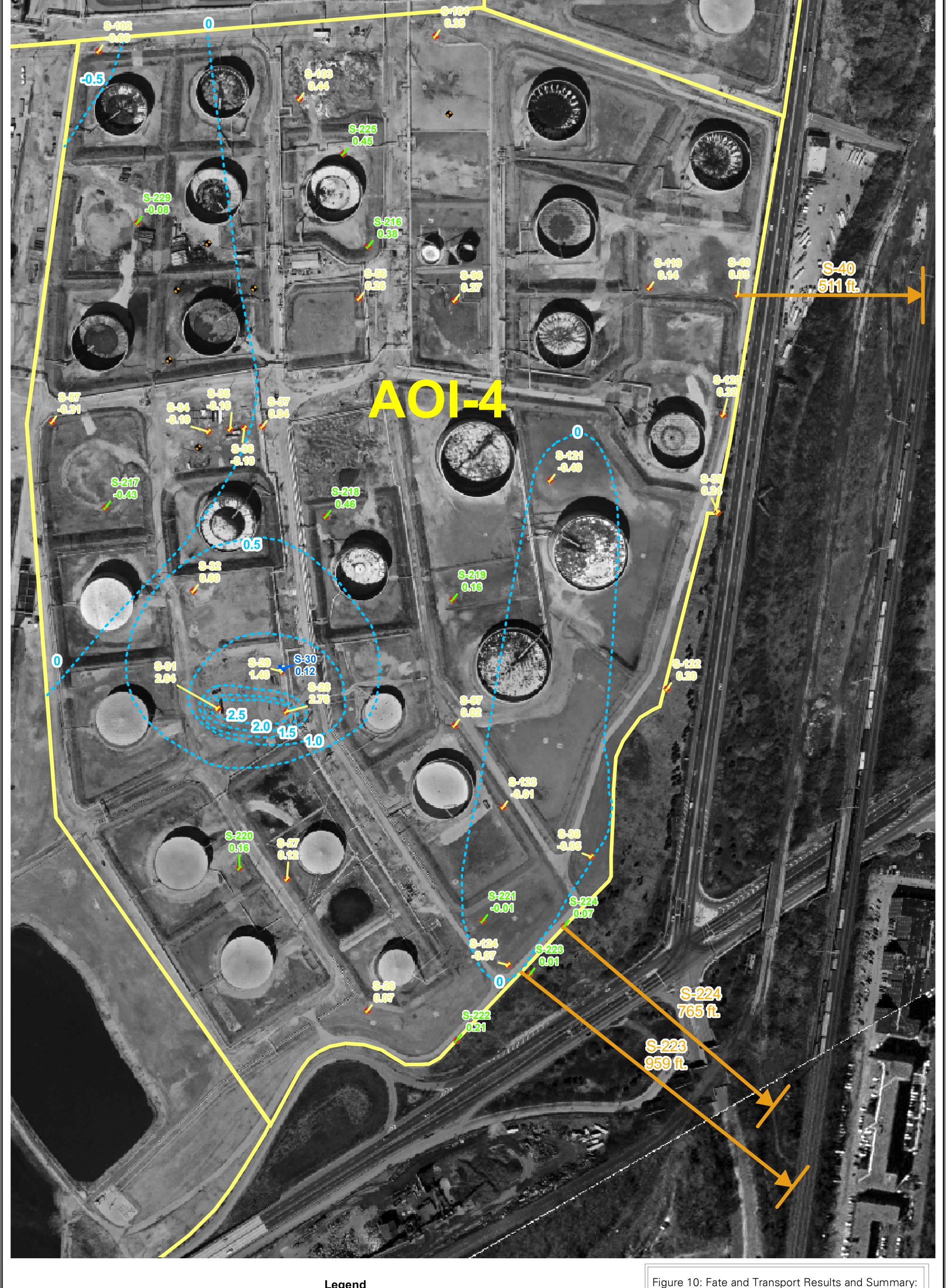
- Shallow Piezometer
- Intermediate
- Intermediate RW
- Deep Well
- Recovery Well

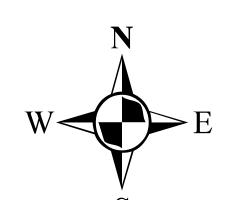
LNAPL Types

- Middle Distillate
- Gasoline / Middle Distillate
- Middle Distillate / Light End Feed Stock

Gasoline / Middle Distillate

Middle Distillate Middle Distillate / Light End Feed Stock


- All LNAPL thickness measured May 2005 by Handex.
 All LNAPL thickness measured to the nearest .01 feet.
 LNAPL types based on samples collected in 2004 and 2005 by Aquaterra and analyzed by Torkelson Geochemistry.
 Well S-97 historically contains LNAPL.
 LNAPL in Wells S-30, S-34 and S-36 was not sampled due to collection and characterization of LNAPL samples at poorby wells. nearby wells.


AOI 4 Site Characterization Report Sunoco Philadelphia Refinery Philadelphia, Pennsylvania

Sunoco, Inc. (R&M) Philadelphia Refinery 3144 Passyunk Avenue Philadelphia, PA.

19145 SCALE: DATE:1 DAN. BY: OKD. BY: JOB#: 250 August 8, 2005 JSC

AOI Boundaries

Inferred Groundwater Contour

Legend

Trenton Gravel Wells and Groundwater Elevations (ft amsl)

Trenton Gravel Recovery Wells and Groundwater Elevations (ft amsl)

Fill / Alluvium Wells and Groundwater Elevations (ft amsl)

Fill / Alluvium Recovery Wells and Groundwater Elevations (ft amsl)

Recovery Wells

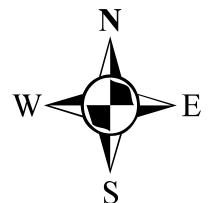
Other Existing Wells

Other Existing Recovery Wells

Approximate Extent of Dissolved Groundwater Concentrations above the MSC (Based on Quick Domenico Fate and Transport Model)

Notes:

1. Well S-26 simulation does not extend beyond the site boundary, therefore this simulation is not shown on this figure.


Figure 10: Fate and Transport Results and Summary: Fill/Alluvium and Trenton Gravel Wells AOI 4 Site Characterization Report Sunoco Philadelphia Refinery Philadelphia, Pennsylvania

Sunoco, Inc. (R&M) Philadelphia Refinery
3144 Passyunk Avenue
Philadelphia, PA. 19145

SCALE: 1" = 125'
DATE: August 23, 2005
DRN. BY: JSC
CKD. BY: JH
JOB#: 2574601 ☐ Feet

Wells With Greatest Calculated LNAPL Mobility Values (Mobility Values Exceed 1 x 10⁻⁷ cm/sec) AOIs

LNAPL Plume Type

Gasoline / Middle Distillate

Middle Distillate

Middle Distillate / Light End Feed Stock

Figure 11: Wells With Greatest Calculated LNAPL Mobility Values AOI 4 Site Characterization Report Sunoco Philadelphia Refinery Philadelphia, Pennsylvania

Sunoco, Inc. (R&M) Philadelphia Refinery 3144 Passyunk Avenue Philadelphia, PA.

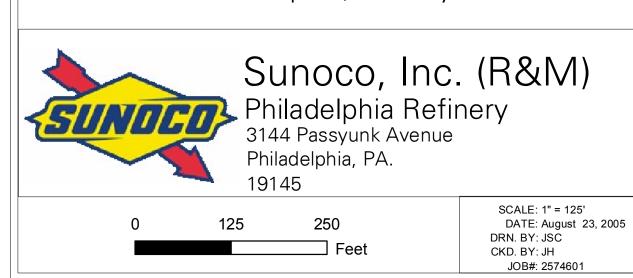
19145 SCALE: 1* = 125'
DATE: August 8, 2005
DRN. BY: JSC
CKD. BY: JH
JOB#: 2574601 125 250 ☐ Feet

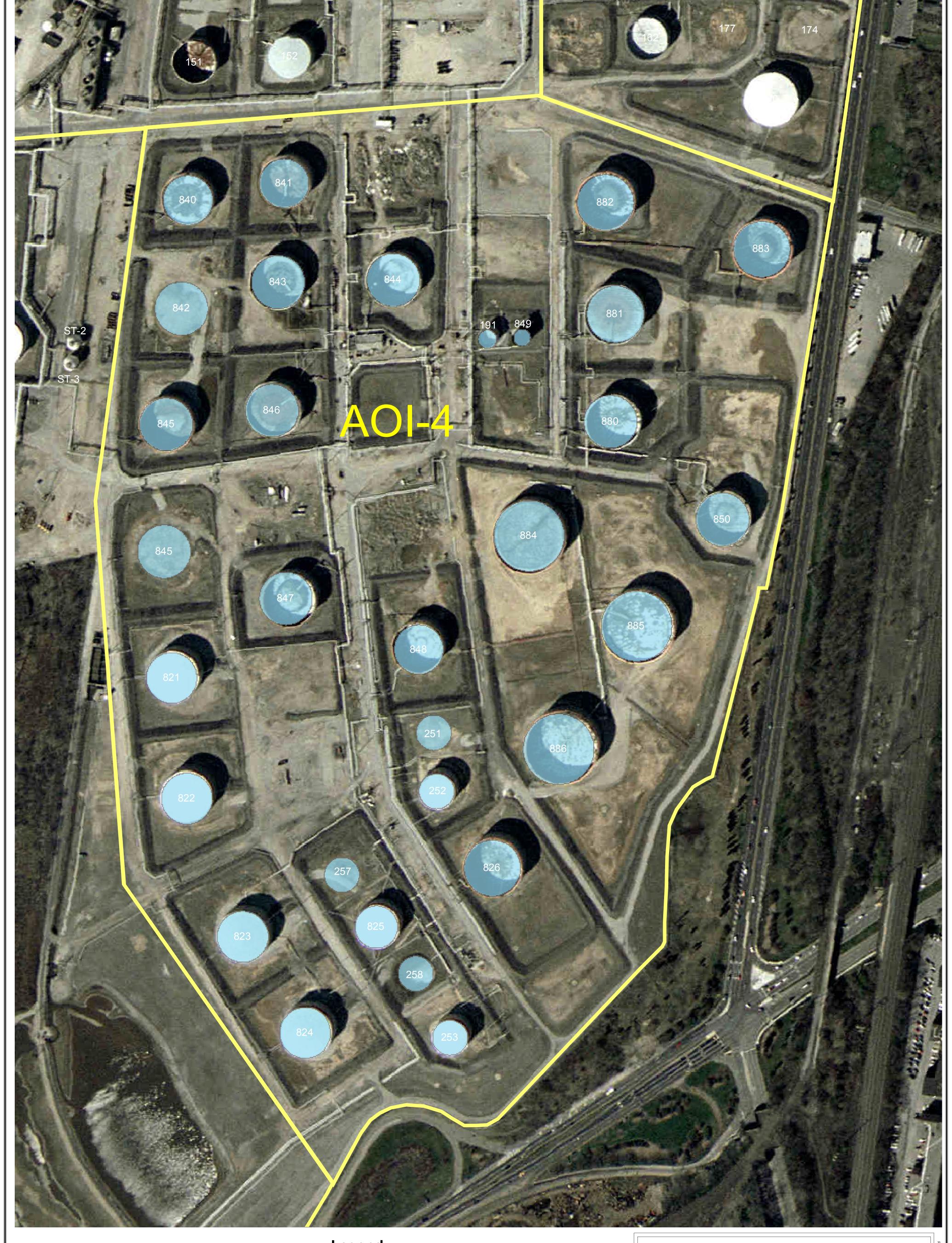
APPENDIX A

CURRENT AND HISTORIC USE FIGURES IN AOI 4

Waste Water

Removed Tanks


Treatment


Current Use Areas

886

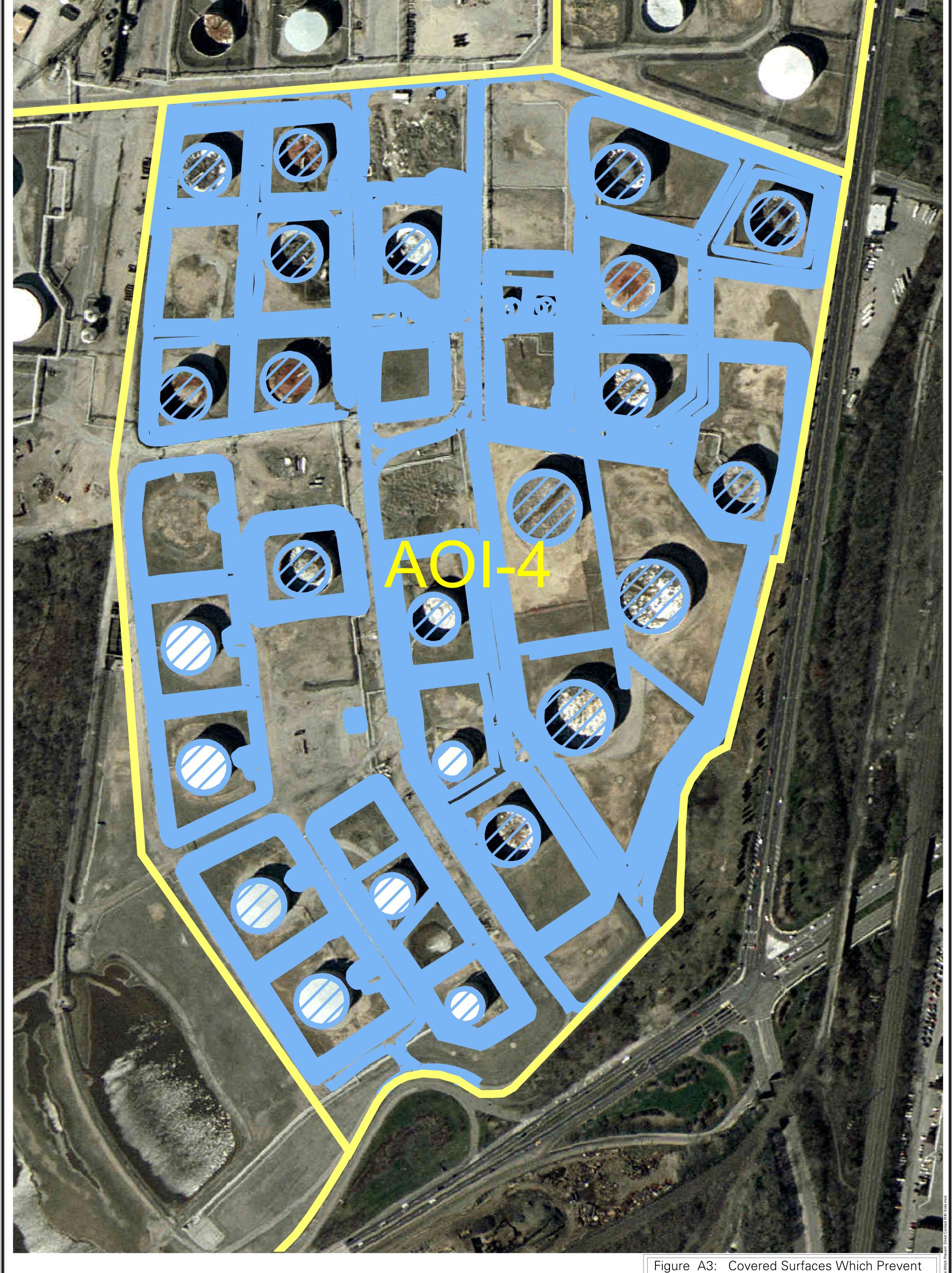
Intermediate Fuels

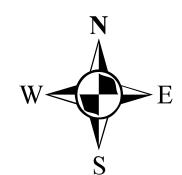
Light Fuels and Chemicals

Legend

Historic Tankage

AOI Boundaries


Figure A2: Historic Use in AOI 4 AOI 4 Site Characterization Report Sunoco Philadelphia Refinery Philadelphia, Pennsylvania



Sunoco, Inc. (R&M)

Philadelphia, PA. 19145 250 ☐ Feet

SCALE: 1" = 125'
DATE: August 23, 2005
DRN. BY: JSC
CKD. BY: CC
JOB #: 2574601

Legend

Impervious Surfaces Impervious Surfaces

AOI Boundary

Figure A3: Covered Surfaces Which Prevent Direct Contact with Soils AOI 4 Site Characterization Report Sunoco Philadelphia Refinery Philadelphia, Pennsylvania

Sunoco, Inc. (R&M) Philadelphia Refinery 3144 Passyunk Avenue Philadelphia, PA.

____ Feet

SCALE: 1" = 125'
DATE: August 23, 2005
DRN. BY: JSC
CKD. BY: CC
JOB #: 2574601

APPENDIX B

SOIL BORING LOGS/MONITORING WELL CONSTRUCTION SUMMARIES

Project Name: Sunoco Philadelphia Refinery AOI - 4 **Owner:** Sunoco, Inc. (R&M)

Location: Philadelphia, PA Permit No.:

Boring Number:S-216Log By:M.B. SpancakeDate:19-Apr-05Casing Elevation:N/ADriller:Parrat WolffBorehole Dia:8.25'Screen Diameter:4 inchLength:15'Slot Size:0.02Water Level (Init):16'

Casing Diameter: 4 inch Length: 20.5 Type: PVC

Drilling Method: Hollow Stem Auger Sample Method: Split Spoon Rig Type: HSA Rig

Construction Details

Total Well Depth: 26' bgs
Screen Interval: 11'-26'
Sand Pack Interval: 9'-26'
Completion Details: 3' stick up

Backfill: 0'-7'
Cement/Grout Interval: 7'-9'
Bentonite Interval: 7'-9'
Sand Pack Type: #2

	= Backfill
	= Cement/Grout
	= Bentonite
	= Sand

Depth	Sample	OVM	Amount of	Lithology	Well
(ft)	Depth (ft)	(ppm)	Recovery (ft)		Schematic
0	1'-1.5'			Soft dig to 8' BGS. Advance augers to 10' BGS and begin continuous Hand auger to 1.5' BGS to collect soil sample on 3/25/05. Advance augers to 10' BGS and begin continuous split spoons	
5					
10	10-12	21	1.5 6-7-9-8	Brown coarse sand and poorly sorted gravel, slight reddish color and slight moisture	
	12-14	21	1 8-15-9-10	Same as above, more red in color.	
15	14-16	263	0.75 8-11-17-21	Reddish brown coarse sandy gravel, poorly sorted. Moist to wet.	
	16-18	292	1.75 23-13-13-18	Same as above, wet.	
	18-20	358	1 11-14-13-10	Same as above.	
20	20-22	318	1.25 6-8-10-12	Same as above	
	22-24	258	1.75 4-6-10-12	Same as above. Gravel is becoming larger. Large pebble in bottom of spoon	
25	24-26	NA	0	No recovery. Advance to 26' BGS and set well.	
25			50 / 0.4		

Project Name: Sunoco Philadelphia Refinery AOI - 4 **Owner:** Sunoco, Inc. (R&M)

Location: Philadelphia, PA Permit No.:

Boring Number:S-217Log By:M.B. SpancakeDate:29-Mar-05Casing Elevation:N/ADriller:Parrat WolffBorehole Dia:8.25'Screen Diameter:4 inchLength:15'Slot Size:0.02Water Level (Init):NA

Casing Diameter: 4 inch Length: 15' Type: PVC

Drilling Method: Hollow Stem Auger Sample Method: Split Spoon Rig Type: HSA Rig

Construction Details

Total Well Depth: 27' bgs
Screen Interval: 12'-27'

Sand Pack Interval: 10'-27'

Completion Details: 3' stickup

Backfill: 0'-7'

Cement/Grout Interval:

Bentonite Interval: 7'-10'

Sand Pack Type: #2

	= Backfill
	= Cement/Grout
	= Bentonite
	= Sand

Depth	Sample	OVM	Amount of	Lithology	Well
(ft)	Depth (ft)	(ppm)	Recovery (ft)		Schematic
0	1-1.5'			Soft dig to 7' BGS. Hand auger to 1.5' BGS to collect soil sample on 4/1/05. Sample collected 5' from well location Advance augers to 10' below ground surface and begin split spoons every 5 feet.	
5				No lithology recorded. Driller indicated spoons recovered a sandy gravel matrix. Some spoons had more sand, some had more gravel.	
10	10-12	NA			
15	15-17	NA			
20	20-22	NA			
25	25-27	NA		Well set at 27' BGS.	

Location: Philadelphia, PA Permit No.:

Boring Number:S-218Log By:M.B. SpancakeDate:20-Apr-05Casing Elevation:N/ADriller:Parrat WolffBorehole Dia:8.25'Screen Diameter:4 inchLength:15'Slot Size:0.02Water Level (Init):25'

Casing Diameter: 4 inch Length: 18' Type: PVC

Drilling Method: Hollow Stem Auger Sample Method: Split Spoon Rig Type: HSA Rig

Construction Details

Total Well Depth: 30' bgs
Screen Interval: 15'-30'
Sand Pack Interval: 13'-30'
Completion Details: 3' Stick up

Backfill: 0-11'

Cement/Grout Interval: 11-'13'
Bentonite Interval: 11-'13'
Sand Pack Type: #2

Backfill: 0-11'

Cement/Grout Interval: 11-'13'
Bentonite Interval: 11-'13'
Sand Pack Type: #2

Depth	Sample	OVM	Amount of	Lithology	Well
(ft)	Depth (ft)	(ppm)	Recovery (ft)		Schematic
0				Soft dig to 10' BGS Advance augers to 10' below ground surface and begin split spoons every 5 feet.	
5					
10	10-12	NA	1.5 1-2-3-3	Moist to wet gray clayey silt, some fine sand	
15	15-17	NA	0.75 21-12-13-16	Gray coarse sandy gravel, slightly moist. Gravel is small.	
20	20-22	NA	1.25 20-17-15-15	Reddish brown coarse sandy gravel, slightly moist.	
25	25-27	NA	1 6-5-6-16	Wet brown medium sand and silt, some small gravel. Advance augers to 30' BGS and set well	
30					

Note: PID not working, therefore no readings available.

Location: Philadelphia, PA Permit No.:

Boring Number:S-219Log By:M.B. SpancakeDate:25-Mar-05Casing Elevation:N/ADriller:Parrat WolffBorehole Dia:8.25'Screen Diameter:4 inchLength:15'Slot Size:0.02Water Level (Init):16'

Casing Diameter: 4 inch

Length: 15'

Slot Size: 0.02

Water Level (Init):

Type: PVC

Drilling Method: Hollow Stem Auger Sample Method: Split Spoon Rig Type: HSA Rig

Construction Details

Total Well Depth: 27' bgs
Screen Interval: 12'-27'
Sand Pack Interval: 10'-27'
Completion Details: 3' Stick up

Backfill: 0'-7'
Cement/Grout Interval:
Bentonite Interval: 7'-10'
Sand Pack Type: #2

	= Backfill
	= Cement/Grout
	= Bentonite
	= Sand

Depth	Sample	OVM	Recovery (ft) /	Lithology	Well
(ft)	Depth (ft)	(ppm)	Blow Count		Schematic
0	1-1.5			Soft dig to 10' BGS Hand auger to 1.5' BGS to collect soil sample.	
5				Advance augers to 10' below ground surface and begin split spoons every 5 feet.	
10	10-12	0	1 7-8-9-13	Brownish gray medium sand and some small gravel and pebble. Slightly moist	
15	15-17	0	1.5 4-4-4-5	Gray and brown silty clay, moist. Lense of wet fine sand and gravel at 16' BGS. Changing to a brown orange silty clay.	
20	20-22	0	0.5 10-9-9-9	Wet gray medium sandy gravel changing to a brown silty clay.	
25	25-27	0	1 8-13-13-11	Brown silty clay, moist. Changing to a coarse tan sandy gravel.	
30	30-32		2	Tan clay in top 6" of spoon changing to a medium to fine tan sand, wet. Set well at 27' BGS. Backfilled 27' - 32' with bentonite chips	

Location: Philadelphia, PA Permit No.:

Boring Number:S-220Log By:M.B. SpancakeDate:20-Apr-05Casing Elevation:N/ADriller:Parrat WolffBorehole Dia:8.25'Screen Diameter:4 inchLength:15'Slot Size:0.02Water Level (Init):20'

Casing Diameter: 4 inch

Length: 18'

Type: PVC

Drilling Method: Hollow Stem Auger Sample Method: Split Spoon Rig Type: HSA Rig

Construction Details

Total Well Depth: 30' bgs
Screen Interval: 15-'30'
Sand Pack Interval: 13'-30'
Completion Details: 3-foot Stickup

Backfill: 0'-10'

Cement/Grout Interval: 0'-13'

Bentonite Interval: 10'-13'

Sand Pack Type: #2

	= Backfill
	= Cement/Grout
	= Bentonite
	= Sand

Depth	Sample	OVM	Recovery (ft) /	Lithology	Well
(ft)	Depth (ft)	(ppm)	Blowcount		Schematic
0	1'-1.5'			Soft dig to 10' BGS Hand auger to 1.5' BGS to collect soil sample on 4/1/05. Advance augers to 10' below ground surface and begin split spoons every 5'	
5					
10	10-12	NA	NA 7-7-3-3	Dry brown coarse sand and small gravel	
15	15-17	NA	NA 6-4-6-4	Same as above	
20	20-22	NA		Wet grayish green coarse sandy gravel changing to a brown silt, moist and stiff	
25	25-27	NA	NA 2-4-6-6	Tan and brown clayey silt. Some fine to medium sand, slightly moist Advance augers to 30' BGS and set well.	
30					

Note: PID not working, therefore no readings available.

Project Name: Sunoco Philadelphia Refinery AOI - 4 Owner: Sunoco, Inc. (R&M)

Location: Philadelphia, PA Permit No.:

Boring Number: S-221 Log By: M.B. Spancake Date: 21-Apr-05
Casing Elevation: N/A Driller: Parrat Wolff Borehole Dia: 8.25'
Screen Diameter: 4 inch Length: 15' Slot Size: 0.02 Water Level (Init): 22'

Casing Diameter: 4 inch Length: 18' Type: PVC

Drilling Method: Hollow Stem Auger Sample Method: Split Spoon Rig Type: HSA Rig

Construction Details

Total Well Depth: 30' bgs
Screen Interval: 15'-30'
Sand Pack Interval: 13'-30'
Completion Details: 3' Stick up

Backfill: 0'-10'
Cement/Grout Interval:
Bentonite Interval: 10'-13'
Sand Pack Type: #2

= Backfill
= Cement/Grout
= Bentonite
= Sand

Depth	Sample	OVM	Amount of	Lithology	Well
(ft)	Depth (ft)	(ppm)	Recovery (ft)		Schematic
0				Soft dig to 8' BGS	
	1.5'-2'			Hand auger to 2' BGS to collect soil sample on 3/25/05.	
				Advance augers to 10' BGS and begin continuous split spoons	
-					
5					
10	10-12	21	2	Wet gray clayey silt and some small gravel in top 6" Change to a stiff	
			5-8-11-15	reddish brown clay, slightly moist.	
	12-14	NA	1.5	Stiff reddish brown silty clay, slight moisture	
			12-14-20-22		
	14-16	463	0.5	Slightly moist brown coarse sand and medium sized gravel.	
15	4.5.40		8-9-9-6		
	16-18	390	1	Fine and medium brown sand, some small gravel. Changing to a fine	
	10.20	000	15-11-12-21	gray sand in bottom 4". Moist.	
	18-20	920	0.75 13-12-12-10	Wet coarse sandy gravel, large pebbles present. Gray in color.	
20	20-22	NA	0	Large pebble in shoe of spoon.	
20	20-22	INA	9-11-15-16	No Recovery	
	22-24	920	1.25	Wet reddish brown and gray coarse sand and medium to large poorly	
	22-24	720	19-17-17-18	sorted gravel	
	24-26	801	1) 1, 1, 10	Medium and coarse brown sand, wet.	
25	2.20	001	5-4-3-5		
	26-28	824	1.25	Same as above.	
			7-5-7-8		
	28-30	974	1.75	Same as above. Advance augers to 30' BGS and set well.	
			7-9-10-15		
30					

Project Name: Sunoco Philadelphia Refinery AOI - 4 Owner: Sunoco, Inc. (R&M)

Location: Philadelphia, PA **Permit No.:**

Boring Number: S-222Log By: M.B. SpancakeDate: 9-Jun-05Casing Elevation: N/ADriller: Total Quality DrillingBorehole Dia: 8.25'

Screen Diameter: 4 inch
Casing Diameter: 4 inch
Length: 15'
Length: 13'
Slot Size: 0.02
Water Level (Init): NA
Type: PVC

Drilling Method: Hollow Stem Auger Sample Method:

Construction Details

Total Well Depth: 28' bgs
Screen Interval: 13'-28'
Cement/Grout Interval: 0'-8'
Sand Pack Interval: 11'-28'
Bentonite Interval: 8'-11'
Completion Details: Flushmount with manhole
Sand Pack Type: #2

	= Backfill
	= Cement/Grout
	= Bentonite
	= Sand

Rig Type:

HSA Rig

Depth	Sample	OVM	Amount of	Lithology	Well
(ft)	Depth (ft)	(ppm)	Recovery (ft)		Schematic
0				Soft dig to 8' BGS	
				Advance augers to 28' BGS and set well'	
				Cuttings were brown silt and gravel	
5				No lithology recorded	
3				100 hillology recorded	
10					
15					
20					
25					

Project Name: Sunoco Philadelphia Refinery AOI - 4 Owner: Sunoco, Inc. (R&M)

Location: Philadelphia, PA **Permit No.:**

Boring Number:S-223Log By:M.B. SpancakeDate:8-Jun-05Casing Elevation:N/ADriller:Total Quality DrillingBorehole Dia:8.25'Screen Diameter:4 inchLength:15'Slot Size:0.02Water Level (Init):NA

Casing Diameter: 4 inch Length: 15' Type: PVC

Drilling Method: Hollow Stem Auger Sample Method:

Construction Details

Total Well Depth: 30' bgs Backfill:
Screen Interval: 15'-30' Cement/Grout Interval: 0'-10'
Sand Pack Interval: 13'-30' Bentonite Interval: 10'-13'
Completion Details: Flushmount with manhole Sand Pack Type: #2

	= Backfill
	= Cement/Grout
	= Bentonite
	= Sand

HSA Rig

Rig Type:

Depth	Sample	OVM	Amount of	Lithology	Well
(ft)	Depth (ft)	(ppm)	Recovery (ft)		Schematic
0				Soft dig to 8' BGS	
				Advance augers to 30' BGS and set well'	
				Cuttings were brown silt and gravel	
5				No lithology recorded	
10					Ш
10				Augers grinding from 12'- 17' BGS. Cuttings are brown sandy silt and	
				coarse gravel	
15					
20				Wet cuttings at 20' BGS	
25					
30				Well set at 30' BGS	

Project Name: Sunoco Philadelphia Refinery AOI - 4 Owner: Sunoco, Inc. (R&M)

Location: Philadelphia, PA Permit No.:

Boring Number: S-224 Log By: M.B. Spancake Date: 6-Jun-05 Casing Elevation: N/A **Driller:** Total Quality Drilling Borehole Dia: 8.25' Screen Diameter: 4 inch Length: 20' Slot Size: 0.02 Water Level (Init): NA

Length: 12' Type: PVC Casing Diameter: 4 inch

Drilling Method: Hollow Stem Auger Sample Method:

Construction Details

HSA Rig

Rig Type:

= Backfill

= Bentonite = Sand

= Cement/Grout

Total Well Depth: 32' bgs Backfill: Screen Interval: 12'-32 Cement/Grout Interval: 0'-8' Sand Pack Interval: 10'-32' Bentonite Interval: 8'-10' Completion Details: Flushmount with manhole Sand Pack Type: #2

Depth (ft)	Sample Depth (ft)	OVM (ppm)	Amount of Recovery (ft)	Lithology	Well Schematic
0	Depin (it)	(ррш)	Recovery (II)	Soft dig to 8' BGS Advance augers to 32' BGS and set well	Schemate
5				No lithology recorded	
10					
15					
20					
25					
30					

Project Name: Sunoco Philadelphia Refinery AOI - 4 **Owner:** Sunoco, Inc. (R&M)

Location: Philadelphia, PA Permit No.:

Boring Number:S-225Log By:M.B. SpancakeDate:#Casing Elevation:N/ADriller:Parrat WolffBorehole Dia:8.25"Screen Diameter:4 inchLength:15'Slot Size:0.02Water Level (Init):17'

Casing Diameter: 4 inch Length: 15' Type: PVC

Drilling Method: Hollow Stem Auger Sample Method: Split Spoon Rig Type: HSA Rig

Construction Details

Total Well Depth: 27' bgs
Screen Interval: 12'-27'
Sand Pack Interval: 10'-27'
Completion Details: 3' Stick up

Backfill: 0'-7'
Cement/Grout Interval:
Bentonite Interval: 7'-10'
Sand Pack Type: #2

= Backfill
= Cement/Grout
= Bentonite
= Sand

Depth	Sample	OVM	Amount of	Lithology	Well
(ft)	Depth (ft)	(ppm)	Recovery (ft)		Schematic
0				Soft dig to 10' BGS Advance augers to 10' below ground surface and begin split spoons every 5 feet.	
5					
10	10-12	280	1'	Tight brown sandy silt with small gravel. Slight staining present. Becoming more sandy towards bottom.	
15	15-17	326	0.75'	Reddish brown silt with coarse sandy gravel. Moist. Becoming wet towards bottom.	
20	20-22	362	1.25'	Wet brownish red coarse sandy gravel.	
25	25-27	26	2'	Wet gray clayey sand. Sand is fine grain. Slight color change to browngray at 26.5' BGS. Set well at 27' BGS.	

Project Name: Sunoco Philadelphia Refinery AOI - 4 Owner: Sunoco, Inc. (R&M)

Location: Philadelphia, PA Permit No.:

Boring Number: S-229
Log By: M.B. Spancake
Casing Elevation: N/A
Driller: Parrat Wolff
Borehole Dia: 8.25'
Screen Diameter: 4 inch
Length: 15'
Slot Size: 0.02
Water Level (Init): 20'

Casing Diameter: 4 inch Length: 15' Type: PVC

Drilling Method: Hollow Stem Auger Sample Method: Split Spoon Rig Type: HSA Rig

Construction Details

Total Well Depth: 30' bgs
Screen Interval: 15'-30'
Sand Pack Interval: 13'-30'
Completion Details: 3' Stick up

Backfill: 0-10'
Cement/Grout Interval:
Bentonite Interval: 10'-13'
Sand Pack Type: #2

= Backfill
= Cement/Grout
= Bentonite
= Sand

Depth	Sample	OVM	Recovery (ft) /	Lithology	Well
(ft)	Depth (ft)	(ppm)	Blow Count		Schematic
0				Soft dig to 10' BGS	
	1.5'-2'			Hand auger to 2' BGS to collect soil sample.	
				Advance augers to 10' below ground surface and begin continuous	
				split spoons	
5					
3					
10	10.12	0	0.5		
10	10-12	0	0.5 2-2-5-5	Rock fragments in a brown sand and silt matrix, dry.	
12	12-14	0	1	Same as above, slight moisture	
			6-6-7-8		
14	14-16	0	1	Same as above	
			3-6-13-20		
16	16-18	11	1	Dry coarse sandy gravel	
			16-21-20-23		
18	18-20	14	0.5	Same as above, more large gravel and rock fragments present.	
			25-16-14-12		
20	20-22	NA	0.25	Wet brown gray sand, SPP present	
22	22-24	NA	3-2-4-5 1.25	W. dan all and decreased and decrease to Contain I'm and	
22	22-24	NA	7-12-12-12	Wet poorly sorted coarse sandy gravel changing to a fine to medium gray brown sand towards bottom. SPP present	
24	24-26	NA	1.5	Same as above, lense of fine to medium brown gray sand in bottom.	
27	27 20	11/1	2-2-5-15	Same as accre, tense of fine to meating brown gray said in bottom.	
26	26-28	NA	1	Wet coarse sandy gravel, poorly sorted, brownish gray in color.	
			31-17-33-16		
28	28-30	NA	2	Same as above	
			13-19-23-40	Set well at 30' BGS	
30					

No PID readings after 20' due to heavy rain.

Aquaterra Technologies, Inc. Subsurface Log: S-119D

Project Name: Sunoco Philadelphia Refinery AOI - 4 Owner: Sunoco, Inc. (R&M)

Location: Philadelphia, PA Permit No.:

Boring Number: S-119D Log By: M.B. Spancake **Date:** 3/22/05 & 4/7/05

Driller: Parrat Wolff Borehole Dia: 8.25' Casing Elevation: N/A Screen Diameter: 2" Length: 15' Slot Size: 0.02 Water Level (Init): 57

Type: PVC Casing Diameter: 2" Length: 57' Rig Type: HSA Rig/Mud Rotary

Drilling Method: Hollow Stem Auger/ Sample Method: Split Spoon

Mud Rotary

Construction Details

Total Well Depth: 72' BGS Bentonite Interval: 0-55' Screen Interval: 57'-72' **Cement/Grout Interval:** Sand Pack Interval: 55'-72' Sand Pack Type: 62'-79'

Completion Details: Completed with 2' Steel stick-up

	= Backfill
	= Cement/Grout
	= Bentonite
	= Sand

Depth	Sample	OVM	Recovery (ft)/	Lithology	Well
(ft)	Depth (ft)	(ppm)	Blow Count	<u>.</u>	Schematic
0	1'-1.5'			Vacuum Utility Clearance to 9' below ground surface (bgs). Hand auger to 1.5' BGS to collect soil sample on 4/1/05. Advance augers to 10' BGS and begin split spoons	
5					
10	10-12	0	2 5-7-7-12	Moist gray silt, slight clay content with some brown silt banding	
	12-14	0	2 12-17-15-21	Same as above	
15	14-16	0	1.25 4-4-8-10	Same as above in top 6", changing to a brown sandy silt for 4" Changing to a gray & brown medium to fine sandy silt.	
	16-18	0	1.25 26-16-23-30	Brown medium sand and gravel, pebble fragments. Dry	
	18-20	0	1.5 3-8-12-12	Moist gray silty clay in top 0.75' changing to a brownish orange fine to medium sand with some gravel.	
20	20-22	0	1.25 9-11-13-18	Brown fine sand and poorly sorted gravel with layers of coarse tan and gray sand, rock fragment in bottom of spoon	
	22-24	0	1 9-15-23-27	Same as above, more gravel and rock fragments present.	
25	24-26	0	1.75 5-6-4-6	Brownish gray medium sand, wet. Some gravel in top 4"	
	26-28	0	1.5 3-9-16-23	Wet brown fine sand and brown silt	
	28-30	0	1.25 10-22-32-26	Same as above, gravel and pebble fragments present	
30	30-32	0	1.25 20-23-25-31	Same as above. Weathered green serpentine rock fragments towards	
	32-34	0	1.5 24-26-31-30	bottom of spoon Wet brown fine sand with some gravel and pebble fragments	
25	34-36	0	1.75 4-19-26-28	Moist to dry dark gray clayey silt. Wet gray medium sand in bottom	
35	36-38	0	4-19-26-28 1.5 8-8-16-27	of spoon. Wet gray medium sand	

Aquaterra Technologies, Inc. Subsurface Log: S-119D (Continued)

Depth					Well
(ft)					Schematic
	38-40	0	2	Brown coarse sand in top 6" changing to a brownish gray moist to	
			1-1-2-2	wet clay	
40	40-42	0	1	Same as above changing to a dark gray clayey silt, slightly moist.	
			1-1-2-2		
	42-44	0	0.75	Dark brown clayey silt, slightly moist.	
			2-2-2-2		
	44-46	0	1.5	Same as above	
45			4-6-7-7		
	46-48	0	1	Same as above	
	40.50	0	4-4-5-5	0 1 0 4 4 1 1 1 1 4 40 1 1 2 1 1	
	48-50	0	1.75	Same as above. Set 4" steel casing to 48' BGS. Grouted in place.	
			4-5-6-5	Drilling continued on 4/7/05	
50	50-52	0	2	Advance Mud rotary to 50' BGS and continue split spoons.	
30	30-32	U	6-7-9-12	Dark grayish brown clayey silt, slightly moist.	
	52-54	0	0-7-9-12 2.	Same as above	
	32-34	U	13-17-18-28	Same as above	
	54-56	0	2	Dark grayish brown silt changing to a dark grayish brown silt and fine	
55	34-30	U	5-7-10-13	sand in bottom 6" of spoon. Slightly moist	
33	56-58	0	1.5	Moist brown silty fine sand in top 4" of spoon changing to a wet gray	
	30-36	U	13-19-24-18	and tan coarse sand with some small gravel.	
	58-60	0	13-17-24-10	Advance mud rotary to 65' BGS and collect spoon	
	30-00	U		Navance mad rotally to 05 Bots and context spoon	
60	60-62				
00	00-02				
65	65-67	0	2	Greenish gray silt and fine sand, slight moisture. 1" lense of light gray	
0.5	02 07	Ü	24-10-10-15	medium sand at 66' BGS.	
			2.101010	Advance to 70' BGS	
70	70-72	0	6"	White/light gray fine sand, wet and compact.	
			52-50 / 0.2	End boring, set well at 72' BGS	

Note: Highlighted cell indicates soil sample submitted for laboratory analysis.

Aquaterra Technologies, Inc. Subsurface Log: S-59D

Project Name: Sunoco Philadelphia Refinery AOI - 4 Owner: Sunoco, Inc. (R&M)

Location: Philadelphia, PA Permit No.:

Boring Number: S-59D Log By: M.B. Spancake **Date:** 3/24 & 4/12 & 13/05

Driller: Parrat Wolff Borehole Dia: 8.25' Casing Elevation: N/A Screen Diameter: 2" Length: 15' Slot Size: 0.02 Water Level (Init): 42'

Type: PVC Casing Diameter: 2" Length: 41'

Drilling Method: Hollow Stem Auger/ Sample Method: Split Spoon

Mud Rotary

Construction Details

Bentonite Interval: 0'-39' Total Well Depth: 56' BGS Screen Interval: 41'-56" **Cement/Grout Interval:** Sand Pack Interval: 39'-56' Sand Pack Type: #2

Completion Details: Completed with 2' Steel stick-up

	= Backfill
	= Cement/Grou
	= Bentonite
	= Sand

HSA/Mud rotary

Rig Type:

Depth	Sample	OVM	Recovery (ft) /	Lithology	Well
(ft)	Depth (ft)	(ppm)	Blowcount		Schematic
0				Vacuum Utility Clearance to 9' below ground surface (bgs).	
5				Advance augers to 10' BGS and beging continuous split spoons.	
10	10-12	0	1.75 4-5-5-7	Brown stiff clay becoming slightly sandy towards the bottom	
	12-14	0	2 7-7-9-12	Brown sandy clay, sand is coarse grained. Moist.	
15	14-16	80	0.5 32-32-50 / 0.4	Wet brown sandy gravel.	
	16-18		0 50 / 0.1	No recovery	
	18-20	100	1.25 7-9-18-8	Reddish gray coarse sandy gravel, wet.	
20	20-22	186	0.75	Same as above	
	22-24	92	8-14-14-15 1.5 48-24-20-20	Same as above. Rock fragment in shoe of spoon. Less moisture content towards bottom.	
25	24-26	17	0.75 10-16-30-40	Wet fine sand and large rock fragments. Most of recovery is large rock fragments	
	26-28	NA	2 23-27-28-31	Wet gray coarse sandy gravel. Bottom 3" changing to a gray clayey silt and fine sand.	
	28-30	214	2 4-5-5-6	Wet medium gray sand and small gravel	
30	30-32	0	2 3-3-4-5	Moist dark gray clayey silt and fine sand	
	32-34	44	5-3-4-3 2 5-7-8-13	Moist gray fine sandy clay, changing in color to a brownish gray in the bottom 2"	
	34-36	0	1	Grayish tan clayey silt, slightly moist	
35	36-38	0	1-2-1-2 1.25 3-4-4-5	Greenish gray stiff clayey silt with fine sand. Slightly moist.	

Aquaterra Technologies, Inc. Subsurface Log: S-59D (Continued)

Depth				Continued)	Well
(ft)					Schematic
40	38-40 40-42 42-44	0 0	1 5-7-7-9 1 12-12-12-15 1.5 14-12-12-16	Same as above. Set 4" steel casing at 38' BGS on 3/24/05 and grouted in place. Continue with mud rotary on 4/12/05 Brown fine sand, slightly moist to becoming wet at bottom. Wet brown and gray fine sand Advance to 50' BGS and collect spoons every 5'.	
45					
50	50-52	NA	0 50/ 0.0	No recovery. Advance to 55' BGS.	
55 60	55-57 60-62	0	1.75 30-25-22-14	Coarse brown sand, large gravel and pebble present, wet.	
65	60-62 65-67	0	1	Borehole not staying open at this interval. Advance to 65' BGS. Gray and tan coarse sand and small poorly sorted gravel. Some large	
70	70-72	0	17-13-10-10	pebble fragments and a thin lense of reddish brown sandy silt at 61.5' Same as above.	
	75-77	0	11-11-12-15		
75			1 10-12-11-13	Coarse well sorted gravel, wet.	
80	80-82	0	1.5 22-14-24-21	Moist white saprolitic mica schist, dense and compact.	
85	85-87	0	1.25 17-19-14-15	Black and white saprolitic mica schist, dense and compact.	
90	90-92	0	1 21-16-17-19	Same as above. End boring and set well at 56' BGS. Backfilled anular space with bentonite chips.	

Aquaterra Technologies, Inc. Subsurface Log: SS-S34-20'-22'-042105

Project Name: Sunoco Philadelphia Refinery AOI - 4 **Owner:** Sunoco, Inc. (R&M)

Location: Philadelphia, PA Permit No.:

Boring Number: SS-S34-20'-22'-042105 Log By: M.B. Spancake Date: 21-Apr-05
Casing Elevation: N/A Driller: Parrat Wolff Borehole Dia: 8.25'
Spream Diameters: N/A Longth: N/A Slot Size: N/A Weten Logal (Init): N/A

Screen Diameter: NA Length: NA Slot Size: NA Water Level (Init): NA

Casing Diameter: NA Length: NA Type: NA

Drilling Method: Hollow Stem Auger Sample Method: 3" Spoon with brass liners Rig Type: HSA Rig

Construction Details

Total Boring Depth: 22' bgs
Screen Interval: NA
Sand Pack Interval: NA
Completion Details: NA
Sand Pack Type: #2

Backfill: 0-22'
Cement/Grout Interval:
NA
Bentonite Interval: NA
Sand Pack Type: #2

	= Backfill
	= Cement/Grout
	= Bentonite
	= Sand

Depth	Sample	OVM	Amount of	Lithology		Well	
(ft)	Depth (ft)	(ppm)	Recovery (ft)		So	chema	tic
0				Soft dig to 10' BGS Advance augers to 20' below ground surface and collect 3" diameter spoon with (4) 6" brass liners for SPP saturated soil sample			
5				Boring is located 25' south of S-34.			
10	10-12						
15	15-17						
20	20-22			Drove spoon 2' and collected soil sample. Sample was collected in four 6" long brass liners and sealed and placed on dry ice. Samples were submitted to PTS GeoLabs for SPP mobility testing in soils.			

APPENDIX C

SOIL AND GROUNDWATER ANALYTICAL REPORTS

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

ANALYTICAL RESULTS

Prepared for:

Langan 500 Hyde Park Doylestown PA 18901

215-348-7101

Prepared by:

Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425

SAMPLE GROUP

The sample group for this submittal is 937120. Samples arrived at the laboratory on Monday, March 28, 2005. The PO# for this group is SUNOCO PHILLY REFINER.

Client Description	<u>Lancaster Labs Number</u>
BH-S219-032505-1-1.5 Grab Soil Sample	4491369
BH-S221-032505-1.5-2 Grab Soil Sample	4491370
BH-S229-032505-1.5-2 Grab Soil Sample	4491371
BH-S216-032505-1-1.5 Grab Soil Sample	4491372

1 COPY TO	Langan	Attn: Jason Hanna
1 COPY TO	LL	Attn: Angela Miller
ELECTRONIC	SUN: Aquaterra Tech.	Attn: Brad Spancake
COPY TO	-	_
ELECTRONIC	Langan	Attn: Dennis Webster

COPY TO

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Questions? Contact your Client Services Representative Angela M Miller at (717) 656-2300.

Respectfully Submitted,

Max E. Snavely Senior Chemist

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. SW 4491369

BH-S219-032505-1-1.5 Grab Soil Sample SUN: Philadelphia Refinery AOI-4

Collected:03/25/2005 11:20 by MBS Account Number: 10132

Submitted: 03/28/2005 17:30 Langan

Reported: 04/05/2005 at 13:48

500 Hyde Park Discard: 05/06/2005 Doylestown PA 18901

S219-

G3.55			D	Dry Limit of	Dry Method		Dilution
CAT		a.a	Dry				
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06955	Lead	7439-92-1	8.99	2.37	1.10	mg/kg	1
00111	Moisture	n.a.	16.6	0.50	0.50	용	1
	"Moisture" represents the loss 103 - 105 degrees Celsius. The as-received basis.				at		
07804	PAHs in Soil by GC/MS						
01195	Pyrene	129-00-0	< 400.	400.	40.	ug/kg	1
03761	Naphthalene	91-20-3	< 400.	400.	40.	ug/kg	1
03768	Fluorene	86-73-7	< 400.	400.	40.	ug/kg	1
03775	Phenanthrene	85-01-8	< 400.	400.	40.	ug/kg	1
03776	Anthracene	120-12-7	< 400.	400.	40.	ug/kg	1
03781	Benzo(a)anthracene	56-55-3	< 400.	400.	40.	ug/kg	1
03782	Chrysene	218-01-9	< 400.	400.	40.	ug/kg	1
03786	Benzo(b)fluoranthene	205-99-2	< 400.	400.	40.	ug/kg	1
03788	Benzo(a)pyrene	50-32-8	< 400.	400.	40.	ug/kg	1
03791	Benzo(g,h,i)perylene	191-24-2	< 400.	400.	40.	ug/kg	1
02308	UST-Soils by 8260B						
02016	Methyl Tertiary Butyl Ether	1634-04-4	< 5.	5.	0.5	ug/kg	0.85
05460	Benzene	71-43-2	< 5.	5.	0.5	ug/kg	0.85
05461	1,2-Dichloroethane	107-06-2	< 5.	5.	1.	ug/kg	0.85
05466	Toluene	108-88-3	< 5.	5.	1.	ug/kg	0.85
05471	1,2-Dibromoethane	106-93-4	< 5.	5.	1.	ug/kg	0.85
05474	Ethylbenzene	100-41-4	< 5.	5.	1.	ug/kg	0.85
05479	Isopropylbenzene	98-82-8	< 5.	5.	1.	ug/kg	0.85
06301	Xylene (Total)	1330-20-7	< 5.	5.	1.	ug/kg	0.85

Commonwealth of Pennsylvania Lab Certification No. 36-037

Laboratory	Chronicle

CAT				Analysis			
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor	
06955	Lead	SW-846 6010B	1	03/31/2005 22:01	John P Hook	1	
00111	Moisture	EPA 160.3 modified	1	04/01/2005 17:27	Scott W Freisher	1	
07804	PAHs in Soil by GC/MS	SW-846 8270C	1	03/31/2005 03:02	Brian K Graham	1	

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681• www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. SW 4491369

BH-S219-032505-1-1.5 Grab Soil Sample SUN: Philadelphia Refinery AOI-4

Collected:03/25/2005 11:20 by MBS Account Number: 10132

Submitted: 03/28/2005 17:30 Langan

Reported: 04/05/2005 at 13:48 500 Hyde Park

Discard: 05/06/2005 Doylestown PA 18901

S219- 02308	UST-Soils by 8260B	SW-846 8260B	1	04/04/2005 12:49	Kenneth L Boley Jr	0.85
	4			' '	4	
02392	GC/MS - Field Preserved	SW-846 5035	1	03/30/2005 14:19	Nadine Fegley	1
	NaHSO4					
02392	GC/MS - Field Preserved	SW-846 5035	2	03/30/2005 14:20	Nadine Fegley	1
02332	NaHSO4	SN 010 3033	-	03/30/2003 11:20	nadine regie,	-
05708	SW SW846 ICP Digest	SW-846 3050B	1	03/31/2005 07:33	Denise Y Black	1
06171	GC/MS - Field Preserved	GFI 046 F03F	- 1	02/20/2005 12 52	Madina Davia	1
06171	,	SW-846 5035	1	03/30/2005 13:53	Nadine Fegley	Τ
	MeOH					
07806	BNA Soil Extraction	SW-846 3550B	1	03/30/2005 15:15	Ashley B Zook	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. SW 4491370

BH-S221-032505-1.5-2 Grab Soil Sample SUN: Philadelphia Refinery AOI-4

Collected:03/25/2005 11:45 by MBS Account Number: 10132

Submitted: 03/28/2005 17:30 Langan

Reported: 04/05/2005 at 13:48 500 Hyde Park

Discard: 05/06/2005 Doylestown PA 18901

S221-

~~			_	Dry	Dry		
CAT		•	Dry	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06955	Lead	7439-92-1	102.	2.29	1.07	mg/kg	1
00111	Moisture	n.a.	13.7	0.50	0.50	%	1
	"Moisture" represents the loss 103 - 105 degrees Celsius. The as-received basis.				at		
07804	PAHs in Soil by GC/MS						
01195	Pyrene	129-00-0	530.	390.	39.	ug/kg	1
03761	Naphthalene	91-20-3	< 390.	390.	39.	ug/kg	1
03768	Fluorene	86-73-7	< 390.	390.	39.	ug/kg	1
03775	Phenanthrene	85-01-8	390.	390.	39.	ug/kg	1
03776	Anthracene	120-12-7	< 390.	390.	39.	ug/kg	1
03781	Benzo(a)anthracene	56-55-3	< 390.	390.	39.	ug/kg	1
03782	Chrysene	218-01-9	< 390.	390.	39.	ug/kg	1
03786	Benzo(b)fluoranthene	205-99-2	560.	390.	39.	ug/kg	1
03788	Benzo(a)pyrene	50-32-8	460.	390.	39.	ug/kg	1
03791	Benzo(g,h,i)perylene	191-24-2	< 390.	390.	39.	ug/kg	1
02308	UST-Soils by 8260B						
02016	Methyl Tertiary Butyl Ether	1634-04-4	< 5.	5.	0.5	ug/kg	0.83
05460	Benzene	71-43-2	< 5.	5.	0.5	ug/kg	0.83
05461	1,2-Dichloroethane	107-06-2	< 5.	5.	1.	ug/kg	0.83
05466	Toluene	108-88-3	< 5.	5.	1.	ug/kg	0.83
05471	1,2-Dibromoethane	106-93-4	< 5.	5.	1.	ug/kg	0.83
05474	Ethylbenzene	100-41-4	< 5.	5.	1.	ug/kg	0.83
05479	Isopropylbenzene	98-82-8	< 5.	5.	1.	ug/kg	0.83
06301	Xylene (Total)	1330-20-7	< 5.	5.	1.	ug/kg	0.83

The GC/MS volatile internal standard peak areas were outside the QC limits for both the initial analysis and the re-analysis. The values reported here are from the initial analysis of the sample.

