

Sunoco, Inc. 3144 Passyunk Avenue Philadelphia PA 19145-5299 215 339 2000

January 31, 2003

Pennsylvania DEP Southeast Regional Office Lee Park, Suite 6010 555 North Lane Conshohocken PA 19428

Attn: Mr. David Burke

Re: 26th Street Border Investigation Sunoco Philadelphia Refinery Point Breeze Processing Area

Dear Dave:

Enclosed are two hard copies and one electronic copy of the Remedial Investigation Report for the 26th Street Border of Sunoco's Point Breeze Processing Area. Sunoco Inc.(R&M) retained Secor International, Inc. to complete this investigation and report.

Included in this investigation was additional monitoring well installation, an evaluation of historical gauging data, an analytical characterization of LNAPL types on and off -site, an evaluation of the existing recovery system performance, an evaluation of pump tests and slug tests on and off- site, and an analysis of dissolved hydrocarbon data at the 26th Street perimeter.

Based on the information gathered in this investigation, we have developed a list of recommendations. Included as recommendations are the need for further site characterization/LNAPL definition, implementation of an extended pilot test of the reconfigured 400 series recovery system, implementation of off-site remediation in the vicinity of well S-98, remedial testing in the vicinity of well S-50 and remedial testing in the vicinity of well S-124.

As we discussed, a new survey will be performed to provide accurate locations and elevations of all wells in the eastern portion of the Point Breeze Processing Area South Yard relative to NAD 83 (horizontal datum) and NGVD 88 (vertical datum). In addition, all of the wells on the Belmont Terminal will be tied into this survey. January 31, 2003 Page 2

The existing 400 series recovery wells remediation system has been reconfigured to operate as a pneumatic total fluids recovery system. Currently, the discharge pipe is frozen solid, preventing operation of the system. In the interim, LNAPL will be recovered from the LNAPL bearing wells on the border by either vacuum truck or a portable submersible pump. This will be done on a weekly basis until the remediation systems are reactivated.

I look forward to discussing the findings of this report with you. Please call me at (610) 859-1881 with any questions or comments.

Best Regards,

James R. Øppenheim, PE Sr. Environmental Consultant

Enclosure

Cc: Steve Coladonato, Sunoco, Inc. Ed Ciechon, Sunoco, Inc. Ray Toto, Sunoco, Inc. w/o enclosure Steve Baggett, Secor International S. Hon Lee, USEPA, Region III

Sunoco, Inc. 3144 Passyunk Avenue Philadelphia PA 19145-5299 215 339 2000

January 31, 2003

Environmental Protection Agency, Region III 3WC22 1650 Arch Street Philadelphia, PA 19103-2029 Attn: S. Hon Lee

Re: Remedial Investigation Report 26th Street Border Point Breeze Processing Area

Dear Hon:

Enclosed is a copy of the above referenced report. An investigation of LNAPL occurrence and elevated dissolved hydrocarbon levels near the 26th Street border of the Point Breeze Processing Area was conducted for Sunoco Inc. (R&M) by Secor International Inc. in the fourth quarter of 2002. Secor also evaluated the effectiveness of Sunoco's current recovery system along 26th Street.

As you are aware, Sunoco had previously submitted "Documentation of Environmental Indicator Determination for Migration of Contaminated Groundwater Under Control" (EI RCRIS Code CA750) for the Point Breeze Processing Area and had indicated that further information was necessary to evaluate the potential migration of contaminated groundwater at the facility. This report is intended to address that evaluation and provides recommendations for further work to quantify and address areas of groundwater contamination with a goal of meeting EPA's EI determination in 2005. We also have conducted this work to be consistent with the Statement of Intent between EPA and Sunoco particularly to focus on a results oriented, performance based approach to addressing groundwater conditions at the Philadelphia Refinery. January 31, 2003 Page 2

After review of this report, please give me a call at 610-859-1881 with any questions or comments on the recommendations and proposed next steps outlined for this facility.

Sincerely,

James R Oppenheim, PE

cc: S. Coladonato, Sunoco, Inc D. Burke, PADEP January 31, 2003 -Page 3

bcc: E. Ciechon R. Toto

C. Barksdale

F. Aceto, Secor

Hon_lee_01_31_031-1 (1)

SECOR INTERNATIONAL INCORPORATED

SUNOCO, INC.

26TH STREET BORDER POINT BREEZE PROCESSING AREA PHILADELPHIA REFINERY PHILADELPHIA, PENNSYLVANIA

REMEDIAL INVESTIGATION REPORT

January 31, 2003

Prepared for:

Sunoco, Inc. (R&M) 3144 Passyunk Avenue Philadelphia, PA 19145-5299

Completed by:

SECOR International Incorporated 102 Pickering Way, Suite 200 Exton, PA 19341

Steve Baggett, P.G. (PG000790G) Principal Hydrogeologist

rinh (

Frank Aceto, Jr. P.G. (PG000892G) Principal Hydrogeologist

www.secor.com

Table of Contents

1.0	INTRODUCTION	1
1.1	Objectives	1
1.2	Report Organization	2
2.0	SITE SETTING	3
2.1	Site Location and Description	3
2.2	Geology and Hydrogeology	3
2.3	RW-400 Series Recovery System	4
3.0	SITE CHARACTERIZATION METHODS	5
3.1	Monitoring Well Installation	5
3.2	Liquid Level Gauging	6
3.3	Site Survey	6
3.4	Aquifer Characterization	6
3	.4.1 RW-406 Pumping Test	6
3	.4.2 Slug Testing	7
3.5	Recovery Well Capacity Testing	8
3.6	LNAPL Bail-down Testing	8
3.7	LNAPL Sample Collection	9
4.0	SITE CHARACTERIZATION RESULTS	10
4.1	Site Geology	10
4.2	Site Hydrogeology	11
4	.2.1 Groundwater Elevation	11
4	.2.2 Aquifer Characterization	12
	4.2.2.1 RW-406 Aquifer Test	12
	4.2.2.2 Slug Test Analyses	13
4.3	RW-400 Series Recovery Well Testing	14
4.4	Perimeter Groundwater Sampling Results	15
4.5	Light Nonaqueous Phase Liquids (LNAPL)	16
4	.5.1 LNAPL Occurrence	16
4	.5.2 LNAPL Bail-down Testing	17
4	.5.3 LNAPL Characterization	18
5.0	REMEDIAL APPROACH	20
5.1	LNAPL along the 26th Street Perimeter of the Point Breeze Processing Area	20
5	.1.1 General Area of the RW-400 Series Recovery Wells	20
5	.1.2 Area of S-50	21
5	.1.3 Area of S-124	21
5.2	LNAPL to the East of 26th Street (Area of S-98 and S-100)	22
6.0	CONCLUSIONS AND RECOMMENDATIONS	24
6.1	Conclusions	24
6.2	Recommendations	26
7.0	REFERENCES	28

List of Tables

- 2-1 RW-400 Series Recovery Well Construction Summary
- 3-1 Monitoring Well Construction Specifications
- 3-2 Product Sample Collection Liquid Level Data September 2002
- 4-1 Liquid Level Measurements April 30, 2002
- 4-2 Liquid Level Measurements September 3, 2002
- 4-3 Liquid Level Measurements October 22, 2002
- 4-4 RW-406 Aquifer Test Liquid Level Measurement Data Summary
- 4-5 RW-406 Aquifer Test Data Analyses Summary
- 4-6 Summary of Hydraulic Conductivity Values from Rising Head Slug Tests October 2002
- 4-7 RW-400 Series Recovery Well Capacity Test Summary
- 4-8 Product Bail-Down Test Summary
- 4-9 Product Sample Characterization Summary September 2002

List of Figures

- 1-1 Site Location Map
- 1-2 General Area of Investigation
- 2-1 Generalized Stratigraphic Column
- 2-2 RW-400 Series Recovery Wells Area
- 3-1 Site Monitoring Well Locations
- 3-2 LNAPL Sample Collection Locations September 27, 2002
- 4-1 Lines of Generalized Hydrogeologic Cross-Sections
- 4-2 Hydrogeologic Cross-Section A-A'
- 4-3 Hydrogeologic Cross-Section B-B'
- 4-4 Hydrogeologic Cross-Section C-C'
- 4-5 Hydrogeologic Cross-Section D-D'
- 4-6 Groundwater Elevation Contour Map September 3, 2002
- 4-7 Groundwater Elevation Contour Map October 22, 2002
- 4-8 Location of 26th Street Sewer and Groundwater/LNAPL Elevation Profile
- 4-9 Profile of 26th Street Sewer and Groundwater/LNAPL Elevation Profile October 22, 2002
- 4-10 RW-406 Hydrograph From Aquifer Test (10/1/02 10/3/02)
- 4-11 RW-406 Aquifer Test Drawdown Data (10/1/02 10/3/02)
- 4-12 Annual Perimeter Groundwater Sampling Results (BTEX and MTBE) November 2001
- 4-13 Annual Perimeter Groundwater Sampling Results (BTEX and MTBE) October 2002
- 4-14 Approximate Extent of Measurable LNAPL September 3, 2002
- 4-15 Approximate Extent of Measurable LNAPL October 22, 2002
- 4-16 LNAPL Sample Characterization Results September 27, 2002

List of Appendices

- A Monitoring Well Logs
- B Monitoring Well Hydrographs
- C RW-406 Aquifer Test Data
- D Slug Test Data Graphs
- E RW-400 Series Recovery Wells Capacity Test Data
- F Annual Groundwater Sampling Analytical Data
- G Product Bail-down Test Data Graphs
- H Product Characterization Report

1.0 INTRODUCTION

This Remedial Investigation Report was prepared for Sunoco, Inc. (R&M) (Sunoco) for the eastern portion of the Point Breeze Processing Area of the Philadelphia Refinery located in Philadelphia, Pennsylvania (refer to **Figure 1-1**). The investigation was performed to characterize the occurrence of light non-aqueous phase liquids (LNAPL) along the eastern perimeter of the Point Breeze Processing Area (refer to **Figure 1-2**) which borders 26th Street (also referred to as PA Route 291). Site-specific information was used in the evaluation of an appropriate remedial approach for the recovery of LNAPL along the 26th Street border and across (east of) 26th Street from the northern portion of the Point Breeze Processing Area.

This investigation was also performed to provide baseline site characterization data in order to direct additional site activities needed to assess groundwater under the United States Environmental Protection Agency (USEPA) Resource Conservation and Recovery Act (RCRA) Corrective Action Environmental Indicators (EI) program.

1.1 Objectives

In a September 26, 2002 letter from the Pennsylvania Department of Environmental Protection (PADEP) to Sunoco, PADEP requested Sunoco provide a report detailing actions taken to investigate and prevent off-site migration of LNAPL along the 26th Street border of the refinery. PADEP referenced the apparent increases of LNAPL thickness in wells on adjacent properties which border 26th Street and requested Sunoco investigate the LNAPL occurrence. In their letter, PADEP also requested that Sunoco communicate the operational status of the 400 series recovery wells when changes occur. This investigation was performed to address PADEP's requests expressed in the September 26, 2002 letter to Sunoco.

As mentioned above, this investigation was also performed to provide baseline data in order to direct additional site activities as needed for the USEPA EI program. The EPA is using two environmental indicators to assess conditions at facilities undergoing RCRA corrective action. The two indicators relate to current human exposures to contamination and the migration of contaminated groundwater. During September 2002, Sunoco completed EI determination forms for the "Current Human Exposures Under Control" and "Migration of Contaminated Groundwater Under Control" to USEPA for the Point Breeze Processing Area. Sunoco responded to the "Current Human Exposures Under Control" indicating that there are no "unacceptable" human exposures to "contamination" (i.e., constituents in concentrations in excess of appropriate risk-based levels at the Philadelphia Refinery) that can be reasonably expected under current land and groundwater use conditions. The "Migration of Contaminated Groundwater Under Control" response submitted to USEPA indicated that more information is needed to make a determination. This investigation reviewed and consolidated baseline

information to support additional site activities needed to make a determination of the status of groundwater migration along the 26th Street border of the facility.

Activities performed during this investigation and documented in this report include:

- Installation of 12 monitoring wells,
- Liquid level gauging,
- Aquifer characterization including the performance of an aquifer test and seven slug tests,
- Redevelopment and short-duration capacity testing of the 400 series recovery wells,
- Performance of four LNAPL bail-down tests, and
- Collection and laboratory analyses of LNAPL samples for product characterization.

1.2 Report Organization

The remainder of the remedial investigation report has been divided into the following sections:

Section 2.0 – Summarizes the site setting including location and description, geology and hydrogeology, and provides a description of the 400 series recovery well system.

Section 3.0 – Provides a description of the field methods utilized.

Section 4.0 – Provides a discussion of the results of the investigation including site geology and hydrogeology, recovery well testing, extent of LNAPL occurrence, LNAPL bail-down testing, and characterization of the LNAPL.

Section 5.0 – Presents a preliminary evaluation of remedial alternatives for the 26th Street perimeter of the Point Breeze Processing Area.

Section 6.0 – Presents the conclusions of the investigations and recommendations for future activities.

2.0 SITE SETTING

This section provides a brief description of the project area. Included is a discussion of the project location, the regional geology and hydrogeology, and the 400 series recovery well remedial system.

2.1 Site Location and Description

The Point Breeze Processing Area of the Philadelphia Refinery is located in south Philadelphia, Pennsylvania (refer to **Figure 1-1**). The Point Breeze Processing Area is bounded to the north by Sunoco's Belmont Terminal and Passyunk Avenue; to the west by the Schuylkill River and the Girard Point Processing Area of the Philadelphia Refinery; to the south by Penrose Avenue; and to the east by 26th Street.

As indicated on **Figure 1-2**, the area of investigation includes the eastern portion of the Point Breeze Processing Area. Areas also investigated were adjacent to the eastern side of 26th Street and to the west of the railroad tracks, which are properties owned by Consolidated Railroad Corporation (Conrail), Steen Company, and Ryder Company (these properties are depicted on **Figure 3-2**). This investigation included the testing, gauging and LNAPL sampling of previously existing wells on the Conrail property (refer to **Figure 1-2**).

As indicated on **Figure 1-1**, to the east of the railroad tracks that parallel 26th Street, are the Defense Support Center Philadelphia (DSCP) and a former residential area owned by the Philadelphia Housing Authority (the former PHA property). A LNAPL plume on the water table occurs to the east of the Point Breeze Processing Area and encompasses the central and southern portion of the DSCP property, the northern portion of the Philadelphia Housing Authority Property, and the Steen Property. The DSCP is working under an order from PADEP to address this area.

2.2 Geology and Hydrogeology

The Point Breeze Processing Area is located within the Coastal Plain Physiographic Province approximately one mile southeast of the Fall Line. The topographic elevation of the study area generally ranges from 15 to 30 feet above mean sea level with a gentle slope to the west and south. The Coastal Plain is characterized by gently southeastern dipping, unconsolidated marine and fluvial deposits of clay, silt, sand, and gravel of late Cretaceous and Tertiary Age.

Previous investigations in the area indicate that the surficial geology consists of localized fill, Quaternary Alluvium and Pleistocene-age Trenton Gravel. The Quaternary Alluvium in the area is reported to consist predominantly of sandy silt and sandy micaceous clay. This unit generally ranges in thickness from 0 to 20 feet. The Trenton Gravel underlies the Quaternary Alluvium.

The Trenton Gravel is described as gray or pale reddish-brown, very gravelly sand interstratified with semi-consolidated limonite cemented sand and clayey silt beds; and includes areas of alluvium and swamp deposits. The sediments are poorly sorted (Balmer and Davis, 1996). The thickness of the Trenton Gravel is underlain by a sequence of Upper Cretaceous Age sand and clay units which overlie the crystalline bedrock of the Wissahichon Formation (a well foliated schist and gneiss). A generalized stratigraphic column for the Coastal Plain is presented as **Figure 2-1**, although the wedge of Coastal Plain sediments thin to the northwest towards the Fall Line.

The maximum depth of exploration for this investigation was approximately 35 feet below ground surface (bgs). A description of the subsurface materials encountered during this investigation is provided in Section 4.1

2.3 RW-400 Series Recovery System

A groundwater/LNAPL recovery system was installed in 1995 on the northern portion of the 26th Street perimeter of the Point Breeze Processing Area and the southern portion of the Belmont Terminal (RW-400) as part of the work conducted under the 1993 Consent Order between Sunoco and PADEP. The recovery system consists of RW-400, RW-402, RW-403, RW-404, RW-405, and RW-406 (RW-401 was replaced by RW-406 during 2000 because of excess silt in the bottom of RW-401). These wells were installed to recover LNAPL along the 26th Street perimeter of the refinery. The locations of the RW-400 series recovery wells are depicted on **Figure 2-2** and well construction specifications are presented on **Table 2-1**.

Each recovery well was equipped with a dual pump system (a LNAPL pump and a submersible water pump). The volume of LNAPL and groundwater recovered was monitored by individual in-line flow meters. The pumps operated using water/LNAPL level probes connected to a control panel located in the immediate vicinity of each well. Recovered LNAPL was pumped directly to an adjacent aboveground recovery tank while water was routed to the facility wastewater treatment plant. The operation of this system has been documented in quarterly progress reports submitted to PADEP.

In addition to recovery system operation, Sunoco also performs liquid level gauging of a network of groundwater monitoring wells and annual groundwater sampling (and laboratory analyses of samples) of eight perimeter monitoring wells within the Point Breeze Processing Area. This data is provided to PADEP in quarterly and annual status reports.

3.0 SITE CHARACTERIZATION METHODS

This section describes the field activities performed in order to meet the objectives of the investigation. Activities performed included monitoring well installation, liquid level measurements, aquifer characterization, recovery well capacity testing, LNAPL bail-down testing, and LNAPL sampling and analyses.

3.1 Monitoring Well Installation

A total of 12 monitoring wells (designated S-116 through S-127) were installed between August 12, 2002 and September 19, 2002. These wells were installed to provide additional delineation of the extent of LNAPL and for future use in the EI Program. Monitoring wells S-116 through S-127 were installed along the eastern perimeter of the Point Breeze Processing Area (refer to **Figure 3-1**).

Monitoring well installation was initiated on August 12, 2002 by Parratt-Wolffe, Inc. under the supervision of a SECOR professional geologist registered in Pennsylvania. Soil borings were advanced at each location using continuous flight hollow-stem auger drilling techniques. During drilling, soil samples were collected for lithologic description continuously to the target depth with a split-barrel sampling device. Organic vapors in the headspace of soil samples were monitored with a photoionization detector (PID). Soil borings were advanced to depths ranging from 22 to 35 feet below bgs. The subsurface lithology and PID measurements were recorded by the supervising geologist on a lithologic log (refer to **Appendix A**).

Once the termination depth of each soil boring was reached, the well casing and screen was inserted into the boring through the center of the hollow-stem auger. The monitoring wells were constructed of 4-inch diameter schedule 40 polyvinyl chloride (PVC) well screen and solid PVC riser. Lengths of pipe were joined using threaded flush joint couplings. The well screen was preconstructed, commercially slotted, with a slot size of 0.020 inches. The bottom of each screen was provided with a threaded flush joint cap. A well sorted silica filter sand (#2 grade) was poured through the augers from the bottom of the boring to a level above the top of the screened interval to fill the annular space. The remaining annular space above the sand pack was filled with a bentonite grout to the surface. Soil cuttings were placed in the vicinity of the wellheads for management by the facility. Monitoring well construction specifications are summarized on **Table 3-1**.

Monitoring wells were developed to provide efficient hydraulic communication between the well and the surrounding aquifer using a surge block and vacuum truck. No water was added to the wells during development. All well development water was routed to the refinery's NPDES permitted wastewater treatment facility.

3.2 Liquid Level Gauging

Depths to liquids were gauged in monitoring wells within the area of investigation on April 30, 2002; September 3, 2002; and October 22, 2002. The depth to groundwater and the depth to LNAPL (if present) in each well were measured using an electronic oil/water interface probe. This instrument is capable of measuring the depth to liquids to an accuracy of 0.01 foot. The depth to water was measured from the top of the PVC well casing (TOC).

Well gauging events were performed on April 30, 2002 to evaluate LNAPL occurrence in order to direct monitoring well installations. The September 3, 2002 well gauging event was performed following the installation and development of monitoring wells S-116 through S-125. As a result of this gauging event, monitoring wells S-126 and S-127 were installed. The October 22, 2002 well gauging event included all site monitoring wells used in this investigation. Data collected during these and other gauging events conducted as part of other facility activities were used to evaluate water table fluctuations and LNAPL occurrence.

3.3 Site Survey

Following completion, each monitoring well was located and surveyed for vertical control relative to the established site-specific datum (refer to **Table 3-1**). This data, in conjunction with liquid level measurements were used to prepare groundwater elevation maps.

As will be described in Section 6.0, Sunoco is currently in the process of performing an area-wide site survey by a surveyor licensed in Pennsylvania. The survey will present a "compiled" base map including the eastern portion of the Point Breeze Processing Area, Belmont Terminal and areas immediately east of 26th Street. All wells and key features will be included. Monitoring wells will be surveyed relative to NAD 83 (horizontal datum) and NGVD 88 (vertical datum).

3.4 Aquifer Characterization

Aquifer characterization activities included a pumping test of recovery well RW-406 and seven slug tests. These tests are described below.

3.4.1 RW-406 Pumping Test

A pumping test was performed at RW-406 (refer to **Figure 2-2** for well location) in order to estimate aquifer characteristics, evaluate LNAPL recovery, and evaluate the extent of influence from pumping. Prior to conducting the test, RW-406 was redeveloped using a surge block and vacuum truck.

The test was initiated on October 1, 2002 and consisted of pumping RW-406 for 3,300 minutes and monitoring depth to liquids in nearby observation wells. The extraction rate from RW-406 was monitored using an in-line electronic flow meter. The liquid levels in the pumping well and nearby observation wells were monitored using an electronic data logger and/or a hand held interface probe capable of detecting water and LNAPL.

In order to meet the objectives of the testing, the flow rate was initially kept constant in order to estimate aquifer characteristics using constant flow rate calculations. Periodic LNAPL removal was required in order to prevent LNAPL from being pumped through the water pump and to prevent the pump from undesired cycling as LNAPL thickness increased. A hand-held pump was used to remove LNAPL. The discharge rate was incrementally increased during the test in order to evaluate the sustainable yield of the well and to evaluate the influence on groundwater/LNAPL elevations in nearby observation wells. The pumping intervals of the test are summarized below:

- 0 to 1,275 minutes (elapsed time since pumping began): average discharge rate was approximately 1.85 gpm (one LNAPL removal event performed at 505 minutes),
- 1,275 to 1,835 minutes: average discharge rate was approximately 1.85 gpm (water pump was cycling using the water level probe installed in the well),
- 1,835 to 2,254 minutes: average discharge rate was approximately 2.5 gpm with periodic product removal from RW-406, and
- 2,254 to 3,300 minutes: average discharge rate was approximately 2.74 gpm with periodic product removal from RW-406.

Water levels in RW-406 and nearby observation wells were monitored for approximately 600 minutes following the cessation of active pumping. RW-406 pumping test data is included in **Appendix C** and the results of the testing will be described in Section 4.2.2.1.

3.4.2 Slug Testing

During October 2002, seven slug tests were performed to approximate the hydraulic conductivity of the saturated unconsolidated material in the vicinity of the well tested. Slug tests were performed on wells adjacent to 26th Street (S-43, S-86, S-116, S-120, S-122, S-127, and RW-406).

A slug test is a single well test that consists of rapidly changing the water level in the well and recording the response of the aquifer. The slug test involves placing a cylindrical object (a "slug") in the well. When water levels stabilized following insertion, the object was removed

resulting in an increasing water level (rising head) in the well. Care was taken to ensure that adequate water was displaced so that the test was measuring aquifer properties rather than the properties of the sand pack. Following removal of the slug, the change in water level was monitored using a pressure transducer and data logger. The data logger was set to record at intervals of seconds or fractions of a second to obtain the necessary data.

Slug test data were reduced and analyzed using the Bouwer and Rice (1976) method for determining the hydraulic conductivity of unconfined water-bearing zones. Slug test data is presented in **Appendix D** and results of the slug testing program are discussed in Section 4.2.2.2.

3.5 Recovery Well Capacity Testing

Short duration capacity tests were performed on RW-402, RW-403, RW-404, and RW-405. RW-400 was not tested because the existing submersible pump did not function properly during the testing period. These tests were performed to evaluate LNAPL recovery and sustainable groundwater extraction rates for use in future system operation. Prior to testing, the existing pumps were removed from the well and each well was redeveloped (including RW-400) using a surge block and vacuum truck.

Each test was performed by pumping the wells at incrementally increasing or decreasing (RW-404) flow rates. Water was pumped using the existing submersible pumps. Water extraction rates were monitored using an in-line electronic flow meter. Liquid levels were monitored in the pumping well and nearby observation wells (depending on distances to existing monitoring wells).

Total pumping periods ranged from 59 minutes (RW-404) to 367 minutes (RW-405). The maximum pumping rate intervals for the wells ranged from 0.88 gpm (RW-404) to 2.00 gpm (RW-402) although in some instances the pumping rate was limited by the capacity of the existing pumps (refer to Section 4.3). These extraction rates are consistent with the low permeability and water bearing capacity of the local geology. Recovery well testing data is presented in **Appendix E** and the results are discussed in Section 4.3.

3.6 LNAPL Bail-down Testing

LNAPL bail-down tests were performed at monitoring wells S-50, S-98, S-100, and CSX-MW-5 on October 17, 2002. The tests were performed by removing as much product as feasible, using a stainless steel bailer, while removing as little water as practical. After LNAPL removal, depth to LNAPL and depth to water measurements were recorded as the liquid levels recovered. LNAPL recovered during these tests was transferred to the recovery tanks for the RW-400 series recovery

wells. Graphic presentation of the bail-down test data is presented in **Appendix G** and the results are discussed in Section 4.5.2.

3.7 LNAPL Sample Collection

LNAPL samples were collected from select wells along the 26th Street perimeter of the refinery and to the east of 26th Street. Samples were collected to characterize the composition of the LNAPL in order to assess the source of the LNAPL. LNAPL samples were collected from S-50, S-88A, S-89, S-98, S-100, PZ-400, RW-401, RW-402, and CSX-MW-5.

In order to assure representativeness of the samples collected, LNAPL was bailed from the wells on September 25 or 26, 2002 and LNAPL was allowed to re-enter the wells prior to sample collection on September 27, 2002. Liquid level gauging data for these wells recorded before LNAPL bailing, after LNAPL bailing, and before sample collection are contained in **Table 3-2**. It was also intended that a sample be collected from S-51. However, LNAPL was not detected in this well during sampling activities. **Figure 3-2** displays LNAPL sample locations.

After collection, the samples were transported to ICF located in Cambridge, Massachusetts for analyses. The samples were analyzed to determine the product-type of each sample. Qualitative analysis was performed using chemical data generated by ICF for the field samples and for known reference samples. Identifications were based on comparisons of hydrocarbon distributions, gas chromatographic patterns (primarily gasoline range hydrocarbons), and/or indicator compounds. The assessment of weathering degree was made by evaluating loss of major constituents and assumed a typical initial composition.

4.0 SITE CHARACTERIZATION RESULTS

This section presents the results of the site investigation activities described in Section 3.0. In order to present a comprehensive characterization of subsurface conditions along the 26th Street border of the refinery, also included is a summary of the annual perimeter groundwater sampling and analyses program.

4.1 Site Geology

Twelve monitoring wells were installed during the investigation. The maximum depth of exploration in these wells was approximately 35 feet bgs. Lithologic descriptions presented on the well logs (refer to **Appendix A**) and select previously installed monitoring wells and recovery wells were used to prepare geologic cross-sections.

Lines of geologic cross-sections are presented on **Figure 4-1**. Cross-sections A-A' through D-D' are presented as **Figures 4-2** through **4-5**. Also presented on these figures are depths to liquid measurements recorded on October 22, 2002.

Figure 4-2 is a cross-section extending north-south from the area of S-124 (near Penrose Avenue) to S-126. At each location, the near surface materials typically consist of fill, silt, and silty sands, which extend to depths generally ranging from 5 to 17 feet bgs. Beneath these deposits, the materials encountered were predominantly well-graded, medium grained sands and poorly-graded sands with less frequent clay and silt horizons. Clay was encountered at the bottom of S-127 (elevation -10 feet or approximately 29 feet bgs) and S-126 (elevation 5 feet or 23 feet bgs).

Figure 4-3 is a cross-section extending north-south in the general area of the RW-400 series recovery wells. This cross-section was prepared using available well logs for the existing recovery wells and the log for newly installed S-125. The thickness of the surficial silt and fill generally ranges from 2 to 17 feet bgs. Beneath these deposits the materials encountered included, sandy silt, sands, and gravels with some clay horizons. Silty clay was encountered at the bottom of RW-402 (elevation -21 feet or approximately 47 feet bgs) and RW-400 (elevation -14 feet or approximately 41 feet bgs). Clay and peat was encountered in RW-404 at depth of 47 to 48 feet bgs (elevation -22 to -23 feet).

Figure 4-4 is a cross-section extending east-west from S-48 to S-50. This cross-section was prepared using well logs for the previously existing and newly installed wells. This cross-section also depicts near surface clay/silt overlying sands and gravels with some clay horizons.

Figure 4-5 is a cross-section extending east-west from S-77 across 26th Street to S-100. This cross-section was also prepared using well logs for the previously existing and newly installed

wells. This cross-section is generally consistent with **Figure 4-4** (C-C') although the materials encountered at S-100 are predominantly silts and clays.

4.2 Site Hydrogeology

Site-specific data collected to characterize hydrogeologic conditions include depth to liquids measurements and aquifer testing.

4.2.1 Groundwater Elevation

Depth to liquids measurements and site survey data were used to prepare groundwater elevation maps for the September 3, 2002 and October 22, 2002 well gauging events (**Figures 4-6** and **4-7**, respectively). Liquid level measurements recorded on the April 30, 2002, September 3, 2002 and October 22, 2002 well gauging events are presented on **Tables 4-1**, **4-2**, and **4-3**, respectively.

Figures 4-6 and **4-7** depict an overall southerly direction of groundwater movement. During both gauging events, groundwater elevations generally range from 5 feet in the general area of the Belmont Terminal/Point Breeze Processing Area border to the north to -1 foot near Penrose Avenue to the south. Ground surface elevations range from 19 feet to 29 feet for these areas.

Hydrographs for select monitoring wells are included in **Appendix B** for the general period of late 1995 through 2002 (not all wells were gauged during each gauging event). Seasonal water table fluctuations are depicted on these hydrographs (additional discussion will be presented in Section 4.5 in the context of LNAPL occurrence). These hydrographs indicate an overall decrease in the water table elevation of approximately 2 to 3 feet from spring 2001 through late summer/early fall 2002. The lowest water table elevations in the time period depicted in the hydrographs occurred during summer/early fall 2002. This decline in water table elevation is attributed to regional drought conditions during the period. Liquid level elevations recorded from late October 2002 into early January 2003 depict a general increase in the water table elevation of approximately 1 foot (refer to hydrographs for S-50, S-51, S-81, S-98 and S-100 in **Appendix B**).

A profile of the depth to liquids along 26th Street using data from the October 22, 2002 gauging event was prepared in order to evaluate the water table elevation relative to the 26th Street Sewer (sewer construction was based on drawings provided by the City of Philadelphia Water Department). **Figure 4-8** presents the line of profile and the location of the 26th Street Sewer. **Figure 4-9** presents the October 22, 2002 liquid level elevations relative to the elevation of the 26th Street Sewer for select wells extending from S-124 (near Penrose Avenue) to S-74 (located on the Belmont Terminal). The 26th Street Sewer consists of a 48-inch (36-inch in one segment) steel pipe surrounded by a cement collar approximately one-foot thick. As indicated on **Figure 4-9**, the sewer slopes to the north top of the cement collar ranging in elevation from approximately -

7 feet to -12 feet. The lowest water table elevation depicted is approximately -2 feet at S-44. As indicated, the water and LNAPL surface is above the top of the 26th Street Sewer throughout the area evaluated.

4.2.2 Aquifer Characterization

The following discussion presents the results of the RW-406 aquifer test and the slug testing program.

4.2.2.1 RW-406 Aquifer Test

As described in Section 3.4.1, an aquifer test was performed at RW-406 in order to estimate aquifer characteristics, evaluate LNAPL recovery, and assess the extent of influence from the pumping. RW-406 was pumped for 3,300 minutes at rates ranging from approximately 1.85 gpm to 2.74 gpm.

Figure 4-10 is a hydrograph of RW-406 during the pumping portion of the test. As indicated, measurable and increasing product thickness accumulations were recorded during the test. The maximum LNAPL thickness recorded during the test was 7 feet. Periodic LNAPL recovery was performed during the test using a hand-held recovery pump. Approximately 116 gallons of LNAPL was recovered during the test. It is anticipated that a larger volume of LNAPL would have been recovered if continual/automated LNAPL recovery was performed, although this was not the intention of the test. **Figure 4-10** demonstrates that if a lowered water level in RW-406 is maintained, LNAPL can be recovered at improved rates. However, under conditions of a rising water table, the ability to recover LNAPL may be decreased.

Liquid level measurements were recorded during the test in nearby observation wells using data logging devices and an interface probe. **Figure 4-11** presents water elevation data recorded by an electronic data logger in RW-406 and observation wells RW-401, RW-402, PZ-401, S-82, and S-125. S-100 (located to the east of 26th Street) was also monitored during the test but did not indicate any response to the pumping.

