

Evergreen Resources Management 2 Righter Parkway, Suite 120 Wilmington, DE 19803

September 30, 2021

VIA ELECTRONIC SUBMISSION

C. David Brown, P.G. Professional Geologist Manager Environmental Cleanup & Brownfields Program Pennsylvania Department of Environmental Protection Southeast Regional Office 2 East Main Street, Norristown, PA 19401

Re: PFAS Lower Aquifer Sampling Results Former Philadelphia Refining Complex 3144 Passyunk Avenue, Philadelphia, Pennsylvania

Dear Mr. Brown:

In July 2021, Sanborn Head & Associates (Sanborn Head) completed groundwater sampling in twenty-nine lower aquifer wells for per- and polyfluorinated alkyl substances (PFAS) in accordance with the June 30, 2021 Desktop Review and Sampling Plan. The results of the lower aquifer PFAS sampling show that groundwater concentrations are below Statewide Health Standard (SHS) Medium Specific Concentrations (MSCs) for PFAS in twenty-one of twenty-nine wells sampled. For the wells that had PFAS detections above the SHS MSCs, there was no apparent correlation between the historical fire activity, foam storage/loading areas, and fire training areas identified in the June 30, 2021 Desktop Review and Sampling Plan.

Please see the attached memorandum from Sanborn Head that presents more detail on the July 2021 lower aquifer PFAS groundwater sampling results, as well as regional surface water information and regional PFAS sampling. As discussed in the September 1, 2021 meeting with the PADEP and EPA, a shallow aquifer well sampling workplan will follow this submittal. The target submittal date for the shallow groundwater workplan is October 2021.

If you have any questions regarding this submittal, please do not hesitate to contact me at your convenience.

Regards,

Evergreen Resources Management Operations

Tiffani L. Doerr, P.G.

Cc:

Scott Cullinan, PE, Evergreen Resources Management Operations Kevin Bilash, EPA Patrick O'Neill, City of Philadelphia Colleen Costello, PG, Sanborn Head & Associates, Inc. Andrew Buchy, Sanborn Head & Associates, Inc.

MEMORANDUM

To:	Tiffani Doerr, P.G.
	Evergreen Resources Management Operations
From:	Andrew Buchy and Colleen Costello (Sanborn Head & Associates, Inc.)
File:	4796
Date:	September 30, 2021
Re:	July 2021 Lower Aquifer PFAS Sampling Results
cc:	Scott Cullinan – Evergreen Resources Management Operations

This memorandum presents the results of the July 2021 lower aquifer groundwater sampling event at the former Philadelphia Refinery site (Site) in Philadelphia, Pennsylvania for per- and polyfluorinated alkyl substances (PFAS).

1.0 INTRODUCTION

At the request of the Pennsylvania Department of Environmental Protection (PADEP) to investigate PFAS on the Site, twenty-nine lower aquifer monitoring wells were selected for sampling based on a PFAS desktop study. The PFAS desktop study identified lower aquifer monitoring well locations in areas of historical fire events, fire training, and firefighting foam storage and loading areas. The twenty-nine lower aquifer sample locations can be seen on **Figure 1**. In addition, **Figure 2** presents the lower aquifer groundwater contours which were used in well selection and are representative of groundwater flow direction in the lower aquifer. The PFAS sampling event was completed in accordance with Evergreen's June 30, 2021 Desktop Review and Sampling Plan, which is included as **Attachment A** and is briefly summarized in Section 2.0. The PFAS sampling plan was approved for use by PADEP and EPA on June 7, 2021. The PFAS sampling activities are being completed at the request of the PADEP but are not part of Evergreen's Act 2 investigation and reporting for the Site.

2.0 DESKTOP REVIEW

As summarized in the June 30, 2021 Desktop Review and Sampling Plan, Sanborn Head and Evergreen reviewed multiple sources of information in order to identify potential sources of PFAS to inform the June 30, 2021 sampling plan. The information that was reviewed included:

- Review of readily available media articles and other publicly available information about past fires at the Site.
- Review of relevant Site maps, including Site operational maps that were included in historic environmental reports, existing and historic utility maps, and historic Site knowledge.

- Completion of a Site inspection on June 2, 2021, identifying fire suppression systems, firefighting foam concentrate storage (including both labeled totes and drums) and inspection of locations of past fires (where possible).
- Review of Safety Data Sheets (SDS) provided by Hilco Redevelopment Partners (HRP) for firefighting foam used on Site.

Based on the desktop review, areas where firefighting foam may have been previously used at the Site were identified. These are summarized below and shown on **Figure 3**.

- Fire Training Areas
 - □ Routine/Annual Training Areas application of firefighting foam as part of fire training activities.
 - □ Select Training Areas Less frequently used training areas.
- Fires –Firefighting foam was reported to be used to address additional fires at the Refinery.
- Storage/Loading Areas and Fire Stations Though firefighting foam was historically present at these locations, there is no indication that Aqueous Film Forming Foam (AFFF), containing materials, which can contain PFAS, came into the contact with the environment.

3.0 JULY 2021 LOWER AQUIFER GROUNDWATER SAMPLING

From July 19 to July 23, 2021, Sanborn Head collected 37 samples (including eight Quality Control [QC] samples) across twenty-nine lower aquifer monitoring well locations at the Site in accordance with the July 30, 2021 sampling plan. The groundwater samples were collected using EPA and PADEP low-flow sampling procedures detailed in the June 30, 2021 sampling plan.

Upon arriving at each well, Sanborn Head collected an initial depth to water with a water level meter and recorded the reading on a log form. This information was used to calculate groundwater elevations, which are summarized on **Table 1**. These groundwater elevations were consistent with previous lower aquifer groundwater elevations shown on **Figure 2**.

To complete the sample collection, a Teflon/PFAS-free submersible pump with high-density polyethylene (HDPE) tubing was inserted to the approximate mid-screen of the monitoring well. After installation, low-flow pumping commenced through a water quality meter measuring for pH, specific conductivity, oxidation-reduction potential, and dissolved oxygen until stabilizing geochemical conditions were observed. Stabilized water quality readings for each sampled well are summarized in **Table 1**. PFAS samples were collected into 2 x 250 milliliter (ml) HDPE bottle sets from each well, labeled, recorded on a chain-of-custody form, and immediately stored on ice within a cooler. After sampling each well, non-dedicated sampling equipment were thoroughly washed in a Liquinox and deionized water solution and rinsed with laboratory-provided PFAS-free water (PFAS-free water).