Commonwealth of Pennsylvania Lab Certification No. 36-037

T - 1 +	Cl
Laboratory	Curonicie

CAT Analysis Name Method Trial# Date and Time Analyst Factor

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681• www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. SW 4491370

BH-S221-032505-1.5-2 Grab Soil Sample SUN: Philadelphia Refinery AOI-4

Collected: 03/25/2005 11:45 by MBS Account Number: 10132

Submitted: 03/28/2005 17:30 Langan

Reported: 04/05/2005 at 13:48 500 Hyde Park

Discard: 05/06/2005 Doylestown PA 18901

S221-						
06955	Lead	SW-846 6010B	1	03/31/2005 22:05	John P Hook	1
00111	Moisture	EPA 160.3 modified	1	04/01/2005 17:27	Scott W Freisher	1
07804	PAHs in Soil by GC/MS	SW-846 8270C	1	03/31/2005 03:44	Brian K Graham	1
02308	UST-Soils by 8260B	SW-846 8260B	1	04/04/2005 13:12	Kenneth L Boley Jr	0.83
02392	GC/MS - Field Preserved NaHSO4	SW-846 5035	1	03/30/2005 14:21	Nadine Fegley	1
02392	GC/MS - Field Preserved NaHSO4	SW-846 5035	2	03/30/2005 14:22	Nadine Fegley	1
05708	SW SW846 ICP Digest	SW-846 3050B	1	03/31/2005 07:33	Denise Y Black	1
06171	GC/MS - Field Preserved MeOH	SW-846 5035	1	03/30/2005 13:55	Nadine Fegley	1
07806	BNA Soil Extraction	SW-846 3550B	1	03/30/2005 15:15	Ashley B Zook	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681• www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. SW 4491371

BH-S229-032505-1.5-2 Grab Soil Sample SUN: Philadelphia Refinery AOI-4

Collected: 03/25/2005 12:25 by MBS Account Number: 10132

Submitted: 03/28/2005 17:30 Langan

Reported: 04/05/2005 at 13:48

500 Hyde Park

Discard: 05/06/2005 Doylestown PA 18901

S229-

CAT			Dry	Dry Limit of	Dry Method		Dilutio
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06955	Lead	7439-92-1	16.7	2.16	1.01	mg/kg	1
00111	Moisture	n.a.	10.3	0.50	0.50	%	1
	"Moisture" represents the loss 103 - 105 degrees Celsius. The as-received basis.				at		
07804	PAHs in Soil by GC/MS						
01195	Pyrene	129-00-0	< 370.	370.	37.	ug/kg	1
03761	Naphthalene	91-20-3	< 370.	370.	37.	ug/kg	1
03768	Fluorene	86-73-7	< 370.	370.	37.	ug/kg	1
03775	Phenanthrene	85-01-8	< 370.	370.	37.	ug/kg	1
03776	Anthracene	120-12-7	< 370.	370.	37.	ug/kg	1
03781	Benzo(a)anthracene	56-55-3	< 370.	370.	37.	ug/kg	1
03782	Chrysene	218-01-9	< 370.	370.	37.	ug/kg	1
03786	Benzo(b)fluoranthene	205-99-2	< 370.	370.	37.	ug/kg	1
03788	Benzo(a)pyrene	50-32-8	< 370.	370.	37.	ug/kg	1
03791	Benzo(g,h,i)perylene	191-24-2	< 370.	370.	37.	ug/kg	1
02308	UST-Soils by 8260B						
02016	Methyl Tertiary Butyl Ether	1634-04-4	14.	5.	0.5	ug/kg	0.81
05460	Benzene	71-43-2	< 5.	5.	0.5	ug/kg	0.81
05461	1,2-Dichloroethane	107-06-2	< 5.	5.	0.9	ug/kg	0.81
05466	Toluene	108-88-3	< 5.	5.	0.9	ug/kg	0.81
05471	1,2-Dibromoethane	106-93-4	< 5.	5.	0.9	ug/kg	0.81
05474	Ethylbenzene	100-41-4	< 5.	5.	0.9	ug/kg	0.81
05479	Isopropylbenzene	98-82-8	< 5.	5.	0.9	ug/kg	0.81
06301	Xylene (Total)	1330-20-7	< 5.	5.	0.9	ug/kg	0.81

Commonwealth of Pennsylvania Lab Certification No. 36-037

- 1 .	~1		-	
Laboratory	(hro	nп	$C \mid C$	2

CAT		7		Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06955	Lead	SW-846 6010B	1	03/31/2005 22:09	John P Hook	1
00111	Moisture	EPA 160.3 modified	1	04/01/2005 17:27	Scott W Freisher	1
07804	PAHs in Soil by GC/MS	SW-846 8270C	1	03/31/2005 04:26	Brian K Graham	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. SW 4491371

BH-S229-032505-1.5-2 Grab Soil Sample SUN: Philadelphia Refinery AOI-4

Collected:03/25/2005 12:25 by MBS Account Number: 10132

Submitted: 03/28/2005 17:30 Langan

Reported: 04/05/2005 at 13:48 500 Hyde Park

Discard: 05/06/2005 Doylestown PA 18901

S229-						
02308	UST-Soils by 8260B	SW-846 8260B	1	04/04/2005 13:35	Kenneth L Boley Jr	0.81
02392	GC/MS - Field Preserved	SW-846 5035	1	03/30/2005 14:24	Nadine Fegley	1
	NaHSO4					
02392	GC/MS - Field Preserved	SW-846 5035	2	03/30/2005 14:25	Nadine Fegley	1
	NaHSO4					
05708	SW SW846 ICP Digest	SW-846 3050B	1	03/31/2005 07:33	Denise Y Black	1
06171	GC/MS - Field Preserved	SW-846 5035	1	03/30/2005 13:56	Nadine Fegley	1
	MeOH					
07806	BNA Soil Extraction	SW-846 3550B	1	03/30/2005 15:15	Ashley B Zook	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681• www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. SW 4491372

BH-S216-032505-1-1.5 Grab Soil Sample SUN: Philadelphia Refinery AOI-4

Collected:03/25/2005 14:00 by MBS Account Number: 10132

Submitted: 03/28/2005 17:30 Langan

Reported: 04/05/2005 at 13:48 500 Hyde Park

Discard: 05/06/2005 Doylestown PA 18901

S216-

CAT			Dry	Dry Limit of	Dry Method		Dilutio
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06955	Lead	7439-92-1	60.8	2.26	1.05	mg/kg	1
00111	Moisture	n.a.	12.4	0.50	0.50	%	1
	"Moisture" represents the loss 103 - 105 degrees Celsius. The as-received basis.				at		
07804	PAHs in Soil by GC/MS						
01195	Pyrene	129-00-0	< 380.	380.	38.	ug/kg	1
03761	Naphthalene	91-20-3	< 380.	380.	38.	ug/kg	1
03768	Fluorene	86-73-7	< 380.	380.	38.	ug/kg	1
03775	Phenanthrene	85-01-8	< 380.	380.	38.	ug/kg	1
03776	Anthracene	120-12-7	< 380.	380.	38.	ug/kg	1
03781	Benzo(a)anthracene	56-55-3	< 380.	380.	38.	ug/kg	1
03782	Chrysene	218-01-9	< 380.	380.	38.	ug/kg	1
03786	Benzo(b)fluoranthene	205-99-2	< 380.	380.	38.	ug/kg	1
03788	Benzo(a)pyrene	50-32-8	< 380.	380.	38.	ug/kg	1
03791	Benzo(g,h,i)perylene	191-24-2	< 380.	380.	38.	ug/kg	1
02308	UST-Soils by 8260B						
02016	Methyl Tertiary Butyl Ether	1634-04-4	< 5.	5.	0.5	ug/kg	0.83
05460	Benzene	71-43-2	< 5.	5.	0.5	ug/kg	0.83
05461	1,2-Dichloroethane	107-06-2	< 5.	5.	0.9	ug/kg	0.83
05466	Toluene	108-88-3	< 5.	5.	0.9	ug/kg	0.83
05471	1,2-Dibromoethane	106-93-4	< 5.	5.	0.9	ug/kg	0.83
05474	Ethylbenzene	100-41-4	< 5.	5.	0.9	ug/kg	0.83
05479	Isopropylbenzene	98-82-8	< 5.	5.	0.9	ug/kg	0.83
06301	Xylene (Total)	1330-20-7	< 5.	5.	0.9	ug/kg	0.83

Commonwealth of Pennsylvania Lab Certification No. 36-037

- 1 .	~1		-	
Laboratory	(hro	nп	$C \mid C$	2

CAT		7		Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06955	Lead	SW-846 6010B	1	03/31/2005 22:12	John P Hook	1
00111	Moisture	EPA 160.3 modified	1	04/01/2005 17:27	Scott W Freisher	1
07804	PAHs in Soil by GC/MS	SW-846 8270C	1	03/31/2005 05:08	Brian K Graham	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. SW 4491372

BH-S216-032505-1-1.5 Grab Soil Sample SUN: Philadelphia Refinery AOI-4

Collected: 03/25/2005 14:00 by MBS Account Number: 10132

Submitted: 03/28/2005 17:30 Langan

Reported: 04/05/2005 at 13:48 500 Hyde Park

Discard: 05/06/2005 Doylestown PA 18901

S216- 02308	UST-Soils by 8260B	SW-846 8260B	1	04/04/2005 13:57	Kenneth L Boley Jr	0.83
	2		_	' '	<u>-</u>	
02392	GC/MS - Field Preserved NaHSO4	SW-846 5035	Τ	03/30/2005 14:26	Nadine Fegley	Τ
02392	GC/MS - Field Preserved NaHSO4	SW-846 5035	2	03/30/2005 14:28	Nadine Fegley	1
05708	SW SW846 ICP Digest	SW-846 3050B	1	03/31/2005 07:33	Denise Y Black	1
06171	GC/MS - Field Preserved MeOH	SW-846 5035	1	03/30/2005 13:59	Nadine Fegley	1
07806	BNA Soil Extraction	SW-846 3550B	1	03/30/2005 15:15	Ashley B Zook	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 3

Quality Control Summary

Client Name: Langan Group Number: 937120

Reported: 04/05/05 at 01:48 PM

Matrix QC may not be reported if site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

Laboratory Compliance Quality Control

Analysis Name	Blank <u>Result</u>	Blank <u>LOQ**</u>	Blank <u>MDL</u>	Report <u>Units</u>	LCS <u>%REC</u>	LCSD %REC	LCS/LCSD <u>Limits</u>	RPD	RPD Max
Batch number: 05089SLD026	Sample num	mher(s) · 4	491369-449	11372					
Pyrene	< 330.	330.	33.	uq/kq	89		67-116		
Naphthalene	< 330.		33.	uq/kq	88		70-103		
Fluorene	< 330.	330.	33.	ug/kg	88		66-115		
Phenanthrene	< 330.		33.	ug/kg	92		70-107		
Anthracene	< 330.	330.	33.	ug/kg	88		69-109		
Benzo(a)anthracene	< 330.	330.	33.	ug/kg	94		73-111		
Chrysene	< 330.	330.	33.	ug/kg	95		72-110		
Benzo(b) fluoranthene	< 330.	330.	33.	ug/kg	104		68-116		
Benzo(a)pyrene	< 330.	330.	33.	ug/kg	111		72-117		
Benzo(q,h,i)perylene	< 330.	330.	33.	ug/kg	104		66-120		
				5. 5					
Batch number: 050905708002	Sample num	mber(s): 4	491369-449	1372					
Lead	< 2.00	2.00	0.930	mg/kg	95		86-109		
Batch number: 05091820002B	Sample nu	mber(s): 4	491369-449	1372					
Moisture					100		99-101		
Batch number: X050941AA	Sample nu	mber(s): 4							
Methyl Tertiary Butyl Ether	< 5.	5.	0.5	ug/kg	115		75-125		
Benzene	< 5.	5.	0.5	ug/kg	110		77-119		
1,2-Dichloroethane	< 5.	5.	1.	ug/kg	113		76-126		
Toluene	< 5.	5.	1.	ug/kg	107		81-116		
1,2-Dibromoethane	< 5.	5.	1.	ug/kg	102		77-114		
Ethylbenzene	< 5.	5.	1.	ug/kg	106		82-115		
Isopropylbenzene	< 5.	5.	1.	ug/kg	105		79-117		
Xylene (Total)	< 5.	5.	1.	ug/kg	104		82-117		

Sample Matrix Quality Control

30

	MS	MSD	MS/MSD		RPD	BKG	DUP	DUP	Dup RPD
<u>Analysis Name</u>	%REC	%REC	<u>Limits</u>	RPD	<u>MAX</u>	Conc	Conc	RPD	Max
Batch number: 05089SLD026	Sample	number	(s): 4491369	-44913	72				
Pyrene	78	81	40-145	3	30				
Naphthalene	83	90	38-132	8	30				
Fluorene	89	91	39-137	3	30				
Phenanthrene	87	88	42-137	1	30				
Anthracene	88	91	47-135	4	30				

42-137

39-140

*- Outside of specification

Benzo(a) anthracene

Chrysene

- **-This limit was used in the evaluation of the final result for the blank
- (1) The result for one or both determinations was less than five times the LOQ.

88

83

93

86

(2) The background result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Page 2 of 3

Quality Control Summary

Client Name: Langan Group Number: 937120

Reported: 04/05/05 at 01:48 PM

Sample Matrix Quality Control

	MS	MSD	MS/MSD		RPD	BKG	DUP	DUP	Dup RPD
Analysis Name Benzo(b) fluoranthene Benzo(a) pyrene Benzo(g,h,i) perylene	%REC 93 103 103	%REC 102 116 113	Limits 42-141 38-142 32-150	RPD 8 11 9	MAX 30 30 30	Conc	Conc	<u>RPD</u>	Max
Batch number: 050905708002	Sample	number	(s): 449136	9-44913	72				
Lead	87	67*	75-125	7	20	103.	102.	1	20
Batch number: 05091820002B	Sample	number	(s): 449136	9-44913	72				
Moisture						19.6	19.8	1	15
Batch number: X050941AA	Sample	number	(s): 449136	9-44913	72				
Methyl Tertiary Butyl Ether	77	122	49-140	43*	30				
Benzene	(2)	(2)	67-123	39*	30				
1,2-Dichloroethane	83	125	62-130	39*	30				
Toluene	(2)	(2)	55-125	41*	30				
1,2-Dibromoethane	82	121*	62-116	37*	30				
Ethylbenzene	(2)	(2)	50-127	40*	30				
Isopropylbenzene	(2)	(2)	48-124	27	30				
Xylene (Total)	(2)	(2)	54-123	40*	30				

Surrogate Quality Control

Analysis Name: PAHs in Soil by GC/MS

Batch number: 05089SLD026 Nitrobenzene-d5 2-Fluorobiphenyl Terphenyl-d14

4491369	79	91	97	
4491370	89	94	99	
4491371	85	100	101	
4491372	91	97	107	
Blank	86	92	95	
LCS	89	95	91	
MS	85	95	88	
MSD	90	98	92	
Limits:	47-128	55-123	49-133	

Analysis Name: UST-Soils by 8260B

Batch number: X050941AA

	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
4491369	91	84	91	89
4491370	94	89	102	78
4491371	91	87	92	90
4491372	91	86	92	89
Blank	91	85	91	90
LCS	91	88	91	89
MS	90	84	155*	249*
MSD	93	86	172*	244*
Limits:	70-129	70-121	70-130	70-128

*- Outside of specification

- **-This limit was used in the evaluation of the final result for the blank
- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The background result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Page 3 of 3

Quality Control Summary

Client Name: Langan Group Number: 937120

Reported: 04/05/05 at 01:48 PM

Surrogate Quality Control

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The background result was more than four times the spike added.

Analysis Request / Environmental Services Chain of Custody

Lancaster Laboratories
Where quality is a science

Acct. # ________ Group# \$\frac{92712-0}{93712-0}\$ Sample # \frac{4491369-72_

0075167

Please print. Instructions on reverse side correspond with circled numbers.

	w/3		
For Lab Use Only SCR# ##################################	3.0 %	Date Time 9 Date Time Date Time Date Time Date Time	Date Time 3 Ax 1730
For Lal FSC: SCR #:	Vial 1707 Vial 1709 Ital 1705	all s	5
Annally sees Recquested to the seed of the	V:30	Time Received by: Time Received by: 10:34 Manyer Manyer Manyer Time Received by:	Received by: Received by:
10000 11000		- 10 A	Date Time Rec
803 702 3 MAN 80258			
Water Display Chack if Soil Soil	7 3 7 3	Relinquished by: Relinquished by: Movier model	Relinquished by:
Gent Composite	2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	<u> </u>	
*		one Fax E-mail SDG Complete Yes No	d? Yes No
Jeson Hanney Pologies of Collected: PA	1.5-2 3 1.5-2 3	5 2 1 E 1 VI	Site-specific QC required? Yes (No) (If yes, indicate QC sample and submit triplicate volume.) Internal Chain of Custody required? Yes (No)
Guaterra Levin Martin Cod parv ite samples were	032505 - 032505 - 032505 -	ted by (please circle): Fax #: Acquaterra - fech (ons (please circle if requ	GLP
Project Name# Sun-Philadelphic Refinery Powsid #: Project Manager: Levin Martin Jeson Hanne P.O.#: Sampler: M. Brod Source Court #: Name of state where samples were collected: BH-5219-032-06-11	BH-S321-032505-1.5-2 3/2H-S321e-032505-1.5-2 3/2H-S31le-032505-1-1.5 3/2H-S31le-032505-1-1.5	(Rush TAT is subject to Lancaster Laboratories approval and Surcharge.) Date results are needed: Rush results requested by (please circle): Phone Fax E. Fax #: E-mail address: bs@ocuderrefest	lype I (Tier I) Type II (Tier II) Type III (NJ Red. Del.) Type IV (CLP)
2 T T 0 Z 0 8			

Lancaster Laboratories, Inc., 2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 (717) 656-2300 Copies: White and yellow should accompany samples to Lancaster Laboratories. The pink copy should be retained by the client.

2102 Rev. 10/27/02

Explanation of Symbols and Abbreviations

Inorganic Qualifiers

The following defines common symbols and abbreviations used in reporting technical data:

N.D.	none detected	BMQL	Below Minimum Quantitation Level
TNTC	Too Numerous To Count	MPN	Most Probable Number
IU	International Units	CP Units	cobalt-chloroplatinate units
umhos/cm	micromhos/cm	NTU	nephelometric turbidity units
С	degrees Celsius	F	degrees Fahrenheit
meq	milliequivalents	lb.	pound(s)
g	gram(s)	kg	kilogram(s)
ug	microgram(s)	mg	milligram(s)
ml	milliliter(s)	Ĭ	liter(s)
m3	cubic meter(s)	ul	microliter(s)

- < less than The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.
- > greater than
- J estimated value The result is ≥ the Method Detection Limit (MDL) and < the Limit of Quantitation (LOQ).
- ppm parts per million One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.
- ppb parts per billion
- **Dry weight**basis
 Results printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture. All other results are reported on an as-received basis.

U.S. EPA CLP Data Qualifiers:

	Organic Quanners		morganic Quanners
Α	TIC is a possible aldol-condensation product	В	Value is <crdl, but="" th="" ≥idl<=""></crdl,>
В	Analyte was also detected in the blank	Ε	Estimated due to interference
С	Pesticide result confirmed by GC/MS	M	Duplicate injection precision not met
D	Compound quantitated on a diluted sample	N	Spike sample not within control limits
E	Concentration exceeds the calibration range of	S	Method of standard additions (MSA) used
	the instrument		for calculation
N	Presumptive evidence of a compound (TICs only)	U	Compound was not detected
Р	Concentration difference between primary and	W	Post digestion spike out of control limits
	confirmation columns >25%	*	Duplicate analysis not within control limits
U	Compound was not detected	+	Correlation coefficient for MSA < 0.995
X,Y,Z	Defined in case narrative		

Analytical test results for methods listed on the laboratories' accreditation scope meet all requirements of NELAC unless otherwise noted under the individual analysis.

Measurement uncertainty values, as applicable, are available upon request.

Organic Qualifiers

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL LANCASTER LABORATORIES BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF LANCASTER LABORATORIES AND (B) WHETHER LANCASTER LABORATORIES HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Lancaster Laboratories which includes any conditions that vary from the Standard Terms and Conditions of Lancaster Laboratories and we hereby object to any conflicting terms contained in any acceptance or order submitted by client.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

ANALYTICAL RESULTS

Prepared for:

Langan 500 Hyde Park Doylestown PA 18901

215-348-7101

Prepared by:

Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425

SAMPLE GROUP

The sample group for this submittal is 937907. Samples arrived at the laboratory on Monday, April 04, 2005. The PO# for this group is SUNOCO PHILLY REFINER.

Client Description	<u>Lancaster Labs Number</u>
BH-S217-040105-1-1.5 Grab Soil Sample	4495326
BH-S220-040105-1-1.5 Grab Soil Sample	4495327
BH-S119D-040105-1-1.5 Grab Soil Sample	4495328

1 COPY TO Langan Attn: Jason Hanna
ELECTRONIC SUN: Aquaterra Tech. Attn: Brad Spancake
COPY TO
1 COPY TO LL Attn: Angela Miller
ELECTRONIC Langan Attn: Dennis Webster
COPY TO

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Questions? Contact your Client Services Representative Angela M Miller at (717) 656-2300.

Respectfully Submitted,

Michele A. Jarosick

Senior Chemist, Coordinator

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681• www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. SW 4495326

BH-S217-040105-1-1.5 Grab Soil Sample SUN: Philadelphia Refinery AOI-4

Collected:04/01/2005 08:40 by MBS Account Number: 10132

Submitted: 04/04/2005 17:15 Langan

Reported: 04/12/2005 at 14:06 500 Hyde Park

Discard: 05/13/2005 Doylestown PA 18901

S217-

CAT			Dry	Dry Limit of	Dry Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06955	Lead	7439-92-1	10.2	2.39	1.11	mg/kg	1
00111	Moisture	n.a.	16.2	0.50	0.50	%	1
	"Moisture" represents the loss 103 - 105 degrees Celsius. The as-received basis.				at		
07804	PAHs in Soil by GC/MS						
01195	Pyrene	129-00-0	< 400.	400.	40.	ug/kg	1
03761	Naphthalene	91-20-3	< 400.	400.	40.	ug/kg	1
03768	Fluorene	86-73-7	< 400.	400.	40.	ug/kg	1
03775	Phenanthrene	85-01-8	< 400.	400.	40.	ug/kg	1
03776	Anthracene	120-12-7	< 400.	400.	40.	ug/kg	1
03781	Benzo(a)anthracene	56-55-3	< 400.	400.	40.	ug/kg	1
03782	Chrysene	218-01-9	< 400.	400.	40.	ug/kg	1
03786	Benzo(b)fluoranthene	205-99-2	< 400.	400.	40.	ug/kg	1
03788	Benzo(a)pyrene	50-32-8	< 400.	400.	40.	ug/kg	1
03791	Benzo(g,h,i)perylene	191-24-2	< 400.	400.	40.	ug/kg	1
	Matrix QC was performed on the	is sample for	the GCMS sem	nivolatile analysis	•		
	Please see the attached QC sur	nmary report f	or compounds	s showing a matrix			
	bias.						
02308	UST-Soils by 8260B						
02016	Methyl Tertiary Butyl Ether	1634-04-4	< 5.	5.	0.5	ug/kg	0.78
05460	Benzene	71-43-2	< 5.	5.	0.5	ug/kg	0.78
05461	1,2-Dichloroethane	107-06-2	< 5.	5.	0.9	ug/kg	0.78
05466	Toluene	108-88-3	< 5.	5.	0.9	ug/kg	0.78
05471	1,2-Dibromoethane	106-93-4	< 5.	5.	0.9	ug/kg	0.78
05474	Ethylbenzene	100-41-4	< 5.	5.	0.9	ug/kg	0.78
05479	Isopropylbenzene	98-82-8	< 5.	5.	0.9	ug/kg	0.78
06301	Xylene (Total)	1330-20-7	< 5.	5.	0.9	ug/kg	0.78

 ${\tt Commonwealth\ of\ Pennsylvania\ Lab\ Certification\ No.\ 36-037}$

Laboratory	Chronicle

CAT			Analysis	Dilution
No.	Analysis Name	Method	Trial# Date and Time Analyst	Factor

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. SW 4495326

BH-S217-040105-1-1.5 Grab Soil Sample SUN: Philadelphia Refinery AOI-4

Collected: 04/01/2005 08:40 by MBS Account Number: 10132

Submitted: 04/04/2005 17:15 Langan

Reported: 04/12/2005 at 14:06 500 Hyde Park

Discard: 05/13/2005 Doylestown PA 18901

S217-						
06955	Lead	SW-846 6010B	1	04/07/2005 07:51	Joanne M Gates	1
00111	Moisture	EPA 160.3 modified	1	04/05/2005 15:30	Scott W Freisher	1
07804	PAHs in Soil by GC/MS	SW-846 8270C	1	04/06/2005 09:38	Mark A Clark	1
02308	UST-Soils by 8260B	SW-846 8260B	1	04/06/2005 17:49	Lauren C Marzario	0.78
02392	GC/MS - Field Preserved NaHSO4	SW-846 5035	1	04/05/2005 13:49	Nadine Fegley	1
02392	GC/MS - Field Preserved NaHSO4	SW-846 5035	2	04/05/2005 13:54	Nadine Fegley	1
02392	GC/MS - Field Preserved NaHSO4	SW-846 5035	3	04/05/2005 13:55	Nadine Fegley	1
05708	SW SW846 ICP Digest	SW-846 3050B	1	04/05/2005 20:35	Annamaria Stipkovits	1
06171	GC/MS - Field Preserved MeOH	SW-846 5035	1	04/05/2005 13:49	Nadine Fegley	1
07806	BNA Soil Extraction	SW-846 3550B	1	04/05/2005 18:00	Sally L Appleyard	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681• www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. SW 4495327

BH-S220-040105-1-1.5 Grab Soil Sample SUN: Philadelphia Refinery AOI-4

Collected:04/01/2005 09:00 by MBS Account Number: 10132

Submitted: 04/04/2005 17:15 Langan

Reported: 04/12/2005 at 14:06 500 Hyde Park

Discard: 05/13/2005 Doylestown PA 18901

-S220

САТ			Dry	Dry Limit of	Dry Method		Dilution
No.	Analysis Name	CAS Number	Result	Ouantitation*	Detection	Units	Factor
NO.	Analysis Name	CAS NUMBEL	Result	Quantitation"	Limit	UIIICS	Factor
06955	Lead	7439-92-1	7.58	2.36	1.10	mg/kg	1
00111	Moisture	n.a.	17.7	0.50	0.50	%	1
	"Moisture" represents the loss 103 - 105 degrees Celsius. The as-received basis.				at		
07804	PAHs in Soil by GC/MS						
01195	Pyrene	129-00-0	< 410.	410.	41.	ug/kg	1
03761	Naphthalene	91-20-3	< 410.	410.	41.	ug/kg	1
03768	Fluorene	86-73-7	< 410.	410.	41.	ug/kg	1
03775	Phenanthrene	85-01-8	460.	410.	41.	ug/kg	1
03776	Anthracene	120-12-7	< 410.	410.	41.	ug/kg	1
03781	Benzo(a)anthracene	56-55-3	< 410.	410.	41.	ug/kg	1
03782	Chrysene	218-01-9	< 410.	410.	41.	ug/kg	1
03786	Benzo(b)fluoranthene	205-99-2	< 410.	410.	41.	ug/kg	1
03788	Benzo(a)pyrene	50-32-8	< 410.	410.	41.	ug/kg	1
03791	Benzo(g,h,i)perylene	191-24-2	< 410.	410.	41.	ug/kg	1
02308	UST-Soils by 8260B						
02016	Methyl Tertiary Butyl Ether	1634-04-4	< 5.	5.	0.5	ug/kg	0.83
05460	Benzene	71-43-2	< 5.	5.	0.5	ug/kg	0.83
05461	1,2-Dichloroethane	107-06-2	< 5.	5.	1.	ug/kg	0.83
05466	Toluene	108-88-3	< 5.	5.	1.	ug/kg	0.83
05471	1,2-Dibromoethane	106-93-4	< 5.	5.	1.	ug/kg	0.83
05474	Ethylbenzene	100-41-4	< 5.	5.	1.	ug/kg	0.83
05479	Isopropylbenzene	98-82-8	< 5.	5.	1.	ug/kg	0.83
06301	Xylene (Total)	1330-20-7	< 5.	5.	1.	ug/kg	0.83

Commonwealth of Pennsylvania Lab Certification No. 36-037

CAT				Dilution		
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06955	Lead	SW-846 6010B	1	04/07/2005 07:55	Joanne M Gates	1
00111	Moisture	EPA 160.3 modified	1	04/05/2005 15:30	Scott W Freisher	1
07804	PAHs in Soil by GC/MS	SW-846 8270C	1	04/06/2005 16:16	Mark A Clark	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. SW 4495327

BH-S220-040105-1-1.5 Grab Soil Sample SUN: Philadelphia Refinery AOI-4

Collected:04/01/2005 09:00 by MBS Account Number: 10132

Submitted: 04/04/2005 17:15 Langan

Reported: 04/12/2005 at 14:06 500 Hyde Park

Discard: 05/13/2005 Doylestown PA 18901

-S220						
02308	UST-Soils by 8260B	SW-846 8260B	1	04/06/2005 18:11	Lauren C Marzario	0.83
02392	GC/MS - Field Preserved NaHSO4	SW-846 5035	1	04/05/2005 13:47	Nadine Fegley	1
02392	GC/MS - Field Preserved NaHSO4	SW-846 5035	2	04/05/2005 13:56	Nadine Fegley	1
02392	GC/MS - Field Preserved NaHSO4	SW-846 5035	3	04/05/2005 13:57	Nadine Fegley	1
05708	SW SW846 ICP Digest	SW-846 3050B	1	04/05/2005 20:35	Annamaria Stipkovits	1
06171	GC/MS - Field Preserved MeOH	SW-846 5035	1	04/05/2005 13:47	Nadine Fegley	1
07806	BNA Soil Extraction	SW-846 3550B	1	04/05/2005 18:00	Sally L Appleyard	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681• www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. SW 4495328

BH-S119D-040105-1-1.5 Grab Soil Sample SUN: Philadelphia Refinery AOI-4

Collected:04/01/2005 09:20 by MBS Account Number: 10132

Submitted: 04/04/2005 17:15 Langan

Reported: 04/12/2005 at 14:07 500 Hyde Park

Discard: 05/13/2005 Doylestown PA 18901

S119D

				Dry	Dry		
CAT			Dry	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06955	Lead	7439-92-1	24.9	2.24	1.04	mg/kg	1
00111	Moisture	n.a.	13.4	0.50	0.50	%	1
	"Moisture" represents the loss 103 - 105 degrees Celsius. The as-received basis.				at		
07804	PAHs in Soil by GC/MS						
01195	Pyrene	129-00-0	< 380.	380.	38.	ug/kg	1
03761	Naphthalene	91-20-3	< 380.	380.	38.	ug/kg	1
03768	Fluorene	86-73-7	< 380.	380.	38.	ug/kg	1
03775	Phenanthrene	85-01-8	< 380.	380.	38.	ug/kg	1
03776	Anthracene	120-12-7	< 380.	380.	38.	ug/kg	1
03781	Benzo(a)anthracene	56-55-3	< 380.	380.	38.	ug/kg	1
03782	Chrysene	218-01-9	< 380.	380.	38.	ug/kg	1
03786	Benzo(b)fluoranthene	205-99-2	< 380.	380.	38.	ug/kg	1
03788	Benzo(a)pyrene	50-32-8	< 380.	380.	38.	ug/kg	1
03791	Benzo(g,h,i)perylene	191-24-2	< 380.	380.	38.	ug/kg	1
02308	UST-Soils by 8260B						
02016	Methyl Tertiary Butyl Ether	1634-04-4	< 5.	5.	0.5	ug/kg	0.84
05460	Benzene	71-43-2	< 5.	5.	0.5	ug/kg	0.84
05461	1,2-Dichloroethane	107-06-2	< 5.	5.	1.	ug/kg	0.84
05466	Toluene	108-88-3	< 5.	5.	1.	ug/kg	0.84
05471	1,2-Dibromoethane	106-93-4	< 5.	5.	1.	ug/kg	0.84
05474	Ethylbenzene	100-41-4	< 5.	5.	1.	ug/kg	0.84
05479	Isopropylbenzene	98-82-8	< 5.	5.	1.	ug/kg	0.84
06301	Xylene (Total)	1330-20-7	< 5.	5.	1.	ug/kg	0.84

Commonwealth of Pennsylvania Lab Certification No. 36-037

Laboratory Chronicle

CAT				Analysis				
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor		
06955	Lead	SW-846 6010B	1	04/07/2005 08:08	Joanne M Gates	1		
00111	Moisture	EPA 160.3 modified	1	04/05/2005 15:30	Scott W Freisher	1		
07804	PAHs in Soil by GC/MS	SW-846 8270C	1	04/06/2005 20:43	Jolene M Graham	1		

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. SW 4495328

BH-S119D-040105-1-1.5 Grab Soil Sample SUN: Philadelphia Refinery AOI-4

Collected: 04/01	_/2005	09:20	by MBS	Account N	Number: 10132
------------------	--------	-------	--------	-----------	---------------

Submitted: 04/04/2005 17:15 Langan

Reported: 04/12/2005 at 14:07 500 Hyde Park

Discard: 05/13/2005 Doylestown PA 18901

S119D						
02308	UST-Soils by 8260B	SW-846 8260B	1	04/06/2005 18:34	Lauren C Marzario	0.84
02392	GC/MS - Field Preserved NaHSO4	SW-846 5035	1	04/05/2005 13:45	Nadine Fegley	1
02392	GC/MS - Field Preserved NaHSO4	SW-846 5035	2	04/05/2005 13:58	Nadine Fegley	1
02392	GC/MS - Field Preserved NaHSO4	SW-846 5035	3	04/05/2005 13:59	Nadine Fegley	1
05708	SW SW846 ICP Digest	SW-846 3050B	1	04/05/2005 20:35	Annamaria Stipkovits	1
06171	GC/MS - Field Preserved MeOH	SW-846 5035	1	04/05/2005 13:45	Nadine Fegley	1
07806	BNA Soil Extraction	SW-846 3550B	1	04/05/2005 18:00	Sally L Appleyard	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Page 1 of 3

Quality Control Summary

Client Name: Langan Group Number: 937907

Reported: 04/12/05 at 02:07 PM

Matrix QC may not be reported if site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

Laboratory Compliance Quality Control

Analysis Name	Blank <u>Result</u>	Blank LOQ**	Blank <u>MDL</u>	Report <u>Units</u>	LCS %REC	LCSD %REC	LCS/LCSD <u>Limits</u>	RPD	RPD Max
Batch number: 050955708003 Lead	Sample nu < 2.00	mber(s): 2.00	4495326-449 0.930	5328 mg/kg	101		86-109		
Batch number: 05095820003B Moisture	Sample nu	mber(s):	4495326-449	5328	100		99-101		
Batch number: 05095SLB026	Sample nu	mber(s):	4495326-449	5328					
Pyrene	< 330.	330.	33.	uq/kq	86		67-116		
Naphthalene	< 330.	330.	33.	ug/kg	83		70-103		
Fluorene	< 330.	330.	33.	ug/kg	87		66-115		
Phenanthrene	< 330.	330.	33.	ug/kg	96		70-107		
Anthracene	< 330.	330.	33.	ug/kg	90		69-109		
Benzo(a)anthracene	< 330.	330.	33.	ug/kg	92		73-111		
Chrysene	< 330.	330.	33.	ug/kg	90		72-110		
Benzo(b)fluoranthene	< 330.	330.	33.	ug/kg	73		68-116		
Benzo(a)pyrene	< 330.	330.	33.	ug/kg	85		72-117		
Benzo(g,h,i)perylene	< 330.	330.	33.	ug/kg	92		66-120		
Batch number: X050962AA	Sample nu	mber(s):	4495326-449	5328					
Methyl Tertiary Butyl Ether	< 5.	5.	0.5	ug/kg	110		75-125		
Benzene	< 5.	5.	0.5	ug/kg	110		77-119		
1,2-Dichloroethane	< 5.	5.	1.	ug/kg	111		76-126		
Toluene	< 5.	5.	1.	ug/kg	110		81-116		
1,2-Dibromoethane	< 5.	5.	1.	ug/kg	98		77-114		
Ethylbenzene	< 5.	5.	1.	ug/kg	109		82-115		
Isopropylbenzene	< 5.	5.	1.	ug/kg	109		79-117		
Xylene (Total)	< 5.	5.	1.	ug/kg	108		82-117		

Sample Matrix Quality Control

	MS	MSD	MS/MSD		RPD	BKG	DUP	DUP	Dup RPD
Analysis Name	%REC	%REC	<u>Limits</u>	RPD	<u>MAX</u>	Conc	Conc	RPD	Max
Batch number: 050955708003 Lead	Sample 99	number 99	(s): 4495326 75-125	5-44953 0	28 20	13.0	12.3	6	20
Batch number: 05095820003B Moisture	Sample	number	(s): 4495326	5-44953	28	53.3	52.8	1	15
Batch number: 05095SLB026 Pyrene	Sample	number 88	(s): 4495326 40-145	5-44953 2	28 30				

*- Outside of specification

- **-This limit was used in the evaluation of the final result for the blank
- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The background result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681• www.lancasterlabs.com

Page 2 of 3

Quality Control Summary

Client Name: Langan Group Number: 937907

Reported: 04/12/05 at 02:07 PM

Sample Matrix Quality Control

	MS	MSD	MS/MSD		RPD	BKG	DUP	DUP	Dup RPD
Analysis Name	%REC	%REC	<u>Limits</u>	RPD	MAX	Conc	Conc	RPD	Max
Naphthalene	86	87	38-132	1	30				
Fluorene	90	87	39-137	3	30				
Phenanthrene	96	96	42-137	0	30				
Anthracene	90	92	47-135	2	30				
Benzo(a)anthracene	97	96	42-137	0	30				
Chrysene	94	93	39-140	1	30				
Benzo(b)fluoranthene	193*	169*	42-141	13	30				
Benzo(a)pyrene	220*	185*	38-142	18	30				
Benzo(g,h,i)perylene	230*	194*	32-150	17	30				
Batch number: X050962AA	Sample	number	(s): 4495326	5-44953	28				
Methyl Tertiary Butyl Ether	117	134	49-140	13	30				
Benzene	147*	310*	67-123	69*	30				
1,2-Dichloroethane	116	119	62-130	4	30				
Toluene	114	124	55-125	8	30				
1,2-Dibromoethane	97	99	62-116	3	30				
Ethylbenzene	110	120	50-127	9	30				
Isopropylbenzene	118	265*	48-124	78*	30				
Xylene (Total)	103	123	54-123	18	30				

Surrogate Quality Control

Analysis Name: PAHs in Soil by GC/MS

Batch number: 05095SLB026

	Nitrobenzene-d5	2-Fluorobiphenyl	Terphenyl-d14	
4495326	93	91	121	
4495327	99	98	113	
4495328	90	90	113	
Blank	89	88	109	
LCS	91	88	105	
MS	95	95	114	
MSD	91	93	112	
Limits:	47-128	55-123	49-133	
Analysis 1	Name: UST-Soils by 82601	В		

Batch num	per: X050962AA Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
4495326	91	85	92	88
4495327	91	84	93	88
4495328	91	88	92	89
Blank	90	81	93	88
LCS	91	85	92	89
MS	91	86	95	82
MSD	91	87	96	84
T.imita.	70-129	70-121	70-130	70-128

*- Outside of specification

- **-This limit was used in the evaluation of the final result for the blank
- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The background result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 3 of 3

Quality Control Summary

Client Name: Langan Group Number: 937907

Reported: 04/12/05 at 02:07 PM

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The background result was more than four times the spike added.

Analysis Request / Environmental Services Chain of Custody

Lancaster Laboratories
Where quality is a science

Acct. # [O]32 Group# 937907 Sample # 4495326-4

COC # 0080771

Please print, Instructions on reverse side correspond with circled numbers.

			J	N al @
A MARIA DE STATES US		Time (%)		Time Time 0:0
For Lab Use Only SCR #:		Date	Date Sprage	Se
SCR.#	702		<u>.</u> .	ر لک
	1:10			30分
Remarks			The same	
mayamagi to the of		Received by:	d by:	yed by:
and supported		Received by:	Received by Received by Received by	Received by:
And the start of t	} 	Time R	4	Time Ra
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1 1	2) F F = 2
		Date	Date Date	The state of the s
BALL LAST LANG SALL	11111111111			
27164 2772			Jan 1	N = 1
	387		38 4	州第三
		Relinduished by:	Relinquished by: **Money mct.** Relinguished by:	Relinquished by: AT CALDST Refinquished by:
The state of the s	XXX	ellindeliki	elinguis elinguis	elinquii Phquii
6	XXX	Ž.	& V &	1
	0840	Rush	E-mail	e circle if required) (Raw Data) Site-specific QC required? Yes No Site-specific QC required? Yes No (if yes, indicate QC sample and submit triplicate volume internal Chain of Custody required? Yes
	000	arge.)	<u>п</u>	SDG Comp Yes No Yes (No) mit triplicate v
Acct. #: P-0.#: Quote #:	888	Norma d surchar	Fax	E circle if required) (Raw Data) Site-specific QC required? Yes (if yes, indicate QC sample and submit tri Internal Chain of Custody requir
A ACT	41105	Circle Coval an	Phone	requir sample a
Refine Celection		lease of	d a #	equired) Ita) Offic OC sate OC Chain o
phia process	S1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	(AT) (p	e circle): Fax #:	s (please circle if requestype VI (Raw Data) GLP Site-specific Other (if yes, indicate
And	25-	sted ((pleas	Se VI (F
ale ad a samp	40ic	Reque	eded:	ions (pleas Type V GLP Other el.)
Ber # Ser	64-Sa17-Outilos-1-1.5 64-Saa-Outilos-1-1.5 64-Si19D-Outilos-1-1.5	Turnaround Time Requested (TAT) (please circle): Normal (Rush TAT is subject to Lancaster Laboratories approval and surcharge.)	Date results are needed: Rush results requested by (please circle): Phone #: Fax # E-mail address:	Ac Summary CC Summary Type VI (Raw Data) Type II (Tier I) Type II (Tier II) Other Other
Name Manager: Manager: Manager: Manager		round TAT is s	Date results are Rush results req Phone #: E-mail address:	Data Package QC Summary Type II (Tier II) Type III (NJ Re Type III (NJ Re
Client: Sun- Aguatena Acct. #: Project Name/#: Sun-Philadelphia (Petray Act. #: Project Manager: Levin Nartin Tasan Hann P.O.#: Sampler: M. Brad Sogneake Quote #: Name of state where samples were collected: Philadelphia (Philadelphia)	8H-S217-040105-1-1.5 8H-S220-040105-1-1.5 8H-S119D-040105-1-1.5	Turna (Rush	Date resul Rush resu Phone #:_ E-mail ad	Data QC St Type Type Type
-)		· ·	(®

Dar 17/2 THOS 17/5 Lancaster Laboratories, Inc., 2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605/2425 (717) 656-2300 Copies: White and yellow should accompany samples to Lancaster Laboratories. The pink copy should be retained by the client.

Explanation of Symbols and Abbreviations

Inorganic Qualifiers

The following defines common symbols and abbreviations used in reporting technical data:

N.D.	none detected	BMQL	Below Minimum Quantitation Level
TNTC	Too Numerous To Count	MPN	Most Probable Number
IU	International Units	CP Units	cobalt-chloroplatinate units
umhos/cm	micromhos/cm	NTU	nephelometric turbidity units
С	degrees Celsius	F	degrees Fahrenheit
meq	milliequivalents	lb.	pound(s)
g	gram(s)	kg	kilogram(s)
ug	microgram(s)	mg	milligram(s)
ml	milliliter(s)	Ĭ	liter(s)
m3	cubic meter(s)	ul	microliter(s)

- < less than The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.
- > greater than
- J estimated value The result is ≥ the Method Detection Limit (MDL) and < the Limit of Quantitation (LOQ).
- ppm parts per million One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.
- ppb parts per billion
- **Dry weight**basis
 Results printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture. All other results are reported on an as-received basis.

U.S. EPA CLP Data Qualifiers:

	Organic Quanners		morganic Quanners
Α	TIC is a possible aldol-condensation product	В	Value is <crdl, but="" th="" ≥idl<=""></crdl,>
В	Analyte was also detected in the blank	Ε	Estimated due to interference
С	Pesticide result confirmed by GC/MS	M	Duplicate injection precision not met
D	Compound quantitated on a diluted sample	N	Spike sample not within control limits
E	Concentration exceeds the calibration range of	S	Method of standard additions (MSA) used
	the instrument		for calculation
N	Presumptive evidence of a compound (TICs only)	U	Compound was not detected
Р	Concentration difference between primary and	W	Post digestion spike out of control limits
	confirmation columns >25%	*	Duplicate analysis not within control limits
U	Compound was not detected	+	Correlation coefficient for MSA < 0.995
X,Y,Z	Defined in case narrative		

Analytical test results for methods listed on the laboratories' accreditation scope meet all requirements of NELAC unless otherwise noted under the individual analysis.

Measurement uncertainty values, as applicable, are available upon request.

Organic Qualifiers

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL LANCASTER LABORATORIES BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF LANCASTER LABORATORIES AND (B) WHETHER LANCASTER LABORATORIES HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Lancaster Laboratories which includes any conditions that vary from the Standard Terms and Conditions of Lancaster Laboratories and we hereby object to any conflicting terms contained in any acceptance or order submitted by client.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

ANALYTICAL RESULTS

Prepared for:

Langan 500 Hyde Park Doylestown PA 18901

215-348-7101

Prepared by:

Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425

SAMPLE GROUP

The sample group for this submittal is 941574. Samples arrived at the laboratory on Friday, April 29, 2005. The PO# for this group is SUNOCO PHILLY REFINER.

Client Description	Lancaster Labs Number
S218-042805 Grab Water Sample	4514707
S219-042805 Grab Water Sample	4514708
S229-042805 Grab Water Sample	4514709
S225-042805 Grab Water Sample	4514710
S216-042805 Grab Water Sample	4514711

ELECTRONIC	SUN: Aquaterra Tech.	Attn: Brad Spancake
COPY TO		
1 COPY TO	LL	Attn: Angela Miller
1 COPY TO	Langan	Attn: Jason Hanna
ELECTRONIC	Langan	Attn: Dennis Webster
COPY TO		

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Questions? Contact your Client Services Representative Angela M Miller at (717) 656-2300.

Respectfully Submitted,

Michele A. Jarosick

Senior Chemist, Coordinator

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. WW 4514707

S218-042805 Grab Water Sample SUN: Philadelphia Refinery AOI-4

Collected: 04/28/2005 12:45 by MH Account Number: 10132

Submitted: 04/29/2005 17:15 Langan

Reported: 05/06/2005 at 16:42 500 Hyde Park

Discard: 06/06/2005 Doylestown PA 18901

Discard: 06/06/2005

$\overline{}$		\sim	7	0
D	_	4	_	O

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Limit of Quantitation*	As Received Method Detection Limit	Units	Dilution Factor
06035	Lead	7439-92-1	< 0.0010	0.0010	0.00021	mg/1	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	0.052	0.029	0.0098	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	250.	51.	5.	ug/l	5
03956	Fluorene	86-73-7	< 10.	10.	1.	ug/l	1
03963	Phenanthrene	85-01-8	< 10.	10.	1.	ug/l	1
03967	Pyrene	129-00-0	< 10.	10.	1.	ug/l	1
03971	Chrysene	218-01-9	< 10.	10.	1.	ug/l	1
	Due to insufficient sample, the semivolatile compounds were rate		imits for the (GC/MS			
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 50.	50.	5.	ug/l	10
05401	Benzene	71-43-2	2,200.	50.	5.	ug/l	10
05402	1,2-Dichloroethane	107-06-2	< 50.	50.	10.	ug/l	10
05407	Toluene	108-88-3	360.	50.	7.	ug/l	10
05415	Ethylbenzene	100-41-4	1,300.	50.	8.	ug/l	10
05420	Isopropylbenzene	98-82-8	< 50.	50.	10.	ug/l	10
06310	Xylene (Total)	1330-20-7	2,400.	50.	8.	ug/l	10

The reporting limits for the GC/MS volatile compounds were raised because sample dilution was necessary to bring target compounds into the calibration range of the system.

Commonwealth of Pennsylvania Lab Certification No. 36-037 This sample was filtered in the lab for dissolved metals. Trip blank vials were not received by the laboratory for this sample group.

CAT			Analysis			Dilution	
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor	
06035	Lead	SW-846 6020	1	05/04/2005 22:40	David K Beck	1	

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681• www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. WW 4514707

S218-042805 Grab Water Sample SUN: Philadelphia Refinery AOI-4

Collected: 04/28/2005 12:45 by MH Account Number: 10132

Submitted: 04/29/2005 17:15 Langan

Reported: 05/06/2005 at 16:42 500 Hyde Park

Discard: 06/06/2005 Doylestown PA 18901

S-218						
07879	EDB in Wastewater	SW-846 8011	1	05/03/2005 19:21	Richard A Shober	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	05/04/2005 15:05	Joseph M Gambler	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	05/04/2005 20:34	Jolene M Graham	5
02302	UST-Waters by 8260B	SW-846 8260B	1	05/02/2005 19:13	Emiley A King	10
01163	GC/MS VOA Water Prep	SW-846 5030B	1	05/02/2005 19:13	Emiley A King	n.a.
06050	ICP/MS SW-846 Water	SW-846 3010A Mod.	1	05/02/2005 22:00	James L Mertz	1
07786	EDB Extraction	SW-846 8011	1	05/02/2005 08:00	Deborah M Zimmerman	1
07807	BNA Water Extraction	SW-846 3510C	1	05/02/2005 09:00	Danette S Blystone	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. WW 4514708

S219-042805 Grab Water Sample SUN: Philadelphia Refinery AOI-4

Collected: 04/28/2005 12:20 by MH Account Number: 10132

Submitted: 04/29/2005 17:15 Langan

Reported: 05/06/2005 at 16:42 500 Hyde Park

Discard: 06/06/2005 Doylestown PA 18901

S-219

				As Received	As Received		
CAT			As Received	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06035	Lead	7439-92-1	< 0.0010	0.0010	0.00021	mg/l	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.029	0.029	0.0096	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	< 10.	10.	1.	ug/l	1
03956	Fluorene	86-73-7	< 10.	10.	1.	ug/l	1
03963	Phenanthrene	85-01-8	< 10.	10.	1.	ug/l	1
03967	Pyrene	129-00-0	< 10.	10.	1.	ug/l	1
03971	Chrysene	218-01-9	< 10.	10.	1.	ug/l	1
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 5.	5.	0.5	ug/l	1
05401	Benzene	71-43-2	23.	5.	0.5	ug/l	1
05402	1,2-Dichloroethane	107-06-2	< 5.	5.	1.	ug/l	1
05407	Toluene	108-88-3	< 5.	5.	0.7	ug/l	1
05415	Ethylbenzene	100-41-4	< 5.	5.	0.8	ug/l	1
05420	Isopropylbenzene	98-82-8	< 5.	5.	1.	ug/l	1
06310	Xylene (Total)	1330-20-7	6.	5.	0.8	ug/l	1

Commonwealth of Pennsylvania Lab Certification No. 36-037 This sample was filtered in the lab for dissolved metals. Trip blank vials were not received by the laboratory for this sample group.

CAT		-	•	Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06035	Lead	SW-846 6020	1	05/04/2005 22:51	David K Beck	1
07879	EDB in Wastewater	SW-846 8011	1	05/03/2005 19:51	Richard A Shober	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	05/04/2005 16:04	Joseph M Gambler	1
02302	UST-Waters by 8260B	SW-846 8260B	1	05/02/2005 19:38	Emiley A King	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	05/02/2005 19:38	Emiley A King	n.a.
06050	ICP/MS SW-846 Water	SW-846 3010A Mod.	1	05/02/2005 22:00	James L Mertz	1
07786	EDB Extraction	SW-846 8011	1	05/02/2005 08:00	Deborah M Zimmerman	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. WW 4514708

S219-042805 Grab Water Sample SUN: Philadelphia Refinery AOI-4

Collected: 04/28/2005 12:20 by MH Account Number: 10132

Submitted: 04/29/2005 17:15 Langan

Reported: 05/06/2005 at 16:42 500 Hyde Park

Discard: 06/06/2005 Doylestown PA 18901

S-219

07807 BNA Water Extraction SW-846 3510C 1 05/02/2005 09:00 Danette S Blystone

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. WW 4514709

S229-042805 Grab Water Sample SUN: Philadelphia Refinery AOI-4

Collected: 04/28/2005 13:05 by MH Account Number: 10132

Submitted: 04/29/2005 17:15 Langan

Reported: 05/06/2005 at 16:42 500 Hyde Park

Discard: 06/06/2005 Doylestown PA 18901

S-229

				As Received	As Received		
CAT			As Received	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06035	Lead	7439-92-1	< 0.0010	0.0010	0.00021	mg/l	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	0.033	0.029	0.0097	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	220.	51.	5.	ug/l	5
03956	Fluorene	86-73-7	11.	10.	1.	ug/l	1
03963	Phenanthrene	85-01-8	15.	10.	1.	ug/l	1
03967	Pyrene	129-00-0	< 10.	10.	1.	ug/l	1
03971	Chrysene	218-01-9	< 10.	10.	1.	ug/l	1
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 50.	50.	5.	ug/l	10
05401	Benzene	71-43-2	1,900.	50.	5.	ug/l	10
05402	1,2-Dichloroethane	107-06-2	< 50.	50.	10.	ug/l	10
05407	Toluene	108-88-3	< 50.	50.	7.	ug/l	10
05415	Ethylbenzene	100-41-4	350.	50.	8.	ug/l	10
05420	Isopropylbenzene	98-82-8	150.	50.	10.	ug/l	10
06310	Xylene (Total)	1330-20-7	630.	50.	8.	ug/l	10

The reporting limits for the GC/MS volatile compounds were raised because sample dilution was necessary to bring target compounds into the calibration range of the system.

Commonwealth of Pennsylvania Lab Certification No. 36-037 This sample was filtered in the lab for dissolved metals. Trip blank vials were not received by the laboratory for this sample group.

		Haberacer	. , Стт С.	111010		
CAT	CAT			Analysis		
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06035	Lead	SW-846 6020	1	05/04/2005 22:54	David K Beck	1
07879	EDB in Wastewater	SW-846 8011	1	05/03/2005 20:20	Richard A Shober	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	05/04/2005 21:33	Jolene M Graham	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681• www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. WW 4514709

S229-042805 Grab Water Sample SUN: Philadelphia Refinery AOI-4

Collected:04/28/2005 13:05 by MH Account Number: 10132

Submitted: 04/29/2005 17:15 Langan

Reported: 05/06/2005 at 16:42 500 Hyde Park

Discard: 06/06/2005 Doylestown PA 18901

α		\sim	\sim	\sim
\sim	-	4	4	9

07805	PAHs in Water by GC/MS	SW-846 8270C	1	05/05/2005 10:54	Brian K Graham	5
02302	UST-Waters by 8260B	SW-846 8260B	1	05/03/2005 06:45	Andrea D Moore	10
01163	GC/MS VOA Water Prep	SW-846 5030B	1	05/03/2005 06:45	Andrea D Moore	n.a.
06050	ICP/MS SW-846 Water	SW-846 3010A Mod.	1	05/02/2005 22:00	James L Mertz	1
07786	EDB Extraction	SW-846 8011	1	05/02/2005 08:00	Deborah M Zimmerman	1
07807	BNA Water Extraction	SW-846 3510C	1	05/02/2005 09:00	Danette S Blystone	1

^{*=}This limit was used in the evaluation of the final result

0.8

ug/l

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. WW 4514710

S225-042805 Grab Water Sample SUN: Philadelphia Refinery AOI-4

Collected:04/28/2005 13:20 by MH Account Number: 10132

Submitted: 04/29/2005 17:15 Langan

Reported: 05/06/2005 at 16:42

500 Hyde Park Doylestown PA 18901

Discard: 06/06/2005

06310 Xylene (Total)

S-225

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Limit of Quantitation*	As Received Method Detection	Units	Dilution Factor
06035	Lead	7439-92-1	< 0.0010	0.0010	Limit 0.00021	mg/l	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.029	0.029	0.0096	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	< 10.	10.	1.	uq/l	1
03956	Fluorene	86-73-7	56.	10.	1.	ug/l	1
03963	Phenanthrene	85-01-8	71.	10.	1.	ug/l	1
03967	Pyrene	129-00-0	< 10.	10.	1.	ug/l	1
03971	Chrysene	218-01-9	< 10.	10.	1.	ug/l	1
	The GC/MS semivolatile internal	standard pea	k areas were o	outside of the QC	•		
	limits for both the initial inj	ection and th	e re-injection	. The values her	re		
	are from the initial injection	of the sample					
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 5.	5.	0.5	ug/l	1
05401	Benzene	71-43-2	24.	5.	0.5	ug/l	1
05402	1,2-Dichloroethane	107-06-2	< 5.	5.	1.	ug/l	1
05407	Toluene	108-88-3	10.	5.	0.7	ug/l	1
05415	Ethylbenzene	100-41-4	< 5.	5.	0.8	ug/l	1
05420	Isopropylbenzene	98-82-8	87.	5.	1.	ug/l	1

Commonwealth of Pennsylvania Lab Certification No. 36-037 This sample was filtered in the lab for dissolved metals. Trip blank vials were not received by the laboratory for this sample group.

1330-20-7

Laboratory Chronicle

11.