Table 4-4 summarizes the liquid level data collected in RW-406, observation wells RW-401, RW-402, PZ-401, PZ-402, S-82, and S-125. The observed drawdown from the pumping ranged from approximately 0.14 feet at S-82 (approximately 56 feet from RW-406) to 0.87 feet at PZ-402 (approximately 10 feet from RW-406). A change in water level elevation of approximately 0.08 feet was observed at RW-402 (approximately 110 feet from RW-406) although it is not conclusive that this change resulted from the pumping of RW-406 or from background groundwater level fluctuations.

The apparent LNAPL thickness in RW-401 (21 feet from RW-406) increased from 0.12 feet to 1.67 feet during the pumping of RW-406. However, a similar increase in the LNAPL thickness was not observed in the other observation wells monitored.

Drawdown data collected during the constant flow rate (approximately 1.85 gpm) portion of the test was used to estimate aquifer transmissivity and hydraulic conductivity. Aquifer transmissivity was estimated using the Cooper-Jacob (1946) time-drawdown straight-line approximation method using the correction for unconfined aquifers.

Table 4-5 provides a summary of the transmissivity values estimated from the drawdown data. Transmissivity values ranged from 252 ft²/day (RW-406) to 554 ft²/day (RW-401) with a geometric mean of 357 ft²/day. Assuming an aquifer thickness for the aquifer test of 12.5 feet (based the depth of RW-406 minus the static corrected depth to water), the estimated hydraulic conductivity values ranged from 20 feet/day (RW-406) to 44 feet/day (RW-401) with a geometric mean of 28.5 feet/day (hydraulic conductivity is equal to the transmissivity divided by the aquifer thickness).

Recovery data recorded at RW-406 was also analyzed to provide an estimate of aquifer transmissivity. The recovery data was analyzed using the Theis (1935) method for the analyses of recovery data with the correction for unconfined aquifer conditions. An average flow rate of 2.18 gpm was assumed for the duration of pumping. The transmissivity values estimated from recovery data are also summarized on **Table 4-5**. As indicated, the transmissivity values ranged from 200 ft²/day (PZ-402) to 427 ft²/day (RW-406) with a geometric mean of 301 ft²/day. Estimated hydraulic conductivity values ranged from 16 feet/day (PZ-402) to 34 feet/day (RW-406) with a geometric mean of 24 feet/day.

As indicated above, the geometric mean of the transmissivity and hydraulic conductivity values from drawdown and recovery data were consistent. The data plots used to estimate these values are included in **Appendix C**.

4.2.2.2 Slug Test Analyses

Slug tests were performed in seven wells in order to estimate the saturated aquifer hydraulic conductivity in the vicinity of the well tested. Slug test rising head data were analyzed using the Bouwer and Rice (1976) method for unconfined water bearing zones (data graphs are presented in **Appendix D**).

Estimated hydraulic conductivity values are summarized on **Table 4-6**. Hydraulic conductivity values ranged from 0.29 ft/day (S-127) to 12.6 feet/day (S-122). The highest hydraulic conductivity values were reported near the southern boundary of 26th Street perimeter of the

refinery at S-122 (12.6 ft/day) and S-120 (11.7 feet/day). Significantly lower hydraulic conductivity values were reported north of this area at S-127, S-86 (0.30 feet/day), and S-43 (0.76 feet/day). The estimated hydraulic conductivity at RW-406 was 7.22 feet/day, although the values estimated from the aquifer test drawdown and recovery data were 20 feet/day and 34 feet/day respectively. Note that data obtained from slug tests are considered estimates and representative only of materials in the immediate vicinity of the well tested.

4.3 RW-400 Series Recovery Well Testing

Short-duration capacity tests were performed on RW-402, RW-403, RW-404, and RW-405 in order to evaluate LNAPL recovery and sustainable flow rates for future systems operation. As previously mentioned, these wells were redeveloped using a surge block and vacuum truck prior to testing. **Table 4-7** presents a summary of testing results. The data from the RW-406 aquifer test is included on **Table 4-7** for comparison purposes. Capacity test data and hydrographs for the wells pumped are provided in **Appendix E**.

RW-402 was pumped for approximately 158 minutes at discharge rate intervals ranging from approximately 0.60 gpm to 2.0 gpm (the maximum capacity of the submersible pump installed in the well). A maximum drawdown of 2.49 feet and change in LNAPL thickness of 0.15 to 0.31 feet was reported during the test. Liquid levels were monitored at S-125 (approximately 70 feet from RW-402) although no noticeable influence was observed.

RW-403 was pumped for a total of 122 minutes using discharge rate intervals of 0.5 gpm and 0.88 gpm. A maximum drawdown of 9.10 feet was measured and no LNAPL was reported during the testing (the water level was decreasing at a flow rate of 0.88 gpm upon test termination). Liquid levels were measured in S-84 (36 feet from RW-403) although no influence from the pumping was observed.

RW-404 was pumped for approximately 59 minutes. The well was initially pumped at 1.20 gpm but the flow rate was reduced to 0.72 gpm after approximately 20 minutes of pumping due to excessive drawdown. No LNAPL was detected in the well during pumping. Liquid levels were monitored at S-85 (approximately 22 feet from RW-404) and S-88A (approximately 45 feet from RW-404). The water level in S-85 decreased 0.14 feet during the testing while the water level in S-88A increased 0.04 feet during the testing. This suggests that the water level change observed at S-85 may be attributed to the pumping.

RW-405 was pumped for a total of approximately 367 minutes at discharge rate intervals ranging from approximately 0.40 gpm to an average of 1.20 gpm (a flow rate as high as 1.7 gpm was reported with the pump at maximum capacity, although the rate decreased likely attributable to back pressure in the discharge line). A maximum drawdown of 1.73 feet was observed. The

LNAPL thickness increased from 1.25 feet to 4.20 feet during the pumping and 7.5 gallons of LNAPL were removed from the well. Liquid levels were monitored at S-89 (approximately 10 feet from RW-405), PZ-404 (approximately 9 feet from RW-405), and PZ-403 (approximately 25 feet from RW-405). Corrected water level decreases of 0.22 feet, 0.21 feet, and 0.35 feet, respectively, were observed during the testing. An increase in apparent LNAPL thickness of 0.36 feet and 0.30 feet were reported at S-89 and PZ-404, respectively during the testing.

As previously mentioned, RW-400 was not tested since the pump in the well did not function at the time of the test. However, data from the Delaware River Basin Commission groundwater extraction permit application prepared in 1994 reported that the well yield was approximately 1 gpm with a specific capacity (discharge rate divided by the drawdown) of 0.08 gpm/ft. The LNAPL thickness in this well ranged from 0.41 feet to 0.67 feet during the well gauging events performed.

Based on the testing performed, it is anticipated that product can be recovered from the RW-400 series wells if a lowered water level can be maintained. Under a low water table elevation, similar to the elevation of the test period, an increased product recovery rate as compared to previous well performance can be accomplished. Individual well groundwater extraction rates of approximately 0.5 to 2.5 gpm are anticipated during future system operation. Improvement in LNAPL recovery volumes are anticipated from all wells, with RW-402, RW-405, and RW-406 expected to show the greatest improvement.

4.4 Perimeter Groundwater Sampling Results

As mentioned previously, eight perimeter monitoring wells (S-3, S-25, S-38, S-39, S-40, S-43, S-50, and S-81) in the Point Breeze Processing Area are sampled on an annual basis. The laboratory analyses of these samples are performed for benzene, toluene, ethyl benzene and xylenes (BTEX), methyl tert butyl ether (MTBE); base neutral organic compounds, metals, and other water quality parameters (alkalinity, chloride, specific conductance, fluoride, ammonia-nitrogen, nitrate-nitrogen, sulfate, total dissolved solids, and total organic compounds). The historical analytical data is presented in **Appendix F**.

Figures 4-12 and **4-13** summarize the BTEX and MTBE results for the 2001 (November) and 2002 (October) sampling events. As indicated on **Figure 4-12**, during the 2001 sampling event benzene was reported at concentrations from below detection levels in S-39 (the detection level was 1 ug/L) and S-25 (the detection level was 10 ug/L) to 53,000 ug/L (S-50). Toluene concentrations ranged from below detection levels in five wells (detection levels ranged from 2 ug/L to 500 ug/L) to 1,400 ug/L (S-50). Ethyl benzene concentrations ranged from below detection levels ranged from 2 ug/L to 1,000 ug/L) to 260 ug/L (S-38). Xylene concentrations ranged from below detection levels in six wells (detection levels in si

ranged from 4 ug/L to 1,000 ug/L) to 1,300 ug/L (S-50). MTBE was not detected in three wells (detection levels ranged from 2 ug/L to 500 ug/L) and was detected in five wells at concentrations ranging from 1 ug/L (S-39) to 5,200 ug/L (S-50).

Figure 4-13 indicates that during the 2002 sampling event, LNAPL was detected in S-50 and S-81. As a result, only the remaining six wells were sampled. Benzene was reported at concentrations ranging from below detection levels in four wells (the detection level was 1 ug/L) to 5,500 ug/L (S-43). Toluene concentrations ranged from below detection levels in four wells (the detection level was 1 ug/L) to 170 ug/L (S-43). Ethyl benzene concentrations ranged from below detection levels in four wells (the detection level was 1 ug/L) to 790 ug/L (S-43). Xylene concentrations ranged from below detection levels in four wells (the detection level was 1 ug/L) to 460 ug/L (S-43). MTBE was not detected in three wells (detection levels ranged from 1 ug/L to 5 ug/L) and was detected in S-25 (2 ug/L) and S-3 (4 ug/L). MTBE data for S-43 was not reported during this sampling event.

4.5 Light Nonaqueous Phase Liquids (LNAPL)

4.5.1 LNAPL Occurrence

This investigation included the characterization of the aerial distribution of LNAPL occurrence in order to direct future remedial activities. **Figures 4-14** and **4-15** present the apparent product thickness measurements recorded during the September 3, 2002 and October 22, 2002 gauging events.

Figure 4-14 indicates LNAPL occurrence along 26th Street in the general area of the RW-400 series recovery wells although LNAPL was not detected in several wells between RW-402 and S-88A. LNAPL was detected to the east of 26th Street in S-98 and S-100 but not in S-99 or S-101.

LNAPL was also detected at S-50 and S-51. The extent of LNAPL in this area is delineated to the north by S-52, to the west by S-117 (S-127 was subsequently installed and further defines this area) and to the south by S-45.

LNAPL was detected in several wells in the interior of site extending from S-48 to S-97. S-123 and S-124 were installed to further delineate LNAPL occurrence historically detected at S-97. These wells are located in the southeastern portion of the Point Breeze Processing Area and also reported the occurrence of LNAPL. LNAPL was not detected along the 26th Street border between S-50 and S-124.

Figure 4-15 (October 22, 2002) depicts a similar distribution of LNAPL occurrence as **Figure 4-14** (September 3, 2002). However, LNAPL was not detected in S-51 or in S-127, which is immediately west of S-50.

Recently, PADEP has verbally expressed concern over the occurrence of LNAPL in certain wells that did not historically indicate the presence of LNAPL. These wells include S-50, S-51 S-81and S-98 (hydrographs for the period late 1995 through early January 2003 for these wells are presented in **Appendix B**). The hydrograph for S-50 indicates that LNAPL was not detected since 1996 (only 0.01 foot of LNAPL on one event during 1996) until early 2002 when the groundwater elevation decreased approximately 3.5 feet from elevations recorded during 2000. Similarly, LNAPL was detected for the first time in S-51 during May 2002 when groundwater was at the lowest elevation during the reporting period. LNAPL was not detected in the well when gauged on January 7, 2002 after the water elevation increased approximately one foot from October 2002. LNAPL was also detected in S-81 during April 2002 for the first time during the reporting period when the water elevation was approximately 2 feet lower than in 2000. LNAPL was detected in S-98 during 2002 for the first time since 1999/early 2000. However, the groundwater elevation during 2002 was at a similar elevation as LNAPL was in 1999/early 2000 when LNAPL was detected.

As described by USEPA (1996), fluctuations in the water table can result in large differences in the LNAPL thickness even though the volume of LNAPL in the subsurface has not significantly changed. The referenced literature also notes that increasing LNAPL thickness is commonly observed with declining water tables. The increase was attributed to drainage from the unsaturated zone or as the water table falls LNAPL previously trapped in the residual phase (in the zone of water saturation) is mobilized and detected in monitoring wells. Conversely, as the groundwater elevation rises, residual LNAPL may be trapped below the water table (USEPA, 1995). The increase in LNAPL thickness under a falling water table and the decrease in LNAPL thickness under a falling water table are depicted on the hydrographs from the site wells described above.

Based on the review of historical liquid level gauging data and as supported by the referenced literature, the recent occurrence of LNAPL in monitoring wells S-50, S-51, S-81, and S-98 is attributed to a decline in the water table elevation during 2002 (under the prevailing drought conditions) rather than a new release or the expansion of an existing LNAPL plume. LNAPL occurrence at these locations will be further evaluated as additional well gauging data is gathered.

4.5.2 LNAPL Bail-down Testing

LNAPL bail-down tests were performed at S-50, S-98, S-100, and CSX-MW5. The tests were performed in order to provide a qualitative evaluation of LNAPL accumulation and recoverability

at each well tested. Typically, apparent LNAPL thickness measured in wells that are installed in finer grained sediments generally exaggerate the thickness/volume of LNAPL actually in the formation with respect to coarser grained sediments. This is of significance in heterogeneous geologic settings such as the subject site. LNAPL bail-down tests are commonly performed to estimate the "true" product thickness in the formation. As described by Testa and Paczkowski (1989), there are several potential procedural and data interpretation inaccuracies with these types of tests and they do not provide data on LNAPL trapped by capillary forces (Durnford, et. al. 1991). However, the results of these tests are summarized below in order to provide qualitative information on the feasibility of the recovery of LNAPL and LNAPL accumulations.

Depth to water and LNAPL versus time plots are presented in **Appendix G** and the results of the testing are summarized on **Table 4-8**. As indicated, the LNAPL thickness in S-98 recovered more than the other wells (greater than 100% recovery in 45 minutes) with an apparent LNAPL thickness of 0.62 feet at the end of the test. The LNAPL thickness in the other wells tested recovered approximately 39% (S-100) to 49% (CSX-MW5) of the pre-testing LNAPL thickness. Apparent LNAPL thicknesses in these wells ranged from 0.24 feet (S-100) to 0.43 feet (S-50) at the completion of the tests. The testing suggests that S-98 is capable of sustaining a higher LNAPL recovery rate than the other wells tested.

4.5.3 LNAPL Characterization

LNAPL samples were collected from S-50, S-88A, S-98, S-100, RW-401, RW-402, PZ-400, and CSX-MW-5. Qualitative analyses were performed by ICF to identify the composition of the LNAPL (the sample collected from S-88A contained mostly water and did not have sufficient LNAPL to determine the product type). The qualitative analyses were performed using chemical data generated by ICF for the field samples and for known reference samples. Identifications were based on comparisons of hydrocarbon distributions, gas chromatographic patterns (primarily gasoline range hydrocarbons), and/or indicator compounds. The assessment of weathering degree was made by evaluating loss of major constituents and assumed a typical initial composition. ICF also made comparison of these analyses to the analyses of samples which were reported in March 1998 to determine if content of the LNAPL has changed. In addition, the results were compared to a representative sample of the DSCP LNAPL plume. The correspondence from ICF reporting the results of the analyses is presented in **Appendix H.**

A summary of the LNAPL characterization results is presented on **Table 4-9** and is presented graphically on **Figure 4-16**. Samples S-100, RW-401, RW-402, PZ-400 are comprised of a mixture of gasoline and diesel in roughly equal proportions with minor variation between the samples. Sample S-98 is comprised primarily of mildly weathered gasoline with trace amounts of hydrocarbons in the diesel range. Samples S-89 and CSX-MW-5 are comprised of a heavily degraded gasoline and diesel mixture.

Composition of samples S-100, RW-401, RW-402, and S-89 is the same as previously observed in analyses reported in March 1998 (IST, 1998). Current composition of sample PZ-400 differs slightly from the March 1998 report (IST, 1998) in that the sample contains a noticeably higher proportion of diesel range material than previously observed. Samples S-98 and CSX-MW-5 were not analyzed previously.

All of the samples mentioned above differ from the DSCP LNAPL plume (a sample from MW-5 at the DSCP was used to represent the DSCP plume), which is described in the March 1998 report (IST, 1998) as a mixture of gasoline and a naphtha-like product. The differences of the DSCP plumes from the Sunoco plumes are observed as variations in the chromatographic patterns as well as the overall boiling range distribution, and are indicative of different sources. Sample S-50 is comprised of a refinery intermediate most closely resembling light refinery naphtha or reformed light refinery naphtha or a mixture of the two. The proportion of benzene in the sample is higher than in reference samples for these products indicating a difference in the specific refinery process used or an additional input. Assuming that the constituents were highgrade refinery intermediates, the sample is only mildly weathered. This well did not have LNAPL previously so historic comparisons could not be made. The chemical composition of S-50 differs from that of the DSCP plume (based on a sample from MW-5 at DSCP) in that boiling distribution of S-50 in terms of end point is lower (indicating that the naphtha components of the mixtures are different) and absolute concentrations of monoaromatic compounds such as benzene are significantly higher (indicating that the gasoline components of the mixtures are also different). Based on chemical differences, the plumes are composed of distinct materials. This supports implementation of further Sunoco remedial efforts to address the plume on its property.

5.0 **REMEDIAL APPROACH**

Data collected during this and previous investigations were evaluated in order to develop a strategy for the recovery of LNAPL along the 26th perimeter of the refinery and to the east of 26th Street in the vicinity of S-98 and S-100. This strategy will consider the recent information regarding increased LNAPL thickness monitoring data and LNAPL occurrences in wells due to lower water table elevations (as a result of drought conditions observed during 2002). In addition, the proposed remedial approach will provide a basis for improving the remedial system performance.

5.1 LNAPL along the 26th Street Border of the Point Breeze Processing Area

LNAPL has been detected along the 26th Street border of the Point Breeze Processing Area in three general areas. These areas include the area of RW-400 series recovery wells, the area of S-50, and the area of S-124. Proposed activities in these areas are discussed below.

5.1.1 General Area of the RW-400 Series Recovery Wells

In order to enhance LNAPL recovery, the RW-400 series recovery wells were redeveloped and the recovery system was reconfigured. Based on the testing performed, it is anticipated that an improved rate of LNAPL recovery can be sustained from the RW-400 series wells if a lowered water level can be maintained. To accomplish this, the existing pumps were removed during December 2002 and replaced with total fluids (water and LNAPL) pumps. It is anticipated that this system will allow more effective LNAPL recovery.

Total fluids pneumatic recovery pumps were placed in RW-400, RW-402, RW-403, RW-404, RW-405, and RW-406 during December 2002/January 2003. A remediation trailer that contains an air compressor and an oil/water separator has been placed adjacent to RW-400. The air compressor and the oil/water separator are appropriately sized for the six recovery wells based on the results of the capacity testing. Air supply line has been connected from the air compressor to each total fluids pump. The existing HDPE discharge line has also been reconfigured to route fluids from each recovery well to the oil/water separator. Recovered LNAPL from the oil/water separator will gravity drain to the existing recovery tank adjacent to RW-400. Water from the oil/water separator will be routed to the refinery NPDES-permitted wastewater treatment facility.

The current system configuration is not considered permanent. A period of pilot testing of the current system configuration is proposed to evaluate the performance of the total fluids extraction system. Since the testing described in this report was conducted under low water conditions, a period of pilot testing is proposed in order to evaluate the effectiveness of the system as the water table recovers. The system is currently ready for operation and will be activated upon weather

conditions which will not cause freezing of the surface discharge line (water in the line is currently frozen).

If the technology is considered effective, the placement of additional recovery wells will be evaluated from monitoring data and a more expansive and permanent system will be installed and operated. Other containment technologies may also be considered based on the pilot testing results.

5.1.2 Area of S-50

The detection of LNAPL in the vicinity of S-50 is a relatively recent occurrence and requires additional characterization and remedial testing before a remediation plan is developed. Since S-50 is a two-inch diameter well, a larger diameter well will be installed in the vicinity of S-50. Monitoring wells will also be installed to the east of S-50 (between the S-50 and the perimeter fence) and to south of S-50. These wells will provide additional characterization of the extent of LNAPL.

After monitoring well installation, a pumping test will be performed on the newly installed larger diameter well. Water will be pumped using a submersible pump and LNAPL will be removed as needed using a hand-held LNAPL pump. Liquid level measurements will be recorded in the existing S-50 and the proposed monitoring wells in order to evaluate the extent of influence from the pumping.

Upon completion of the well installations and testing, recommendations for additional activities will be developed. Based on the current data, it is likely that control of the water table elevation would be required in order to effectively remove LNAPL when the water table is higher than the current elevation. However, at these higher water table elevations, LNAPL is more likely to be immobile and absent from monitoring wells.

5.1.3 Area of S-124

Monitoring wells S-123 and S-124 were installed during August 2002 and LNAPL was detected in these wells during September 2002. This area also requires additional characterization and remedial testing before a remediation plan is developed. Additional monitoring wells will be installed between S-124 and S-26, and between S-124 and S-38. In addition, two (or more if necessary) monitoring wells will be installed to the southeast of S-124.

After well installation, a pumping test is also proposed for this area in a manner similar to the testing described for the S-50 area. Additional monitoring wells may also be installed for pilot testing purposes depending of the spacing of the additional monitoring wells to be installed.

Upon completion of the well installations and testing, recommendations for additional activities will be developed.

5.2 LNAPL to the East of 26th Street (Area of S-98 and S-100)

Options for the recovery of LNAPL in the vicinity of S-98 are currently being evaluated. The area of S-98 is proposed for the initial evaluation of the recovery of LNAPL across 26th Street. This area was selected because it accommodates the drilling of observation or recovery wells and the LNAPL bail-down testing data suggest increased LNAPL recovery at this location with respect to the other areas tested.

Since the property in the vicinity of S-98 is owned by a third party (Conrail), the lack of existing utility service, and complications associated with the storage of recovered LNAPL, the remedial options currently being evaluated include drilling horizontally under 26th Street to install a utility/product conduit or installing a horizontal well under 26th Street. The utility conduit would be used to supply power (electricity or compressed air) to pumps installed in vertical recovery well(s) placed on Conrail property and to route recovered fluids (water and LNAPL) back to the refinery. Both options would limit the placement of equipment and storage of recovered fluids on the Conrail property.

SECOR has been in contact with utility companies with service lines along 26th Street, the property owner, the City of Philadelphia Streets Department, the City of Philadelphia Water Department, and the Pennsylvania Department of Transportation (26th Street is a state road). Preliminary indications are that the City of Philadelphia will need supporting documentation for the need to install a recovery system, a traffic control plan, verification from the utility companies that there are no conflicts with underground service lines, and verification that the property owner is aware of the proposed installation. In addition, the property owner will require an access agreement.

As will be recommended (refer to Section 6.2), a new site survey will be performed and a revised site plan developed for the 26th Street area. Included in this survey will be the preparation of a base map identifying utilities along 26th Street. It is anticipated that this map will be completed in March 2003 and will aid in the planning for the recovery system.

After installation of the utility conduit or the horizontal well and additional vertical well(s) (for use as pilot test observation wells) on the Conrail property, a pilot test will be performed. The test will be performed by pumping either total fluids or water and LNAPL separately, and measuring the influence in nearby observation wells.

Upon completion of the well installations and testing, recommendations for additional activities will be developed. It is anticipated that the same technology proposed for the S-98 area will be utilized for the vicinity of S-100.

6.0 CONCLUSIONS AND RECOMMENDATIONS

This Remedial Investigation Report was prepared for Sunoco for the eastern portion of the Point Breeze Processing Area of the Philadelphia Refinery. The investigation was performed to characterize the occurrence of light non-aqueous phase liquids (LNAPL) along the eastern perimeter of the Point Breeze Processing Area, which borders 26th Street. Site-specific information was used to develop an approach for the recovery of LNAPL along the 26th Street border and across (west of) 26th Street from the northern portion of the Point Breeze Processing Area.

This investigation was also performed to provide baseline site characterization data in order to direct additional site activities needed to make a determination of the status of the migration of groundwater under the RCRA Environmental Indicators program.

6.1 Conclusions

The conclusions of this investigation are summarized below.

- A review of historical liquid level gauging data was prompted by the recent occurrence of LNAPL in monitoring wells S-50, S-51, S-81, and S-98. The data reviewed suggest that the recent occurrence of LNAPL in these wells as well as increased LNAPL thickness detected in wells along 26th Street result from a decline in the water table elevation during 2002 (under the prevailing drought conditions) rather than from a new release or the expansion of an existing LNAPL plume.
- LNAPL samples were collected and analyzed to characterize the LNAPL in each location and determine if the recent observation of increased LNAPL thickness in certain wells represented any significant deviations from previous descriptions of LNAPL composition in the Sunoco plumes.
 - LNAPL samples collected from S-100, RW-401, RW-402, and PZ-400 are comprised of a mixture of gasoline and diesel in roughly equal proportions with minor variation between the samples. The composition of samples S-100, RW-401, and RW-402 is the same as previously observed in analyses performed during March 1998 (IST, 1998). The current composition of sample PZ-400 differs slightly from March 1998 (IST, 1998) in that the sample contains a noticeably higher proportion of diesel range material than previously observed.

- The LNAPL sample from S-98 is comprised primarily of mildly weathered gasoline with trace amounts of hydrocarbons in the diesel range.
- LNAPL samples from S-89 and CSX-MW-5 are comprised of a heavily degraded gasoline and diesel mixture. The composition of S-89 is the same as previously observed in analyses performed during March 1998 (IST, 1998). CSX-MW-5 was not previously analyzed and no comparison could be made.
- The LNAPL sample from S-50 is comprised of a refinery intermediate most closely resembling light refinery naphtha or reformed light refinery naphtha or a mixture of the two.
- All of the LNAPL sample results reported differ from the DSCP LNAPL plume (a sample MW-5 at DSCP was used to represent the DSCP plume) that is described in the March 1998 report (IST, 1998) as a mixture of gasoline and a naphtha-like product.
- Based on the testing of the RW-400 series recovery wells performed, it is anticipated that improved rates of product recovery can be accomplished if a lowered water level is maintained. The highest LNAPL recovery volumes are anticipated from RW-402, RW-405, and RW-406.
- The evaluation of the previously existing dual pump recovery system indicated that the reconfiguration of the system to a total fluids recovery system would likely enhance LNAPL recovery. As a result, the RW-400 series recovery wells were redeveloped and the recovery system was modified for total fluids recovery.
- LNAPL bail-down testing suggests that S-98 is capable of sustaining a higher LNAPL recovery rate than the other wells tested (S-50, S-100, and CSX-MW-5).
- LNAPL has been detected along the 26th Street Perimeter of the Point Breeze Processing Area in three general areas. These areas include the area of RW-400 series recovery wells, the area of S-50, and the area of S-124 (installed during this investigation).
- Dissolved hydrocarbons (mainly benzene and MTBE) were reported in certain wells along the 26th Street border through the annual perimeter groundwater sampling program.

6.2 **Recommendations**

Data collected during this and previous site investigations was evaluated to develop proposed activities for the recovery of LNAPL along the 26th Street perimeter of the refinery and across 26th Street in the vicinity of S-98 and S-100. Annual groundwater sampling of perimeter wells is recommended to continue with the data be submitted to PADEP in annual progress reports. The focus of site activities during the year 2003 will address the following:

- A period of pilot testing of the total fluids recovery equipment recently installed in the RW-400 series. The testing of RW-400 series wells described in this report was conducted under low water conditions. A period of pilot testing is proposed in order to evaluate the effectiveness of the system as the water table recovers. It is recommended that the pilot test be performed through November 2003.
- The operation of the RW-400 series recovery wells during the pilot test period will be reviewed. If the technology is considered effective, the need for additional recovery wells in order to control off-site LNAPL migration will be evaluated from monitoring data. If appropriate, the remedial design of a more expansive permanent system will be developed. Other containment technologies may also be considered depending on the results of the pilot testing.
- Additional characterization and remedial testing is proposed to address the recent occurrence of LNAPL in the vicinity of S-50. A larger diameter well in the vicinity of S-50 and monitoring wells to the east of S-50 (between S-50 and the perimeter fence) and to south of S-50 will be installed. After well installation, a groundwater/LNAPL extraction test will be performed on the newly installed larger diameter well. Upon completion of the well installations and testing, recommendations for additional activities will be developed.
- Additional characterization and remedial testing is also proposed to address the recent detection of LNAPL in the vicinity of S-124. Additional monitoring wells will be installed between S-124 and S-26, and between S-124 and S-38. In addition, two (or more if necessary) monitoring wells will be installed to the southeast of S-124. After well installation, a pumping test is also proposed for this area. Upon completion of the well installations and testing, recommendations for additional activities will be developed.
- In order to address the occurrence of LNAPL in the vicinity of S-98 (located to the east of 26th Street from the refinery) either a utility/product conveyance conduit under 26th

Street or a horizontal well under 26th Street will be installed. The utility conduit would be used to power recovery equipment and route recovered fluids to the refinery from vertical recovery well(s) across 26th Street. Upon installation, pilot testing of the selected configuration will be performed. Upon completion of the well installations and testing, recommendations for site remediation will be developed. It is anticipated that the same technology proposed for the S-98 area will be utilized for the vicinity of S-100.

- Additional monitoring wells will be installed in the vicinity of S-98 and S-100 to provide further delineation of the extent of LNAPL. Site constraints such as the 26th Street ramp to the Schuylkill Expressway, traffic on 26th Street (during installation and future access to wells installed in the roadway), underground and aboveground utilities, and the steep slope of the hillside east of S-98 and S-100, may not allow access to the optimum drilling locations. As a result, monitoring wells may be installed along the top of the embankment and west of the railroad tracks and/or other areas accessible for monitoring well installation.
- A new base map will be prepared and a new survey will be performed for monitoring wells along the eastern portion of the Point Breeze Processing Area, the Belmont Terminal, and the area immediately east of 26th Street/west of the CSX railroad tracks. The monitoring wells will be surveyed by a Pennsylvania licensed professional surveyor relative to NAD 83 (horizontal datum) and NGVD 88 (vertical datum). The location of utilities along 26th Street will also be placed on the base map for use in the design of recovery systems that may include drilling horizontally under 26th Street.
- Once the new base map has been prepared, extent of LNAPL maps prepared for the Point Breeze Processing Area will also include the Belmont Terminal in order to provide a complete depiction of conditions along 26th Street.
- Monitoring wells installed during this investigation will be incorporated into the ongoing facility groundwater monitoring program as appropriate.
- Initiate periodic manual LNAPL skimming from select wells in the RW-400 series wells area (RW-400, RW-405, and RW-406), to the east of 26th Street (S-98, S-100, CSX-MW-5), S-50, and S-124. Periodic manual LNAPL recovery will be terminated in these areas when the current recovery systems are activated (RW-400 series area).
- Year 2003 activities will be reported to PADEP in an annual summary report.
7.0 REFERENCES

- Balmer, W.T., and D.K. Davis, 1996. Groundwater Resources of Delaware County, Pennsylvania. Prepared by the United States Geological Survey, Water Resources Division, in cooperation with the Pennsylvania Geological Survey. Water Resource Report 66. 65 pps.
- Bouwer H. and R.C. Rice, 1976. "A Slug Test For Determining Hydraulic Conductivity of Unconfined Aquifers with Completely or Partially Penetrating Wells". Water Resources Research, Vol. 12, No. 3.
- Cooper, H.H. and C.E. Jacob 1946. A Generalized Graphical Method for Evaluating Formation Constants and Summarizing Well Field History. Am. Geophys. Union Trans. Vol. 27, pp. 526-534.
- Durnford, D., J. Brookman, J. Billica, and J. Milligan, 1991. LNAPL distribution in a cohesionless soil: A field investigation and cryogenic sampler, Ground Water Monit. Rev., 11(3): 115-122.
- Gruszczenski, T.S., 1987. Determination of a realistic estimate of the actual formation product thickness using monitor wells: A field bailout test, in Proc. Conf. On Petroleum Hydrocarbons and Organic Chemicals in Ground Water: Prevention, Detection, and Restoration, Natl. Ground Water Assoc., Dublin, OH, 235-253.
- IST, March 1998. "Aqueous Phase Liquid (NAPL) Source Study at Defense Supply Center Philadelphia (DSCP), Philadelphia, Pennsylvania".
- Paulachok, G.N., 1991. "Geohydrology and Ground-Water Resources of Philadelphia, Pennsylvania". United States Geological Survey Water-Supply Paper 2346. Prepared in cooperation with the City of Philadelphia Water Department.
- Testa, S.M., and M.T. Paczkowski, 1989. Volume determination and recoverability of free hydrocarbon, Ground Water Monit. Rev., 9(1): 120-128.
- Theis, C.V., 1935. The relation between the lowering of the piezometric surface and the rate and duration of discharge of a well using groundwater storage. Trans. Amer. Geophys. Union, Vol. 16, pp. 519-524.
- USEPA, 1996. "How to Effectively Recover Free Product At Leaking Underground Storage Tank Sites: A Guide for State Regulators", EPA-510-R-96-001.

USEPA, 1995. "Ground Water Issue: Light Nonaqueous Phase Liquids", EPA-540-S-95-500.