QC samples collected during the July 2021 sampling event included field duplicates, field blanks, and equipment rinsate blanks. For the two field duplicate samples, an additional set of 250 ml bottles were collected simultaneously with the associated sampled well. Four total

field blanks were collected by transferring PFAS-free water into $2 \ge 250$ ml HDPE bottles. Two total equipment rinsate blanks were collected from decontaminated non-dedicated sampling equipment by pouring PFAS-free water through the equipment into $2 \ge 250$ ml bottles. All QC samples were stored on ice immediately following collection and submitted to the laboratory on chain-of-custody forms.

All samples from the July 2021 sampling event were submitted to Eurofins Lancaster Laboratories Env, LLC located in Lancaster, PA for analysis of Unregulated Contaminant Monitoring Rule (UCMR) 3 via USEPA Modified Method 537.1 Isotope Dilution. Analytes on the UCMR 3 list of PFAS compounds include Perfluorooctanoic Acid (PFOA), Perfluorooctanesulfonic acid (PFOS), Perfluoronanoic Acid (PFNA), Perfluorohexanesulfonic Acid (PFBS).

4.0 ANALYTICAL RESULTS FROM JULY 2021 GROUNDWATER SAMPLING

The PADEP non-residential statewide health standard (SHS) medium specific concentrations (MSC) for groundwater are:

Analyte	PADEP SHS MSC (µg/l)
PFOA	0.07
PFAS	0.07
Combined PFOA and PFAS	0.07
PFBS	1,900
Notes:	

 $\mu g/L = micrograms per liter$

The results of the July 2021 sampling event are summarized on **Table 2** and shown on **Figure 4** and **Figure 5**. **Figure 4** presents the data in databox format. **Figure 5**, which depicts historical fire activity onsite from the Desktop Review and Sampling Plan, was updated to show PFAS results by well location. The red symbol at a monitoring well location indicates that at least one of the analyzed PFAS substances had a detected result at a concentration higher than the SHS MSC, while green indicates all results are below the SHS MSCs for these parameters.

These results are also summarized below:

- Twenty-one of the twenty-nine lower aquifer monitoring wells sampled had concentrations that were below the SHS MSCs for PFOA, PFAS and PFBS, as summarized on **Table 2**.
- None of the wells had PFBS concentrations above the SHS MSC.
- Four wells (A-19D, S-110DSRTF, S-115DSRTF, S-143SRTF, plus duplicate sample S-143SRTF_Dup) had concentrations above the SHS MSC for only PFOA.
- One well (S-389D) had concentrations above the SHS MSC for only PFOS.
- One well (B-134D) had concentrations above the SHS MSC for both PFOA and PFOS.
- Two wells (A-21D and W-27) were below SHS MSCs for both PFOA and PFOS but exceeded the combination MSC.
- All field blanks and equipment rinsate blanks were non-detect.

- Three (W-27, S-110DSRTF, and S-115DSRTF) of the eight wells, with detections above the SHS MSCs, represent potential impacts from off-site or hydraulically upgradient groundwater conditions.
- Only five (A-19D, A-21D, B-134D, S-143SRTF and S-389D) of the eight wells with detections above the SHS MSCs are located down gradient from Site operations (note, all wells sampled were on-Site wells, no off-Site wells were included in the lower aquifer groundwater sampling). There was no apparent correlation between locations of the historical fire activity, foam storage/loading areas, and fire training areas with any wells with PFAS detections above the SHS MSCs, including these locations.

5.0 **REGIONAL DISCUSSION**

Prior to sampling in the lower aquifer, a regional assessment of drinking water sources, intakes, and potential offsite PFAS discharges to the environment was conducted. The following summarizes the findings from this regional assessment, as depicted on **Figure 6**:

- Drinking water for the City of Philadelphia is served by the Philadelphia Water Department (PWD) and sourced from surface intakes along the Schuylkill and Delaware Rivers. Two locations, Queen Lane and Belmont Water Treatment Plants, are located along the Schuylkill River, more than one mile upstream and a third drinking water intake, Baxter Water Treatment Plant, is located roughly 14 miles to the northeast along the Delaware River and upstream of the site, as shown on Figure 6.
- Surface water data were collected and characterized for PFAS at the three water intakes by the Philadelphia Water Department¹. For all samples collected between April 2019 – February 2020, results showed PFOA + PFOS concentrations below the SHS MSC on Figure 6.
- Surface water samples collected by the PADEP and PWD, in conjunction with the United States Geologic Survey, further upstream in the Schuylkill River watershed at four locations ranged from 9.6 nanograms per liter (ng/L) to 21 ng/L for PFOA + PFOS concentrations, which are below the SHS MSC on Figure 6.
- Shallow aquifer groundwater samples collected by a Department of the Navy consultant at the Former Naval Fire Training Unit reveal a PFOA + PFOS concentration range of 380 ng/L to 27,910 ng/L, as shown on Figure 6.
- The potential PFAS sources to the environment within 1 mile of the Site include are also shown on **Figure 6**.

The information depicted in **Figure 6** further support that PFAS is ubiquitous in the region due to its use in commerce and industry, including several upgradient locations within 1 mile of the Site, and locations across the greater Philadelphia area. The information on **Figure 5** and **Figure 6** support that the Site will not have impacts to the PWD drinking water intakes due to the direction of groundwater and surface water flow. Groundwater in the lower aquifer across the Site has a general flow direction to the south toward the Schuylkill-Delaware River confluence and no drinking water intakes have been identified in the downgradient direction.

¹ Philadelphia Water Department. PFAS Water Resources Characterization Study. November 2020

Lower aquifer results from the Site are below SHS MSCs for PFAS substances in twenty-one of twenty-nine wells sampled. Of the eight wells with at least one PFAS substance above the SHS MSC, three well locations are representative of upgradient conditions. Only five of the eight wells with detections above the SHS MSCs are located down gradient of Site features. However, there was no apparent correlation between historical fire activity, foam storage/loading areas, and fire training areas with any of the wells which had PFAS detections above the SHS MSCs.

In addition, the surface water withdrawal points for the PWD are located at more than one mile upstream of the Site. Groundwater conditions at the Site will not impact the PWD drinking water intakes due to the direction of groundwater and surface water flow, as well as the distance between the Site and these features.