CAT	CAT			Analysis		
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06035	Lead	SW-846 6020	1	05/04/2005 22:58	David K Beck	1
07879	EDB in Wastewater	SW-846 8011	1	05/03/2005 20:50	Richard A Shober	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	05/04/2005 22:32	Jolene M Graham	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. WW 4514710

S225-042805 Grab Water Sample SUN: Philadelphia Refinery AOI-4

Collected:04/28/2005 13:20 by MH Account Number: 10132

Submitted: 04/29/2005 17:15 Langan

Reported: 05/06/2005 at 16:42 500 Hyde Park

Discard: 06/06/2005 Doylestown PA 18901

S-225

02302	UST-Waters by 8260B	SW-846 8260B	1	05/03/2005 22:21	Andrea D Moore	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	05/03/2005 22:21	Andrea D Moore	n.a.
06050	ICP/MS SW-846 Water	SW-846 3010A Mod.	1	05/02/2005 22:00	James L Mertz	1
07786	EDB Extraction	SW-846 8011	1	05/02/2005 08:00	Deborah M Zimmerman	1
07807	BNA Water Extraction	SW-846 3510C	1	05/02/2005 09:00	Danette S Blystone	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. WW 4514711

S216-042805 Grab Water Sample SUN: Philadelphia Refinery AOI-4

Collected: 04/28/2005 13:40 by MH Account Number: 10132

Submitted: 04/29/2005 17:15 Langan

Reported: 05/06/2005 at 16:42 500 Hyde Park

Discard: 06/06/2005 Doylestown PA 18901

S-216

				As Received	As Received		
CAT			As Received	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06035	Lead	7439-92-1	< 0.0010	0.0010	0.00021	mg/l	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.029	0.029	0.0096	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	150.	50.	5.	ug/l	5
03956	Fluorene	86-73-7	60.	10.	1.	ug/l	1
03963	Phenanthrene	85-01-8	87.	10.	1.	ug/l	1
03967	Pyrene	129-00-0	< 10.	10.	1.	ug/l	1
03971	Chrysene	218-01-9	< 10.	10.	1.	ug/l	1
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	210.	10.	1.	ug/l	2
05401	Benzene	71-43-2	290.	10.	1.	ug/l	2
05402	1,2-Dichloroethane	107-06-2	< 10.	10.	2.	ug/l	2
05407	Toluene	108-88-3	48.	10.	1.	ug/l	2
05415	Ethylbenzene	100-41-4	110.	10.	2.	ug/l	2
05420	Isopropylbenzene	98-82-8	73.	10.	2.	ug/l	2
06310	Xylene (Total)	1330-20-7	240.	10.	2.	ug/l	2

The reporting limits for the GC/MS volatile compounds were raised because sample dilution was necessary to bring target compounds into the calibration range of the system.

Commonwealth of Pennsylvania Lab Certification No. 36-037 This sample was filtered in the lab for dissolved metals. Trip blank vials were not received by the laboratory for this sample group.

		Haboracoi	Ly CIIIO.	111010		
CAT			_	Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06035	Lead	SW-846 6020	1	05/04/2005 23:01	David K Beck	1
07879	EDB in Wastewater	SW-846 8011	1	05/03/2005 21:20	Richard A Shober	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	05/05/2005 12:53	Brian K Graham	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681• www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. WW 4514711

S216-042805 Grab Water Sample SUN: Philadelphia Refinery AOI-4

Collected:04/28/2005 13:40 by MH Account Number: 10132

Submitted: 04/29/2005 17:15 Langan

Reported: 05/06/2005 at 16:42 500 Hyde Park

Discard: 06/06/2005 Doylestown PA 18901

α	2	-	_
S.	- 2	1	6

07805	PAHs in Water by GC/MS	SW-846 8270C	1	05/05/2005 13:52	Brian K Graham	5
02302	UST-Waters by 8260B	SW-846 8260B	1	05/03/2005 13:25	Andrea D Moore	2
01163	GC/MS VOA Water Prep	SW-846 5030B	1	05/03/2005 13:25	Andrea D Moore	n.a.
06050	ICP/MS SW-846 Water	SW-846 3010A Mod.	1	05/02/2005 22:00	James L Mertz	1
07786	EDB Extraction	SW-846 8011	1	05/02/2005 08:00	Deborah M Zimmerman	1
07807	BNA Water Extraction	SW-846 3510C	1	05/02/2005 09:00	Danette S Blystone	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Quality Control Summary

Client Name: Langan Group Number: 941574

Reported: 05/06/05 at 04:42 PM

Matrix QC may not be reported if site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

Laboratory Compliance Quality Control

Analysis Name	Blank <u>Result</u>	Blank LOQ**	Blank <u>MDL</u>	Report <u>Units</u>	LCS %REC	LCSD %REC	LCS/LCSD <u>Limits</u>	RPD	RPD Max
Batch number: 051200009A Ethylene dibromide	Sample numk < 0.030	per(s): 45 0.030	14707-451 0.010	4711 ug/l	92	92	60-140	0	20
Batch number: 05120WAC026 Naphthalene Fluorene Phenanthrene Pyrene Chrysene	<pre>Sample numk < 10. < 10. < 10. < 10. < 10. < 10.</pre>	per(s): 45 10. 10. 10. 10.	14707-451 1. 1. 1. 1.	4711 ug/l ug/l ug/l ug/l ug/l	73 91 89 93	82 99 94 96 91	58-108 61-116 68-111 68-114 70-111	12 9 5 3 4	30 30 30 30 30
Batch number: 051226050003A Lead	Sample numk < 0.0010	per(s): 45 0.0010	14707-451 0.00021	4711 mg/l	101		80-120		
Batch number: T051221AA Methyl Tertiary Butyl Ether Benzene 1,2-Dichloroethane Toluene Ethylbenzene Isopropylbenzene Xylene (Total)	Sample numb < 5. < 5. < 5. < 5. < 5. < 5. < 5.	per(s): 45 5. 5. 5. 5. 5. 5.	14707-4514 0.5 0.5 1. 0.7 0.8 1.	4708 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	97 103 109 105 99 100 101		77-127 85-117 77-132 85-115 82-119 80-120 83-113		
Batch number: T051222AA Methyl Tertiary Butyl Ether Benzene 1,2-Dichloroethane Toluene Ethylbenzene Isopropylbenzene Xylene (Total)	Sample numb < 5. < 5. < 5. < 5. < 5. < 5. < 5. < 5.	per(s): 45 5. 5. 5. 5. 5. 5.	14709 0.5 0.5 1. 0.7 0.8 1.	ug/l ug/l ug/l ug/l ug/l ug/l ug/l	94 103 103 103 100 100		77-127 85-117 77-132 85-115 82-119 80-120 83-113		
Batch number: T051231AA Methyl Tertiary Butyl Ether Benzene 1,2-Dichloroethane Toluene Ethylbenzene Isopropylbenzene Xylene (Total)	Sample numb < 5. < 5. < 5. < 5. < 5. < 5. < 5. < 5.	per(s): 45 5. 5. 5. 5. 5. 5.	14710-4514 0.5 0.5 1. 0.7 0.8 1. 0.8	4711 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	97 108 114 105 95 95 96	95 103 109 100 94 93	77-127 85-117 77-132 85-115 82-119 80-120 83-113	2 6 4 4 1 2 3	30 30 30 30 30 30 30 30

Sample Matrix Quality Control

Page 1 of 3

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The background result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Page 2 of 3

Quality Control Summary

Client Name: Langan Group Number: 941574

Reported: 05/06/05 at 04:42 PM

Reported. 03,00,03 at 04.	MS	MSD	MS/MSD		RPD	BKG	DUP	DUP	Dup RPD
Analysis Name	%REC	<u>%REC</u>	<u>Limits</u>	RPD	<u>MAX</u>	Conc	Conc	RPD	Max_
Batch number: 051200009A Ethylene dibromide	Sample 87	number	(s): 451470° 65-135	7-45147	11	< 0.029	< 0.029	0 (1)	30
Batch number: 051226050003A Lead	Sample 98	number 98	(s): 451470 75-125	7-45147 0	11 20	0.0108	0.0107	1	20
Batch number: T051221AA Methyl Tertiary Butyl Ether Benzene 1,2-Dichloroethane Toluene Ethylbenzene Isopropylbenzene Xylene (Total) Batch number: T051222AA Methyl Tertiary Butyl Ether Benzene 1,2-Dichloroethane	99 111 119 107 95 97	99 110 117 106 96 97 96	(s): 451470° 69-134 83-128 73-136 83-127 82-129 81-130 82-130 (s): 4514709 69-134 83-128 73-136	0 1 1 1 0 1	08 30 30 30 30 30 30 30 30 30				
Toluene Ethylbenzene Isopropylbenzene Xylene (Total) Batch number: T051231AA Mothyl Tortiony Putyl Ethor	108 99 97 98 Sample 94	106 97 97 98 number	83-127 82-129 81-130 82-130 (s): 451471(2 1 1 0	30 30 30 30 31				
Methyl Tertiary Butyl Ether Benzene 1,2-Dichloroethane Toluene Ethylbenzene Isopropylbenzene Xylene (Total)	105 108 108 101 103 102		83-128 73-136 83-127 82-129 81-130 82-130						

Surrogate Quality Control

Analysis Name: EDB in Wastewater Batch number: 051200009A

1,1,2,2-

Tetrachloroethane

4514707	106
4514708	72
4514709	88
4514710	70
4514711	77
Blank	101
DUP	92
LCS	93
LCSD	95
MS	117
Limits:	52-120

*- Outside of specification

- **-This limit was used in the evaluation of the final result for the blank
- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The background result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 3 of 3

Quality Control Summary

Client Name: Langan Group Number: 941574

Reported: 05/06/05 at 04:42 PM

Surrogate Quality Control

104

110

Analysis Name: PAHs in Water by GC/MS Batch number: 05120WAC026

	Nitrobenzene-d5	2-Fluorobiphenyl	Terphenyl-d14	
4514707	83	76	95	
4514708	80	77	93	
4514709	101	90	101	
4514710	101	92	101	
4514711	94	93	70	
Blank	87	85	106	

51-123 Limits: 64-112 53-135

75

Analysis Name: UST-Waters by 8260B Batch number: T051221AA Dibromofluoromethane

83

86

LCS

LCSD

Dibromofluoromethane		1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene		
4514707	94	90	94	98		
4514708	93	89	95	100		
Blank	97	94	93	98		
LCS	94	92	96	101		
MS	97	88	94	102		
MSD	96	87	94	100		
Limits:	81-120	82-112	85-112	83-113		

An	a]	Lysis	Name:	US	Т	- T	Vа	t	ers	by	8260B	

Batch number: T051222AA

	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenze
4514709	94	89	97	103
Blank	93	88	94	98
LCS	93	91	95	100
MS	92	87	96	100
MSD	92	92	95	98
Limits:	81-120	82-112	85-112	83-113

Analysis Name: UST-Waters by 8260B

Datell Halla	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
4514710	102	91	95	111
4514711	94	91	95	104
Blank	96	88	93	97
LCS	94	87	93	99
LCSD	91	90	94	100
MS	93	87	94	100
Limits:	81-120	82-112	85-112	83-113

*- Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The background result was more than four times the spike added.

Analysis Request / Environmental Services Chain of Custody

Lancaste Where quality is

__Sample # 4514707-11 # 10132 Group#941574 Sample # 45

COC# 0081319

	Acct
► Lancaster Laboratories	Where quality is a science.

Please print. Instructions on reverse side correspond with circled numbers. $Cooler | e_{\mathcal{MO}} | .8 \cdot I.9^c C$

(Plea	Please print. Instru	actions o	in reverse s	ide corres	ructions on reverse side correspond with circled numbers.	ed numbe)	boler	Fenu	1.8-1.97			
<u>-ر-</u>	Client: Sun-Azioche ino		Acct. #:					(e)					RESIDENT FOIL	For Lab Use Only	ıly	_
	Project Name # - Pulpelphia Loghow AOF #	In Raphons	ASKT FWSID#			***			orus	//	100		/ FSC:	# 1203	stell	
	Project Manager: L. Martin / Tr. Hawne	[Hamna	P.O.#			1907 2915 1			\ \ !	Prion C	82,	<u></u>			9	
	Sampler: MH		Quote #:	·				Re L	\		Ja	\ \ \	_		99)di	_
	Name of state where samples were collected:	re collected:	P.4					DE SEL	1/2	250 2000 2000 2000 2000	liet.	<u></u>	_			
1 (4)					sodu 2) q			() () () () () () () () () ()	₹ ?	Ny	\	\ \ \	_		* 1	
B						106		k / 🗟 /	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	//	//	///	Remarks			
	SA18-042804		50-8C-h	3461	*	メ	₽ o	\bigwedge	X	1			Dissolved Pla	Samales	6.0	
	5219-042804		-	1220	×	×	20	\bigvee	V			Ś		000	عرق	
	408240-522S			1305	×	×	<i>∞</i>	+	$\backslash\!\!\!/$	\			,	,		
	5225-04204			1320	メ	8	8	4	\bigvee	\ /						
•	5216-042104		→	1340	Х	7	8	+	X -	1		•			₹.	
· ·																
(b)	Turnaround Time Requested (TAT) (please circle):	rAT) (please circ	ile): Mormal	Rush	Re-	Relinquished by:	þ.	14	Date	Time		Received by:		Date	Time (9	' \
	Date results are needed:			(jag)	-	B		7	4800	9/50		1/1/1/1	The same	4.20		_
	Rush results requested by (please circle):	e circle): Phone	ne Fax	E-mail	Re		` `à	7	Date	Time		Reseived by:		Date	Time	
	Phone #:	٠.,			*	[FLU	pac	/	11/11	M 455	X	なナプロ	200	4/apo	ass	
7	E-mail address:				P. S.	Refinduished	/ · . #4	/	Date	Time	1	Received by:	Our 1.	je je je je	Тіде	
	Data Package Options (please circle if required)	ircle if required)	S	SDG Complete?	Ť	19716				150 F	700	masser m	1 Fallus	1/68/	18.53	
	QC Summary Type VI (Raw Data)	(aw Data)	Yes	S S	Re	Relinquished	₹å		Date	Time		Received by:		Dafte	Time	
	GLP	Site-specific QC required? Yes	equired? Yes	(<u>2</u>)	7	Ouk.	John McKel	Out of	1/28/px	27:15						
	Other	(If yes, indicate QC sample and submit triplicate volum	iple and submit t	riplicate volume.)	' 	quishe	} 	7 - 7	Date	Time	_	Received by:	//	Date	Time	
	ed. Del.)	Internal Chain of Custody required? Yes	ustody requi	red? Yes N	(2)	<u></u>				\dashv			2	1/20/	ָּלָ הַ	
	Type IV (CLP)				_	,			_	<u> </u>) —	と変と	1	7	<u> </u>	

Explanation of Symbols and Abbreviations

Ingrashic Qualifiers

The following defines common symbols and abbreviations used in reporting technical data:

N.D.	none detected	BMQL	Below Minimum Quantitation Level
TNTC	Too Numerous To Count	MPN	Most Probable Number
IU	International Units	CP Units	cobalt-chloroplatinate units
umhos/cm	micromhos/cm	NTU	nephelometric turbidity units
С	degrees Celsius	F	degrees Fahrenheit
meq	milliequivalents	lb.	pound(s)
g	gram(s)	kg	kilogram(s)
ug	microgram(s)	mg	milligram(s)
ml	milliliter(s)	Ĭ	liter(s)
m3	cubic meter(s)	ul	microliter(s)

- < less than The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.
- > greater than
- J estimated value The result is ≥ the Method Detection Limit (MDL) and < the Limit of Quantitation (LOQ).
- ppm parts per million One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.
- ppb parts per billion
- **Dry weight**basis
 Results printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture. All other results are reported on an as-received basis.

U.S. EPA CLP Data Qualifiers:

	Organic Quanners		morganic Quanners
Α	TIC is a possible aldol-condensation product	В	Value is <crdl, but="" th="" ≥idl<=""></crdl,>
В	Analyte was also detected in the blank	Ε	Estimated due to interference
С	Pesticide result confirmed by GC/MS	M	Duplicate injection precision not met
D	Compound quantitated on a diluted sample	N	Spike sample not within control limits
E	Concentration exceeds the calibration range of	S	Method of standard additions (MSA) used
	the instrument		for calculation
N	Presumptive evidence of a compound (TICs only)	U	Compound was not detected
Р	Concentration difference between primary and	W	Post digestion spike out of control limits
	confirmation columns >25%	*	Duplicate analysis not within control limits
U	Compound was not detected	+	Correlation coefficient for MSA < 0.995
X,Y,Z	Defined in case narrative		

Analytical test results for methods listed on the laboratories' accreditation scope meet all requirements of NELAC unless otherwise noted under the individual analysis.

Measurement uncertainty values, as applicable, are available upon request.

Organic Qualifiers

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL LANCASTER LABORATORIES BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF LANCASTER LABORATORIES AND (B) WHETHER LANCASTER LABORATORIES HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Lancaster Laboratories which includes any conditions that vary from the Standard Terms and Conditions of Lancaster Laboratories and we hereby object to any conflicting terms contained in any acceptance or order submitted by client.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

ANALYTICAL RESULTS

Prepared for:

Langan 500 Hyde Park Doylestown PA 18901

215-348-7101

Prepared by:

Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425

SAMPLE GROUP

The sample group for this submittal is 941914. Samples arrived at the laboratory on Tuesday, May 03, 2005. The PO# for this group is SUNOCO PHILLY REFINER.

Client Description	<u>Lancaster Labs Number</u>
S31-050205 Grab Water Sample	4516620
S27-050205 Grab Water Sample	4516621
S26-050205 Grab Water Sample	4516622

ELECTRONIC SUN: Aquaterra Tech. Attn: Brad Spancake
COPY TO
1 COPY TO LL Attn: Angela Miller
1 COPY TO Langan Attn: Jason Hanna
ELECTRONIC Langan Attn: Dennis Webster

COPY TO

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Questions? Contact your Client Services Representative Angela M Miller at (717) 656-2300.

Respectfully Submitted,

Michele A. Jarosick

Senior Chemist, Coordinator

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Lancaster Laboratories Sample No. WW 4516620

S31-050205 Grab Water Sample

SUN: Philadelphia Refinery AOI-4

Collected:05/02/2005 13:30 by MBS Account Number: 10132

Submitted: 05/03/2005 16:35 Langan

Reported: 05/10/2005 at 15:14

500 Hyde Park Discard: 06/10/2005

Doylestown PA 18901

S-031

		As Received	As Received Limit of	As Received Method		Dilution
Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
Lead	7439-92-1	< 0.0010	0.0010	0.00021	mg/l	1
EDB in Wastewater						
Ethylene dibromide	106-93-4	< 0.028	0.028	0.0095	ug/l	1
UST-Waters by 8260B						
Methyl Tertiary Butyl Ether	1634-04-4	170.	5.	0.5	ug/l	1
Benzene	71-43-2	53.	5.	0.5	ug/l	1
1,2-Dichloroethane	107-06-2	< 5.	5.	1.	ug/l	1
Toluene	108-88-3	40.	5.	0.7	ug/l	1
Ethylbenzene	100-41-4	39.	5.	0.8	ug/l	1
Isopropylbenzene	98-82-8	6.	5.	1.	ug/l	1
Xylene (Total)	1330-20-7	150.	5.	0.8	ug/l	1
	Lead EDB in Wastewater Ethylene dibromide UST-Waters by 8260B Methyl Tertiary Butyl Ether Benzene 1,2-Dichloroethane Toluene Ethylbenzene Isopropylbenzene	Lead 7439-92-1 EDB in Wastewater Ethylene dibromide 106-93-4 UST-Waters by 8260B Methyl Tertiary Butyl Ether 1634-04-4 Benzene 71-43-2 1,2-Dichloroethane 107-06-2 Toluene 108-88-3 Ethylbenzene 100-41-4 Isopropylbenzene 98-82-8	Analysis Name CAS Number Result Lead 7439-92-1 < 0.0010	As Received Result Ouantitation* Lead 7439-92-1 < 0.0010 0.0010 EDB in Wastewater Ethylene dibromide 106-93-4 < 0.028 0.028 UST-Waters by 8260B Methyl Tertiary Butyl Ether 1634-04-4 170. 5. Benzene 71-43-2 53. 5. 1,2-Dichloroethane 107-06-2 < 5. 5. Toluene 108-88-3 40. 5. Ethylbenzene 100-41-4 39. 5. Espropylbenzene 98-82-8 6. 5.	Analysis Name CAS Number As Received Result Limit of Quantitation* Method Detection Limit Lead 7439-92-1 < 0.0010	Analysis Name CAS Number Result Quantitation* Method Detection Limit 0.00021 Units Limit 0.00021 Lead 7439-92-1 < 0.0010

Commonwealth of Pennsylvania Lab Certification No. 36-037 This sample was filtered in the lab for dissolved metals. Trip blank vials were not received by the laboratory for this sample group.

CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06035	Lead	SW-846 6020	1	05/06/2005 23:04	David K Beck	1
07879	EDB in Wastewater	SW-846 8011	1	05/06/2005 01:59	James H Place	1
02302	UST-Waters by 8260B	SW-846 8260B	1	05/06/2005 03:32	Andrea D Moore	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	05/06/2005 03:32	Andrea D Moore	n.a.
06050	ICP/MS SW-846 Water	SW-846 3010A Mod.	1	05/05/2005 15:54	Megersa Deyessa	1
07786	EDB Extraction	SW-846 8011	1	05/05/2005 10:00	Joseph S Feister	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. WW 4516621

S27-050205 Grab Water Sample

SUN: Philadelphia Refinery AOI-4

Collected:05/02/2005 14:10 by MBS Account Number: 10132

Submitted: 05/03/2005 16:35 Langan

Reported: 05/10/2005 at 15:14 500 Hyde Park

Discard: 06/10/2005 Doylestown PA 18901

S-027

				As Received	As Received		
CAT			As Received	Limit of	Method		Dilutio
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06035	Lead	7439-92-1	< 0.0010	0.0010	0.00021	mg/l	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.029	0.029	0.0095	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	14.	10.	1.	ug/l	1
03956	Fluorene	86-73-7	< 10.	10.	1.	ug/l	1
03963	Phenanthrene	85-01-8	< 10.	10.	1.	ug/l	1
03967	Pyrene	129-00-0	< 10.	10.	1.	ug/l	1
03971	Chrysene	218-01-9	< 10.	10.	1.	ug/l	1
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 5.	5.	0.5	ug/l	1
05401	Benzene	71-43-2	< 5.	5.	0.5	ug/l	1
05402	1,2-Dichloroethane	107-06-2	< 5.	5.	1.	ug/l	1
05407	Toluene	108-88-3	< 5.	5.	0.7	ug/l	1
05415	Ethylbenzene	100-41-4	< 5.	5.	0.8	ug/l	1
05420	Isopropylbenzene	98-82-8	5.	5.	1.	ug/l	1
06310	Xylene (Total)	1330-20-7	26.	5.	0.8	ug/l	1

Commonwealth of Pennsylvania Lab Certification No. 36-037 This sample was filtered in the lab for dissolved metals. Trip blank vials were not received by the laboratory for this sample group.

CAT		•	•	Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06035	Lead	SW-846 6020	1	05/06/2005 23:06	David K Beck	1
07879	EDB in Wastewater	SW-846 8011	1	05/06/2005 02:28	James H Place	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	05/06/2005 20:08	Jolene M Graham	1
02302	UST-Waters by 8260B	SW-846 8260B	1	05/06/2005 03:56	Andrea D Moore	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	05/06/2005 03:56	Andrea D Moore	n.a.
06050	ICP/MS SW-846 Water	SW-846 3010A Mod.	1	05/05/2005 15:54	Megersa Deyessa	1
07786	EDB Extraction	SW-846 8011	1	05/05/2005 10:00	Joseph S Feister	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. WW 4516621

S27-050205 Grab Water Sample

SUN: Philadelphia Refinery AOI-4

Collected: 05/02/2005 14:10 by MBS Account Number: 10132

Submitted: 05/03/2005 16:35 Langan

Reported: 05/10/2005 at 15:14 500 Hyde Park

Discard: 06/10/2005 Doylestown PA 18901

S-027

07807 BNA Water Extraction SW-846 3510C 1 05/04/2005 17:00 Olivia I Santiago

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. WW 4516622

S26-050205 Grab Water Sample

SUN: Philadelphia Refinery AOI-4

Collected:05/02/2005 15:00 by MBS Account Number: 10132

Submitted: 05/03/2005 16:35 Langan

Reported: 05/10/2005 at 15:15

500 Hyde Park Discard: 06/10/2005

Doylestown PA 18901

S-026

				As Received	As Received		
CAT			As Received	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06035	Lead	7439-92-1	< 0.0010	0.0010	0.00021	mg/l	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.029	0.029	0.0097	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	< 10.	10.	1.	ug/l	1
03956	Fluorene	86-73-7	< 10.	10.	1.	ug/l	1
03963	Phenanthrene	85-01-8	< 10.	10.	1.	ug/l	1
03967	Pyrene	129-00-0	< 10.	10.	1.	ug/l	1
03971	Chrysene	218-01-9	< 10.	10.	1.	ug/l	1
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	32.	5.	0.5	ug/l	1
05401	Benzene	71-43-2	< 5.	5.	0.5	ug/l	1
05402	1,2-Dichloroethane	107-06-2	< 5.	5.	1.	ug/l	1
05407	Toluene	108-88-3	< 5.	5.	0.7	ug/l	1
05415	Ethylbenzene	100-41-4	< 5.	5.	0.8	ug/l	1
05420	Isopropylbenzene	98-82-8	< 5.	5.	1.	ug/l	1
06310	Xylene (Total)	1330-20-7	< 5.	5.	0.8	ug/l	1

Commonwealth of Pennsylvania Lab Certification No. 36-037 This sample was filtered in the lab for dissolved metals. Trip blank vials were not received by the laboratory for this sample group.

CAT		_	•	Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06035	Lead	SW-846 6020	1	05/06/2005 23:09	David K Beck	1
07879	EDB in Wastewater	SW-846 8011	1	05/06/2005 03:28	James H Place	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	05/06/2005 21:07	Jolene M Graham	1
02302	UST-Waters by 8260B	SW-846 8260B	1	05/06/2005 04:21	Andrea D Moore	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	05/06/2005 04:21	Andrea D Moore	n.a.
06050	ICP/MS SW-846 Water	SW-846 3010A Mod.	1	05/05/2005 15:54	Megersa Deyessa	1
07786	EDB Extraction	SW-846 8011	1	05/05/2005 10:00	Joseph S Feister	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. WW 4516622

S26-050205 Grab Water Sample

SUN: Philadelphia Refinery AOI-4

Collected: 05/02/2005 15:00 by MBS Account Number: 10132

Submitted: 05/03/2005 16:35 Langan

Reported: 05/10/2005 at 15:15 500 Hyde Park

Discard: 06/10/2005 Doylestown PA 18901

S-026

07807 BNA Water Extraction SW-846 3510C 1 05/04/2005 17:00 Olivia I Santiago

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Quality Control Summary

Client Name: Langan Group Number: 941914

Reported: 05/10/05 at 03:15 PM

Matrix QC may not be reported if site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

Laboratory Compliance Quality Control

Analysis Name	Blank <u>Result</u>	Blank LOQ**	Blank <u>MDL</u>	Report <u>Units</u>	LCS %REC	LCSD %REC	LCS/LCSD <u>Limits</u>	RPD	RPD Max
Batch number: 051240024A Ethylene dibromide	Sample numb	per(s): 45 0.030	16620-451 0.010	6622 ug/l	100	100	60-140	0	20
Batch number: 05124WAC026 Naphthalene Fluorene Phenanthrene Pyrene Chrysene	<pre>Sample numk < 10. < 10.</pre>	per(s): 45 10. 10. 10. 10.	16621-4510 1. 1. 1. 1.	ug/l ug/l ug/l ug/l ug/l ug/l	88 100 97 88 91	87 95 99 90 94	58-108 61-116 68-111 68-114 70-111	1 4 2 2 3	30 30 30 30 30
Batch number: 051256050001A Lead	Sample numb	per(s): 45 0.0010		6622 mg/l	100		80-120		
Batch number: T051252AA Methyl Tertiary Butyl Ether Benzene 1,2-Dichloroethane Toluene Ethylbenzene Isopropylbenzene Xylene (Total)	Sample numb < 5. < 5. < 5. < 5. < 5. < 5. < 5.	ser(s): 45 5. 5. 5. 5. 5. 5. 5.	16620-4510 0.5 0.5 1. 0.7 0.8 1.	6622 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	99 109 117 104 97 97 98		77-127 85-117 77-132 85-115 82-119 80-120 83-113		

Sample Matrix Quality Control

	MS	MSD	MS/MSD		RPD	BKG	DUP	DUP	Dup RPD
Analysis Name	%REC	%REC	<u>Limits</u>	RPD	<u>MAX</u>	Conc	Conc	RPD	Max
Batch number: 051240024A Ethylene dibromide	Sample 84	number	(s): 4516620 65-135	0-45166	22	< 0.028	< 0.029	0 (1)	30
Batch number: 051256050001A	Sample	number	(s): 4516620	0-45166	22				
Lead	100	101	75-125	1	20	< 0.0010	< 0.0010	25* (1)	20
Batch number: T051252AA	Sample	number	(s): 4516620	0-45166	22				
Methyl Tertiary Butyl Ether	104	107	69-134	4	30				
Benzene	115	115	83-128	0	30				
1,2-Dichloroethane	123	124	73-136	1	30				
Toluene	108	110	83-127	2	30				
Ethylbenzene	100	102	82-129	2	30				
Isopropylbenzene	98	102	81-130	5	30				
Xylene (Total)	100	100	82-130	0	30				

*- Outside of specification

- **-This limit was used in the evaluation of the final result for the blank
- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The background result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Quality Control Summary

Client Name: Langan Group Number: 941914

Reported: 05/10/05 at 03:15 PM

Sample Matrix Quality Control

	MS	MSD	MS/MSD		RPD	BKG	DUP	DUP	Dup
									RPD
Analysis Name	%REC	%REC	<u>Limits</u>	RPD	MAX	Conc	Conc	RPD	Max

Surrogate Quality Control

Analysis Name: EDB in Wastewater

Batch number: 051240024A

1,1,2,2-

Tetrachloroethane

4516620	82
4516621	106
4516622	117
Blank	102
DUP	75
LCS	104
LCSD	103
MS	96

1F16620

Limits: 52-120

Analysis Name: PAHs in Water by GC/MS

Batch number: 05124WAC026
Nitrobenzene-d5

Baccii IIalik	Nitrobenzene-d5	2-Fluorobiphenyl	Terphenyl-d14	
4516621	76	81	92	
4516622	69	77	88	
Blank	77	86	94	
LCS	77	86	98	
LCSD	76	86	102	
Limits:	51-123	64-112	53-135	

Analysis Name: UST-Waters by 8260B

Batch number: T051252AA

	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
4516620	94	90	94	102
4516621	92	87	93	102
4516622	94	88	94	103
Blank	98	88	92	98
LCS	95	86	92	100
MS	96	86	91	99
MSD	97	87	94	100
Limits:	81-120	82-112	85-112	83-113

*- Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The background result was more than four times the spike added.

Analysis Request / Environmental Services Chain of Custody

Lancaster Laboratories
Where quality is a science.

Acct. # 10139

For Lancaster Laboratories use only
Group# 941914_Sample # 4516690-33

COC # 0084325

riease print. In	structions on reverse side correspond with circled numbers.	ad numbers. COOlps. 10 m c. /	1-1.60
Client: Sun- Aguadoras / Langan Acct. #:			For Lab Use Only
Act.		/ Kay	FSC:
Project Manager: K, Ma/Hx T, Hanne (Longar) P.O.#		TISS OF THE STATE	
Sampler: M. Brad Spancake Quote#			200
<u></u>		Service of the servic	Anna j
2 The Time		TO SELECTION OF THE PROPERTY O	Aune in
Sample Johnson Committee C		/ / / / / / / / / / / / / / / / / / / /	Remarks 8
531-050205	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	MIMINES	Desived Posample is about zoom
527-050205	X X X X X X X X X X		andra.
8	X		
		D;«	Dssolved Pb Samples our
		Hum.	unfiltered/unpreserved
(7) Turnaround Time Requested (TAT) (please circle): (Normary) Rush	Relinquished by:	Date Time Received by:	9) amil otal
(Kush IA) is subject to Lancaster Laboratories approval and Surchfarge.) Date results are needed:	m. Ball	170	
ults requested by (please circle): Phone Fa	Relinquished by	<u> </u>	A A C Date Time
Phone #: Fax #:	MIL DEDUSA	Sist 100 mores consto	6/1/3/5- 1/3/6/1/3
	Relinquished by:	Time	Date
Option	money motollite	13/14-16:35	
QC Summary Type VI (Raw Data) Yes (No.)	Relinquished by:	Date Time Received by:	Date Time
_			
ed. Del.) Internal Chain of Custody required? Yes	Relinquished by:	Date Time Received by:	Date Time
Type IV (CLP))		12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

Explanation of Symbols and Abbreviations

Ingrashic Qualifiers

The following defines common symbols and abbreviations used in reporting technical data:

N.D.	none detected	BMQL	Below Minimum Quantitation Level
TNTC	Too Numerous To Count	MPN	Most Probable Number
IU	International Units	CP Units	cobalt-chloroplatinate units
umhos/cm	micromhos/cm	NTU	nephelometric turbidity units
С	degrees Celsius	F	degrees Fahrenheit
meq	milliequivalents	lb.	pound(s)
g	gram(s)	kg	kilogram(s)
ug	microgram(s)	mg	milligram(s)
ml	milliliter(s)	Ĭ	liter(s)
m3	cubic meter(s)	ul	microliter(s)

- < less than The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.
- > greater than
- J estimated value The result is ≥ the Method Detection Limit (MDL) and < the Limit of Quantitation (LOQ).
- ppm parts per million One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.
- ppb parts per billion
- **Dry weight**basis
 Results printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture. All other results are reported on an as-received basis.

U.S. EPA CLP Data Qualifiers:

	Organic Quanners		morganic Quanners
Α	TIC is a possible aldol-condensation product	В	Value is <crdl, but="" th="" ≥idl<=""></crdl,>
В	Analyte was also detected in the blank	Ε	Estimated due to interference
С	Pesticide result confirmed by GC/MS	M	Duplicate injection precision not met
D	Compound quantitated on a diluted sample	N	Spike sample not within control limits
E	Concentration exceeds the calibration range of	S	Method of standard additions (MSA) used
	the instrument		for calculation
N	Presumptive evidence of a compound (TICs only)	U	Compound was not detected
Р	Concentration difference between primary and	W	Post digestion spike out of control limits
	confirmation columns >25%	*	Duplicate analysis not within control limits
U	Compound was not detected	+	Correlation coefficient for MSA < 0.995
X,Y,Z	Defined in case narrative		

Analytical test results for methods listed on the laboratories' accreditation scope meet all requirements of NELAC unless otherwise noted under the individual analysis.

Measurement uncertainty values, as applicable, are available upon request.

Organic Qualifiers

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL LANCASTER LABORATORIES BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF LANCASTER LABORATORIES AND (B) WHETHER LANCASTER LABORATORIES HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Lancaster Laboratories which includes any conditions that vary from the Standard Terms and Conditions of Lancaster Laboratories and we hereby object to any conflicting terms contained in any acceptance or order submitted by client.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

ANALYTICAL RESULTS

Prepared for:

Langan 500 Hyde Park Doylestown PA 18901

215-348-7101

Prepared by:

Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425

SAMPLE GROUP

The sample group for this submittal is 942136. Samples arrived at the laboratory on Wednesday, May 04, 2005. The PO# for this group is SUNOCO PHILLY REFINER.

Client Description	<u>Lancaster Labs Number</u>
S119D-050305 Grab Water Sample	4517633
S119-050305 Grab Water Sample	4517634
S40-050305 Grab Water Sample	4517635
S120-050305 Grab Water Sample	4517636
S39-050305 Grab Water Sample	4517637
S122-050305 Grab Water Sample	4517638
S38D-050305 Grab Water Sample	4517639
S38I-050305 Grab Water Sample	4517640
S38-050305 Grab Water Sample	4517641
Trip Blank Water Sample	4517642

ELECTRONIC	SUN: Aquaterra Tech.	Attn: Brad Spancake
COPY TO	-	_
1 COPY TO	LL	Attn: Angela Miller
1 COPY TO	Langan	Attn: Jason Hanna
ELECTRONIC	Langan	Attn: Dennis Webster
COPY TO		

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Questions? Contact your Client Services Representative Angela M Miller at (717) 656-2300.

Respectfully Submitted,

Michele A. Jarosick

Senior Chemist, Coordinator

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. WW 4517633

S119D-050305 Grab Water Sample SUN: Philadelphia Refinery AOI-4

Collected:05/03/2005 11:40 by MBS Account Number: 10132

Submitted: 05/04/2005 16:35 Langan

Reported: 05/11/2005 at 16:18

500 Hyde Park

Discard: 06/11/2005 Doylestown PA 18901

S119D

				As Received	As Received		
CAT			As Received	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06035	Lead	7439-92-1	< 0.0010	0.0010	0.00021	mg/l	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.029	0.029	0.0096	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	< 10.	10.	1.	ug/l	1
03956	Fluorene	86-73-7	< 10.	10.	1.	ug/l	1
03963	Phenanthrene	85-01-8	< 10.	10.	1.	ug/l	1
03967	Pyrene	129-00-0	< 10.	10.	1.	ug/l	1
03971	Chrysene	218-01-9	< 10.	10.	1.	ug/l	1
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 5.	5.	0.5	ug/l	1
05401	Benzene	71-43-2	< 5.	5.	0.5	ug/l	1
05402	1,2-Dichloroethane	107-06-2	< 5.	5.	1.	ug/l	1
05407	Toluene	108-88-3	< 5.	5.	0.7	ug/l	1
05415	Ethylbenzene	100-41-4	< 5.	5.	0.8	ug/l	1
05420	Isopropylbenzene	98-82-8	< 5.	5.	1.	ug/l	1
06310	Xylene (Total)	1330-20-7	< 5.	5.	0.8	ug/l	1

Commonwealth of Pennsylvania Lab Certification No. 36-037 This sample was filtered in the lab for dissolved metals.

CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06035	Lead	SW-846 6020	1	05/06/2005 21:07	David K Beck	1
07879	EDB in Wastewater	SW-846 8011	1	05/06/2005 12:23	James H Place	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	05/07/2005 02:03	Jolene M Graham	1
02302	UST-Waters by 8260B	SW-846 8260B	1	05/08/2005 12:21	Jason M Long	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	05/08/2005 12:21	Jason M Long	n.a.
06050	ICP/MS SW-846 Water	SW-846 3010A Mod.	1	05/05/2005 18:55	James L Mertz	1
07786	EDB Extraction	SW-846 8011	1	05/05/2005 19:08	Amanda W Herr	1
07807	BNA Water Extraction	SW-846 3510C	1	05/06/2005 07:00	Mark P Mastropietro	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. WW 4517633

S119D-050305 Grab Water Sample SUN: Philadelphia Refinery AOI-4

Collected:05/03/2005 11:40 by MBS Account Number: 10132

Submitted: 05/04/2005 16:35 Langan

Reported: 05/11/2005 at 16:18 500 Hyde Park

Discard: 06/11/2005 Doylestown PA 18901

S119D

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. WW 4517634

S119-050305 Grab Water Sample SUN: Philadelphia Refinery AOI-4

Collected:05/03/2005 12:00 by MBS Account Number: 10132

Submitted: 05/04/2005 16:35 Langan

Reported: 05/11/2005 at 16:18

500 Hyde Park Discard: 06/11/2005

Doylestown PA 18901

S-119

				As Received	As Received		
CAT			As Received	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06035	Lead	7439-92-1	< 0.0010	0.0010	0.00021	mg/l	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.028	0.028	0.0095	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	< 10.	10.	1.	ug/l	1
03956	Fluorene	86-73-7	< 10.	10.	1.	ug/l	1
03963	Phenanthrene	85-01-8	< 10.	10.	1.	ug/l	1
03967	Pyrene	129-00-0	< 10.	10.	1.	ug/l	1
03971	Chrysene	218-01-9	< 10.	10.	1.	ug/l	1
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 5.	5.	0.5	ug/l	1
05401	Benzene	71-43-2	5.	5.	0.5	ug/l	1
05402	1,2-Dichloroethane	107-06-2	< 5.	5.	1.	ug/l	1
05407	Toluene	108-88-3	< 5.	5.	0.7	ug/l	1
05415	Ethylbenzene	100-41-4	< 5.	5.	0.8	ug/l	1
05420	Isopropylbenzene	98-82-8	< 5.	5.	1.	ug/l	1
06310	Xylene (Total)	1330-20-7	< 5.	5.	0.8	ug/l	1

Commonwealth of Pennsylvania Lab Certification No. 36-037 This sample was filtered in the lab for dissolved metals.

CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06035	Lead	SW-846 6020	1	05/06/2005 21:11	David K Beck	1
07879	EDB in Wastewater	SW-846 8011	1	05/06/2005 12:52	James H Place	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	05/07/2005 03:02	Jolene M Graham	1
02302	UST-Waters by 8260B	SW-846 8260B	1	05/08/2005 13:03	Jason M Long	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	05/08/2005 13:03	Jason M Long	n.a.
06050	ICP/MS SW-846 Water	SW-846 3010A Mod.	1	05/05/2005 18:55	James L Mertz	1
07786	EDB Extraction	SW-846 8011	1	05/05/2005 19:08	Amanda W Herr	1
07807	BNA Water Extraction	SW-846 3510C	1	05/06/2005 07:00	Mark P Mastropietro	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. WW 4517634

S119-050305 Grab Water Sample SUN: Philadelphia Refinery AOI-4

Collected:05/03/2005 12:00 by MBS Account Number: 10132

Submitted: 05/04/2005 16:35 Langan

Reported: 05/11/2005 at 16:18 500 Hyde Park

Discard: 06/11/2005 Doylestown PA 18901

S-119

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681• www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. WW 4517635

S40-050305 Grab Water Sample

SUN: Philadelphia Refinery AOI-4

Collected:05/03/2005 12:15 by MBS Account Number: 10132

Submitted: 05/04/2005 16:35 Langan

Reported: 05/11/2005 at 16:18 500 Hyde Park

Discard: 06/11/2005 Doylestown PA 18901

S-040

				As Received	As Received		
CAT			As Received	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06035	Lead	7439-92-1	< 0.0010	0.0010	0.00021	mg/l	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.030	0.030	0.0099	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	< 10.	10.	1.	ug/l	1
03956	Fluorene	86-73-7	< 10.	10.	1.	ug/l	1
03963	Phenanthrene	85-01-8	16.	10.	1.	ug/l	1
03967	Pyrene	129-00-0	< 10.	10.	1.	ug/l	1
03971	Chrysene	218-01-9	< 10.	10.	1.	ug/l	1
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 5.	5.	0.5	ug/l	1
05401	Benzene	71-43-2	370.	25.	3.	ug/l	5
05402	1,2-Dichloroethane	107-06-2	< 5.	5.	1.	ug/l	1
05407	Toluene	108-88-3	14.	5.	0.7	ug/l	1
05415	Ethylbenzene	100-41-4	21.	5.	0.8	ug/l	1
05420	Isopropylbenzene	98-82-8	40.	5.	1.	ug/l	1
06310	Xylene (Total)	1330-20-7	10.	5.	0.8	ug/l	1

Commonwealth of Pennsylvania Lab Certification No. 36-037 This sample was filtered in the lab for dissolved metals.

CAT		-	2	Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06035	Lead	SW-846 6020	1	05/06/2005 21:15	David K Beck	1
07879	EDB in Wastewater	SW-846 8011	1	05/06/2005 13:22	James H Place	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	05/07/2005 04:01	Jolene M Graham	1
02302	UST-Waters by 8260B	SW-846 8260B	1	05/08/2005 13:25	Jason M Long	1
02302	UST-Waters by 8260B	SW-846 8260B	1	05/08/2005 13:46	Jason M Long	5
01163	GC/MS VOA Water Prep	SW-846 5030B	1	05/08/2005 13:25	Jason M Long	n.a.
01163	GC/MS VOA Water Prep	SW-846 5030B	2	05/08/2005 13:46	Jason M Long	n.a.
06050	ICP/MS SW-846 Water	SW-846 3010A Mod.	1	05/05/2005 18:55	James L Mertz	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. WW 4517635

S40-050305 Grab Water Sample

SUN: Philadelphia Refinery AOI-4

Collected:05/03/2005 12:15 by MBS Account Number: 10132

Submitted: 05/04/2005 16:35 Langan

Reported: 05/11/2005 at 16:18 500 Hyde Park

Discard: 06/11/2005 Doylestown PA 18901

S-040

SW-846 8011 1 05/05/2005 19:08 Amanda W Herr SW-846 3510C 1 05/06/2005 07:00 07786 EDB Extraction 07807 BNA Water Extraction 1 05/06/2005 07:00 Mark P Mastropietro 1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. WW 4517636

S120-050305 Grab Water Sample SUN: Philadelphia Refinery AOI-4

Collected:05/03/2005 12:30 by MBS Account Number: 10132

Submitted: 05/04/2005 16:35 Langan

Reported: 05/11/2005 at 16:19 500 Hyde Park

Discard: 06/11/2005 Doylestown PA 18901

S-120

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Limit of Quantitation*	As Received Method Detection Limit	Units	Dilution Factor
06035	Lead	7439-92-1	< 0.0010	0.0010	0.00021	mg/l	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.029	0.029	0.0098	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	< 10.	10.	1.	ug/l	1
03956	Fluorene	86-73-7	< 10.	10.	1.	ug/l	1
03963	Phenanthrene	85-01-8	< 10.	10.	1.	ug/l	1
03967	Pyrene	129-00-0	< 10.	10.	1.	ug/l	1
03971	Chrysene	218-01-9	< 10.	10.	1.	ug/l	1
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 5.	5.	0.5	ug/l	1
05401	Benzene	71-43-2	< 5.	5.	0.5	ug/l	1
05402	1,2-Dichloroethane	107-06-2	< 5.	5.	1.	ug/l	1
05407	Toluene	108-88-3	< 5.	5.	0.7	ug/l	1
05415	Ethylbenzene	100-41-4	< 5.	5.	0.8	ug/l	1
05420	Isopropylbenzene	98-82-8	< 5.	5.	1.	ug/l	1
06310	Xylene (Total)	1330-20-7	< 5.	5.	0.8	ug/l	1

Commonwealth of Pennsylvania Lab Certification No. 36-037 This sample was filtered in the lab for dissolved metals.

CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06035	Lead	SW-846 6020	1	05/06/2005 21:19	David K Beck	1
07879	EDB in Wastewater	SW-846 8011	1	05/06/2005 14:21	James H Place	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	05/09/2005 11:06	Joseph M Gambler	1
02302	UST-Waters by 8260B	SW-846 8260B	1	05/08/2005 14:07	Jason M Long	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	05/08/2005 14:07	Jason M Long	n.a.
06050	ICP/MS SW-846 Water	SW-846 3010A Mod.	1	05/05/2005 18:55	James L Mertz	1
07786	EDB Extraction	SW-846 8011	1	05/05/2005 19:08	Amanda W Herr	1
07807	BNA Water Extraction	SW-846 3510C	1	05/06/2005 07:00	Mark P Mastropietro	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. WW 4517636

S120-050305 Grab Water Sample SUN: Philadelphia Refinery AOI-4

Collected:05/03/2005 12:30 by MBS Account Number: 10132

Submitted: 05/04/2005 16:35 Langan

Reported: 05/11/2005 at 16:19 500 Hyde Park

Discard: 06/11/2005 Doylestown PA 18901

S-120

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681• www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. WW 4517637

S39-050305 Grab Water Sample

SUN: Philadelphia Refinery AOI-4

Collected:05/03/2005 12:45 by MBS Account Number: 10132

Submitted: 05/04/2005 16:35 Langan

Reported: 05/11/2005 at 16:19

500 Hyde Park Discard: 06/11/2005 Doylestown PA 18901

S-039

CAT			As Received	As Received Limit of	As Received Method		Dilutio
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06035	Lead	7439-92-1	< 0.0010	0.0010	0.00021	mg/l	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.029	0.029	0.0097	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	< 10.	10.	1.	ug/l	1
03956	Fluorene	86-73-7	< 10.	10.	1.	ug/l	1
03963	Phenanthrene	85-01-8	< 10.	10.	1.	ug/l	1
03967	Pyrene	129-00-0	< 10.	10.	1.	ug/l	1
03971	Chrysene	218-01-9	< 10.	10.	1.	ug/l	1
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 5.	5.	0.5	ug/l	1
05401	Benzene	71-43-2	< 5.	5.	0.5	ug/l	1
05402	1,2-Dichloroethane	107-06-2	< 5.	5.	1.	ug/l	1
05407	Toluene	108-88-3	< 5.	5.	0.7	ug/l	1
05415	Ethylbenzene	100-41-4	< 5.	5.	0.8	ug/l	1
05420	Isopropylbenzene	98-82-8	< 5.	5.	1.	ug/l	1
06310	Xylene (Total)	1330-20-7	< 5.	5.	0.8	ug/l	1

Commonwealth of Pennsylvania Lab Certification No. 36-037 This sample was filtered in the lab for dissolved metals.

CAT		-	2	Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06035	Lead	SW-846 6020	1	05/06/2005 21:22	David K Beck	1
07879	EDB in Wastewater	SW-846 8011	1	05/06/2005 14:51	James H Place	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	05/09/2005 12:05	Joseph M Gambler	1
02302	UST-Waters by 8260B	SW-846 8260B	1	05/08/2005 14:28	Jason M Long	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	05/08/2005 14:28	Jason M Long	n.a.
06050	ICP/MS SW-846 Water	SW-846 3010A Mod.	1	05/05/2005 18:55	James L Mertz	1
07786	EDB Extraction	SW-846 8011	1	05/05/2005 19:08	Amanda W Herr	1
07807	BNA Water Extraction	SW-846 3510C	1	05/06/2005 07:00	Mark P Mastropietro	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. WW 4517637

S39-050305 Grab Water Sample SUN: Philadelphia Refinery AOI-4

Collected:05/03/2005 12:45 by MBS Account Number: 10132

Submitted: 05/04/2005 16:35 Langan

Reported: 05/11/2005 at 16:19 500 Hyde Park

Discard: 06/11/2005 Doylestown PA 18901

S-039

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. WW 4517638

S122-050305 Grab Water Sample SUN: Philadelphia Refinery AOI-4

Collected:05/03/2005 13:00 by MBS Account Number: 10132

Submitted: 05/04/2005 16:35 Langan

Reported: 05/11/2005 at 16:19 500 Hyde Park

Discard: 06/11/2005 Doylestown PA 18901

S-122

				As Received	As Received		
CAT			As Received	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06035	Lead	7439-92-1	< 0.0010	0.0010	0.00021	mg/l	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.029	0.029	0.0096	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	< 10.	10.	1.	ug/l	1
03956	Fluorene	86-73-7	< 10.	10.	1.	ug/l	1
03963	Phenanthrene	85-01-8	< 10.	10.	1.	ug/l	1
03967	Pyrene	129-00-0	< 10.	10.	1.	ug/l	1
03971	Chrysene	218-01-9	< 10.	10.	1.	ug/l	1
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 5.	5.	0.5	ug/l	1
05401	Benzene	71-43-2	< 5.	5.	0.5	ug/l	1
05402	1,2-Dichloroethane	107-06-2	< 5.	5.	1.	ug/l	1
05407	Toluene	108-88-3	< 5.	5.	0.7	ug/l	1
05415	Ethylbenzene	100-41-4	< 5.	5.	0.8	ug/l	1
05420	Isopropylbenzene	98-82-8	< 5.	5.	1.	ug/l	1
06310	Xylene (Total)	1330-20-7	< 5.	5.	0.8	ug/l	1

Commonwealth of Pennsylvania Lab Certification No. 36-037 This sample was filtered in the lab for dissolved metals.

CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06035	Lead	SW-846 6020	1	05/06/2005 21:26	David K Beck	1
07879	EDB in Wastewater	SW-846 8011	1	05/06/2005 15:21	James H Place	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	05/09/2005 13:03	Joseph M Gambler	1
02302	UST-Waters by 8260B	SW-846 8260B	1	05/08/2005 14:49	Jason M Long	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	05/08/2005 14:49	Jason M Long	n.a.
06050	ICP/MS SW-846 Water	SW-846 3010A Mod.	1	05/05/2005 18:55	James L Mertz	1
07786	EDB Extraction	SW-846 8011	1	05/05/2005 19:08	Amanda W Herr	1
07807	BNA Water Extraction	SW-846 3510C	1	05/06/2005 07:00	Mark P Mastropietro	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. WW 4517638

S122-050305 Grab Water Sample SUN: Philadelphia Refinery AOI-4

Collected:05/03/2005 13:00 by MBS Account Number: 10132

Submitted: 05/04/2005 16:35 Langan

Reported: 05/11/2005 at 16:19 500 Hyde Park

Discard: 06/11/2005 Doylestown PA 18901

S-122

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. WW 4517639

S38D-050305 Grab Water Sample SUN: Philadelphia Refinery AOI-4

Collected:05/03/2005 13:15 by MBS Account Number: 10132

Submitted: 05/04/2005 16:35 Langan

Reported: 05/11/2005 at 16:19

500 Hyde Park Discard: 06/11/2005 Doylestown PA 18901

S-38D

CAT			As Received	As Received Limit of	As Received Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06035	Lead	7439-92-1	< 0.0010	0.0010	0.00021	mg/l	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.029	0.029	0.0097	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	< 10.	10.	1.	ug/l	1
03956	Fluorene	86-73-7	< 10.	10.	1.	ug/l	1
03963	Phenanthrene	85-01-8	< 10.	10.	1.	ug/l	1
03967	Pyrene	129-00-0	< 10.	10.	1.	ug/l	1
03971	Chrysene	218-01-9	< 10.	10.	1.	ug/l	1
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 5.	5.	0.5	ug/l	1
05401	Benzene	71-43-2	< 5.	5.	0.5	ug/l	1
05402	1,2-Dichloroethane	107-06-2	< 5.	5.	1.	ug/l	1
05407	Toluene	108-88-3	< 5.	5.	0.7	ug/l	1
05415	Ethylbenzene	100-41-4	< 5.	5.	0.8	ug/l	1
05420	Isopropylbenzene	98-82-8	< 5.	5.	1.	ug/l	1
06310	Xylene (Total)	1330-20-7	< 5.	5.	0.8	ug/l	1

Commonwealth of Pennsylvania Lab Certification No. 36-037 This sample was filtered in the lab for dissolved metals.

CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06035	Lead	SW-846 6020	1	05/06/2005 21:30	David K Beck	1
07879	EDB in Wastewater	SW-846 8011	1	05/06/2005 15:51	James H Place	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	05/09/2005 14:02	Joseph M Gambler	1
02302	UST-Waters by 8260B	SW-846 8260B	1	05/08/2005 15:11	Jason M Long	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	05/08/2005 15:11	Jason M Long	n.a.
06050	ICP/MS SW-846 Water	SW-846 3010A Mod.	1	05/05/2005 18:55	James L Mertz	1
07786	EDB Extraction	SW-846 8011	1	05/05/2005 19:08	Amanda W Herr	1
07807	BNA Water Extraction	SW-846 3510C	1	05/06/2005 07:00	Mark P Mastropietro	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. WW 4517639

S38D-050305 Grab Water Sample SUN: Philadelphia Refinery AOI-4

Collected:05/03/2005 13:15 by MBS Account Number: 10132

Submitted: 05/04/2005 16:35 Langan

Reported: 05/11/2005 at 16:19 500 Hyde Park

Discard: 06/11/2005 Doylestown PA 18901

S-38D

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. WW 4517640

S38I-050305 Grab Water Sample SUN: Philadelphia Refinery AOI-4

Collected:05/03/2005 13:30 by MBS Account Number: 10132

Submitted: 05/04/2005 16:35 Langan

Reported: 05/11/2005 at 16:19

500 Hyde Park

Discard: 06/11/2005 Doylestown PA 18901

S-38I

				As Received	As Received		
CAT			As Received	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06035	Lead	7439-92-1	< 0.0010	0.0010	0.00021	mg/l	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.029	0.029	0.0098	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	< 10.	10.	1.	ug/l	1
03956	Fluorene	86-73-7	< 10.	10.	1.	ug/l	1
03963	Phenanthrene	85-01-8	< 10.	10.	1.	ug/l	1
03967	Pyrene	129-00-0	< 10.	10.	1.	ug/l	1
03971	Chrysene	218-01-9	< 10.	10.	1.	ug/l	1
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 5.	5.	0.5	ug/l	1
05401	Benzene	71-43-2	< 5.	5.	0.5	ug/l	1
05402	1,2-Dichloroethane	107-06-2	< 5.	5.	1.	ug/l	1
05407	Toluene	108-88-3	< 5.	5.	0.7	ug/l	1
05415	Ethylbenzene	100-41-4	< 5.	5.	0.8	ug/l	1
05420	Isopropylbenzene	98-82-8	< 5.	5.	1.	ug/l	1
06310	Xylene (Total)	1330-20-7	< 5.	5.	0.8	ug/l	1

Commonwealth of Pennsylvania Lab Certification No. 36-037 This sample was filtered in the lab for dissolved metals.

CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06035	Lead	SW-846 6020	1	05/06/2005 21:33	David K Beck	1
07879	EDB in Wastewater	SW-846 8011	1	05/06/2005 16:21	James H Place	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	05/09/2005 15:01	Joseph M Gambler	1
02302	UST-Waters by 8260B	SW-846 8260B	1	05/08/2005 15:32	Jason M Long	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	05/08/2005 15:32	Jason M Long	n.a.
06050	ICP/MS SW-846 Water	SW-846 3010A Mod.	1	05/05/2005 18:55	James L Mertz	1
07786	EDB Extraction	SW-846 8011	1	05/05/2005 19:08	Amanda W Herr	1
07807	BNA Water Extraction	SW-846 3510C	1	05/06/2005 07:00	Mark P Mastropietro	1

^{*=}This limit was used in the evaluation of the final result

Discard: 06/11/2005

Analysis Report

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. WW 4517640

S38I-050305 Grab Water Sample SUN: Philadelphia Refinery AOI-4

Collected:05/03/2005 13:30 by MBS Account Number: 10132

Submitted: 05/04/2005 16:35 Langan

Reported: 05/11/2005 at 16:19

500 Hyde Park

Doylestown PA 18901

S-38I

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. WW 4517641

S38-050305 Grab Water Sample

SUN: Philadelphia Refinery AOI-4

Collected:05/03/2005 13:45 by MBS Account Number: 10132

Submitted: 05/04/2005 16:35 Langan

Reported: 05/11/2005 at 16:19

500 Hyde Park

Discard: 06/11/2005 Doylestown PA 18901

S-038

				As Received	As Received		
CAT			As Received	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06035	Lead	7439-92-1	< 0.0010	0.0010	0.00021	mg/l	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.029	0.029	0.0097	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	< 10.	10.	1.	ug/l	1
03956	Fluorene	86-73-7	< 10.	10.	1.	ug/l	1
03963	Phenanthrene	85-01-8	< 10.	10.	1.	ug/l	1
03967	Pyrene	129-00-0	< 10.	10.	1.	ug/l	1
03971	Chrysene	218-01-9	< 10.	10.	1.	ug/l	1
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 5.	5.	0.5	ug/l	1
05401	Benzene	71-43-2	< 5.	5.	0.5	ug/l	1
05402	1,2-Dichloroethane	107-06-2	< 5.	5.	1.	ug/l	1
05407	Toluene	108-88-3	< 5.	5.	0.7	ug/l	1
05415	Ethylbenzene	100-41-4	< 5.	5.	0.8	ug/l	1
05420	Isopropylbenzene	98-82-8	< 5.	5.	1.	ug/l	1
06310	Xylene (Total)	1330-20-7	< 5.	5.	0.8	ug/l	1

Commonwealth of Pennsylvania Lab Certification No. 36-037 This sample was filtered in the lab for dissolved metals.

CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06035	Lead	SW-846 6020	1	05/06/2005 21:44	David K Beck	1
07879	EDB in Wastewater	SW-846 8011	1	05/06/2005 16:50	James H Place	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	05/09/2005 15:59	Joseph M Gambler	1
02302	UST-Waters by 8260B	SW-846 8260B	1	05/08/2005 15:53	Jason M Long	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	05/08/2005 15:53	Jason M Long	n.a.
06050	ICP/MS SW-846 Water	SW-846 3010A Mod.	1	05/05/2005 18:55	James L Mertz	1
07786	EDB Extraction	SW-846 8011	1	05/05/2005 19:08	Amanda W Herr	1
07807	BNA Water Extraction	SW-846 3510C	1	05/06/2005 07:00	Mark P Mastropietro	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. WW 4517641

S38-050305 Grab Water Sample SUN: Philadelphia Refinery AOI-4

Collected:05/03/2005 13:45 by MBS Account Number: 10132

Submitted: 05/04/2005 16:35 Langan

Reported: 05/11/2005 at 16:19

500 Hyde Park

Discard: 06/11/2005 Doylestown PA 18901

S-038

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681• www.lancasterlabs.com

Page 1 of 1

Lancaster Laboratories Sample No. WW 4517642

Trip_Blank Water Sample

SUN: Philadelphia Refinery AOI-4

Collected: n.a. Account Number: 10132

Submitted: 05/04/2005 16:35 Langan

Reported: 05/11/2005 at 16:19 500 Hyde Park

Discard: 06/11/2005 Doylestown PA 18901

AO4TB

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Limit of Quantitation*	As Received Method Detection	Units	Dilution Factor
					Limit		
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 5.	5.	0.5	ug/l	1
05401	Benzene	71-43-2	< 5.	5.	0.5	ug/l	1
05402	1,2-Dichloroethane	107-06-2	< 5.	5.	1.	ug/l	1
05407	Toluene	108-88-3	< 5.	5.	0.7	ug/l	1
05415	Ethylbenzene	100-41-4	< 5.	5.	0.8	ug/l	1
05420	Isopropylbenzene	98-82-8	< 5.	5.	1.	ug/l	1
06310	Xylene (Total)	1330-20-7	< 5.	5.	0.8	ug/l	1

Commonwealth of Pennsylvania Lab Certification No. 36-037

CAT			4	Dilution		
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
02302	UST-Waters by 8260B	SW-846 8260B	1	05/08/2005 16:19	Jason M Long	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	05/08/2005 16:19	Jason M Long	n.a.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 3

Quality Control Summary

Client Name: Langan Group Number: 942136

Reported: 05/11/05 at 04:19 PM

Matrix QC may not be reported if site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

Laboratory Compliance Quality Control

Analysis Name	Blank <u>Result</u>	Blank LOQ**	Blank <u>MDL</u>	Report <u>Units</u>	LCS %REC	LCSD %REC	LCS/LCSD <u>Limits</u>	RPD	RPD Max
Batch number: 051250004A Ethylene dibromide	Sample number 0.030	oer(s): 45 0.030	17633-451 0.010	7641 ug/l	100	96	60-140	4	20
Batch number: 051256050003A Lead	Sample number 0.0010	oer(s): 45 0.0010	17633-451 0.00021	7641 mg/l	101		80-120		
Batch number: 05125WAG026 Naphthalene Fluorene Phenanthrene Pyrene Chrysene	Sample number 10. < 10. < 10. < 10. < 10. < 10. < 10.	per(s): 45 10. 10. 10. 10.	17633-451 1. 1. 1. 1.	7641 ug/l ug/l ug/l ug/l ug/l	79 95 99 91 92	78 96 99 89 93	58-108 61-116 68-111 68-114 70-111	2 1 0 2 1	3 0 3 0 3 0 3 0 3 0
Batch number: P051281AA Methyl Tertiary Butyl Ether Benzene 1,2-Dichloroethane Toluene Ethylbenzene Isopropylbenzene Xylene (Total)	Sample numl < 5. < 5. < 5. < 5. < 5. < 5. < 5.	per(s): 45 5. 5. 5. 5. 5. 5. 5.	17633-451 0.5 0.5 1. 0.7 0.8 1.	7642 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	91 98 92 95 94 93	89 97 93 95 94 94	77-127 85-117 77-132 85-115 82-119 80-120 83-113	2 1 1 0 0 1	30 30 30 30 30 30 30 30

Sample Matrix Quality Control

	MS	MSD	MS/MSD		RPD	BKG	DUP	DUP	Dup RPD
Analysis Name	%REC	%REC	<u>Limits</u>	RPD	<u>MAX</u>	Conc	Conc	RPD	Max
Batch number: 051250004A Ethylene dibromide	Sample 96	number	(s): 451763 65-135	3-45176	541	< 0.029	< 0.029	0 (1)	30
Batch number: 051256050003A Lead	Sample 99	number 102	(s): 451763 75-125	3-45176 3	20 20	< 0.0010	< 0.0010	34* (1)	20
Batch number: P051281AA Methyl Tertiary Butyl Ether Benzene 1,2-Dichloroethane Toluene Ethylbenzene Isopropylbenzene Xylene (Total)	Sample 96 110 102 103 99 99	e number	(s): 451763 69-134 83-128 73-136 83-127 82-129 81-130 82-130	3-45176	542				

*- Outside of specification

- **-This limit was used in the evaluation of the final result for the blank
- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The background result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Page 2 of 3

Quality Control Summary

Client Name: Langan Group Number: 942136

Reported: 05/11/05 at 04:19 PM

Sample Matrix Quality Control

	MS	MSD	MS/MSD		RPD	BKG	DUP	DUP	Dup
									RPD
Analysis Name	%REC	%REC	<u>Limits</u>	RPD	MAX	Conc	Conc	RPD	Max

Surrogate Quality Control

Torphonial d14

Analysis Name: EDB in Wastewater Batch number: 051250004A

1,1,2,2-Tetrachloroethane

4517633	103
4517634	99
4517635	87
4517636	101
4517637	106
4517638	111
4517639	97
4517640	109
4517641	98
Blank	114
DUP	100
LCS	111
LCSD	110
MS	110

Limits:

Analysis Name: PAHs in Water by GC/MS

Batch number: 05125WAG026
Nitrobenzene-d5

	Nitrobenzene-d5	2-Fluoropiphenyl	Terpneny1-d14	
4517633	74	78	86	
4517634	85	86	90	
4517635	83	82	86	
4517636	74	83	90	
4517637	74	85	91	
4517638	76	81	90	
4517639	81	88	91	
4517640	78	88	90	
4517641	75	83	86	
Blank	76	81	99	
LCS	79	80	101	
LCSD	79	81	101	
Limits:	51-123	64-112	53-135	

2 Fluorobinhonul

Analysis Name: UST-Waters by 8260B Batch number: P051281AA

Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
95	95	96	93
95	89	98	102
95	97	100	107
	Dibromofluoromethane 95 95	Dibromofluoromethane 1,2-Dichloroethane-d4 95 95 95 89	Dibromofluoromethane 1,2-Dichloroethane-d4 Toluene-d8 95 95 96 95 89 98

*- Outside of specification

- **-This limit was used in the evaluation of the final result for the blank
- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The background result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 3 of 3

Quality Control Summary

Client Na	me: Langan	Group N	umber: 942136	
Reported:	05/11/05 at 04:19 P	M		
		Surrogate Qu	ality Control	
4517636	96	93	97	95
4517637	97	91	97	91
4517638	95	93	93	94
4517639	97	90	98	93
4517640	96	93	96	93
4517641	100	96	97	92
4517642	96	90	97	93
Blank	96	92	97	93
LCS	93	92	97	94
LCSD	95	92	96	96
MS	100	96	96	95
Limits:	81-120	82-112	85-112	83-113

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The background result was more than four times the spike added.

Analysis Request / Environmental Services Chain of Custody

ancaster Laboratories	here quality is a science.
	ŽŽ.
4	•

For Lancaster Laboratories use only Group# 942126 Sample # 4517635-42

COC# 0080450

me Time Eme Dissolved Po samples are For Lab Use Only Date who Iteral unpreserved FSC: rooler femo 1.4-2.1°C Remarks Marix mg Pauatena 6×2 Time | Received by: Time | Received by: Received by: Time | Received by: Time | Received by: Date Time | 1 Please print. Instructions on reverse side correspond with circled numbers. 9 marri M.C. Relinquished by: Relinquished by: Relinquished by: Relinquished by **Relinduishe** ठ 8 Internal Chain of Custody required? Yes (No (If yes, indicate QC sample and submit triplicate volume.) SDG Complete? 1330 1345 1245 1300 807 140 330 315 Rush E-mail Site-specific QC required? Yes (No. (Rush TAT is subject to Lancaster Laboratories approval and surcharge.) Yes Turnaround Time Requested (TAT) (please circle): Normal PWSID# Quote #: 5/3/05 Acct. #: # O d Fax PAG Phone Project Name # Sun Philadelphic Refirm NOT-4 Data Package Options (please circle if required) Name of state where samples were collected: ر 199 Fax#: Type VI (Raw Data) Rush results requested by (please circle): Project Manager: K, Morbin J. Hanne Sampler: M. Cyc.d Souncake S11912 - 050305 1538D-050305 5381-050305 S119-050305 \$122-050305 Sizo-050305 Other 539-050305 340-05030F GLP 338-050305 Date results are needed: Type III (NJ Red. Del.) E-mail address: Type IV (CLP) QC Summary Type I (Tier I) Phone #:__ ထ

Lancaster Laboratories, Inc., 2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 (717) 656-2300 Copies: White and yellow should accompany samples to Lancaster Laboratories. The pink copy should be retained by the client.

Explanation of Symbols and Abbreviations

Ingrashic Qualifiers

The following defines common symbols and abbreviations used in reporting technical data:

N.D.	none detected	BMQL	Below Minimum Quantitation Level
TNTC	Too Numerous To Count	MPN	Most Probable Number
IU	International Units	CP Units	cobalt-chloroplatinate units
umhos/cm	micromhos/cm	NTU	nephelometric turbidity units
С	degrees Celsius	F	degrees Fahrenheit
meq	milliequivalents	lb.	pound(s)
g	gram(s)	kg	kilogram(s)
ug	microgram(s)	mg	milligram(s)
ml	milliliter(s)	Ĭ	liter(s)
m3	cubic meter(s)	ul	microliter(s)

- < less than The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.
- > greater than
- J estimated value The result is ≥ the Method Detection Limit (MDL) and < the Limit of Quantitation (LOQ).
- ppm parts per million One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.
- ppb parts per billion
- **Dry weight**basis
 Results printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture. All other results are reported on an as-received basis.

U.S. EPA CLP Data Qualifiers:

	Organic Quanners		morganic Quanners
Α	TIC is a possible aldol-condensation product	В	Value is <crdl, but="" th="" ≥idl<=""></crdl,>
В	Analyte was also detected in the blank	Ε	Estimated due to interference
С	Pesticide result confirmed by GC/MS	M	Duplicate injection precision not met
D	Compound quantitated on a diluted sample	N	Spike sample not within control limits
Е	Concentration exceeds the calibration range of	S	Method of standard additions (MSA) used
	the instrument		for calculation
N	Presumptive evidence of a compound (TICs only)	U	Compound was not detected
Р	Concentration difference between primary and	W	Post digestion spike out of control limits
	confirmation columns >25%	*	Duplicate analysis not within control limits
U	Compound was not detected	+	Correlation coefficient for MSA < 0.995
X,Y,Z	Defined in case narrative		

Analytical test results for methods listed on the laboratories' accreditation scope meet all requirements of NELAC unless otherwise noted under the individual analysis.

Measurement uncertainty values, as applicable, are available upon request.

Organic Qualifiers

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL LANCASTER LABORATORIES BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF LANCASTER LABORATORIES AND (B) WHETHER LANCASTER LABORATORIES HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Lancaster Laboratories which includes any conditions that vary from the Standard Terms and Conditions of Lancaster Laboratories and we hereby object to any conflicting terms contained in any acceptance or order submitted by client.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

ANALYTICAL RESULTS

Prepared for:

Langan 500 Hyde Park Doylestown PA 18901

215-348-7101

Prepared by:

Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425

SAMPLE GROUP

The sample group for this submittal is 942334. Samples arrived at the laboratory on Thursday, May 05, 2005. The PO# for this group is SUNOCO PHILLY REFINER.

Client Description	Lancaster Labs Number
S97-050405 Grab Water Sample	4518610
S123-050405 Grab Water Sample	4518611
S28-050405 Grab Water Sample	4518612
S121-050405 Grab Water Sample	4518613

ELECTRONIC	SUN: Aquaterra Tech.	Attn: Brad Spancake
COPY TO	-	_
1 COPY TO	LL	Attn: Angela Miller
1 COPY TO	Langan	Attn: Jason Hanna
ELECTRONIC	Langan	Attn: Dennis Webster
COPY TO		

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Questions? Contact your Client Services Representative Angela M Miller at (717) 656-2300.

Respectfully Submitted,

Michele J. Smith Group Leader

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. WW 4518610

S97-050405 Grab Water Sample

SUN: Philadelphia Refinery AOI-4

Collected:05/04/2005 12:40 by MBS Account Number: 10132

Submitted: 05/05/2005 14:30 Langan

Reported: 05/17/2005 at 16:18 500 Hyde Park

Discard: 06/17/2005 de 10:10 500 Myde Fulk

Discard: 06/17/2005 Doylestown PA 18901

S-097

CAT			As Received	As Received Limit of	As Received Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06035	Lead	7439-92-1	< 0.0010	0.0010	0.00021	mg/l	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.028	0.028	0.0094	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	110.	10.	1.	ug/l	1
03956	Fluorene	86-73-7	25.	10.	1.	ug/l	1
03963	Phenanthrene	85-01-8	47.	10.	1.	ug/l	1
03967	Pyrene	129-00-0	< 10.	10.	1.	ug/l	1
03971	Chrysene	218-01-9	< 10.	10.	1.	ug/l	1
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 50.	50.	5.	ug/l	10
05401	Benzene	71-43-2	600.	50.	5.	ug/l	10
05402	1,2-Dichloroethane	107-06-2	< 50.	50.	10.	ug/l	10
05407	Toluene	108-88-3	< 50.	50.	7.	ug/l	10
05415	Ethylbenzene	100-41-4	63.	50.	8.	ug/l	10
05420	Isopropylbenzene	98-82-8	< 50.	50.	10.	ug/l	10
06310	Xylene (Total)	1330-20-7	230.	50.	8.	ug/l	10
	Due to the level of benzene, t	he reporting	limits for				

Due to the level of benzene, the reporting limits for all GC/MS volatile compounds were raised.

Commonwealth of Pennsylvania Lab Certification No. 36-037 This sample was filtered in the lab for dissolved metals.

Trip blank vials were not received by the laboratory for this sample group.

CAT			-	Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06035	Lead	SW-846 6020	1	05/10/2005 23:49	David K Beck	1
07879	EDB in Wastewater	SW-846 8011	1	05/10/2005 06:41	James H Place	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	05/09/2005 13:26	Joseph M Gambler	1
02302	UST-Waters by 8260B	SW-846 8260B	1	05/08/2005 16:40	Jason M Long	10

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. WW 4518610

S97-050405 Grab Water Sample

SUN: Philadelphia Refinery AOI-4

Collected:05/04/2005 12:40 by MBS Account Number: 10132

Submitted: 05/05/2005 14:30 Langan

Reported: 05/17/2005 at 16:18 500 Hyde Park

Discard: 06/17/2005 Doylestown PA 18901

S-097

01163	GC/MS VOA Water Prep	SW-846 5030B	1	05/08/2005 16:40	Jason M Long	n.a.
06050	ICP/MS SW-846 Water	SW-846 3010A Mod.	1	05/08/2005 19:20	James L Mertz	1
07786	EDB Extraction	SW-846 8011	1	05/09/2005 12:10	Darin P Wagner	1
07807	BNA Water Extraction	SW-846 3510C	1	05/06/2005 21:00	Elia R Botrous	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. WW 4518611

S123-050405 Grab Water Sample SUN: Philadelphia Refinery AOI-4

Collected:05/04/2005 12:50 by MBS Account Number: 10132

Submitted: 05/05/2005 14:30 Langan

Reported: 05/17/2005 at 16:18

500 Hyde Park Doylestown PA 18901

Discard: 06/17/2005

α	П	\sim	\neg
5-	_	4	3

CAT			As Received	As Received Limit of	As Received Method		Dilutio
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06035	Lead	7439-92-1	< 0.0010	0.0010	0.00021	mg/l	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.028	0.028	0.0094	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	26.	10.	1.	ug/l	1
03956	Fluorene	86-73-7	13.	10.	1.	ug/l	1
03963	Phenanthrene	85-01-8	34.	10.	1.	ug/l	1
03967	Pyrene	129-00-0	< 10.	10.	1.	ug/l	1
03971	Chrysene	218-01-9	< 10.	10.	1.	ug/l	1
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 5.	5.	0.5	ug/l	1
05401	Benzene	71-43-2	8.	5.	0.5	ug/l	1
05402	1,2-Dichloroethane	107-06-2	< 5.	5.	1.	ug/l	1
05407	Toluene	108-88-3	190.	5.	0.7	ug/l	1
05415	Ethylbenzene	100-41-4	68.	5.	0.8	ug/l	1
05420	Isopropylbenzene	98-82-8	10.	5.	1.	ug/l	1
06310	Xylene (Total)	1330-20-7	250.	5.	0.8	ug/l	1

Commonwealth of Pennsylvania Lab Certification No. 36-037 This sample was filtered in the lab for dissolved metals. Trip blank vials were not received by the laboratory for this sample group.

CAT			4	Analysis		Dilution
CAI				-		DITUCTOR
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06035	Lead	SW-846 6020	1	05/10/2005 23:53	David K Beck	1
07879	EDB in Wastewater	SW-846 8011	1	05/10/2005 08:10	James H Place	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	05/09/2005 14:18	Joseph M Gambler	1
02302	UST-Waters by 8260B	SW-846 8260B	1	05/08/2005 17:01	Jason M Long	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	05/08/2005 17:01	Jason M Long	n.a.
06050	ICP/MS SW-846 Water	SW-846 3010A Mod.	1	05/08/2005 19:20	James L Mertz	1
07786	EDB Extraction	SW-846 8011	1	05/09/2005 12:10	Darin P Wagner	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. WW 4518611

S123-050405 Grab Water Sample SUN: Philadelphia Refinery AOI-4

Collected: 05/04/2005 12:50 by MBS Account Number: 10132

Submitted: 05/05/2005 14:30 Langan

Reported: 05/17/2005 at 16:18 500 Hyde Park

Discard: 06/17/2005 Doylestown PA 18901

S-123

07807 BNA Water Extraction SW-846 3510C 1 05/06/2005 21:00 Elia R Botrous

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. WW 4518612

S28-050405 Grab Water Sample

SUN: Philadelphia Refinery AOI-4

Collected:05/04/2005 13:15 by MBS Account Number: 10132

Submitted: 05/05/2005 14:30 Langan

Reported: 05/17/2005 at 16:18 500 Hyde Park

Discard: 06/17/2005 Doylestown PA 18901

21200101 00,11,20

S-028

CAT			As Received	As Received Limit of	As Received Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06035	Lead	7439-92-1	< 0.0010	0.0010	0.00021	mg/l	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.029	0.029	0.0095	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	12.	10.	1.	ug/l	1
03956	Fluorene	86-73-7	12.	10.	1.	ug/l	1
03963	Phenanthrene	85-01-8	26.	10.	1.	ug/l	1
03967	Pyrene	129-00-0	< 10.	10.	1.	ug/l	1
03971	Chrysene	218-01-9	< 10.	10.	1.	ug/l	1
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	270.	25.	3.	ug/l	5
05401	Benzene	71-43-2	51.	5.	0.5	ug/l	1
05402	1,2-Dichloroethane	107-06-2	< 5.	5.	1.	ug/l	1
05407	Toluene	108-88-3	< 5.	5.	0.7	ug/l	1
05415	Ethylbenzene	100-41-4	12.	5.	0.8	ug/l	1
05420	Isopropylbenzene	98-82-8	6.	5.	1.	ug/l	1
06310	Xylene (Total)	1330-20-7	13.	5.	0.8	ug/l	1

Commonwealth of Pennsylvania Lab Certification No. 36-037 This sample was filtered in the lab for dissolved metals. Trip blank vials were not received by the laboratory for this sample group.

CAT			2	Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06035	Lead	SW-846 6020	1	05/10/2005 23:57	David K Beck	1
07879	EDB in Wastewater	SW-846 8011	1	05/10/2005 09:10	James H Place	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	05/09/2005 15:10	Joseph M Gambler	1
02302	UST-Waters by 8260B	SW-846 8260B	1	05/08/2005 17:22	Jason M Long	1
02302	UST-Waters by 8260B	SW-846 8260B	1	05/09/2005 20:39	Shawn J Rice	5
01163	GC/MS VOA Water Prep	SW-846 5030B	1	05/08/2005 17:22	Jason M Long	n.a.
01163	GC/MS VOA Water Prep	SW-846 5030B	2	05/09/2005 20:39	Shawn J Rice	n.a.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. WW 4518612

S28-050405 Grab Water Sample

SUN: Philadelphia Refinery AOI-4

Collected:05/04/2005 13:15 by MBS Account Number: 10132

Submitted: 05/05/2005 14:30 Langan

Reported: 05/17/2005 at 16:18 500 Hyde Park

Discard: 06/17/2005 Doylestown PA 18901

S-028

06050	ICP/MS SW-846 Water	SW-846 3010A Mod.	1	05/08/2005 19:20	James L Mertz	1
07786	EDB Extraction	SW-846 8011	1	05/09/2005 12:10	Darin P Wagner	1
07807	BNA Water Extraction	SW-846 3510C	1	05/06/2005 21:00	Elia R Botrous	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. WW 4518613

S121-050405 Grab Water Sample SUN: Philadelphia Refinery AOI-4

Collected:05/04/2005 14:00 by MBS Account Number: 10132

Submitted: 05/05/2005 14:30 Langan

Reported: 05/17/2005 at 16:18 500 Hyde Park

Discard: 06/17/2005 Doylestown PA 18901

S-121

				As Received	As Received		
CAT			As Received	Limit of	Method		Dilutio:
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06035	Lead	7439-92-1	< 0.0010	0.0010	0.00021	mg/l	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.028	0.028	0.0094	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	< 10.	10.	1.	ug/l	1
03956	Fluorene	86-73-7	< 10.	10.	1.	ug/l	1
03963	Phenanthrene	85-01-8	< 10.	10.	1.	ug/l	1
03967	Pyrene	129-00-0	< 10.	10.	1.	ug/l	1
03971	Chrysene	218-01-9	< 10.	10.	1.	ug/l	1
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 5.	5.	0.5	ug/l	1
05401	Benzene	71-43-2	< 5.	5.	0.5	ug/l	1
05402	1,2-Dichloroethane	107-06-2	< 5.	5.	1.	ug/l	1
05407	Toluene	108-88-3	< 5.	5.	0.7	ug/l	1
05415	Ethylbenzene	100-41-4	< 5.	5.	0.8	ug/l	1
05420	Isopropylbenzene	98-82-8	< 5.	5.	1.	ug/l	1
06310	Xylene (Total)	1330-20-7	< 5.	5.	0.8	ug/l	1

Commonwealth of Pennsylvania Lab Certification No. 36-037 This sample was filtered in the lab for dissolved metals.

Trip blank vials were not received by the laboratory for this sample group.

CAT		-	•	Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06035	Lead	SW-846 6020	1	05/11/2005 00:01	David K Beck	1
07879	EDB in Wastewater	SW-846 8011	1	05/10/2005 09:40	James H Place	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	05/09/2005 16:03	Joseph M Gambler	1
02302	UST-Waters by 8260B	SW-846 8260B	1	05/08/2005 17:44	Jason M Long	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	05/08/2005 17:44	Jason M Long	n.a.
06050	ICP/MS SW-846 Water	SW-846 3010A Mod.	1	05/08/2005 19:20	James L Mertz	1
07786	EDB Extraction	SW-846 8011	1	05/09/2005 12:10	Darin P Wagner	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. WW 4518613

S121-050405 Grab Water Sample SUN: Philadelphia Refinery AOI-4

Collected:05/04/2005 14:00 by MBS Account Number: 10132

Submitted: 05/05/2005 14:30 Langan

Reported: 05/17/2005 at 16:18 500 Hyde Park

Discard: 06/17/2005 Doylestown PA 18901

S-121

07807 BNA Water Extraction SW-846 3510C 1 05/06/2005 21:00 Elia R Botrous

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Page 1 of 3

Quality Control Summary

Client Name: Langan Group Number: 942334

Reported: 05/17/05 at 04:19 PM

Matrix QC may not be reported if site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

Laboratory Compliance Quality Control

Analysis Name	Blank <u>Result</u>	Blank LOQ**	Blank <u>MDL</u>	Report <u>Units</u>	LCS %REC	LCSD %REC	LCS/LCSD <u>Limits</u>	RPD	RPD Max
Batch number: 05126WAF026	Sample numb	er(s): 45	18610-4518	3613					
Naphthalene	< 10.	10.	1.	uq/l	85	86	58-108	1	30
Fluorene	< 10.	10.	1.	ug/l	87	89	61-116	2	30
Phenanthrene	< 10.	10.	1.	ug/l	95	91	68-111	5	30
Pyrene	< 10.	10.	1.	ug/l	87	86	68-114	1	30
Chrysene	< 10.	10.	1.	ug/l	91	91	70-111	0	30
Batch number: 051280001A	Sample numb	er(s): 45	18610-4518	3613					
Ethylene dibromide	< 0.030	0.030	0.010	ug/l	100	100	60-140	0	20
Batch number: 051286050003A	Sample numb	er(s): 45	18610-4518	3613					
Lead	< 0.0010	0.0010	0.00021	mg/l	98		80-120		
Batch number: P051281AA	Sample numb	er(s): 45	18610-4518	3613					
Methyl Tertiary Butyl Ether	< 5.	5.	0.5	uq/l	91	89	77-127	2	30
Benzene	< 5.	5.	0.5	ug/l	98	97	85-117	1	30
1,2-Dichloroethane	< 5.	5.	1.	ug/l	92	93	77-132	1	30
Toluene	< 5.	5.	0.7	ug/l	95	95	85-115	0	30
Ethylbenzene	< 5.	5.	0.8	ug/l	94	94	82-119	0	30
Isopropylbenzene	< 5.	5.	1.	ug/l	93	94	80-120	1	30
Xylene (Total)	< 5.	5.	0.8	ug/l	94	95	83-113	0	30
Batch number: P051291AB	Sample numb	er(s): 45	18612						
Methyl Tertiary Butyl Ether	< 5.	5.	0.5	ug/l	91	89	77-127	2	30

Sample Matrix Quality Control

	MS	MSD	MS/MSD		RPD	BKG	DUP	DUP	Dup RPD
Analysis Name	<u>%REC</u>	%REC	<u>Limits</u>	RPD	<u>MAX</u>	Conc	Conc	RPD	Max
Batch number: 051280001A Ethylene dibromide	Sample 87	e number	(s): 4518610 65-135	0-45186	13	< 0.028	< 0.028	200* (1)	30
Batch number: 051286050003A Lead	Sample 100	number 98	(s): 4518610 75-125	0-45186 2	13 20	< 0.0010	< 0.0010	15 (1)	20
Batch number: P051281AA Methyl Tertiary Butyl Ether Benzene 1,2-Dichloroethane Toluene	Sample 96 110 102 103	e number	(s): 4518610 69-134 83-128 73-136 83-127	0-45186	13				

*- Outside of specification

- **-This limit was used in the evaluation of the final result for the blank
- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The background result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 2 of 3

Quality Control Summary

Client Name: Langan Group Number: 942334

Reported: 05/17/05 at 04:19 PM

Sample Matrix Quality Control

	MS	MSD	MS/MSD		RPD	BKG	DUP	DUP	Dup RPD
Analysis Name	%REC	%REC	<u>Limits</u>	RPD	<u>MAX</u>	Conc	Conc	RPD	Max
Ethylbenzene	99		82-129						
Isopropylbenzene Xylene (Total)	99 100		81-130 82-130						
Aylene (local)	100		02 130						
Batch number: P051291AB	Sample	e number	(s): 4518612	2					
Methyl Tertiary Butyl Ether	87		69-134						

Surrogate Quality Control

Analysis Name: PAHs in Water by GC/MS

Batch number: 05126WAF026

Datell Halls	Nitrobenzene-d5	2-Fluorobiphenyl	Terphenyl-d14	
4518610	109	94	83	
4518611	113	85	104	
4518612	89	83	94	
4518613	90	87	90	
Blank	89	86	106	
LCS	92	88	102	
LCSD	91	94	104	
Limits:	51-123	64-112	53-135	

Analysis Name: EDB in Wastewater Batch number: 051280001A

1,1,2,2-

Tetrachloroethane

4518610	119
4518611	107
4518612	89
4518613	95
Blank	104
DUP	104
LCS	106
LCSD	104
MS	119

Limits: 52-120

Analysis Name: UST-Waters by 8260B Batch number: P051281AA

baccii iiulib	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
4518610	92	91	97	96
4518611	100	93	100	101
4518612	92	88	99	96
4518613	98	88	97	95
Blank	96	92	97	93
LCS	93	92	97	94
LCSD	95	92	96	96

*- Outside of specification

- **-This limit was used in the evaluation of the final result for the blank
- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The background result was more than four times the spike added.

83-113

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Page 3 of 3

Quality Control Summary

Client Name: Langan Group Number: 942334

82-112

Reported: 05/17/05 at 04:19 PM

Limits:

		Surrogate Q	uality Control	
MS	100	96	96	95
Limits:	81-120	82-112	85-112	83-113
	Name: 8260 Master Scan (wa iber: P051291AB Dibromofluoromethane	ter) 1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
Blank LCS LCSD MS	93 95 95 95	92 93 94 90	97 95 96 95	94 96 96 96

85-112

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The background result was more than four times the spike added.

Analysis Request / Environmental Services Chain of Custody

Acct. # 10133 Group# 943334 Sample # 4518610-13

COC # 0081524

Please	print. Instructi	ons on revers	se side corres	Please print. Instructions on reverse side correspond with circled numbers.	ed numbers	_	Cooler Le	18mp 3.1	J.4.16C		
Client: Sun-Aguatoric / Langan Acct. #:			4	(5)				AND CONTRACTOR		ab Use Only	À
Project Name# Sun-Philadelphic Refinery Port PWSID #:					aun	24	nya.		SCR#	اا	
Project Manager: K. Na/hh T. Hanna P.O.#:	٠.		14 (†) 1	₹	<u>'</u>	10 m.	72	<u></u>			9
				W.	- CON	25 CO	\ \gamma_{20}		_		19 (A) 19 (A)
Name of state where samples were collected:				R	1867 PO	200	<u>\</u>	\ \ \			1413) (1413) (1413) (
			# (F1)	00 / 10 mg	100 par 3000	A A A A		/	•		jenau ur Irvaladis
			0	8 /		\downarrow	1	Ž	Kemarks	'	91
21 - 20402 - 1-2 COPOC - 1-2 C	2 2 2 2 2	, ,		\\\	\bigvee	11		4	Displaced Pb Samples	Samp!	2 2
01 CO	35 X	, 7		\bigvee	W			\$ 	יוונס ברל מש		3
5/4/05	400 X	×	C 8	\bigwedge	V	ĵ,					
			. "							j	
					***				-		
		:									
						\dashv					
L						4					
(7) Iumaround Time Requested (TAT) (please circle): Normal (Rush TAT is subject to Lancaster Laboratories approval and surcharde.)	Kush	Relinguished by	Crop par		Date	ime	Received by	d by:	-	Date	Time (9
Date results are needed: 5 Day TAT		7711	300		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3	100	adone	- 1-1/0/Se	2011	8
Phone Fax	E-mail	Relinquished by	T (q par		Date	Time	Received by	d by:	~	Date	Time
Phone #: Fax #:		1 2	101	(P/S	960	Jo	Ser	4	SOL	04:01
E-mail address:		Relinquished by			Date	Time	Received by:	d by:)	Date	Time
e Options (please circle if required)	SDG Complete?	X	1/3anga		75/05	14:30					
QC Summary Type VI (Raw Data) Yes	Jak	Relinquished by	ed by:		Date	Time	Received by:	d by:		Date	Time
GLP	(oN)		/	/							
Type II (Tier II) Other (If yes, indicate QC sample and submit triplicate volume.)	cate volume.)	Relinquished by:	ed by:		Date	Time	Received by	d by:		Date	Time
ed. Del.)	17 Yes NO	F	· • • • • • • • • • • • • • • • • • • •		; i	:		6/8/V	a	77/5	/42x
Type IV (CLP))						<u>ገ</u>	3	-1	\ <u>\</u> \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	<u>کر</u> ′

Lancaster Laboratories, Inc., 2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 (717) 656-2300 Copies: White and yellow should accompany samples to Lancaster Laboratories. The pink copy should be retained by the client.

Explanation of Symbols and Abbreviations

Ingrashic Qualifiers

The following defines common symbols and abbreviations used in reporting technical data:

N.D.	none detected	BMQL	Below Minimum Quantitation Level
TNTC	Too Numerous To Count	MPN	Most Probable Number
IU	International Units	CP Units	cobalt-chloroplatinate units
umhos/cm	micromhos/cm	NTU	nephelometric turbidity units
С	degrees Celsius	F	degrees Fahrenheit
meq	milliequivalents	lb.	pound(s)
g	gram(s)	kg	kilogram(s)
ug	microgram(s)	mg	milligram(s)
ml	milliliter(s)	Ĭ	liter(s)
m3	cubic meter(s)	ul	microliter(s)

- < less than The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.
- > greater than
- J estimated value The result is ≥ the Method Detection Limit (MDL) and < the Limit of Quantitation (LOQ).
- ppm parts per million One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.
- ppb parts per billion
- **Dry weight**basis
 Results printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture. All other results are reported on an as-received basis.

U.S. EPA CLP Data Qualifiers:

	Organic Quanners		morganic Quanners
Α	TIC is a possible aldol-condensation product	В	Value is <crdl, but="" th="" ≥idl<=""></crdl,>
В	Analyte was also detected in the blank	Ε	Estimated due to interference
С	Pesticide result confirmed by GC/MS	M	Duplicate injection precision not met
D	Compound quantitated on a diluted sample	N	Spike sample not within control limits
Е	Concentration exceeds the calibration range of	S	Method of standard additions (MSA) used
	the instrument		for calculation
N	Presumptive evidence of a compound (TICs only)	U	Compound was not detected
Р	Concentration difference between primary and	W	Post digestion spike out of control limits
	confirmation columns >25%	*	Duplicate analysis not within control limits
U	Compound was not detected	+	Correlation coefficient for MSA < 0.995
X,Y,Z	Defined in case narrative		

Analytical test results for methods listed on the laboratories' accreditation scope meet all requirements of NELAC unless otherwise noted under the individual analysis.

Measurement uncertainty values, as applicable, are available upon request.

Organic Qualifiers

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL LANCASTER LABORATORIES BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF LANCASTER LABORATORIES AND (B) WHETHER LANCASTER LABORATORIES HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Lancaster Laboratories which includes any conditions that vary from the Standard Terms and Conditions of Lancaster Laboratories and we hereby object to any conflicting terms contained in any acceptance or order submitted by client.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

ANALYTICAL RESULTS

Prepared for:

Langan 500 Hyde Park Doylestown PA 18901

215-348-7101

Prepared by:

Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425

SAMPLE GROUP

The sample group for this submittal is 942526. Samples arrived at the laboratory on Friday, May 06, 2005. The PO# for this group is SUNOCO PHILLY REFINER.

Client Description	<u>Lancaster Labs Number</u>
S102-050605 Grab Water Sample	4519602
S59D-050605 Grab Water Sample	4519603
MW1-050605 Grab Water Sample	4519604
MW4-050605 Grab Water Sample	4519605

ELECTRONIC SUN: Aquaterra Tech. Attn: Brad Spancake
COPY TO
1 COPY TO
1 COPY TO
1 Langan Attn: Jason Hanna
ELECTRONIC Langan Attn: Dennis Webster
COPY TO

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Questions? Contact your Client Services Representative Angela M Miller at (717) 656-2300.

Respectfully Submitted,

Michele J. Smith Group Leader

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. WW 4519602

S102-050605 Grab Water Sample SUN: Philadelphia Refinery AOI-4

Collected:05/06/2005 10:00 by MBS Account Number: 10132

Submitted: 05/06/2005 18:40 Langan

Reported: 05/17/2005 at 16:24 500 Hyde Park

Discard: 06/17/2005 Doylestown PA 18901

S-102

				As Received	As Received		
CAT			As Received	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06035	Lead	7439-92-1	< 0.0010	0.0010	0.00021	mg/l	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.028	0.028	0.0094	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	< 10.	10.	1.	ug/l	1
03956	Fluorene	86-73-7	< 10.	10.	1.	ug/l	1
03963	Phenanthrene	85-01-8	< 10.	10.	1.	ug/l	1
03967	Pyrene	129-00-0	< 10.	10.	1.	ug/l	1
03971	Chrysene	218-01-9	< 10.	10.	1.	ug/l	1
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 5.	5.	0.5	ug/l	1
05401	Benzene	71-43-2	< 5.	5.	0.5	ug/l	1
05402	1,2-Dichloroethane	107-06-2	< 5.	5.	1.	ug/l	1
05407	Toluene	108-88-3	< 5.	5.	0.7	ug/l	1
05415	Ethylbenzene	100-41-4	< 5.	5.	0.8	ug/l	1
05420	Isopropylbenzene	98-82-8	< 5.	5.	1.	ug/l	1
06310	Xylene (Total)	1330-20-7	< 5.	5.	0.8	ug/l	1

Commonwealth of Pennsylvania Lab Certification No. 36-037 This sample was filtered in the lab for dissolved metals. Trip blank vials were not received by the laboratory for this sample group.

		EdDOI GCOI y	CIII O.	111010		
CAT		-		Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06035	Lead	SW-846 6020	1	05/13/2005 00:41	David K Beck	1
07879	EDB in Wastewater	SW-846 8011	1	05/10/2005 10:09	James H Place	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	05/10/2005 11:11	Joseph M Gambler	1
02302	UST-Waters by 8260B	SW-846 8260B	1	05/11/2005 11:03	Andrea D Moore	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	05/11/2005 11:03	Andrea D Moore	n.a.
06050	ICP/MS SW-846 Water	SW-846 3010A Mod.	1	05/10/2005 18:15	James L Mertz	1
07786	EDB Extraction	SW-846 8011	1	05/09/2005 12:10	Darin P Wagner	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. WW 4519602

S102-050605 Grab Water Sample SUN: Philadelphia Refinery AOI-4

Collected:05/06/2005 10:00 by MBS Account Number: 10132

Submitted: 05/06/2005 18:40 Langan

Reported: 05/17/2005 at 16:24 500 Hyde Park

Discard: 06/17/2005 Doylestown PA 18901

S-102

07807 BNA Water Extraction SW-846 3510C 1 05/08/2005 10:00 Joseph S Feister 1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. WW 4519603

S59D-050605 Grab Water Sample SUN: Philadelphia Refinery AOI-4

Collected:05/06/2005 10:30 by MBS Account Number: 10132

Submitted: 05/06/2005 18:40 Langan

Reported: 05/17/2005 at 16:24 500 Hyde Park

Discard: 06/17/2005 Doylestown PA 18901

S-59D

				As Received	As Received		
CAT			As Received	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06035	Lead	7439-92-1	< 0.0010	0.0010	0.00021	mg/l	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.028	0.028	0.0093	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	< 10.	10.	1.	ug/l	1
03956	Fluorene	86-73-7	< 10.	10.	1.	ug/l	1
03963	Phenanthrene	85-01-8	< 10.	10.	1.	ug/l	1
03967	Pyrene	129-00-0	< 10.	10.	1.	ug/l	1
03971	Chrysene	218-01-9	< 10.	10.	1.	ug/l	1
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 5.	5.	0.5	ug/l	1
05401	Benzene	71-43-2	< 5.	5.	0.5	ug/l	1
05402	1,2-Dichloroethane	107-06-2	< 5.	5.	1.	ug/l	1
05407	Toluene	108-88-3	< 5.	5.	0.7	ug/l	1
05415	Ethylbenzene	100-41-4	< 5.	5.	0.8	ug/l	1
05420	Isopropylbenzene	98-82-8	< 5.	5.	1.	ug/l	1
06310	Xylene (Total)	1330-20-7	< 5.	5.	0.8	ug/l	1

Commonwealth of Pennsylvania Lab Certification No. 36-037 This sample was filtered in the lab for dissolved metals. Trip blank vials were not received by the laboratory for this sample group.

CAT			Analysis			
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06035	Lead	SW-846 6020	1	05/13/2005 00:45	David K Beck	1
07879	EDB in Wastewater	SW-846 8011	1	05/10/2005 10:39	James H Place	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	05/10/2005 12:03	Joseph M Gambler	1
02302	UST-Waters by 8260B	SW-846 8260B	1	05/11/2005 11:27	Andrea D Moore	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	05/11/2005 11:27	Andrea D Moore	n.a.
06050	ICP/MS SW-846 Water	SW-846 3010A Mod.	1	05/10/2005 18:15	James L Mertz	1
07786	EDB Extraction	SW-846 8011	1	05/09/2005 12:10	Darin P Wagner	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. WW 4519603

S59D-050605 Grab Water Sample SUN: Philadelphia Refinery AOI-4

Collected:05/06/2005 10:30 by MBS Account Number: 10132

Submitted: 05/06/2005 18:40 Langan

Reported: 05/17/2005 at 16:24 500 Hyde Park

Discard: 06/17/2005 Doylestown PA 18901

S-59D

07807 BNA Water Extraction SW-846 3510C 1 05/08/2005 10:00 Joseph S Feister

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. WW 4519604

MW1-050605 Grab Water Sample

SUN: Philadelphia Refinery AOI-4

Collected:05/06/2005 11:20 by MBS Account Number: 10132

Submitted: 05/06/2005 18:40 Langan

Reported: 05/17/2005 at 16:24 500 Hyde Park

Discard: 06/17/2005 Doylestown PA 18901

PRM01

				As Received	As Received		
CAT			As Received	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06035	Lead	7439-92-1	< 0.0010	0.0010	0.00021	mg/l	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.028	0.028	0.0093	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	32.	10.	1.	ug/l	1
03956	Fluorene	86-73-7	< 10.	10.	1.	ug/l	1
03963	Phenanthrene	85-01-8	< 10.	10.	1.	ug/l	1
03967	Pyrene	129-00-0	< 10.	10.	1.	ug/l	1
03971	Chrysene	218-01-9	< 10.	10.	1.	ug/l	1
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 5.	5.	0.5	ug/l	1
05401	Benzene	71-43-2	100.	5.	0.5	ug/l	1
05402	1,2-Dichloroethane	107-06-2	< 5.	5.	1.	ug/l	1
05407	Toluene	108-88-3	10.	5.	0.7	ug/l	1
05415	Ethylbenzene	100-41-4	19.	5.	0.8	ug/l	1
05420	Isopropylbenzene	98-82-8	10.	5.	1.	ug/l	1
06310	Xylene (Total)	1330-20-7	27.	5.	0.8	ug/l	1

Commonwealth of Pennsylvania Lab Certification No. 36-037 This sample was filtered in the lab for dissolved metals. Trip blank vials were not received by the laboratory for this sample group.

Laboratory Chronicle

CAT		•	•	Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06035	Lead	SW-846 6020	1	05/13/2005 00:49	David K Beck	1
07879	EDB in Wastewater	SW-846 8011	1	05/10/2005 11:09	James H Place	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	05/10/2005 12:54	Joseph M Gambler	1
02302	UST-Waters by 8260B	SW-846 8260B	1	05/11/2005 11:52	Andrea D Moore	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	05/11/2005 11:52	Andrea D Moore	n.a.
06050	ICP/MS SW-846 Water	SW-846 3010A Mod.	1	05/10/2005 18:15	James L Mertz	1
07786	EDB Extraction	SW-846 8011	1	05/09/2005 12:10	Darin P Wagner	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. WW 4519604

MW1-050605 Grab Water Sample

SUN: Philadelphia Refinery AOI-4

Collected:05/06/2005 11:20 by MBS Account Number: 10132

Submitted: 05/06/2005 18:40 Langan

Reported: 05/17/2005 at 16:24 500 Hyde Park

Discard: 06/17/2005 Doylestown PA 18901

PRM01

07807 BNA Water Extraction SW-846 3510C 1 05/08/2005 10:00 Joseph S Feister

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. WW 4519605

MW4-050605 Grab Water Sample

SUN: Philadelphia Refinery AOI-4

Collected:05/06/2005 11:40 by MBS Account Number: 10132

Submitted: 05/06/2005 18:40 Langan

Reported: 05/17/2005 at 16:24

500 Hyde Park

Discard: 06/17/2005 Doylestown PA 18901

PRM04

				As Received	As Received		
CAT			As Received	Limit of	Method		Dilutio
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06035	Lead	7439-92-1	< 0.0010	0.0010	0.00021	mg/l	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.028	0.028	0.0094	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	< 10.	10.	1.	ug/l	1
03956	Fluorene	86-73-7	< 10.	10.	1.	ug/l	1
03963	Phenanthrene	85-01-8	< 10.	10.	1.	ug/l	1
03967	Pyrene	129-00-0	< 10.	10.	1.	ug/l	1
03971	Chrysene	218-01-9	< 10.	10.	1.	ug/l	1
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 5.	5.	0.5	ug/l	1
05401	Benzene	71-43-2	< 5.	5.	0.5	ug/l	1
05402	1,2-Dichloroethane	107-06-2	< 5.	5.	1.	ug/l	1
05407	Toluene	108-88-3	< 5.	5.	0.7	ug/l	1
05415	Ethylbenzene	100-41-4	< 5.	5.	0.8	ug/l	1
05420	Isopropylbenzene	98-82-8	< 5.	5.	1.	ug/l	1
06310	Xylene (Total)	1330-20-7	< 5.	5.	0.8	ug/l	1

Commonwealth of Pennsylvania Lab Certification No. 36-037 This sample was filtered in the lab for dissolved metals. Trip blank vials were not received by the laboratory for this sample group.

Laboratory Chronicle

CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06035	Lead	SW-846 6020	1	05/13/2005 00:53	David K Beck	1
07879	EDB in Wastewater	SW-846 8011	1	05/10/2005 11:38	James H Place	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	05/10/2005 13:46	Joseph M Gambler	1
02302	UST-Waters by 8260B	SW-846 8260B	1	05/11/2005 12:17	Andrea D Moore	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	05/11/2005 12:17	Andrea D Moore	n.a.
06050	ICP/MS SW-846 Water	SW-846 3010A Mod.	1	05/10/2005 18:15	James L Mertz	1
07786	EDB Extraction	SW-846 8011	1	05/09/2005 12:10	Darin P Wagner	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. WW 4519605

MW4-050605 Grab Water Sample

SUN: Philadelphia Refinery AOI-4

Collected:05/06/2005 11:40 by MBS Account Number: 10132

Submitted: 05/06/2005 18:40 Langan

Reported: 05/17/2005 at 16:24 500 Hyde Park

Discard: 06/17/2005 Doylestown PA 18901

PRM04

07807 BNA Water Extraction SW-846 3510C 1 05/08/2005 10:00 Joseph S Feister

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Page 1 of 3

Quality Control Summary

Client Name: Langan Group Number: 942526

Reported: 05/17/05 at 04:24 PM

Matrix QC may not be reported if site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

Laboratory Compliance Quality Control

Analysis Name	Blank <u>Result</u>	Blank LOQ**	Blank <u>MDL</u>	Report <u>Units</u>	LCS %REC	LCSD %REC	LCS/LCSD <u>Limits</u>	RPD	RPD Max
Batch number: 05126WAH026	Sample numb	er(s): 45	19602-4519	9605					
Naphthalene	< 10.	10.	1.	ug/l	80	83	58-108	3	30
Fluorene	< 10.	10.	1.	ug/l	87	91	61-116	4	30
Phenanthrene	< 10.	10.	1.	ug/l	96	97	68-111	1	30
Pyrene	< 10.	10.	1.	ug/l	98	98	68-114	0	30
Chrysene	< 10.	10.	1.	ug/l	93	93	70-111	0	30
Batch number: 051280001A	Sample numb								
Ethylene dibromide	< 0.030	0.030	0.010	ug/l	100	100	60-140	0	20
Batch number: 051306050001A	Sample numb	er(s): 45	19602-4519	9605					
Lead	< 0.0010	0.0010	0.00021	mg/1	105		80-120		
Batch number: T051311AA	Sample numb	er(s): 45	19602-4519	9605					
Methyl Tertiary Butyl Ether	< 5.	5.	0.5	ug/l	99	98	77-127	0	30
Benzene	< 5.	5.	0.5	ug/l	111	108	85-117	2	30
1,2-Dichloroethane	< 5.	5.	1.	ug/l	113	111	77-132	1	30
Toluene	< 5.	5.	0.7	ug/l	101	101	85-115	0	30
Ethylbenzene	< 5.	5.	0.8	ug/l	91	90	82-119	1	30
Isopropylbenzene	< 5.	5.	1.	ug/l	91	90	80-120	1	30
Xylene (Total)	< 5.	5.	0.8	ug/l	92	91	83-113	1	30

Sample Matrix Quality Control

	MS	MSD	MS/MSD		RPD	BKG	DUP	DUP	Dup RPD
Analysis Name	%REC	%REC	<u>Limits</u>	RPD	<u>MAX</u>	Conc	Conc	RPD	Max
Batch number: 051280001A Ethylene dibromide	Sample 87	number	(s): 4519602 65-135	2-45196	05	< 0.028	< 0.028	200* (1)	30
Batch number: 051306050001A Lead	Sample	number 108	(s): 4519602 75-125	2-45196 2	05 20	< 0.0010	< 0.0010	10 (1)	20
Batch number: T051311AA Methyl Tertiary Butyl Ether Benzene 1,2-Dichloroethane Toluene Ethylbenzene Isopropylbenzene Xylene (Total)	Sample 103 119 119 108 98 97	number	(s): 4519602 69-134 83-128 73-136 83-127 82-129 81-130 82-130	2-45196	05				

*- Outside of specification

- **-This limit was used in the evaluation of the final result for the blank
- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The background result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Page 2 of 3

Quality Control Summary

Client Name: Langan

Reported: 05/17/05 at 04:24 PM

Group Number: 942526

Sample Matrix Quality Control

	MS	MSD	MS/MSD		RPD	BKG	DUP	DUP	Dup
									RPD
Analysis Name	%REC	%REC	<u>Limits</u>	RPD	MAX	Conc	Conc	RPD	Max

Surrogate Quality Control

Analysis Name: PAHs in Water by GC/MS Batch number: 05126WAH026

	Nitrobenzene-d5	2-Fluorobiphenyl	Terphenyl-d14	
4519602	96	91	106	
4519603	84	83	79	
4519604	91	89	111	
4519605	90	88	106	
Blank	95	83	114	
LCS	92	87	114	
LCSD	93	88	116	
Limits:	51-123	64-112	53-135	

Analysis Name: EDB in Wastewater

Batch number: 051280001A

1,1,2,2-

Tetrachloroethane

4519602	101
4519603	91
4519604	108
4519605	100
Blank	104
DUP	104
LCS	106
LCSD	104
MS	119

Limits: 52-120

Analysis Name: UST-Waters by 8260B Batch number: T051311AA

	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
4519602	99	91	89	98
4519603	101	89	90	94
4519604	101	89	90	98
4519605	99	88	89	95
Blank	98	89	88	93
LCS	97	88	91	97
LCSD	97	89	91	97
MS	99	89	91	96
Limits:	81-120	82-112	85-112	83-113

*- Outside of specification

- **-This limit was used in the evaluation of the final result for the blank
- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The background result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Page 3 of 3

Quality Control Summary

Client Name: Langan Group Number: 942526

Reported: 05/17/05 at 04:24 PM

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The background result was more than four times the spike added.

Analysis Request / Environmental Services Chain of Custody

Lancaster Laboratories Where quality is a science.

Acct. # 10132 Group# 943536 Sample # 4519602-05 COC # 0081525

	riease print, instr	istructions on reverse side correspond with circled numbers.	d with circled number	is.	Norlow	2000		
Client: Sun-Audlona / Langan	Acct. #:				in a section of the section of		Earl of the Only	٤
Project Name# 20- Philablohio Cohon, Act -4	405-4 PWSID #					FSC:	0 80 0	
Project Manager: L. Martin T. Hanna	# 00 0		23	To the	105	SCK #		
Sampler: M. Brad Sancake	Oliote #:		QUA		Tro	<u>'</u>		o) •
	34		10/08/20/20/20/20/20/20/20/20/20/20/20/20/20/	744	Lad	_		
			/ / State 2/0/ 10 10 00 00 00 00 00 00 00 00 00 00 00	1000 P	\ \ \	_		
			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\	\ \ \	/ Remarks		
S102-050605	5/ulos 1000	X				6	-	7/1 22 24
S59D-050605	1/ 1030	>				Usserved P.b. Samples and	2000	g ~
\$MWI-050605	1170	2				MATERIAL / LANDINE SELVED	2	8
MW4-050605		\ <u>\</u>						
							į	
7) Turnaround Time Requested (TAT) (please circle):	N	Relinquished by	Date	Time	Received for		Date	() emi
Date results are needed;	all aincommentarige.)	Introd	5/10/0	170	1 time	Ill sa	2	
y (please cii	ne Fax E-mail	Relinquished by	Date	22/1	Received by:	21	Date	Time
dress:		Delinamiched h	5	-	/			
Bata Package Options (please circle if required)	SDG Complete?	reilliquishea by:	Date	Time	Received by:		Date	Firme
QC Summary Type VI (Raw Data)	Yes No	Relinquished by:		j			П	
	욷	The introduction by	Date	e E	Received by:		Date	Time
Other	⊑	Relinquished by:	1					
I ype III (NJ Red. Del.) Internal Chain of Cu Type IV (CLP)	Internal Chain of Custody required? Yes No			e E	Received by:	4		Time 7/2/5/5/
				_	7	- -	- - -	_)

Explanation of Symbols and Abbreviations

Ingrashic Qualifiers

The following defines common symbols and abbreviations used in reporting technical data:

N.D.	none detected	BMQL	Below Minimum Quantitation Level
TNTC	Too Numerous To Count	MPN	Most Probable Number
IU	International Units	CP Units	cobalt-chloroplatinate units
umhos/cm	micromhos/cm	NTU	nephelometric turbidity units
С	degrees Celsius	F	degrees Fahrenheit
meq	milliequivalents	lb.	pound(s)
g	gram(s)	kg	kilogram(s)
ug	microgram(s)	mg	milligram(s)
ml	milliliter(s)	Ĭ	liter(s)
m3	cubic meter(s)	ul	microliter(s)

- < less than The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.
- > greater than
- J estimated value The result is ≥ the Method Detection Limit (MDL) and < the Limit of Quantitation (LOQ).
- ppm parts per million One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.
- ppb parts per billion
- **Dry weight**basis
 Results printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture. All other results are reported on an as-received basis.