TABLE 2-1

RW-400 Series Recovery Well Construction Summary

Well No.	Well Completion Date	Ground Elevation (see Note 1)	Top of Casing Elevation (see Note 1)	Well Screen Diamater (inches) (see Note 2)	Reported Depth of Screen Interval (feet bgs) (see Note 2)	Measured Well Depth (feet bgs) (see Note 3)
RW-400	5/26/94	29.12	30.19	6	22 - 37	36
RW-401	9/9/93	26.23	26.78	6	15 - 50	29.5
RW-402	5/24/94	25.59	23.69	6	23 - 33	30.5
RW-403	7/01/94	25.42	26.02	6	15 - 50	49
RW-404	8/25/94	24.87	25.62	6	22 - 32	34
RW-405	5/20/94	25.33	26.08	6	25.5 - 35.5	38
RW-406	11/20/00	25.94	28.59	8	16 - 36	34.5

26th Street Area Investigation Sunoco Philadelphia Refinery

Notes:

Note 1: Survey is releative to existing monitoring well network

Note 2: Based on available well log and DRBC (1994) permit application data

Note 3: Based on field measurements recorded by SECOR during October and November 2002

bgs = below ground surface

TABLE 3-1

Monitoring Well Construction Summary

26th Street Area Investigation Sunoco Philadelphia Refinery

			Top of	Well	Depth of
Original	Well	Ground	Casing	Screen	Screen
Well No.	Completion	Elevation	Elevation	Diamater	Interval
	Date	(see Note 1)	(see Note 1)	(in)	(feet bgs)
S-116	8/12/02	28.60	28.36	4	10 - 30
S-117	8/13/02	22.52	22.32	4	8 - 28
S-118	8/14/02	20.42	20.01	4	9.5 - 19.5
S-119	8/15/02	25.68	28.57	4	14 - 34
S-120	8/16/02	18.71	21.98	4	10 - 30
S-121	8/22/02	20.68	23.30	4	10 - 30
S-122	8/19/02	25.04	27.84	4	14.6 - 34.6
S-123	8/20/02	22.26	25.18	4	10 - 30
S-124	8/22/02	22.52	25.27	4	10 - 30
S-125	8/27/02	25.75	27.95	4	10 - 30
S-126	9/18/02	28.38	30.48	4	12.3 - 22.3
S-127	9/19/02	19.26	20.99	4	9 - 29

Notes:

Note 1: Survey is releative to existing monitoring well network bgs = below ground surface

TABLE 3-2

Product Sample Collection Liquid Level Data - September 2002

26th Street Area Investigation Philadelphia Refinery

		Pre-Sampling Product Purging						Sam	ple Colle	ction
		Pre-Purging			Post-Purging			Septe	mber 27,	2002
Well ID	Date	DTW	DTP	PT	DTW	DTP	PT	DTW	DTP	PT
S-50	9/26/2002	25.75	24.68	1.07	26.25	26.15	0.10	25.31	24.66	0.65
S-88A	9/26/2002	27.05	26.98	0.07	28.21			27.00	26.99	0.01
S-89	9/25/2002	28.95	28.20	0.75	NM	NM	NM	28.60	28.12	0.48
S-98	9/25/2002	26.20	25.43	0.77	25.41			26.12	25.31	0.81
S-100	9/25/2002	25.30	24.69	0.61	24.90			24.93	24.56	0.37
PZ-400	9/26/2002	25.56	24.76	0.80	24.90	24.88	0.02	25.36	24.68	0.68
RW-401	9/25/2002	22.35	22.06	0.29	22.12			22.21	21.91	0.30
RW-402	9/25/2002	19.62	19.51	0.11	19.70	19.68	0.02	20.41	20.33	0.08
CSX-MW-5	9/26/2002	48.28	47.41	0.87	47.92	47.91	0.01	47.96	47.43	0.53

Notes:

DTW = Depth to water

DTP = Depth to product

PT = Product Thickness

LIQUID LEVEL MEASUREMENTS APRIL 30, 2002

26th STREET INVESTIGATION PHILADELPHIA REFINERY

		Dept	th To	NAPL Data	Corrected
	TOC			Apparent	Groundwater
Well	Elevation	NAPL	Water	Thickness	Elevation
	(Feet)	(Feet)	(Feet)	(Feet)	(FAMSL)
S-25	16.28	NP	14.07		2.21
S-26	22.88	NP	23.04		-0.16
S-27	22.00	NP	29.15		-7.15
S-28	27.91	NP	23.43		4.48
S-29	25.44	23.09	28.07	4.98	1.15
S-33	25.62	25.92	28.14	2.22	-0.83
S-34	25.45	25.25	27.41	2.16	-0.32
S-35	26.83	26.67	28.69	2.02	-0.32
S-38	21.00	NP	21.35		-0.35
S-39	25.02	NP	25.15		-0.13
S-40	26.37	NP	24.76		1.61
S-42	27.85	NP	28.09		-0.24
S-43	25.35	NP	26.73		-1.38
S-44	25.46	NP	27.68		-2.22
S-45	23.73	NP	24.68		-0.95
S-46	24.69	NP	23.50		1.19
S-48	23.37	21.11	21.61	0.50	2.14
S-50	26.37	24.21	25.07	0.86	1.95
S-51	25.38	25.12	25.44	0.32	0.18
S-52	24.75	NP	24.45		0.30
S-55	18.10	17.96	18.52	0.56	0.01
S-56	17.12	16.86	16.87	0.01	0.26
S-74	32.11	NP	26.84		5.27
S-75	33.24	27.85	28.98	1.13	5.12
S-76	33.05	27.85	28.54	0.69	5.03
S-77P	35.07	29.93	30.25	0.32	5.06
S-78	32.93	NP	27.55		5.38
S-79P	32.27	29.93	30.25	0.32	2.26
S-80	33.60	NP	29.32		4.28
S-81	29.82	24.59	25.62	1.03	4.98
S-82	29.27	23.48	24.10	0.62	5.64
S-83	25.37	20.86	22.18	1.32	4.19
S-84P	24.89	20.95	20.96	0.01	3.94
S-85	26.93	NP	25.41		1.52
S-86	29.04	NP	27.88		1.16
S-88A	26.78	26.78	26.81	0.03	-0.01
S-89	27.99	27.99	28.37	0.38	-0.09
S-95	25.34	NP	25.15		0.19
S-96	22.27	NP	17.36		4.91

LIQUID LEVEL MEASUREMENTS APRIL 30, 2002

26th STREET INVESTIGATION PHILADELPHIA REFINERY

		Dept	th To	NAPL Data	Corrected
	TOC			Apparent	Groundwater
Well	Elevation	NAPL	Water	Thickness	Elevation
	(Feet)	(Feet)	(Feet)	(Feet)	(FAMSL)
S-97	33.33	32.44	33.10	0.66	0.73
S-98	30.94	25.44	26.32	0.88	5.29
S-99	27.30	NP	27.28		0.02
S-100	29.08	24.55	24.58	0.03	4.52
S-101	51.28	NP	49.11		2.17
S-104	20.88	19.76	20.38	0.62	0.97
PZ-400	30.20	24.80	25.78	0.98	5.16
PZ-401	25.89	NP	20.45		5.44
PZ-402	25.38	NP	21.04		4.34
PZ-403	28.27	NP	26.03		2.24
PZ-404	28.02	27.96	28.37	0.41	-0.04
RW-400	30.19	24.92	25.33	0.41	5.17
RW-401	26.78	22.39	23.16	0.77	4.21
RW-402	23.69	19.50	19.60	0.10	4.17
RW-403	26.02	23.41	23.42	0.01	2.61
RW-404	25.62	NP	21.14		4.48
RW-405	26.08	26.05	26.36	0.31	-0.04
RW-406	28.59	24.29	24.42	0.13	4.27

NOTES:

TOC = Top of casing

NM = Not measured

NAPL = Non aqueous phase liquid

FAMSL = Feet above mean sea level

Corrected groundwater elevation = TOC - (Depth to groundwater - (Product thickness * specific gravity)) Assumed NAPL specific gravity = 0.76

P:\Clients\Sunoco\26th Street\Characterization Report\PADEP CD\[Well gauging data 2002.xls]4-30-02

LIQUID LEVEL MEASUREMENTS SEPTEMBER 3, 2002

26th STREET INVESTIGATION PHILADELPHIA REFINERY

		Dept	th To	NAPL Data	Corrected
	TOC			Apparent	Groundwater
Well	Elevation	NAPL	Water	Thickness	Elevation
	(Feet)	(Feet)	(Feet)	(Feet)	(FAMSL)
S-25	16.28	NP	14.83		1.45
S-26	22.88	NP	23.85		-0.97
S-27	22.00	NP	29.91		-7.91
S-28	27.91	NP	24.39		3.52
S-29	25.44	23.10	27.70	4.60	1.24
S-33	25.62	26.29	28.80	2.51	-1.27
S-34	25.45	25.64	28.31	2.67	-0.83
S-35	26.83	27.05	29.55	2.50	-0.82
S-38	21.00	NP	22.22		-1.22
S-39	25.02	NP	25.90		-0.88
S-40	26.37	NP	26.18		0.19
S-42	27.85	NP	28.54		-0.69
S-43	25.35	NP	26.98		-1.63
S-44	25.46	NP	27.77		-2.31
S-45	23.73	NP	24.90		-1.17
S-46	24.69	NP	23.82		0.87
S-48	23.37	21.55	22.21	0.66	1.66
S-50	26.37	24.52	25.57	1.05	1.60
S-51	25.38	25.56	25.58	0.02	-0.18
S-52	24.75	NP	24.82		-0.07
S-55	18.10	18.20	19.06	0.86	-0.31
S-56	17.12	17.14	18.77	1.63	-0.41
S-74	32.11	NP	26.55		5.56
S-75	33.24	27.70	28.50	0.80	5.35
S-76	33.05	27.72	28.86	1.14	5.06
S-77P	35.07	29.90	30.42	0.52	5.05
S-78	32.93	NP	27.62		5.31
S-79P	32.27	NP	27.54		4.73
S-80	33.60	NP	29.13		4.47
S-81	29.82	24.35	25.32	0.97	5.24
S-82	29.27	23.82	23.95	0.13	5.42
S-83	25.37	NP	18.65		6.72
S-84P	24.89	NP	20.57		4.32
S-85	26.93	NP	25.63		1.30
S-86	29.04	NP	28.05		0.99
S-88A	26.78	26.83	26.90	0.07	-0.07
S-89	27.99	28.12	28.69	0.57	-0.27
S-95	25.34	NP	25.47		-0.13
S-96	22.27	NP	17.48		4.79

LIQUID LEVEL MEASUREMENTS SEPTEMBER 3, 2002

26th STREET INVESTIGATION PHILADELPHIA REFINERY

		Dept	th To	NAPL Data	Corrected
	TOC			Apparent	Groundwater
Well	Elevation	NAPL	Water	Thickness	Elevation
	(Feet)	(Feet)	(Feet)	(Feet)	(FAMSL)
S-97	33.33	33.17	34.85	1.68	-0.24
S-98	30.94	25.32	25.95	0.63	5.47
S-99	27.30	NP	27.55		-0.25
S-100	29.08	24.50	25.08	0.58	4.44
S-101	51.28	NP	49.31		1.97
S-104	20.88	20.02	20.65	0.63	0.71
S-116	28.36	NP	23.48		4.88
S-117	22.32	NP	19.56		2.76
S-118	20.01	NP	20.60		-0.59
S-119	28.57	NP	29.15		-0.58
S-120	21.98	NP	22.79		-0.81
S-121	23.30	NP	23.48		-0.18
S-122	27.84	NP	28.83		-0.99
S-123	25.18	25.24	25.90	0.66	-0.22
S-124	25.27	26.45	26.77	0.32	-1.26
S-125	27.95	NP	23.32		4.63
PZ-400	30.20	24.64	25.50	0.86	5.35
PZ-401	25.89	NP	21.13		4.76
PZ-402	25.38	NP	20.85		4.53
PZ-403	28.27	NP	26.30		1.97
PZ-404	28.02	28.09	28.60	0.51	-0.19
RW-400	30.19	24.63	25.52	0.89	5.35
RW-401	26.78	24.10	24.19	0.09	2.66
RW-402	23.69	19.40	19.42	0.02	4.29
RW-403	26.02	NP	23.19		2.83
RW-404	25.62	NP	24.35		1.27
RW-405	26.08	26.22	26.78	0.56	-0.27
RW-406	28.59	21.90	22.18	0.28	6.62

NOTES:

TOC = Top of casing

NM = Not measured

NAPL = Non aqueous phase liquid

FAMSL = Feet above mean sea level

Corrected groundwater elevation = TOC - (Depth to groundwater - (Product thickness * specific gravity))

MW-A through MW-K installed August, 2002

Assumed NAPL specific gravity = 0.76

P:\Clients\Sunoco\26th Street\Characterization Report\PADEP CD\[Well gauging data 2002.xls]9-3-02

LIQUID LEVEL MEASUREMENTS OCTOBER 22, 2002

26th STREET INVESTIGATION PHILADELPHIA REFINERY

		Dept	th To	NAPL Data	Corrected
	TOC			Apparent	Groundwater
Well	Elevation	NAPL	Water	Thickness	Elevation
	(Feet)	(Feet)	(Feet)	(Feet)	(FAMSL)
S-25	16.28	NP	14.88		1.40
S-26	22.88	NP	23.75		-0.87
S-27	22.00	NP	29.85		-7.85
S-28	27.91	NP	24.46		3.45
S-29	25.44	23.07	27.90	4.83	1.21
S-33	25.62	26.32	28.92	2.60	-1.32
S-34	25.45	25.69	28.47	2.78	-0.91
S-35	26.83	27.11	29.75	2.64	-0.91
S-38	21.00	NP	22.34		-1.34
S-39	25.02	NP	26.15		-1.13
S-40	26.37	NP	27.50		-1.13
S-42	27.85	NP	28.73		-0.88
S-43	25.35	NP	27.31		-1.96
S-44	25.46	NP	28.11		-2.65
S-45	23.73	NP	25.10		-1.37
S-46	24.69	NP	24.00		0.69
S-48	23.37	21.64	22.31	0.67	1.57
S-50	26.37	24.68	25.73	1.05	1.44
S-51	25.38	NP	25.67		-0.29
S-52	24.75	NP	24.96		-0.21
S-55	18.10	18.51	19.79	1.28	-0.72
S-56	17.12	17.38	19.06	1.68	-0.66
S-74	32.11	NP	26.40		5.71
S-75	33.24	27.60	28.25	0.65	5.48
S-76	33.05	27.54	28.75	1.21	5.22
S-77P	35.07	30.05	30.49	0.44	4.91
S-78	32.93	NP	27.83		5.10
S-79P	32.27	NP	27.77		4.50
S-80	33.60	NP	29.24		4.36
S-81	29.82	24.37	25.27	0.90	5.23
S-82	29.27	23.93	24.10	0.17	5.30
S-83	25.37	NP	16.35		9.02
S-84P	24.89	NP	19.34		5.55
S-85	26.93	NP	25.61		1.32
S-86	29.04	NP	28.25		0.79
S-88A	26.78	26.99	27.00	0.01	-0.21
S-89	27.99	28.07	29.46	1.39	-0.41
S-95	25.34	NP	25.80		-0.46
S-96	22.27	NP	22.06		0.21
S-97	33.33	33.37	34.91	1.54	-0.41

LIQUID LEVEL MEASUREMENTS OCTOBER 22, 2002

26th STREET INVESTIGATION PHILADELPHIA REFINERY

		Dept	th To	NAPL Data	Corrected
	тос	[Apparent	Groundwater
Well	Elevation	NAPL	Water	Thickness	Elevation
	(Feet)	(Feet)	(Feet)	(Feet)	(FAMSL)
S-98	30.94	25.21	25.73	0.52	5.61
S-99	27.30	NP	27.61		-0.31
S-100	29.08	24.47	24.74	0.27	4.55
S-101	51.28	NP	49.48		1.80
S-104	20.88	20.30	20.77	0.47	0.47
S-116	28.36	NP	23.18		5.18
S-117	22.32	NP	19.80		2.52
S-118	20.01	NP	20.95		-0.94
S-119	28.57	NP	29.43		-0.86
S-120	21.98	NP	23.06		-1.08
S-121	23.30	NP	23.81		-0.51
S-122	27.84	NP	29.03		-1.19
S-123	25.18	25.29	26.32	1.03	-0.36
S-124	25.27	26.14	28.06	1.92	-1.33
S-125	27.95	NP	23.43		4.52
S-126	30.48	NP	12.90		17.58
S-127	20.99	NP	18.93		2.06
PZ-400	30.20	24.55	25.22	0.67	5.49
PZ-401	25.89	21.20	21.22	0.02	4.69
PZ-402	25.38	NP	20.94		4.44
PZ-403	28.27	26.13	27.06	0.93	1.92
PZ-404	28.02	28.00	29.65	1.65	-0.38
RW-400	30.19	24.55	25.22	0.67	5.48
RW-401	26.78	22.04	22.31	0.27	4.68
RW-402	23.69	21.16	21.22	0.06	2.52
RW-403	26.02	NP	23.17		2.85
RW-404	25.62	NP	24.41		1.21
RW-405	26.08	26.80	28.17	1.37	-1.05
RW-406	28.59	24.22	24.40	0.18	4.33

NOTES:

TOC = Top of casing

NAPL = Non aqueous phase liquid

FAMSL = Feet above mean sea level

Corrected groundwater elevation = TOC - (Depth to groundwater - (Product thickness * specific gravity))

MW-A through MW-K installed August, 2002

MW-L and MW-M installed September, 2002

Assumed NAPL specific gravity = 0.76

F:\Clients\Sunoco\26th Street\Characterization Report\PADEP CD\[Well gauging data 2002.xls]10-22-02

RW-406 Aquifer Test Liquid Level Measurement Data Summary

26th Street Area Investigation Philadelphia Refinery

	Distance	Static Liqu	Static Liquid Level Measurements			Liquid Level Measurements at End of Test			
Well No.	From RW-406 (feet)	Depth to Water (feet btoc)	Depth to LNAPL (feet btoc)	Product Thickness (feet)	Depth to Water (feet btoc)	Depth to LNAPL (feet btoc)	Product Thickness (feet)	Water Level (feet)	
RW-406	NA	24.60	24.16	0.44	29.36	27.58	1.78	3.74	
RW-401	21	22.14	22.02	0.12	23.91	22.24	1.67	0.59	
RW-402	110	21.19	21.15	0.04	21.29	21.23	0.06	0.08	
PZ-401	12	21.22			22.02			0.80	
PZ-402	10	20.93			21.80			0.87	
S-125	38	23.44			24.00			0.56	
S-82	56	23.63	23.42	0.21	23.76	23.56	0.20	0.14	

Notes:

btoc = below top of casing

LNAPL specific gravity assumed to be 0.76

RW-406 Aquifer Test Data Analyses Summary

		Drawdown	Data (1)	Recovery Data (2)		
Well No.	Distance From RW-406 (feet)	Estimated Transmissivity (ft2/day)	Estaimated Hydraulic Condcutivity (ft/day) (3)	Estimated Transmissivity (ft2/day)	Estaimated Hydraulic Condcutivity (ft/day) (3)	
RW-406	NA	252	20.13	427	34.11	
RW-401	21	554	44.25	394	31.47	
PZ-401	12	330	26.36	251	20.05	
PZ-402	10	258	20.61	200	15.97	
S-125	38	492	39.30	292	23.32	
Geometric Mean		357	28.56	301	24.04	

26th Street Area Investigation Philadelphia Refinery

Notes:

(1) Drawdown data analyzed using Cooper-Jacob Straight-Line Approximation Method adjusted for unconfined aquifers

(2) Recovery data analyzed using Theis Recovery Method adjusted for unconfined aquifers

(3) Saturated aquifer thickness assumed to be 12.52 feet (based on RW-406 static liquid level measurements)

Summary of Hydraulic Conductivity Values from Rising Head Slug Tests October 2002

26th Street Area Investigation SUNOCO Philadelphia Refinery

Wall No	Hydraulic Co	onductivity (K)
wen NO.	ft/day	cm/sec
S-43	0.78	2.75E-04
S-86	0.30	1.06E-04
S-116	2.11	7.45E-04
S-120	11.70	4.13E-03
S-122	12.60	4.45E-03
S-127	0.29	1.02E-04
RW-406	7.22	2.55E-03

Note: Bouwer and Rice (1976) method used for slug test analyses

RW-400 Series Recovery Well Capacity Test Summary

26th Street Area Investigation Philadelphia Refinery

	Total	Maximum	Static Liqu	uid Level Meas	surements	Liquid I at	Level Measure End of Pumpi	ements ing		
Well No.	Pumping Duration (minutes)	Pumping Rate Interval (gpm)	Depth to Water (feet btoc)	Depth to LNAPL (feet btoc)	Product Thickness (feet)	Depth to Water (feet btoc)	Depth to LNAPL (feet btoc)	Product Thickness (feet)	Corrected Drawdown (feet)	Comments
										INOT TESTED, WATER DUMP TIOT OPERADIE. DRBC
RW-400	NA									permit application (June 1995) indicates that the well yield is 1 gpm with a specific capacity of 0.08 gpm/ft
RW-401	NA									Not tested, RW-406 was installed as a replacement well
RW-402	158	2.00	19.25	19.10	0.15	21.86	21.55	0.31	2.49	Maximum pumping rate was at the capacity of the pump
RW-403	122	0.88	22.36			31.42	31.37	0.05	9.10	
RW-404	59	1.20	24.21			29.85			5.64	
RW-405	367	1.20	27.92	26.67	1.25	31.89	27.69	4.20	1.73	Maximum pumping rate was at the capacity of the pump, 7.5 gallons of product removed during testing
RW-406	3300	2.74	24.60	24.16	0.44	29.36	27.58	1.78	3.74	116 gallons of product removed during test, refer discussion of test

Notes:

btoc = below top of casing

maximum pumping rate intervals are average rates during the highest flow rate interval

Product Bail-down Test Summary

26th Street Area Investigation Philadelphia Refinery

Well No.	Well Diameter (inches)	Static Product Thickness (feet)	Length of Test (minutes)	Volume of Product Removed (gallons)	Product Thickness at End of Test (feet)	Recovery Attained During Test	Estimated Inflection Point Time (1) (minutes)	Estimated Inflection Point Product Thickness (feet)
S-50	2	1.03	50	0.75	0.43	42%	18	0.37
S-98 (2)	4	0.57	45	3	0.62	109%	(3)	(3)
S-100 (2)	4	0.61	209	2	0.24	39%	5	0.24
CSX-MW-5	2	0.63	41.5	0.13	0.31	49%	14	0.28

Notes:

(1) Estimated using methodology presented in Gruszenski (1987) and as described in Testa and Paczkowski (1989)

(2) Sorbent removed from well prior to product bailing

(3) Inflection point not clearly indicated from graph

LNAPL Characterization Results Summary September 27, 2002

26th Street Area Investigation Philadelphia Refinery

LNAPL Characterization Description
Refinery intermediate (resembling naphtha or reformed light naphtha or a mixure of the two)
Sample contained only a sheen, not enough sample for LNAPL-type characterization
Heavily degraded gasoline and diesel mixture
Weathered gasoline, trace diesel-range hydrocarbons
Gasoline and diesel
Heavily degraded gasoline and diesel mixture

DWG: 62SU-1017-2-6(1-1)

DWG: 62SU-1017-2-6(1-2)

SYSTEM	SERIES		GE	OHYDRO	OLOG	sic u	NIT			RANGE OF THICKNESS	s	SYMBOL		
			Paulachok (1991)		Gr	eenmai	n and oth	ers (1	961)	(ft)				
	Holocene	A11	uvium	/ium Alluvium			m			0-78	Qal			
Quaternary	· · · · · · · · · · · · · · · · · · ·	"Trenton gravel"			Cape May Formation				0-80					
	Pleistocene (informal us		formal usage)	Pensauken Formation			0-80	Qp	000000000000000000000000000000000000000					
Tertiary	Міоселе	Bri	dgeton Formation							0-10	Tb			
				Мас	gothy	Form	ation			0-35				
	Upper Cretaceous	systen	opper clay unit	Upper Clay member				0-35						
		aquifer	Upper sand unit	mation	Old Bridge Sand Member			0-50	Ко					
Cretaceous		lagothy	Middle clay unit		G Middle Clay member			0-60	Km					
		ritan M	Middle sand unit	G Fu Sayreville Sand Member		0-40	Ks							
		omac-Ra	Lower clay unit	Rari	Lower Clay Member		0-61	K1						
		Роф	Lower sand unit		Farrington Sand Member			0-90	Kf					
Pre-Cretaceous	Lower Cretaceous	Cryst. inclu Forma	alline rocks, des Chickies ition and	Cry Gla (fo	vstall enarm ormer	line ro Seri Usag	ocks of es e)				Wa			

REFERENCE: HANDEX ENVIRONMENTAL RECOVERY, INC.; PROJECT 110535-12; DRAWINGNAME: PB_SY_05.	DWG; TITLE: SOUTH YARD BASE MAP; DATE: 05/21/96	
SECOB	RW-400 SERIES RECOVERY WELLS AREA	FIGURE:
International Incorporated 102 PICKERING WAY, SUITE 200 EXTON, PENNSYLVANIA 19341	SUNOCO PHILADELPHIA REFINERY PHILADELPHIA, PENNSYLVANIA	2-2
(484) 875-3075/875-9286 (FAX)	JOB#: 62SU.01017.02.0006 APPR: DWN: KPM DATE: 01/08/0	3

101 10

DWG: 62SU-1017-2-6(3-1)

DWG: 62SU-1017-2-6(3-2)

DWG: 62SU-1017-2-6SX(4-1)

N:/SECOR-062

N:/SECOR-062

N:/SECOR-062

DWG: 62SU-1017-2-646(0902)

DWG: 62SU-1017-2-647(1002).DWG

DWG: 62SU-1017-2-6(4-8)

1275 to 1835 min: Q = 1.85 gpm with pump cycling

1835 to 2254 min: ave. Q = 2.5 gpm with periodic product recovery

2254 to 3300 min: ave. Q = 2.74 gpm with periodic product recovery

FIGURE 4-11 RW-406 Aquifer Test Drawdown Data (10/1/02 - 10/3/02)

0 to 1275 min: Q = 1.85 gpm (one product recovery event at 505 min) 1275 to 1835 min: Q = 1.85 gpm with pump cycling 1835 to 2254 min: ave. Q = 2.5 gpm with periodic product recovery 2254 to 3300 min: ave. Q = 2.74 gpm with periodic product recovery

	ANALYTE
В	BENZENE
T	TOLUENE
Ε	ETHYLBENZENE
X	XYLENES
MTBE	METHYL-TERTIARY-BUTYL-ETHER

<u>SECOR</u> <u>International Incorporated</u> 102 PICKERING WAY, SUITE 200 EXTON, PENNSYLVANIA 19341	ANNUAL PERIMETER GROUNDWATER SAMPLING RESULTS (BTEX AND MTBE) - (NOVEMBER 2001) POINT BREEZE PROCESSING AREA SUNOCO PHILADELPHIA REFINERY PHILADELPHIA, PENNSYLVANIA	FIGURE: 4-12
(484) 875–3075/875–9286 (FAX)	JOB#: 62SU.01017.02.0006 APPR: DWN: KPM DATE: 01/	27/03

B	BENZENE
T	TOLUENE
E	ETHYLBENZENE
X	XYLENES
MTBE	METHYL-TERTIARY-BUTYL-ETHER

REFERENCE: HANDEX ENVIRONMENTAL RECOVERY, INC.; PROJECT 110535-12; DRAWINGNAME: PB_SY_05.DWG; TITLE: SOUTH YARD BASE MAP; DATE: 05/21/96

SECOR International Incorporated 102 PICKERING WAY, SUITE 200 EXTON, PENNSYLVANIA 19341	ANNUAL PERIMETER GROUNDWATER SAMPLING RESULTS (BTEX AND MTBE) - (OCTOBER 2002) POINT BREEZE PROCESSING AREA SUNOCO PHILADELPHIA REFINERY PHILADELPHIA, PENNSYLVANIA	FIGURE:
(484) 875-3075/875-9286 (FAX)	JOB#: 62SU.01017.02.0006 APPR: DWN: KPM DATE: 01/27	/03

DWG: 62SU-1017-2-6A(4-13)