Enclosures

Linerobareb	
Figure 1	July 2021 PFAS Sampling Locations in the Lower Aquifer
Figure 2	Lower Aquifer Groundwater Flow Direction
Figure 3	Potential Areas Where Firefighting Foam May Have Been Previously
	Used at the Former Philadelphia Refinery
Figure 4	July 2021 Lower Aquifer PFAS Groundwater Results in Data Boxes
Figure 5	Potential Areas Where Firefighting Foam May Have Been Previously
	Used at the Former Philadelphia Refinery with July 2021 Lower Aquifer
	Sampling Results
Figure 6	Summary of PFAS Background Conditions and Potential Off-Site
	Sources
Table 1	Summary of Water Elevations and Field Measurements
Table 2	Summary of Analytical Results
Attachment A	Evergreen Desktop Review and Sampling Plan
Attachment B	Analytical Laboratory Packages

FIGURES

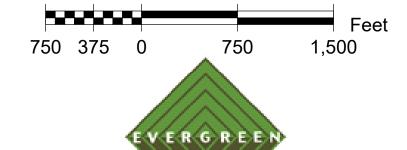
July 2021 PFAS Sampling Locations in the Lower Aquifer

Former Philadelphia Refinery

Philadelphia, PA

Drawn By: M. Fuerte / H. Pothier Designed By: P. Troy Reviewed By: P. Troy Project No: 4796.01 Date: August, 2021

Notes


1. Service Layer Credits: Source: Esri, Maxar, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community

AOI Boundary Lines PGW Boundary

Lower Aquifer Monitoring Wells

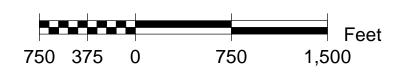
Lower Aquifer July 2021 PFAS Sampling Location

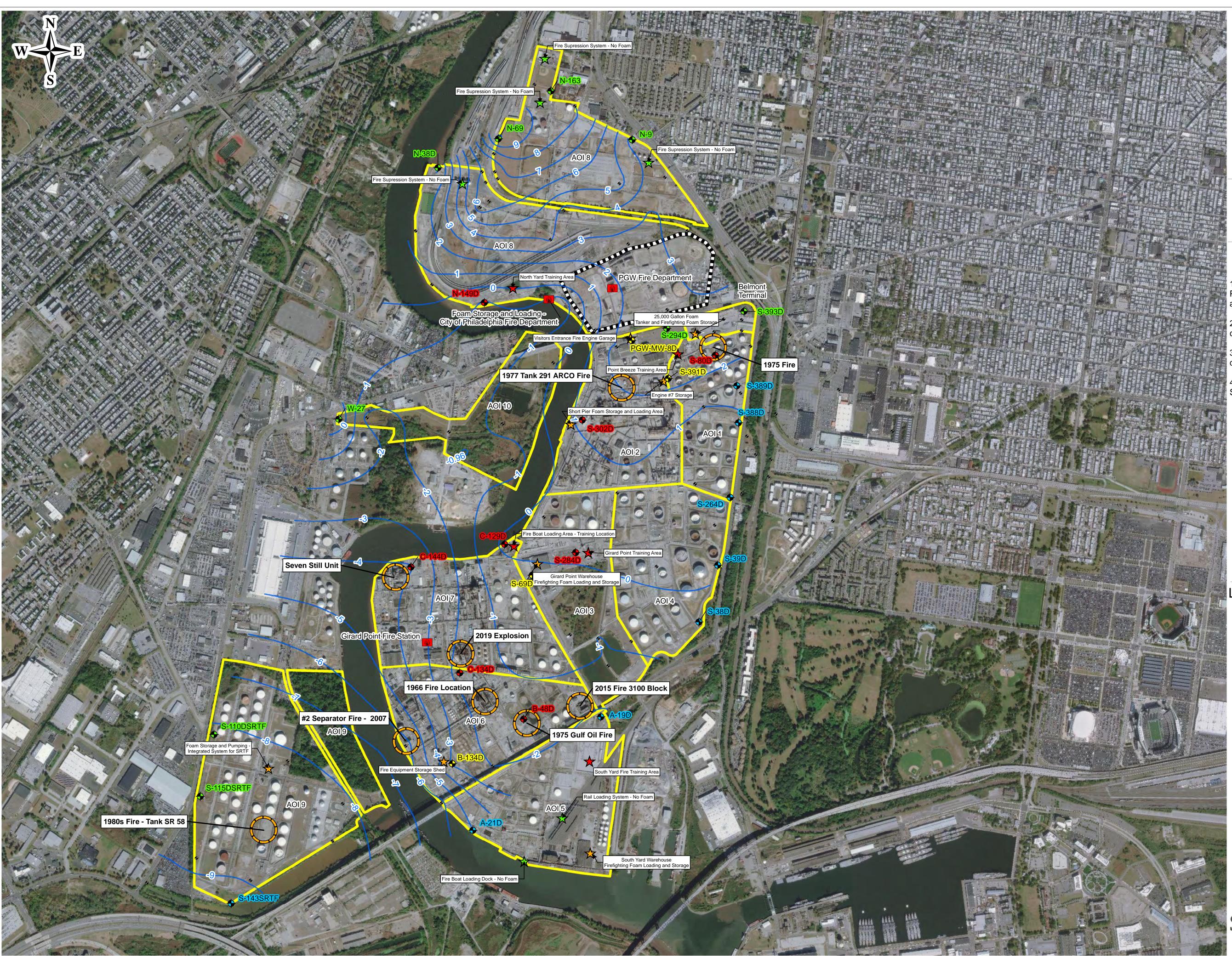
Lower Aquifer Groundwater Flow Direction

Former Philadelphia Refinery

Philadelphia, PA

Drawn By: M. Fuerte / H. Pothier Designed By: P. Troy Reviewed By: P. Troy Project No: 4796.01 Date: September, 2021


Notes


1. Service Layer Credits: Source: Esri, Maxar, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community

Legend

AOI Boundary Lines

- PGW Boundary
- Lower Aquifer Monitoring Wells
- July 2021 Lower Aquifer Downgradient Boundary Well Sampling Location
- July 2021 Lower Aquifer Upgradient/Background Well Sampling Location
- July 2021 Lower Aquifer Well Sampling Location in Storage/Loading Area
- July 2021 Lower Aquifer Well Sampling based on Reported Fire or Training Area
- 2.5 Groundwater Elevation (Feet NAVD 88)

Potential Areas Where Firefighting Foam May Have Been Previously Used at the Former Philadelphia Refinery

Former Philadelphia Refinery

Philadelphia, PA

Drawn By: M. Fuerte / H. Pothier Designed By: P. Troy Reviewed By: P. Troy Project No: 4796.01 Date: June 23, 2021

Notes

1. Aerial imagery provided by Google Earth. (2018). Philadelphia, PA, USA. 39°54'27.86"N, 75°12'00.94"W. Eye alt 24246 ft.