U.S. EPA CLP Data Qualifiers:

	Organic Quanners		morganic Quanners
Α	TIC is a possible aldol-condensation product	В	Value is <crdl, but="" th="" ≥idl<=""></crdl,>
В	Analyte was also detected in the blank	Ε	Estimated due to interference
С	Pesticide result confirmed by GC/MS	M	Duplicate injection precision not met
D	Compound quantitated on a diluted sample	N	Spike sample not within control limits
E	Concentration exceeds the calibration range of	S	Method of standard additions (MSA) used
	the instrument		for calculation
N	Presumptive evidence of a compound (TICs only)	U	Compound was not detected
Р	Concentration difference between primary and	W	Post digestion spike out of control limits
	confirmation columns >25%	*	Duplicate analysis not within control limits
U	Compound was not detected	+	Correlation coefficient for MSA < 0.995
X,Y,Z	Defined in case narrative		

Analytical test results for methods listed on the laboratories' accreditation scope meet all requirements of NELAC unless otherwise noted under the individual analysis.

Measurement uncertainty values, as applicable, are available upon request.

Organic Qualifiers

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL LANCASTER LABORATORIES BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF LANCASTER LABORATORIES AND (B) WHETHER LANCASTER LABORATORIES HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Lancaster Laboratories which includes any conditions that vary from the Standard Terms and Conditions of Lancaster Laboratories and we hereby object to any conflicting terms contained in any acceptance or order submitted by client.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

ANALYTICAL RESULTS

Prepared for:

Langan 500 Hyde Park Doylestown PA 18901

215-348-7101

Prepared by:

Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425

SAMPLE GROUP

The sample group for this submittal is 953719. Samples arrived at the laboratory on Tuesday, August 02, 2005. The PO# for this group is SUNOCO PHILLY REFINER.

Client Description	Lancaster Labs Number
S-222-080105 Grab Water Sample	4575232
S-224-080105 Grab Water Sample	4575233
S-223-080105 Grab Water Sample	4575234
S96-080105 Grab Water Sample	4575235

ELECTRONIC COPY TO	SUN: Aquaterra Tech.	Attn: Brad Spancake
1 COPY TO 1 COPY TO	LL Langan	Attn: Angela Miller Attn: Jason Hanna
ELECTRONIC COPY TO	Langan	Attn: Joseph Catricks

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Questions? Contact your Client Services Representative Angela M Miller at (717) 656-2300

Respectfully Submitted,

Michele J. Smith Group Leader

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681• www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. WW 4575232

S-222-080105 Grab Water Sample SUN: Philadelphia Refinery AOI-4

Collected:08/01/2005 09:10 by MBS Account Number: 10132

Submitted: 08/02/2005 17:10 Langan

Reported: 08/08/2005 at 13:36

500 Hyde Park Doylestown PA 18901

Discard: 09/08/2005

α		\sim	\sim	\sim
S	-	4	4	4

CAT			As Received	As Received Limit of	As Received Method		Dilutio
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06035	Lead	7439-92-1	< 0.0010	0.0010	0.00018	mg/l	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.029	0.029	0.0095	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	< 6.	6.	1.	ug/l	1
03956	Fluorene	86-73-7	< 6.	6.	1.	ug/l	1
03963	Phenanthrene	85-01-8	< 6.	6.	1.	ug/l	1
03967	Pyrene	129-00-0	< 6.	6.	1.	ug/l	1
03971	Chrysene	218-01-9	< 6.	6.	1.	ug/l	1
	Due to insufficient sample, the	e reporting l	imits for the (GC/MS			
	semivolatile compounds were ra	ised.					
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 5.	5.	0.5	ug/l	1
05401	Benzene	71-43-2	< 5.	5.	0.5	ug/l	1
05402	1,2-Dichloroethane	107-06-2	< 5.	5.	1.	ug/l	1
05407	Toluene	108-88-3	< 5.	5.	0.7	ug/l	1
05415	Ethylbenzene	100-41-4	< 5.	5.	0.8	ug/l	1
05420	Isopropylbenzene	98-82-8	< 5.	5.	1.	ug/l	1
06310	Xylene (Total)	1330-20-7	10.	5.	0.8	ug/l	1

Commonwealth of Pennsylvania Lab Certification No. 36-037 This sample was filtered in the lab for dissolved metals. Trip blank vials were not received by the laboratory for this sample group.

Laboratory Chronicle

CAT			-	Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06035	Lead	SW-846 6020	1	08/05/2005 20:34	David K Beck	1
07879	EDB in Wastewater	SW-846 8011	1	08/04/2005 02:52	James H Place	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	08/04/2005 00:36	Jolene M Graham	1
02302	UST-Waters by 8260B	SW-846 8260B	1	08/04/2005 00:10	Kelly E Brickley	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. WW 4575232

S-222-080105 Grab Water Sample SUN: Philadelphia Refinery AOI-4

Collected:08/01/2005 09:10 by MBS Account Number: 10132

Submitted: 08/02/2005 17:10 Langan

Reported: 08/08/2005 at 13:36 500 Hyde Park

Discard: 09/08/2005 Doylestown PA 18901

S-222

01163	GC/MS VOA Water Prep	SW-846 5030B	1	08/04/2005 00:10	Kelly E Brickley	n.a.
06050	ICP/MS SW-846 Water	SW-846 3010A Mod.	1	08/04/2005 09:15	Helen L Schaeffer	1
07786	EDB Extraction	SW-846 8011	1	08/03/2005 13:00	Deborah M Zimmerman	1
07807	BNA Water Extraction	SW-846 3510C	1	08/02/2005 18:30	Olivia I Santiago	1

^{*=}This limit was used in the evaluation of the final result

As Peceived

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. WW 4575233

S-224-080105 Grab Water Sample SUN: Philadelphia Refinery AOI-4

Collected:08/01/2005 09:20 by MBS Account Number: 10132

Submitted: 08/02/2005 17:10 Langan

Reported: 08/08/2005 at 13:36 500 Hyde Park

Discard: 09/08/2005 Doylestown PA 18901

S-224

				As Received	As Received		
CAT			As Received	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06035	Lead	7439-92-1	0.0014	0.0010	0.00018	mg/l	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.029	0.029	0.0097	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	100.	5.	1.	ug/l	1
03956	Fluorene	86-73-7	< 5.	5.	1.	ug/l	1
03963	Phenanthrene	85-01-8	< 5.	5.	1.	ug/l	1
03967	Pyrene	129-00-0	< 5.	5.	1.	ug/l	1
03971	Chrysene	218-01-9	< 5.	5.	1.	ug/l	1
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 10.	10.	1.	ug/l	2
05401	Benzene	71-43-2	2,000.	130.	13.	ug/l	25
05402	1,2-Dichloroethane	107-06-2	< 10.	10.	2.	ug/l	2
05407	Toluene	108-88-3	2,800.	130.	18.	ug/l	25
05415	Ethylbenzene	100-41-4	690.	130.	20.	ug/l	25
05420	Isopropylbenzene	98-82-8	44.	10.	2.	ug/l	2
06310	Xylene (Total)	1330-20-7	3,500.	130.	20.	ug/l	25
	m1 . ' 1' '	10/200 7 1 7	-				

As Peceived

The reporting limits for the GC/MS volatile compounds were raised because sample dilution was necessary to bring target compounds into the calibration range of the system.

Commonwealth of Pennsylvania Lab Certification No. 36-037 This sample was filtered in the lab for dissolved metals. Trip blank vials were not received by the laboratory for this sample group.

Laboratory Chronicle

		Habotaco.	ry Chiro.	111010		
CAT			-	Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06035	Lead	SW-846 6020	1	08/05/2005 20:21	David K Beck	1
07879	EDB in Wastewater	SW-846 8011	1	08/04/2005 03:52	James H Place	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	08/04/2005 01:37	Jolene M Graham	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. WW 4575233

S-224-080105 Grab Water Sample SUN: Philadelphia Refinery AOI-4

Collected:08/01/2005 09:20 by MBS Account Number: 10132

Submitted: 08/02/2005 17:10 Langan

Reported: 08/08/2005 at 13:36 500 Hyde Park

Discard: 09/08/2005 Doylestown PA 18901

S-224						
02302	UST-Waters by 8260B	SW-846 8260B	1	08/04/2005 00:32	Kelly E Brickley	2
02302	UST-Waters by 8260B	SW-846 8260B	1	08/04/2005 00:55	Kelly E Brickley	25
01163	GC/MS VOA Water Prep	SW-846 5030B	1	08/04/2005 00:32	Kelly E Brickley	n.a.
01163	GC/MS VOA Water Prep	SW-846 5030B	2	08/04/2005 00:55	Kelly E Brickley	n.a.
06050	ICP/MS SW-846 Water	SW-846 3010A Mod.	1	08/04/2005 09:15	Helen L Schaeffer	1
07786	EDB Extraction	SW-846 8011	1	08/03/2005 13:00	Deborah M Zimmerman	1
07807	BNA Water Extraction	SW-846 3510C	1	08/02/2005 18:30	Olivia I Santiago	1

^{*=}This limit was used in the evaluation of the final result

As Peceived

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. WW 4575234

S-223-080105 Grab Water Sample SUN: Philadelphia Refinery AOI-4

Collected:08/01/2005 09:30 by MBS Account Number: 10132

Submitted: 08/02/2005 17:10 Langan

Reported: 08/08/2005 at 13:36 500 Hyde Park

Discard: 09/08/2005 Doylestown PA 18901

S-223

				As Received	As Received		
CAT			As Received	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06035	Lead	7439-92-1	< 0.0010	0.0010	0.00018	mg/l	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.029	0.029	0.0096	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	430.	26.	5.	ug/l	5
03956	Fluorene	86-73-7	< 5.	5.	1.	ug/l	1
03963	Phenanthrene	85-01-8	< 5.	5.	1.	ug/l	1
03967	Pyrene	129-00-0	< 5.	5.	1.	ug/l	1
03971	Chrysene	218-01-9	< 5.	5.	1.	ug/l	1
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 50.	50.	5.	ug/l	10
05401	Benzene	71-43-2	6,100.	500.	50.	ug/l	100
05402	1,2-Dichloroethane	107-06-2	< 50.	50.	10.	ug/l	10
05407	Toluene	108-88-3	9,600.	500.	70.	ug/l	100
05415	Ethylbenzene	100-41-4	1,300.	50.	8.	ug/l	10
05420	Isopropylbenzene	98-82-8	< 50.	50.	10.	ug/l	10
06310	Xylene (Total)	1330-20-7	6,900.	50.	8.	ug/l	10
	m1 . ' 1' '	70/200 7 1 7	-				

As Peceived

The reporting limits for the GC/MS volatile compounds were raised because sample dilution was necessary to bring target compounds into the calibration range of the system.

Commonwealth of Pennsylvania Lab Certification No. 36-037 This sample was filtered in the lab for dissolved metals. Trip blank vials were not received by the laboratory for this sample group.

Laboratory Chronicle

CAT			_	Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06035	Lead	SW-846 6020	1	08/05/2005 20:37	David K Beck	1
07879	EDB in Wastewater	SW-846 8011	1	08/04/2005 04:51	James H Place	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	08/04/2005 02:38	Jolene M Graham	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681• www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. WW 4575234

S-223-080105 Grab Water Sample SUN: Philadelphia Refinery AOI-4

Collected:08/01/2005 09:30 by MBS Account Number: 10132

Submitted: 08/02/2005 17:10 Langan

Reported: 08/08/2005 at 13:36 500 Hyde Park

Discard: 09/08/2005 Doylestown PA 18901

S-223						
07805	PAHs in Water by GC/MS	SW-846 8270C	1	08/04/2005 11:40	William T Parker	5
02302	UST-Waters by 8260B	SW-846 8260B	1	08/04/2005 01:17	Kelly E Brickley	10
02302	UST-Waters by 8260B	SW-846 8260B	1	08/04/2005 01:39	Kelly E Brickley	100
01163	GC/MS VOA Water Prep	SW-846 5030B	1	08/04/2005 01:17	Kelly E Brickley	n.a.
01163	GC/MS VOA Water Prep	SW-846 5030B	2	08/04/2005 01:39	Kelly E Brickley	n.a.
06050	ICP/MS SW-846 Water	SW-846 3010A Mod.	1	08/04/2005 09:15	Helen L Schaeffer	1
07786	EDB Extraction	SW-846 8011	1	08/03/2005 13:00	Deborah M Zimmerman	1
07807	BNA Water Extraction	SW-846 3510C	1	08/02/2005 18:30	Olivia I Santiago	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. WW 4575235

S96-080105 Grab Water Sample

SUN: Philadelphia Refinery AOI-4

Collected: 08/01/2005 07:20 by MBS Account Number: 10132

Submitted: 08/02/2005 17:10 Langan

Reported: 08/08/2005 at 13:37 500 Hyde Park

Discard: 09/08/2005 Doylestown PA 18901

S96--

				As Received	As Received		
CAT			As Received	Limit of	Method		Dilutio:
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06035	Lead	7439-92-1	< 0.0010	0.0010	0.00018	mg/l	1
07879	EDB in Wastewater						
01087	Ethylene dibromide	106-93-4	< 0.029	0.029	0.0097	ug/l	1
07805	PAHs in Water by GC/MS						
03947	Naphthalene	91-20-3	< 5.	5.	1.	ug/l	1
03956	Fluorene	86-73-7	< 5.	5.	1.	ug/l	1
03963	Phenanthrene	85-01-8	< 5.	5.	1.	ug/l	1
03967	Pyrene	129-00-0	< 5.	5.	1.	ug/l	1
03971	Chrysene	218-01-9	< 5.	5.	1.	ug/l	1
02302	UST-Waters by 8260B						
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 5.	5.	0.5	ug/l	1
05401	Benzene	71-43-2	< 5.	5.	0.5	ug/l	1
05402	1,2-Dichloroethane	107-06-2	< 5.	5.	1.	ug/l	1
05407	Toluene	108-88-3	< 5.	5.	0.7	ug/l	1
05415	Ethylbenzene	100-41-4	< 5.	5.	0.8	ug/l	1
05420	Isopropylbenzene	98-82-8	< 5.	5.	1.	ug/l	1
06310	Xylene (Total)	1330-20-7	< 5.	5.	0.8	ug/l	1

Commonwealth of Pennsylvania Lab Certification No. 36-037
This sample was filtered in the lab for dissolved metals.

Trip blank vials were not received by the laboratory for this sample group.

Laboratory Chronicle

CAT			_	Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06035	Lead	SW-846 6020	1	08/05/2005 20:44	David K Beck	1
07879	EDB in Wastewater	SW-846 8011	1	08/04/2005 05:21	James H Place	1
07805	PAHs in Water by GC/MS	SW-846 8270C	1	08/04/2005 03:38	Jolene M Graham	1
02302	UST-Waters by 8260B	SW-846 8260B	1	08/04/2005 02:02	Kelly E Brickley	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	08/04/2005 02:02	Kelly E Brickley	n.a.
06050	ICP/MS SW-846 Water	SW-846 3010A Mod.	1	08/04/2005 09:15	Helen L Schaeffer	1
07786	EDB Extraction	SW-846 8011	1	08/03/2005 13:00	Deborah M Zimmerman	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. WW 4575235

S96-080105 Grab Water Sample

SUN: Philadelphia Refinery AOI-4

Collected:08/01/2005 07:20 by MBS Account Number: 10132

Submitted: 08/02/2005 17:10 Langan

Reported: 08/08/2005 at 13:37 500 Hyde Park

Discard: 09/08/2005 Doylestown PA 18901

S96--

07807 BNA Water Extraction SW-846 3510C 1 08/02/2005 18:30 Olivia I Santiago

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 3

Quality Control Summary

Client Name: Langan Group Number: 953719

Reported: 08/08/05 at 01:37 PM

Matrix QC may not be reported if site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

Laboratory Compliance Quality Control

Analysis Name	Blank <u>Result</u>	Blank LOQ**	Blank <u>MDL</u>	Report <u>Units</u>	LCS %REC	LCSD %REC	LCS/LCSD <u>Limits</u>	RPD	RPD Max
Batch number: 052140034A Ethylene dibromide	Sample num	ber(s): 45 0.030	575232-457 0.010	5235 ug/l	71	71	60-140	0	20
Batch number: 05214WAE026 Naphthalene	Sample num	ber(s): 45	575232-457 1.		91	91	70-102	1	30
Fluorene	< 5.	5. 5.	1.	ug/l	96	96	61-116	0	30
Phenanthrene	< 5.	5. 5.	1.	ug/l ug/l	98	93	68-111	5	30
Pyrene	< 5.	5.	1.	ug/l	93	93	68-114	1	30
Chrysene	< 5.	5.	1.	ug/l	93	95	70-111	2	30
Batch number: 052166050001A	Sample num	ber(s): 45	75232-457	5235					
Lead	< 0.0010	0.0010	0.00018	mg/l	105		80-120		
Batch number: L052153AA	Sample num	ber(s): 45	75232-457	5235					
Methyl Tertiary Butyl Ether	< 5.	5.	0.5	ug/l	93	92	77-127	1	30
Benzene	< 5.	5.	0.5	ug/l	98	95	85-117	3	30
1,2-Dichloroethane	< 5.	5.	1.	ug/l	96	96	77-132	1	30
Toluene	< 5.	5.	0.7	ug/l	103	100	85-115	2	30
Ethylbenzene	< 5.	5.	0.8	ug/l	101	99	82-119	2	30
Isopropylbenzene	< 5.	5.	1.	ug/l	103	100	80-120	3	30
Xylene (Total)	< 5.	5.	0.8	ug/l	104	102	83-113	3	30

Sample Matrix Quality Control

	MS	MSD	MS/MSD		RPD	BKG	DUP	DUP	Dup RPD
Analysis Name	%REC	%REC	<u>Limits</u>	RPD	<u>MAX</u>	Conc	Conc	RPD	Max
Batch number: 052140034A Ethylene dibromide	Sample	number	(s): 4575233 65-135	2-45752	35	< 0.029	< 0.029	0 (1)	30
Batch number: 052166050001A Lead	Sample	number	(s): 4575232 78-120	2-45752 0	35	0.0014	0.0014	3 (1)	20
Batch number: L052153AA		number	(s): 457523	2-45752	35				
Methyl Tertiary Butyl Ether Benzene	90 97		69-134 83-128						
1,2-Dichloroethane	93		73-136						
Toluene Ethylbenzene	100 100		83-127 82-129						
Isopropylbenzene	111		81-130						
Xylene (Total)	103		82-130						

*- Outside of specification

- **-This limit was used in the evaluation of the final result for the blank
- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The background result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Page 2 of 3

Quality Control Summary

Client Name: Langan

Group Number: 953719

Reported: 08/08/05 at 01:37 PM

Sample Matrix Quality Control

	MS	MSD	MS/MSD		RPD	BKG	DUP	DUP	Dup
									RPD
<u>Analysis Name</u>	%REC	%REC	<u>Limits</u>	RPD	MAX	Conc	Conc	RPD	Max

Surrogate Quality Control

Analysis Name: EDB in Wastewater

Batch number: 052140034A

1,1,2,2-Tetrachloroethane

4575232	65
4575233	85
4575234	75
4575235	118
Blank	86
DUP	63
LCS	85
LCSD	85
MS	117

Limits: 52-120

Analysis Name: PAHs in Water by GC/MS

Batch number: 05214WAE026

	Nitrobenzene-d5	2-Fluorobiphenyl	Terphenyl-d14	
4575232	76	97	101	
4575233	77	100	105	
4575234	71	96	106	
4575235	75	96	104	
Blank	75	93	101	
LCS	79	97	103	
LCSD	78	101	105	
Limits:	51-123	64-112	52-151	

Analysis Name: UST-Waters by 8260B

Batch number: L052153AA

	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
4575232	97	98	91	96
4575233	96	96	96	97
4575234	94	96	92	97
4575235	99	98	88	93
Blank	100	101	89	92
LCS	96	99	94	101
LCSD	97	101	94	102
MS	96	97	94	102
Limits:	81-120	82-112	85-112	83-113

*- Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The background result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Page 3 of 3

Quality Control Summary

Client Name: Langan Group Number: 953719

Reported: 08/08/05 at 01:37 PM

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The background result was more than four times the spike added.

Analysis Request / Environmental Services Chain of Custody

		-
	Laboratories	science.
	Lancaster	Where quality is a
١	4	j

Group# 953719 Sample # 4575**3**33-35 **COC** # 0087246

			(ক) ই ম	(-			
	(policina il appeter una		ime (9 / 22	Time 10 なら	_ime	Time	
	For Lab Use Only SCR #:	unpreserva	Date 1	Date 1	Date 1	Date 1	Date
34-4.100	For Lab FSC: SCR#:	Dissived Ph Sampared Lu	Lide	alle			N
Ferro	Step	Si e	ived by:	by:	pà:	py:	
7	No. of the second secon		Received by	Time Refered by:	Received by	Received by:	Received by
1000	White Will all all all all all all all all all		Time F	Time F	Time F	Time	Time
mbers.	30000		Date	Date 8/4/05	Date	Date	Date
uctions on reverse side correspond with circled numbers.	(a) 381 m/3 108 80318		0 V		M. Se		
s on reverse side (Mater Developed Services Servi	***	Relinquished by:	Relinquished by	Relinquished by	Relinquished by:	Relinquished by:
nt. Instructions		0910 X 0920 X 0930 X 0720 X		\			(2)
Please print. Instr	Acct. #: PwSID #: Quote #:	95 20 00 00 00 00 00 00 00 00 00 00 00 00		SOA TAT	SDG Complete	ired? Yes No	and submit triplicat tody required?
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	N 19	Turnaround Time Requested (TAT) (please circle): Normal (Rush TAT is subject to Lancaster Laboratories approval and surcharge.)	8/5/65 please circle): Phone Fax #:	E-mail address: Janua @ Langan Com Data Package Options (please circle if required)	Type VI (Raw Data) GLP Site-specific QC required? Yes	Other (If yes, indicate QC sample and submit triplicate volum Internal Chain of Custody required? Yes (
	Ante Haus Skn. Philosely Brad S here samples w	3-222-080105 3-224-080105 5-225-080105 596-080105	me Requested	Date results are needed: \(\oldsymbol{\beta/5/05} \) Rush results requested by (please circle): Phone #:	E-mail address: Janua @ Langan C Data Package Options (please circle if required)	Type VI	
	Client: Sun Maha Hayakana / La Project Name/# Sun Philadyphia Pahieny Project Manager: 1950n Hanna (Law Sampler: M. Brad Spancalle Name of state where samples were collected:	2-2 2-8 39-6	Turnaround Ti (Rush TAT is sub	Date results are needed:	E-mail address Data Package	QC Summary Type I (Tier I)	Type II (Tier II) Type III (NJ Red. Del.) Type IV (Cl.P)
(-)(%)		<u></u>		— (®)		

Explanation of Symbols and Abbreviations

Ingrashic Qualifiers

The following defines common symbols and abbreviations used in reporting technical data:

N.D.	none detected	BMQL	Below Minimum Quantitation Level
TNTC	Too Numerous To Count	MPN	Most Probable Number
IU	International Units	CP Units	cobalt-chloroplatinate units
umhos/cm	micromhos/cm	NTU	nephelometric turbidity units
С	degrees Celsius	F	degrees Fahrenheit
meq	milliequivalents	lb.	pound(s)
g	gram(s)	kg	kilogram(s)
ug	microgram(s)	mg	milligram(s)
ml	milliliter(s)	Ĭ	liter(s)
m3	cubic meter(s)	ul	microliter(s)

- < less than The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.
- > greater than
- J estimated value The result is ≥ the Method Detection Limit (MDL) and < the Limit of Quantitation (LOQ).
- ppm parts per million One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.
- ppb parts per billion
- **Dry weight**basis
 Results printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture. All other results are reported on an as-received basis.

U.S. EPA CLP Data Qualifiers:

	Organic Quanners		morganic Quanners
Α	TIC is a possible aldol-condensation product	В	Value is <crdl, but="" th="" ≥idl<=""></crdl,>
В	Analyte was also detected in the blank	Ε	Estimated due to interference
С	Pesticide result confirmed by GC/MS	M	Duplicate injection precision not met
D	Compound quantitated on a diluted sample	N	Spike sample not within control limits
E	Concentration exceeds the calibration range of	S	Method of standard additions (MSA) used
	the instrument		for calculation
N	Presumptive evidence of a compound (TICs only)	U	Compound was not detected
Р	Concentration difference between primary and	W	Post digestion spike out of control limits
	confirmation columns >25%	*	Duplicate analysis not within control limits
U	Compound was not detected	+	Correlation coefficient for MSA < 0.995
X,Y,Z	Defined in case narrative		

Analytical test results for methods listed on the laboratories' accreditation scope meet all requirements of NELAC unless otherwise noted under the individual analysis.

Measurement uncertainty values, as applicable, are available upon request.

Organic Qualifiers

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL LANCASTER LABORATORIES BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF LANCASTER LABORATORIES AND (B) WHETHER LANCASTER LABORATORIES HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Lancaster Laboratories which includes any conditions that vary from the Standard Terms and Conditions of Lancaster Laboratories and we hereby object to any conflicting terms contained in any acceptance or order submitted by client.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

ANALYTICAL RESULTS

Prepared for:

Langan 500 Hyde Park Doylestown PA 18901

215-348-7101

Prepared by:

Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425

SAMPLE GROUP

The sample group for this submittal is 954311. Samples arrived at the laboratory on Friday, August 05, 2005. The PO# for this group is SUNOCO PHILLY REFINER.

Client Description	<u>Lancaster Labs Number</u>
BH-S222-080405-1-1.5 Grab Soil Sample	4578229
BH-S223-080405-1.5-2 Grab Soil Sample	4578230
BH-S224-080405-1-1.5 Grab Soil Sample	4578231

ELECTRONIC SUN: Aquaterra Tech. Attn: Brad Spancake

COPY TO

1 COPY TO Langan Attn: Jason Hanna ELECTRONIC Langan Attn: Joseph Catricks

COPY TO

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Questions? Contact your Client Services Representative Angela M Miller at (717) 656-2300

Respectfully Submitted,

Michele J. Smith Group Leader

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681• www.lancasterlabs.com

Page 1 of 2

4578229 Lancaster Laboratories Sample No. SW

BH-S222-080405-1-1.5 Grab Soil Sample SUN: Philadelphia Refinery AOI-4

Collected: 08/04/2005 10:45 by MBS Account Number: 10132

Submitted: 08/05/2005 14:50 Langan

Reported: 08/11/2005 at 08:48

500 Hyde Park

Discard: 09/11/2005 Doylestown PA 18901

BH222

CAT			Dry	Dry Limit of	Dry Method		Dilution
No.	Analysis Name	CAS Number	Result	Ouantitation*	Detection	Units	Factor
NO.	Analysis Name	CAS Number	Result	Quantitation*	Limit	UIIILS	Factor
06955	Lead	7439-92-1	143.	2.21	0.862	mg/kg	1
00111	Moisture	n.a.	13.0	0.50	0.50	%	1
	"Moisture" represents the loss 103 - 105 degrees Celsius. The as-received basis.				at		
07804	PAHs in Soil by GC/MS						
01195	Pyrene	129-00-0	< 190.	190.	38.	ug/kg	1
03761	Naphthalene	91-20-3	< 190.	190.	38.	ug/kg	1
03768	Fluorene	86-73-7	< 190.	190.	38.	ug/kg	1
03775	Phenanthrene	85-01-8	< 190.	190.	38.	ug/kg	1
03776	Anthracene	120-12-7	< 190.	190.	38.	ug/kg	1
03781	Benzo(a)anthracene	56-55-3	< 190.	190.	38.	ug/kg	1
03782	Chrysene	218-01-9	< 190.	190.	38.	ug/kg	1
03786	Benzo(b)fluoranthene	205-99-2	< 190.	190.	38.	ug/kg	1
03788	Benzo(a)pyrene	50-32-8	< 190.	190.	38.	ug/kg	1
03791	Benzo(g,h,i)perylene	191-24-2	< 190.	190.	38.	ug/kg	1
02308	UST-Soils by 8260B						
02016	Methyl Tertiary Butyl Ether	1634-04-4	< 5.	5.	0.5	ug/kg	0.89
05460	Benzene	71-43-2	< 5.	5.	0.5	ug/kg	0.89
05461	1,2-Dichloroethane	107-06-2	< 5.	5.	1.	ug/kg	0.89
05466	Toluene	108-88-3	< 5.	5.	1.	ug/kg	0.89
05471	1,2-Dibromoethane	106-93-4	< 5.	5.	1.	ug/kg	0.89
05474	Ethylbenzene	100-41-4	< 5.	5.	1.	ug/kg	0.89
05479	Isopropylbenzene	98-82-8	< 5.	5.	1.	ug/kg	0.89
06301	Xylene (Total)	1330-20-7	< 5.	5.	1.	ug/kg	0.89

Commonwealth of Pennsylvania Lab Certification No. 36-037

Laboratory C	hronicle
--------------	----------

CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06955	Lead	SW-846 6010B	1	08/09/2005 10:37	Eric L Eby	1
00111	Moisture	EPA 160.3 modified	1	08/08/2005 17:14	Scott W Freisher	1
07804	PAHs in Soil by GC/MS	SW-846 8270C	1	08/08/2005 09:26	Chad A Moline	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681• www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. SW 4578229

BH-S222-080405-1-1.5 Grab Soil Sample SUN: Philadelphia Refinery AOI-4

Collected:08/04/2005 10:45 by MBS Account Number: 10132

Submitted: 08/05/2005 14:50 Langan

Reported: 08/11/2005 at 08:48 500 Hyde Park

Discard: 09/11/2005 Doylestown PA 18901

DIIO	\sim	\sim
BHZ	4	4

02308	UST-Soils by 8260B	SW-846 8260B	1	08/08/2005 20:20	Kenneth L Boley Jr	0.89
	2		1	08/08/2005 16:00	1	1
05708	SW SW846 ICP Digest	SW-846 3050B	Т		Mirit S Shenouda	Т
07806	BNA Soil Extraction	SW-846 3550B	1	08/05/2005 20:00	Maryan G Attalla	1
08389	GC/MS - LL Encore Prep	SW-846 5035	1	08/05/2005 17:10	Medina A Long	n.a.
08389	GC/MS - LL Encore Prep	SW-846 5035	2	08/05/2005 17:11	Medina A Long	n.a.
08389	GC/MS - LL Encore Prep	SW-846 5035	3	08/05/2005 17:12	Medina A Long	n.a.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681• www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. SW 4578230

BH-S223-080405-1.5-2 Grab Soil Sample SUN: Philadelphia Refinery AOI-4

Collected:08/04/2005 11:00 by MBS Account Number: 10132

Submitted: 08/05/2005 14:50 Langan

Reported: 08/11/2005 at 08:48 500 Hyde Park

Discard: 09/11/2005 Doylestown PA 18901

BH223

				Dry	Dry		
CAT			Dry	Limit of	Method		Dilutio
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06955	Lead	7439-92-1	18.2	2.73	1.07	mg/kg	1
00111	Moisture	n.a.	28.3	0.50	0.50	%	1
	"Moisture" represents the los 103 - 105 degrees Celsius. The as-received basis.				at		
07804	PAHs in Soil by GC/MS						
01195	Pyrene	129-00-0	< 230.	230.	46.	ug/kg	1
03761	Naphthalene	91-20-3	< 230.	230.	46.	ug/kg	1
03768	Fluorene	86-73-7	< 230.	230.	46.	ug/kg	1
03775	Phenanthrene	85-01-8	< 230.	230.	46.	ug/kg	1
03776	Anthracene	120-12-7	< 230.	230.	46.	ug/kg	1
03781	Benzo(a)anthracene	56-55-3	< 230.	230.	46.	ug/kg	1
03782	Chrysene	218-01-9	< 230.	230.	46.	ug/kg	1
03786	Benzo(b)fluoranthene	205-99-2	< 230.	230.	46.	ug/kg	1
03788	Benzo(a)pyrene	50-32-8	< 230.	230.	46.	ug/kg	1
03791	Benzo(g,h,i)perylene	191-24-2	< 230.	230.	46.	ug/kg	1
02308	UST-Soils by 8260B						
02016	Methyl Tertiary Butyl Ether	1634-04-4	< 6.	6.	0.6	ug/kg	0.86
05460	Benzene	71-43-2	< 6.	6.	0.6	ug/kg	0.86
05461	1,2-Dichloroethane	107-06-2	< 6.	6.	1.	ug/kg	0.86
05466	Toluene	108-88-3	< 6.	6.	1.	ug/kg	0.86
05471	1,2-Dibromoethane	106-93-4	< 6.	6.	1.	ug/kg	0.86
05474	Ethylbenzene	100-41-4	< 6.	6.	1.	ug/kg	0.86
05479	Isopropylbenzene	98-82-8	< 6.	6.	1.	ug/kg	0.86
06301	Xylene (Total)	1330-20-7	< 6.	6.	1.	ug/kg	0.86

Commonwealth of Pennsylvania Lab Certification No. 36-037

- 1 .	~1	-
Laboratorv	('hroni	$\alpha \mid \Delta$
Haboracorv		$C \perp C$

CAT					Dilution	
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
06955	Lead	SW-846 6010B	1	08/09/2005 10:55	Eric L Eby	1
00111	Moisture	EPA 160.3 modified	1	08/08/2005 17:14	Scott W Freisher	1
07804	PAHs in Soil by GC/MS	SW-846 8270C	1	08/08/2005 09:47	Chad A Moline	1

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681• www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. SW 4578230

BH-S223-080405-1.5-2 Grab Soil Sample SUN: Philadelphia Refinery AOI-4

Collected:08/04/2005 11:00 by MBS Account Number: 10132

Submitted: 08/05/2005 14:50 Langan

Reported: 08/11/2005 at 08:48 500 Hyde Park

Discard: 09/11/2005 Doylestown PA 18901

DHO	2	2
DNZ	4	2

02308	UST-Soils by 8260B	SW-846 8260B	1	08/08/2005 19:34	Kenneth L Boley Jr	0.86
05708	SW SW846 ICP Digest	SW-846 3050B	1	08/08/2005 16:00	Mirit S Shenouda	1
07806	BNA Soil Extraction	SW-846 3550B	1	08/05/2005 20:00	Maryan G Attalla	1
08389	GC/MS - LL Encore Prep	SW-846 5035	1	08/05/2005 17:13	Medina A Long	n.a.
08389	GC/MS - LL Encore Prep	SW-846 5035	2	08/05/2005 17:14	Medina A Long	n.a.
08389	GC/MS - LL Encore Prep	SW-846 5035	3	08/05/2005 17:15	Medina A Long	n.a.

^{*=}This limit was used in the evaluation of the final result

Dra

2425 New Holland Pike. PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Lancaster Laboratories Sample No. SW 4578231

BH-S224-080405-1-1.5 Grab Soil Sample SUN: Philadelphia Refinery AOI-4

Collected:08/04/2005 11:25 by MBS Account Number: 10132

Submitted: 08/05/2005 14:50 Langan

Reported: 08/11/2005 at 08:48 500 Hyde Park

Discard: 09/11/2005 Doylestown PA 18901

BH224

				Dry	Dry		
CAT			Dry	Limit of	Method		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation*	Detection Limit	Units	Factor
06955	Lead	7439-92-1	192.	2.24	0.872	mg/kg	1
00111	Moisture	n.a.	12.3	0.50	0.50	%	1
	"Moisture" represents the loss 103 - 105 degrees Celsius. The as-received basis.				at		
07804	PAHs in Soil by GC/MS						
01195	Pyrene	129-00-0	900.	190.	38.	ug/kg	1
03761	Naphthalene	91-20-3	< 190.	190.	38.	ug/kg	1
03768	Fluorene	86-73-7	< 190.	190.	38.	ug/kg	1
03775	Phenanthrene	85-01-8	300.	190.	38.	ug/kg	1
03776	Anthracene	120-12-7	< 190.	190.	38.	ug/kg	1
03781	Benzo(a)anthracene	56-55-3	490.	190.	38.	ug/kg	1
03782	Chrysene	218-01-9	490.	190.	38.	ug/kg	1
03786	Benzo(b)fluoranthene	205-99-2	700.	190.	38.	ug/kg	1
03788	Benzo(a)pyrene	50-32-8	550.	190.	38.	ug/kg	1
03791	Benzo(g,h,i)perylene	191-24-2	430.	190.	38.	ug/kg	1
02308	UST-Soils by 8260B						
02016	Methyl Tertiary Butyl Ether	1634-04-4	< 5.	5.	0.5	ug/kg	0.85
05460	Benzene	71-43-2	< 5.	5.	0.5	ug/kg	0.85
05461	1,2-Dichloroethane	107-06-2	< 5.	5.	1.	ug/kg	0.85
05466	Toluene	108-88-3	< 5.	5.	1.	ug/kg	0.85
05471	1,2-Dibromoethane	106-93-4	< 5.	5.	1.	ug/kg	0.85
05474	Ethylbenzene	100-41-4	< 5.	5.	1.	ug/kg	0.85
05479	Isopropylbenzene	98-82-8	< 5.	5.	1.	ug/kg	0.85
06301	Xylene (Total)	1330-20-7	< 5.	5.	1.	ug/kg	0.85
	m1						

Drv

The GC/MS volatile internal standard peak areas were outside the QC limits for both the initial analysis and the re-analysis. The values reported here are from the initial analysis of the sample.

Commonwealth of Pennsylvania Lab Certification No. 36-037

T a la a a + a	(1b-20-0-1-0-1-0-1-0-1-0-1-0-1-0-1-0-1-0-1-
Laboratory	Chronicie

CAT Analysis Name Method Trial# Date and Time Analyst Factor

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681• www.lancasterlabs.com

Page 2 of 2

Lancaster Laboratories Sample No. SW 4578231

BH-S224-080405-1-1.5 Grab Soil Sample SUN: Philadelphia Refinery AOI-4

Collected: 08/04/2005 11:25 by MBS Account Number: 10132

Submitted: 08/05/2005 14:50 Langan

Reported: 08/11/2005 at 08:48 500 Hyde Park

Discard: 09/11/2005 Doylestown PA 18901

BH2	2	4
ВПZ	4	4

06955	Lead	SW-846 6010B	1	08/09/2005 11:01	Eric L Eby	1
00111	Moisture	EPA 160.3 modified	2	08/09/2005 18:47	Scott W Freisher	1
07804	PAHs in Soil by GC/MS	SW-846 8270C	1	08/08/2005 10:08	Chad A Moline	1
02308	UST-Soils by 8260B	SW-846 8260B	1	08/09/2005 00:57	Kenneth L Boley Jr	0.85
05708	SW SW846 ICP Digest	SW-846 3050B	1	08/08/2005 16:00	Mirit S Shenouda	1
07806	BNA Soil Extraction	SW-846 3550B	1	08/05/2005 20:00	Maryan G Attalla	1
08389	GC/MS - LL Encore Prep	SW-846 5035	1	08/05/2005 17:16	Medina A Long	n.a.
08389	GC/MS - LL Encore Prep	SW-846 5035	2	08/05/2005 17:17	Medina A Long	n.a.
08389	GC/MS - LL Encore Prep	SW-846 5035	3	08/05/2005 17:18	Medina A Long	n.a.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 3

Quality Control Summary

Client Name: Langan Group Number: 954311

Reported: 08/11/05 at 08:48 AM

Matrix QC may not be reported if site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

Laboratory Compliance Quality Control

Analysis Name	Blank <u>Result</u>	Blank LOQ**	Blank <u>MDL</u>	Report <u>Units</u>	LCS <u>%REC</u>	LCSD %REC	LCS/LCSD <u>Limits</u>	RPD	RPD Max
Batch number: 05217SLD026	Sample num	her(s) · 4	578229-457	8231					
Pyrene	< 170.	170.	33.	uq/kq	113		67-116		
Naphthalene	< 170.	170.	33.	ug/kg	90		70-103		
Fluorene	< 170.	170.	33.	ug/kg	93		66-115		
Phenanthrene	< 170.	170.	33.	ug/kg	102		70-107		
Anthracene	< 170.	170.	33.	ug/kg	97		69-109		
Benzo(a) anthracene	< 170.	170.	33.	ug/kg	101		73-111		
Chrysene	< 170.	170.	33.	ug/kg	95		72-110		
Benzo(b) fluoranthene	< 170.	170.	33.	ug/kg	90		68-117		
Benzo (a) pyrene	< 170.	170.	33.	uq/kq	101		72-117		
Benzo(q,h,i)perylene	< 170.	170.	33.	uq/kq	103		66-120		
3, , , , , , , , , , , , , , , , , , ,				3, 3					
Batch number: 052205708001	Sample num	mber(s): 45	578229-457	8231					
Lead	< 2.00	2.00	0.780	mq/kq	93		80-120		
				5, 5					
Batch number: 05220820001B	Sample num	mber(s): 45	578229-457	8230					
Moisture	-				100		99-101		
Batch number: 05221820001A	Sample num	mber(s): 45	578231						
Moisture	-				100		99-101		
Batch number: X052201AA	Sample num	mber(s): 45	578229-457	8231					
Methyl Tertiary Butyl Ether	< 5.	5.	0.5	ug/kg	88	84	75-125	4	30
Benzene	< 5.	5.	0.5	ug/kg	103	98	77-119	5	30
1,2-Dichloroethane	< 5.	5.	1.	ug/kg	90	87	76-126	3	30
Toluene	< 5.	5.	1.	ug/kg	101	98	81-116	3	30
1,2-Dibromoethane	< 5.	5.	1.	ug/kg	92	87	77-114	5	30
Ethylbenzene	< 5.	5.	1.	ug/kg	97	93	82-115	4	30
Isopropylbenzene	< 5.	5.	1.	ug/kg	94	89	79-117	5	30
Xylene (Total)	< 5.	5.	1.	ug/kg	96	92	82-117	4	30
Batch number: 05221820001A Moisture Batch number: X052201AA Methyl Tertiary Butyl Ether Benzene 1,2-Dichloroethane Toluene 1,2-Dibromoethane Ethylbenzene Isopropylbenzene	Sample num < 5. < 5. < 5. < 5. < 5. < 5. < 5. < 5.	nber(s): 45 5. 5. 5. 5. 5. 5.	578229-457 0.5 0.5 1. 1. 1.	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	100 88 103 90 101 92 97 94	98 87 98 87 93	99-101 75-125 77-119 76-126 81-116 77-114 82-115 79-117	5 3 3 5 4 5	30 30 30 30 30 30

Sample Matrix Quality Control

	MS	MSD	MS/MSD		RPD	BKG	DUP	DUP	Dup RPD
Analysis Name	%REC	%REC	<u>Limits</u>	RPD	<u>MAX</u>	Conc	Conc	RPD	Max
Batch number: 05217SLD026	Sample	number	(s): 457822	9-45782	231				
Pyrene	100	100	25-159	1	30				
Naphthalene	80	84	54-121	5	30				
Fluorene	85	92	48-130	8	30				
Phenanthrene	94	98	28-155	4	30				

*- Outside of specification

- **-This limit was used in the evaluation of the final result for the blank
- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The background result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Page 2 of 3

Quality Control Summary

Client Name: Langan Group Number: 954311

Reported: 08/11/05 at 08:48 AM

Sample Matrix Quality Control

	MS	MSD	MS/MSD		RPD	BKG	DUP	DUP	Dup RPD
Analysis Name Anthracene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(a) pyrene Benzo(g,h,i) perylene	%REC 93 96 91 91 98 99	%REC 96 96 92 91 97 96	Limits 47-135 39-144 38-144 24-155 38-142 32-150	RPD 3 0 1 0 0 3	MAX 30 30 30 30 30 30 30	Conc	Conc	<u>RPD</u>	Max
Batch number: 052205708001 Lead	Sample 91	number	(s): 457822 80-120	9-45782 11	20	30.7	26.2	16	20
Batch number: 05220820001B Moisture	Sample	number	(s): 457822	9-45782	130	26.8	15.4	54*	15
Batch number: 05221820001A Moisture	Sample	number	(s): 457823	1		12.3	13.8	12	15
Batch number: X052201AA Methyl Tertiary Butyl Ether Benzene 1,2-Dichloroethane Toluene 1,2-Dibromoethane Ethylbenzene Isopropylbenzene Xylene (Total)	Sample 99 95 82 84 78 77 72	e number	(s): 457822 49-140 67-123 62-130 55-125 62-116 50-127 48-124 54-123	9-45782	231				

Surrogate Quality Control

Analysis Name: PAHs in Soil by GC/MS Batch number: 05217SLD026

	Nitrobenzene-d5	2-Fluorobiphenyl	Terphenyl-d14	
4578229	81	85	110	
4578230	81	89	113	
4578231	88	103	113	
Blank	92	102	108	
LCS	88	96	117	
MS	82	93	105	
MSD	81	92	105	
Limits:	47-128	55-123	51-158	

Analysis Name: UST-Soils by 8260B Batch number: X052201AA

Dacen num	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
4578229	86	84	94	81
4578230	84	83	91	85
4578231	84	81	98	75
Blank	83	82	90	86
LCS	85	83	90	85

*- Outside of specification

- **-This limit was used in the evaluation of the final result for the blank
- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The background result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 3 of 3

Quality Control Summary

Client Name: Langan Group Number: 954311

Reported: 08/11/05 at 08:48 AM

Surrogate Quality Control

		~ 5		-	
LCSD	84	82	90	84	
MS	85	84	91	85	
Limits:	70-129	70-121	70-130	70-128	

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The background result was more than four times the spike added.

Analysis Request / Environmental Services Chain of Custody

Lancaster Laboratories
Where quality is a science.

Acct. # 10133 Group# 9543VI Sample # 4578339-31

COC# 0093020

Fax #: Fatorie rax E-mail M. M. A. Shar 130 Em. 120 Em. 120 Em.	Please print. Acct. #: Acct. #: P.O.#: Quote #: Quote #: Odd Odd Styles 1000 Styles 1100 Styles 1100	Significant with circle of the special states of the special state	Time Recent Property of the Park of the Pa	O°C emarks Exidse	o Dise o
E-mail address:	Rush results requested by (please circle): Phone Fax E-mail Phone #:Fax #:Fax #:	9	S /3/6 Z /3/6 Z / 2/6	Memoi	
Detions (please circle if required) Type VI (Raw Data) GLP Site-specific QC required? Yes (If yes, indicate QC sample and submit triplicate volume.) Internal Chain of Custody required? Yes (No)	Data Package Options (please circle if required) QC Summary Type VI (Raw Data) Type I (Tier I) Type III (NJ Red. Del.) SDG Complete? No Side-specific QC required? Yes (If yes, indicate QC sample and submit triplicate volume.) Internal Chain of Custody required? Yes (No)	nquished by:	Time		

2102 Rev. 10/27/02

Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

N.D.	none detected	BMQL	Below Minimum Quantitation Level
TNTC	Too Numerous To Count	MPN	Most Probable Number
IU	International Units	CP Units	cobalt-chloroplatinate units
umhos/cm	micromhos/cm	NTU	nephelometric turbidity units
С	degrees Celsius	F	degrees Fahrenheit
meq	milliequivalents	lb.	pound(s)
g	gram(s)	kg	kilogram(s)
ug	microgram(s)	mg	milligram(s)
ml	milliliter(s)	Ĭ	liter(s)
m3	cubic meter(s)	ul	microliter(s)

- < less than The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.
- > greater than
- J estimated value The result is ≥ the Method Detection Limit (MDL) and < the Limit of Quantitation (LOQ).
- ppm parts per million One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.
- ppb parts per billion
- **Dry weight**basis
 Results printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture. All other results are reported on an as-received basis.

U.S. EPA CLP Data Qualifiers:

	Organic Qualifiers		Inorganic Qualifiers
Α	TIC is a possible aldol-condensation product	В	Value is <crdl, but="" th="" ≥idl<=""></crdl,>
В	Analyte was also detected in the blank	E	Estimated due to interference
С	Pesticide result confirmed by GC/MS	M	Duplicate injection precision not met
D	Compound quantitated on a diluted sample	N	Spike sample not within control limits
E	Concentration exceeds the calibration range of the instrument	S	Method of standard additions (MSA) used for calculation
N	Presumptive evidence of a compound (TICs only)	U	Compound was not detected
Р	Concentration difference between primary and	W	Post digestion spike out of control limits
	confirmation columns >25%	*	Duplicate analysis not within control limits
U	Compound was not detected	+	Correlation coefficient for MSA < 0.995
X,Y,Z	Defined in case narrative		

Analytical test results for methods listed on the laboratories' accreditation scope meet all requirements of NELAC unless otherwise noted under the individual analysis.

Measurement uncertainty values, as applicable, are available upon request.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL LANCASTER LABORATORIES BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF LANCASTER LABORATORIES AND (B) WHETHER LANCASTER LABORATORIES HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Lancaster Laboratories which includes any conditions that vary from the Standard Terms and Conditions of Lancaster Laboratories and we hereby object to any conflicting terms contained in any acceptance or order submitted by client.

APPENDIX D

FIELD SAMPLING REPORTS

Appendix D - Field Sampling Reports AOI-4 Sunoco Philadelphia Refinery Philadelphia, Pennsylvania

WELL IDENTIFICATION	SAMPLE DATE	DEPTH TO WATER (feet)	DEPTH TO BOTTOM (feet)	WATER COLUMN (feet)	CONVERSION FACTOR	GALLONS IN WELL	PURGE VOLUME (Gallons)
MW1	6-May-05	15.08	20	4.92	0.04	0.2	0.6
MW4	6-May-05	6.10	16	9.9	0.04	0.4	1.2
S102	6-May-05	17.67	20	2.33	0.65	1.5	4.5
S119	3-May-05	25.85	37	11.15	0.65	7.2	21.7
S120	3-May-05	18.07	30	11.93	0.65	7.8	23.3
S121	4-May-05	20.28	30	9.72	0.65	6.3	19.0
S122	3-May-05	23.88	34.6	10.72	0.65	7.0	20.9
S123	4-May-05	20.48	30	9.52	0.65	6.2	18.6
S26	2-May-05	18.92	24	5.08	0.16	0.8	2.4
S27	2-May-05	23.01	34.75	11.74	0.16	1.9	5.6
S28	4-May-05	22.67	25	2.33	0.16	0.4	1.1 (Purged 0.75 gallons, went dry)
S31	2-May-05	16.12	25	8.88	0.16	1.4	4.3 (Purged 2 gallons, went dry)
S38	3-May-05	17.30	23.2	5.9	0.16	0.9	2.8
S38D	3-May-05	18.15	130	111.85	0.16	17.9	53.7
S38I	3-May-05	18.68	80	61.32	0.16	9.8	29.4
S39	3-May-05	21.06	34	12.94	0.37	4.8	14.4
S40	3-May-05	22.27	28	5.73	0.16	0.9	2.8
S96	1-Aug-05	19.51	23	3.49	0.16	0.6	1.7 (Purged 0.5 gallons, went dry)
S97	4-May-05	27.98	35	7.02	0.65	4.6	13.7
S216	28-Apr-05	14.56	29	14.44	0.65	9.4	28.2
S218	28-Apr-05	24.09	33	8.91	0.65	5.8	17.4
S219	28-Apr-05	24.09	30	5.91	0.65	3.8	11.5
S222	1-Aug-05	16.79	28	11.21	0.65	7.3	21.9
S223	1-Aug-05	15.62	30	14.38	0.65	9.3	28.0
S224	1-Aug-05	15.80	32	16.2	0.65	10.5	31.6
S225	28-Apr-05	15.27	30	14.73	0.65	9.6	28.7
S229	28-Apr-05	22.70	33	10.3	0.65	6.7	20.1
S-119D	3-May-05	14.26	74	59.74	0.16	9.6	28.7
S59D	6-May-05	16.54	58	41.46	0.16	6.6	19.9

APPENDIX E

LNAPL SAMPLING ANALYTICAL DATA AND MODELING PROCEDURES

APPENDIX E

LNAPL SAMPLING ANALYTICAL DATA AND MODELING PROCEDURES AOI 4: SUNOCO PHILADELPHIA REFINERY PHILADELPHIA, PENNSYLVANIA

E.O LNAPL DISTRIBUTION AND MOBILITY ASSESSEMNT

LNAPL distribution and mobility characterization field activities discussed in this appendix and the Site Characterization Report were performed by Aquaterra during April 2005. The gauging of groundwater elevations and LNAPL thicknesses was performed by Handex during May 9 - 11, 2005.

E.1 LNAPL CHARACTERIZATION RESULTS

LNAPL characterization was performed on samples collected from six monitoring well locations in AOI 4 during April 2005. The characterization analyses were performed by Torkelson Geochemistry of Texas. Characterization results from eight samples previously collected in AOI 4 to support LNAPL volume and mobility calculations in the 2004 Current Conditions Report were incorporated into the LNAPL modeling completed for the AOI 4. The characterization data for these samples are summarized in Table E1. Chromatographic results indicate that three different types or mixtures of LNAPL were identified in AOI 4. The LNAPL types include middle distillate, middle distillate/light-end feedstocks and gasoline/middle distillate. The chromatograms can be found near the end of this Appendix. These classifications are summarized in Table E1 and generally on Figures 8 and 9. The most prevalent LNAPL type in a mixture, however, was used in the LNAPL modeling.

E.2 ANALYTICAL PROGRAM AND LNAPL MODELING PROCEDURE

Groundwater and LNAPL samples from S-34 and S-198 were collected for physical properties analysis including:

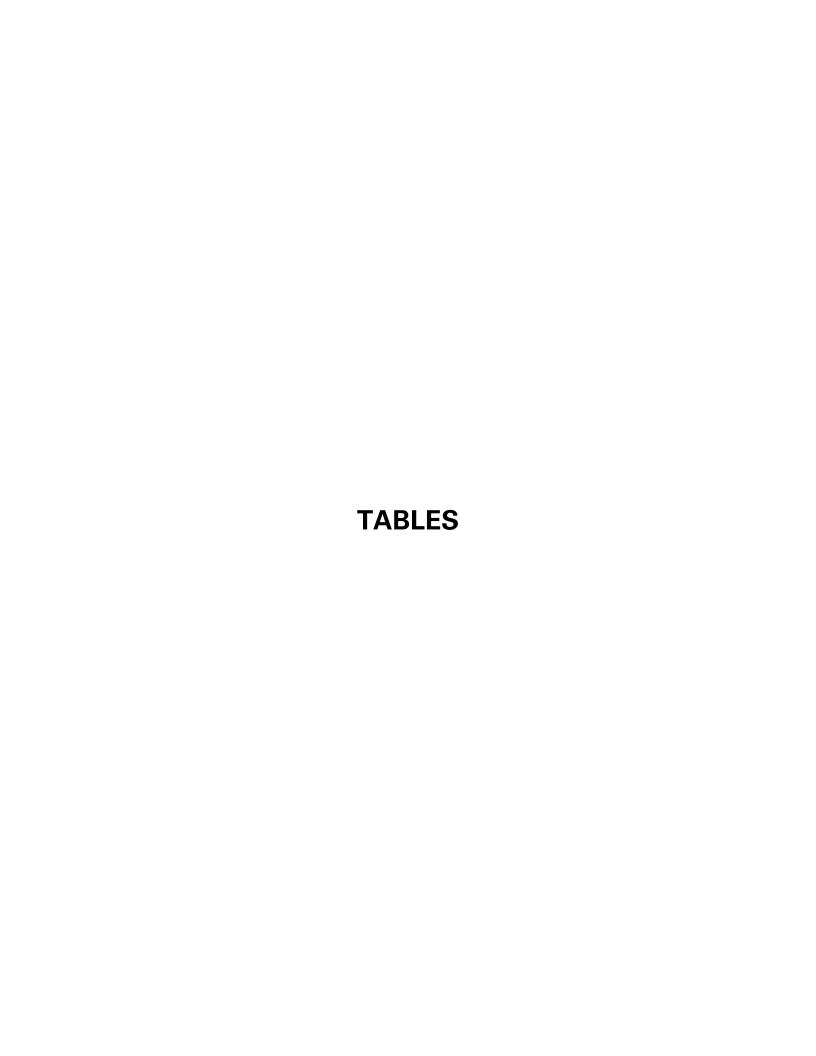
- Interfacial/surface tension,
- Viscosity,
- Specific gravity, and
- Density.