DWG: 62SU-1017-2-6(4-15).DWG

APPENDIX A

Monitoring Well Logs

See Toged D Log ^o for ensemplane methods Dering Dering Dering methods Serface Dering Dering Dering Distribution Dering Property A Dering Dering Dering Distribution Dering Dering Dering Distribution Dering Dering Deri	Logged By: Dates Drilled: 08/12/02 SM 08/13/02		Dr P	illing Con arratt-V Inc.	illing Contractor arratt-Wolff, Inc. Pl			Name: o, Inc. Refinery, PA		Method/Equipm Hollow Stem A Split Spoo	nent: Luger n	Well Number: S-116		
Well Construction End Grout SILT; some fine to coarse sand, little fine gravel, dark brown, dry. 1.6 0.0 Grout - - SAND, fine to coarse; trace silt, black, dry. CLAY AND SILT; trace fine sand, brown, dry. 0.8 0.0 Bentonite Seal - - SILT AND CLAY; little fine to medium sand, brown, dry. 1.8 0.0 Bentonite Seal - - SILT AND CLAY; little fine to medium sand, brown, dry. 1.5 0.0 SILT AND CLAY; little fine to medium sand, brown, dry. 1.5 0.0 0.0 0.0 SILT AND CLAY; little fine sand, little clay, brown, dry. 1.5 0.0 0.0 SILT AND CLAY; little fine sand, brown, dry. 1.6 0.0 SILT, some clay, trace fine sand, brown, dry. 1.6 0.0 SILT; some clay, trace fine sand, brown, dry. 1.6 0.0 SAND, fine to medium; little silt, brown, dry. 5.4 0.0 SAND, fine to coarse; some fine gravel, tan and brown, dry. 1.6 0.0 SAND, fine to coarse; some fine gravel, tan and brown, dry. 1.6 1.6 SAND, fine to coarse; some fine gravel, tan and brown, dry. 1.6 1.6 SAND, fine to coarse; some fine gra	See "Lego sampling classifica	end to Log method, tions and l ethods	s" for aboratory] Di	Boring am.(in.): 4	S El	urface ev.(ft.):	Gr ⊈	oundwater Depth (ft.) 23.8):	Total Depth (ft.): 30.0	Drive wt.(lbs.):	Dr Dist.	op (in.):
Grout SILT; some fine to coarse; trace silt, black, dry, CLAY AND SILT; trace fine sand, brown, dry. 0.6 0.0 Sentonite 5 SILT AND CLAY; little fine to medium sand, brown, dry. 1.8 0.0 Seal SILT AND CLAY; little fine to medium sand, brown, dry. 1.8 0.0 Silt Seal SILT AND CLAY; little fine to medium sand, brown, dry. 1.5 0.0 Silt Seal SILT AND CLAY; little fine sand, brown, dry. 1.5 0.0 Silt Seal SILT, some clay, trace fine sand, brown, dry. 1.4 0.0 Schedule 40 SILT; some clay, trace fine sand, brown, dry. 1.4 0.0 Silt Silt is ome fine to coarse; some fine sand, little clay, brown and gray, dry. 1.6 0.0 Silt Silt is ome fine to coarse AND GRAVEL, fine; brown, dry. 0.7 0.0 SAND, fine to coarse; some fine gravel, tan and brown, dry. 0.6 0.0 SAND, fine to coarse; some fine gravel, tan and brown, dry. 1.6 16.8 SAND, fine to coarse; some fine gravel, tan and brown, dry. 1.6 16.8 SAND, fine to coarse; some fine gravel, tan and brown, dry. 1.6 16.8 SAND, fine to coarse; some fine gravel, tan and brown, dry. 1.2 14.5 <	Well (t) Construction			Sample Type		Description							Recovery (feet)	PID Reading (ppm)
Grout SAND, fine to coarse; trace silt, black, dry. 0.8 0.0 s- SILT AND CLAY; little fine to medium sand, brown, dry. 1.8 0.0 s- SILT AND CLAY; little fine to medium sand, brown, dry. 2.0 0.0 seal SILT AND CLAY; little fine to medium sand, brown, dry. 2.0 0.0 seal SILT AND CLAY; little fine to medium sand, brown, dry. 2.0 0.0 start SILT AND CLAY; little fine to medium sand, brown, dry. 1.5 0.0 start SILT; some clay, trace fine sand, brown, dry. 1.4 0.0 PVC, 20 Slot SILT; brome clay, trace fine sand, brown, dry. 1.6 0.0 SILT; some clay, trace fine sand, little clay, brown, dry. 0.7 0.0 SILT; some fine sand, little clay, brown, dry. 0.7 0.0 SILT; brittle fine sand, little clay, brown, dry. 0.6 0.0 SILT; little fine sand, little clay, brown, moist. 0.6 0.0 SILT; little fine sand, little clay, brown, moist. 0.6 0.0 SILT; little fine sand, little clay, brown, dry. 0.6 0.0 SILT; little fine sand, little clay, brown, dry. 0.6 0.0 <t< td=""><td></td><td colspan="4"></td><td>SILT; so</td><td>me fine to</td><td>coarse s</td><td>and, little fine grav</td><td>/el, dai</td><td>rk brown, dry.</td><td></td><td>1.6</td><td>0.0</td></t<>						SILT; so	me fine to	coarse s	and, little fine grav	/el, dai	rk brown, dry.		1.6	0.0
S- SILT AND CLAY; little fine to medium sand, brown, dry. 1.8 0.0 Bentonite Seal SILT AND CLAY; little fine to medium sand, brown, dry. 2.0 0.0 SILT AND CLAY; little fine to medium sand, brown, dry. 1.5 0.0 Silt T AND CLAY; trace fine sand, brown, dry. 1.5 0.0 Schedule 40 10 SILT; some clay, trace fine sand, brown, dry. 1.4 0.0 Silt T; some clay, trace fine sand, little clay, brown and gray, dry. 1.6 0.0 SILT; some fine sand, little clay, brown and gray, dry. 1.6 0.0 SAND, fine to medium; little silt, brown, dry. 0.7 0.0 SAND, fine to coarse; some fine gravel, tan and brown, dry. 0.6 0.0 SAND, fine to coarse; some fine gravel, tan and brown, dry. 1.6 16.8 SAND, fine to coarse; some fine gravel, tan and brown, dry. 1.6 16.8 SAND, fine to coarse; some fine gravel, tan and brown, dry. 1.2 14.5	UKANANANAN Nanananan	Grout				SAND, † CLAY A	fine to coars	se; trace trace fi	e silt, black, dry. ne sand, brown, dry	y.		/	0.8	0.0 0.0
Bentonite Seal SILT AND CLAY; little fine to medium sand, brown, dry. 2.0 0.0 #1 Sand and Riser SILT AND CLAY; trace fine sand, brown, dry. 1.5 0.0 Schedule 40 PVC, 20 Slot 10 SILT; some clay, trace fine sand, brown, dry. 1.4 0.0 SILT; little fine sand, little clay, brown, dry. 1.6 0.0 0.0 SILT; little fine sand, little clay, brown, dry. 1.6 0.0 SAND, fine to medium; little silt, brown, dry. 0.7 0.0 SAND, fine to coarse AND GRAVEL, fine; brown, moist. 0.6 0.0 SAND, fine to coarse; some fine gravel, tan and brown, dry. 1.6 16.8 SAND, fine to coarse; some fine gravel, tan and brown, dry. 1.6 16.8 SAND, fine to coarse; some fine gravel, tan and brown, dry. 1.2 14.5 SAND, fine to coarse; some fine gravel, tan and brown, dry. 1.2 14.5	NANANAN NANANAN			2	SILT AN	ND CLAY;	little fir	ne to medium sand,	nedium sand, brown, dry.					
#1 Sand and Riser - SILT AND CLAY; trace fine sand, brown, dry. 1.5 0.0 Schedule 40 PVC, 20 Slot 10 SILT; some clay, trace fine sand, brown, dry. 1.4 0.0 SILT; some fine sand, little clay, brown, dry. 1.6 0.0 SILT; some fine sand, little clay, brown and gray, dry. 1.6 0.0 SILT; some fine sand, little clay, brown, dry. 0.7 0.0 SAND, fine to medium; little silt, brown, dry. 0.7 0.0 SAND, fine to coarse AND GRAVEL, fine; brown, moist. 0.6 0.0 SILT; little fine sand, little clay, brown, moist. 0.6 0.0 SAND, fine to coarse; some fine gravel, tan and brown, dry. 1.6 16.8 SAND, fine to coarse; some fine gravel, tan and brown, dry. 1.6 16.8 SAND, fine to coarse; some fine gravel, tan and brown, dry. 1.6 16.8 SAND, fine to coarse; some fine gravel, tan and brown, dry. 1.2 14.5		Bentonite Seal				SILT AND CLAY; little fine to medium sand, brown, dry.							2.0	0.0
Schedule 40 PVC, 20 Slot 10 SILT; some clay, trace fine sand, brown, dry. 1.4 0.0 SILT; little fine sand, little clay, brown, dry. 1.6 0.0 SILT; some fine sand, little clay, brown and gray, dry. 1.6 0.0 SAND, fine to medium; little silt, brown, dry. 0.7 0.0 SAND, fine to coarse AND GRAVEL, fine; brown, moist. 0.6 0.0 SAND, fine to coarse; some fine gravel, tan and brown, dry. 0.6 0.0 SAND, fine to coarse; some fine gravel, tan and brown, dry. 1.6 16.8 SAND, fine to coarse; some fine gravel, tan and brown, dry. 1.6 16.8 SAND, fine to coarse; some fine gravel, tan and brown, dry. 1.2 14.5 SAND, fine to coarse; some fine gravel, tan and brown, dry. 1.2 14.5		#1 Sand a Riser	ınd	_	5	SILT AND CLAY; trace fine sand, brown, dry.						1.5	0.0	
SILT: little fine sand, little clay, brown, dry. 1.6 0.0 SILT: some fine sand, little clay, brown and gray, dry. 1.6 0.0 15 SAND, fine to medium; little silt, brown, dry. 0.7 0.0 16 SAND, fine to medium; little silt, brown, dry. 0.7 0.0 15 SAND, fine to coarse AND GRA VEL, fine; brown, moist. 0.6 0.0 16 SAND, fine to coarse AND GRA VEL, fine; brown, moist. 0.6 0.0 17 SAND, fine to coarse; some fine gravel, tan and brown, dry. 1.6 16.8 20 SAND, fine to coarse; some fine gravel, tan and brown, dry. 1.6 16.8 20 SAND, fine to coarse; some fine gravel, tan and brown, dry. 1.2 14.5 20 SAND, fine to coarse; some fine gravel, tan and brown, dry. 1.2 14.5 20 SAND, fine to coarse; some fine gravel, tan and brown, dry. 1.2 14.5		Schedule PVC, 20 S	40 Slot	_		SILT; so	ome clay, tra	ace fine	sand, brown, dry.			<u></u>	1.4	0.0
15 SAND, fine to medium; little silt, brown, dry. 0.7 0.0 15 SAND, fine to medium; trace silt, brown, dry. 0.7 0.0 15 SAND, fine to coarse AND GRAVEL, fine; brown, moist. 0.0 0.0 16 SILT; little fine sand, little clay, brown, moist. 0.6 0.0 20 SAND, fine to coarse; some fine gravel, tan and brown, dry. 2.0 17.1 20 SAND, fine to coarse; some fine gravel, tan and brown, dry. 1.6 16.8 20 SAND, fine to coarse; some fine gravel, tan and brown, dry. 1.2 14.5 20 SAND, fine to coarse; some fine gravel, tan and brown, dry. 1.2 14.5				- <u>SILT; little fine sand, little clay, brown, dry.</u> SILT; some fine sand, little clay, brown and gray, dry.								1.6	0.0 0.0	
15 SAND, fine to coarse AND GRAVEL, fine; brown, moist. 0.0 SILT; little fine sand, little clay, brown, moist. 0.6 0.0 SAND, fine to coarse; some fine gravel, tan and brown, dry. 2.0 17.1 20 SAND, fine to coarse; some fine gravel, tan and brown, dry. 1.6 16.8 SAND, fine to coarse; some fine gravel, tan and brown, dry. 1.6 16.8 SAND, fine to coarse; some fine gravel, tan and brown, dry. 1.2 14.5 SAND, medium to coarse; some fine gravel, some fine sand, brown and dark 1.1 103				-		SAND, SAND,	fine to med fine to med	ium; lit ium; tra	tle silt, brown, dry. ice silt, brown, dry.	•			0.7	0.0 0.0
SILT; little fine sand, little clay, brown, moist. 0.6 0.0 SAND, fine to coarse; some fine gravel, tan and brown, dry. 2.0 17.1 SAND, fine to coarse; some fine gravel, tan and brown, dry. 1.6 16.8 SAND, fine to coarse; some fine gravel, tan and brown, dry. 1.2 14.5 SAND, medium to coarse; some fine gravel, some fine sand, brown and dark 1.1 103			15			SAND,	fine to coar	se ANE	OGRAVEL, fine; b	prown,	moist.		-	0.0
20 SAND, fine to coarse; some fine gravel, tan and brown, dry. 2.0 17.1 20 SAND, fine to coarse; some fine gravel, tan and brown, dry. 1.6 16.8 SAND, fine to coarse; some fine gravel, tan and brown, dry. 1.2 14.5 SAND, medium to coarse; some fine gravel, some fine sand, brown and dark 1.1 103				-		SILT; li	ttle fine san	d, little	clay, brown, moist	.			0.6	0.0
20 SAND, fine to coarse; some fine gravel, tan and brown, dry. 1.6 16.8 SAND, fine to coarse; some fine gravel, tan and brown, dry. 1.2 14.5 SAND, medium to coarse; some fine gravel, some fine sand, brown and dark 1.1 103				-		SAND,	fine to coar	se; som	e fine gravel, tan a	nd bro	wn, d r y.		2.0	17.1
SAND, fine to coarse; some fine gravel, tan and brown, dry. 1.2 14.5 SAND, medium to coarse; some fine gravel, some fine sand, brown and dark 1.1 103					SAND,	fine to coar	se; som	e fine gravel, tan a	nd bro	wn, dry.		1.6	16.8	
SAND, medium to coarse; some fine gravel, some fine sand, brown and dark 1.1 103				-		SAND,	fine to coar	se; som	e fine gravel, tan a	nd bro	wn, dry.	<u> </u>	1.2	14.5
				-		SAND,	medium to	coarse;	some fine gravel, s	some f	ine sand, brown	and dark	1.1	103

samples obtained during drilling. Predominant material types shown on the log may contain different materials and the change from one predominant material type to another could be different than indicated. Descriptions on this log apply only at the specific location at the time of drilling and may not be representative of subsurface conditions at other locations or times.

oject No. 62SU.01011.02

Date August 2002

Log of Well

Figure

(sheet 1 of 2)

DRILL LOGS AUG 2002.GPJ LOG OF BOREHOLE

SECOR
International Incornorated

	International In Logged By:	Dates Drilled:	Drilling	Contractor		Project Name:		Method/Equipment:			Well Number:		
(SM	08/12/02 08/13/02	Parra I	tt-Wolff, nc.	Phila	Sunoco, Inc. delphia Refinery, PA		Hollow Stem A Split Spoo	n l	S-116			
`	See "Legend to sampling meth classifications testing method	and laboratory	Boring Diam.(ir 4	g 5 i.): E	urface ev.(ft.):	Groundwater Depth ⊈ 23.8	(ft.):	Total Depth (ft.): 30.0	Drive wt.(lbs.):	Dr Dist.	op (in.):		
	Well	tion Depth, (ft.)	Sample Type	• • •		Descriptio	'n	•		Recovery (feet)	PID Reading (ppm)		
			-	 red, dry. SAND, medium to coarse; some fine gravel, some fine sand, brown and dark red, moist. 									
		30-		SAND, brown,	fine to me wet.	dium; some fine gravel, s	some coar	se sand, dark re	ed and	1.3	1196		
					7								
		35-	-										
() . 												
		40-											
			-										
		45-											
	The substrat samples obtain one predominat the time of	a descriptions ained during d inant material of drilling and	above are rilling. Pr type to an may not b	generalize edominant other could e represent	d represen material t be differe ative of su	tations and based upon v ypes shown on the log m int than indicated. Descr bsurface conditions at ot	visual/mar ay contain riptions or ther location	nual classification different mate this log apply ons or times.	on of cuttings rials and the only at the sp	and/or change fi pecific loo	rom cation		
(ject No.	62SU.01011.0) 2 E	ate Augu	ıst 2002			Logo	of Well				
	DRILL LOGS	AUG 2002.GP. REHOLE	r					Figure					

SECOR
International Incorporated

Logged By: Date Drilled:		rilled:	Drilling Co Parratt-	ntractor Wolff,	Dhilor	Project Name: Sunoco, Inc.	Method/E Hollow St	quipment: tem Auger Spoon	Well Nu S-1	mber:	
See "Le samplin classific testing	gend to g methor cations a methods	Logs" fo od, and labor	or atory	Boring Diam.(in.): 4		urface ev.(ft.):	Groundwater Depth (↓ 19.63	ft.): Total Depth (fr 28.0	L): Drive t.): wt.(lbs.):	Di Dist.	rop .(in.):
Well ("H) ("H) Construction d				Sample Type	Description						
	Grout				SILT; so SILT; so CLAY; s	me fine to me clay, lit come silt, s	coarse sand, little fine gr ttle fine sand, brown and ome fine to coarse sand,	avel, brown and black, dry. black, dry. black and brown, n	ack, dry. noist.	1.7 0.6	7.3 850 2171
	Seal #1 Sa Riser	nd and	d CLAY; trace fine sand, little silt, brown and black, dry. CLAY; little silt, some fine sand, black and brown, dry.								1670 163 1280
	Sched PVC,	ule 40 20 Slot	-	SAND, fine to medium; little coarse sand, brown, dry.						0.2	252
		10 SAND, fine to coarse; little fine to coarse gravel, dark red and brown, dry.						0.6	646		
			-		SAND, f	ine to coar	rse; little fine gravel, dark	red and brown, dr	y.	0.7	804
			15-		SAND, 1 dry.	nedium to	coarse; some fine sand, s	ome fine gravel, b	rown, red and tan,	2.0	848
			-		SILT; so <u>SAND, 1</u> SAND, 1 moist.	me fine to fine to coar fine to coar	coarse sand, little clay, b rse; little fine gravel, trac rse AND GRAVEL, fine	rown and black, dr e silt, black, dry. to coarse; reddish-	y. brown and black,	2.0	564 1028 2141
			20-		SAND, I	fine to coar	rse AND GRAVEL, fine;	black, wet.		1.6	1816
					SAND, 1	fine to coar	rse; some fine gravel, trac	e clay, trace silt, b	rown, wet.	2.0	948
					SAND, I SAND, 1	fine to med	lium; gray, white and pin lium; some coarse sand, s	k, dry. come fine gravel, b	lack, wet.	1.5	396 793

The substrata descriptions above are generalized representations and based upon visual/manual classification of cuttings and/or samples obtained during drilling. Predominant material types shown on the log may contain different materials and the change from one predominant material type to another could be different than indicated. Descriptions on this log apply only at the specific location at the time of drilling and may not be representative of subsurface conditions at other locations or times.

ject No. 62SU.01011.02

Date August 2002

Log of Well

DRILL LOGS AUG 2002.GPJ LOG OF BOREHOLE Figure

SECOR

Logged By:	Date D	rilled: 6/02	Dr P:	illing Cor arratt-V Inc.	itractor Volff,	Philad	Project Name: Sunoco, Inc. lelphia Refinery, PA		Method/Equipu Iollow Stem A Split Spoo	Well Number: S-117		
See "Legend to sampling metho classifications a esting methods	Logs" fo od, and labor	r atory	H Dia	Boring am.(in.): 4	S Ek	urface ev.(ft.):	Groundwater Depth (f ♀ 19.63	t.):	Total Depth (ft.): 28.0	Drive wt.(lbs.):	Dı Dist.	op (in.):
Well (1) Construction da			Sample Type				Description				Recovery (feet)	PID Reading (ppm)
		-		27772	SAND, f CLAY; t	ine to med	ium AND SAND, coarse; ace fine sand, orangish-b;	; gray, w	et.		2.0	805 9.5
		30— -			•							
		35—										
		40					• •					- -
		-										
		45										
The substrate amples obta one predomin at the time of	a descrip ined dur nant mat f drilling	tions a ing dri terial ty and m	bov lling pe t lay r	e are ger g. Predo to anothe not be re	neralized minant i er could presenta	l representa material typ be differen tive of sub	ations and based upon vis bes shown on the log may t than indicated. Descrip surface conditions at othe	ual/many contain ptions on er locatio	ual classification different mater this log apply on ns or times.	on of cuttings rials and the c only at the sp	and/or change fi ecific loc	rom
ject No.	62SU.01	011.02	2	Date	Augus	st 2002			Logo	f Well		
	ALIG 20()2 GP.I							Figure			

DRILL LOGS AUG 2002.GPJ LOG OF BOREHOLE

(

SECOR
International Incorporated

Logged By: Date Drilled: Drilling Contracto SM 08/14/02 Inc.	Project Name: Sunoco, Inc. Philadelphia Refinery, PA	Method/Equipment: Hollow Stem Auger Split Spoon	Well Nu S-1	111 imber: 18			
See "Legend to Logs" for Boring sampling method, Diam.(in.): classifications and laboratory testing methods 4	Surface Groundwater Depth (ft.): Elev.(ft.): ⊻ 20.62	Total Depth (ft.):Drive wt.(lbs.):29.5	Di Dist	rop .(in.):			
Well Construction Sample Type	Description		Recovery (feet)	PID Reading (ppm)			
SILT	ND SAND, fine to coarse; little fine gra	wel, brown, dry.	2.0	0.0			
$\begin{array}{c} - \\ SILT; \\ - \\ SILT; \\ - \\ \end{array}$	SILT; little fine sand, trace clay, dark brown, dry. SILT; some clay, little fine to coarse sand, dark brown, dry.						
Bentonite	coarse AND SAND, fine to medium; tr	ace silt, black, moist.	1.0	18.4			
#1 Sand and Riser	Image: Second stand and second stand stan						
- SANI brown							
Schedule 40 PVC, 20 Slot	ule 40 10- 20 Slot						
	ND SAND, fine to coarse; little fine gra fine to coarse; some silt, some fine grav	avel, brown, dry. vel, red, white and brown, dry.	1.5	0.0 9.9			
15	, fine to medium; some fine gravel, some dry.	e coarse sand, red, white and	0.5	18.8			
SANI and b	, fine to medium; little coarse sand, little own, dry.	e silt, little fine gravel, dark red	1.1	25.9			
	, fine; some medium to coarse sand, littl	e fine gravel, red and brown, dry.	1.2	83.2			
	, fine; some medium to coarse sand, littl	e fine gravel, red and brown,	1.4	228			
A ANI A	, fine AND SILT; some medium to coard l, wet. , fine to coarse; some fine gravel, brown	se sand, trace fine gravel, brown	1.7	647			
	final come medium to consta cand littl	e gravel brown wet	20	1822			
The substrata descriptions above are generali	ed representations and based upon visua	l/manual classification of cutting	s and/or	1025			

one predominant material type to another could be different than indicated. Descriptions on this log apply only at the specific location at the time of drilling and may not be representative of subsurface conditions at other locations or times.

oject No. 62SU.01011.02

Date August 2002

Log of Well

DRILL LOGS AUG 2002.GPJ LOG OF BOREHOLE

Figure

SECOR
International Incorporated

Logged By:	Date Di	rilled:	Drilling C Parratt In	Contractor -Wolff,	Phila	Project Name: Sunoco, Inc. delphia Refinerv. PA	Method/Equip Hollow Stem A Split Spoo	nent: Auger on	Well Ni S-1	umber: 18
See "Legend to sampling meth classifications testing method	Logs" fo od, and labor s	er atory	Boring Diam.(in.) 4); E	Surface lev.(ft.):	Groundwater Depth (ft.)	: Total Depth (ft.): 29.5	Total Depth (ft.):Drive wt.(lbs.):29.5		
Well (11) Construction			Sample Type	Sample Type						
			SAND, fine; some medium to coarse sand, little gravel, brown, wet.							2092
				SAND, wet.	fine to mee	lium; some coarse sand, litt	le fine to coarse grave	el, brown,	1.5	1657
		- 30		-				-		
\supset										
		- 40								
·										
		45—								
The substrat	a descrin	otions a	bove are	generalize	d represent	tations and based upon visu	al/manual classificati	on of cuttings	and/or	
samples obta one predomi at the time o	ained du inant ma f drilling	ring dri terial ty g and m	illing. Pre pe to ano ay not be	dominant ther could represent	material ty be differe ative of sul	pes shown on the log may nt than indicated. Descripti osurface conditions at other	contain different mate ons on this log apply locations or times.	erials and the only at the sp	change f ecific lo	rom cation
oject No.	62SU.01	1011.02	2 Da	te Augu	ist 2002		Logo	of Well		
	ALIG 20	102 (201					Figure			

LOG OF BOREHOLE

Logged By:	Dates D 08/14	nilled: 1/02	Drilling Co Parratt-	ontractor Wolff,	Philad	Project N Sunoco, leinhia Ro	ame: Inc. efinery, PA		Method/Equipn Hollow Stem A Split Spoo	nent: Auger n	Well Nu S-1	mber: 19
See "Legend to sampling method classifications testing method	Logs" fo od, and labora	atory	Boring Diam.(in.): 4	S El	burface ev.(ft.):	Grou <u> </u>	ndwater Depth (fl. 29.14):	Total Depth (ft.): 34.0	Drive wt.(lbs.):	Dr Dist.	op (in.):
Well Construct	tion	Depth, (ft.)	Sample Type				Description				Recovery (feet)	PID Reading (ppm)
Riser	Riser			SILT AN	VD SAND,	fine; little	medium to coar	se san	d, brown, dry.		1.3	0.0
Grout	Grout			SILT; lit	tle fine to n	nedium sa	nd, dark brown,	dry.				0.0
				SILT; lit	tle fine san	d, dark br	own, dry.				1.0	0.0
		5		CLAY A	AND SILT;	trace fine	sand, black, dry	•			0.2	0.0
									· · ·	• .		
			-	SiL1; In	tle fine san	d, brown :	and gray, dry.				2.0	0.0
				SILT; little fine sand, brown and gray, dry.						2.0	0.0	
Bento	Bentonite Seal			NO REC	COVERY; s	stone in sł	oe of spoon.				0.0	
#1 Sa Riser	nd and			SILT; tr	ace fine san	id, brown	and gray, dry.	<u>.</u>			2.0	0.0
Schee	iule 40			SILT; tr	ace fine sar	id, brown	and gray, dry.				2.0	0.0
	20 5101	15-		SILT; so	ome clay, lit	ttle fine sa	nd, brown, dry.					0.0
			-	SAND, orangish	fine; little n 1-brown, dr	nedium to y.	coarse sand, litt	le silt,	trace fine grave	1,	1.7	0.0
			-	SAND, orangish	fine; some 1-brown, dr	medium te y.	o coarse sand, lit	tle fine	e gravel, trace si	lt,	2.0	0.0
		20-		SAND,	fine to coar	se; some :	fine gravel, oran	gish-bı	own, dry.		1.5	0.0
			-	SAND,	fine to coar	se; some	fine gravel, oran	gish-bı	rown, dry.			
			-	SAND,	fine to coar	se; little f	ine gravel, brown	n, dry ((wet at 25.9 feet	t).	2.0	0.0
The substrat samples obta one predomi at the time o	a descrip ained du inant ma f drilling	ptions a ring dri terial ty g and n	ibove are g illing. Prec ype to anot hay not be	eneralize lominant her could represent	d represent material ty be differer ative of sub	ations and pes shown at than ind surface co	based upon visu on the log may licated. Descript onditions at other	ual/mai contai tions or r locati	nual classification n different mate n this log apply ions or times.	on of cuttings rials and the only at the sp	and/or change fi becific loo	om cation

oject No. 62SU.01011.02

Date August 2002

Log of Well

DRILL LOGS AUG 2002.GPJ LOG OF BOREHOLE Figure

Logged By:	Dates Dr 08/14/ 08/15/	illed: /02 /02	Drilling Co Parratt- Inc	Wolff,	Proje Sun Philadelphi	ect Name: oco, Inc. ia Refinery, PA	Metho Hollov Sp	od/Equipm v Stem A olit Spoor	ent: uger 1	Well Ni S-1	umber: 19
See "Legend to sampling meth classifications testing method	Logs" for od, and labora s	tory	Boring Diam.(in.): 4	Surfa Elev.(f	xe t.): ⊻	Groundwater Depth (fl.) 29.14	: T Depi 3	otal th (ft.): 4.0	Drive wt.(lbs.):	Dist.	rop .(in.):
Well Construc	tion	Depth, (ft.)	Sample Type			Description		•		Recovery (feet)	PID Reading (ppm)
				SAND, fine	to medium;	ittle coarse sand, trac	e fine gravel,	, brown, v	vet.	1.8	0.0
			-	SAND, fine	to coarse; so	me fine gravel, browr	ı, wet.			1.6	0.0
		30-	-	SAND, fine	to medium;	some coarse sand, littl	e fine gravel	, brown, v	wet.	1.5	7.1
			_	SAND, fine	to medium;	some coarse sand, litt	le fine gravel	, brown, v	wet.	2.0	9.1
		35-		SAND, fine SAND, fine CLAY; little SAND, fine;	to medium; to coarse; br fine sand, li gray, wet.	little coarse sand, little own, wet. ttle silt, gray and oran	e fine gravel, gish-brown,	gray, we	t/	2.0	57.5 26.8 0.0 5.4
		40-									
		45-									
						,					
The substrat samples obtain one predominat the time o	a descript ined duri nant mate f drilling	tions a ing dr erial t and n	bove are g illing. Prec ype to anot hay not be t	eneralized rep lominant mat her could be representative	presentations erial types sl lifferent that of subsurfa	and based upon visua nown on the log may on indicated. Descripti ce conditions at other	al/manual cla contain differ ons on this lo locations or	ussificatio rent mater og apply o times.	n of cuttings rials and the c only at the sp	and/or hange fi ecific lo	rom cation
ject No.	62SU.01	011.0	2 Dat	e August 2	002			Log of	f Well		
DRILL LOGS LOG OF BOF	AUG 200 EHOLE	2.GPJ						Figure	(cheet ?	of 2)	

ſ

Logged By: D	ates Drilled: 08/15/02 08/16/02	Drilling Parrs	z Contractor utt-Wolff, Inc.	Phila	Project Sunoco delphia]	Name: o, Inc. Refinery, PA	Method/E Hollow St Split	Equipmen tem Au Spoon	nt: ger	Well Nu S-1	umber: 20
See "Legend to Lo sampling method, classifications and testing methods	ogs" for I laboratory	Borin Diam.(i 4	(g n.): F	Surface Elev.(ft.):	⊊ Gr	oundwater Depth (ft.): 22.75	Total Depth (f 30.0	ft.):	Drive wt.(lbs.):	Dr Dist.	op (in.):
Well Construction	Depth, (ft.)	Sample Type				Description				Recovery (feet)	PID Reading (ppm)
Riser Grout			SILT; s	ome fine to	medium	sand, brown, moist	•			1.7	0.0
STATISTICS IN			SILT; t	race fine sa	nd, orang	ish-brown and brow	vn, moist.			1.1	0.0
	5-		SILT; I	ittle clay, li	ttle fine to	o coarse sand, brown	n, moist.			2.0	0.0
Bentonit	te		SAND	, fine; little	medium 1	to coarse sand, brow	vn, dry.			1.5	0.0
#1 Sand Riser	and		SAND	, fine to coa , fine; little , fine; trace	rse; little medium 1 medium	fine gravel, brown, to coarse sand, tract to coarse sand, redd	dry. fine gravel, braish-brown, dry.	own, dr	y	1.6	0.0 0.0 0.0
Schedul PVC, 20	e 40) Slot		SAND SILT, 1	, fine; little some clay, l	medium t ittle fine rse; little	to coarse sand, trace to coarse sand, brown fine gravel, brown,	e fine gravel, br vn, moist. dry.	own, dr	y	1.4	0.0 0.0 0.0
		-	SAND red, br	, fine AND own and wh	SAND, n uite, dry.	nedium to coarse; li	ttle fine gravel,	trace si	ilt, dark	2.0	0.0
	15-		SILT; I	ittle fine to , fine to me	coarse sa dium; litt	nd, brown, dry. le coarse sand, brow	vn, dry.			1.7	0.0 0.0
			SAND	, fine to me	dium; litt	le coarse sand, brow	vn, dry.			1.9	0.0
		-	SAND SAND SAND	, fine; little , fine to me , fine to me	medium dium; litt dium; litt	to coarse sand, dark le coarse sand, brow le coarse sand, brow	red, dry. vn, dry. vn, wet.			2.0	0.0 0.0
	20-		CLAY	; some silt, ND SAND , fine; some	white and), fine; lit medium	l tan, dry. tle clay, brown, wet to coarse sand, litt	e silt, trace fine	gravel,	, brown,	2.0	0.0 0.0 0.0
		-	SAND	AND SILT , fine; gray, fine; gray	; trace fin wet.	ne sand, tan and wh	ite, dry.			2.0	0.0
		-	SAND	, fine; orang , fine; some	gish-brow silt, som	n, wet. he medium to coarse	e sand, orangish	-brown	, wet.	0.8	0.0 0.0

samples obtained during drilling. Predominant material types shown on the log may contain different materials and the change from one predominant material type to another could be different than indicated. Descriptions on this log apply only at the specific location at the time of drilling and may not be representative of subsurface conditions at other locations or times.

oject No. 62SU.01011.02

Date August 2002

Log of Well

DRILL LOGS AUG 2002.GPJ LOG OF BOREHOLE Figure

Logged By: Dates 08/1 SM 08/1 08/1	Drilled: 5/02 6/02	Dril Pa	lling Con rratt-V Inc.	itractor Volff, Philad	Project Name: Sunoco, Inc. delphia Refinery, PA	Method/Equipm Hollow Stem A Split Spoo	nent: Auger n	Well Ni S-1	umber: 20
See "Legend to Logs" : sampling method, classifications and labor testing methods	for pratory	Ba Dia	oring m.(in.): 4	Surface Elev.(ft.):	Groundwater Depth (ft.):	Total Depth (ft.): 30.0	Drive wt.(lbs.):	Dist.	rop .(in.);
Well Construction	Depth, (ft.)	Sample Type		······································	Description	•		Recovery (feet)	PID Reading (ppm)
		_		SAND, fine; gray, SAND, fine; gray,	wet. wet.			1.1	0.0 0.0
				SAND, fine; tan, w	ret.		<u></u>	1.0	0.0
	30-			SAND, fine to med	lium; little coarse sand, light	brown, wet.			0.0
•		-							
	33-								
		_							
	40-								
		_							
	45-								
		-							5
The substrata descr samples obtained d one predominant m at the time of drilli	iptions uring du aterial to ng and r	above illing ype te nay n	e are gen g. Prede o anothe ot be re	neralized represent ominant material ty er could be differe presentative of sul	tations and based upon visua pes shown on the log may cont than indicated. Description osurface conditions at other	l/manual classification ontain different mate ons on this log apply locations or times.	on of cuttings rials and the only at the sp	and/or change fi pecific lo	rom cation
ject No. 62SU.	01011.0	2	Date	August 2002	1	Log o	f Well		_
DRILL LOGS AUG 2	2002.GPJ E	r, i				Figure			

SECOR
International Incorporated

Logged By:	Date Dri	11ed:	Dril Pa	ling Con rratt-V Inc.	itractor V olff,	Philad	Project Name: Sunoco, Inc. Jelphia Refinery, PA		Method/Equipm Hollow Stem A Split Spoor	nent: Luger n	Well Nu S-1	umber: 21
See "Legend to sampling metho classifications a testing methods	Logs" for od, and laborat	tory	Bo Diar	oring n.(in.); 4	S El	urface ev.(ft.):	Groundwater Dept ⊈ 23.46	h (ft.):	Total Depth (ft.): 30.0	Drive wt.(lbs.):	Dr Dist.	op (in.):
Well Construct	ion	Depth, (ft.)	Sample Type				Descripti	on			Recovery (feet)	PID Reading (ppm)
Riser Grout		-			SILT; lit	tle fine san	d, brown, dry.				0.6	0.0
		-	-	5	SILT; lit	tle fine san	d, brown and light gra	y, dry.			1.5	0.0
		- 5-—		5	SILT; lit	tle fine san	d, brown and light gra	y, dry.			2.0	0.0
Bento Seal	nite	-	-		SILT; lit	tle fine san	d, brown and light gra	y, dry.			1.8	0.0
#1 Sa Riser	nd and	-			SILT; lit SILT; lit SAND, f	tle fine to c tle fine san fine to coar	coarse sand, reddish-br d, brown and gray, dr se; little silt, red and o	rown, dry. y. orangish-br	own, dry.		2.0	0.0 0.0 0.0
Sched	ule 40 20 Slot	10—			SILT; lit SAND, 1	tle fine san fine to coar	d, brown and gray, dr se; trace fine gravel, r	y. eddish-bro	wn, dry.		1.8	0.0 0.0
		-	-		SAND, 1 SILT; lit	fine; little n tle fine san	nedium sand, brown, o d, gray and brown, dr	iry. y.			0.6	0.0 0.0
		- 15—			SAND, 1 SAND, 1	fine to coar fine to coar	se; trace fine gravel, r se; little fine gravel, r	ed and bro eddish-bro	wn, dry. wn, dry.		1.1	0.0 0.0
		-	-		SAND, 1 Iry.	fine; some	medium to coarse sand	d, trace fin	e gravel, orangis	sh-brown,	0.8	0.0
		-			SILT; lit SAND, 1	tle fine san fine to coar	d, brown and gray, dr se; trace fine gravel, r	y. eddish-bro	wn, dry.		2.0	0.0 0.0
		, 20—			SAND, 1 wet at bo	fine to coar	se; trace fine gravel, r ction.	eddish-bro	wn, dry at top o	f section,	1.8	0.0
		-			SAND, 1	fine to coar	se; trace fine gravel, r	eddish-bro	wn, wet.		2.0	0.0
		-	-		SILT; lit CLAY;	tle fine san little silt, da	id, trace clay, brown, o ark gray, wet.	lry to mois	st.		<u>/</u> 2.0	0.0 0.0

The substrata descriptions above are generalized representations and based upon Visual/manual classification of cutings and/or samples obtained during drilling. Predominant material types shown on the log may contain different materials and the change from one predominant material type to another could be different than indicated. Descriptions on this log apply only at the specific location at the time of drilling and may not be representative of subsurface conditions at other locations or times.