2. Fire Department locations identified from historical certified Sanborn Maps.

3. Onsite foam assets are approximate locations determined from Site visit on 6/2/2021.

4. Lower aquifer contours sourced from 2020 First Half Semi-Annual Remediation Status Report Figure 5.

ege	nd
	AOI Boundary Lines
TTT	PGW Boundary
	Lower Aquifer Contours
\blacklozenge	Lower Aquifer Monitoring Wells
+	Proposed Lower Aquifer Downgradient Boundary Well Sampling Location
+	Proposed Lower Aquifer Upgradient/Background Well Sampling Location
•	Proposed Lower Aquifer Well Sampling Location in Storage/Loading Area
+	Proposed Lower Aquifer Well Sampling based on Reported Fire or Training Area
\bigcirc	Historical Fire Incident
	Fire Department
\bigstar	Firefighting Asset - No Reported Firefighting Foam Storage
\bigstar	Reported Firefighting foam Storage and Loading Area
*	Reported Fire Training Area with Application of Firefighting Foam
	Feet 750 375 0 750 1,500
SA	NBORN

PFOA

70 **214 PFOS + PFOA** 70 **214**

200

70

PFOA

PFOS + PFOA

200

70

HxS NS 2 FNA NS 2 FOS 70 3 FOA 70 3		PFNA NS	* - - - - - - - - - - - - -	FHpA NS FHxS NS < PFNA NS PFOS 70 PFOA 70
		< 1.7 < 1.7 *5+ 14 I 14 I AOI 10 *	AOI 8 AOI 8 AO	t (ng/L) 3.9 4.3 5.1.8 7.1 3.8 8.9 12.7
				Analyte PA
B-48DAnalytePADEP MSCResPFBS1,900,0001PFHpANS1PFHxSNS1PFNANS1PFOS701PFOS + PFOA701PFOS + PFOA501	AQ14 AQ14		PF PFOS -	Ana PF PFI PFI PFI
	C Result (ng/L) < 20 39 < 20 370 33 99 I 132 I		TOA 70 37 I + PFOA 70 43.3	HpA NS 35 HxS NS 3.2
PFOS + PFOA 70	S-38DAnalytePADEP MSCPFBS1,900,000PFHpANSPFHxSNS	PFOS PFOA PFOS + PFOA	I Analyte PFBS PFHpA PFHxS PFNA	3.51 3.1 2.7 < 1.6 1.6 9.5 11.1 PFHpA PFHxS PFNA PFOS PFOS PFOS + PF
	PFBS 1,900,000 PFHpA NS PFHxS NS PFNA NS PFOS 70 PFOA 70 PFOS + PFOA 70 PFOF 70 PFOF 70 PFOS + PFOA 70 PFOS + PFOA 70 PFOS + PFOA 70 PFOS + PFOA 70	70 6.6 I 70 51 70 57.6 I 70 57.6 I 8 8 8 8 8 8 9 8 9 8 9 8 9 8 9 8 9 9 1,900,000 7.7 I*5+ NS <1.8 *5+ NS	PFBS 1,900 PFHpA NS PFHxS NS PFNA NS PFOS 70 PFOA 70 PFOS 70 PFOS 70 PFOS 70 PFOS 900 S 83 NS 42 NS 3.7 NS 11	1,900,000 4.3 I NS 38 NS 3.6 NS 2.9 70 6.4 I 70 37 I
	2.3 I 25 3.5 19 12 28 40	PFBS 1,900,/ PFHpA NS PFHxS NS PFNA NS PFOS 70 PFOA 70 PFOS + PFOA 70	MSC Result (ng/L) An 0000 2.91 P 5 270 PF 5 3.8 PF 5 5.4 P 0 3.6 P 0 53 PF 0 56.6 PFOS	L) S-39 Analyte PADE PFBS 1,900 PFHpA N PFHxS N PFNA N PFNA N PFOS 7 PFOS 7 PFOS 7 PFOS 77
	+	S 220 *5+ S <1.6	P MSC Result (ng/L)	PMSC Result (ng/L) 0,000 1.7 I S 5.9 S 2.6 S 1.9 0 4.1 0 11
		風いの問題	Result (ng/L) 3.2 I 250 3.8 5.5 3.8 54 57.8	

Figure 4

July 2021 Lower Aquifer PFAS **Groundwater Results in Data Boxes**

Former Philadelphia Refinery

Philadelphia, PA

Drawn By:	M. Fuerte
Designed By:	C. Costello
Reviewed By:	C. Costello
Project No:	4796.00
Date:	August, 2021

Notes

1. Service Layer Credits: Source: Esri, Maxar, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community

2. Samples were collected by Sanborn, Head & Associates, Inc. personnel on the dates indicated and analyzed by Eurofins Lancaster Laboratories Env, LLC of Lancaster, Pennsylvania for per- and polyfluroinated alkyl substances (PFAS) compounds by United States Environmental Protection Agency (USEPA) Method 537 (modified) with isotope dilution.

3. Concentrations are presented in nanograms per liter (ng/L).

4. PADEP medium-specific concentrations (MSCs) for organic regulated substances in groundwater (TDS ≤ 2500 mg/L) from Appendix A, Table 1.

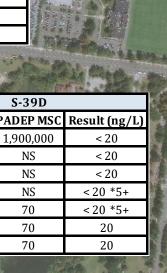
5. Appendix A, Table 1 notes that "PFOA and PFOS values listed are for individual or total combined."