The physical properties of LNAPL and groundwater were entered into the API model as summarized in Table E2. Any location with LNAPL that has not been analyzed for fluid properties has been assigned values from the API database based upon LNAPL type present or by proximity to other locations with LNAPL data. The site-specific data, when compared to API database values, were found to be conservative in representing site conditions. The API model was then used to calculate the specific volume of LNAPL in the formation surrounding each well. These values are summarized in Table 7.

The API model also calculates relative permeability of LNAPL. Using site-specific viscosity values or surrogate values from the API or Environment Canada databases, the seepage velocity of LNAPL was then computed (Table E3) and the values are summarized in Table 7. The seepage velocity at which LNAPL flows is a strong indication of the mobility and recoverability of LNAPL from the subsurface.

E.3 APPARENT LNAPL THICKNESS

The apparent LNAPL thickness is the measured thickness of LNAPL at each monitoring well location. The maximum detected LNAPL thickness on site during the week of May 9 – 11, 2005 was observed in S-30 (an active LNAPL recovery well) at 7.15 feet. S-30 is located in the center of AOI 4 near S-29. Monitoring well S-29 was observed to have an apparent LNAPL thickness of 6.36 feet. Eight additional monitoring wells in AOI 4 contained detectable amounts of LNAPL greater than 0.10 feet but less than 1 foot in thickness. Two wells in AOI 4 had detectable


amounts of LNAPL greater 0.01 feet but less than 0.1 feet. Five wells have apparent thicknesses of 0.01 feet which is used to represent a sheen for API modeling purposes.

E.4 LNAPL SPECIFIC VOLUME

The specific volume is the amount of LNAPL in the surrounding formation, after taking into account soil and LNAPL properties (Table E1). The maximum calculated LNAPL specific volume in AOI 4 is found at S-30 at 2.51 feet. Monitoring well S-29 has a calculated specific volume of 2.20 feet. Three monitoring wells, S-33, S-34, and S-35 have specific volumes calculated to be 0.020 feet, 0.010 feet, and 0.011 feet, respectively. The remaining 12 locations with detectable LNAPL have specific volumes calculated to be less than one tenth of a foot in thickness.

E.5 LNAPL MOBILITY

A LNAPL seepage velocity was calculated for each monitoring well having a measurable thickness of LNAPL (Table 4). A hydraulic gradient of 0.0035 feet/feet was used; this gradient is the same as that used in the current fate and transport calculations. Calculated seepage velocities range from a minimum of 1.02 E 10⁻¹⁷ cm/sec at S-56 to a maximum of 8.42 E 10⁻⁶ cm/sec at S-30. LNAPL was considered to be mobile if its seepage velocity exceeds 1 E 10⁻⁷ cm/sec. Wells with LNAPL with seepage velocities which exceed this 1 E 10⁻⁷ cm/sec value are located at the center and western side of AOI 4 as shown in Figure 11.

TABLE E1 LNAPL CHARACTERIZATION RESULTS SUMMARY AOI 4: SUNOCO PHILADELPHIA REFINERY

	Characterization Results Compiled for Current Conditions Report Interpretation of Product Type(s), Proportions and Weathering									
Well ID	Density (gm/ml @ 60°F)	LNAPL Type(s)	Torkleson LNAPL Type(s)	Proportions	Weathering					
S-103	0.7978	Gasoline Middle Distillate	Avation Gasoline Middle Distillate	70 30	Extreme Extreme					
S-104	0.8787	Middle Distillate	Middle Distillate	100	Extreme					
S-124	0.8223	Light End Feed Stock Middle Distillate	Coker Naphtha Middle Distillate	40 60	High Moderate					
S-29	0.8550	Middle Distillate	Middle Distillate	100	High					
S-32	0.8665	Middle Distillate	Middle Distillate	100	Severely					
S-33	0.8578	Gasoline Middle Distillate	Gasoline Middle Distillate	5 95	Extreme Extreme					
S-56	0.8684	Gasoline Middle Distillate	Gasoline Middle Distillate	2 98	Extreme Extreme					
S-97	0.8653	Middle Distillate	Middle Distillate	100	Severely					
		erization Results Compiled for AOI 4 retation of Product Type(s), Proporti								
Well ID	Density (gm/ml @ 60°F)	LNAPL Type(s)	Torkleson LNAPL Type(s)	Proportions	Weathering					
S-35	0.8665	Middle Distillate	Middle Distillate	100	Extreme					
S-37	0.8639	Gasoline Middle Distillate	Gasoline Middle Distillate	2 98	Unknown High					
S-57	0.8620	Middle Distillate	Middle Distillate	100	Extreme					
S-217	QNS	Gasoline and Light End Feed Stock Middle Distillate	Gasoline and Heavy Virgin Naptha Middle Distillate	61 39	Slight Slight					
S-220	QNS	Gasoline and Light End Feed Stock Middle Distillate	Gasoline and Heavy Virgin Naptha Middle Distillate	70 30	Moderate High					
S-221	QNS	Gasoline and Light End Feed Stock Middle Distillate	Gasoline and Heavy Virgin Naptha Middle Distillate	67 33	Slight Slight					

Notes:

- 1. Characterization Data Provided by Torkelson Geochemistry of Tulsa, OK
- 2. QNS = Quantity Not Sufficient for Density Determination

Table E2

Input Data For American Petroleum Institute's van Genuchten - Mualem Model of LNAPL Distribution and Relative Permeability

AOI 4: Sunoco Philadelphia Refinery

Philadelphia, Pennsylvania

Monitoring Point	LNAPL Density (g/ml @ 60°F)	LNAPL			API Database					API or Environment Canada Datal	base
ID	Density ^{1,2}	Thickness ³ (ft)	Porosity Well ID (unitless)	USCS Soil Type Surrounding Well Screen ⁶	van Genuchten "N" (unitless)	van Genuchten "a" (ft ⁻¹)	Irreducible Water Saturation (unitless)	LNAPL Type or Source of Surrogate LNAPL Type (Torkelson Geochemistry)	Air/Water Surface Tension ⁴ (dynes/cm)	Air/LNAPL Surface Tension (dynes/cm)	LNAPL/Water Surface Tension (dynes/cm)
S-103	0.7978	0.18	0.426	SP	1.98	1.3500	0.321	Aviation Gasoline/Middle Distillate Mixture	65	23.84	12.11
S-124	0.8223	0.33	0.426	SP	1.98	1.3500	0.321	Coker Naphtha/Middile Distillate Mixture	65	26.9	22.3
S-217	0.8578	0.01	0.443	SW	3.26	2.8700	0.114	Gasoline/Middle Distillate Mixture	65.7	23.3	14.4
S-220	0.8550	0.08	0.426	SP	1.98	1.3500	0.321	Gasoline/Middle Distillate Mixture	65.7	23.3	14.4
S-221	0.8223	0.01	0.443	SW	3.26	2.8700	0.114	Gasoline/Middle Distillate Mixture	65.7	23.3	14.4
S-104	0.8787	0.50	0.426	SP	1.98	1.3500	0.321	Middle Distillate	57.7	28.6	16.6
S-29	0.8550	6.36	0.443	SW	3.26	2.8700	0.114	Middle Distillate	57.7	28.6	16.6
S-30	0.8550	7.15	0.443	SW	3.26	2.8700	0.114	Middle Distillate	57.7	28.6	16.6
S-32	0.8665	0.01	0.426	SP	1.98	1.3500	0.321	Middle Distillate	57.7	28.6	16.6
S-33	0.8578	0.85	0.426	SP	1.98	1.3500	0.321	Middle Distillate	57.7	28.6	16.6
S-34	0.8578	0.66	0.426	SP	1.98	1.3500	0.321	Middle Distillate	57.7	28.6	16.6
S-35	0.8665	0.68	0.426	SP	1.98	1.3500	0.321	Middle Distillate	57.7	28.6	16.6
S-36	0.8578	0.05	0.426	SP	1.98	1.3500	0.321	Middle Distillate	57.7	28.6	16.6
S-37	0.8639	0.12	0.426	SP	1.98	1.3500	0.321	Middle Distillate	57.7	28.6	16.6
S-56*	0.8684	0.01	0.443	SW	3.26	2.8700	0.114	Middle Distillate	57.7	28.6	16.6
S-57	0.8620	0.38	0.426	SP	1.98	1.3500	0.321	Middle Distillate	57.7	28.6	16.6
S-97*	0.8653	0.01	0.443	SW	3.26	2.8700	0.114	Middle Distillate	57.7	28.6	16.6

Notes

- 1. Density values were determined from LNAPL samples taken by Aquaterra on February 27th and March 1st, 2004, or from samples collected by SECOR in 1999-2000.
- 2. For wells with no direct density measurements, the density value in the nearest well with a direct density was used.
- 3. Depth to Water and Depth to LNAPL provided by Handex May 9th-11th, 2005.
- 4. Determined from soil boring log. If a soil boring log was not available, the soil type in the nearest well with a soil boring log was used.
- 5. Determined by Torkelson Geochemistry. If a well with LNAPL present that was not fingerprinted, the LNAPL type in the nearest monitoring well that has been fingerprinted was used.
- * Sufficeint quantity of LNAPL obtained for fingerprinting, but insufficient for LNAPL thickness measurement, therefore a value of 0.01 ft was assigned.

API = American Petroleum Institute
AOI = Area of Interest
USCS = Unified Soil Classification System
g/ml = grams per milliliter
LNAPL = Light Non-Aqueous Phase Liquid
amsl = above mean sea level

USCS Soil Descriptions (API Database)

SW = Well Graded Sand, Gravelly Sand
SP = Sand

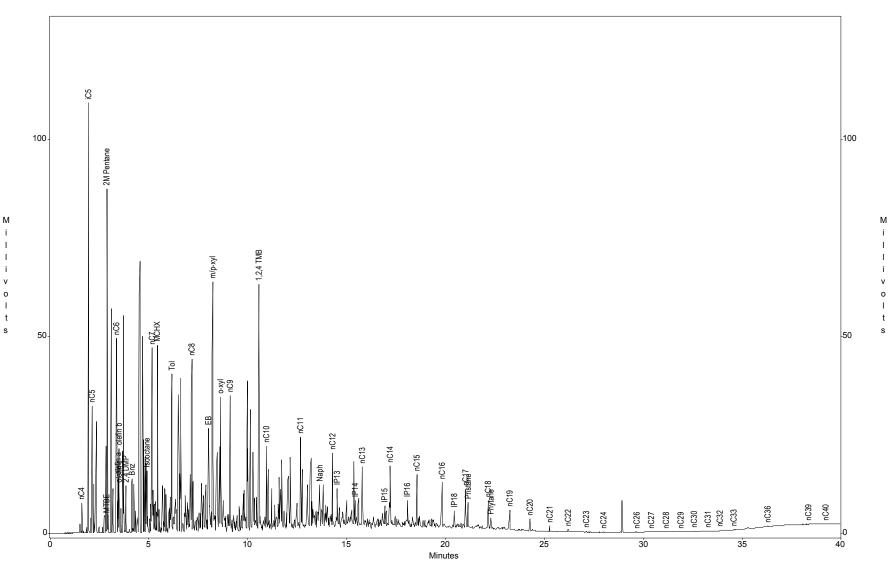
Interfacial/Surface Tension Data Source
Aviation Gasoline/Middle Distillate Mixture
Coker Naphtha/Middle Distillate Mixture
Gasoline/Middle Distillate Mixture
Middle Distillate

American Petroleum Institute LNAPL Parameters Database, 2003 Coker naphtha/middle distillate mixture from Environment Canada Database Middle distillate from S-34 (PTS Geolab Data, 2005) Gasoline/middle distiallate mixture from S-198 (PTS Geolab Data, 2005)

Table E3 LNAPL Seepage Velocity Parameter Input Table AOI 4: Sunoco Philadelphia Refinery Philadephia, Pennsylvania

Well Number L	LNAPL Type or Source of Surrogate LNAPL Type	Effective Porosity of Soil	Porosity of Soi	il Groundwater Density @ 70F (kg/m³)	Groundwater Kinematic Viscosity @70F (centistokes)	Groundwater Kinematic Viscosity @70F (m²/sec)	Groundwater Dynamic Viscosity @70F (N·s/m²)	Soil Permeability (m²)	Kro	Groundwater Gradient	Kinematic Viscosity of SPL (centistokes)	Kinematic Viscosity of SPL (m ² /sec)	Dynamic Viscosity of SPL (N·s/m²)	SPL Density (kg/m3)	NAPL K @ 100% Saturation (m/day)	Corrected NAPL K (m/day)	NAPL Specific Discharge (m/day)	Final NAPL Seepage Velocity (ft/d)
	Torkelson Geochemistry	API Database	API Database	Literature Value or PTS	Literature Value or PTS	Calculated	Calculated	API Database	API Model	Groundwater Contour Map	PTS or Literature Value	Calculated	Calculated	PTS	Calculated	Calculated	Calculated	Calculated
S-103	Aviation Gasoline/Middle Distillate Mixture	0.426	SP	1000	1.000	1.000E-06	0.001	3.34E-12	0.006	0.0035	1.0000	1.000E-06	7.98E-04	797.8	2.831	1.670E-02	5.85E-05	4.50E-04
S-124	Coker Naphtha/Middile Distillate Mixture	0.426	SP	1000	1.000	1.000E-06	0.001	3.34E-12	0.003	0.0035	1.0000	1.000E-06	8.22E-04	822.3	2.831	7.449E-03	2.61E-05	2.01E-04
S-217	Gasoline/Middle Distillate Mixture	0.443	SW	998.3	1.070	1.070E-06	0.001	6.02E-12	8.74E-12	0.0035	1.0500	1.050E-06	9.01E-04	857.8	4.859	4.248E-11	1.49E-13	1.10E-12
S-220	Gasoline/Middle Distillate Mixture	0.426	SP	998.3	1.070	1.070E-06	0.001	6.02E-12	7.62E-04	0.0035	1.0500	1.050E-06	8.98E-04	855.0	4.859	3.704E-03	1.30E-05	9.99E-05
S-221	Gasoline/Middle Distillate Mixture	0.443	SW	998.3	1.070	1.070E-06	0.001	6.02E-12	5.59E-11	0.0035	1.0500	1.050E-06	8.63E-04	822.3	4.859	2.717E-10	9.51E-13	7.04E-12
S-104	Middle Distillate	0.426	SP	999.4	0.997	9.970E-07	0.001	3.34E-12	0.005	0.0035	4.4800	4.480E-06	3.94E-03	878.7	0.632	2.884E-03	1.01E-05	7.77E-05
S-29	Middle Distillate	0.443	SW	999.4	0.997	9.970E-07	0.001	6.02E-12	0.791	0.0035	4.4800	4.480E-06	3.83E-03	855.0	1.139	9.014E-01	3.15E-03	2.34E-02
S-30	Middle Distillate	0.443	SW	999.4	0.997	9.970E-07	0.001	6.02E-12	0.808	0.0035	4.4800	4.480E-06	3.83E-03	855.0	1.139	9.199E-01	3.22E-03	2.38E-02
S-32	Middle Distillate	0.426	SP	999.4	0.997	9.970E-07	0.001	3.34E-12	6.81E-08	0.0035	4.4800	4.480E-06	3.88E-03	866.5	0.632	4.306E-08	1.51E-10	1.16E-09
S-33	Middle Distillate	0.426	SP	999.4	0.997	9.970E-07	0.001	3.34E-12	0.029	0.0035	4.4800	4.480E-06	3.84E-03	857.8	0.632	1.828E-02	6.40E-05	4.93E-04
S-34	Middle Distillate	0.426	SP	999.4	0.997	9.970E-07	0.001	6.02E-12	0.016	0.0035	4.4800	4.480E-06	3.84E-03	857.8	1.139	1.778E-02	6.22E-05	4.79E-04
S-35	Middle Distillate	0.426	SP	999.4	0.997	9.970E-07	0.001	6.02E-12	0.014	0.0035	4.4800	4.480E-06	3.88E-03	866.5	1.139	1.595E-02	5.58E-05	4.30E-04
S-36	Middle Distillate	0.426	SP	999.4	0.997	9.970E-07	0.001	6.02E-12	9.44E-06	0.0035	4.4800	4.480E-06	3.84E-03	857.8	1.139	1.075E-05	3.76E-08	2.90E-07
S-37	Middle Distillate	0.426	SP	999.4	0.997	9.970E-07	0.001	3.34E-12	1.28E-04	0.0035	4.4800	4.480E-06	3.87E-03	863.9	0.632	8.112E-05	2.84E-07	2.19E-06
S-56	Middle Distillate	0.443	SW	999.4	0.997	9.970E-07	0.001	6.02E-12	9.79E-13	0.0035	4.4800	4.480E-06	3.89E-03	868.4	1.139	1.116E-12	3.90E-15	2.89E-14
S-57	Middle Distillate	0.426	SP	999.4	0.997	9.970E-07	0.001	3.34E-12	0.004	0.0035	4.4800	4.480E-06	3.86E-03	862.0	0.632	2.253E-03	7.89E-06	6.07E-05
S-97	Middle Distillate	0.443	SW	999.4	0.997	9.970E-07	0.001	6.02E-12	1.18E-12	0.0035	4.4800	4.480E-06	3.88E-03	865.3	1.139	1.339E-12	4.69E-15	3.47E-14

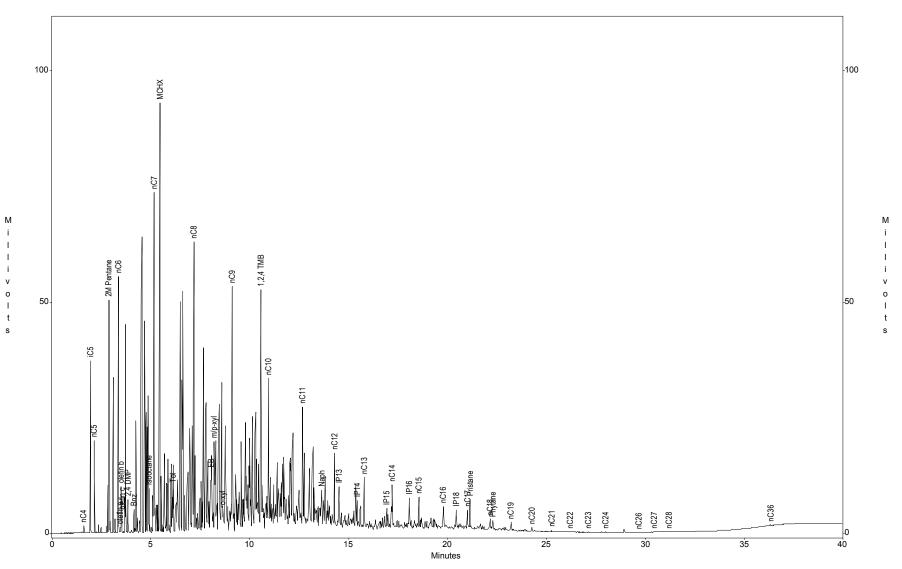
Analysis Request/ Environmental Services Chain of Custody


Acct. #:	Sample #:

Client: AQUATERRA/LANCAN	Acct. #:					Matrix			<u> </u>		Ana	lyses	Rea	uest	ed			For La	b Use	Only
Project Name/# Sun-Philly Refinery ACT-4 Project Manager: K. Martin / J. Harma	PWSID #: P.O; #:							ners	Purt								- h	FSC: SCR:		
Sampler: M. Brad Spantalia	Quote #:		Τ.		1	Potable NPDES		ntail	77	٠										μοdι
Name of State where samples were collected: Sample Identification	Date Collected	Time Collected	Grab	Composite	Soil	Water N	Other	Total # of Containers	C. Fage	ဂ -								Remar	ks	Temporature of samples upon receipt (if applicable)
S217-LNAPL-0-12705	4/27/05	1345	ix				X	i										Sw	α <u>b</u>	
5220-LNAPL-042705	17	1300	À				χ	1										Sw	26	
5221 - LNAPL - 042705	V	,315	×				Ù	I										Sid		
			<u> </u>																	• ,
													 							
				<u></u>																
Turnaround Time Requested (TAT) (please Ccircle) Norm (Rush TAT is subject to Lancaster Laboratories approval and surcharge.	Rush	S DAY'T	7 47	_		Relind	juist <i>M</i>	red b	y	2		Date <i>J</i>			File	d E	$\frac{1}{X}$		Date	Time / 15
Date results are needed: Rush results requested by (please circle): Phone Fax	<u> </u>	-			,	Kelind	quist	ed b) }]t	Date	Tim	ne		ceive		<u> </u>	Date	Time /000
Phone #:Fax #:			-			Relino	quish	ned b	oy:			Date	Ti	me	Red	ceive	ed by	<i>r</i> :	Date	Time
		DG Comple	ete? No			Relino	quish	ned b	oy:			Date	Ti	me	Red	ceive	ed by	<i>t</i> :	Date	Time
State-specific QC (If yes, indicated QC s Internal Cha	ample and sub	mit triplecate v		_	<u>D</u>	Relino	quish	ned b	oy:			Date	Ti	me	,	Rece	eived	l by:	Date	Time

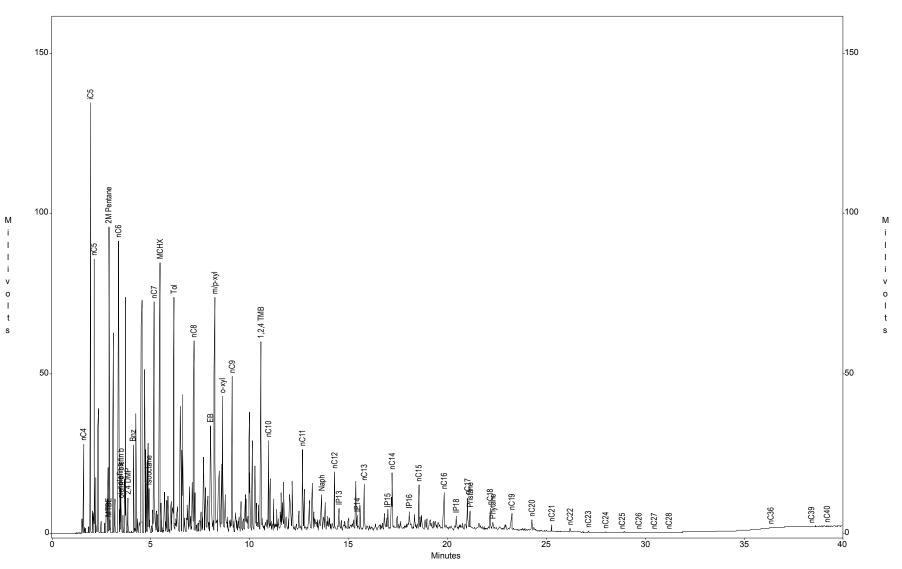
Sun - Philly Refinery AOI-4

Sample ID : S217-LNAPL-042705 Acquired : May 02, 2005 16:08:36

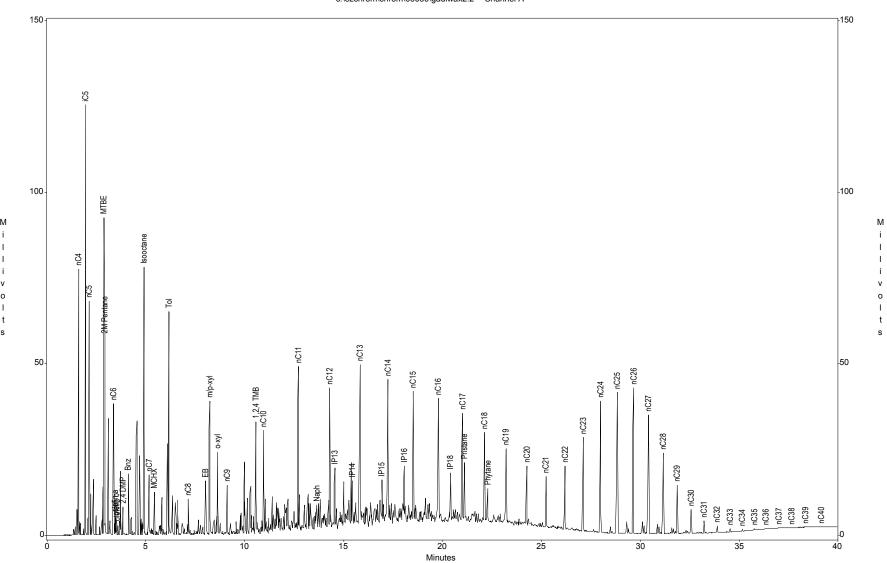

c:\ezchrom\chrom\05056\s217 -- Channel A

Sun - Philly Refinery AOI-4

Sample ID : S220-LNAPL-042705 Acquired : May 02, 2005 16:57:29


c:\ezchrom\chrom\05056\s220 -- Channel A

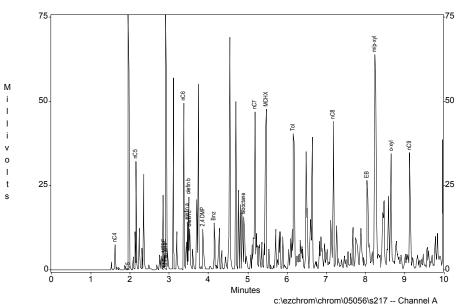
Sun - Philly Refinery AOI-4

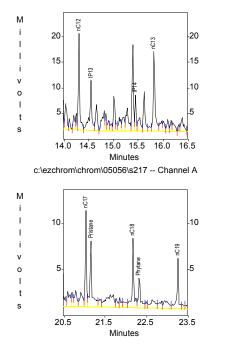

Sample ID : S221-LNAPL-042705 Acquired : May 02, 2005 17:46:44

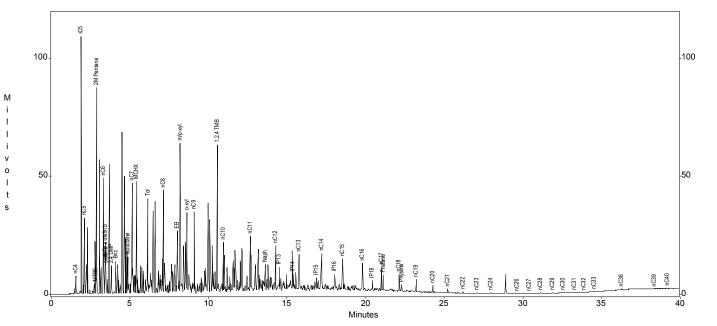
c:\ezchrom\chrom\05056\s221 -- Channel A

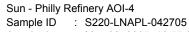
Sun - Philly Refinery AOI-4
Sample ID : Gas/Dies/Wax std
Acquired : May 02, 2005 14:22:33

c:\ezchrom\chrom\05056\gadiwax2.2 -- Channel A

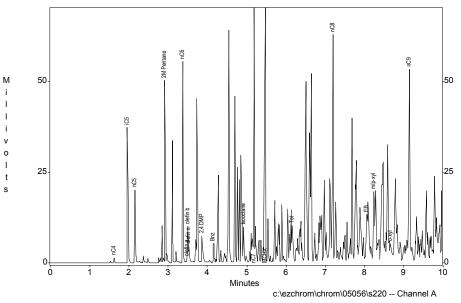

Channel A Results

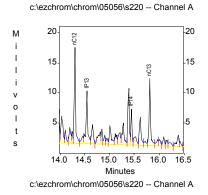

	Area	Height
nC4	5312	7532
iC5	82090	109089
nC5	27278	32164
MTBE	4204	
2M Pentane	84575	87290
nC6	50401	49300
olefin a	16550	13968
olefin b	22085	21436
olefin c	15838	11970
2,4 DMP	18126	11964
Bnz	19761	13704
Isooctane	20030	
nC7	69278	46763
MCHX	65367	47425
Tol	61872	40276
nC8	62688	43837
EB	46202	
m/p-xyl	179497	63428
m/p-xyı o-xyl	60130	34170
nC9	45218	33282
nc9 1,2,4 TMB	122565	62366
nC10	32246	21330
nC10 nC11	49061	
	35610	10677
Naph nC12	34941	18801
	28502	9761
IP13 IP14	28502 11489	
1P14 nC13	36794	6981 15539
	36794 9717	
IP15	31797	5695 15955
nC14		
IP16	23711	7263
nC15	32583	
nC16	32137	12043
IP18	20323	4879
nC17	20303	10365
Pristane	25746	7049
nC18	21674	7495
Phytane	12041	3183
nC19	16412	5385
nC20	6995	3155
nC21	2885	1556
nC22	1387	777
nC23	711	353
nC24	464	199
nC25	0	0
nC26	206	94
nC27	801	138
nC28	887	120
nC29	136	57
nC30	373	101
nC31	100	48
nC32	271	60
nC33	213	44
nC34	0	0
nC35	0	0
nC36	768	222
nC37	0	0
nC38	0	0
	80	21
nC39		2.1
	58	22

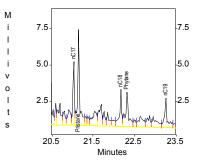


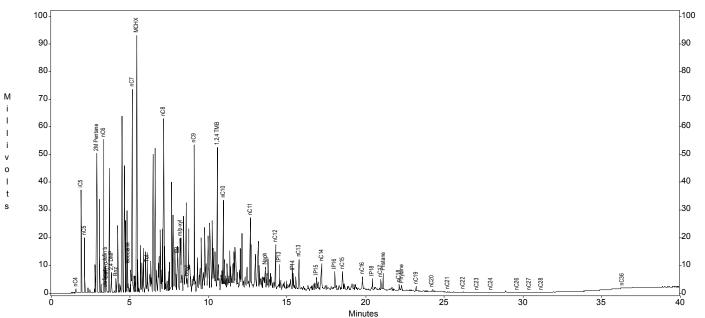

Sample ID : S217-LNAPL-042705 : May 02, 2005 16:08:36 Acquired

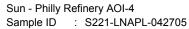
c:\ezchrom\chrom\05056\s217 -- Channel A



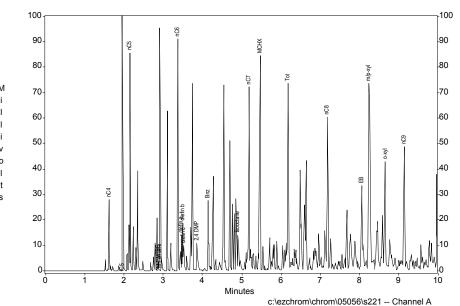


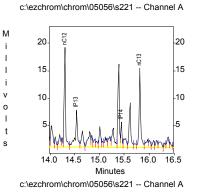

Acquired : May 02, 2005 16:57:29

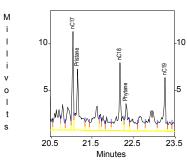

c:\ezchrom\chrom\05056\s220 -- Channel A

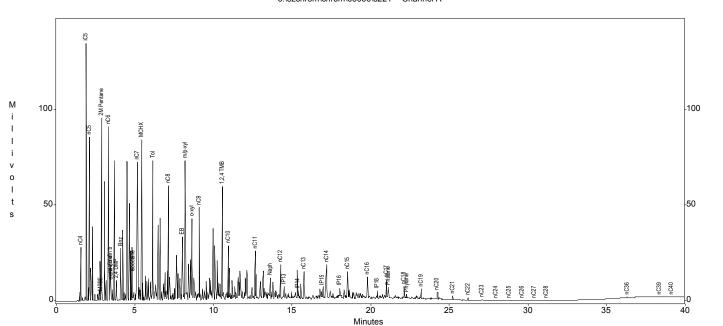


M

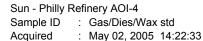


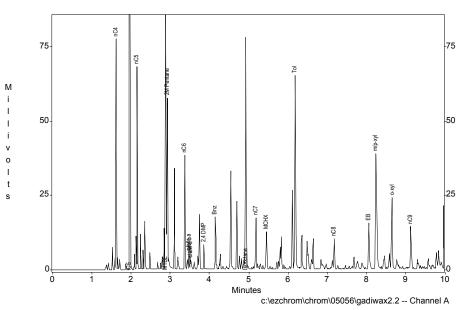

Peak	Area	Height
nC4	1242	1497
iC5	31355	37222
nC5	19617	19956
MTBE	19617	19936
2M Pentane	50132	50228
nC6	57807	55340
olefin a	37807	1140
olefin b	11457	9898
olefin c	6832	4337
2,4 DMP	10742	7203
Bnz	8292	5120
Isooctane	12401	9633
nC7	106802	73182
MCHX	142408	92457
Tol	15282	9953
nC8	97846	62526
EB	28868	12969
m/p-xyl	28852	19252
o-xyl	15796	4838
nC9	86505	52845
1,2,4 TMB	104642	51476
nC10	54962	32146
nC11	52507	25375
Naph	22465	7741
nC12	28752	15938
IP13	20732	8776
IP14	9732	5943
nC13	21910	11117
IP15	8022	4572
nC14	20498	9576
IP16	18775	6939
nC15	19804	7041
nC16	18301	5101
IP18	19241	4459
nC17	9702	4377
Pristane	21090	6605
nC18	8400	2539
Phytane	11673	2345
nC19	9150	2003
nC20	2693	891
nC21	689	337
nC22	325	156
nC23	275	99
nC24	193	62
nC25	0	0
nC26	116	35
nC27	93	33
nC28	156	34
nC29	0	0
nC30	0	0
nC31	0	0
nC32	0	0
nC33	0	0
nC34	0	0
nC35	0	0
nC36	939	156
nC37	0	0
nC38	0	0
nC39	0	0
mC40	0	0

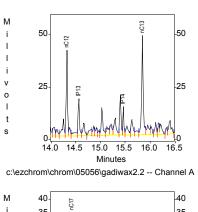



Acquired : S221-LNAPL-042705
Acquired : May 02, 2005 17:46:44

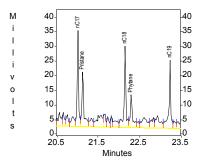
c:\ezchrom\chrom\05056\s221 -- Channel A

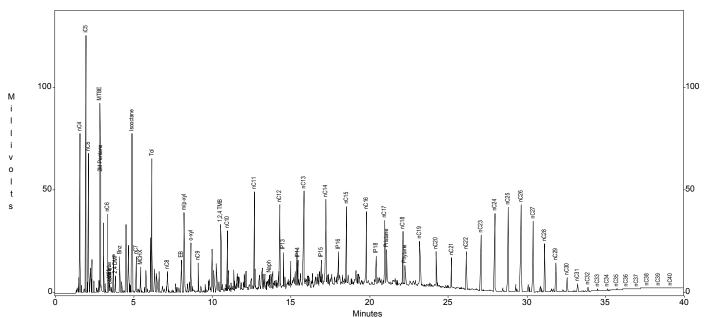






Peak	Area	Height
nC4	18763	27794
iC5	101329	
nC5	70101	
MTBE	3825	3802
2M Pentane	93345	95565
nC6	95802	91162
olefin a	16545	13924
olefin b	19489	18484
olefin c	13768	9801
2,4 DMP	16643	10825
Bnz	37603	27471
Isooctane	17580	13850
nC7	111999	72201
MCHX	126593	84259
Tol	111593	73397
nC8	90353	59968
EB	55919	33153
m/p-xyl	208252	73243
o-xyl	74740	42496
nC9	76850	48501
1,2,4 TMB	112799	58889
nC10	43515	27939
nC11	49443	25123
Naph	34112	11114
nC12	33028	18161
IP13	20516	6737
IP14	7621	4580
nC13	29187	14400
IP15	23983	6182
nC14	35704	18132
IP16	30489	5927
nC15	27158	14321
nC16	34465	11910
IP18	22392	4622
nC17	21621	10455
Pristane	30878	
nC18	30158	
Phytane	13121	
nC19	25197	
nC20	12964	
nC21	4972	
nC22	2599	
nC23	1038	
nC24	479	
nC25	198	
nC26	143	
nC27	99	
nC28	106	
nC29	C	
nC30	0	
nC31	0	
nC32	0	
nC33	C	
nC34	C	
nC35	C	-
nC36	1181	
nC37	C	
nC38	C	
nC39	32	14
nC40	61	2.2


c:\ezchrom\chrom\05056\gadiwax2.2 -- Channel A



Μ

c:\ezchrom\chrom\05056\gadiwax2.2 -- Channel A

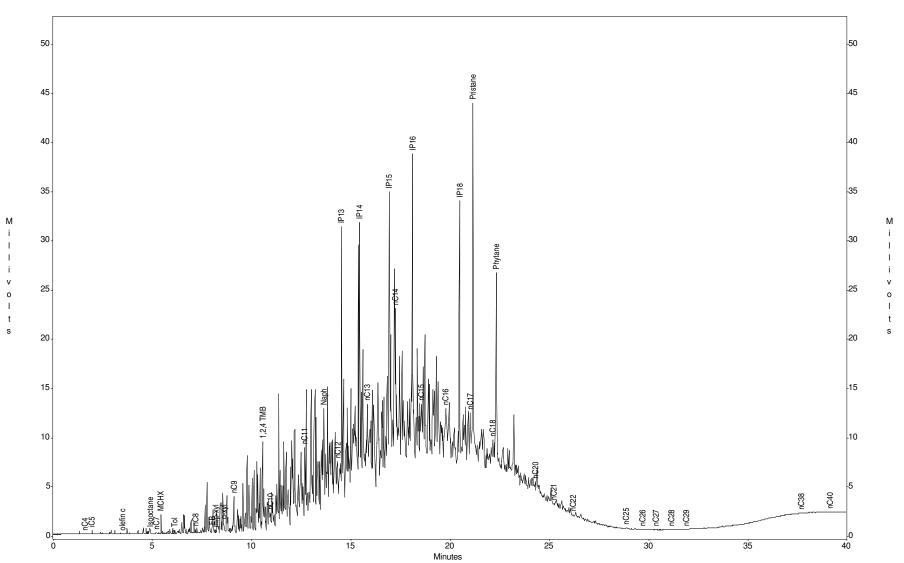
Peak	Area	Height
nC4	50911	77665
iC5	92467	125502
nC5	53701	68026
MTBE	82102	92474
2M Pentane	58250	
nC6	38482	38353
olefin a	6616	5648
olefin b	5050	4575
olefin c	4401	3104
2,4 DMP	8901	8190
Bnz	25387	17698
Isooctane	104545	77906
nC7	22416	17428
MCHX	17182	12529
Tol	96080	
nC8	13479	10248
EB	26557	15600
m/p-xyl	59984	38981
o-xyl	37420	
nC9	21429	14237
1,2,4 TMB	57320	32734
nC10	46335	29893
nC11	83455	48070
Naph	21402	7152
nC12	76553	41198
IP13	34358	17917
IP14	23251	13757
nC13	109508	47554
IP15	15652	10901
nC14	86097	41533
IP16	34996	16847
nC15	81385	38795
nC16	97583	36860
IP18	40308	15471
nC17	77757	32889
Pristane	58572	18551
nC18	80146	27662
Phytane	39841	11245
nC19	73038	23201
nC20	41859	18379
nC21	39739	15674
nC22	37899	18771
nC23	59042	27380
nC24	90762	38208
nC25	108197	41028
nC26	110543	42472
nC27	83155	34660
nC28	51681	23452
nC29	29592	14097
nC30	14605	7049
nC31	7416	3609
nC32	3606	1797
nC33	1944	996
nC34	1064	517
nC35	581	284
nC36	794	145
nC37	491	78
nC38	160	50
nC39	127	36

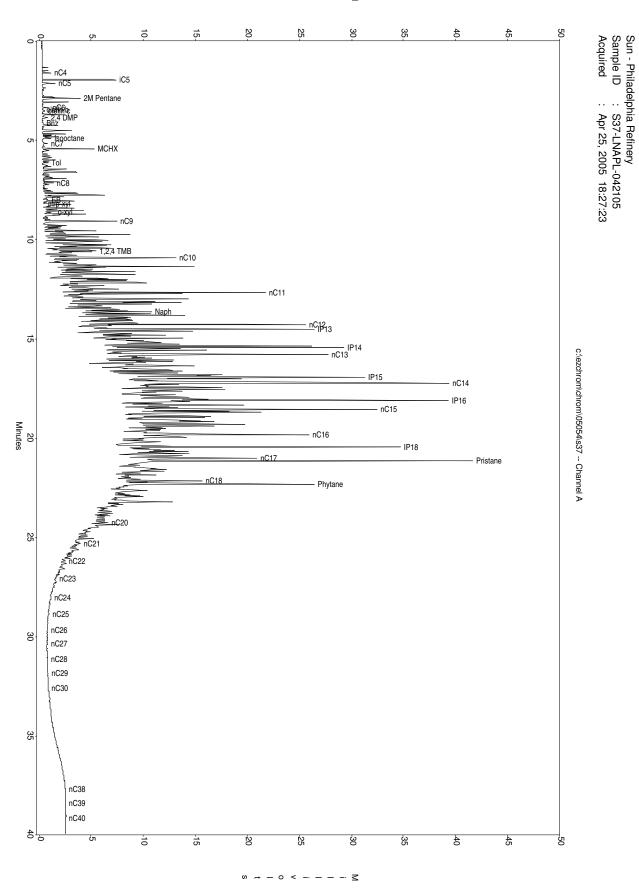
124

Analysis Request/ Environmental Services Chain of Custody

Acct. #:	Sample #:

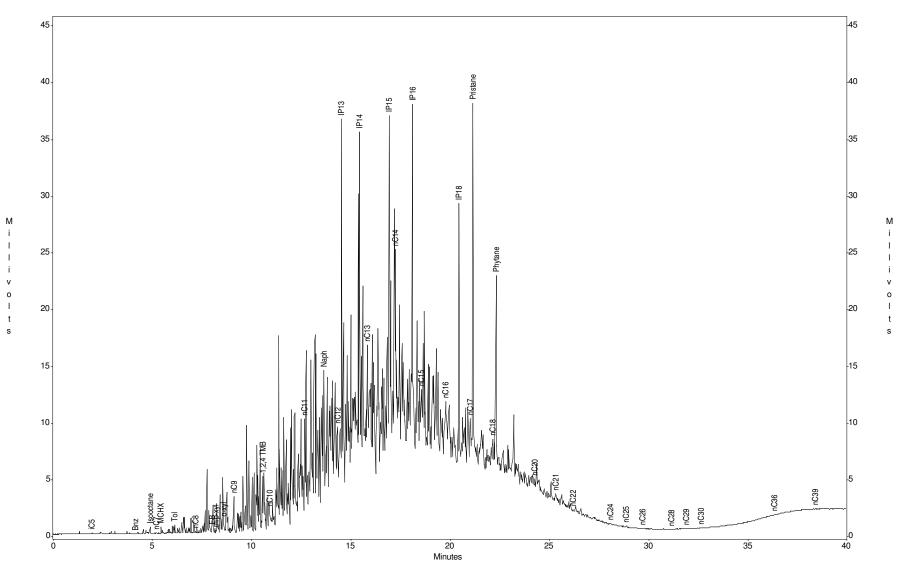
Client:	Langan Engineering	Acct. #:	_	-			Matrix	(1	Analyses Requested						For Lab Use Onl			
Project Name/#:	Sun - Philadelphia Refinery/Petipopt Ter	minal PWSID#:							ş		Ť	Τ		ΠΪ		\neg		FSC:			
· ·	K. Martin (Aquaterra) J. Hanna (Langan								iner	1,5								SCR:			
	M. Brad Spancake	Quote #:	_				ele		of Containers	most print	-									nbou	
Name of State wh	nere samples were collected: PA				Į.		Potable NPDES		ပ္မ	1 3	,									amples ole)	
Sample Identific		Date Collected	Time Collected	Grab	Composite	Soil	Water	Other	Total # of	6CF								Rema	ırks	Temperature of samples upon receipt (if applicable)	
5198-4	NAPL-042005	4/20/05	1035	Х				Х	1	X							_				
	-LNAPL-042005		1045	Х				Х	1	×											
	- LNAPL-042005		1100	X				Х	1	X											
577-	LNAPL-042005		1110	Х				Х	1	X											
5201	- LNAPL - 042005		1130	Х				X	1	X			<u> </u>								
583-	-LNAPL-042005		1140	Х				Х	1	X											
5126	-LNAPL-04Z005		1325	Х				Х	1	X				Ì							
	-LNAPL - 042005		1340	Х				Х	1	X											
2308-	-LNAPL - 042005		1350	Х				Х	1	X											
Saiz	-LNAPL -042005	V	1400	Х				X	1	X			L								
Turnaround Time Requested (TAT) (please Ccircle): Normal Rush (Rush TAT is subject to Lancaster Laboratories approval and surcharge.								1.10	Noc	2/2	4		105	_	/	Bu:		belon			
Date results are n	needed:		-				Rélino	quish	ied b	ダン		Dat	te	Tim	e	Rece	eived	by:	Date	Time	
Rush results requ	ested by (please circle): Phone Fax													_							
Phone #:	Fax #:			-			Relind	quish	ed b	y:		D	ate	Tir 	ne	Rece	eived	by:	Date	Time	
							Reline	auiah	and h			<u> </u>	oto.	Tir	70	Page	aivod	by a	Date	Time	
		SDG Complete? Yes No					Reilli	ieu p	a sy:			Date		ile	e Received		υy.	Date	rimie		
-	State-specific QC required? Yes No						Relinquished by:					D	Date Time			Received by:			Date	Time	
	(If yes, indicated QC sample and submit triplecate volume)																				
	Interr	Internal Chain-of-Custody required? Yes																			

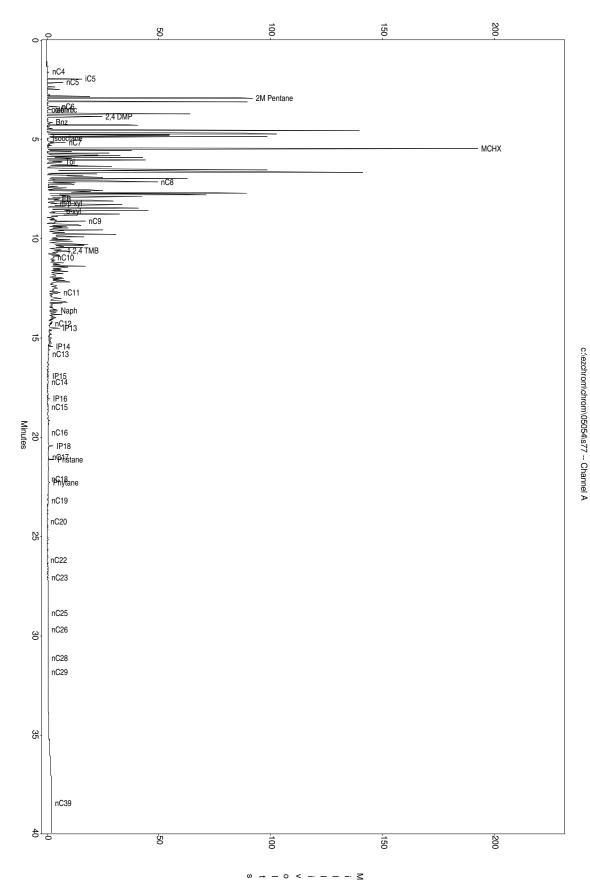

Analysis Request/ Environmental Services Chain of Custody


Acct. #:	Sample #:
7001. #.	Janpic #

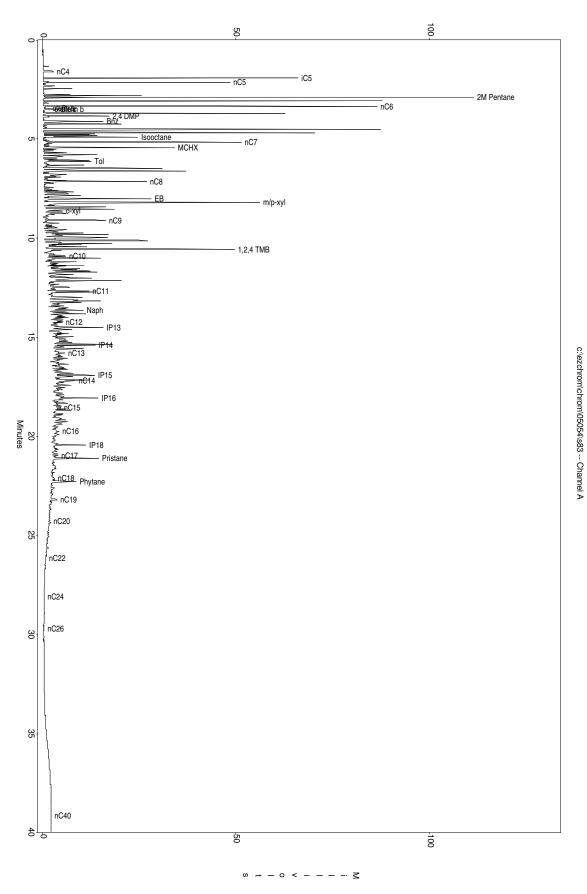
Client:	Langan Enginee	ring (A oqt. #:				Matrix				Analyses Requested						-	For Lab Use Only				
Project Name/#:	Sun - Philadelphia Refinery/B									_δ									F	SC:	_	
	K. Martin (Aquaterra) J. Hann									ine	24.5						•		5	SCR:		
Sampler:	M. Brad Spancake		Quote #:					Be ES		Containers	8											yodn s
Name of State wh	nere samples were collected: F	PA				ite		Potable NPDES		of C	2											sample able)
Sample Identific	ation		Date Collected	Time Collected	Grab	Composite	Soil	Water	Other	Total # o	& fragapoint									Remar	ks	Temperature of samples upon receipt (if applicable)
Sileo	-LNAPL-042005		4/20/05	1410	Х				Х	1	\propto		_						_			
	- LNAPL-042005		4/20/05	1420	Х				Х	1	~			_					_			
§ ३ इ.	-LNAPL-042105		4/21/05	1110	X				Х	1	K		_ _	<u> </u>					_			
S57-	LNAPL-042105		4/21/05	11.20	X				Х	1	X								_			
\$ 37-	LNAPL - 042105		4/21/05	1200_	X				Х	1	×		\bot	<u> </u>					4			
,					X				Х	1		\rightarrow		<u> </u>					_			
					X				X	1		_		<u> </u>				\dashv	_			
		•			X				X_	1				<u> </u>					_			
					X				X	1		_	4	<u> </u>	<u> </u>				4			
					Х			5 "	X	1				<u></u>	ļ						, D-4-	T!
Turnaround Tim	ie Requested (TAT) (please Ccir	cle): Normal R	ush					Relinquished by: Date Time Received by									Time					
(Rush TAT is subject	to Lancaster Laboratories approval and	surcharge.						Relinquished by:							<u> </u>		Received b					1000
Date results are i	needed:			•				Relin	quish	ned b	y:		Dat	te	Tim	e	Kec	eived	ı by:		Date	Time
· ·	uested by (please circle): Ph	one Fax						- "	, ,				+_	<u> </u>			<u> </u>				D-4-	T:
Phone #:	F	ax #:			-			Relin	quisr	iea t	y:		ا ا	ate	'"	me	Rec	eived	ı by:		Date	Time
			<u> </u>																			
			s	DG Complete	omplete?			Relinquished			y:		ate	Ti	me	ne Received		d by:		Date	Time	
				•																		
-	[5	State-specific QC required? Yes No						Relinquished by:						Date T		me Rece		Recei	ived by:		Date	Time
	į	(If yes, indicated QC sample and submit triplecate volume) Internal Chain-of-Custody required? Yes No																				
	ľ																					

Sun - Philadelphia Refinery Sample ID : S35-LNAPL-042105 Acquired : Apr 26, 2005 10:07:40


c:\ezchrom\chrom\05054\s35 -- Channel A

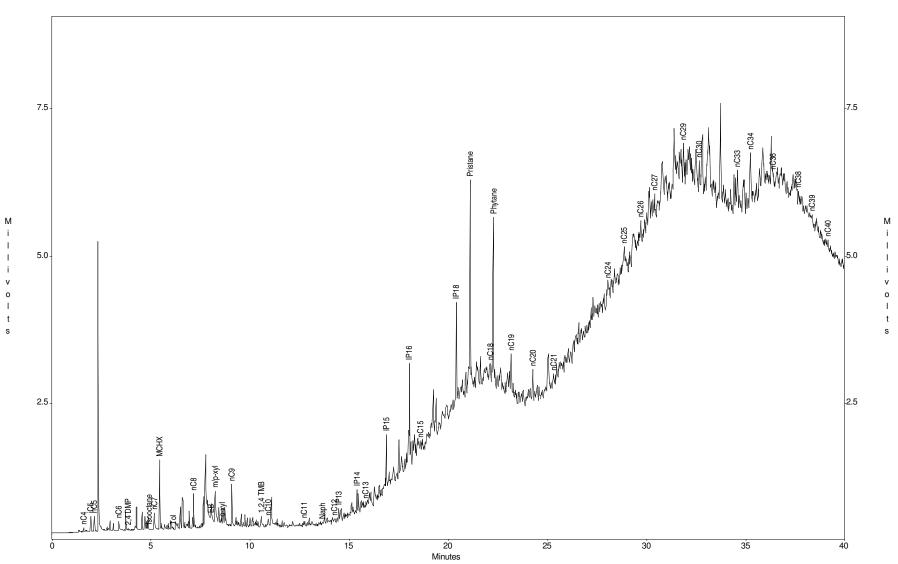


Sun - Philadelphia Refinery Sample ID : S57-LNAPL-042105 Acquired : Apr 25, 2005 13:27:24


c:\ezchrom\chrom\05054\s57 -- Channel A

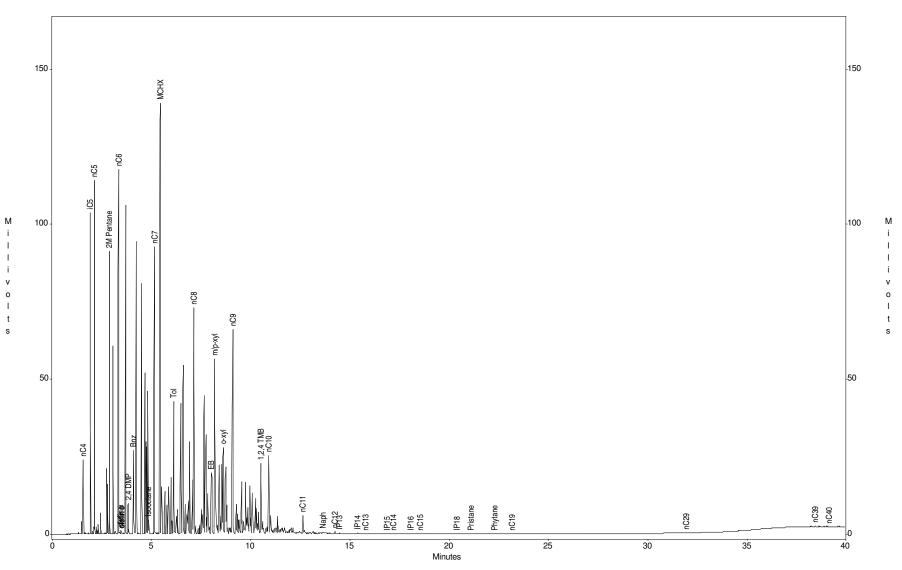
Page 1 of 1 (4)

Sun - Philadelphia Refinery
Sample ID : S77-LNAPL-042005
Acquired : Apr 26, 2005 09:19:05