ject No. 62SU.01011.02

Date August 2002

Log of Well

DRILL LOGS AUG 2002.GPJ LOG OF BOREHOLE Figure

SECOI)
SLCOI	ľ

	International Inc	corporatea								-			*** ** **	1
	Logged By:	Date Dri	illed:	Dril	ling Con rratt-V	tractor		Project I Sunoco	Name:		Method/Equiph	nent: Auger	well Ni	imber:
() sm	08/22/	/02	14	Inc.	, nn 1	Philad	lelphia I	Refinery, PA		Split Spoo	n	S-1	21
	See "Legend to sampling metho classifications a testing methods	Logs" for id, ind labora	tory	Be Dia	oring m.(in.); 4	S Ele	urface ev.(ft.):	Gro ⊈	oundwater Depth (1 23.46	ît.):	Total Depth (ft.): 30.0	Drive wt.(lbs.):	Dist	rop .(in.);
	Well Construct	ion	Depth, (ft.)	Sample Type					Description				Recovery (feet)	PID Reading (ppm)
					:::: \s	SILT AN	D CLAY;	little fin	e sand, gray, wet		· · ·			0.0
						<u>SAND, f</u> SAND, f	ine; some s ine; trace s	silt, orang ilt, orang	gish-brown and Jish-brown, wet.	gray, we	et.		2.0	0,0 0.0
			•		S	SAND, f	ine; trace n	nedium t	o coarse sand, g	ray, wet			2.0	0.0
			30—	-		SAND, f SAND, f	ine; some i ine; trace r	medium nedium t	to coarse sand, o o coarse sand, b	rangish rown, w	-brown, wet. /et.	/		0.0 0.0
(The substrata samples obtai one predomin at the time of	descript ined duri ant mate	35 40 45 tions a ing dri erial ty and m	bove	are ger Predo anothe ot be rej	neralizec minant presenta	I representa material ty be differen tive of sub	ations an pes show at than in surface c	d based upon vis n on the log ma dicated. Descrip conditions at othe	sual/mai y contai otions or er locati	nual classification n different mate n this log apply ions or times.	on of cuttings rials and the o only at the sp	and/or change f	rom
(ject No. (52SU.01	011.02	2	Date	Augus	st 2002				Log o	f Well		
	DRILL LOGS	AUG 200	2.GPJ	•							Figure	-		

LOG OF BOREHOLE

SECOR
International Incorporated

L	ogged By:	Date Di 08/19	rilled:)/02	Dri Pa	lling Con rratt-V Inc.	itractor Volff,	Phila	Project 1 Sunoco lelphia F	Name: , Inc. Refinery, PA	M Ho	lethod/Equipr llow Stem A Split Spoo	nent: Auger n	Well Nu S-1	umber: 22
See san clas test	"Legend to pling methol sifications ing method	Logs" fo od, and labors	r atory	B Dia	oring m.(in.): 4	S El	urface ev.(fl.):	Gro ⊈	undwater Depth (ft 29.77	.): I	Total Depth (ft.): 34.6	Drive wt.(lbs.):	Dr Dist,	rop .(in.):
	Well Construct	tion	Depth, (ft.)	Sample Type					Description				Recovery (feet)	PID Reading (ppm)
	Riser	:				SAND, 1 SILT; lit	fine to coar tle fine sar	se; brown d, brown	n, dry. , dry.				0.9	0.0 0.0
					S	SILT; lit	tle fine sar	id, trace c	lay, brown, sligh	tly moist.		<u> </u>	0.8	0.0
			5-		<u> </u>	SILT; lit SILT; so	tle fine sar me fine sa	id, little c nd, orang	lay, brown, slight ish-brown and gr	tly moist. ay, dry.	·······		1.2	0.0 0.0
					5	SILT; so	me fine sa	nd, trace	medium sand, ora	angish-brov	wn and gray	, dry.	0.6	0.0
	NICONTRACTOR			-	5	SILT; so SILT; lit	me fine sa tle fine sar	nd, pieces 1d, little c	s of brick, dark b lay, orangish-bro	rown, dry. wn, moist.			1.2	0.0 0.0
	Bento	onite	10-		ÌIII Ì	NO REC	OVERY						0	0.0
	#1 Sa	nd and			5	SILT; so	me clay, li ce of brick	ttle fine s in shoe	and, pieces of br of spoon.	ick, brown	, wet. Coar	se gravel	0.2	0.0
	Sched	iule 40 20 Slot	15-			SILT; so	ome clay, li	ttle fine s	and, brown, wet.				1.0	0.0
				-	S	SILT; so	me clay, li	ttle fine s	and, brown, mois	st to dry.			2.0	0.0
				-		SILT AI SAND,	ND CLAY; fine; brown	trace fin n, dry.	e sand, dark gray	, moist.		· · · · · · · · · · · · · · · · · · ·	2.0	0.0 0.0 0.0
			20-			SAND, SAND,	fine AND	SAND, m lium; dar	edium to coarse; k brown, moist.	gray, dry.			0.7	0.0
						SAND, SILT; lit SILT; sc	fine AND ttle fine sar ome clay, the	SAND, m id, little c ace fine s	edium to coarse; lay, orangish-bro sand, dark brown	gray, dry. wn and gra , moist.	ay, dry.		2.0	0.0 0.0 0.0 0.0
						SILT A	ND CLAY	trace fin	e sand, dark brov	vn, moist.	· · · · ·	.=	1.5	0.0

The substrata descriptions above are generalized representations and based upon visual/manual classification of cuttings and/or samples obtained during drilling. Predominant material types shown on the log may contain different materials and the change from one predominant material type to another could be different than indicated. Descriptions on this log apply only at the specific location at the time of drilling and may not be representative of subsurface conditions at other locations or times.

oject No. 62SU.01011.02

Date August 2002

Log of Well

DRILL LOGS AUG 2002.GPJ LOG OF BOREHOLE

Figure

Logged By:	Date Drilled; 08/19/02	Drilling Con Parratt-V Inc.	tractor Volff, Phil	Project Name: Sunoco, Inc. adelphia Refinery, PA	Method/Equipn Hollow Stem A Split Spoo	nent: Auger n	Well Nu S-1	umber: 22
ee "Legend to mpling metho assifications a sting methods	Logs" for od, ind laboratory	Boring Diam.(in.): 4	Surface Elev.(ft.):	Groundwater Depth (ft.):	Total Depth (ft.): 34.6	Drive wt.(lbs.):	D. Dist	rop (in.):
Well Construct	Depth, (ft.)	Sample Type		Description	•		Recovery (feet)	PID Reading (nom)
		- S	AND, fine to me AND, fine to co	edium; some coarse sand, brow arse; trace fine to coarse grave	n, dry. , brown, wet.		1.1	0.0
			ILT; some clay,	little fine sand, brown, wet.			0.7	0.0
	30-	- S	AND, fine to co	arse; little fine to coarse gravel	, brown, wet.	· · ·	0.1	0.0
			AND, fine to co	arse; little fine to coarse gravel	, brown, wet.	· · · · · · · · · · · · · · · · · · ·	1.5	0.0
	35-		AND, fine; brow AND, fine to con AND, fine to con AND, fine; some AND, fine to con	vn, wet. arse; brown, wet. arse; trace fine gravel, brown, v e medium sand, trace silt, brow arse; black, wet.	wet.	, ,	1.4	0.0 0.0 14. 472 28
		-					-	
	40-							
	45-							
he substrata	descriptions a	bove are gen	eralized represen	ntations and based upon visual/	manual classificatio	n of cuttings	and/or	rom
the time of	ant material ty drilling and m	pe to another ay not be rep	r could be different contractive of su	ent than indicated. Description ibsurface conditions at other lo	s on this log apply c cations or times.	only at the sp	ecific loc	cation
ject No. 6	2SU.01011.02	2 Date	August 2002		Log of	f Well		

DRILL LOGS AUG 2002.GPJ LOG OF BOREHOLE

Logge	:d By: M	Date D	rilled: 0/02	Dri Pi	illing Cor arratt- Inc	ntractor Wolff,	Phila	Project Name: Sunoco, Inc. delphia Refinery, PA	Method/Equipr Hollow Stem / Split Spoc	nent: Auger on	Well Nu S-1	umber: .2.3
See "Le samplin classific testing	gend to ig metho cations : method:	Logs" fo od, and labor s	ж ratory	B Dia	Joring 1m.(in.): 4	S El	urface ev.(ft.):	Groundwater Depth (ft.	.): Total Depth (ft.): 30.0	Drive wt.(lbs.):	Dr Dist.	-op .(in.):
Co	Well	tion	Depth, (ft.)	Sample Type				Description			Recovery (feet)	PID Reading (ppm)
	Riser Grout	 [-		SILT; tra	ice fine sar	nd, brown, dry.				
ANNA ANA ANA ANA ANA ANA ANA ANA ANA AN						SILT; tra	ice fine sar	nd, brown, dry.			0.6	0.0
STANKSKI MARINA		1	5-			SILT; tra	ace fine sar	nd, trace clay, brown and g	ray, moist.		0.8	0.0
	Bento Seal	nite				SILT; tra	tice fine sau	nd, trace clay, brown and g	ray, moist.		1.4	0.0
	#1 Sar Riser	nd and	-			SILT; so	me fine to	medium sand, brown, dry.			1.2	0.0
	Sched PVC,	lule 40 20 Slot	10—	-		SILT; so SILT; so	me fine sa me fine sa	nd, brown, dry. nd, trace clay, brown, dry.			1.0	0.0
			-			SILT AN dry.	VD SAND,	, fine; little medium to coar	rse sand, trace fine gra	vel, brown,	0.6	0.0
			15-			SILT; so spoon.	me clay, li	ttle fine to coarse sand, bro	own, moist. Stone in s	shoe of	0.1	0.0
			-	-		SAND, f	fine; little r	medium to coarse sand, tan	ı and gray, dry.		1.4	0.0
			-	-		SAND, f	fine to coar	rse; some fine gravel, brow	/n and dark red, dry.		1.0	333
			20—			GRAVE SAND, 1	L, fine to c fine; some	coarse; white, dry. medium to coarse sand, lit	tle fine gravel, black,	đry.	0.6	0.0 630
						<u>SILT AN</u> SAND, 1	VD SAND. fine to coa	, fine; little medium to coar rse AND GRAVEL, fine; l	rse sand, moist. olack, wet.		7 1.3	76.7 1111
			-			SAND,	fine; gray a	and brown, wet.			1.5	1326

samples obtained during drilling. Predominant material types shown on the log may contain different materials and the change from one predominant material type to another could be different than indicated. Descriptions on this log apply only at the specific location at the time of drilling and may not be representative of subsurface conditions at other locations or times.

oject No. 62SU.01011.02

Date August 2002

Log of Well

DRILL LOGS AUG 2002.GPJ LOG OF BOREHOLE Figure

Logged By:	Date Dr 08/20	illed:	Dri Pa	lling Con rratt-V Inc.	tractor Volff,	Phila	Project N Sunoco, delphia R	ame: Inc. efinery, PA		Method/Equip Hollow Stem Split Spo	oment: Auger on	Well Ni S-1	umber: 23
See "Legend to sampling meth classifications testing method	D Logs" for od, and labora	r atory	B Dia	oring m.(in.): 4	S Ele	urface ev.(ft.):	Grou ⊈	ndwater Depth 24.35	n (ft.):	Total Depth (ft.): 30.0	Drive wt.(lbs.):	Dist.	rop .(in.);
Well Construc	tion	Depth, (ft.)	Sample Type					Descriptio	on			Recovery (feet)	PID Reading (ppm)
				S	SAND, f SAND, f	ine to mee ine to mee	lium; trace lium; trace	coarse sand, coarse sand,	brown, w trace fine	vet. e gravel, brown	, wet.	1.7	190 202
			-	<u>s</u>	SAND, f SAND, f	ine; some ine; little i	medium sa medium to	and, trace coa coarse sand,	arse sand, trace fine	brown, wet. gravel, brown	, wet.	2.0	332 [.] 343 [.]
		30											•
<u>_</u>		35—											
		40-											
			_				ι						
	5	45-											1
			_					,					
The substrat samples obt one predom at the time of	ta descrip ained dur inant mat of drilling	tions a ring dri terial ty and n	ibove illing ype te nay n	e are gen g. Predo o anothe ot be re	neralize ominant er could presenta	d represent material ty be differe ative of sul	tations and ypes shown nt than ind bsurface co	based upon on the log n icated. Desc onditions at o	visual/ma nay conta riptions o other locat	nual classifica in different ma n this log appl ions or times.	tion of cuttings terials and the y only at the sp	and/or change f pecific lo	rom cation
ject No.	62SU.01	011.0	2	Date	Augu	st 2002				Log	of Well		
	SAUG 200	02.GPJ								Figure			

DRILL LOGS AUG 2002.GPJ LOG OF BOREHOLE

Logged By: Dates Drill 08/21/0 SM 08/22/0	lled:])2)2	Drilling Contrac Parratt-Wol Inc.	tor f, Phila	Project Name: Sunoco, Inc. delphia Refinery, PA	Method/Equipn Hollow Stem A Split Spoo	nent: Auger N	Well Nu S-1	imber: 24		
See "Legend to Logs" for sampling method, classifications and laborato testing methods	лу І	Boring Diam.(in.): 4	Surface Elev.(ft.):	Groundwater Depth (ft.):	Total Depth (ft.): 30.0	Drive wt.(lbs.):	Dist.	сор .(in.):		
Well Construction	Depth, (ft.)	Description								
Riser Grout	-		SAND, fine	to coarse AND GRAVEL,	fine to coarse; brown	, dry.				
	_		; some fine to	coarse sand, brown, dry.			2.0	0.0		
	5	SIL?	; some fine to	coarse sand, brown, dry.			2.0	0.0		
Bentonite Seal		SILT; some cinders, little fine sand, brown, dry. SILT; little fine sand, brown, dry. SILT; little fine sand, brown and tan, dry.								
#1 Sand and Riser	-	SIL	; some fine sa	nd, brown, dry.			0.6	0.0		
Schedule 40 EVC, 20 Slot	10	SILT; little fine sand, little clay, gray and brown, dry.								
	-	SIL	SILT; little fine sand, brown, dry.							
	15 SILT; some fine sand, trace clay, gray and brown, dry.							0.0		
	_		<u>AND SAND</u> ; little fine same	, fine; brown, dry. nd, trace clay, gray, dry.			0.5	25.6 14.1		
	SAND, fine to coarse AND GRAVEL, fine to coarse; brown, dry.							11.9 723		
	20	SAT	D, fine; trace	medium to coarse sand, gray	/, đry.		1.6	849		
	_	SAN SAN SAN SAN	D, fine; some D, fine; some D, fine; some	medium to coarse sand, bro medium to coarse sand, bro medium to coarse sand, bro dry.	, ury. wn, dry. wn, dry.		1.0	312 326 429		
	SAND, fine; gray, dry. SAND, fine; some medium to coarse sand, little fine gravel, brown, dry. SAND, fine to coarse AND GRAVEL, fine; brown, wet.									

The substrata descriptions above are generalized representations and based upon visual/manual classification of cuttings and/or samples obtained during drilling. Predominant material types shown on the log may contain different materials and the change from one predominant material type to another could be different than indicated. Descriptions on this log apply only at the specific location at the time of drilling and may not be representative of subsurface conditions at other locations or times.

roject No. 62SU.01011.02

Date August 2002

Log of Well

Figure

DRILL LOGS AUG 2002.GPJ LOG OF BOREHOLE

e "Legend to Logs" for npling method, issifications and labora ting methods Well Construction	r I I I I I I I I I I I I I I I I I I I	Boring Diam.(in.): 4 add(L all all all all all all all all all al	Surface Elev.(ft.): SAND, fine to mee SAND, fine to coa	Groundwater Depth (ft.): 又 26.79 Description dium; some coarse sand, brown	Total Depth (ft.): 30.0	Drive wt.(lbs.):	Dizit Dizit Overy (feet)	in.): (in.): (inda) B			
Well	05 Depth, (ft.)	Sample Type	SAND, fine to mee SAND, fine to coa	Description			overy (feet)	g (ppm			
	 30		SAND, fine to mee SAND, fine to coa	dium; some coarse sand, brown			Rec	PID Readin			
	 30		SAND, fine to coa		n, wet.		1	196			
	- - 30—		SAND, fine to coarse; brown and gray, wet.								
	 30	1.*.*.*!	SAND, fine to mee	dium; some coarse sand, gray,	wet.		1.8	24			
	30										
	-										
	_										
	. –					,					
1											
)											
, ,	-										
	_										
	-										
	40				·						
	_										
	_										
	_										
	45										
	_										
	_						1				
he substrata descrip imples obtained dur ne predominant mat the time of drilling	tions abo ing drilli erial type and may	ove are ge ing. Pred e to anoth y not be re	eneralized represent ominant material ty her could be differe epresentative of sul	tations and based upon visual/ ypes shown on the log may con nt than indicated. Description bsurface conditions at other lo	manual classification ntain different materi s on this log apply o cations or times.	1 of cuttings ials and the c nly at the spe	and/or change fi ecific loo	rom			
áject No. 62SU.01	011.02	Date	e August 2002	<u> </u>	Log of	Well					
RILL LOGS AUG 200)2.GPJ										

Logged By:	Dates D 08/20 08/27	= 0rilled: 5/02 7/02	Drilling Co Parratt- Inc	ntractor Wolff,	Philad	Proje Sune lelphi	ect Name: oco, Inc. ia Refinery, PA		Method/Equipm Hollow Stem A Split Spoo	nent: Auger n	Well Nu S-1	mber: 25
See "Legend to sampling metho classifications testing methods	Logs" fo od, and labor	atory	Boring Diam.(in.): 4	$ \begin{array}{c cccc} Boring \\ Diam.(in.): \\ 4 \end{array} & \begin{array}{c} Surface \\ Elev.(ft.): \\ \mathbf{\nabla} \end{array} & \begin{array}{c} Groundwater Depth (ft.): \\ \mathbf{\nabla} \end{array} & \begin{array}{c} Total \\ Depth (ft.): \\ 30.0 \end{array} & \begin{array}{c} Drive \\ wt.(lbs.): \\ 30.0 \end{array} \\ \end{array} $							Dr Dist.	op (in.):
Well Construct	tion	Depth, (ft.)	Sample Type				Description	L			Recovery (feet)	PID Reading (ppm)
Riser				ASPHA SILT AN dry. SILT; sc SILT AN of brick, SAND,	LT ND SAND, me fine to ND SAND, dark gray a fine to coar	fine; coarse fine; and bl se; lit	some medium to co e sand, pieces of br some medium to co lack, dry. tle silt, little fine gr	oarse san ick, dari oarse san avel, bla	nd, some fine gr k brown, dry. nd; large cobble ack, dry (wet at	avel, brown, sized piece bottom).		5.5 166 103 68.4
Bento Seal	onite	5—		CLAY; CLAY; CLAY;	little silt, lit trace fine sa little silt, tra	tle fir and, tu ace fir	ne to medium sand, race silt, brown and ne sand, brown and	gray, m I gray, n gray, d	ioist. noist. ry.		1.0	334 121 5.6
#1 Sa Riser	nd and		-	CLAY; SILT A1	little silt, tra ND CLAY;	ace fin little	ne sand, brown and fine sand, brown a	gray, d nd gray,	ry. dry.		1.1	29.5 9.5
Sched PVC,	lule 40 20 Slot	10-		SILT AI SILT; lit	ND SAND, ttle fine to r	fine t nediu	to coarse; trace fine im sand, trace clay,	gravel, brown	gray and black, and gray, dry.	moist.	1.4	25.6 21.6
			-	CLAY;	some silt, li	ttle fi	ne to coarse sand,	gray, dr	y.		2.0	19.4
		15-		CLAY;	little silt, lit	tle fii	ne sand, gray, dry.				2.0	11.1
			-	CLAY; CLAY; bottom	<u>some silt, tr</u> little silt, tr of section.	<u>race fi</u> ace fi	ine sand, gray, wet. ne sand, gray, dry t	o moist	at top of section	, wet at	2.0	0.0
			-	<u>CLAY</u> CLAY;	AND SANI little silt, tr	D, fine ace fi	e to coarse; dark bronn and brown and	own, mo I gray, d	oist. ry.	/	2.0	9.5 0.0
		20-		CLAY SAND, moist.	AND SANI fine to coar	<u>), fina</u> se Al	e to medium; gray, ND GRAVEL, fine	moist. ; trace s	ilt, brown, gray	and red,	0.7	0.0 169
SAND, fine; some medium to coar moist to wet, product present.								little fin	e gravel, green a	ind gray,	0.6	2230
			1	CLAY;	trace fine s	and, g	gray, moist.				0.6	5.5
The substration samples obtained	a descrij ained du	tions a ring dr	bove are go illing. Pred	eneralize ominant	d represent material ty	ations pes sł	s and based upon vi hown on the log ma	sual/ma	inual classification	on of cuttings rials and the c	and/or hange fi	rom

samples obtained during drilling. Predominant material types shown on the log may contain different materials and the change from one predominant material type to another could be different than indicated. Descriptions on this log apply only at the specific location at the time of drilling and may not be representative of subsurface conditions at other locations or times.

oject No. 62SU.01011.02

Date August 2002

Log of Well

Figure

DRILL LOGS AUG 2002.GPJ LOG OF BOREHOLE

SECOR
International Incorporated

Logged By:	ged By: Dates Drilled: Drilling Contractor 08/26/02 Parratt-Wolff, SM 08/27/02 Inc. Philade						I S adel	rojec Suno Inhia	t Name co, Inc Refir	: ierv. P	A]	Metho Hollow Sol	d/Equipn Stem /	nent: Luger n		Well Nu S-1	mber: 25
See "Legend to sampling meth classifications testing method	o Logs" fo od, and labora	r atory	Bo Dian	ring 1.(in.): 4	S Ele	urface ev.(ft.):		<u>7</u> .	iroundv	vater De 18.2	pth (ft.):		To Depti 30	tal 1 (ft.): 1.0	Dr wt.(ive lbs.):	Dr Dist.	op (in.):
Well Construc	Depth, (ft.)	Sample Type	Description .										Recovery (feet)	PID Reading (ppm)				
					AND, 1 AND, 1	fine to coa	arse arse	ANI ANI	O GRA	VEL, VEL,	fine; bro fine; rec	own, v i, whi	wet. te and l	orown, v	wet.		0.8	152 357
					ILT <u>; so</u> AND, 1	me clay, l fine to coa	little arse	e fine ANI	e to co D GRA	arse sa VEL,	id, little fine; bro	fine own, v	gravel, wet.	gray, w	et		1.3	141 221
		-	· · · ·			ı.			. . .									
											·							
		35— -																
		-																
		40—			1													
		45—																
The substrat samples obt one predom at the time of	ta descrip ained du inant ma of drilling	otions a ring dri terial ty g and m	bove lling. pe to lay nc	are ger Predo anothe ot be rej	neralize minant er could presenta	d represen material t be different ative of su	ntati type ent ubsu	ions a es sho than arface	and ba own or indica e cond	sed up the lo ted. D itions a	on visua g may c escriptic t other l	l/man ontain ons or locatio	ual clas different this lo ons or t	ssificati ent mate g apply imes.	on of cu rials an only at	uttings ad the c the spe	and/or hange fi cific loo	rom cation
ject No.	62SU.01	[011.02	2	Date	Augu	st 2002								Log o	of We	11		
DRILLOG	SAUG 20	02 GPJ												Figure				

DRILL LOGS AUG 2002.GPJ LOG OF BOREHOLE

Logged By:	Date Dr	rilled:	Dri Ps	lling Con arratt-V Inc.	tractor Volff,	Philad	Pro Sur lelpl	iject Name: noco, Inc. hia Refinery, PA		Method/Equipm Hollow Stem A Split Spoor	ient: Luger n	Weil Nu S-1	umber: 26
See "Legend to l sampling method classifications ar testing methods	Logs" for d, nd labora	atory	Boring Diam.(in.): 4			urface ev.(ft.):	¥	Groundwater Depth (ft. 12	.):	Total Depth (ft.): 24.0	Drive wt.(lbs.);	Dist.	op (in.):
Well Constructi	on	Depth, (ft.)	Sample Type	Description								Recovery (feet)	PID Reading (ppm)
Benton Seal #1 San	nite nd and			b b	SILT AN wick, bl	VD SAND, ack and bro ND CINDE	fine; own, RS;	; some medium to coa dry. black, dry.	rse sar	nd, trace fine gra	vel, piece of	2.0	0.0
Riser Schedu PVC, 2	1le 40 20 Slot	5		- <u>S</u>	SAND, 1 noist.	fine to med	ium	AND SILT; little cind	lers, pi	iece of wire mes	h, black,	1.0	17
	SAND, fine to medium AND SILT; little cinders, black, moist.										0.7	24 40	
		- 10— -			SAND, fine; little medium to coarse sand, black, moist. SILT; little clay, little cinders, brown, moist. SILT; some cinders, little fine to coarse sand, black, moist. SAND, fine AND SILT; little medium to coarse sand, black, dry. Piece of brick at 10.6 feet and in end of spoon.							0.8	24 20.4 27.3 5.9
		-	-	SAND, fine to medium; some silt, some coarse sand, little pieces of brick, black, wet.								0.5	70.1
		15		ľ	NO REC	COVERY; t	orick	c in shoe of spoon.				0.0	
		-			SAND, 1	fine to med	ium; medi	; some silt, pieces of b ium sand, slight sheen,	rick, t , black	black, wet.			40.1 218 84.4
	,		-		SAND, SAND,	fine; some r	medi	ium to coarse sand, lit some silt, nail in end o	tle silt	, black, wet.		0.4	45.5 67.3
SAND, fine to medium; some coarse sand, little silt, little ci									t, little cinders, b	lack, wet.	1.3	49.7 5.4	
		-			<u>SILT A</u>	ND SAND,	fine	to coarse; trace clay,	gray an	wet.	/		50.3

The substrata descriptions above are generalized representations and based upon visual/manual classification of cuttings and/or samples obtained during drilling. Predominant material types shown on the log may contain different materials and the change from one predominant material type to another could be different than indicated. Descriptions on this log apply only at the specific location at the time of drilling and may not be representative of subsurface conditions at other locations or times.

)

Date August 2002

Log of Well

DRILL LOGS AUG 2002.GPJ LOG OF BOREHOLE Figure

Logg	ed By: M	Date D	rilled: 9/02	Drilling (Parrat In	Contractor t-Wolff,	Philad	Project Name: Sunoco, Inc. lelphia Refine	rv, PA	Method/Equipr Hollow Stem A Split Spoo	nent: Auger on	Well N S-1	umber: . 27	
See "La samplin classifi testing	egend to ng metho cations a methods	Logs" fo od, and labor	atory	Boring Diam.(in. 4	.): S El	urface ev.(ft.):	Groundwa ⊻	ter Depth (ft.): 18	Total Depth (ft.): 30.0	Drive wt.(lbs.):	D Dist	rop (in.):	
Ca	Well	ion	Depth, (ft.)	Sample Type	Description								
	Riser				SAND,	fine AND S	ILT; some med	lium to coarse	sand, brown, dry.		0.7	0.0	
	Grout				SILT; lit	tle fine to n	nedium sand, ti	ace clay, blac	k and gray, dry.			119	
NACK CAR			•		SILT; so	me clay, tra	ice fine sand, g	ray, moist.			0.5	765	
	Bento	nite	5—		CLAY; I	ittle fine sa	nd, little silt, g	ray, dry.			2.0	1017	
	Seal #1 Sa	nd and			SAND, 1 \SAND, 1 SILT; lit	ine; some c ine; little si tle fine sanc	clay, little medi ilt, little mediu d, little clay, gr	um to coarse s m to coarse sa ay, moist.	sand, gray, dry. nd, gray, dry.		1.5	1311 480 642	
	Riser		•	SAND, fine; little silt, little medium to coarse sand, gray, dry.									
	Sched	ule 40 20 Slot	10—	10 SAND, fine; little silt, trace medium sand, brown, dry. 10 SAND, fine; some silt, trace medium sand, gray, moist. SAND, fine; some medium to coarse sand, little fine gravel, brown, dry. SAND, coarse AND SILT; some fine to medium sand, gray, brown and dark red, moist. SAND, fine to medium; some coarse sand, some fine gravel, brown, dark red and gray, moist.								221	
lind		20 5101	10									490	
			•									17.4 212	
			15—									918	
			•		SAND, fine to coarse; little fine gravel, trace silt, dark red, brown and gray, moist to wet.								
					NO REC	COVERY; s	tone in shoe of	spoon.			0.0		
			20—		GRAVEL, fine and SAND, coarse; some fine to medium sand, gray and red, wet.								
	GRAVEL, fine AND SAND, fine to coarse, dark red and brown, wet.									2.0	869		
SAND, medium to coarse, some fine sand, some fine gravel, dark red and brown 2.											2.0	850	

samples obtained during drilling. Predominant material types shown on the log may contain different materials and the change from one predominant material type to another could be different than indicated. Descriptions on this log apply only at the specific location at the time of drilling and may not be representative of subsurface conditions at other locations or times.

oject No. 62SU.01011.02

Date August 2002

Log of Well

٤

DRILL LOGS AUG 2002.GPJ LOG OF BOREHOLE Figure

	International In	corporated	·				Dreiget Name: Method/Equipment						Well Number			
(Logged By:	Date Dri	illed:	Dril Pa	ling Con rratt-W	tractor olff,	Philad	Project 1 Sunoco Ielphia F	Name: , Inc. Refinery, PA		Method/Equipn Hollow Stem A Split Spoo	nent: Luger n	S-1	27		
	See "Legend to sampling methods classifications a testing methods	Logs" for od, and laborat	tory	B Dia	oring n.(in.): 4	Si Ele	urface ev.(ft.);	Gro IZ	undwater Dept	h (ft.):	Total Depth (ft.): 30.0	Drive wt.(lbs.):	Dr Dist.	op (in.):		
	Well Construct	tion	Depth, (ft.)	Sample Type					Descripti		Recovery (feet)	PID Reading (ppm)				
						vith a lit	tle bit of g	reen, wet	•							
				-	S V	AND, n	nedium to tle bit of g	coarse, se	ome fine sand	, some fin	e gravel, dark re	d and brown	2.0	419 60.3		
				-		vet.	nedium: so	me fine i	and little co	rse sand i	trace fine gravel		1.2	82.2		
				-		$\frac{\text{vet.}}{\text{V} \wedge \text{V} \cdot t}$	race fine si	lt brown	moist			/		0.0		
			30—	-				<u>16, 010 W1</u>	<u>, moist.</u>			e et e	 			
				1												
	L		35-	_												
Ę		-		-												
				-												
				-												
	1			-												
			40-													
				_												
			45-	_												
				_												
				-						•						
				-												
				-												
	The substratt samples obta one predomi at the time o	a descript ained dur nant mate f drilling	tions a ing dri erial ty and n	ibovo illing ype to nay n	e are ger are ger . Predo o anothe ot be re	neralized minant er could presenta	l represent material ty be differen tive of sub	ations an pes show of than in surface of	d based upon m on the log p dicated. Desc conditions at c	visual/ma nay contai criptions o other locat	nual classification in different mate n this log apply ions or times.	on of cuttings rials and the c only at the spe	and/or hange fr ecific loc	om ation		
	oject No.	62SU.01	011.0	2	Date	Augu	st 2002				Logo	f Well				
	DRILL LOGS LOG OF BOR	AUG 200 EHOLE	2.GPJ								Figure	(sheet ?	of 2)			

APPENDIX B

Monitoring Well Hydrographs

()

Note: A discrepancy between Handex's and Dames and Moore's reference elevations was normalized to Handex's datum for the purpose of this graph.

Note: A discrepancy between Handex's and Dames and Moore's reference elevations was normalized to Handex's current datum for this graph.