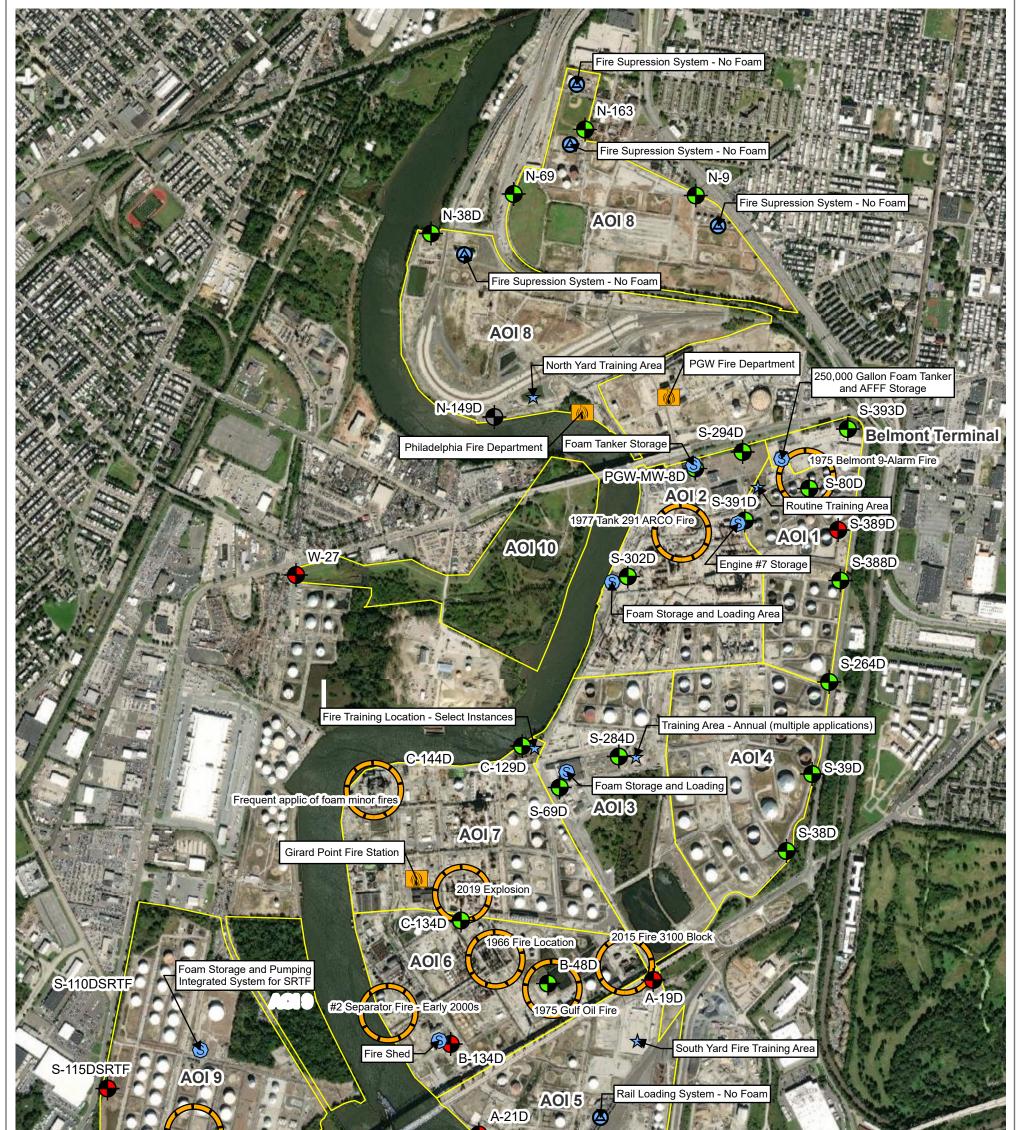
6. "I" indicates the laboratory qualified this result as "EMPC (Estimated Maximum Possible Concentration)." "*5+" indicates the laboratory qualified this result

as"Isotope dilution analyte is outside acceptance limits, high biased."

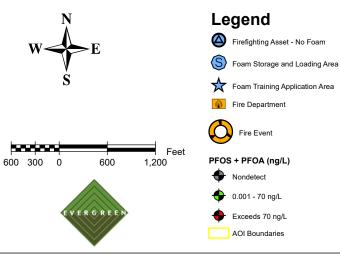
- Bold gray-shaded values exceed the PADEP MSC Perfluorobutanesulfonic Acid (PFBS) 8
- Perfluoroheptanoic Acid (PFHpA) 9
- 10. Perfluorohexanesulfonic Acid (PFHxS)
- 11. Perfluorononanoic Acid (PFNA)
- 12. Perfluorooctanesulfonic Acid (PFOS)
- 13. Perfluorooctanoic Acid (PFOA)

Legend


 \bullet


- Sampled Lower Aquifer Monitoring Well PFOS + PFOA: Nondetect to 70 ng/L
- Sampled Lower Aquifer Monitoring Well PFOS + PFOA: > 70 ng/L