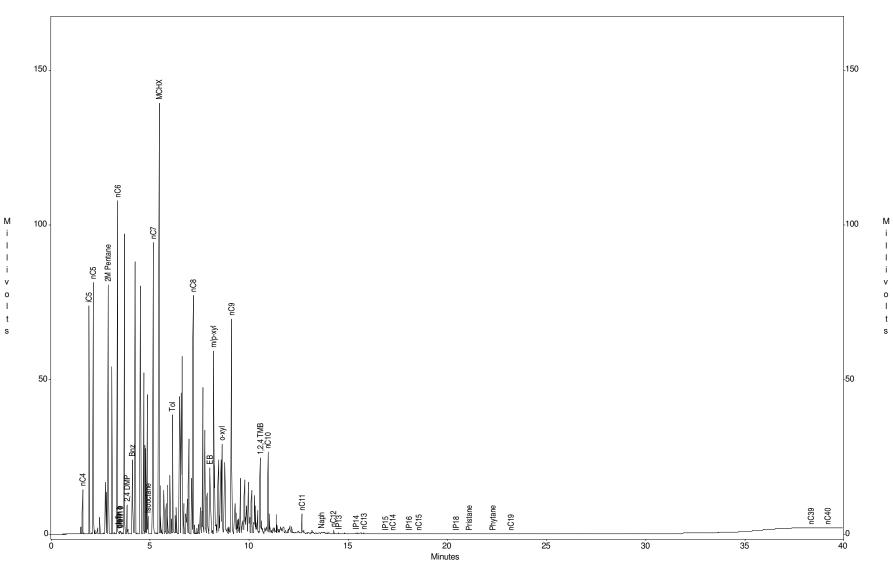


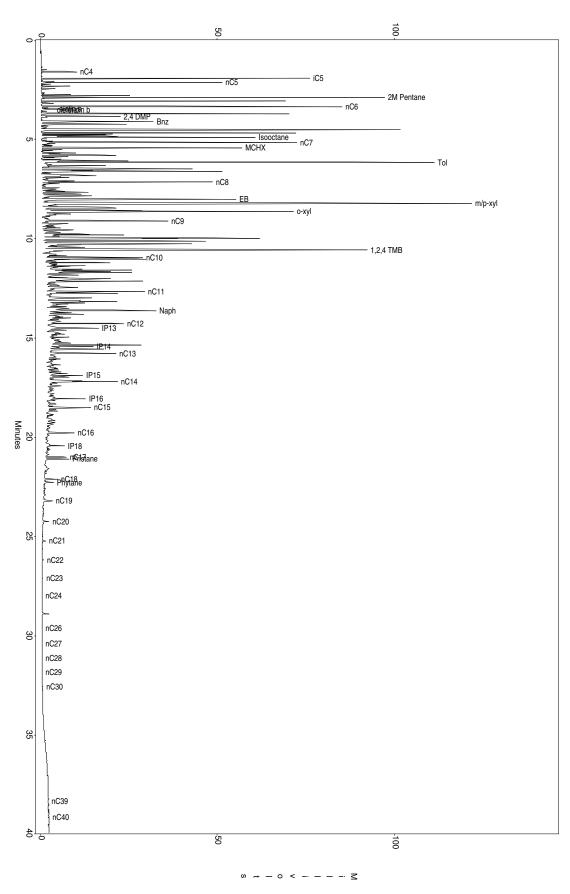
Page 1 of 1 (5)

Sun - Philadelphia Refinery
Sample ID : S83-LNAPL-042005
Acquired : Apr 25, 2005 15:59:15

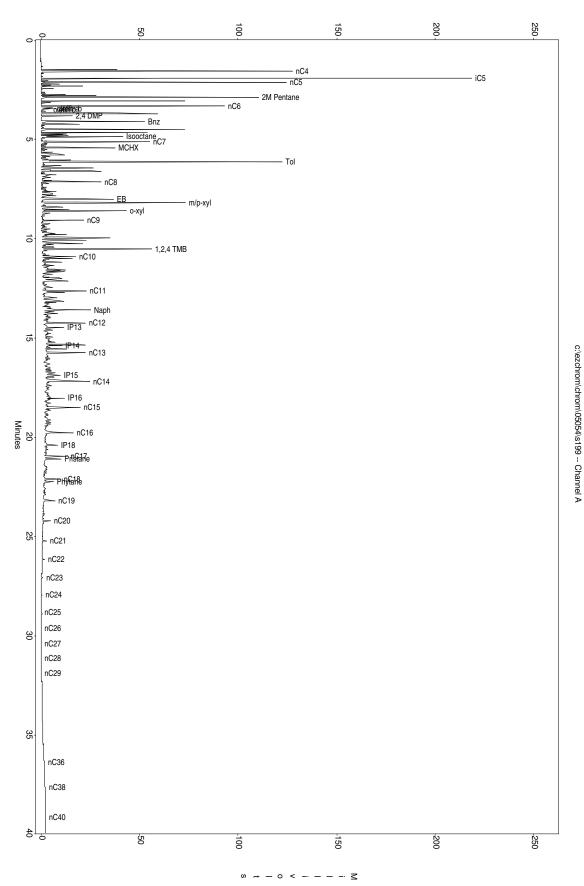

Sun - Philadelphia Refinery Sample ID : S126-LNAPL-042005 Acquired : Apr 26, 2005 11:46:25 : Apr 26, 2005 11:46:25

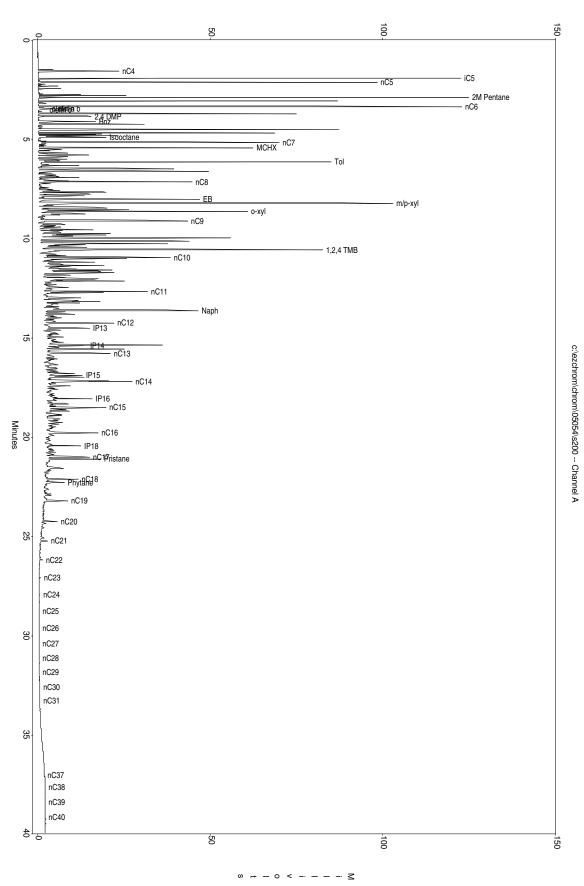
c:\ezchrom\chrom\05054\s126 -- Channel A


Sun - Philadelphia Refinery Sample ID : S160-LNAPL-042005 Acquired : Apr 26, 2005 12:42:54

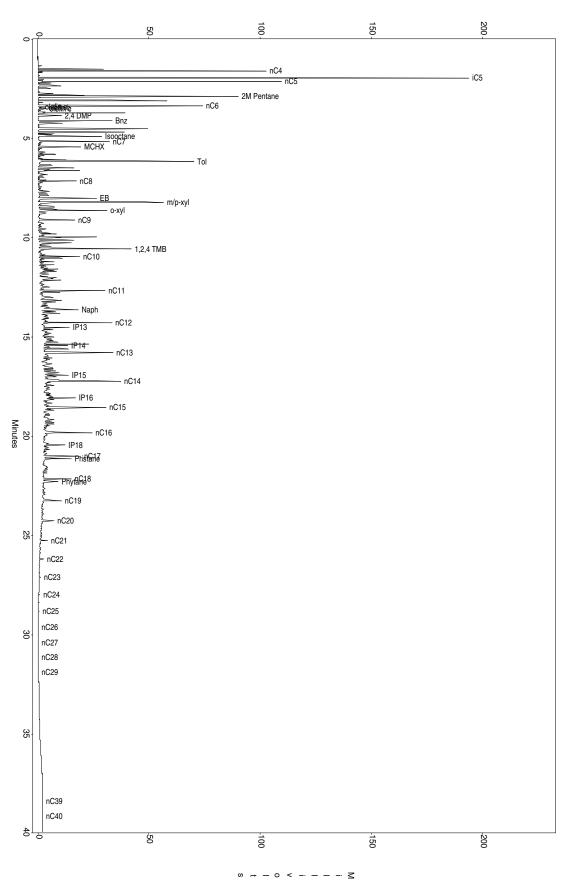

c:\ezchrom\chrom\05054\s160 -- Channel A

Sun - Philadelphia Refinery Sample ID : S161-LNAPL-042005 Acquired : Apr 26, 2005 10:58:03

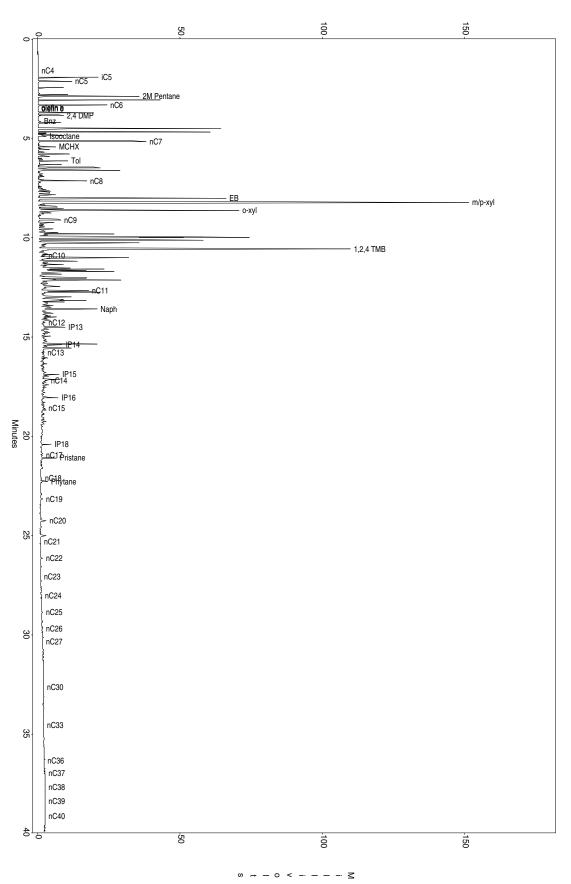

c:\ezchrom\chrom\05054\s161 -- Channel A


Sun - Philadelphia Refinery
Sample ID : S198-LNAPL-042005
Acquired : Apr 25, 2005 15:11:04

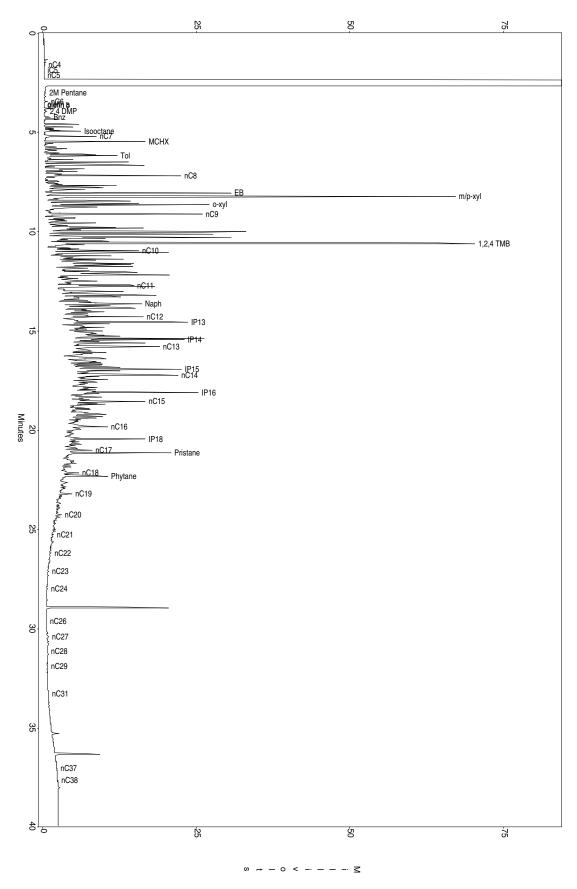
c:\ezchrom\chrom\05054\s198 -- Channel A


Page 1 of 1 (10)

Sun - Philadelphia Refinery
Sample ID : S199-LNAPL-042005
Acquired : Apr 26, 2005 14:20:57


Page 1 of 1 (11)

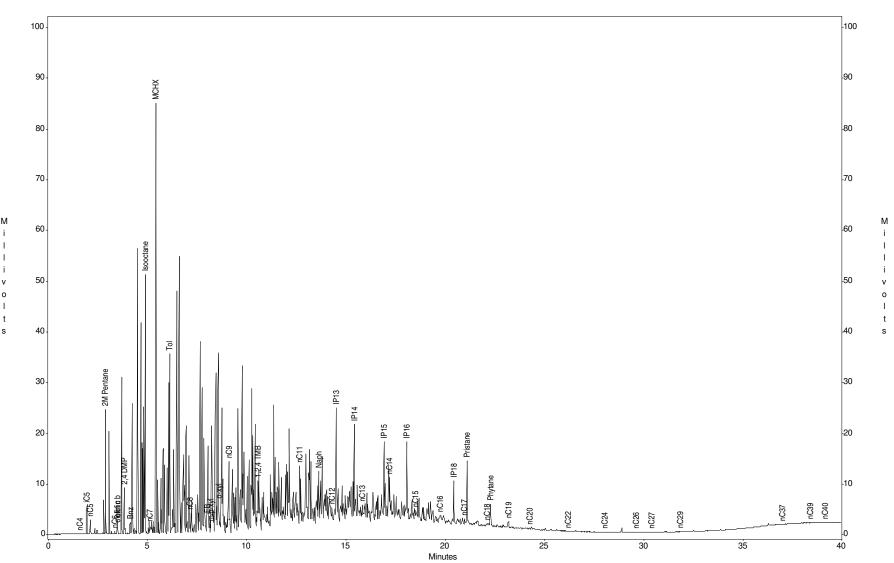
Sun - Philadelphia Refinery
Sample ID : S200-LNAPL-042005
Acquired : Apr 25, 2005 12:38:28

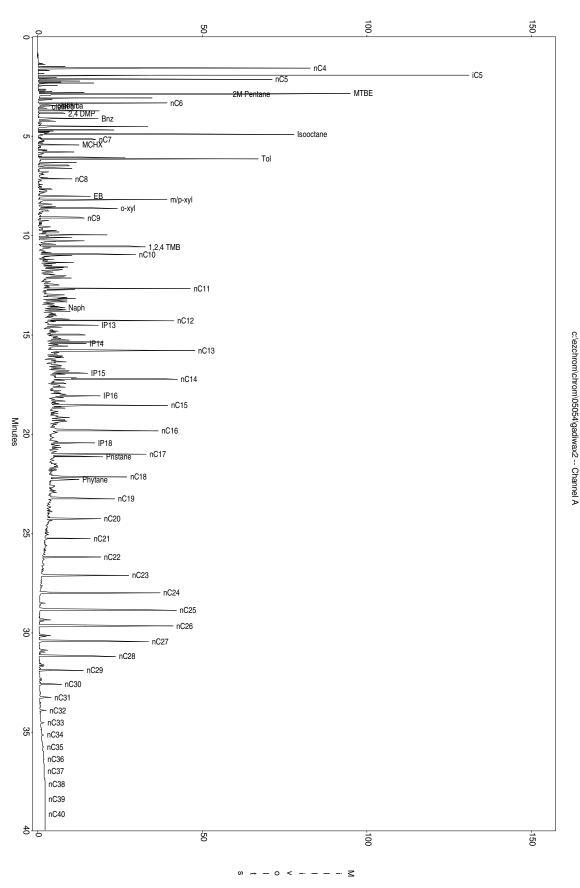

c:\ezchrom\chrom\05054\s201 -- Channel A

Sun - Philadelphia Refinery
Sample ID : S201-LNAPL-042005
Acquired : Apr 26, 2005 15:10:11

c:\ezchrom\chrom\05054\s205.2 -- Channel A

Sun - Philadelphia Refinery
Sample ID : S205-LNAPL-042005
Acquired : Apr 25, 2005 17:38:08


c:\ezchrom\chrom\05054\s208.s -- Channel A

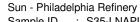

Sun - Philadelphia Refinery
Sample ID : S208-LNAPL-042005
Acquired : Apr 26, 2005 16:47:57

Sun - Philadelphia Refinery

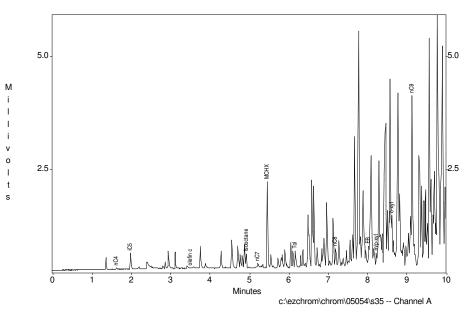
Sample ID : S213-LNAPL-042005 Acquired : Apr 25, 2005 14:19:36

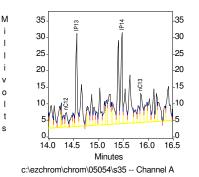
c:\ezchrom\chrom\05054\s213 -- Channel A

Sun - Philadelphia Refinery
Sample ID : Gas/Dies/Wax std
Acquired : Apr 25, 2005 11:00:43


\chrom\05054\gadiwayo -- Channel A

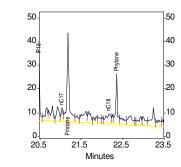
Sun - Philadelphia Refinery
Sample ID : Gas/Dies/Wax std
Acquired : Apr 26, 2005 13:31:55

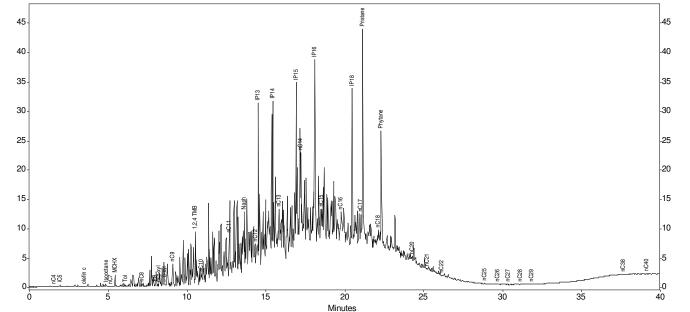

Page 1 of 1 (17)

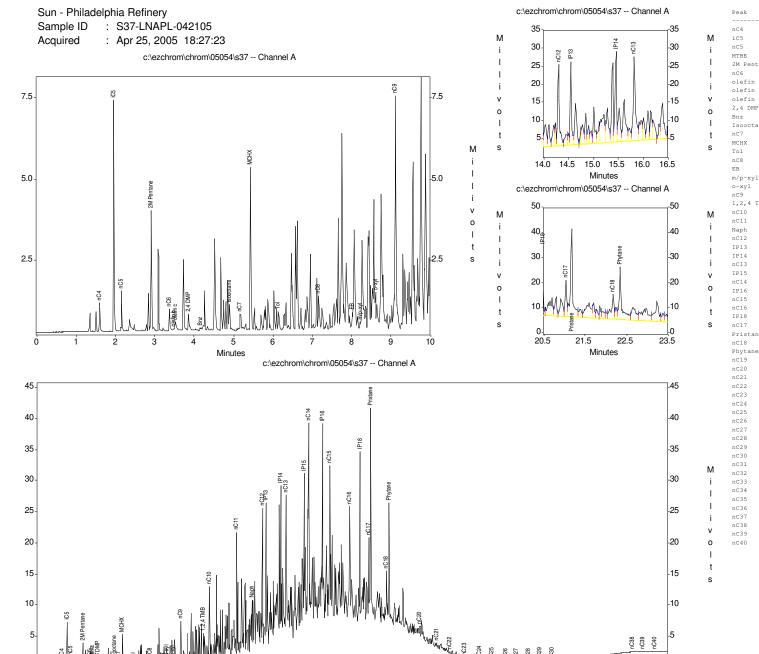

Peak Area Height 41 34 nC4 iC5 406 360 nC5 MTBE 2M Pentane nC6 olefin a olefin c 18 11 2,4 DMP Isooctane 466 322 nC7 284 MCHX 2769 1919 Tol 626 361 nC8 866 397 EB 729 459 m/p-xyl 484 292 1585 1120 o-xyl nC9 9779 3771 1,2,4 TMB 22309 9072 nC10 6760 1645 nC11 15135 7186 Naph 26883 10245 nC12 15285 4283 IP13 54748 27961 IP14 50997 27544 29918 8784 IP15 54293 29055 39758 16795 nC14 IP16 80530 31411 nC15 20820 5379 nC16 38935 5163 IP18 65014 nC17 15677 5743 Pristane 130209 37401 nC18 31460 4108 Phytane 62087 21228 nC19 nC20 5066 1762 2131 nC21 463 nC22 627 183 nC23 nC24 97 nC25 652 57 nC26 154 nC27 118 21 nC28 84 23 nC29 324 21 nC30 nC31 nC32 nC33 nC34 nC35 nC36 nC37 nC38 17 0 nC40 128 36

Sample ID : S35-LNAPL-042105 Acquired : Apr 26, 2005 10:07:40

c:\ezchrom\chrom\05054\s35 -- Channel A






M

0

c:\ezchrom\chrom\05054\s35 -- Channel A

15

20

Minutes

25

М

Peak	Area	Height
nC4	696	
iC5	5974	7102
nC5	1458	1229
MTBE	0	
2M Pentane	3971	3676
nC6	960	
olefin a	0	0 5.4
olefin b	81 268	
2,4 DMP	651	511
Bnz	311	84
Isooctane	1040	
nC7	995	490
MCHX	6694	4997
Tol	971	557
nC8	1810	
EB	824	
m/p-xyl	325	
o-xyl nC9	1594	
1,2,4 TMB	14633 15276	
nC10	21903	
nC11	38135	
Naph	19522	
nC12	50142	
IP13	47283	23108
IP14	45359	25177
nC13	71744	
IP15	47838	
nC14	73977	
IP16	73456	
nC15 nC16	58566 64308	
IP18	65398	
nC17	36514	
Pristane	128561	
nC18	44957	
Phytane	88650	20881
nC19	0	
nC20	7475	
nC21	6968	
nC22	1135 240	
nC23 nC24	929	
nC25	777	104
nC26	144	46
nC27	94	23
nC28	91	30
nC29	409	27
nC30	78	19
nC31	0	
nC32	0	0
nC33	0	
nC34	0	0
nC35 nC36	0	0
nC36 nC37	0	
nC38	94	20
nC39	14	8
nC40	11	8

___0 40

35

107

623

25

580

752

215

517

218

1141

3248

4769

1719

8477

11767

6134

33052

30993

30891

18867

30750

5153

4848

22906

4448

32285

3403

17975

1476

942

201

135

105

48

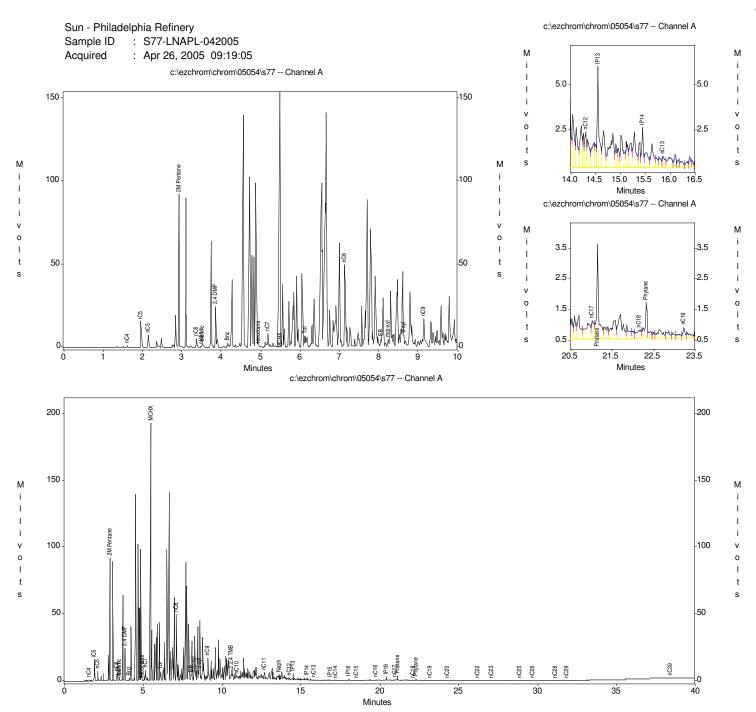
26

17

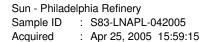
18

29

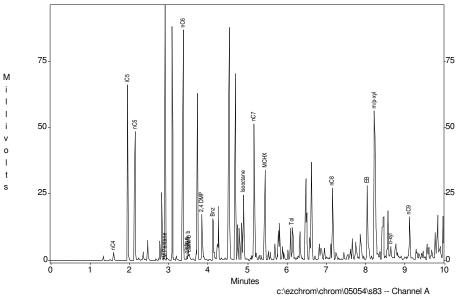
14

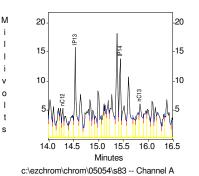

Channel A Results

Sun - Philadelphia Refinery c:\ezchrom\chrom\05054\s57 -- Channel A Peak Area Height Sample ID : S57-LNAPL-042105 nC4 Acquired : Apr 25, 2005 13:27:24 iC5 122 40 nC5 35c:\ezchrom\chrom\05054\s57 -- Channel A MTBE 2M Pentane 30nC6 olefin a 25-20olefin c 2,4 DMP Isooctane 883 nC7 5.0 5.0 MCHX 927 M Tol 1124 nC8 501 14.0 14.5 15.0 15.5 16.0 EB 861 Minutes m/p-xyl 351 1618 c:\ezchrom\chrom\05054\s57 -- Channel A o-xyl nC9 8667 1,2,4 TMB 12775 nC10 6265 40nC11 18000 0 28717 Naph 35nC12 21884 2.5 30 IP13 68810 IP14 57673 25--25 39734 IP15 58968 20--20 43998 nC14 15-IP16 100213 nC15 20690 10nC16 36083 IP18 54395 nC17 12130 0-Pristane 106010 5 20.5 21.5 22.5 23.5 nC18 23752 Minutes Phytane 50764 Minutes nC19 c:\ezchrom\chrom\05054\s57 -- Channel A nC20 4373 nC21 6350 nC22 930 40nC23 nC24 936 765 nC25 nC26 167 35nC27 nC28 nC29 212 nC30 66 30nC31 nC32 nC33 25. -25 nC35 nC36 nC37 20. -20 31 0 nC40 15--15 10--10 -5 15 20 25 30 35 40


Minutes

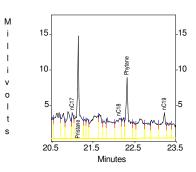
Μ

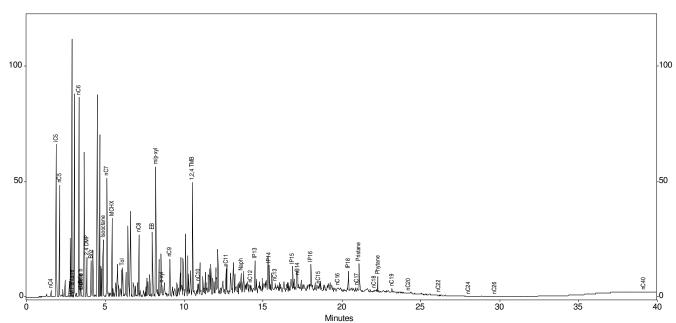

0



Peak	Area	Height
nC4	745	844
iC5	13689	
nC5	7651	
MTBE	0	
2M Pentane	91837	
nC6	6466	
olefin a	0	-
olefin b	484	
olefin c	2620	
2,4 DMP	27698	
Bnz	3899	
Isooctane	943	
nC7	13129	
MCHX	295413	
Tol	8617	
nC8	74654	
EB	8110	
m/p-xyl	8029 8655	
o-xyl nC9	51732	
	24982	
1,2,4 TMB nC10	11074	
nC10 nC11	15690	
Naph	10905	
nC12	4414	
IP13	14023	
IP14	4145	
nC13	2453	
IP15	2007	
nC14	793	
IP16	3087	
nC15	1064	
nC16	5553	
IP18	11604	
nC17	2320	
Pristane	10665	3093
nC18	2095	
Phytane	4157	
nC19	1147	352
nC20	436	67
nC21	0	0
nC22	116	35
nC23	106	24
nC24	0	0
nC25	587	86
nC26	379	65
nC27	0	0
nC28	102	26
nC29	70	18
nC30	0	0
nC31	0	0
nC32	0	0
nC33	0	
nC34	0	
nC35	0	-
nC36	0	
nC37	0	
nC38	0	-
nC39	110	
nC40	0	0

c:\ezchrom\chrom\05054\s83 -- Channel A



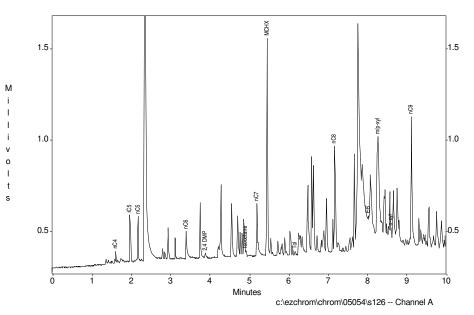


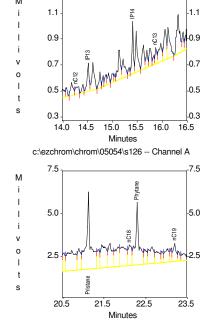
M

0

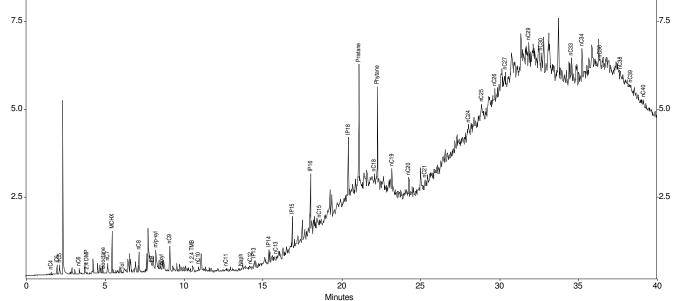
c:\ezchrom\chrom\05054\s83 -- Channel A

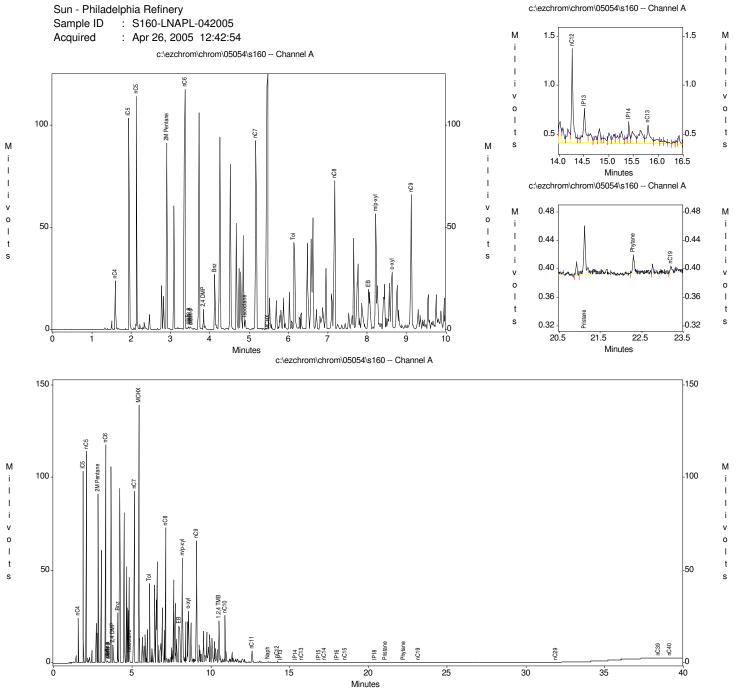
Peak	Area	Height
nC4	2066	2854
iC5	50374	
nC5	40293	48420
MTBE	0	0
2M Pentane	107642	111457
nC6	90152	86494
olefin a	1667	
olefin b	4285	
olefin c	3676	
2,4 DMP	18936	
Bnz	23057	
Isooctane	28806	
nC7	67125 44103	
MCHX	17135	
Tol nC8	35807	
EB	50895	
m/p-xyl	140132	
o-xyl	9989	
nC9	27834	
1,2,4 TMB	95389	
nC10	12208	
nC11	26959	
Naph	26773	10298
nC12	10404	4951
IP13	37806	15492
IP14	25358	
nC13	21475	
IP15	26086	
nC14	23563	
IP16	31742	
nC15	20552	
nC16	43438	
IP18	56442	
nC17 Pristane	11306 64122	
nC18	25754	
Phytane	39174	
nC19	26953	
nC20	9039	
nC21	0	
nC22	3337	581
nC23	0	
nC24	1950	171
nC25	0	0
nC26	147	18
nC27	0	0
nC28	0	0
nC29	0	0
nC30	0	0
nC31	0	
nC32	0	
nC33	0	
nC34	0	
nC35	0	
nC36	0	
nC37	0	
nC38 nC39	0	
nC39 nC40	61	14
11040	61	14

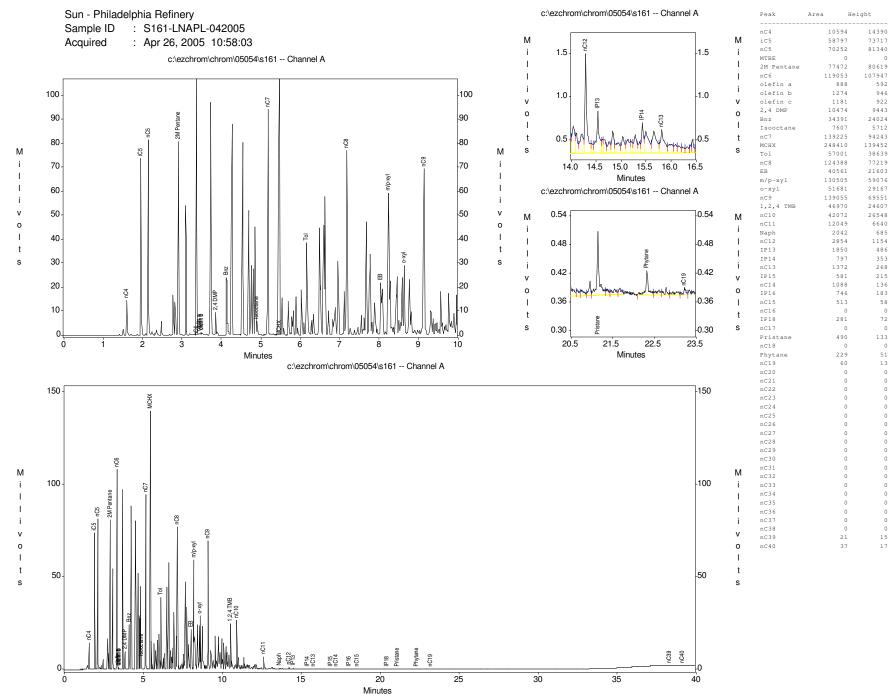

Channel A Results c:\ezchrom\chrom\05054\s126 -- Channel A Height Peak Area 55 64 nC4 iC5 224 255 nC5 248 241 MTBE 2M Pentane nC6 314 148 olefin a olefin b olefin c 2,4 DMP 28 Isooctane 41 29 nC7 284 MCHX 1696 1184 Tol 44 23 nC8 1076 590 14.0 14.5 15.0 15.5 16.0 369 206 Minutes m/p-xyl 2912 638 229 139 o-xyl nC9 1823 744 1,2,4 TMB 805 189 nC10 503 150 nC11 201 92 Naph 47 122 nC12 308 64 IP13 585 220 -5.0 IP14 811 407 314 IP15 2429 1062 nC14 7943 IP16 2021 nC15 2373 598 nC16 IP18 13607 2558 nC17 0 0 Pristane 32400 4496 20.5 21.5 22.5 23.5 nC18 6948 1171 Minutes Phytane 20520 3600 nC19 4828 1090 nC20 1972 600 nC21 798 230 nC22 nC23 nC24 3887 427 7.5 8620 nC25 587 nC26 5793 579 nC27 3081 676 nC28 nC29 2833 753 nC30 1569 512 nC31 0 0 nC32 nC33 1447 nC34 3994 877 nC35 0 0 nC36 179 121 nC37 nC38 632 198 nC39 339 102 nC40 374 147

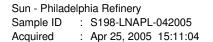


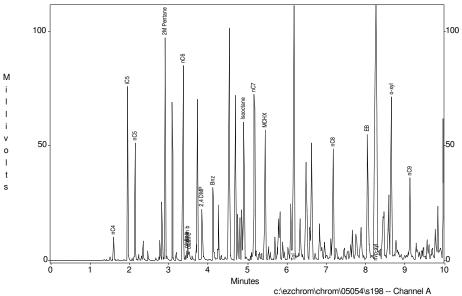
М

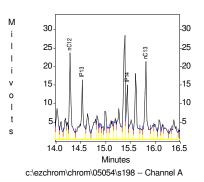

Sample ID : S126-LNAPL-042005 Acquired : Apr 26, 2005 11:46:25

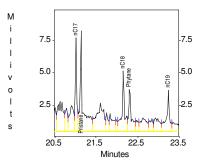

c:\ezchrom\chrom\05054\s126 -- Channel A

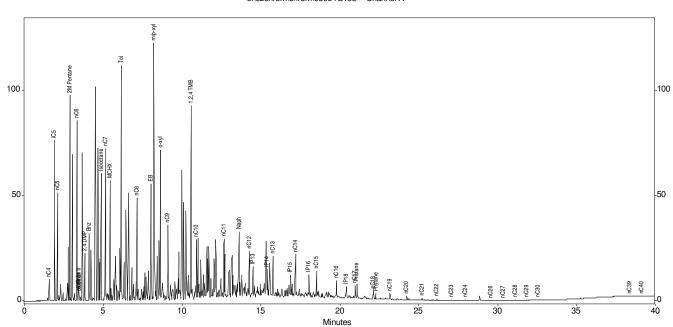



M

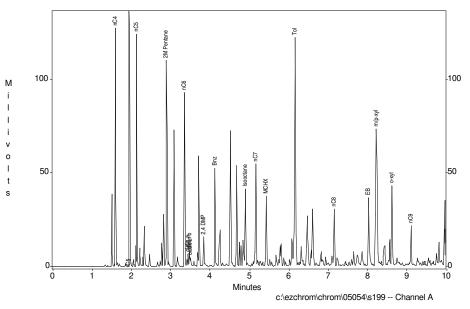

Peak	Area	Height
nC4	17505	23967
iC5	83014	103747
nC5	94147	114170
MTBE	0	0
2M Pentane	88607	91232
nC6	131411	117762
olefin a	1453	1132
olefin b	1311	1029
olefin c	1231	736
2,4 DMP	10702	9792
Bnz	37030	26891
Isooctane	6020	4629
nC7	135672	92543
MCHX	247161	139058
Tol	57997	42316
nC8	115677	72908
EB	36725	19658
m/p-xyl	120755	56499
o-xyl	48502	27868
nC9	130150	65886
1,2,4 TMB	42571	22635
nC10	39030	25359
nC11	10567	6046
Naph	1503	535
nC12	2110	968
IP13	1120	354
IP14	456	228
nC13	819	190
IP15	217	116
nC14	168	49
IP16	289	99
nC15 nC16	151	23
	· ·	0 37
IP18	111	
nC17	0	69
Pristane	221	
nC18	69	0 25
Phytane nC19	38	11
nC19		0
nC21	0	0
nC21	0	0
nC23	0	0
nC24	0	0
nC24 nC25	0	0
nC26	0	0
nC27	0	0
nC28	0	0
nC29	190	25
nC30	190	0
nC31	0	0
nC32	0	0
nC33	0	0
nC34	0	0
nC35	0	0
nC36	0	0
nC37	0	0
nC38	0	0
nC39	143	33
nC40	24	18
	2.1	10

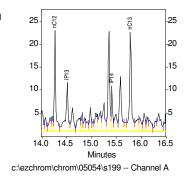



М

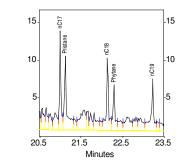

c:\ezchrom\chrom\05054\s198 -- Channel A

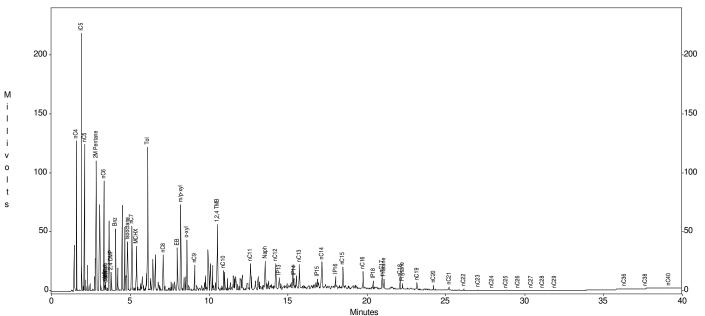
c:\ezchrom\chrom\05054\s198 -- Channel A

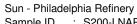




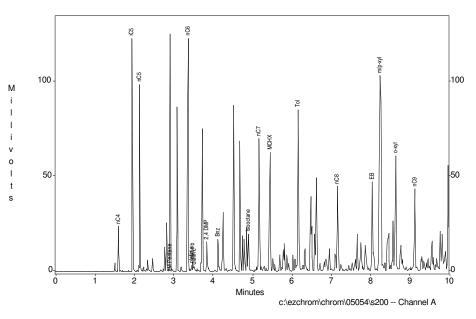
Peak	Area	Height
nC4	6805	
iC5	56062	
nC5	41370	
MTBE	0	
2M Pentane	94987	
nC6	88612	
olefin a	4768	
olefin b	7273	
olefin c	5630 24785	
2,4 DMP Bnz	43426	
Isooctane	77664	
nC7	103956	
MCHX	76887	
Tol	185088	
nC8	70463	
EB	105627	
m/p-xyl	386115	
o-xyl	135212	
nC9	63724	
1,2,4 TMB	228975	9230
nC10	47999	286
nC11	69618	291
Naph	92168	324
nC12	55621	233
IP13	60906	
IP14	27028	
nC13	59351	
IP15	23022	
nC14	46462	
IP16	27950	
nC15	43063 37188	
nC16	37188	
IP18 nC17	16510	
	39417	
Pristane nC18	19805	
Phytane	14102	
nC19	15548	
nC20	6030	
nC21	2868	
nC22	1681	
nC23	802	
nC24	377	1
nC25	0	
nC26	340	
nC27	405	1
nC28	407	
nC29	213	
nC30	197	
nC31	0	
nC32	0	
nC33	0	
nC34	0	
nC35	0	
nC36	0	
nC37	0	
nC38	0	
nC39 nC40	47 18	

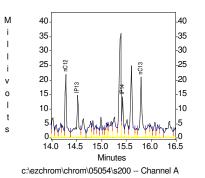

Sun - Philadelphia Refinery Sample ID : S199-LNAPL-042005 Acquired : Apr 26, 2005 14:20:57


c:\ezchrom\chrom\05054\s199 -- Channel A

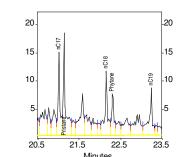


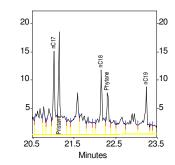
c:\ezchrom\chrom\05054\s199 -- Channel A

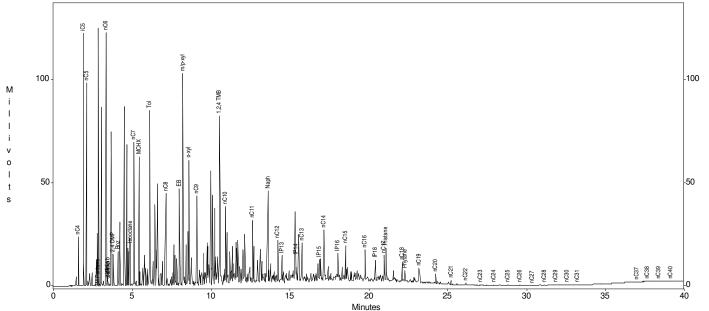



Peak	Area H	Height
nC4	90952	127676
iC5	174049	
nC5	105932	12467
MTBE	0	
2M Pentane	111384	110654
nC6	100959	93398
olefin a	7664	647
olefin b	8672	7759
olefin c	6643	4393
2,4 DMP	19267	1586
Bnz	67979	52520
Isooctane	50589	41492
nC7	76748	55080
MCHX	50195	37642
Tol	218179	122448
nC8	41461	30343
EB	61977	3640
m/p-xyl	200649	73193
	72197	4329
o-xyl	35760	
nC9		21523
1,2,4 TMB	108568	56012
nC10	26484	17172
nC11	45669	21932
Naph	65046	24279
nC12	48352	2195
IP13	35607	10592
IP14	18471	9848
nC13	57127	21692
IP15	19234	9096
nC14	52138	24282
IP16	25743	11150
nC15	65275	1924
nC16	50196	15849
IP18	38985	781
nC17	32388	13022
	38462	966
Pristane		951
nC18	33914	
Phytane	19600	5918
nC19	28849	6862
nC20	11066	440
nC21	6730	2562
nC22	3572	1436
nC23	1769	669
nC24	666	329
nC25	320	16
nC26	274	108
nC27	217	63
nC28	148	4 (
nC29	148	2 (
nC30	0	
nC31	0	
nC32	0	(
	0	
nC33	-	(
nC34	0	(
nC35	0	(
nC36	111	3 (
nC37	0	(
nC38	71	25
nC39	0	(
11000	U	

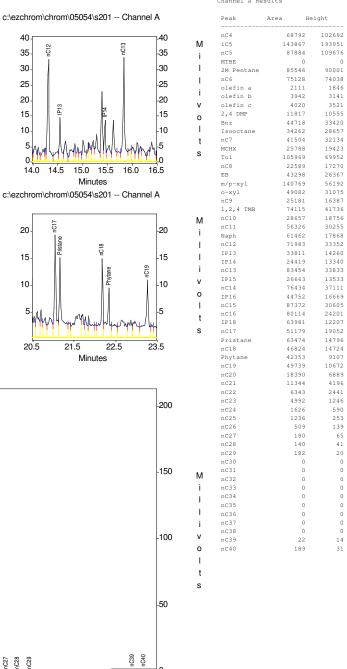
Sample ID : S200-LNAPL-042005 Acquired : Apr 25, 2005 12:38:28


c:\ezchrom\chrom\05054\s200 -- Channel A

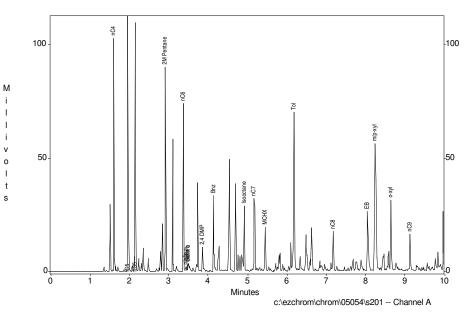


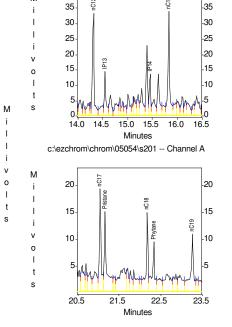


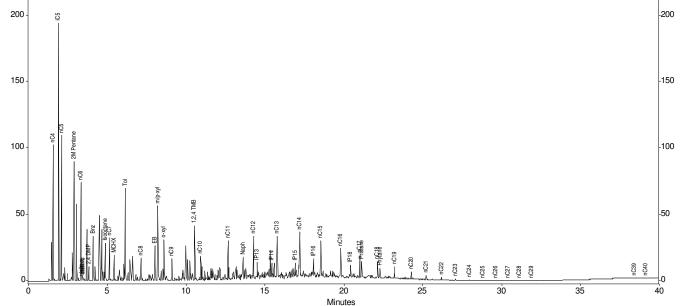
M

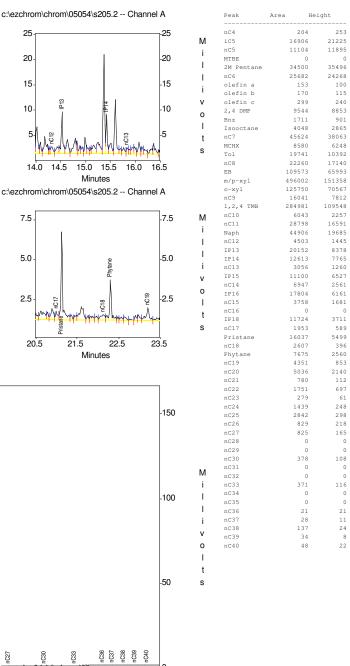

c:\ezchrom\chrom\05054\s200 -- Channel A

Peak	Area	Height
nC4	16094	23632
iC5	91867	
nC5	77629	98267
MTBE	0	0
2M Pentane	121485	124853
nC6	136260	122849
olefin a	3729	
olefin b	5525	
olefin c	3834	
2,4 DMP	17005	
Bnz	24234	
Isooctane nC7	23458 96123	
MCHX	85197	
Tol	128873	
nC8	61885	
EB	76024	
m/p-xyl	317056	
o-xyl	107360	60808
nC9	76170	43414
1,2,4 TMB	196559	82409
nC10	66263	
nC11	68489	
Naph	114598	
nC12	50728	
IP13	54349	
IP14	23915 58441	
nC13 IP15	25198	
nC14	59443	
IP16	36665	
nC15	63031	
nC16	65512	
IP18	61249	12308
nC17	43221	14781
Pristane	69846	18152
nC18	49528	
Phytane	28371	
nC19	44870	
nC20	13731	5358
nC21 nC22	11620 3027	
nC23	1747	
nC24	626	
nC25	418	
nC26	581	107
nC27	216	58
nC28	235	51
nC29	80	32
nC30	230	34
nC31	255	25
nC32	0	
nC33	0	
nC34	0	
nC35	0	
nC36	1271	0 20
nC37 nC38	1371 247	
nC38	31	16
nC40	50	14
110 10	30	14

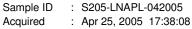


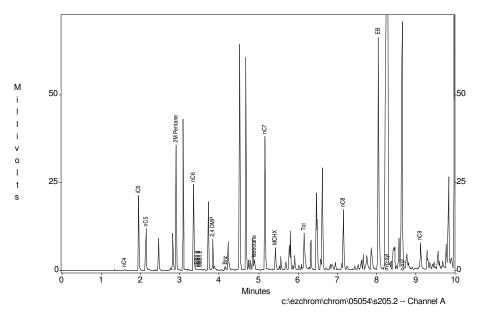

М

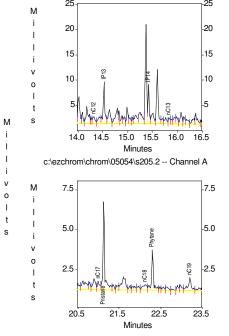

0

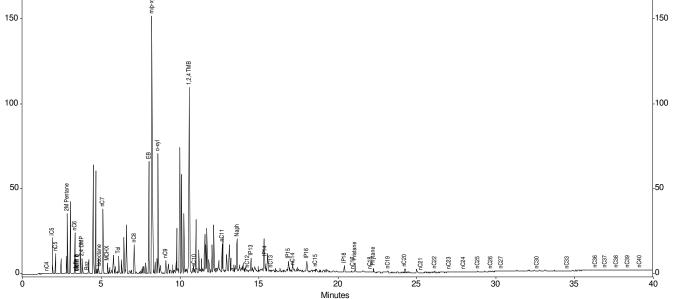

Sample ID : S201-LNAPL-042005 Acquired : Apr 26, 2005 15:10:11

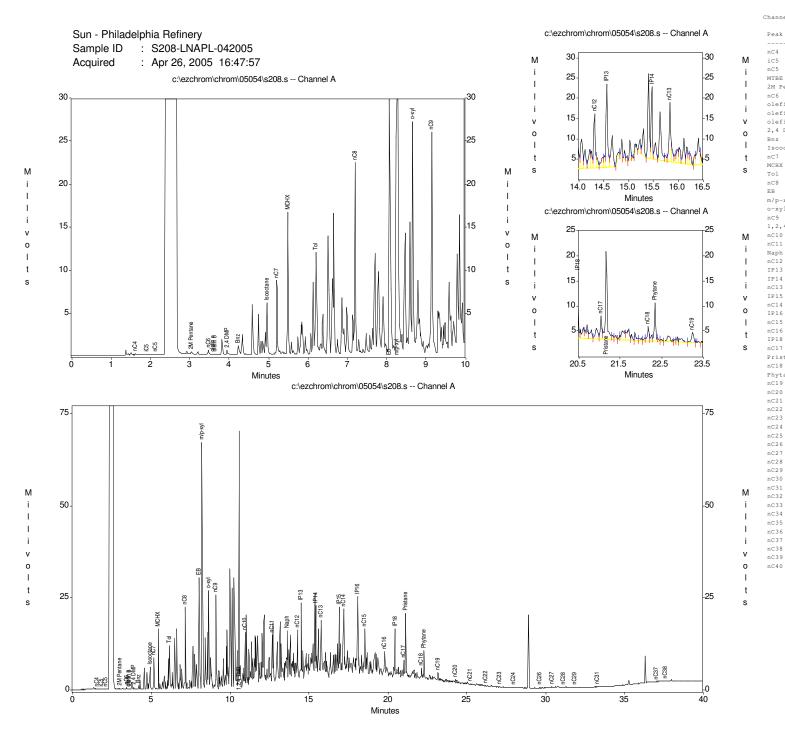

c:\ezchrom\chrom\05054\s201 -- Channel A








М



c:\ezchrom\chrom\05054\s205.2 -- Channel A



Peak		Height
nC4	174	
iC5	20	
nC5	30	
MTBE	0	0
2M Pentane	522	227
nC6	914	490
olefin a	3.4	22
olefin b	131	4.3
olefin c	0	0
2,4 DMP	7.5.7	483
Bnz	2122	
Isooctane	9321	
nC7	13670	
MCHX	25149	
Tol	23584	
nC8	36187	
EB	54597	
m/p-xyl	193165 52529	
o-xyl nC9	47366	
1,2,4 TMB	157499	
nC10	28645	
nC11	39542	
Naph	45490	
nC12	28900	13467
IP13	46827	20611
IP14	30669	17915
nC13	33488	
IP15	34292	18450
nC14	44519	
IP16	47906	
nC15	22023	
nC16 IP18	22629 32847	
nC17	11022	
Pristane	49324	
nC18	8214	
Phytane	18197	
nC19	8044	
nC20	2505	1038
nC21	1048	359
nC22	668	
nC23	643	
nC24	256	
nC25	0	
nC26	218	
nC27	1501	
nC28 nC29	1315	
nC29 nC30	129	
nC31	361	
nC32	361	
nC33	0	
nC34	0	
nC35	0	
nC36	0	0
nC37	122	31
nC38	318	
nC39	0	
nC40	0	0

103

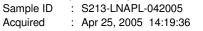
71

112

28

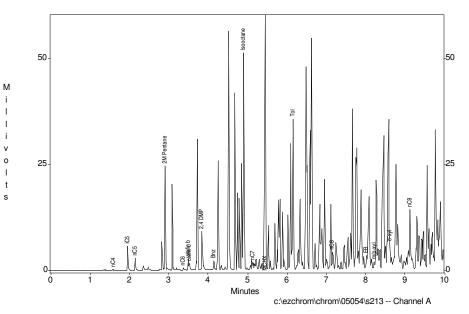
31


29


nC37

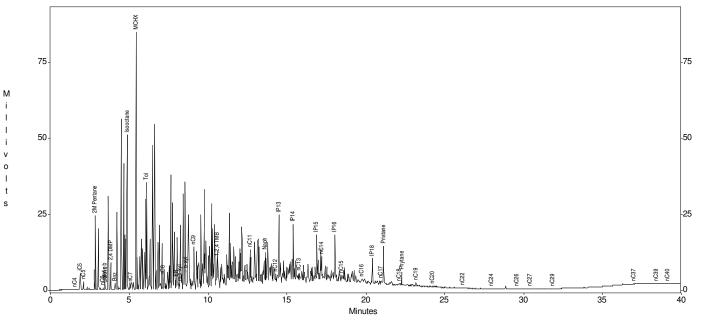
nC38

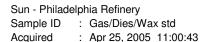
nC40

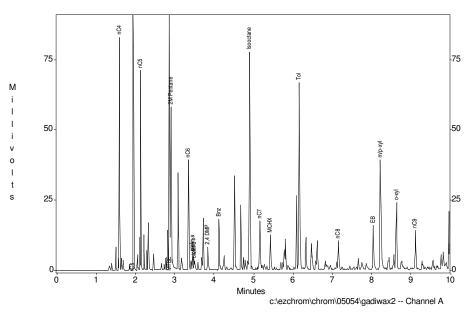

0

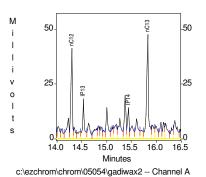


Sun - Philadelphia Refinery

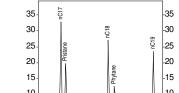

c:\ezchrom\chrom\05054\s213 -- Channel A

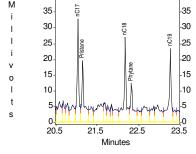


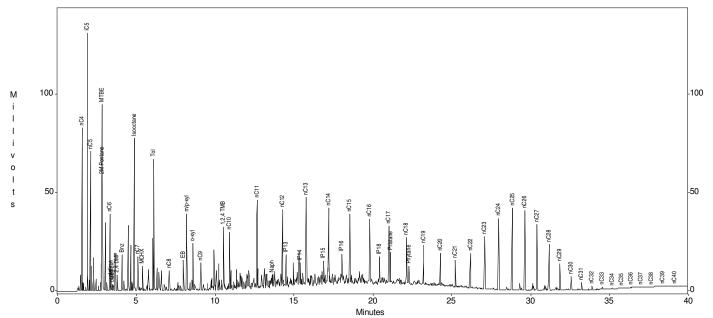

Minutes


M

c:\ezchrom\chrom\05054\gadiwax2 -- Channel A






M

0

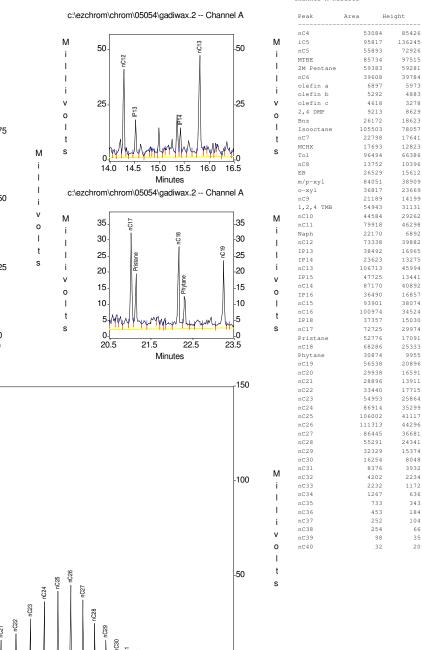
c:\ezchrom\chrom\05054\gadiwax2 -- Channel A