 \sum

APPENDIX C

RW-406 Aquifer Test Data

: 10/28/02

e: 10/28/02

10/28/02

SUNOCO, INC. PHILADELPHIA REFINERY 26th STREET INVESTIGATION

Top of Casing Elevation = 26.78 FAMSL Product Specific Gravity = 0.76

				Apparent	Corrected	
	Elapsed	Depth	Depth	Product	Groundwater	Corrected
Time	Time	To Product	To Water	Thickness	Elevation	Drawdown
	(Hour:Minutes)	(Feet)	(Feet)	(Feet)	(FAMSL)	(Feet)
8:30	0:00	22.02	22.14	0.12	4.73	0.00
8:38	0:08	22.05	22.28	0.23	4.67	0.06
8:42	0:12	22.07	22.31	0.24	4.65	0.08
8:50	0:20	22.10	22.36	0.26	4.62	0.11
8:55	0:25	22.11	22.37	0.26	4.61	0.12
9:01	0:31	22.11	22.40	0.29	4.60	0.13
9:10	0:40	22.13	22.42	0.29	4.58	0.15
9:16	0:46	22.12	22.47	0.35	4.58	0.16
9:20	0:50	22.12	22.48	0.36	4.57	0.16
9:26	0:56	22.12	22.48	0.36	4.57	0.16
9:33	1:03	22.11	22.55	0.44	4.56	0.17
9:37	1:07	22.12	22.57	0.45	4.55	0.18
9:42	1:12	22.11	22.58	0.47	4.56	0.17
9:50	1:20	22.11	22.63	0.52	4.55	0.19
10:12	1:42	22.09	22.75	0.66	4.53	0.20
10:35	2:05	22.06	22.87	0.81	4.53	0.21
11:11	2:41	22.05	22.99	0.94	4.50	0.23
11:45	3:15	22.03	23.05	1.02	4.51	0.23
13:05	4:35	22.03	23.10	1.07	4.49	0.24
14:16	5:46	22.02	23.08	1.06	4.51	0.23
15:23	6:53	22.03	23.09	1.06	4.50	0.24
17:01	8:31	22.05	23.12	1.07	4.47	0.26
18:04	9:34	22.06	23.18	1.12	4.45	0.28
19:14	10:44	22.06	23.16	1.10	4.46	0.28
20:07	11:37	22.08	23.23	1.15	4.42	0.31
21:12	12:42	22.09	23.26	1.17	4.41	0.32
22:13	13:43	22.09	23.29	1.20	4.40	0.33
23:31	15:01	22.09	23.30	1.21	4.40	0.33
0:12	15:42	22.09	23.30	1.21	4.40	0.33
8:50	24:20	22.11	23.17	1.06	4.42	0.32
10:15	25:45	22.10	23.14	1.04	4.43	0.30
11:45	27:15	22.10	23.07	0.97	4.45	0.28
13:22	28:52	22.09	23.09	1.00	4.45	0.28
14:22	29:52	22.10	23.10	1.00	4.44	0.29
15:44	31:14	22.13	23.24	1.11	4.38	0.35
16:17	31:47	22.14	23.32	1.18	4.36	0.37

SUNOCO, INC. PHILADELPHIA REFINERY 26th STREET INVESTIGATION

Top of Casing Elevation = 26.78 FAMSL Product Specific Gravity = 0.76

				Apparent	Corrected	
	Elapsed	Depth	Depth	Product	Groundwater	Corrected
Time	Time	To Product	To Water	Thickness	Elevation	Drawdown
	(Hour:Minutes)	(Feet)	(Feet)	(Feet)	(FAMSL)	(Feet)
17:30	33:00	22.14	23.45	1.31	4.33	0.41
18:45	34:15	22.14	23.54	1.40	4.30	0.43
19:42	35:12	22.16	23.63	1.47	4.27	0.46
20:58	36:28	22.15	23.64	1.49	4.27	0.46
22:31	38:01	22.16	23.70	1.54	4.25	0.48
2:22	41:52	22.15	23.80	1.65	4.23	0.50
8:17	47:47	22.21	23.86	1.65	4.17	0.56
10:15	49:45	22.21	23.91	1.70	4.16	0.57
11:46	51:16	22.24	23,84	1.60	4.16	0.58
13:45	53:15	22.23	23.85	1.62	4.16	0.57
15:15	54:45	22.24	23.91	1.67	4.14	0.59
15:47	55:17	22.19	23.76	1.57	4.21	0.52
16:15	55:45	22.17	23.31	1.14	4.34	0.39

NOTES:

Test started at 8:30 on 10/1/02 and ended at 15:30 on 10/3/02

FAMSL = Feet above mean sea level

Corrected groundwater elevation = TOC - (Depth to groundwater - (Product thickness * specific gravity))

S:\Clients\Sunoco\26th Street\Aquifer Test Data\[obs weil data.xls]RW-401

SUNOCO, INC. PHILADELPHIA REFINERY 26th STREET INVESTIGATION

Top of Casing Elevation = 25.89 FAMSL Product Specific Gravity = 0.76

	10					
				Apparent	Corrected	
	Elapsed	Depth	Depth	Product	Groundwater	Corrected
Time	Time	To Product	To Water	Thickness	Elevation	Drawdown
	(Hour:Minutes)	(Feet)	(Feet)	(Feet)	(FAMSL)	(Feet)
8:30	0:00	NP	21.22	0.00	4.67	0.00
8:37	0:07	21.28	21.29	0.01	4.61	0.06
8:41	0:11	21.33	21.34	0.01	4.56	0.11
8:49	0:19	NP	21.41	0.00	4.48	0.19
8:54	0:24	NP	21.42	0.00	4.47	0.20
9:00	0:30	NP	21.44	0.00	4.45	0.22
9:08	0:38	NP	21.45	0.00	4.44	0.23
9:16	0:46	NP	21.46	0.00	4.43	0.24
9:20	0:50	NP	21.47	0.00	4.42	0.25
9:25	0:55	NP	21.47	0.00	4.42	0.25
9:32	1:02	NP	21.48	0.00	4.41	0.26
9:37	1:07	NP	21.48	0.00	4.41	0.26
9:42	1:12	NP	21.49	0.00	4.40	0.27
9:49	1:19	NP	21.49	0.00	4.40	0.27
10:11	1:41	21.50	21.51	0.01	4.39	0.28
10:34	2:04	21.50	21.51	0.01	4.39	0.28
11:10	2:40	21.51	21.52	0.01	4.38	0.29
11:44	3:14	NP	21.53	0.00	4.36	0.31
13:04	4:34	NP	21.53	0.00	4.36	0.31
14:13	5:43	NP	21.52	0.00	4.37	0.30
15:21	6:51	NP	21.53	0.00	4.36	0.31
16:59	8:29	NP	21.56	0.00	4.33	0.34
18:04	9:34	NP	21.58	0.00	4.31	0.36
19:12	10:42	NP	21.59	0.00	4.30	0.37
20:05	11:35	NP	21.61	0.00	4.28	0.39
21:10	12:40	NP	21.61	0.00	4.28	0.39
22:11	13:41	NP	21.63	0.00	4.26	0.41
23:30	15:00	NP	21.63	0.00	4.26	0.41
0:10	15:40	NP	21.62	0.00	4.27	0.40
8:48	24:18	NP	21.59	0.00	4.30	0.37
10:14	25:44	NP	21.58	0.00	4.31	0.36
11:43	27:13	21.56	21.57	0.01	4.33	0.34
13:21	28:51	21.58	21.59	0.01	4.31	0.36
14:21	29:51	21.60	21.61	0.01	4.29	0.38
15:42	31:12	21.70	21.71	0.01	4.19	0.48

SUNOCO, INC. PHILADELPHIA REFINERY 26th STREET INVESTIGATION

Top of Casing Elevation = 25.89 FAMSL Product Specific Gravity = 0.76

				Apparent	Corrected	
	Elapsed	Depth	Depth	Product	Groundwater	Corrected
Time	Time	To Product	To Water	Thickness	Elevation	Drawdown
	(Hour:Minutes)	(Feet)	(Feet)	(Feet)	(FAMSL)	(Feet)
16:16	31:46	21.72	21.73	0.01	4.17	0.50
17:29	32:59	NP	21.77	0.00	4.12	0.55
18:44	34:14	NP	21.78	0.00	4.11	0.56
19:42	35:12	NP	21.83	0.00	4.06	0.61
20:57	36:27	NP	21.81	0.00	4.08	0.59
22:30	38:00	NP	21.89	0.00	4.00	0.67
2:20	41:50	NP	21.90	0.00	3.99	0.68
8:15	47:45	NP	21.95	0.00	3.94	0.73
10:14	49:44	NP	21.94	0.00	3.95	0.72
11:45	51:15	NP	22.00	0.00	3.89	0.78
13:43	53:13	NP	21.98	0.00	3.91	0.76
15:14	54:44	NP	22.02	0.00	3.87	0.80
15:46	55:16	21.79	21.80	0.01	4.10	0.57
16:14	55:44	NP	21.60	0.00	4.29	0.38

NOTES:

Test started at 8:30 on 10/1/02 and ended at 15:30 on 10/3/02

FAMSL = Feet above mean sea level

Corrected groundwater elevation = TOC - (Depth to groundwater - (Product thickness * specific gravity))

S:\Clienis\Sunoco\26th Street\Aquifer Test Data\[obs well data.xls]PZ-401

SUNOCO, INC. PHILADELPHIA REFINERY 26th STREET INVESTIGATION

Top of Casing Elevation = 25.38 FAMSL Product Specific Gravity = 0.76

				Apparent	Corrected	
	Elapsed	Depth	Depth	Product	Groundwater	Corrected
Time	Time	To Product	To Water	Thickness	Elevation	Drawdown
	(Hour:Minutes)	(Feet)	(Feet)	(Feet)	(FAMSL)	(Feet)
8:30	0:00	NP	20.93	0.00	4.45	0.00
8:36	0:06	NP	20.96	0.00	4.42	0.03
8:40	0:10	NP	21.01	0.00	4.37	0.08
8:48	0:18	NP	21.09	0.00	4.29	0.16
8:54	0:24	NP	21.12	0.00	4.26	0.19
9:00	0:30	NP	21.14	0.00	4.24	0.21
9:07	0:37	NP	21.15	0.00	4.23	0.22
9:15	0:45	NP	21.18	0.00	4.20	0.25
9:19	0:49	NP	21.19	0.00	4.19	0.26
9:24	0:54	NP	21.20	0.00	4.18	0.27
9:31	1:01	NP	21.21	0.00	4.17	0.28
9:36	1:06	NP	21.21	0.00	4.17	0.28
9:41	1:11	NP	21.22	0.00	4.16	0.29
9:48	1:18	NP	21.22	0.00	4.16	0.29
10:10	1:40	NP	21.25	0.00	4.13	0.32
10:33	2:03	NP	21.25	0.00	4.13	0.32
11:10	2:40	NP	21.27	0.00	4.11	0.34
11:43	3:13	NP	21.28	0.00	4.10	0.35
13:03	4:33	NP	21.28	0.00	4.10	0.35
14:12	5:42	NP	21.28	0.00	4.10	0.35
15:20	6:50	NP	21.28	0.00	4.10	0.35
16:59	8:29	NP	21.32	0.00	4.06	0.39
18:03	9:33	NP	21.35	0.00	4.03	0.42
19:11	10:41	NP	21.35	0.00	4.03	0.42
20:04	11:34	NP	21.36	0.00	4.02	0.43
21:09	12:39	NP	21.37	0.00	4.01	0.44
22:11	13:41	NP	21.38	0.00	4.00	0.45
23:28	14:58	NP	21.39	0.00	3.99	0.46
0:09	15:39	NP	21.39	0.00	3.99	0.46
8:47	24:17	21.35	21.36	0.01	4.03	0.42
10:12	25:42	NP	21.34	0.00	4.04	0.41
11:42	27:12	NP	21.33	0.00	4.05	0.40
13:20	28:50	21.35	21.36	0.01	4.03	0.42
14:20	29:50	21.35	21.36	0.01	4.03	0.42
15:41	31:11	21.45	21.46	0.01	3.93	0.52
16:15	31:45	NP	21.50	0.00	3.88	0.57

SUNOCO, INC. PHILADELPHIA REFINERY 26th STREET INVESTIGATION

Top of Casing Elevation = 25.38 FAMSL Product Specific Gravity = 0.76

				Apparent	Corrected	
	Elapsed	Depth	Depth	Product	Groundwater	Corrected
Time	Time	To Product	To Water	Thickness	Elevation	Drawdown
	(Hour:Minutes)	(Feet)	(Feet)	(Feet)	(FAMSL)	(Feet)
17:28	32:58	21.53	21.54	0.01	3.85	0.60
18:43	34:13	21.56	21.57	0.01	3.82	0.63
19:41	35:11	NP	21.63	0.00	3.75	0.70
20:57	36:27	21.59	21.60	0.01	3.79	0.66
22:29	37:59	21.65	21.66	0.01	3.73	0.72
2:19	41:49	NP	21.69	0.00	3.69	0.76
8:14	47:44	21.68	21.69	0.01	3.70	0.75
10:13	49:43	21.73	21.74	0.01	3.65	0.80
11:43	51:13	NP	21.78	0.00	3.60	0.85
13:43	53:13	NP	21.77	0.00	3.61	0.84
15.13	54:43	NP	21.80	0.00	3.58	0.87
15:44	55:14	NP	21.65	0.00	3.73	0.72
16:14	55:44	NP	21.38	0.00	4.00	0.45

NOTES:

Test started at 8:30 on 10/1/02 and ended at 15:30 on 10/3/02

FAMSL = Feet above mean sea level

Corrected groundwater elevation = TOC - (Depth to groundwater - (Product thickness * specific gravity))

S:\Clients\Sunoco\26th Street\Aquifer Test Data\{obs well data.xis]PZ-402

SUNOCO, INC. PHILADELPHIA REFINERY 26th STREET INVESTIGATION

Top of Casing Elevation = 27.95 FAMSL Product Specific Gravity = 0.76

[Apparent	Corrected	
	Elapsed	Depth	Depth	Product	Groundwater	Corrected
Time	Time	To Product	To Water	Thickness	Elevation	Drawdown
	(Hour:Minutes)	(Feet)	(Feet)	(Feet)	(FAMSL)	(Feet)
8:30	0:00	NP	23.44	0.00	4.51	0.00
8:35	0:05	NP	23.43	0.00	4.52	-0.01
8:39	0:09	NP	23.44	0.00	4.51	0.00
8:45	0:15	NP	23.45	0.00	4.50	0.01
8:53	0:23	NP	23.48	0.00	4.47	0.04
8:59	0:29	NP	23.49	0.00	4.46	0.05
9:05	0:35	NP	23.50	0.00	4.45	0.06
9:14	0:44	NP	23.51	0.00	4.44	0.07
9:18	0:48	NP	23.52	0.00	4.43	0.08
9:23	0:53	NP	23.53	0.00	4.42	0.09
9:30	1:00	NP	23.53	0.00	4.42	0.09
9:35	1:05	NP	23.54	0.00	4.41	0.10
9:37	1:07	NP	23.54	0.00	4.41	0.10
9:45	1:15	NP	23.54	0.00	4.41	0.10
10:09	1:39	NP	23.56	0.00	4.39	0.12
10:32	2:02	NP	23.56	0.00	4.39	0.12
11:01	2:31	NP	23.57	0.00	4.38	0.13
11:42	3:12	NP	23.59	0.00	4.36	0.15
12:59	4:29	NP	23.60	0.00	4.35	0.16
14:10	5:40	NP	23.59	0.00	4.36	0.15
15:19	6:49	NP	23.60	0.00	4.35	0,16
16:57	8:27	NP	23.64	0.00	4.31	0.20
18:02	9:32	NP	23.65	0.00	4.30	0.21
19:07	10:37	NP	23.66	0.00	4.29	0.22
20:03	11:33	NP	23.67	0.00	4.28	0.23
21:08	12:38	NP	23.68	0.00	4.27	0.24
22:10	13:40	NP.	23.69	0.00	4.26	0.25
23:27	14:57	NP	23.70	0.00	4.25	0.26
0:08	15:38	NP	23.70	0.00	4.25	0.26
8:41	24:11	NP	23.71	0.00	4.24	0.27
10:10	25:40	NP	23.71	0.00	4.24	0.27
10:36	26:06	NP	23.69	0.00	4.26	0.25
13:18	28:48	NP	23.68	0.00	4.27	0.24
14:14	29:44	NP	23.68	0.00	4.27	0.24
15:39	31:09	NP	23.71	0.00	4.24	0.27
16:14	31:44	NP	23.74	0.00	4.21	0.30

SUNOCO, INC. PHILADELPHIA REFINERY 26th STREET INVESTIGATION

Top of Casing Elevation = 27.95 FAMSL Product Specific Gravity = 0.76

				Apparent	Corrected	
	Elapsed	Depth	Depth	Product	Groundwater	Corrected
Time	Time	To Product	To Water	Thickness	Elevation	Drawdown
	(Hour:Minutes)	(Feet)	(Feet)	(Feet)	(FAMSL)	(Feet)
17:26	32:56	NP	23.79	0.00	4.16	0.35
18:38	34:08	NP	23.81	0.00	4.14	0.37
19:40	35:10	NP	23.85	0.00	4.10	0.41
20:56	36:26	NP	23.85	0.00	4.10	0.41
22:24	37:54	NP	23.86	0.00	4.09	0.42
2:13	41:43	NP	23.91	0.00	4.04	0.47
8:10	47:40	NP	23.95	0.00	4.00	0.51
10:11	49:41	NP	23.98	0.00	3.97	0.54
11:42	51:12	NP	23.96	0.00	3.99	0.52
13:42	53:12	NP	23.97	0.00	3.98	0.53
15:10	54:40	NP	24.00	0.00	3.95	0.56
15:43	55:13	NP	23.99	0.00	3.96	0.55
16:13	55:43	NP	23.91	0.00	4.04	0.47

NOTES:

Test started at 8:30 on 10/1/02 and ended at 15:30 on 10/3/02

FAMSL = Feet above mean sea level

Corrected groundwater elevation = TOC - (Depth to groundwater - (Product thickness * specific gravity))

S:\Clients\Sunoco\26th Street\Aquifer Test Data\jobs well data.xls]MW-K

SUNOCO, INC. PHILADELPHIA REFINERY 26th STREET INVESTIGATION

Top of Casing Elevation = 29.27 FAMSL Product Specific Gravity = 0.76

				Apparent	Corrected	
	Elapsed	Depth	Depth	Product	Groundwater	Corrected
Time	Time	To Product	To Water	Thickness	Elevation	Drawdown
	(Hour:Minutes)	(Feet)	(Feet)	(Feet)	(FAMSL)	(Feet)
8:30	0:00	23.42	23.63	0.21	5.80	0.00
8:34	0:04	23.41	23.62	0.21	5.81	-0.01
8:38	0:08	23.41	23.62	0.21	5.81	-0.01
8:43	0:13	23.41	23.60	0.19	5.81	-0.01
8:51	0:21	23.41	23.60	0.19	5.81	-0.01
8:57	0:27	23.41	23.60	0.19	5.81	-0.01
9:03	0:33	23.40	23.60	0.20	5.82	-0.02
9:11	0:41	23.38	23.59	0.21	5.84	-0.04
9:17	0:47	23.38	23.60	0.22	5.84	-0.04
9:21	0:51	23.38	23.59	0.21	5.84	-0.04
9:28	0:58	23.38	23.58	0.20	5.84	-0.04
9:34	1:04	23.38	23.59	0.21	5.84	-0.04
9:38	1:08	23.38	23.59	0.21	5.84	-0.04
9:43	1:13	23.38	23.58	0.20	5.84	-0.04
10:08	1:38	23.38	23.59	0.21	5.84	-0.04
10:31	2:01	23.38	23.58	0.20	5.84	-0.04
11:00	2:30	23.38	23.60	0.22	5.84	-0.04
11:40	3:10	23.39	23.58	0.19	5.83	-0.03
12:58	4:28	23.38	23.58	0.20	5.84	-0.04
14:09	5:39	23.38	23.59	0.21	5.84	-0.04
15:17	6:47	23.38	23.58	0.20	5.84	-0.04
16:56	8:26	23.39	23.59	0.20	5.83	-0.03
18:00	9:30	23.40	23.60	0.20	5.82	-0.02
19:05	10:35	23.40	23.61	0.21	5.82	-0.02
20:02	11:32	23.40	23.61	0.21	5.82	-0.02
21:05	12:35	23.40	23.61	0.21	5.82	-0.02
22:08	13:38	23.41	23.62	0.21	5.81	-0.01
23:25	14:55	23.41	23.61	0.20	5.81	-0.01
0:05	15:35	23.41	23.61	0.20	5.81	-0.01
8:38	24:08	23.45	23.68	0.23	5.76	0.03
10:05	25:35	23.46	23.68	0.22	5.76	0.04
11:34	27:04	23.46	23.69	0.23	5.75	0.04
13:17	28:47	23.46	23.68	0.22	5.76	0.04
14:13	29:43	23.46	23.69	0.23	5.75	0.04
15:38	31:08	23.47	23.69	0.22	5.75	0.05
16:13	31:43	23.47	23.69	0.22	5.75	0.05

SUNOCO, INC. PHILADELPHIA REFINERY 26th STREET INVESTIGATION

Top of Casing Elevation = 29.27 FAMSL Product Specific Gravity = 0.76

				Apparent	Corrected	
	Elapsed	Depth	Depth	Product	Groundwater	Corrected
Time	Time	To Product	To Water	Thickness	Elevation	Drawdown
	(Hour:Minutes)	(Feet)	(Feet)	(Feet)	(FAMSL)	(Feet)
17:32	33:02	23.47	23.68	0.21	5.75	0.05
18:37	34:07	23.47	23.68	0.21	5.75	0.05
19:39	35:09	23.47	23.67	0.20	5.75	0.05
20:52	36:22	23.48	23.68	0.20	5.74	0.06
22:22	37:52	23.49	23.70	0.21	5.73	0.07
2:11	41:41	23.50	23.70	0.20	5.72	0.08
8:07	47:37	23.54	23.75	0.21	5.68	0.12
10:07	49:37	23.55	23.75	0.20	5.67	0.13
11:38	51:08	23.55	23.76	0.21	5.67	0.13
13:38	53:08	23.56	23.74	0.18	5.67	0.13
15:07	55:08	23.56	23.77	0.21	5.66	0.14
15:33	55:03	23.56	23.76	0.20	5.66	0.14
16:08	55:38	23.56	23.76	0.20	5.66	0.14

NOTES:

Test started at 8:30 on 10/1/02 and ended at 15:30 on 10/3/02

FAMSL = Feet above mean sea level

Corrected groundwater elevation = TOC - (Depth to groundwater - (Product thickness * specific gravity))

S:\Clients\Sunoco\26th Street\Aquifer Test Data\[obs well data.xls]S-B2

SUNOCO, INC. PHILADELPHIA REFINERY 26th STREET INVESTIGATION

Top of Casing Elevation = 23.69 FAMSL Product Specific Gravity = 0.76

				Apparent	Corrected	
	Elapsed	Depth	Depth	Product	Groundwater	Corrected
Time	Time	To Product	To Water	Thickness	Elevation	Drawdown
	(Hour:Minutes)	(Feet)	(Feet)	(Feet)	(FAMSL)	(Feet)
8:30	0:00	21.15	21.19	0.04	2.53	0.00
8:46	0:16	21.17	21.22	0.05	2.51	0.02
9:05	0:35	21.15	21.20	0.05	2.53	0.00
9:46	1:16	21.14	21.19	0.05	2.54	-0.01
11:03	2:33	21.12	21.17	0.05	2.56	-0.03
13:02	4:32	21.10	21.15	0.05	2.58	-0.05
19:09	10:39	21.13	21.17	0.04	2.55	-0.02
22:15	13:45	21.15	21.20	0.05	2.53	0.00
23:34	15:04	21.15	21.20	0.05	2.53	0.00
8:44	24:14	21.16	21.23	0.07	2.51	0.02
11:41	27:11	21.14	21.21	0.07	2.53	0.00
14:17	29:47	21.10	21.16	0.06	2.58	-0.05
18:42	34:12	21.11	21.15	0.04	2.57	-0.04
22:27	37:57	21.15	21.20	0.05	2.53	0.00
2:17	41:47	21.18	21.23	0.05	2.50	0.03
8:09	47:39	21.21	21.28	0.07	2.46	0.07
10:09	49:39	21.24	21.30	0.06	2.44	0.09
11:40	51:10	21.22	21.29	0.07	2.45	0.08
13:41	53:11	21.22	21.28	0.06	2.46	0.07
15:08	54:38	21.22	21.28	0.06	2.46	0.07
15:41	55:11	21.23	21.29	0.06	2.45	0.08
16:11	55:41	21.23	21.29	0.06	2.45	0.08

NOTES:

Test started at 8:30 on 10/1/02 and ended at 15:30 on 10/3/02

FAMSL = Feet above mean sea level

Corrected groundwater elevation = TOC - (Depth to groundwater - (Product thickness * specific gravity))

S:\Clients\Sunoco\26th Street\Aquifer Test Data\[obs well data.xls]RW-402

APPENDIX D

Slug Test Data Graphs

APPENDIX E

RW-400 Series Recovery Wells Capacity Test Data

.

RW-402 Step Drawdown Test

RW-402 STEP DRAWDOWN TEST

SUNOCO, INC. PHILADELPHIA REFINERY 26th STREET INVESTIGATION

Top of Casing Elevation = 23.69 FAMSL Product Specific Gravity = 0.76

				Apparent		
	Elapsed	Depth	Depth	Product	LNAPL	Groundwater
Time	Time	To LNAPL	To Water	Thickness	Elevation	Elevation
	(Hour:Minutes)	(Feet)	(Feet)	(Feet)	(FAMSL)	(FAMSL)
11:16	0:00	19.10	19.25	0.15	4.59	4.44
11:22	0:06	19.40	19.45	0.05	4.29	4.24
11:28	0:12	19.60	19.75	0.15	4.09	3.94
11:35	0:19	19.64	19.81	0.17	4.05	3.88
11:49	0:33	20.10	20.28	0.18	3.59	3.41
12:00	0:44	20.42	20.60	0.18	3.27	3.09
12:16	1:00	20.55	20.72	0.17	3.14	2.97
12:29	1:13	20.63	20.81	0.18	3.06	2.88
12:35	1:19	21.12	21.30	0.18	2.57	2.39
12:42	1:26	21.28	21.46	0.18	2.41	2.23
12:57	1:41	21.37	21.60	0.23	2.32	2.09
13:10	1:54	21.44	21.62	0.18	2.25	2.07
13:20	2:04	21.50	21.68	0.18	2.19	2.01
13:49	2:33	21.55	21.86	0.31	2.14	1.83

NOTES:

Test started at 11:17 and ended at 13:55 on 11/14/02

FAMSL = Feet above mean sea level

Corrected groundwater elevation = TOC - (Depth to groundwater - (Product thickness * specific gravity)) S:\Clients\Sunoco\26th Street\Step Drawdown Tests\[RW-402 Step Test.xis]RW-402

RW-402 STEP DRAWDOWN TEST OBSERVATION WELL DATA - S-125

SUNOCO, INC. PHILADELPHIA REFINERY 26th STREET INVESTIGATION

Top of Casing Elevation = 27.95 FAMSL Product Specific Gravity = 0.76

				Apparent	Corrected	
	Elapsed	Depth	Depth	Product	Groundwater	Corrected
Time	Time	To Product	To Water	Thickness	Elevation	Drawdown
	(Hour:Minutes)	(Feet)	(Feet)	(Feet)	(FAMSL)	(Feet)
11:21	0:00		23.14	0.00	4.81	0.00
12:22	1:01		23.11	0.00	4.84	-0.03
13:22	2:01		23.12	0.00	4.83	-0.02
13:52	2:31		23.12	0.00	4.83	-0.02

NOTES:

Test started at 11:17 and ended at 13:55 on 11/14/02

FAMSL = Feet above mean sea level

Corrected groundwater elevation = TOC - (Depth to groundwater - (Product thickness * specific gravity))

S:\Clients\Sunoco\26th Street\Step Drawdown Tests\[RW-402 Step Test.xls]S-125

RW-403 Step Drawdown Test

Elapsed Time (Hours:Minutes)

RW-403 STEP DRAWDOWN TEST

SUNOCO, INC. PHILADELPHIA REFINERY 26th STREET INVESTIGATION

Top of Casing Elevation = 26.02 FAMSL Product Specific Gravity = 0.76

				Apparent		
	Elapsed	Depth	Depth	Product	LNAPL	Groundwater
Time	Time	To LNAPL	To Water	Thickness	Elevation	Elevation
	(Hour:Minutes)	(Feet)	(Feet)	(Feet)	(FAMSL)	(FAMSL)
11:14	0:00		22.36	0.00	· · · · · · · · · · · · · · · · · · ·	3.66
11:16	0:02		23.45	0.00		2.57
11:19	0:05	I	23.61	0.00		2.41
11:23	0:09		23.81	0.00		2.21
11:32	0:18		24.01	0.00		2.01
11:47	0:33	Film	24.11	0.00		1.91
11:56	0:42	24.98	24.99	0.01	1.04	1.03
12:11	0:57	26.24	26.25	0.01	-0.22	-0.23
12:33	1:19	28.19	28.20	0.01	-2.17	-2.18
13:01	1:47	30.28	30.31	0.03	-4.26	-4.29
13:16	2:02	31.37	31.42	0.05	-5.35	-5.40

NOTES:

Test started at 11:14 and ended at 13:16 on 11/20/02

FAMSL = Feet above mean sea level

Corrected groundwater elevation = TOC - (Depth to groundwater - (Product thickness * specific gravity)) S:\Clients\Sunoco\26th Street\Step Drawdown Tests\[RW-403Step Test_xis]RW-403

RW-403 STEP DRAWDOWN TEST OBSERVATION WELL DATA - S-84

SUNOCO, INC. PHILADELPHIA REFINERY 26th STREET INVESTIGATION

Top of Casing Elevation = 25.05 FAMSL Product Specific Gravity = 0.76

				Apparent	Corrected	
-	Elapsed	Depth	Depth	Product	Groundwater	Corrected
Time	Time	To Product	To Water	Thickness	Elevation	Drawdown
	(Hour:Minutes)	(Feet)	(Feet)	(Feet)	(FAMSL)	(Feet)
11:12	0:00		18.05	0.00	7.00	0.00
11:22	0:10		17.15	0.00	7.90	-0.90
11:36	0:24		16.70	0.00	8.35	-1.35
11:58	0:46		16.13	0.00	8.92	-1.92
12:15	1:03		16.00	0.00	9.05	-2.05
12:50	1:38		15.95	0.00	9.10	-2.10
13:04	1:52	·	15.96	0.00	9.09	-2.09
13:14	2:02		15.97	0.00	9.08	-2.08

NOTES:

Test started at 11:14 and ended at 13:16 on 11/20/02

FAMSL = Feet above mean sea level

Corrected groundwater elevation = TOC - (Depth to groundwater - (Product thickness * specific gravity))

S:\Clients\Sunoco\26th Street\Step Drawdown Tests\[RW-403Step Test.xls]S-84

RW-404 Step Test

 \bigcirc

RW-404 STEP DRAWDOWN TEST

SUNOCO, INC. PHILADELPHIA REFINERY 26th STREET INVESTIGATION

Top of Casing Elevation = 25.62 FAMSL Product Specific Gravity = 0.76

				Apparent	
	Elapsed	Depth	Depth	Product	Groundwater
Time	Time	To LNAPL	To Water	Thickness	Elevation
	(Hour:Minutes)	(Feet)	(Feet)	(Feet)	(FAMSL)
14:14	0:00		24.21	0.00	1.41
14:41	0:27		26.32	0.00	-0.70
14:56	0:42		29.21	0.00	-3.59
15:15	1:01		29.50	0.00	-3.88
15:36	1:22		29.85	0.00	-4.23

NOTES:

Test started at 14:37 and ended at 15:36 on 11/14/02

FAMSL = Feet above mean sea level

Corrected groundwater elevation = TOC - (Depth to groundwater - (Product thickness * specific gravity)) s:\Clients\Sunoco\26th Street\Step Tests\[RW-404 Step Test.xis]RW-404

RW-404 STEP DRAWDOWN TEST OBSERVATION WELL DATA - S-85

SUNOCO, INC. PHILADELPHIA REFINERY 26th STREET INVESTIGATION

Top of Casing Elevation = 26.93 FAMSL Product Specific Gravity = 0.76

				Apparent	Corrected	
	Elapsed	Depth	Depth	Product	Groundwater	Corrected
Time	Time	To Product	To Water	Thickness	Elevation	Drawdown
	(Hour:Minutes)	(Feet)	(Feet)	(Feet)	(FAMSL)	(Feet)
14:30	0:00		25.43	0.00	1.50	0.00
14:59	0:29		25.48	0.00	1.45	0.05
15:19	0:49		25.54	0.00	1.39	0.11
15:39	1:09		25.57	0.00	1.36	0.14

NOTES:

Test started at 14:37 and ended at 15:36 on 11/14/02

FAMSL = Feet above mean sea level

Corrected groundwater elevation = TOC - (Depth to groundwater - (Product thickness * specific gravity))

S:\Clients\Sunoco\26th Street\Step Tests\[RW-404 Step Test.xls]S-85

RW-404 STEP DRAWDOWN TEST OBSERVATION WELL DATA - S-88A

SUNOCO, INC. PHILADELPHIA REFINERY 26th STREET INVESTIGATION

Top of Casing Elevation = 26.78 FAMSL. Product Specific Gravity = 0.76

				Apparent	Corrected	1
	Elapsed	Depth	Depth	Product	Groundwater	Corrected
Time	Time	To Product	To Water	Thickness	Elevation	Drawdown
	(Hour:Minutes)	(Feet)	(Feet)	(Feet)	(FAMSL)	(Feet)
14:35	0:00		26.72	0.00	0.06	0.00
15:00	0:25	 '	26.72	0.00	0.06	0.00
15:22	0:47		26.68	0.00	0.10	-0.04

NOTES:

Test started at 14:37 and ended at 15:36 on 11/14/02

FAMSL = Feet above mean sea level

Corrected groundwater elevation = TOC - (Depth to groundwater - (Product thickness * specific gravity))

S:\Clients\Sunoco\26th Street\Step Tests\[RW-404 Step Test.xis]S-88A

RW-405 Step Drawdown Test

 \bigcirc

()