Lower Aquifer Monitoring Wells AOI Boundary Lines


Feet 750 375 0 1,500 750

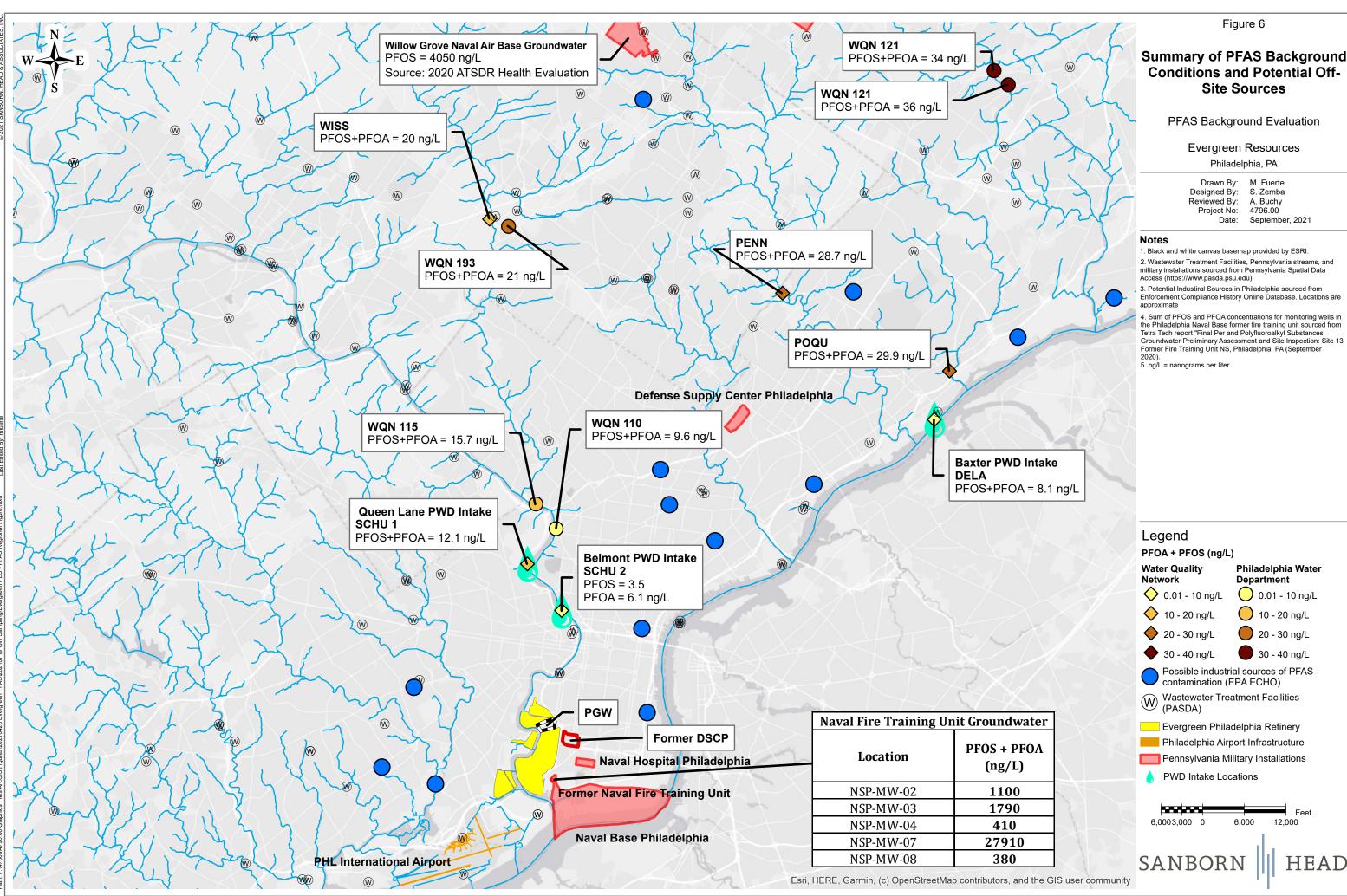
EVERGREEN

Notes

1. Fire Department locations identified from historical certified Sanborn Maps.

2. Onsite foam assets are approximate locations determined from Site visit on 6/2/2021.

3. Service Layer Credits: Source: Esri, Maxar, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community


Figure 5

Potential Areas Where Firefighting Foam May Have Been Previously Used at the Former Philadelphia Refinery with July 2021 Lower Aquifer Sampling Results

Evergreen Resources Group

Philadelphia, PA

Drawn By: M. Fuerte Designed By: A. Buchy Reviewed By: A. Buchy Project No: 4796.00 Date: September, 2021

Summary of PFAS Background Conditions and Potential Off-Site Sources

Feet

TABLES

Table 1 Summary of Water Elevations and Field Measurements July 2021 Former Philadelphia Refinery Philadelphia, Pennsylvania

Sampling Location	Sample Name	Sample Date	Ref. Point	Depth to Water (ft)	Top of Casing Elevation (ft)	Corrected Water Level Elevation (ft)	Depth to Bottom (ft bgs)	рН (S.U.)	Specific Conductance (µS/cm)	Temp. (°C)	Dissolved Oxygen (mg/L)	Oxidation Reduction Potential (mV)	Turbidity (NTU)
N-69	N-69	7/19/21	TOC	13.54	23.20	9.66	42	7.9	1,060	19.1	0.0	-261.0	10.8
N-163	N-163	7/19/21	TOC	17.91	27.23	9.32	39.75	6.9	683	18.6	0.0	-159.0	59.0
W-27	W-27	7/23/21	TOC	9.90	10.86	0.96	20.4	6.7	1,190	21.0	0.2	74.0	0.0
S-38D	S-38D	7/22/21	TOC	20.40	17.70	-2.70	132	7.2	218	19.80	0.1	-121.0	36.4
B-134D	B-134D	7/22/21	TOC	11.00	8.12	-2.88	82	6.5	1,260	18.38	0.0	-78.0	13.1
C-144D	C-144D	7/22/21	TOC	13.54	8.963	-4.58	74	6.3	953	17.7	0.00	-52	46.6
C-129D	C-129D	7/21/21	TOC	8.65	9.191	0.54	68.12	7.0	944	18.7	0.31	-152	5.3
S-69D	S-69D	7/21/21	TOC	11.00	11.354	0.35	62.3	6.6	979	18.8	0.00	89	22.8
S-80D	S-80D	7/21/21	TOC	29.20	31.74	2.54	79	5.9	941	19.1	0.16	12	8.0
S-80D	S-80D-Dup	7/22/21	-	-	-	-	-	-	-	-	-	-	-
S-389D	S-389D	7/20/21	TOC	24.50	26.30	1.80	82	6.4	988	19.3	0.27	-56	2.6
S-391D	S-391D	7/20/21	TOC	28.70	31.46	2.76	98	6.3	943	20.2	0.00	-28	180
S-294D	S-294D	7/20/21	TOC	31.82	34.68	2.86	99	6.4	1,080	18.4	0.00	-62	65.0
N-38D	N-38D	7/19/21	TOC	10.00	10.432	0.43	84	6.8	2,120	18.3	0.56	-140	24.5
N-9	N-9	7/19/21	TOC	31.70	38.21	6.51	63	6.4	1,230	20.5	0.20	-24	282
S-143SRTF	S-143SRTF	7/23/21	TOC	16.27	6.77	-9.50	70	6.5	858	18.0	1.3	-84	2.9
S-143SRTF	S-143SRTF-Dup	7/23/21	-	-	-	-	-	-	-	-	-	-	-
S-264D	S-264D	7/20/21	TOC	25.29	26.63	1.34	81	6.1	1,300	17.5	1.1	22	7.3
A-19D	A-19D	7/22/21	TOC	12.32	10.64	-1.68	60	6.4	516	16.9	2.3	-123	15.8
S-302D	S-302D	7/20/21	TOC	22.67	24.602	1.93	92	6.0	1,400	19.7	0.80	-69	47.9
S-284D	S-284D	7/21/21	TOC	11.09	12.02	0.93	78	6.1	1,140	18.8	0.84	21	0.0
PGW-MW-8D	PGW-MW-8D	7/20/21	TOC	32.36	35.11	2.75	80	6.4	1,120	18.3	0.00	-99	45.6
S-388D	S-388D	7/20/21	TOC	24.61	26.19	1.58	91.8	6.1	1,300	20.9	0.00	-25	11.5
N-149D	N-149D	7/21/21	TOC	10.90	10.29	-0.61	77	6.3	1,840	20.6	0.00	-89	37.0
S-393D	S-393D	7/21/21	TOC	29.20	32.06	2.86	102	6.1	951	19.3	0.00	8	41.0
S-39D	S-39D	7/21/21	TOC	23.85	24.51	0.66	132	7.0	1,110	18.4	0.00	-96	3.0
A-21D	A-21D	7/22/21	TOC	16.10	11.25	-4.85	85	6.7	700	18.0	0.00	-85	53.6
C-134D	C-134D	7/22/21	TOC	10.90	9.399	-1.50	70	6.6	929	18.9	0.00	8.0	76.3
B-48D	B-48D	7/22/21	TOC	10.78	9.42	-1.36	55	6.5	792	23.0	0.00	-78	108
S-110DSRTF	S-110DSRTF	7/23/21	TOC	10.93	2.67	-8.26	60	6.4	1,680	18.5	0.00	30	195
S-115DSRTF	S-115DSRTF	7/23/21	TOC	11.20	2.702	-8.50	61	6.6	1,800	16.8	0.00	-59	25.1
QC_EB	EB-01	7/19/21	-	-	-	-	-	-	-	-	-	-	-
QC_FB	FB-01	7/19/21	-	-	-	-	-	-	-	-	-	-	-
QC_FB	FB-02	7/20/21	-	-	-	-	-		-	-	-	-	-
QC_FB	FB-03	7/21/21	-	-	-	-	-		-	-	-	-	-
QC_FB	FB-04	7/23/21	-	-	-	-	-	-	-	-	-	-	-
QC_EB	EB-02	7/23/21	-	-	-	-	-	-	-	-	-	-	-