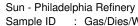
Peak	Area	Height
nC4	52712	82761
iC5	94084	
nC5	54568	71060
MTBE	82655	95046
2M Pentane	58774	58171
nC6	38824	
olefin a	6742	
olefin b	5214	
olefin c	4416	
2,4 DMP	8961	
Bnz	25452	
Isooctane nC7	104367 22494	
nc / MCHX	17140	
Tol	97052	
nC8	13511	
EB	26743	
m/p-xyl	86073	
o-xyl	37782	
nC9	21437	
1,2,4 TMB	58401	32456
nC10	46420	29528
nC11	84142	46151
Naph	26657	8023
nC12	78431	
IP13	46228	
IP14	27609	
nC13	118993	
IP15 nC14	58525 94325	
IP16	42113	
nC15	108937	
nC16	122429	
IP18	48206	
nC17	87727	32674
Pristane	76104	19285
nC18	101016	
Phytane	55545	
nC19	89924	
nC20	47803	
nC21	54916	
nC22 nC23	40896 59034	
nC24	91857	
nC25	105012	
nC26	105659	
nC27	79570	
nC28	49673	
nC29	28543	13552
nC30	14195	6831
nC31	7309	
nC32	3575	
nC33	1869	
nC34	1049	
nC35	543	
nC36	341	
nC37 nC38	677 248	
nC39	134	
nC40	140	
	210	

636

343

184

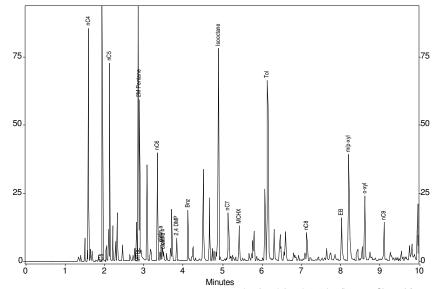

104

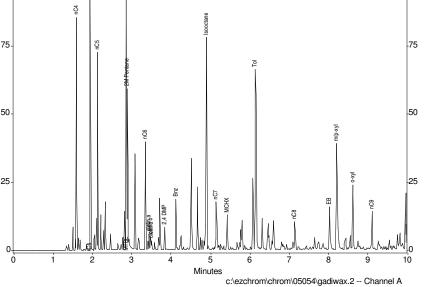

66

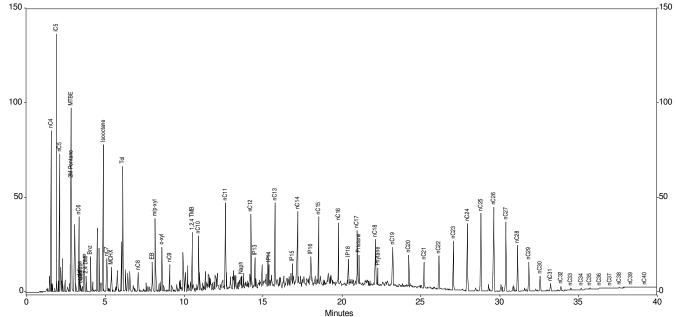
35

20

Channel A Results


Μ


0


s

: Gas/Dies/Wax std Acquired : Apr 26, 2005 13:31:55

c:\ezchrom\chrom\05054\gadiwax.2 -- Channel A

RETC Output SS-S34-21-21.5.txt

INITial values of the coefficients

No	Name	INITial value	Index
1	ThetaR	.0650	1
2	ThetaS	.4100	1
3	Alpha	.0750	1
4	n	1.8900	1
5	m	.4709	0
6	1	.5000	0
7	Ks	24.9600	0

Observed data

=========					
Obs. N	o. Pre	ssure head	Water	content	Weighting coefficient
1		.000		.3200	1.0000
2		5.810		.3200	1.0000
3		13.100		.3155	1.0000
4		23.300		.3062	1.0000
5		36.300		.2787	1.0000
6		52.300		.2144	1.0000
7		71.200		.1571	1.0000
8		93.000		.1398	1.0000
9	1	45.000		.1229	1.0000
10	2	09.000		.1120	1.0000
11	2	85.000		.1021	1.0000
12	3	72.000		.0954	1.0000
13	4	71.000		.0992	1.0000
14		81.000		.0861	1.0000
15	13	08.000		.0794	1.0000
NIT	SSO	ThetaR	ThetaS	Alpha	n
0	.02636	.0650	.4100	.0750	1.8900
1	.01513	.0637	.3126	.0186	1.7929
2	.00744	.1071	.3296	.0297	2.1756
3	.00691	.0941	.3188	.0168	2.8308
3 4	.00142	.0884	.3240	.0230	2.5540
5	.00093	.0930	.3215	.0217	2.9666
6	.00080	.0930	.3213	.0217	3.1358
7	.00079	.0934	.3210	.0215	3.2051
8	.00079	.0934	.3210	.0215	3.2257
9	.00079	.0937	.3209	.0215	3.2320
10	.00079	.0937	.3209	.0215	3.2339
11	.00079	.0937	.3209	.0215	3.2344
	• 5 5 5 7 5	• 0 0 0 1	• 52 5 5	• 02 ± 0	0.2011

Page 1

12 .00079 .0937 .3209 .0215 3.2346

Correlation matrix

	Theta	Theta	Alpha	n
	1	2	3	4
1	1.0000			
2	1443	1.0000		
3	0908	.5946	1.0000	
4	.5407	3851	6652	1.0000

RSquated for regression of observed vs fitted values = .99403460 _____

Nonlinear least-squares analysis: final results

				95% Confiden	ce limits
Variable	Value	S.E.Coeff.	T-Value	Lower	Upper
ThetaR	.09369	.00399	23.50	.0849	.1025
ThetaS	.32088	.00484	66.29	.3102	.3315
Alpha	.02146	.00117	18.27	.0189	.0241
n	3.23460	.29053	11.13	2.5951	3.8741

Observed abd fitted data

NO 1 2 3 4 5 6 7 8 9 10 11 12 13	P .1000E-04 .5810E+01 .1310E+02 .2330E+02 .3630E+02 .5230E+02 .7120E+02 .9300E+02 .1450E+03 .2090E+03 .2850E+03 .3720E+03	log-P -5.0000 .7642 1.1173 1.3674 1.5599 1.7185 1.8525 1.9685 2.1614 2.3201 2.4548 2.5705 2.6730	WC-obs .3200 .3200 .3155 .3062 .2787 .2144 .1571 .1398 .1229 .1120 .1021 .0954	WC-fit .3209 .3207 .3183 .3056 .2698 .2159 .1690 .1389 .1114 .1016 .0977 .0959	WC-dev 0009 0007 0028 .0007 .0090 0015 0119 .0010 .0115 .0104 .0044 0005
	.5720E+03 .4710E+03 .5810E+03 .1308E+04	2.5703 2.6730 2.7642 3.1166	.0934 .0992 .0861 .0794	.0959 .0950 .0945 .0938	0003 .0042 0084 0145

Sum of squares of observed versus fitted values

		Unweighted	Weighted
Retention	data	.00079	.00079
Cond/Diff	data	.00000	.00000
All	data	.00079	.00079

Soil hydraulic properties (MType = 3)

T-T-C	D	1 D	G1	7	D: 6	1 D
WC	P	Togh	Cona	Togk	Dif	Togn
.0943	6742E+03	2.829	.1870E-07	-7.728	.9735E-02	-2.012

		RETC	Output SS-S34	-21-21.5	.t.xt.	
.0949	4943E+03	2.694	.1967E-06	-6.706	.3756E-01	-1.425
.0960	3624E+03	2.559	.2070E-05	-5.684	.1450E+00	839
.0983	2656E+03	2.424	.2179E-04	-4.662	.5605E+00	251
.1006	2213E+03	2.345	.8639E-04	-4.064	.1238E+01	.093
.1030	1944E+03	2.289	.2297E-03	-3.639	.2175E+01	.338
.1053	1757E+03	2.245	.4904E-03	-3.309	.3372E+01	.528
.1076	1617E+03	2.209	.9119E-03	-3.040	.4830E+01	.684
.1099	1507E+03	2.178	.1541E-02	-2.812	.6550E+01	.816
.1122	1418E+03	2.152	.2429E-02	-2.615	.8536E+01	.931
.1146	1343E+03	2.128	.3628E-02	-2.440	.1079E+02	1.033
.1169	1279E+03	2.107	.5197E-02	-2.284	.1332E+02	1.125
.1192	1223E+03	2.088	.7195E-02	-2.143	.1613E+02	1.208
.1215	1174E+03	2.070	.9686E-02	-2.014	.1922E+02	1.284
.1238	1131E+03	2.053	.1273E-01	-1.895	.2260E+02	1.354
.1261	1092E+03	2.038	.1641E-01	-1.785	.2628E+02	1.420
.1285	1057E+03	2.024	.2078E-01	-1.682	.3026E+02	1.481
.1308	1024E+03	2.010	.2593E-01	-1.586	.3455E+02	1.538
.1331	9946E+02	1.998	.3192E-01	-1.496	.3916E+02	1.593
.1354	9672E+02	1.986	.3885E-01	-1.411	.4409E+02	1.644
.1377	9419E+02	1.974	.4678E-01	-1.330	.4936E+02	1.693
.1401	9182E+02	1.963	.5581E-01	-1.253	.5498E+02	1.740
.1424	8961E+02	1.952	.6603E-01	-1.180	.6095E+02	1.785
.1447	8754E+02	1.942	.7752E-01	-1.111	.6729E+02	1.828
.1470	8559E+02	1.932	.9038E-01	-1.044	.7401E+02	1.869
.1493	8374E+02	1.923	.1047E+00	980	.8111E+02	1.909
.1516	8199E+02	1.914	.1206E+00	919	.8863E+02	1.948
.1540	8033E+02	1.905	.1382E+00	860	.9655E+02	1.985
.1563	7875E+02	1.896	.1575E+00	803	.1049E+03	2.021
.1586	7724E+02	1.888	.1787E+00	748	.1137E+03	2.056
.1609	7580E+02	1.880	.2019E+00	695	.1230E+03	2.090
.1632	7441E+02	1.872	.2273E+00	643	.1328E+03	2.123
.1656	7309E+02	1.864	.2548E+00	594	.1430E+03	2.155
.1679	7181E+02	1.856	.2847E+00	546	.1538E+03	2.187
.1702	7058E+02	1.849	.3171E+00	499	.1651E+03	2.218
.1725	6940E+02	1.841	.3521E+00	453	.1770E+03	2.248
.1748	6825E+02	1.834	.3899E+00	409	.1894E+03	2.277
.1771	6714E+02	1.827	.4305E+00	366	.2025E+03	2.306
.1795	6607E+02	1.820	.4742E+00	324	.2162E+03	2.335
.1818	6503E+02	1.813	.5210E+00	283 243	.2306E+03	2.363
.1841	6402E+02 6303E+02	1.806 1.800	.5711E+00 .6248E+00	243 204	.2457E+03	2.390
.1887	6207E+02	1.793	.6820E+00	166 129	.2781E+03	2.444
.1911 .1934	6114E+02 6023E+02	1.786 1.780	.7431E+00 .8082E+00	129 093	.2955E+03 .3137E+03	2.471 2.497
.1957	5934E+02	1.773	.8774E+00	093 057	.3137E+03	2.497
.1980	5847E+02	1.767	.9509E+00	022	.3529E+03	2.548
.2003	5762E+02	1.761	.1029E+01	.012	.3739E+03	2.573
.2026	5678E+02	1.754	.1112E+01	.012	.3960E+03	2.598
.2050	5597E+02	1.748	.1200E+01	.079	.4192E+03	2.622
.2073	5516E+02	1.742	.1292E+01	.111	.4435E+03	2.647
.2073	5438E+02	1.735	.1391E+01	.143	.4690E+03	2.671
.2119	5360E+02	1.729	.1494E+01	.174	.4958E+03	2.695
.2142	5284E+02	1.723	.1604E+01	.205	.5240E+03	2.719
.2166	5209E+02	1.717	.1720E+01	.235	.5537E+03	2.743
.2189	5134E+02	1.710	.1842E+01	.265	.5849E+03	2.767
.2212	5061E+02	1.704	.1970E+01	.295	.6177E+03	2.791
.2235	4989E+02	1.698	.2106E+01	.323	.6523E+03	2.814
.2258	4918E+02	1.692	.2248E+01	.352	.6887E+03	2.838
.2281	4847E+02	1.685	.2398E+01	.380	.7272E+03	2.862

		RETC	Output SS-S34-	-21-21 5	t vt	
.2305	4777E+02	1.679	.2556E+01	.408	.7678E+03	2.885
.2328	4708E+02	1.673	.2722E+01	.435	.8107E+03	2.909
.2351	4639E+02	1.666	.2896E+01	.462	.8561E+03	2.933
.2374	4571E+02	1.660	.3079E+01	.488	.9042E+03	2.956
.2397	4503E+02	1.653	.3271E+01	.515	.9551E+03	2.980
.2421	4435E+02	1.647	.3472E+01	.541	.1009E+04	3.004
.2444	4368E+02	1.640	.3684E+01	.566	.1067E+04	3.028
.2467	4301E+02	1.634	.3904E+01	.592	.1128E+04	3.052
.2490	4234E+02	1.627	.4139E+01	.617	.1123E+04	3.077
.2513	4167E+02	1.620	.4383E+01	.642	.1262E+04	3.101
.2536	4107E+02	1.613	.4639E+01	.666	.1336E+04	3.126
.2560	4100E+02	1.606	.4908E+01	.691	.1416E+04	3.151
.2583	4034E+02	1.598	.5189E+01	.715		3.176
.2606	3907E+02	1.590	.5484E+01	.713	.1501E+04 .1593E+04	3.202
.2629	3832E+02	1.583		.739 .763	.1692E+04	3.202
.2652	3764E+02	1.576	.5794E+01 .6118E+01	.787	.1692E+04	3.255
.2676	3696E+02	1.568	.6459E+01	.810	.1914E+04	3.282
.2699	3627E+02	1.560	.6816E+01	.834	.2039E+04	3.309
.2722	3557E+02	1.551	.7190E+01	.857	.2176E+04	3.338
.2745	3486E+02	1.542	.7584E+01	.880	.2326E+04	3.367
.2768	3415E+02	1.533	.7997E+01	.903	.2490E+04	3.396
.2791	3342E+02	1.524	.8431E+01	.926	.2671E+04	3.427
.2815	3268E+02	1.514	.8887E+01	.949	.2872E+04	3.458
.2838	3192E+02	1.504	.9367E+01	.972	.3095E+04	3.491
.2861	3114E+02	1.493	.9873E+01	.994	.3346E+04	3.525
.2884	3035E+02	1.482	.1041E+02	1.017	.3629E+04	3.560
.2907	2953E+02	1.470	.1097E+02	1.040	.3951E+04	3.597
.2931	2868E+02	1.458	.1156E+02	1.063	.4321E+04	3.636
.2954	2779E+02	1.444	.1220E+02	1.086	.4751E+04	3.677
.2977	2687E+02	1.429	.1286E+02	1.109	.5256E+04	3.721
.3000	2590E+02	1.413	.1358E+02	1.133	.5859E+04	3.768
.3023	2486E+02	1.396	.1434E+02	1.157	.6594E+04	3.819
.3046	2376E+02	1.376	.1516E+02	1.181	.7509E+04	3.876
.3070	2256E+02	1.353	.1604E+02	1.205	.8686E+04	3.939
.3093	2123E+02	1.327	.1700E+02	1.230	.1026E+05	4.011
.3116	1974E+02	1.295	.1805E+02	1.256	.1250E+05	4.097
.3139	1799E+02	1.255	.1922E+02	1.284	.1597E+05	4.203
.3162	1580E+02	1.199	.2057E+02	1.313	.2223E+05	4.347
.3186	1271E+02	1.104	.2221E+02	1.347	.3811E+05	4.581
.3197	1024E+02	1.010	.2325E+02	1.366	.6387E+05	4.805
.3203	8253E+01	.917	.2390E+02	1.378	.1055E+06	5.023
.3206	6213E+01	.793	.2440E+02	1.387	.2024E+06	5.306
.3209	3048E+01	.484	.2485E+02	1.395	.1010E+07	6.004
.3209	1496E+01	.175	.2494E+02	1.397	.4974E+07	6.697
.3209	.0000E+00		.2496E+02	1.397		

APPENDIX F

FATE AND TRANSPORT MODELING PROCEDURES

APPENDIX F FATE AND TRANSPORT MODELING PROCEDURES AOI 4: SUNOCO PHILADELPHIA REFINERY PHILADELPHIA, PENNSYLVANIA

F.1 INTRODUCTION

Fate and transport calculations were completed for groundwater in AOI 4 to evaluate potential migration pathways/potential impacts to receptors and to support development of the Site Conceptual Model. The Quick Domenico (QD - v2.0) spreadsheet model, developed by the PADEP, and site-specific data were used to complete the fate and transport calculations. Groundwater at four wells (S-26, S-40, S-223 and S-224) was modeled since concentrations of COCs in groundwater at these wells exceeds the MSC, and has the potential for off-site migration.

F.2 MODEL OVERVIEW

The QD Model is a Microsoft Excel spreadsheet application based on the analytical contaminant transport equation developed by P.A. Domenico in "An Analytical Model For Multidimensional Transport of a Decaying Contaminant Species," Journal of Hydrology, 91 (1987), pp. 49-58. The QD model calculates contaminant concentrations at any down-gradient location after a specified interval of time. The model incorporates the processes of advection, first order decay, retardation, and dispersion to describe fate and transport of compounds. In addition, the QD model displays the results as a two dimensional chart to facilitate interpretation of the results.

F.3 MODEL LIMITATIONS

Limitations of the QD model include:

- Groundwater flow is assumed to be steady state and one-dimensional;
- Aquifer properties are assumed to be reasonably uniform;
- Applicable only to unconsolidated aguifers;
- Intended for use primarily with dissolved organic compounds;

- Does not account for the transformation of parent compounds into daughter products as the result of biodegradation;
- Compounds are considered individually, and are assumed to not react with each other;
 and
- The contaminant source is limited to a single and continuous source concentration.

F.4 MODEL INPUT PARAMETERS

In preparation of this report, input values for the QD model were compiled from available site data. When no site data was available, estimated input values from the PA Code, Chapter 250, Appendix A, Table 5 or other acceptable literature source were utilized. The input parameters are discussed in greater detail in the sections that follow, and are summarized in the input tables preceding each model sheet in this appendix.

F.4.1 Source Concentration

Using the most-recent groundwater quality data, COC concentrations at selected wells were used as the source value. Table 5 and Figure 8 present a summary of the COC data used for the fate and transport modeling.

F.4.2 Distance to Location of Concern (x)

The distance to the location of concern is the distance along the plume centerline from the source to a point where a concentration is desired. The distance from the monitoring well to the point where the groundwater MSC would be attained (downgradient point of compliance) was selected as the distance for the fate and transport modeling. The downgradient point of compliance for AOI 4 is the AOI 4 borders along 26th Street to the east and Penrose Avenue to the south. The AOI 4 borders are shown in Figure 2.

F.4.3 Dispersivity

Dispersion describes the extent to which contaminants spread out from the source into areas that cannot be accounted for by advective transport alone. Initially these parameters are often estimated and then adjusted in order to calibrate a model to better fit actual field conditions. The three types of dispersion are:

- Longitudinal dispersivity (A_x) which occurs in the direction parallel to groundwater flow;
- Transverse dispersivity (A_y) which occurs in the same plane as longitudinal dispersivity but perpendicular to the direction of groundwater flow; and
- Vertical dispersivity (A_z) which occurs in the upward direction, normal to the plane in which longitudinal and transverse dispersivity occur (Vertical dispersivity is usually negligible and is typically omitted from most QD analyses).

Dispersivity estimates are difficult to quantify and are commonly estimated from the following relationships:

- 1. $A_x = X/10$ (where, X is the distance a contaminant has traveled by advective transport)
- 2. $A_v = A_v/10$
- 3. $A_z = A_x/20$ to $A_x/100$ (generally, it is recommended that A_z be a very small number (0.001) unless vertical monitoring can reliably justify a larger number. Additionally, a value of 0.0001 is suggested for uncalibrated or conceptual applications).

For the fate and transport modeling in AOI 4, the dispersivity values were estimated using the above relationships. The simulated distance of groundwater migration at concentrations exceeding the MSC was chosen as the value for X. In all cases, a value of 0.001 was used as a value for A_7 .

F.4.4 Lambda

Lambda is the first order decay constant. It is determined by dividing .693 by the half-life of the compound (in days). The value can be calculated for stable or shrinking plumes and selected by trial and error to existing data for expanding plumes. QD is very sensitive to the lambda term. Lambda can vary from site to site for the same compound because subsurface conditions favorable to biodegradation vary from site to site. For compounds that are not biodegradable or at sites where biodegradation is not occurring use a lambda of zero. Default values for lambda were obtained from the list of lambda values in PA Code, Chapter 250, Appendix A, Table 5 and were used in the models.

F.4.5 Source Dimensions

Source width is the maximum width of the area measured perpendicular to the direction of groundwater flow. Source thickness is the thickness of the contaminated soils below the water table that contribute contamination to groundwater. In addition to the saturated zone, fluctuation in groundwater elevation may create a smear zone in the unsaturated portion of an aquifer. As an estimate of the thickness of the smear zone, average fluctuation can be used.

F.4.6 Hydraulic Conductivity (k)

The hydraulic conductivity of a geologic material is a measure of its ability to transmit water. No aquifer testing was performed in AOI 4 since sufficient aquifer testing data was available from former aquifer tests (pumping tests, recovery tests, and slug tests) performed in AOI 1 by others (SECOR, 2003; USGS, 2001; URS, 2002; Chevron USA, Inc., 1992; USGS, 1988). The hydraulic conductivity value used in AOI 4 for fate and transport modeling of the Fill/Alluvium and Trenton Gravel (Intermediate Wells) was 24 feet/day. This value is representative of the geometric mean of hydraulic conductivity values calculated using aquifer testing recovery data in Well RW-406 (AOI 1) by SECOR in 2003 (SECOR, 2003), and appears to be most representative of the Trenton Gravel. Since the composition of the Trenton Gravel in AOI 4 was consistent

with AOI 1, this value of hydraulic conductivity was chosen as representative for conditions in AOI 4.

F.4.7 Hydraulic Gradient

Hydraulic gradient is the change in hydraulic head relative to the distance between head measurement locations. The hydraulic gradient is measured parallel to the direction of ground water flow assuming horizontal flow and a uniform gradient. The hydraulic gradient used in the fate and transport modeling in AOI 4 was calculated using groundwater elevation data presented in Figure 6. The gradient in the northern portion of AOI 4 was calculated to be 0.00036 ft/ft. The gradient in the southern portion of AOI 4 was calculated to be 0.0035 ft/ft, therefore this value was chosen as the more conservative value and used in the modeling for AOI 4.

F.4.8 Porosity (n)

Porosity is measured as the ratio of the volume of void space in a geologic material to the total volume of material. Porosity values used in the fate and transport modeling for AOI 4 were based on historical geotechnical laboratory analysis of Trenton Gravel samples.

F.4.9 Soil Bulk Density (p_b)

Soil bulk density is the dry weight of a sample divided by the total volume of the sample in an undisturbed state. Soil bulk density can either be determined by a laboratory or by the equation

$$P_b = 2.65 * (1 - porosity).$$

The PADEP recommended default value of 1.8 g/cm³ was used in the fate and transport modeling for AOI 4 since no site-specific soil bulk density data was available..

F.4.10 Organic Carbon Partition Coefficient (K_{oc})

The organic carbon partition coefficient is chemical specific; the values used in the fate and transport modeling for AOI 4 were obtained from PA Code, Chapter 250, Appendix A, Table 5.

F.4.11 Fraction Organic Carbon (f_{oc})

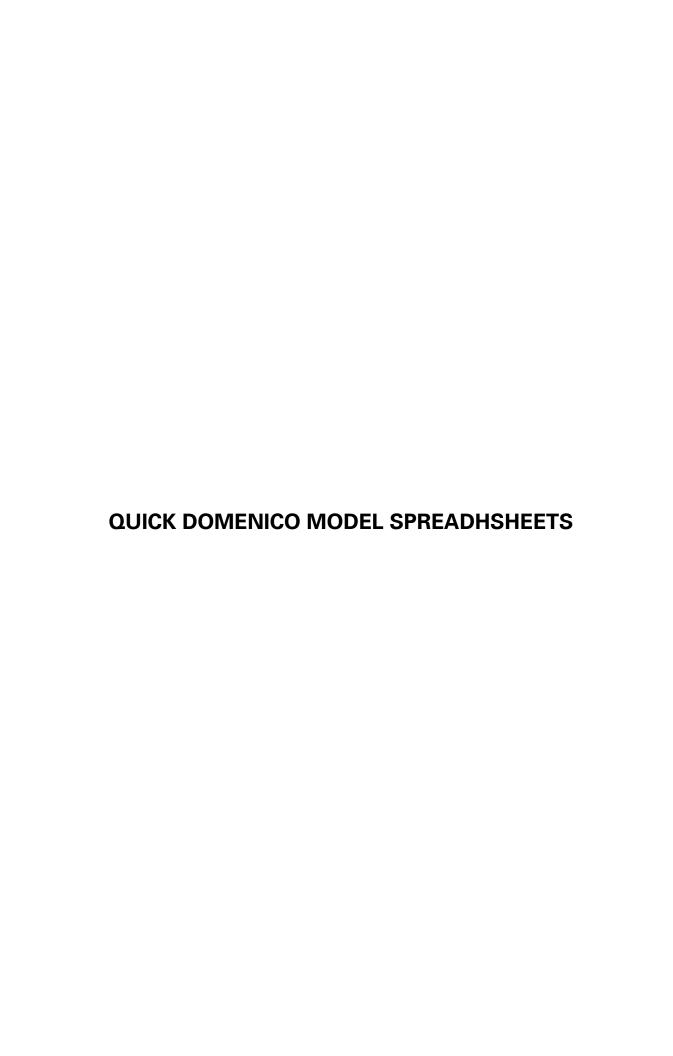
The fraction of organic carbon is the organic carbon content of a soil. A laboratory using ASTM methods can determine this value. Samples for organic carbon are taken from the same soil horizon in which the contaminant occurs, but outside of the impacted area. Since no site specific fraction of organic carbon data was available for the site, the fate and transport modeling used the PA default recommended concentration of 0.005.

F.4.12 Plume Coordinates ('y' and 'z')

The plume coordinates, 'y' and 'z', define the horizontal and vertical extent of the impacted area, respectfully. For a solution on the centerline of the plume down gradient from the source, 'y' was set equal to zero. Additionally, to yield the highest concentration, which is located at the water table, 'z' was also set equal to zero.

F.4.13 Time (t)

'Time zero' is the point at which contamination was introduced into the aquifer. Time since 'time zero' is measured in days. A simulation time of 30 years was chosen for each well; this simulation time period is recommended by the PADEP.


F.4.14 Grid Dimensions

The grid dimensions form the window through which the plume is viewed and the locations where concentrations are calculated. The grid is determined by user specified length and width measurements from the source of the plume. Because plume dimensions and source concentrations varied greatly across the Facility, the grid dimensions selected for the fate and transport calculations were selected individually for

each source (well) and compound.

F.5 OUTPUT DATA AND RESULTS

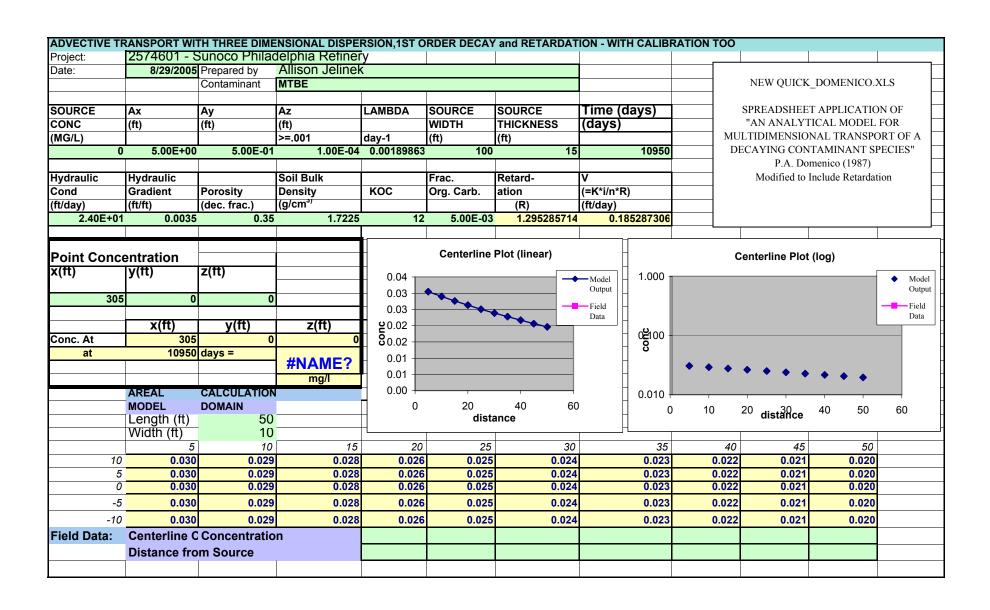
The results of the QD Fate and Transport modeling task were used to predict potential impacts to potential down-gradient receptors. Copies of all QD model simulation spreadsheets are included at the end of this appendix. A summary of input values and output results are also provided in this Appendix and illustrated in Figure 10 of the report.

Quick Domenico Fate and Transport Model Input and Output Sunoco Philadelphia Refinery Philadelphia, Pennsylvania

2574601 - Sunoco Philadelphia Refinery Allison Jelinek 8/29/2005

Project Prepared by Date Prepared

Generic Input Parameters			
Source Identification (or Well ID)			S-26
Sample Date			5/2/2005
Source Width		ft	100
Source Thickness		ft	15
Distance to Location of Concern	Х	ft	305
Perpendicular Distance to Location of Concern	У	ft	0
Vertical Axis Perpendicular to x and y	Z	ft	0
Longitudinal Dispersivity	A _x	ft	5
Transverse Dispersivity	A _y	ft	0.5
Vertical Dispersivity	A _z	ft	0.0001
Hydraulic Conductivty	k	ft/day	24
Hydraulic Gradient		ft/ft	0.0035
Porosity		decimal fraction	0.35
Soil Bulk Density	p _b	g/cm3	1.7225
Fraction of Organic Carbon	f _{oc}	decimal fraction	0.005
Time		days	10950
ength of Grid Dimension		ft	50
Width of Grid Dimension		ft	10


Chemical Specific Input Parameters						
Sim 1						
Contaminant			MTBE			
Source Concentration (mg/l)		mg/l	0.0320			
Lambda (per day)		day ⁻¹	0.00189863			
KOC			12			

0.001410031

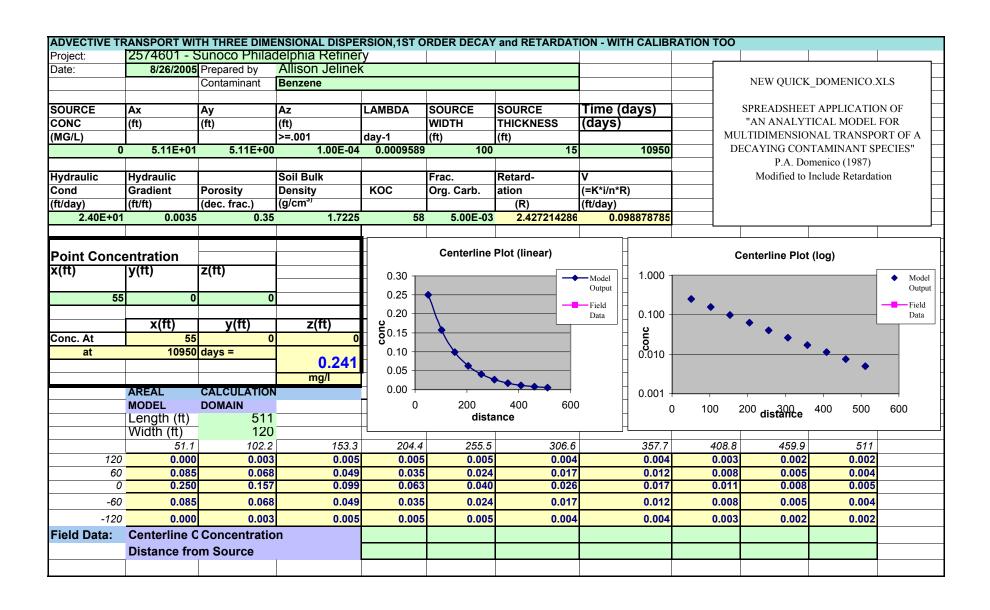
Output (Concentration at the Downgradient Property Boundary in 30 years)									
Contaminant	GW MSC ¹ Residential	GW MSC ² Non-Residential	Concentration at Property Boundary (mg/l)	Distance to Property Boundary (ft)	Distance to Meet Residential GW MSC (ft)				
Sim 1 - MTBE	(mg/l) 0.02	(mg/l) 0.02	1.41E-03	305	50				

ACT 2 TGM, Appendix A, Table 1 MSC for a Residential Used Aquifer with Total Dissolved Solids less than or equal to 2500.

² ACT 2 TGM, Appendix A, Table 1 MSC for a Non-residential Used Aquifer with Total Dissolved Solids less than or equal to 2500.

2574601 - Sunoco Philadelphia Refinery Allison Jelinek 8/26/2005

Project Prepared by Date Prepared


Source Identification (or Well ID)			S-40
source racritineation (or vveil 15)			3 40
Sample Date			5/3/2005
Source Width		ft	100
Source Thickness		ft	15
Distance to Location of Concern	Х	ft	55
Perpendicular Distance to Location of Concern	У	ft	0
Vertical Axis Perpendicular to x and y	Z	ft	0
Longitudinal Dispersivity	A _x	ft	51.1
Transverse Dispersivity	A _y	ft	5.1
Vertical Dispersivity	A _z	ft	0.0001
Hydraulic Conductivty	k	ft/day	24
Hydraulic Gradient		ft/ft	0.0035
Porosity		decimal fraction	0.35
Soil Bulk Density	p _b	g/cm3	1.7225
Fraction of Organic Carbon	f _{OC}	decimal fraction	0.005
Time		days	10950
Length of Grid Dimension		ft	511
Width of Grid Dimension		ft	120

Chemical Specific Input Parameters							
Sim 1							
Contaminant	·		Benzene				
Source Concentration (mg/l)		mg/l	0.3700				
Lambda (per day)		day ⁻¹	0.000958904				
KOC			58				

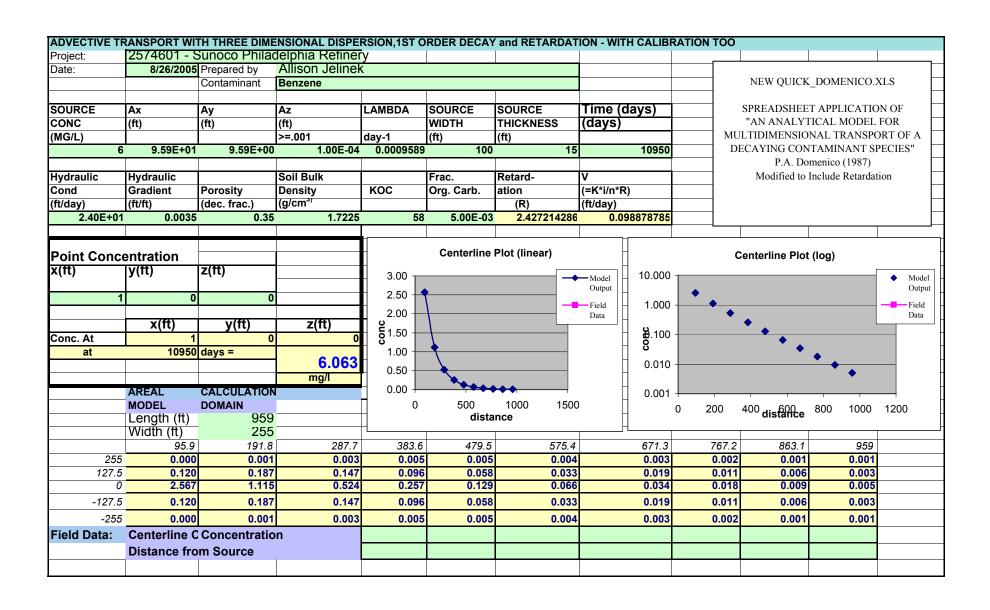
Output (Concentration at the Downgradient Property Boundary in 30 years)									
Contaminant	GW MSC ¹ GW MSC ² C Residential Non-Residential (mg/l) (mg/l)		Concentration at Property Boundary (mg/l)	Distance to Property Boundary (ft)	Distance to Meet Residential GW MSC (ft)				
Sim 1 - Benzene	0.005	0.005	2.41E-01	55	511				

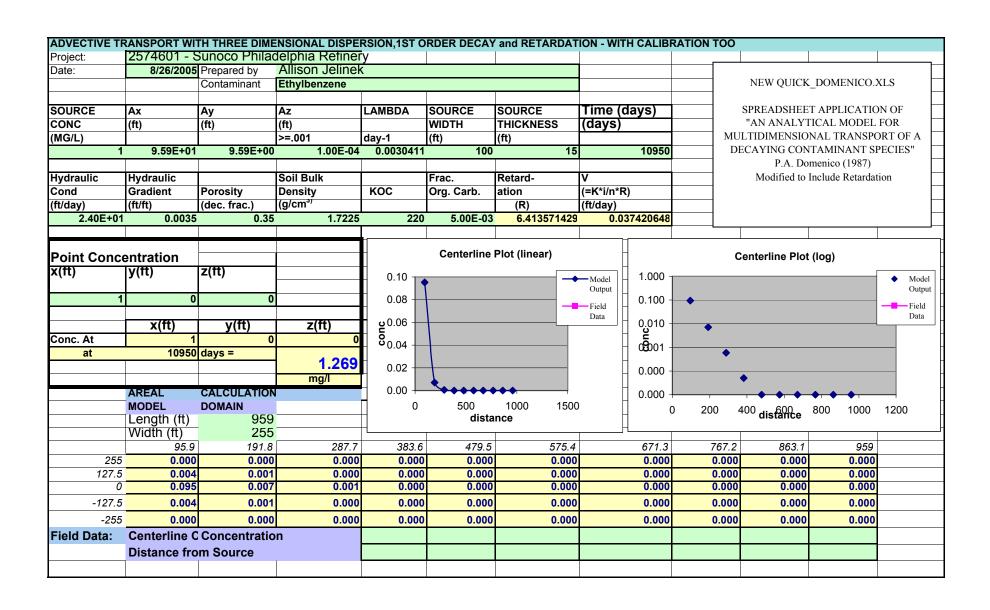
ACT 2 TGM, Appendix A, Table 1 MSC for a Residential Used Aquifer with Total Dissolved Solids less than or equal to 2500.

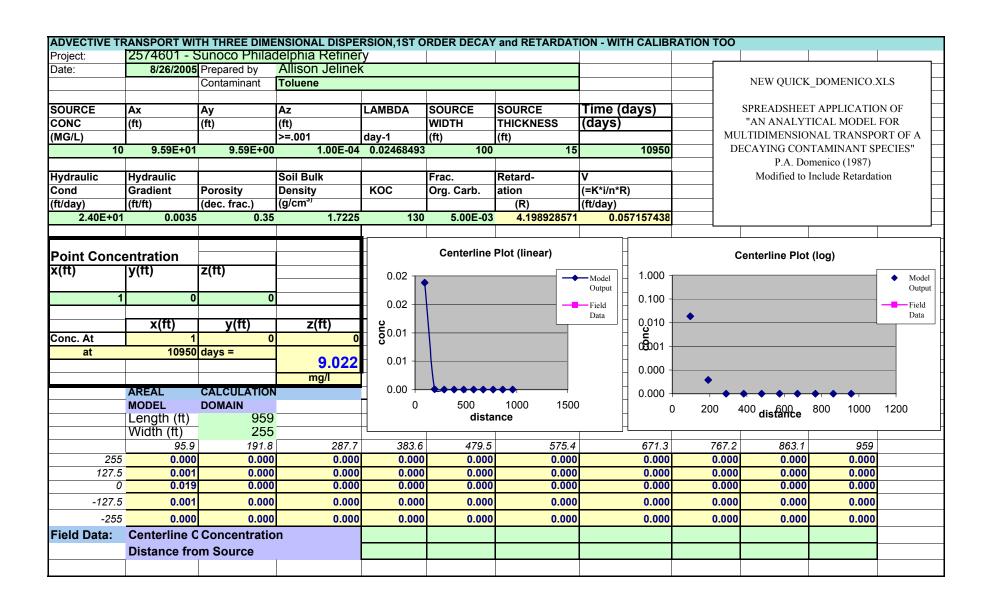
² ACT 2 TGM, Appendix A, Table 1 MSC for a Non-residential Used Aquifer with Total Dissolved Solids less than or equal to 2500.

2574601 - Sunoco Philadelphia Refinery Allison Jelinek 8/26/2005

Project Prepared by Date Prepared


Generic Input Parameters			
Source Identification (or Well ID)			S-223
Sample Date	I		8/1/2005
Source Width	<u> </u>	ft	100
Source Thickness	<u> </u>	ft	15
Distance to Location of Concern	X	ft	1
Perpendicular Distance to Location of Concern	У	ft	0
Vertical Axis Perpendicular to x and y	Z	ft	0
Longitudinal Dispersivity	A _x	ft	95.9
Transverse Dispersivity	A _y	ft	9.6
Vertical Dispersivity	A _z	ft	0.0001
Hydraulic Conductivty	k	ft/day	24
Hydraulic Gradient		ft/ft	0.0035
Porosity		decimal fraction	0.35
Soil Bulk Density	Pb	g/cm3	1.7225
Fraction of Organic Carbon	f _{oc}	decimal fraction	0.005
Time		days	10950
Length of Grid Dimension		ft	959
Width of Grid Dimension	<u> </u>	ft	255


Chemical Specific Input Parameters		
Sim 1		
Contaminant		Benzene
Source Concentration (mg/l)	mg/l	6.1000
Lambda (per day)	day ⁻¹	0.000958904
KOC		58
Sim 2	•	'
Contaminant		Ethylbenzene
Source Concentration (mg/l)	mg/l	1.3
Lambda (per day)	day ⁻¹	0.003041096
KOC		220
Sim 3		
Contaminant		Toluene
Source Concentration (mg/l)	mg/l	9.6
Lambda (per day)	day ⁻¹	0.024684932
KOC		130

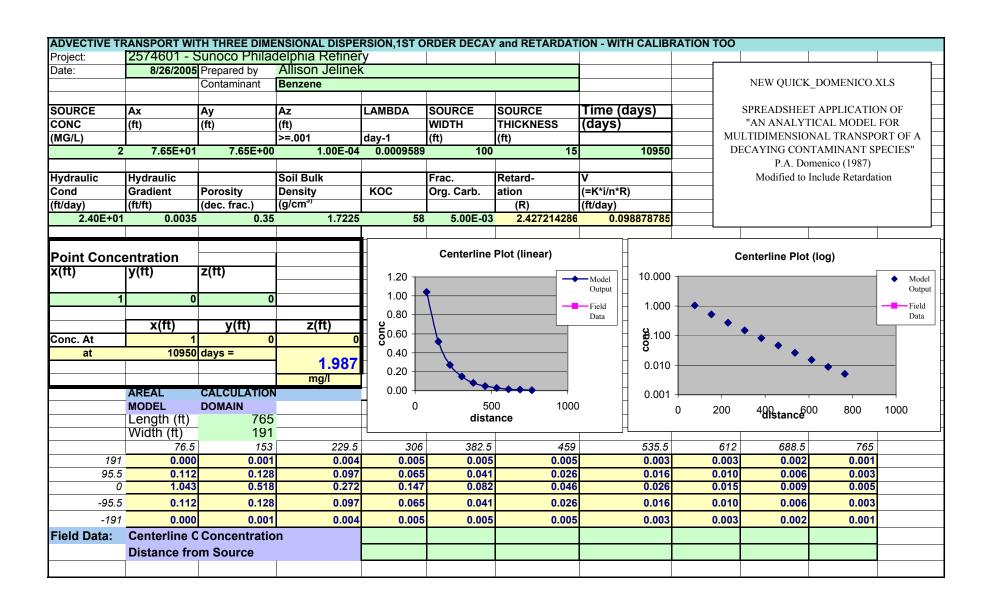

Output (Concentration at the Downgradient Property Boundary in 30 years)									
Contaminant	GW MSC ¹ Residential (mg/l)	GW MSC ² Non-Residential (mg/l)	Concentration at Property Boundary (mg/l)	Distance to Property Boundary (ft)	Distance to Meet Residential GW MSC (ft)				
Sim 1 - Benzene	0.005	0.005	6.06E+00	1	959				
Sim 2 - Ethylbenzene	0.7	0.7	1.27E+00	1	1				
Sim 3 - Toluene	1	1	9.02E+00	1	1				

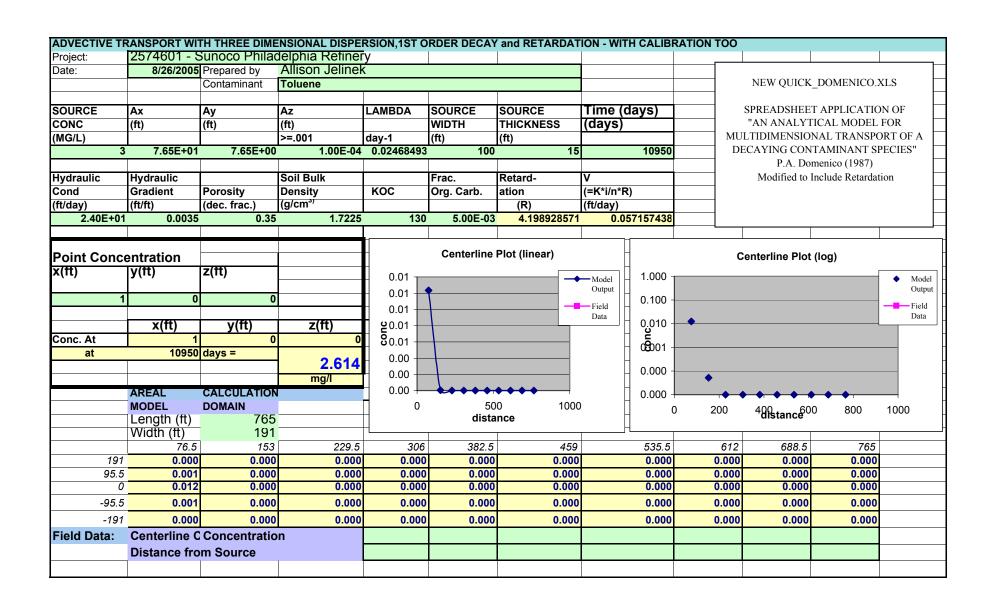
ACT 2 TGM, Appendix A, Table 1 MSC for a Residential Used Aquifer with Total Dissolved Solids less than or equal to 2500.

² ACT 2 TGM, Appendix A, Table 1 MSC for a Non-residential Used Aquifer with Total Dissolved Solids less than or equal to 2500.

2574601 - Sunoco Philadelphia Refinery Allison Jelinek 8/26/2005

Project Prepared by Date Prepared


Source Identification (or Well ID)			S-224
Sample Date			8/1/2005
•			3/ 1/2000
Source Width		ft	100
Source Thickness		ft	15
Distance to Location of Concern	Х	ft	1
Perpendicular Distance to Location of Concern	У	ft	0
Vertical Axis Perpendicular to x and y	Z	ft	0
Longitudinal Dispersivity	A _x	ft	76.5
Transverse Dispersivity	A _y	ft	7.7
Vertical Dispersivity	A _z	ft	0.0001
Hydraulic Conductivty	k	ft/day	24
Hydraulic Gradient		ft/ft	0.0035
Porosity		decimal fraction	0.35
Soil Bulk Density	p _b	g/cm3	1.7225
Fraction of Organic Carbon	f _{OC}	decimal fraction	0.005
Time		days	10950
Length of Grid Dimension		ft	765
Width of Grid Dimension		ft	191


Chemical Specific Input Parameters		
Sim 1		
Contaminant		Benzene
Source Concentration (mg/l)	mg/l	2.0000
Lambda (per day)	day ⁻¹	0.000958904
KOC		58
Sim 2		
Contaminant		Toluene
Source Concentration (mg/l)	mg/l	2.8
Lambda (per day)	day ⁻¹	0.024684932
KOC		130

Output (Concentration at the Downgradient Property Boundary in 30 years)									
Contaminant	GW MSC ¹ Residential (mg/l)	GW MSC ² Non-Residential (mg/l)	Concentration at Property Boundary (mg/l)	Distance to Property Boundary (ft)	Distance to Meet Residential GW MSC (ft)				
Sim 1 - Benzene	0.005	0.005	1.99E+00	1	765				
Sim 2 - Toluene	1	1	2.61E+00	1	1				

¹ ACT 2 TGM, Appendix A, Table 1 MSC for a Residential Used Aquifer with Total Dissolved Solids less than or equal to 2500.

² ACT 2 TGM, Appendix A, Table 1 MSC for a Non-residential Used Aquifer with Total Dissolved Solids less than or equal to 2500.

APPENDIX G

SUMMARY OF AOI 4 GROUNDWATER AND LNAPL ELEVATIONS USED FOR GROUNDWATER CONTOURING

Appendix G

Summary of AOI 4 Groundwater and LNAPL Elevations Used for Groundwater Contouring **AOI 4 Site Characterization Report**

Sunoco Philadelphia Refinery Philadelphia, Pennsylvania

Monitoring Point	AOI	Specific G	avity (g/cc)		Depth to	Depth to	LNAPL	LNAPL	GW	Corrected GW	
ID		S.G. ¹	S.G. Source Notes Product Water (ft)					Thickness ³ (ft) Elevation ³ (ft amsl) (ft amsl) (ft			
					AOI 4						
MW-1	AOI 4				NP	16.09	0	NA	NA	NA	
MW-3	AOI 4				16.86	17.47	0.61	NA	NA	NA	
MW-4	AOI 4				NP	7.31	NA	NA	NA	NA	
S-102	AOI 4				NP	18.88	0	NA	-0.66	-0.66	
S-103	AOI 4	0.7978	S-103		25.63	25.81	0.18	0.48	0.3	0.44	
S-104	AOI 4	0.8787	S-104		17.62	18.74	1.12	0.49	-0.63	0.35	
S-111	AOI 4				NM	NM	0	NA	NA	NA	
S-119	AOI 4				NP	26.46	0	NA	0.14	0.14	
S-119D	AOI 4				NP	25.79	0	NA	-0.69	-0.69	
S-120	AOI 4				NP	19.5	0	NA	0.32	0.32	
S-121	AOI 4				NP	21.61	0	NA	-0.49	-0.49	
S-122	AOI 4				NP	25.51	0	NA	0.2	0.2	
S-123	AOI 4		0.101		22.12	22.14	0.02	0.01	-0.01	-0.01	
S-124	AOI 4	0.8223	S-124		23.09	24.08	0.99	0.11	-0.88	-0.07	
S-26	AOI 4				NP	20.69	0	NA	0.07	0.07	
S-27	AOI 4				NP	24.71	0	NA	0.12	0.12	
S-28	AOI 4				NP	22.98	0	NA	2.76	2.76	
S-29	AOI 4	0.8550	S-29		20.97	27.36	6.39	2.33	-4.06	1.4	
S-30	AOI 4	0.8550	S-29		22.92	23.56	0.64	0.21	-0.43	0.12	
S-31	AOI 4	0.0005	0.00		NP	19.06	0	NA	2.64	2.64	
S-32	AOI 4	0.8665	S-32		NP	23.6	0	NA	0.6	0.6	
S-33	AOI 4	0.8575	S-33		NA	NA	0	NA	NA	NA	
S-34	AOI 4 AOI 4	0.8575	S-33		23.34	24.4	1.06	-0.04	-1.1	-0.19	
S-35 S-36	AOI 4	0.8665 0.8575	S-35 S-33		24.75 24.29	25.53 24.54	0.78 0.25	-0.06 -0.06	-0.84	-0.16	
	AOI 4	0.8639	S-37						-0.31	-0.1	
S-37 S-38	AOI 4	0.8639	5-37		25.85	25.92	0.07	0.05	-0.02	0.04	
S-38D	AOI 4				NP NP	19 19.68	0	NA NA	-0.05 -1.98	-0.05 -1.98	
S-38I	AOI 4				NP NP	20.24	0	NA NA	-1.98	-1.98	
S-39	AOI 4				NP NP	20.24	0	NA NA	0.24	-2.05 0.24	
S-40	AOI 4				NP NP	24.43	0	NA NA	0.03	0.24	
S-55	AOI 4				NM	24.43 NM	NA NA	NA NA	NA	NA	
S-56	AOI 4	0.8684	S-56		14.74	14.75	0.01	0.26	0.25	0.26	
S-57	AOI 4	0.8620	S-57		12.77	13.05	0.28	-0.27	-0.55	-0.31	
S-58	AOI 4	0.0020	3-37		NM	NM	NA	-0.27 NA	-0.55 NA	-0.51 NA	
S-59D	AOI 4				NP	17.63	0	NA NA	-0.51	-0.51	
S-67	AOI 4				NM	NM	NA NA	NA NA	NM	NM	
S-96	AOI 4				NP	19.5	0	NA NA	0.27	0.27	
S-97	AOI 4	0.8653	S-97		29.53	29.54	0.01	0.02	0.01	0.02	
S-216	AOI 4				NP	15.38	NP	NA NA	0.38	0.38	
S-217	AOI 4	0.8578	S-33		11.96	11.99	0.03	-0.43	-0.46	-0.43	
S-218	AOI 4				NP	25.28	NP	NA	0.46	0.46	
S-219	AOI 4				NP	22.93	NP	NA	0.16	0.16	
S-220	AOI 4	0.8550	S-29		20.59	20.97	0.38	0.22	-0.16	0.16	
S-221	AOI 4	0.8223	S-124		22.7	24.34	1.64	0.28	-1.36	-0.01	
S-222	AOI 4				NP	16.09	NP	0	0.21	0.21	
S-223	AOI 4				NP	15.87	NP	0	0.01	0.01	
S-224	AOI 4				NP	15.97	NP	0	0.07	0.07	
S-225	AOI 4				NP	16.41	NP	NA	0.45	0.45	
S-229	AOI 4				22.64	23.88	1.24	0.09	-1.15	-0.08	

- 1. Specific Gravity (S.G.) values were determined from LNAPL samples taken by Aquaterra on February 27th and March 1st, 2004, or from samples collected by SECOR in 1999-2000.
 2. For wells with no direct S.G. measurements, the S.G. value in the nearest well with a direct S.G was used.
- 3. Depth to Water and Depth to LNAPL provided by Aquaterra August 17, 2005.

AOI = Area of Interest

g/cc = grams per cubic centimeter

LNAPL = Light Non-Aqueous Phase Liquid

amsl = above mean sea level

GW = Groundwater

F = Film or trace product

NA = Not applicable

NM = Not Measured

NP = No Product