RW-405 STEP DRAWDOWN TEST

SUNOCO, INC. PHILADELPHIA REFINERY 26th STREET INVESTIGATION

Top of Casing Elevation = 26.08 FAMSL Product Specific Gravity = 0.76

				Apparent				
	Elapsed	Depth	Depth	Product	LNAPL	Groundwater		
Time	Time	To LNAPL	To Water	Thickness	Elevation	Elevation		
	(Hour:Minutes)	(Feet)	(Feet)	(Feet)	(FAMSL)	(FAMSL)		
8:36	0:00	26.67	27.92	1.25	-0.59	-1.84		
8:41	0:05	27.42	29.09	1.67	-1.34	-3.01		
8:44	0:08	27.08	28.82	1.74	-1.00	-2.74		
8:47	0:11	26.96	28.82	1.86	-0.88	-2.74		
8:52	0:16	26.93	28.92	1.99	-0.85	-2.84		
8:58	0:22	26.86	28.95	2.09	-0.78	-2.87		
9:03	0:27	26.82	29.06	2.24	-0.74	-2.98		
9:16	0:40	26.76	29.06	2.30	-0.68	-2.98		
9:33	0:57	26.80	29.42	2.62	-0.72	-3.34		
9:47	1:11	26.79	29.52	2.73	-0.71	-3.44		
9:58	1:22	26.77	29.52	2.75	-0.69	-3.44		
10:18	1:42	26.74	29.66	2.92	-0.66	-3.58		
10:26	1:50	26.96	29.95	2.99	-0.88	-3.87		
10:44	2:08	27.01	30.78	3.77	-0.93	-4.70		
11:05	2:29	26.94	31.36	4.42	-0.86	-5.28		
11:25	2:49	26.84	31.50	4.66	-0.76	-5.42		
12:10	3:34	27.30	28.77	1.47	-1.22	-2.69		
12:43	4:07	26.85	29.38	2.53	-0.77	-3.30		
12:59	4:23	26.40	28.79	2.39	-0.32	-2.71		
13:01	4:25	26.31	28.53	2.22	-0.23	-2.45		
13:06	4:30	26.42	28.26	1.84	-0.34	-2.18		
13:17	4:41	26.52	27.98	1.46	-0.44	-1.90		
13:35	4:59	26.58	27.61	1.03	-0.50	-1.53		
13:45	5:09	26.55	27.37	0.82	-0.47	-1.29		
13:51	5:15	27.84	28.98	1.14	-1.76	-2.90		
13:57	5:21	27.90	29.42	1.52	-1.82	-3.34		
14:10	5:34	27.88	30.21	2.33	-1.80	-4.13		
14:16	5:40	27.85	30.50	2.65	-1.77	-4.42		
14:38	6:02	27.73	31.46	3.73	-1.65	-5.38		
14:50	6:14 27.69		31.89	4.20	-1.61	-5.81		

NOTES:

Test started at 8:36 and ended at 14:53 on 11/13/02

FAMSL = Feet above mean sea level

Corrected groundwater elevation = TOC - (Depth to groundwater - (Product thickness * specific gravity)) S:\Clients\Sunoco\26th Street\[RW-405 Step Test.xls]RW-405

RW-405 STEP DRAWDOWN TEST OBSERVATION WELL DATA - S-89

SUNOCO, INC. PHILADELPHIA REFINERY 26th STREET INVESTIGATION

Top of Casing Elevation = 27.99 FAMSL Product Specific Gravity = 0.76

· ·				Apparent	Corrected	
	Elapsed	Depth	Depth	Product	Groundwater	Corrected
Time	Time	To Product	To Water	Thickness	Elevation	Drawdown
	(Hour:Minutes)	(Feet)	(Feet)	(Feet)	(FAMSL)	(Feet)
8:27	0:00	27.91	29.15	-0.22	0.00	
9:21	0:54	27.97	29.26	1.29	-0.29	0.07
10:00	1:33	27.97	29.28	1.31	-0.29	0.07
10:21	1:54	27.98	29.29	1.31	-0.30	0.08
10:46	2:19	27.99	29.34	1.35	-0.32	0.10
11:15	2:48	28.00	29.48	1.48	-0.37	0.15
11:28	3:01	27.97	29.43	1.46	-0.33	<u>0.11</u>
12:19	3:52	27.95	29.43	1.48	-0.32	0.10
13:10	4:43	27.95	29.17	1.22	-0.25	0.03
13:38	5:11	27.96	29.09	1.13	-0.24	0.02
14:06	5:39	28.06	29.40	1.34	-0.39	0.17
14:18	5:51	28.09	29.52	1.43	-0.44	0.22
14:43	6:16	28.05	29.65	1.60	-0.44	0.22

NOTES:

Test started at 8:36 and ended at 14:53 on 11/13/02

FAMSL = Feet above mean sea level

Corrected groundwater elevation = TOC - (Depth to groundwater - (Product thickness * specific gravity))

S:\Clients\Sunoco\26th Street\[RW-405 Step Test.xis]S-89

RW-405 STEP DRAWDOWN TEST OBSERVATION WELL DATA - PZ-404

SUNOCO, INC. PHILADELPHIA REFINERY 26th STREET INVESTIGATION

Top of Casing Elevation = 28.02 FAMSL Product Specific Gravity = 0.76

				Apparent	Corrected	
	Elapsed	Depth	Depth	Product	Groundwater	Corrected
Time	Time	To Product	To Water	Thickness	Elevation	Drawdown
	(Hour:Minutes)	(Feet)	(Feet)	(Feet)	(FAMSL)	(Feet)
8:28	0:00	27.90	29.34	1.44	-0.23	0.00
9:22	0:54	27.95	29.46	1.51	-0.29	0.06
10:01	1:33	27.95	29.44	1.49	-0.29	0.06
10:22	1:54	27.95	29.44	1.49	-0.29	0.07
10:47	2:19	27.97	29.52	1.55	-0.32	0.09
11:17	2:49	27.97	29.60	1.63	-0.34	0.14
11:29	3:01	27.96	29.54	1.58	-0.32	0.10
12:20	3:52	27.93	29.50	1.57	-0.29	0.09
13:12	4:44	27.91	29.31	1.40	-0.23	0.02
13:40	5:12	27.89	29.25	1.36	-0.20	0.01
14:07	5:39	28.01	29.68	1.67	-0.39	0.16
14:19	5:51	28.02	29.75	1.73	-0.42	0.21
14:45	6:17	28.01	29.75	1.74	-0.41	0.21

NOTES:

Test started at 8:36 and ended at 14:53 on 11/13/02

FAMSL = Feet above mean sea leve!

Corrected groundwater elevation = TOC - (Depth to groundwater - (Product thickness * specific gravity))

S:\Clients\Sunoco\26th Street\[RW-405 Step Test.xis]PZ-404

RW-405 STEP DRAWDOWN TEST OBSERVATION WELL DATA - PZ-403

SUNOCO, INC. PHILADELPHIA REFINERY 26th STREET INVESTIGATION

Top of Casing Elevation = 28.27 FAMSL Product Specific Gravity = 0.76

				Apparent	Corrected	
	Elapsed	Depth	Depth	Product	Groundwater	Corrected
Time	Time	To Product	To Water	Thickness	Elevation	Drawdown
	(Hour:Minutes)	(Feet)	(Feet)	(Feet)	(FAMSL)	(Feet)
8:29	0:00	25.85	26.20	0.35	2.34	0.00
9:23	0:54	26.05	26.35	0.30	2.15	0.19
10:02	1:33	26.07	26.39	0.32	2.12	0.22
10:23	1:54	26.09	26.39	0.30	2.11	0.23
10:48	2:19	26.08	26.36	0.28	2.12	0.22
11:20	2:51	26.13	26.51	0.38	2.05	0.29
11:30	3:01	26.13	26.39	0.26	2.08	0.26
12:22	3:53	26.10	26.40	0.30	2.10	0.24
13:14	4:45	26.11	26.43	0.32	2.08	0.26
13:42	5:13	26.13	26.45	0.32	2.06	0.28
14:08	5:39	26.18	26.45	0.27	2.03	0.31
14:20	5:51	26.22	26.43	0.21	2.00	0.34
14:46	6:17	26.22	26.46	0.24	1.99	0.35

NOTES:

Test started at 8:36 and ended at 14:53 on 11/13/02

FAMSL = Feet above mean sea level

Corrected groundwater elevation = TOC - (Depth to groundwater - (Product thickness * specific gravity))

S:\Clients\Sunoco\26th Street\[RW-405 Step Test.xls]PZ-403

APPENDIX F

Annual Groundwater Sampling Analytical Data

.

TABLE 1

HISTORICAL GROUND WATER SAMPLING RESULTS

SUNOCO, INC. (R+M) PHILADELPHIA REFINERY POINT BREEZE PROCESSING AREA

		INORGANIC										ME	TALS				VOLAT	ILE OR	GANICS	3		BA	SE/NEU	TRAL	ORGANI	cs			
Sample Well	Date Collected	Alkalinity (mg/l)	Chloride (mg/l)	Specific Conductance (umhos/cm)	Fluoride (mg/l)	pH (Standard units)	Nitrogen, Ammonia (mg/l)	Nitrogen, Nitrate- Nitrite (mg/l)	Sulfate (mg/l)	Total Dissolved Solids (mg/l)	Total Organic Carbon (mg/l)	Arsenic (mg/l)	Barium (mg/l)	Cobalt (mg/l)	Chromium (mg/l)	Lead (mg/l)	Selenium (mg/l)	Benzene (ug/l)	Toluene (ug/l)	Ethyl-Benzene (ug/l)	Total Xylenes (ug/l)	MTBE (ug/l)	Benzo (a) anthracene (ug/l)	Benzo (b) fluoranthene (ug/l)	Benzo (a) pyrene (ug/l)	Bis (2-ethylhexyl) phthalate (ug/l)	Chrysene (ug/l)	Dibenz (a,h) anthracene (ug/l)	Indene (ug/l)
N-64	1993	619	110	1,450	0.70	6.91	1.1	BDL	40	860	25	0.071	Ö	BDL	BDL	0.19	0.02	BDL	BOL	BDL	BDL	NA	BDL	BDL	BDL	BDL	BDL	BDL .	BDL
	1994	520	12	1,000	0.65	6.70	1.4	<0.1	37	630	35	0.018	0.29	0.027	<0.02	0.45	<0.01	<250	<250	90 J	<500	NA	<10	<10	<10	<10	<10	<10	<10
	1995	400	24.8	680	0.56	6.92	2.31	0.16	361	500	67	0,994	4.120	0.102	BDL	5.440	0.0205	BDL.	BDL	BDL.	BDL	NA	BDL	BDL	BDL.	BDL	BDL	BDL.	BDL
	1996	460	16	840	0.80	6.72	<0.50	<0.050	11	500	21	0,076	7.9	0.22	<0.025	6.0	0.017	ND	ND	ND	ND	NA	ND	ND	ND	3	ND	ND	ND
	1997	530	4,8	790	0.54	7.11	<0.50	<0.050	15	590	24	2.8	17	0.57	0.050	20	0.019	ND	ND	ND		NA		ND	ND	NU	1	ND	
	1998	600	6,7	680	0.64	6;6	1.1	0.060	2.6	550	30	2.9	16	0.54	0.054	18	<0.050	ND	NU	NU		NA NA		NU	NU e1		-1	<1 ND	<10
	1999	510	8.5	740	0,66	7,86	0.56	<0.050	23	540	43	7,6	41	1,3	0.1Z ⊿0.010	42	20,20				~2	- MA			-2		ंत	<4	<10
	2000	470	70.2	640	1.14	7.20	13.5	0,12	3.58	430	23.6	0,017	<0.100	0,119	0.07	8.09	<0.020		21	~1		<1	3	-3	3	22	4	<4	<10
1	2001	410	7,0	780	1.05	7.40	4.7	<0.10	3,4 10,4	430	20,3	19.300	3.15	0.175	<0.02	0.815	<0.020	ND (1)	ND (1)	ND (1)	ND (1)		ND (1)		ND (1)	2	ND (2)	ND (2)	ND (10)
0.4	2002	280	6.36	692	0.03	42.55	2.32	0.20	25	1970	24.5	0.007	<u> </u>	0.002	0.006	0.03	BDI	BDL	BOL	BDL	BDL	NA	BDL	BDL	BDL	BDL	BDL	BDL	BDL
5-1	1955	944 160	20	4,020	1.10	10:10	72	BDI	115	390	45	0.001	0.017	BDL.	BDL	BOL	BDL	BDL	BDL	BDL	BDL	NA	BDL	BOL	BDL	BDL	BDL	BDL	BDL
	1088	140	42	572	11	8 70	29	BDI	62	370	64	BDL	0.04	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	NA	BDL	BDL	BDL	21	BDL	BDL	BDL
	1993	52	12	229	1	9.62	0.9	1.3	36	150	9	0.012	N/A	BDL	N/A	BDL	N/A	BDL	BDL	BDL	BDL	ŃA	BDL	BDL	BDL	BDL	BDL	BDL	BDL
	1994	340	12	1.200	0.57	11.80	2.2	2.2	13	400	13	<0.005	0.56	0,049	0,029	0,31	<0.005	<50	<50	<50	<100	NA	<10	<10	<10	<10	<10	<10	<10
	1995	154	21.3	180	0.64	9.17	5.19	0.11	491	306	16	0.0105	0,101	BDL	8DL	0.255	BDL	2.7	BDL	BDL	0.8 J	NA	BDL	BDL	BDL	BOL	BDL	BDL	BDL
	1998	48	22	190	0,41	9.74	3.9	0,28	9.2	150	11	0,015	0.14	<0,020	0.035	0.65	< 0.0050	ND	ND	ND	ND	NA	DN D	ND	ND	Э	ND	ND	ND
	1997	220	12	750	0.38	11.66	2.1	0.68	8,5	290	15	0.017	<0,20	<0.050	0,061	0,65	<0.0050	ND	ND	ND	2	NA	ND	ND	ND	2	ND	ND	ND
	1998	74	14	140	0.51	8,9	<0,50	2.2	22	140	8.1	<0.0080	<0.10	<0.010	0.014	0,080	<0.020	ND	ND	ND	ND	NA	ND	ND	ND	2	ND	ND	ND
	1999	120	6.6	200	0.29	8.93	0.90	0.11	25	170	17	0.010	0,25	0.018	0.059	0,58	<0,020	<1	<1	<1	<2	NA		<1	1	2		<1	<10
	2000	190	170	570	0,66	7.80	<0.5	0.37	48.9	360	4.35	0.124	0.522	0,024	0.103	1.11	<0,020	<1	1		<2	10	1.2	3	<2	<3	1.4	<4	<100
	2001	460	103	1,200	0.73	7.40	5.11	0,97	4.73	540	18.9	0.039	7,430	0,347	0,509	6,38	<0.020	<1 ND	1 41		J	30		MC	~20 MS	NIC	12	NG	NS
	2002	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS_	NS	NS	N5	ND	N5	NS DD/		<u> Na</u>		NA		801		17	80	801	801
S-3	1985	540	67	1,260	0.40	7.21	BDL	BDL	37	900	2/0	0,006	BUL	0.012		PDL		BOL	201	BDL	BDL		BDI	801	BDI	BDL.	BDL	BDL	BDL
	1986	553	63	1,340	0.5	6.80		BUL	30	130		0.002	0.14	BDI	BDI	0.007	BDI	BDI	BDL	BDL	BDL	NA	BDL	BDL	SDL	BDL	BDL	BDL	BDL
	1988	296	25	738	0.9	7.30	BDL	3.2	4/	460	90 ·	0.000	NUA	BDL	N/A	BDI	N/A	BDI	BDI	BDI	BDF	NA	BDL	BDL	BDI.	BDL	BDL	BDL	BDL
	1993	689	38	1,320	0,5	6.76	4.6	0.0	200	670	24	0.0127	0.55	0.014	<0.02	0.37	<0.005	2.	<5	<5	<10	NA	<10	<10	<10	<10	<10	<10	<10
	1994	630	44	1,500	0.47	0.30	6.5	0.11	424	808	1	901	0.00	BDI	BDI	BDL	BDL	1.3	BDL	BDL	BOL	NA	BDL	BDL	BDL	L9	BDL	BDL	SDL
	1995	540	04.9 	1,200	0.44	0.97	0.07	50L	45	720		0.038	0.52	0.031	0.091	0.30	< 0.0050	ND	ND	ND	ND	NA	ND	ND	ND	2	ND	ND	ND
i	1990	620	20	1,200	0.04	742	2.5	0.030	-20	600	1 18	0.011	<0.20	<0.050	<0.050	0.060	<0.0050	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND
	1997	630	35	840	0.47	6.6	34	0.080	52	740	19	0.082	1.50	0.10	0.36	0.62	<0,040	ND	ND	ND	ND	NA	ND	ND	ND	1	ND	ND	ND
	1999	470	26	610	10.01	8 13	32	<0.050	32	500	54	0.021	0.21	<0.010	0,019	0.090	<0.020	<1	<1	<1	<2	NA	<1	<1	<1	1	<1	<1	<10
	2000	520	120	900	0.58	7 80	9.83	0.23	8.4	600	28.1	0.013	0.185	<0.010	<0.010	0.035	<0.020	<1	<1	<1	<2	94	<	<3	<2	<3	<1	<4	<10
	2001	540	22	1,100	0.45	7.00	11.20	0.30	1.92	340	31.4	0.012	0.844	0.03	0.038	0.D60	<0.020	52	<2	<2 ·	<4	<2	2	<3	2	11	з	<4	<10
	2002	240	4.29	515	0.52	7.02	0.58	0.31	23.6	240	12.7	<0.008	<0.100	<0.010	<0.010	0.093	<0.020	ND (1)	ND (1)	ND (1)	ND (1)	4	ND (1)	ND (1)	ND (1)	ND (1)	ND (2)	ND (2)	ND (10)
-		<u> </u>					-	-					· ·																

TABLE 1

HISTORICAL GROUND WATER SAMPLING RESULTS

SUNOCO, INC. (R∔M) PHILADELPHIA REFINERY POINT BREEZE PROCESSING AREA

	INORGANIC													ME	TALS			VOLATILE ORGANICS BASE/NEUTRAL ORGANICS											
Sample Weil	Date Collected	Alkalinity (mg/l)	Chloride (mg/l)	Specific Conductance (umhos/cm)	Fluoride (mg/l)	oH (Standard units)	Nitrogen, Ammonia (mg/l)	Nitrogen, Nitrate- Nitrite (mg/l)	Sulfate (mg/l)	Total Dissolved Solids (mg/l)	Total Organic Carbon (mg/l)	Arsenic (mg/l)	Barium (mg/l)	Cobalt (mg/l)	Chromium (mg/l)	Lead (mg/l)	Selenium (mg/l)	Benzene (ug/l)	Toluene (ug/l)	Ethyl-Benzene (ug/l)	Total Xylenes (ug/l)	MTBE (ug/l)	Benzo (a) anthracene (ug/l)	Benzo (b) fluoranthene (ug/l)	Benzo (a) pyrene (ug/l)	Bis (2-ethylhexyl) phthalate (ug/l)	Chrysene (ug/l)	Dibenz (a,h) anthracene (ug/l)	Indene (ug/l)
\$-25	1985 1986 1988 1993 1994 1996 1997 1998 1999 2000	262 250 117 123 58 23 61 190 84 40.6	48 17 13 29 15 6,6 8,7 41 10 0,049	717 594 270 443 320 200 240 400 320 220	0,50 0.8 3 1.8 1.9 2.0 2.3 0,72 2.9 1.61	8,23 7,33 9,80 8,30 9,90 10,50 10,91 8,2 10,43 8,10	BDL 0.6 0.2 0.4 0.1 0.57 <0.50 <0.50 <0.50 <0.50 1.56	0,30 BDL 1,4 3,42 3,2 2,9 4,1 0,34 3,6 2,02	49 52 47 39 63 44 68 19 39 29.1	465 455 180 260 280 150 250 330 210 220	14 25 23 7 7.6 3.2 5.6 12 3.8 4.44	BDL 0,002 BDL 0,0058 <0,005 0,0051 0,0063 0,015 <0,0080 <0,008	0 0.037 0.007 N/A 0.16 0.039 <0.20 0.29 <0.10 <0.100	0.012 BDL BDL <0.02 <0.020 <0.050 <0.050 <0.010 <0.010	BDL BDL 0.03 N/A 0.13 0.099 0.16 0.19 0.13 0.049 0.13	BDL BDL BDL C.2 0.017 0.045 0.16 <0.010 0.024 0.024	BDL BDL 0,002 N/A <0.005 <0.050 <0.020 <0.020 <0.020 <0.020	BDL BDL BDL BDL SDL SDL ND ND ST 1	BDL BDL BDL SDL SDL SDL SD ND SD SD SD SD SD SD SD SD SD SD SD SD SD	BDL BDL BDL SDL SD ND ND SD SD SD SD SD SD SD SD SD SD SD SD SD	5 BDL BDL SDL SDL SDL SD ND ND S2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	NA NA NA NA NA NA NA 140	BDL BDL BDL BDL ND ND ND V V V V V V V V V V V V V V V	BDL BDL BDL BDL SDL SD ND ND SD SD SD SD SD SD SD SD SD SD SD SD SD	BDL BDL BDL SDL SDL SDL SD ND SD SD SD SD SD SD SD SD SDL SDL SDL SD	BDL BDL BDL 410 2 3 2 3 43 43	BDL BDL BDL BDL SDL SD ND ND SD SD SD SD SD SD SD SD SD SD SD SD SD	BDL BDL BDL BDL C10 ND ND C1 C4 C4	BDL BDL BDL 8DL 8DL 8DL 8DL 8D ND 810 810 810
	2001	130	21.300	370	0.94	8.00	<0.50	0.51	26,8	170	9,06	<0.008 <0.008	0,16	<0,010 <0,010	0,063	0.055	<0.020	ND (1)	ND (1)	ND (1)	ND (1)	2	ND (1)	ND (1)	ND (1)	3	ND (2)	ND (2)	ND (10)
S-38	1985	240	12	491	0.50	8.42	BDL	BDL	28	325	7.1	BDL	0	0.017	BDL	BDL	BDL	1200	BDL	BDL	BDL	NA	BDL	BDL	BDL	100	BDL	BDL	BDL.
	1986	160	10	420	1.5	6.84	0,1	BDL	29	245	14	BDL	0.042	0.013	BDL	BDL	BDL	1300	160	BDL 240	210	NA NA	BDL	BDL	BDL	BDL 11	BDL BDL	BDL BDL	23 12
	1988	131	10	368	2.8	6.70	BDL.	0.2	31	240	35. G	BOL 0.0065	0,039 N/A	BDL	N/A	BDL	N/A	310	120	60	94	NA	BOL	BDL	BDL	BDL	BDL	BDL	32
	1983	78	5	233	21	6.50	<0.1	1.4	30	260	4.3	0.005	0.20	0.031	0,089	0,34	<0,005	11	<5	<5	<10	NA	<10	<10	<10	<10	<10	<10	<10
	1995	134	24.3	240	2,19	6.65	BDL	0.58	1380	210	8	BDL	0.173	8DL	0.0403	0,202	BDL	300	42	80	100	NA	BDL	8DL	BDL	BDL	BDL	BDL	5 J
	1996	78	22	350	1.4	6.30	<0.50	1.4	58	240	2.7	0.026	0,21	0.047	D.14	0.29	<0.050	9,3	5,5	3,9	4.4	NA	ND	ND	ND	2	ND	ND	ND
	1997	91	7.7	230	2.1	7.35	<0.50	0,52	16	180	3,1	0,055	0,36	0.12	0.64	0.65	<0.0050	1300	720	220	500	NA	ND		ND	J ND	ND	ND	25
	1998	150	8.6	240	1,9	7.2	<0.50	0,91	20	240	4.6	0.053	0.51	0.13	0,77	0.70	<0.040	700	410	220	430	KIA		- 1	c1	2	<1	<1	<10
	1999	84	9.0	200	2.0	7.75	<0,50	1.3	34	180	4.1	0.029	0.46	0,10	0.01	0.74	<0.020	85	51	25	25	<1	4	3	<2	<3	<1	<4	<10
	2000	75.9	93.6	260	1.68	7,00	<0.5	1.99	44.8	180	<1.00	<0.000	0.145	0.032	0.240	0.58	<0.020	1100	180	260	150	<100	4	<3	<2	5	1	<4	9.8
	2001	150	11.1	370	1.94	6,90	<0.5	1 79	10,0	160	3.18	<0.021	0.000	0.033	0.110	0.075	<0.020	ND (1)	ND (1)	ND (1)	ND (1)	ND (1)	ND (1)	ND (1)	ND (1)	6	ND (2)	ND (2)	ND (10)
E.20	2002	365	210	1.540	0.20	6.59	BDI	6.60	94	860	2	0.003	BDL	BDL	BDL	BOL	BDL	BDL	BDL	BDL	BDL	NA	BDL	BOL	BDL	BDL	BDL	BDL	BDL
0-33	1994	400	220	1.800	0.25	6.90	< 0.1	5	100	980	12	0,008	0.24	0.02	0.026	<0.2	<0.005	1 J	<5	<5	<10	NA	<10	<10	<10	<10	<10	<10	<10
	1995	451	130	1.200	0.34	6,82	BDL	4.34	549	750	10	BDL	0.0724	BOL	BDL	BDL	BDL	BDL	SDL	BDL	BDL	NA	BDL	BDL	BDL	BDL	BDL	BDL	4 J
	1996	380	160	1,300	0,34	6,73	<0.50	2.9	100	820	3.2	0.0074	0.074	<0.020	0.022	0.013	<0.050	ND	ND	ND .	ND	'NA	ND	ND	ND	3	ND	ND	ND
	1997	370	160	1,200	0.23	7.11	<0.50	3.7	140	860	3.2	0.022	<0.20	<0.050	0.092	0.034	<0.0050	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND
	1998	390	100	910	0.24	6,6	<0.50	2.5	110	730	2.0	0.020	0.14	0.040	0.08B	0.024	<0,020	ND	ND	ND	ND	NA	ND	ND	ND	2			
	1999	190	36	490	0.27	7.60	<0.50	3.0	63	400	5.7	0.019	0.16	0.049	0.091	0.028	<0.020	<1			<2					3		CA	<10
	2000	190	260	870	0.16	7.90	<0,5	1.55	140	590	<1.00	<0.008	<0.100	<0.010	0.010	<0.010	<0.020	<1			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				10	3	21	<4	<10
	2001	340	166	1,500	0.32	7.00	<0,5	2.71	121	740	4.3	<0.008	0.21	0.020	0.024	0,012	<0.020	51	ST.	ND /D	ND (4)		ND	ND (1)	ND	NDIO	ND	ND (2)	ND (10)
	2002	300	100	1,143	0.29	6.70	<0.5	4.41	96,8	650	5.00	<0.008	<0.100	<0.010	<0.030	<0.010	<0.020	(ו) טאן	1 ND (i)	[ND (1).	Lun (i)	(ו) עאין	L NO (I)	Lundth	1 10 (1)	1000	1 110 (2)	1 (102 (67)	1 100 110

INDLE I	ΤA	ΒL	Е	1
---------	----	----	---	---

HISTORICAL GROUND WATER SAMPLING RESULTS

SUNOCO, INC. (R+M) PHILADELPHIA REFINERY POINT BREEZE PROCESSING AREA

	INORGANIC													ME	TALS			VOLATILE ORGANICS BASE/NEUTRAL ORGANICS											
Sample Well	Date Collected	Alkalinity (mg/l)	Chloride (mg/l)	Specific Conductance (umhos/cm)	Fluoride (mg/l)	oH (Standard units)	Nitrogen, Ammonia (mg/l)	Nitrogen, Nitrate- Nitrite (mg/l)	Sulfate (mg/l)	Total Dissolved Solids (mg/l)	Total Organic Carbon (mg/l)	Arsenic (mg/l)	Barium (mg/l)	Cobalt (mg/l)	Chromium (mg/l)	Lead (mg/l)	Selenium (mg/l)	Benzene (ug/l)	Toluene (ug/l)	Ethyl-Benzene (ug/l)	Total Xylenes (ug/l)	MTBE (ug/l)	Benzo (a) anthracene (ug/l)	Benzo (b) fluoranthene (ug/l)	Benzo (a) pyrene (ug/l)	Bis (2-ethylhexyl) phthalate (ug/l)	Chrysene (ug/l)	Dibenz (a,h) anthracene (ug/l)	Indene (ug/l)
S-4 0	1985 1986 1988 1993 1994 1995 1996	226 348 263 81 280 363 260	273 135 172 26 230 180 190	1,240 1,070 1,040 292 1,400 920 1,100	0.20 0.2 0.4 1.6 1 1.22 1.8	7.49 7.46 6.80 6.68 6.50 6.67 6.75	BDL 1 BDL 0.2 1.1 1.64 <0.50	0.20 BDL 0.2 BDL 0.7 BDL <0.050	13 16 6 21 <20 595 26	680 745 500 160 1300 598 720	140 27 52 8 23 25 7.1	0.017 0.008 BDL 0.0229 <0.005 0.0113 0.021	0 0.15 0.15 N/A 0.086 0.163 0.16	0.02 0.01 BDL BDL <0.02 BDL <0.020	0.01 BDL BDL N/A <0.02 0.030 <0.020	BDL BDL 0.19 <0.2 0.0411 0.022	BDL BDL BDL N/A <0.005 BDL <0.050	2800 600 2000 78 280 150 12	BDL. BDL 6 55 J 23 1.6	1200 210 2900 12 140 J .29 3.4	6100 1520 4100 16 75 J 51.2 1.9	NA NA NA NA NA	BDL BDL BDL BDL <10 BDL ND	BDL BDL BDL SDL SDL SDL ND	BDL BDL BDL BDL <10 BDL ND	BDL BDL BDL <10 1 J 3	BDL BDL BDL <10 BDL ND	BDL BDL BDL Clo BDL BDL ND	BDL BDL BDL Clo BDL ND
	1997 1998 1999 2000 2001 2002	210 280 230 230 260 240	160 230 180 70.2 368.0 100	790 830 680 1,000 1,800 889	0.94 0.28 1.3 0.78 0.77 0.54	6.78 6.5 7.45 7.00 6.60 6.57	<0.50 <0.50 <0.50 0.60 1.72 <0.5	0.070 0.060 0.10 0.19 0.26 0.24	3.1 8.7 10 9.3 2.54 2.25	520 670 550 640 1000 440	7.8 13 20 7.60 17.60 5.54	0,025 0,029 0,020 0,037 <0,008 0,015	0.25 0.38 0.26 0.738 0.974 0.187	<0.050 0.028 0.018 0.093 0.045 0.013	0.11 0.13 0.068 0.337 0.114 0.036	0.099 0.10 0.049 0.238 0.099 0.057	<0.0050 <0.020 <0.020 <0.020 <0.020 <0.020	350 630 1000 600 1200 240	ND ND <100 <100 76 9	ND ND <100 <100 68 7	56 J ND <200 <200 <100 8	NA NA <100 1200 ND (5)	1 ND <1 2 2 ND (13)	1 ND <1 <3 <3 ND (14)	ND ND <1 <2 <2 ND (10)	4 ND 5 8 7 ND (9)	1 ND <1 3 4 ND (15)	ND ND 41 44 ND (17)	ND ND <10 <10 <10 ND(100
S-43	1993 1994 1995 1995	297 330 285 340	62 63 55.1 47	867 840 620 1,100	0.30 0.27 0.33 0.55	6.40 6.70 6.42 6.25	0.9 4.9 0.10 0.57	BDL < 0,1 BDL <0,050	6 <20 211 2.4	470 404 422 460	21 46 62 13	0,033 0,02 0.0169 0.013	0 0.22 0.182 0.15	BDL 0.037 0.0367 <0.020	BD1. <0.02 BDL <0.020	BDL 0,2 BDL 0.0063	BDL <0.005 BDL <0.050	12000 17000 12000 2100	190 1700 1200 110	1300 250 J 170 120	1000 1680 860 110	NA NA NA	BDL <10 BDL ND	BDL <10 BDL ND	BDL <10 BDL ND	8DL <10 8DL 5	BDL <10 BDL ND	BDL <10 BDL ND	86 <10 BDL ND
	1997 1998 1999 2000 2001	290 310 390 320 360	45 140 40 110 39	530 620 570 610 800	0.25 0.45 0.39 0.41 0.38	6,90 6,4 7,58 6,80 6,60	<0.50 <0.50 <0.50 1.44 <0.50	<0.050 0.070 0.15 0.18 <0.10	<2.0 <2.0 2.1 6.3 1.01	410 450 440 440 <10.0	17 16 29 9,67 15,2	0.026 0.030 0.027 <0.008 <0.008	<0,20 0.25 0.34 0,242 0.338	<0.050 0.036 0.058 0.015 0.033	<0,050 0.056 0,093 0.025 0.042	0.0071 0.025 0.044 0.013 0.029	<0.0050 <0.020 <0.020 <0.020 <0.020	13000 6700 3600 990 6100	210 94 J <100 <100 <500	1200 720 <100 <100 <500	1000 470 250 <200 <1000	NA NA <100 <500	ND ND <1 <1	ND ND <1 <3 <3	ND ND <1 <2 <2 <2	2 3 3 3 3	ND ND <1 <1 <1 <1	ND <1 <4 <4	ND <10 <10 <10
S-50	2002 1985 1986 1988 1994	280 296 293 465 330	35,2 46 35 34 33	765 735 764 878 710	0.43 0.20 0.2 0.5 0.45	6.44 7.32 7.20 6.60 6.10	<0.5 BDL BDL BDL 0.29	<0.10 0.10 BDL BDL 0.6	5,72 5 6 5 <25	370 420 385 470 350	20.0 30 66 107 67	0.016 0.003 BDL 0.003 0.013	0.125 0 0.054 0.037 0.14	0.010 0.019 0.006 BDL 0.035	<0.010 BDL BDL 8DL <0.02 BDL	<0.010 BDL BDL BDL 0.2	<0.020 BDL BDL BD1 <0.005 BDI	5500 23000 24000 24000 290	170 BDL BDL 20 J 1600	790 5400 2300 BDL 160 J 98 J	460 23000 1520 BDL 40 J 3000	NA NA NA NA	8DL 8DL 8DL 8DL 410 8DL	BDL BDL BDL <10 BDL	BDL BDL BDL <10 BDL	BDL BDL BDL SJ BDL	BDL BDL BDL Contraction BDL BDL	BDL BDL BDL SDL <10 BDL	BDL 38 BDL <10 BDL
	1995 1996 1997 1998 1999 2000	330 270 290 270 360 240	37.2 33 19 16 44 110	480 540 400 430 530 590	0.53 0.72 0.42 0.58 0.46 0.51	6.37 6.28 6.92 6.5 7.63 7.00	0.36 <0.50 <0.50 <0.50 <0.50 <0.50	BDL 0,080 0.25 0,080 0.21 0.18	154 <2.0 2.2 <2.0 9.6 11.3	318 410 410 380 460 350	71 24 27 24 52 14.1	0.0186 0.025 0.043 0.026 0.017 0.012	0.0042 0.17 0.42 0.21 <0.10 <0.100	<0.025 0.13 0.053 0.013 0.012	0.073 0.36 0.14 0.025 0.025	0.073 0.11 0.037 <0.010 <0.010	<0.0050 <0.0050 <0.020 <0.020 <0.020	14 21000 18000 28000 47000	ND 210 57 J <1000 <100	ND 1300 570 <1000 240	ND 2200 960 <2000 370	NA NA NA NA 590	ND ND ND <1 <1	ND ND ND <1 <3	ND ND ND <1 <2	3 3 1 25 <3	ND ND <1 <1	ND ND <1 <4	ND ND <10 <10
	2001 2002	500	13	560	0.41	7.42	<0.5 NAPL	<0.10 NAPL	3.98 NAPL	400 NAPL	25.3 NAPL	0.027 NAPL	<0.100 NAPL	0.02 NAPL	0,026 NAPL	<0.010 NAPL	<0.020 NAPL	53000 NAPL	1400 NAPL	<1000 NAPL'	1300 NAPL	5200 NAPL	<2 NAPL	<3 NAPL	<2 NAPL	<3 NAPL	<2 NAPL	<4 NAPL	<10 NAPL