 QC_EB
 EB-02

 Notes:
 "C = degrees centigrade

 µS(rm = microsiemens per centimeter
 bgs below ground surface

 bgs = below ground surface
 EB = Equipment Blank

 FB = Field Blank
 ff = feet

 mg = milligrams
 mV = millivolt

 NTU = Nephelometric Turbidity Units
 TOC = Top of Casing

 QC = Quality control
 S.U. = Standard Units

TABLE 2 **Summary of Analytical Results** July 2021 Former Philadelphia Refinery Philadelphia, Pennsylvania

ANALYTE		PFBS	7	PFHpA	8	PFHxS)	PFNA ¹⁰)	PFOS ¹	.1	PFOA ¹²	2	PFOS + F	PFOA	
PADEP MSC	SAMPLE DATE	1,900,0	00	NS		NS		NS		70		70		70		
UNIT		ng/L		ng/L		ng/L		ng/L		ng/L		ng/L		ng/L		
A-19D	7/22/2021	< 20		39		< 20		370		33		99	Ι	132	Ι	
A-21D	7/22/2021	2.6	*5+	32		24		24		36		38		74		
B-134D	7/22/2021	3.4	I, *5+	89		18		60		73		97		170		
B-48D	7/22/2021	< 1.7		3.7		3.6		43		8.2		23		31.2		
C-129D	7/21/2021	1.6	Ι	1.9		2.0		8.5		3.5		8.8		12.3		
C-134D	7/22/2021	3.6	*5+	32		2.4		23		7.7		41		48.7		
C-144D	7/22/2021	< 1.6	*5+	12		< 1.6		5.7	*5+	< 1.6		19		19		
N-149D	7/21/2021	< 20		< 20	*5+	< 20		< 20	*5+	< 20	*5+	< 20	*5+	ND		
N-163	7/19/2021	2.4		3.1		< 1.7		14		6.2		12		18.2		
N-38D	7/19/2021	2.5	I, *5+	20		< 1.6		3.9	Ι	< 1.6		5.0		5.0		
N-69	7/19/2021	3.9		4.3		< 1.8		7.1		3.8		8.9		12.7		
N-9	7/19/2021	3.5	Ι	3.1		2.7		< 1.6		1.6		9.5		11.1		
PGW-MW-8D	7/20/2021	2.8	I, *5+	35		3.2		2.1		6.3	Ι	37	Ι	43.3	Ι	
S-110DSRTF	7/23/2021	9.8	I, *5+	40		11		86		26		580		606		
S-115DSRTF	7/23/2021	3.3	*5+	56		11		87		37		550		587		
S-143SRTF	7/23/2021	4.8	Ι	11		8.2		13		14		200		214		
S-143SRTF Dup	7/23/2021	4.9	Ι	11		8.0		13		14		200		214		
S-264D	7/20/2021	7.7	I, *5+	< 1.8	*5+	23	*5+	< 1.8		41		16	Ι	57	I	
S-284D	7/21/2021	2.3	I	25		3.5		19		12		28		40		
S-294D	7/20/2021	4.3	Ι	38		3.6		2.9		6.4	Ι	37	Ι	43.4	Ι	
S-302D	7/20/2021	< 1.7		8.5		< 1.7		< 1.7		< 1.7	*5+	14	Ι	14	Ι	
S-388D	7/20/2021	4.8	Ι	1.8		13		< 1.6		21		10	Ι	31	Ι	
S-389D	7/20/2021	18		14	*5+	220	*5+	< 1.6		280		68	Ι	348	Ι	
S-38D	7/22/2021	< 1.6		< 1.6		< 1.6		< 1.6	*5+	2.1		< 1.6		2.1		
S-391D	7/20/2021	< 1.6		42		3.7		11		6.6	Ι	51		57.6	Ι	
S-393D	7/21/2021	1.7	Ι	5.9		2.6		1.9		4.1		11		15.1		
S-39D	7/21/2021	< 20		< 20		< 20		< 20	*5+	< 20	*5+	20		20		
S-69D	7/21/2021	2.5	Ι	12		3.9		76		6.9		36		42.9		
S-80D	7/21/2021	2.9	Ι	270		3.8		5.4		3.6		53		56.6		
S-80D_Dup	7/21/2021	3.2	Ι	250		3.8		5.5		3.8		54		57.8		
W-27	7/23/2021	7.8		49		8.6		27		53		53		106		
EB-01	7/19/2021	< 2.1		< 2.1		< 2.1		< 2.1		< 2.1		< 2.1		ND		
EB-02	7/23/2021	< 1.9		< 1.9		< 1.9		< 1.9		< 1.9		< 1.9		ND		
FB-01	7/19/2021	< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		ND		
FB-02	7/20/2021	< 1.8		< 1.8		< 1.8		< 1.8		< 1.8		< 1.8		ND		
FB-03	7/21/2021	< 1.7		< 1.7		< 1.7		< 1.7		< 1.7		< 1.7		ND		
FB-04	7/23/2021	< 1.7		< 1.7		< 1.7		< 1.7		< 1.7		< 1.7		ND		

Notes:

1. Samples were collected by Sanborn, Head & Associates, Inc. personnel on the dates indicated and analyzed by Eurofins Lancaster Laboratories Env, LLC of Lancaster, Pennsylvania for per- and polyfluroinated alkyl substances (PFAS) compounds by United States Environmental Protection Agency (USEPA) Method 537 (modified) with isotope dilution.