TABLE 1

HISTORICAL GROUND WATER SAMPLING RESULTS

SUNOCO, INC. (R+M) PHILADELPHIA REFINERY POINT BREEZE PROCESSING AREA

			INORGANIC												ME	TALS				VOLAT	ILE OR	GANIC	S	BASE/NEUTRAL ORGANICS						
5-66 1985 205 105 </th <th>Sample Well</th> <th>Date Collected</th> <th>Alkalinity (mg/l)</th> <th>Chloride (mg/l)</th> <th>Specific Conductance (umhos/cm)</th> <th>Fluoride (mg/l)</th> <th>pH (Standard units)</th> <th>Nitrogen, Ammonia (mg/l)</th> <th>Nitrogen, Nitrate- Nitrite (mg/l)</th> <th>Sulfate (mg/l)</th> <th>Total Dissolved Solids (mg/l)</th> <th>Total Organic Carbon (mg/l)</th> <th>Arsenic (mg/l)</th> <th>Barium (mg/l)</th> <th>Cobalt (mg/l)</th> <th>Chromium (mg/l)</th> <th>Lead (mg/l)</th> <th>Selenium (mg/l)</th> <th>Benzene (ug/l)</th> <th>Toluene (ug/l)</th> <th>Ethyl-Benzene (ug/l)</th> <th>Total Xylenes (ug/l)</th> <th>MTBE (ug/l)</th> <th>Benzo (a) anthracene (ug/i)</th> <th>Benzo (b) fluoranthene (ug/l)</th> <th>Benzo (a) pyrene (ug/l)</th> <th>Bis (2-ethylhexyl) phthalate (ug/l)</th> <th>Chrysene (ug/l)</th> <th>Dibenz (a,h) anthracene (ug/l)</th> <th>Indene (ug/l)</th>	Sample Well	Date Collected	Alkalinity (mg/l)	Chloride (mg/l)	Specific Conductance (umhos/cm)	Fluoride (mg/l)	pH (Standard units)	Nitrogen, Ammonia (mg/l)	Nitrogen, Nitrate- Nitrite (mg/l)	Sulfate (mg/l)	Total Dissolved Solids (mg/l)	Total Organic Carbon (mg/l)	Arsenic (mg/l)	Barium (mg/l)	Cobalt (mg/l)	Chromium (mg/l)	Lead (mg/l)	Selenium (mg/l)	Benzene (ug/l)	Toluene (ug/l)	Ethyl-Benzene (ug/l)	Total Xylenes (ug/l)	MTBE (ug/l)	Benzo (a) anthracene (ug/i)	Benzo (b) fluoranthene (ug/l)	Benzo (a) pyrene (ug/l)	Bis (2-ethylhexyl) phthalate (ug/l)	Chrysene (ug/l)	Dibenz (a,h) anthracene (ug/l)	Indene (ug/l)
1989 314 113 1,13 1,13 1,14 1,1 1,14 1,1 1,14 1,1 1,14 1,1 1,14 1,1 1,14 1,1 1,14 1,1 1,14 1,1 1,14	S-66	1985	206	300	1,510	0.30	8.09	BOL	4.40	170	925	7	BDL	0	0.004	BDL	BDL,	BDL	BDL	BDL	BDL	BDL	NA	BDL	BDL	BDL	BOL	BDL.	BDL	BDL
1988 342 2/2 12/8 50 90/8 2 80/8 90/8 60/8 80/2 80/8 </th <th></th> <th>1986</th> <th>314</th> <th>113</th> <th>1,150</th> <th>1.1</th> <th>7.14</th> <th>0.1</th> <th>BDL</th> <th>133</th> <th>630</th> <th>48</th> <th>BDL</th> <th>0.099</th> <th>0.011</th> <th>BDL.</th> <th>BDL</th> <th>BDL DDI</th> <th>BDL</th> <th>BDL</th> <th>BDL</th> <th>BDL</th> <th>NA</th> <th>BDL</th> <th>BDL</th> <th>BDL</th> <th>BDL</th> <th>BDL</th> <th>BDL</th> <th>BDL</th>		1986	314	113	1,150	1.1	7.14	0.1	BDL	133	630	48	BDL	0.099	0.011	BDL.	BDL	BDL DDI	BDL	BDL	BDL	BDL	NA	BDL	BDL	BDL	BDL	BDL	BDL	BDL
1993 44.3 1/0 1.380 1/1 6.70 1/1 6.70 2/1 EUL 8/1 7/0 1.80 1/2 EUL 8/1 7/0 1.80 1/2 EUL 8/1 7/0 1/2 <th< th=""><th></th><th>1988</th><th>342</th><th>2/2</th><th>1,620</th><th>1.2</th><th>6.50</th><th>BOL</th><th>2.5</th><th>90</th><th>910</th><th>65</th><th>BUL</th><th>0.1</th><th>0.02</th><th>BUL</th><th></th><th>BDL</th><th>BUL</th><th>BDL</th><th>BUL</th><th>BDL</th><th>NA</th><th>BDL</th><th>BDL</th><th>BDL</th><th>72</th><th>BDL</th><th>BDL</th><th>BDL</th></th<>		1988	342	2/2	1,620	1.2	6.50	BOL	2.5	90	910	65	BUL	0.1	0.02	BUL		BDL	BUL	BDL	BUL	BDL	NA	BDL	BDL	BDL	72	BDL	BDL	BDL
188 380 170 1,200 0.00 0.17 1 0.000 0.17 0.000 0.017 0.000 0.017 0.000 ND		1993	443	170	1,360	1.1	0.79	2.1	BUL	34	710	13	0.005	N/A	-0.02	N/A	60L		BUL	BUL	BUL	50L	NA NA	504	8DL -	BUL	BUL	BDL	BUL	BDL
1980 110 100 <th></th> <th>1994</th> <th>410</th> <th>240</th> <th>1,000</th> <th>0,59</th> <th>6.00</th> <th>1.7</th> <th>1 <0.050</th> <th>33</th> <th>700</th> <th>50</th> <th>0.000</th> <th>0.17</th> <th>0.02</th> <th>0.055</th> <th>0.11</th> <th>< 0.0050</th> <th>ND</th> <th>ND</th> <th>ND</th> <th></th> <th>N/A N/A</th> <th></th> <th></th> <th>\$1U MD</th> <th>\$10</th> <th><10 ND</th> <th><10 ND</th> <th><10</th>		1994	410	240	1,000	0,59	6.00	1.7	1 <0.050	33	700	50	0.000	0.17	0.02	0.055	0.11	< 0.0050	ND	ND	ND		N/A N/A			\$1U MD	\$10	<10 ND	<10 ND	<10
1998 265 220 1,000 0.43 6.5 0.56 0.57 0.07 0		1990	300	240 91	770	0,50	7.07	57	<0.050	21	500	73	0.020	0.60	0.12	0.6	0.19	<0.0050	ND	ND	ND		NA		ND	ND	3	ND		ND
1999 410 700 70 <th< th=""><th></th><th>1998</th><th>360</th><th>220</th><th>1.000</th><th>0.43</th><th>6.6</th><th>0.56</th><th>0.060</th><th>75</th><th>890</th><th>7.1</th><th>0.027</th><th>0.97</th><th>0.15</th><th>0.94</th><th>0.21</th><th><0.040</th><th>ND</th><th>ND.</th><th>ND</th><th>ND</th><th>NA</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th></th<>		1998	360	220	1.000	0.43	6.6	0.56	0.060	75	890	7.1	0.027	0.97	0.15	0.94	0.21	<0.040	ND	ND.	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND
2000 200 200 100 1.80 7.0 2.80 0.80 1.0		1999	410	100	760	1.1	7.90	1.7	0.18	22	570	7.4	0.0081	0.31	0.036	0.16	0.049	<0.020	<1	<1	<1	<2	NA	<1	<1	<1	4	<1	<t l<="" th=""><th><10</th></t>	<10
2001 202 140 1.00 1.48 6.00 1.02 0.038 0.048 0.038 0.020 100 ND(1)	[2000	250	200	840	1.68	7.20	2.28	0.09	100	490	3.12	<0.008	0.323	0.051	0.240	0,062	<0.020	<1	<1	<1	<2	10	<1	<3	<2	3	<4	c4	<10
2002 150 949 1.38 6.39 1.2 6.01 8.04 0.243 0.214 0.010 ND(1) ND(1) <th></th> <th>2001</th> <th>220</th> <th>144</th> <th>1,100</th> <th>1.48</th> <th>6,40</th> <th><0.5</th> <th>0,30</th> <th>75.9</th> <th>450</th> <th>9,62</th> <th><0.008</th> <th>0.380</th> <th>0.038</th> <th>0.146</th> <th>0,053</th> <th><0.020</th> <th>ব</th> <th><1</th> <th><1</th> <th><2</th> <th>1</th> <th><1</th> <th><3</th> <th><2</th> <th>4</th> <th><1</th> <th><4</th> <th><10</th>		2001	220	144	1,100	1.48	6,40	<0.5	0,30	75.9	450	9,62	<0.008	0.380	0.038	0.146	0,053	<0.020	ব	<1	<1	<2	1	<1	<3	<2	4	<1	<4	<10
S-69 1985 118 61 538 0.20 7.71 BDL 2.02 71 245 7.8 BDL 0.0 DDL BDL BDL<		2002	190	160	949	1.36	6,93	1.12	<0.10	26.8	400	8.08	0.015	0.243	0.031	0,190	0.044	<0.020	'ND (1)	ND (1)	ND (1)	ND (1)	ND (1)	ND (1)	ND (1)	ND (1)	ND (1)	ND (2)	ND (2)	ND (10)
1986 139 33 504 0.2 6.6. BDL 1 71 265 18 BDL 0.046 BDL BDL <th>S-69</th> <th>1985</th> <th>118</th> <th>61</th> <th>538</th> <th>0.20</th> <th>7.71</th> <th>BDL.</th> <th>2.20</th> <th>71</th> <th>345</th> <th>7.8</th> <th>BDL</th> <th>0</th> <th>BDL</th> <th>BDL</th> <th>BDL</th> <th>BDL</th> <th>BDL</th> <th>BDL</th> <th>BDL</th> <th>BDL</th> <th>NA</th> <th>BDL</th> <th>BDL</th> <th>BDL</th> <th>BDL</th> <th>BDL</th> <th>BDL</th> <th>BDL</th>	S-69	1985	118	61	538	0.20	7.71	BDL.	2.20	71	345	7.8	BDL	0	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	NA	BDL	BDL	BDL	BDL	BDL	BDL	BDL
1988 198 6 479 0.6 6.20 BOL 30.0 50 BOL BOL BOL BOL BOL BOL BDL ADD ADD <th></th> <th>1986</th> <th>139</th> <th>33</th> <th>504</th> <th>0.2</th> <th>6,58</th> <th>BDL</th> <th>1</th> <th>71</th> <th>265</th> <th>18</th> <th>BDL</th> <th>0.046</th> <th>BOL</th> <th>BDL</th> <th>BDL</th> <th>BOL</th> <th>8DL</th> <th>BDL</th> <th>BDL</th> <th>BDL</th> <th>NA</th> <th>BDL</th> <th>BDL</th> <th>BOL</th> <th>BDL</th> <th>BDL</th> <th>BDL</th> <th>BDL</th>		1986	139	33	504	0.2	6,58	BDL	1	71	265	18	BDL	0.046	BOL	BDL	BDL	BOL	8DL	BDL	BDL	BDL	NA	BDL	BDL	BOL	BDL	BDL	BDL	BDL
1993 124 4 393 0.7 6.62 BDL 3.4 53 2.70 3 0.0279 N/A BDL N/A BDL BDL N/A BDL S10 S10 <th></th> <th>1988</th> <th>136</th> <th>6</th> <th>479</th> <th>0.6</th> <th>6.20</th> <th>BDL</th> <th>3.8</th> <th>74</th> <th>320</th> <th>50</th> <th>BDL</th> <th>0.06</th> <th>BDL</th> <th>BDL</th> <th>0.007</th> <th>0,007</th> <th>BDL</th> <th>BDL</th> <th>BDL</th> <th>BDL</th> <th>NA</th> <th>BDL</th> <th>BDL</th> <th>BDL</th> <th>38</th> <th>BDL</th> <th>BDL</th> <th>BDL</th>		1988	136	6	479	0.6	6.20	BDL	3.8	74	320	50	BDL	0.06	BDL	BDL	0.007	0,007	BDL	BDL	BDL	BDL	NA	BDL	BDL	BDL	38	BDL	BDL	BDL
1994 140 11 540 0.01 6.00 vol 2.000 0.020 2.000 0.22 0.000 2.11 est est<		1993	124	4	393	0.7	6.62	BDL	3.4	53	270	Э	0.0279	N/A	BDL,	N/A	BDL	N/A	BDL	BDL	BDL	1	NA	BDL	BDL	BDL	BDL	BDL	BDL	BDL
1955 176 1776 176 </th <th></th> <th>1994</th> <th>140</th> <th>11</th> <th>540</th> <th>0.61</th> <th>6,60</th> <th><0.1</th> <th>2.3</th> <th>78</th> <th>480</th> <th>16</th> <th><0,005</th> <th>0.072</th> <th><0.02</th> <th><0.02</th> <th>0.25</th> <th><0.005</th> <th>21</th> <th><5</th> <th><5</th> <th><10</th> <th>NA</th> <th><10</th> <th><10</th> <th><10</th> <th><10</th> <th><10</th> <th><10</th> <th><10</th>		1994	140	11	540	0.61	6,60	<0.1	2.3	78	480	16	<0,005	0.072	<0.02	<0.02	0.25	<0.005	21	<5	<5	<10	NA	<10	<10	<10	<10	<10	<10	<10
1996 160 42 550 0.66 6.91 <0.50		1995	176	17.4	360	0.61	6.38	BDL	1.44	1210	334	14	BDL	0,396	BDL	BDL	0.312	BDL	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND
1997 99 92 520 0.49 6.92 c.0.50 c.0.78 0.086 0.030 0.043 c.0.0050 ND 16 7 27 NA ND ND 2 ND ND <		1996	160	42	550	0,86	6.91	<0.50	1.3	56	390	6,4	0,036	1.1	0,12	0.34	0.27	< 0,0050	ND	ND	ND	ND	NA	ND	ND	ND	4	ND	ND	ND
1996 170 36 390 0.42 6.4 40.50 5.0 45 200 5.2 0.37 0.05 0.30 ND ND </th <th></th> <th>1997</th> <th>99</th> <th>92</th> <th>520</th> <th>0.49</th> <th>6.92</th> <th><0.50</th> <th>2.4</th> <th>69</th> <th>450</th> <th>4.4</th> <th>0.026</th> <th>0.78</th> <th>0.088</th> <th>0,30</th> <th>0.043</th> <th><0.0050</th> <th>ND</th> <th>16</th> <th>7</th> <th>27</th> <th>NA</th> <th>ND</th> <th>ND</th> <th>ND</th> <th>2</th> <th>ND</th> <th>NÐ</th> <th>ND</th>		1997	99	92	520	0.49	6.92	<0.50	2.4	69	450	4.4	0.026	0.78	0.088	0,30	0.043	<0.0050	ND	16	7	27	NA	ND	ND	ND	2	ND	NÐ	ND
1999 170 3.6 4.20 0.56 6.19 4.05 6.19 4.05 0.10 0.008 0.17 0.10 4.020 4.1 4.1 4.1 4.1 4.1 5.20 0.008 0.17 0.10 4.020 4.1 4.1 4.1 4.1 4.1 5.72 5.08 0.008 0.250 0.015 0.029 4.1 <		1998	120	56	390	0.42	6,4	<0.50	5.0	45	200	5,2	0,052	3,2	0.37	0,95	0,56	<0,040	ND	ND.	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND
2000 00.5 140 200 0.45 6.40 4.00 4.0 4.0 200 0.45 6.40 4.00 4.0 0.45 0.405 0.402 4.0 0.403 0.403 0.402 4.0 0.403 0.403 0.402 4.0 0.403 0.403 0.402 4.0 0.403 0.403 0.402 4.0 0.403 0.403 0.402 4.0 0.403 0.403 0.402 0.41 4.1 4.1 4.2 3 4.1 4.3 4.2 4.4 4.0 1.4 4.0 2.2 0.002 0.022		1999	1/0	30	420	0.56	8,19	<0.50	2,7	47	370	5,0	0.013	0.70	0.069	0.17	0,10	<0.020	<1		<1	<2	NA	<1	<1	<1	<1	<1	<1	<10
2001 120 149 640 0.43 0.20 450 0.20 450 0.20 450 0.20 450 0.20 450 0.005 <th< th=""><th></th><th>2000</th><th>120</th><th>140</th><th>200</th><th>0.45</th><th>0,40</th><th><0.5</th><th>1.01</th><th>41.5</th><th>120</th><th>5.08</th><th><0.008</th><th>0.200</th><th>0.017</th><th>0,045</th><th>0,029</th><th><0.020</th><th></th><th></th><th>51</th><th><2 - 0</th><th>6,6</th><th><1 </th><th>2 2</th><th><2</th><th><3</th><th><1</th><th>- 4</th><th><10</th></th<>		2000	120	140	200	0.45	0,40	<0.5	1.01	41.5	120	5.08	<0.008	0.200	0.017	0,045	0,029	<0.020			51	<2 - 0	6,6	<1 	2 2	<2	<3	<1	- 4	<10
S-72 103 2.002 103 0.03 0.03 0.03 0.03 0.04 0.03 0.04 0.03 0.04 0.04 0.022 0.004 0.002 0.004 0.002 0.004 0.002 0.004 0.002 0.004 0.002 0.004 0.016 0.002 0.004 0.004 0.016 0.004 0.004 0.016 0.004 0.016 0.016		2001	150	749 78 8	560	0.40	6.64	<0.5	2.00	64.9	200	1,30	<0.008	0.227	0,029	0.055	0.003	<0,020							ND (4)	ND (1)	2	<1 ND (2)	S4 1	<10 ND(40)
1000 000 0000 0000 0000 1000	5.72	1003	665	470	2 740	0.00	6 50	11.4	3.19	33	1500	0.52	-0.000 D.046	0.221	BDI	BDI	BDI											30 (Z) 801		
Hose Hose <th< th=""><th>U-1 E</th><th>1994</th><th>720</th><th>580</th><th>3 400</th><th>0.30</th><th>6.50</th><th>11.47</th><th><01</th><th><25</th><th>1700</th><th>44</th><th>0.040</th><th>0.32</th><th>0.03</th><th><0.02</th><th><0.2</th><th><0.01</th><th><250</th><th>c250</th><th><250</th><th><500</th><th>NA</th><th><10</th><th><10</th><th>c10</th><th><10</th><th><10</th><th><10</th><th><10</th></th<>	U -1 E	1994	720	580	3 400	0.30	6.50	11.47	<01	<25	1700	44	0.040	0.32	0.03	<0.02	<0.2	<0.01	<250	c250	<250	<500	NA	<10	<10	c10	<10	<10	<10	<10
1996 720 570 2,700 0.53 6,17 2.8 <0.050		1995	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NA	NS	NS	NS	NS	NS	NS	NS
1997 850 530 2,700 0.37 7.19 <0.50	i	1996	720	570	2,700	0.53	6.17	2.8	<0.050	18	1700	18	0.015	0.28	<0.025	<0.025	< 0.0050	< 0.0050	ND	32	110	180	NA	ND	ND	ND	3	ND	ND	· ND
1998 810 670 21,000 0.45 6.6 0.67 0.050 17 1700 22 0.13 0.30 0.026 0.030 0.019 <0.020		1997	850	530	2,700	0.37	7.19	<0.50	<0.050	14	1800	21	0.068	0.30	<0.050	<0,050	<0.0050	<0,0050	5	22	22	97	NA	ND	ND	ND	4	ND	ND	ND
1999 850 510 2,100 0.40 7.43 4.9 0.12 110 1700 52 0.080 0.16 0.032 <0.010		1998	810	670	21.000	0.45	6.6	0.67	0.050	17	1700	22	0.13	0.30	0.026	0,030	0.019	<0.020	69	14	ND	12	NA	ND	ND	ND	1	ND	ND	ND
2000 600 150 2,100 0.38 7.00 19.0 0.18 37.2 1400 22.7 0.029 0.601 <0.010 <0.010 <0.010 <0.010 <0.020 <100 <100 <200 <100 2 <3 3 24 8 <4 <10 2001 600 276 2,200 0.41 6.70 17.4 0.25 16.5 1100 19.3 0.057 0.337 0.018 <0.010 <0.010 <0.020 <1 24 35 48 <1 <1 <3 <2 5 1 <4 9.8		1999	850	510	2,100	0.40	7.43	4.9	0.12	110	1700	52	0.080	0.16	0.032	<0,010	<0.010	<0.020	<20	<20	<20	<40	NA	<1	<1	4	3	1	<1	<10
2001 600 276 2,200 0.41 6.70 17.4 0.25 16.5 1100 19.3 0.057 0.337 0.018 <0.010 <0.010 <0.020 <1 24 35 48 <1 <1 <3 <2 5 1 <4 9.8		2000	600	150	2,100	0,36	7.00	19.0	0,16	37.2	1400	22.7	0.029	0,601	<0,010	<0.010	<0.010	<0.020	<100	<100	<100	<200	<100	2	<3	3	24	6	<4	<10
		2001	600	276	2,200	0.41	6.70	17.4	0.25	16.5	1100	19.3	0.057	0.337	0.018	<0,010	<0.010	<0.020	<1	24	35	48	<1	<1	<3	<2	5	1	<4	9.8

TABLE 1

HISTORICAL GROUND WATER SAMPLING RESULTS

SUNOCO, INC. (R+M) PHILADELPHIA REFINERY POINT BREEZE PROCESSING AREA

			·		II	NORG	ANIC							ME	TALS				VOLAT	ILE OR	GANICS	5	BASE/NEUTRAL ORGANICS								
Sample Well	Date Collected	Alkalinity (mg/l)	Chloride (mg/l)	Specific Conductance (umhos/cm)	Fluoride (mg/l)	pH (Standard units)	Nitrogen, Ammonia (mg/l)	Nitrogen, Nitrate- Nitrite (mg/l)	Sulfate (mg/l)	Total Dissolved Solids (mg/l)	Total Organic Carbon (mg/l)	Arsenic (mg/l)	Barium (mg/l)	Cobalt (mg/l)	Chromium (mg/l)	Lead (mg/l)	Selenium (mg/l)	Benzene (ug/l)	Toluene (ug/l)	Ethyl-Benzene (ug/l)	Total Xylenes (ug/l)	MTBE (ug/l)	Benzo (a) anthracene (ug/l)	Benzo (b) fluoranthene (ug/l)	Benzo (a) pyrene (ug/l)	Bis (2-ethylhexyl) phthalate (ug/l)	Chrysene (ug/l)	Dibenz (a,h) anthracene (ug/l)	Indene (ug/l)		
S-73	1993	337	180	1,160	0.20	6.77	8,4	BDL	4	570	20	0.156	2	0.068	0.153	BDL	BDL	520	9	27	18	NA	52	44	36	BDL	55	BDL	81		
	1994	290	200	1,300	0.34	6.80	4.4	<0.1	<20	840	36	0.033	1.8	0.14	0.22	0.49	BDL	900	<250	<250	<500	NA	6 J	6 J	31	<10	4 J	<10	<10		
	1995	308	119	820	0.26	6.79	4.11	BDL	9340	526	51	0.0228	0.960	BDL,	BDL	0,119	BDL	430	34	ND	15 J	NA	110	68 J	59 J	ND	100		ND		
	1996	320	120	980	0,66	6.56	1.4	<0.050	5.6	540	16	0.067	1.3	0.065	0.19	0.21	< 0,0050	5.6	ND	ND	ND	NA	55	37	34	4	11	6	NU		
	1997	320	46	630	0.40	7,51	<0.50	<0.050	2.7	460	19	0.079	1.4	0.12	0.30	0.10	<0.0050	840	49 J	61 J	55 J	NA	29	21	15		39	4	NU		
	1998	340	32	550	0,34	7.1	2.4	<0.050	<2.0	460	23	0.054	1.5	0.12	0.32	0.090	<0.040	320	ND	36	20	NA	2				2		10		
	1999	350	. 73	650	0,54	7.86	2.0	0.13	9.0	510	29	0.027	0.73	0.023	0,055	0.021	<0.020	400	<20	110	31	NA	13	L (14		~10		
	2000	280	93,6	680	0,49	7.30	4.67	0,07	5.4	430	11.3	0.021	0,612	<0,010	<0.010	<0.010	<0,020	340	<10	20		<10	22	12	15	18	31	~~~	<10		
	2001	320	21.9	700	0.53	7.00	<0.50	<0.10	0.6	320	30.2	<0,008	0.998	0.016	0.029	0.155	<0.020	220	210	2	7	ND /1	23 8	A	_ 13 _∡	7	6		ND(10)		
	2002	290	14.1	680	0.46	6.92	2.06	<0.10	3.13	430	31.2	0.013	0.600	0.016	801	0.000	80.020	20000	64	680	000	NA	BOI.	BDL	BDL	BDL	BDL	BDL	BDL		
S-81	1993	339	72	944	0.50	6.48	1.0	BDL	BUL -20	490	40	0,020	0.50	0.058	<0.02	0.34	<0.005	9500	180 J	70 J	150 J	NA	<10	<10	<10	<10	<10	<10	<10		
	1994	740	11	1,000	0,4	0.10	0.73		200	450	85	0.012	0.347	BDI	BD1	0.041	BDL	21000	300	BDL	470 J	NA	ND	ND	ND	9 J	ND	ND	ND		
	1995	3/4	00.9	700	0.00	6.03	<0.68	0.080	<200	560	23	0.016	0.34	<0.025	<0.025	0.08	< 0.0050	130	ND	3.7	2.6	NA	1	ND	ND	5	z	ND	ND		
	1007	300	150	820	0.01	6.08	<0.50	<0.000	<20	660	25	0.044	0.56	0.054	0.11	0,32	<0.050	17000	92 J	230	280	NA	1	NÐ	ND	e	2	ND	ND		
	1998	320	210	890	D 45	6.5	<0.50	<0.050	4.7	790	28	0.038	0,66	0.085	0,100	0.27	<0.020	12000	ND	120	94 J	NA	ND	ND	ND	ND	ND	ND	ND		
	1999	490	16	920	0.42	7.62	<0.50	0.15	<2.0	710	34	0,036	0.62	0.094	0.11	0,25	<0,020	4000	<100	110	230	NA	2	1	1	8	3	1	<10		
	2000	350	140	950	0,45	7.40	<0.5	0.10	7,6	700	24.7	0.013	0,396	0.026	0.020	0,070	<0.020	54000	<100	<100	<200	<100	2	<3	<2	5	2	<4	<10		
	2001	420	306	1,900	0.54	6.50	2.57	0.24	0.82	1000	28.8	<0.008	0.984	0.14	0.138	0.357	<0.020	2100	<100	<100	<200	130	2	3	<2	5	2	<4	<10		

NOTES

ND = Not Detected (value listed on attached table) NS = Not sampled due to presence of NAPL NA = Not analyzed ug/l = micrograms per liter mg/l = milligrams per liter

umhos/cm = micromhos per centimeter

BDL = below method detection limit

J = indicates an estimated value below method delection limit

APPENDIX G

Product Bail-down Test Data Graphs

Static Depth to Product = - 24.67 (from TOC) Static Depth to Water = - 25.60 (from TOC)

Observations Well S-98 Product Bail-Down Test Results

Static Depth to Product = - 25.28 (from TOC) Static Depth to Water = - 25.85 (from TOC)

-24.5 -24.55 Depth Below Top of Casing (TOC) in feet -24.6 -24.65 -24.7 -24.75 -24.8 -24.85 -24.9 50 100 150 200 0 250 Elapse Time (minutes) -Product -- Groundwater

Observation Well S-100 Product Bail-Down Test Results

Static Depth to Product = - 24.52 (from TOC) Static Depth to Water = - 25.13 (from TOC)

Observations Well CSXMW-5 Product Bail-Down Test Results

Static Depth to Product = - 47.24 (from TOC) Static Depth to Water = - 47.87 (from TOC)

APPENDIX H

Product Characterization Report

January 24, 2003

Mr. Steve Baggett Secor International, Inc. 102 Pickering Way Suite 200 Exton, Pennsylvania 19341

Dear Steve:

At your request, I conducted analysis of chemical data from samples collected from the Sunoco refinery in Philadelphia, Pennsylvania in order to provide a qualitative identification of the constituents and to assess sample relationships. I also conducted a comparison to previously reported data for the same samples to evaluate differences, if any, and to sample MW-5 from the DSCP site.

The qualitative analysis was performed using chemical data generated by ICF for the field samples and for known reference samples. Identifications were based on comparisons of hydrocarbon distributions, gas chromatographic patterns (primarily gasoline-range hydrocarbons), and/or indicator compounds. The assessment of weathering degree was made by evaluating loss of major constituents and assumed a typical initial composition. The degree that the product had weathered was generally described and relied on ratios of compounds easily lost through environmental factors to more labile components. Comparisons to samples previously analyzed from the #1 Tank Farm area were made using the chromatograms and data for the same samples contained in the March 1998 report (IST, 1998¹). If data were not available, this is noted in this letter. Comparison to MW-5 from the DSCP site was made using data in the same report.

#1 Tank Farm Samples

Samples S-100, RW-401, RW-402, and PZ-400 are comprised of a mixture of gasoline and #2 diesel fuel. Visual analysis of the gas chromatogram indicates that the components are in approximately equal proportions, with minor variation within the sample set. Sample S-98 is comprised primarily of mildly weathered gasoline with trace amounts of hydrocarbons in the diesel range. Samples S-89 and CSX-MW-5 are comprised of a heavily degraded gasoline and diesel mixture.

Composition of samples S-100, RW-401, RW-402, and S-89 is the same as previously observed. Current composition of sample PZ-400 differs slightly in that the sample contains a higher proportion of diesel-range material than previously observed. Samples S-98 and CSX-MW-5 were not analyzed previously.

All of the samples mentioned differ from sample MW-5, which is described in the March 1998 report as a mixture of gasoline and a naphtha-like material. A difference in the chemical composition of the gasoline component is observed and is likely due to the refinery processing or formulation: sample RW-402, which is representative of the #1 Tank Farm, is relatively higher in alkylates such as isooctane, whereas sample MW-5 is higher in light olefins.

¹ Integrated Science & Technology. 1998. *Non-Aqueous Phase Liquid (NAPL) Source Study at Defense Supply Center Philadelphia. Philadelphia, Pennsylvania.* Report prepared for Sunoco. March.

Mr. Steve Baggett January 24, 2003 Page 2

Sample S-50

Sample S-50 is comprised of a refinery intermediate most closely resembling light refinery naphtha or reformed light refinery naphtha or a mixture of the two. The proportion of benzene in the sample is higher than comparable reference samples, indicating a difference in the specific refinery process used or an additional input. Assuming that the constituents were high-grade refinery intermediates, the sample is only mildly weathered. This sample was not previously analyzed.

Compared to sample MW-5, the naphtha material in sample S-50 differs in that the boiling range of the hydrocarbons ends at approximately n-C12. The naphtha material in sample MW-5 extends to n-C15 and beyond, which is greater than the typical specification for light refinery naphtha or for heavy refinery naphtha. In addition, absolute concentration of monoaromatic compounds, especially benzene, is significantly higher in sample S-50.

Please call me if you have any questions on this letter report. We look forward to continuing our work on this interesting project.

Sincerely,

W. Henry Camp Vice President

u:\sunoco philadelphia\letter summary 1-24-03.doc