Concentrations are presented in nanograms per liter (ng/L)
 PADEP medium-specific concentrations (MSCs) for organic regulated substances in groundwater (TDS ≤ 2500 mg/L) from Appendix A, Table 1 (http://www.pacodeandbulletin.gov/Display/nabull?file=/secure/pabulletin/data/vol50/50-7/238.html&d=reduce).
 Appendix A, Table 1 notes that "PFOA and PFOS values listed are for individual or total combined."

5. "I" indicates the laboratory qualified this result as "EMPC (Estimated Maximum Possible Concentration)." "*5+" indicates the laboratory qualified this result as "Isotope dilution analyte is outside acceptance limits, high biased."

6. Bold gray-shaded values exceed the PADEP MSC

Dott gl ay-shaled values exceed the FA
 Perfluorobutanesulfonic Acid (PFHpA)
 Perfluorohexanesulfonic Acid (PFHxS)

10. Perfluorononanoic Acid (PFNA)

11. Perfluorooctanesulfonic Acid (PFOS)

12. Perfluorooctanoic Acid (PFOA)

ATTACHMENT A

EVERGREEN DESKTOP REVIEW AND SAMPLING PLAN (JUNE 2021)

Evergreen Resources Management 2 Righter Parkway, Suite 120 Wilmington, DE 19803

June 30, 2021

VIA ELECTRONIC SUBMISSION

C. David Brown, P.G. Professional Geologist Manager Environmental Cleanup & Brownfields Program Pennsylvania Department of Environmental Protection Southeast Regional Office 2 East Main Street, Norristown, PA 19401

Re: Desktop Review and Sampling Plan for PFAS former Philadelphia Refining Complex 3144 Passyunk Avenue, Philadelphia, Pennsylvania

Dear Mr. Brown:

At the request of the Pennsylvania Department of Environmental Protection (PADEP), Evergreen Resources Management Operations (Evergreen) completed groundwater remediation system sampling in February 2021 for per and polyfluoroalkyl substances (PFAS) at the former Philadelphia Refinery (Site). The results of this sampling were sent to the PADEP on March 22, 2021 and discussed with the PADEP, United States Environmental Protection Agency (USEPA), and the City of Philadelphia (City) on May 5, 2021. On May 14, 2021, the PADEP requested that Evergreen:

- Should research refinery records to determine the locations of all fire training areas, locations of fires where aqueous film forming foam (AFFF) was used, and any other locations where AFFF might have been discharged to the surface or subsurface, including groundwater.
- Sample deep (also referred to as lower aquifer) groundwater monitoring wells at the Site for PFAS and prepare a scope of work to identify wells for sampling based on findings of the desktop review.

The PADEP also recommended that Evergreen complete a soil investigation to characterize PFAS in potentially impacted areas. Evergreen's proposed approach to address the PADEP's May 14, 2021 request was submitted to the PADEP on May 21, 2021 and includes the following tasks:

<u>**Task 1**</u> – Prepare a summary of the desktop review of available resources which detail historic fires, fire training areas and possible AFFF storage facilities on-site since 1960. A target date of June 30, 2021 was proposed for the report summarizing the findings of Task 1.

<u>**Task 2**</u> – Prepare a lower aquifer groundwater sampling plan to evaluate potential PFAS impacts. A target of June 30, 2021 was proposed for a sampling plan.

<u>**Task 3**</u> – Have a discussion with the PADEP and USEPA on the report and sampling plan from Task 1 and 2. This meeting was proposed for the week of July 12^{th} . As noted in Section 3.0, Evergreen requests that this meeting be held on July 12, 2021.

<u>**Task 4**</u> – Perform Task 2 groundwater sampling for PFAS subsequent to the July 12^{th} meeting and concurrence with the sampling plan.

Task 5 – Submit lower aquifer groundwater PFAS findings to the agencies by September 30, 2021.

<u>**Task 6**</u> – Have a discussion with PADEP and USEPA in early November 2021 to review lower aquifer groundwater findings and determine if additional investigation is warranted.

This letter presents the findings from the completion of Task 1 and a sampling plan in accordance with Task 2.

1.0 SUMMARY OF DESKTOP REVIEW

Multiple sources of information were reviewed in order to identify potential sources of PFAS at the site in accordance with Task 1, as summarized below.

- Review of readily available media articles and other publicly available information about past fires at the Site. Attachment A summarizes the fires that were covered in the media since the 1960's at the refinery.
- Review of relevant available site maps, including site operational maps (including tank numbers, refining unit numbers, and other relevant operational features) that were incorporated in historic environmental reports, existing and historic utility maps and historic site knowledge.
- Site inspection on June 2, 2021, identifying fire suppression systems, firefighting foam concentrate storage (including both labeled totes and drums) and inspection of locations of past fires (where possible). Photos from this site inspection are included in Attachment B.
- Review of Safety Data Sheets (SDS) provided by Hilco Redevelopment Partners (HRP) for firefighting foam used on site. Cross checking known databases of PFAS constituents identified in specific foam brand names.

Based on the desktop review, areas where firefighting foam may have been previously used at the Site were identified. These are summarized below and shown on Figure 1 and summarized in Table 1.

C. David Brown, P.G. June 30, 2021 Page 3

- 1. Fire Training Areas
 - a. Routine/Annual Training Areas application of firefighting foam as part of fire training activities.
 - b. Select Training Areas Less frequently used training areas.
- 2. Fires –Firefighting foam was reported to be used to address additional fires at the Refinery, as shown on Figure 1 and Table 1.
- 3. Storage/Loading Areas and Fire Stations Though firefighting foam was present at these locations, there is no indication that AFFF containing materials came into the contact with the environment.

2.0 PROPOSED SAMPLING PLAN

An important consideration in determining a sampling plan is the direction of groundwater flow and the potential for background PFAS concentrations migrating onto the Site. Given the ubiquitous nature of PFAS in commerce and industry and the nearby potential sources (some, like Philadelphia Gas Works, with potential use of AFFF foam for fire suppression), it is possible that PFAS may have migrated onto the Site from one of these sources. Figure 1 includes lower aquifer groundwater contours to assist in selection of sampling locations representative of upgradient/background conditions. In addition, since there is no groundwater use at the Site and the majority of the Site is to be capped as part of the planned redevelopment, the proposed sampling plan also includes downgradient sampling locations to assess the potential for PFAS migration offsite.

The proposed sampling plan has been developed in response to the PADEP's request to sample for PFAS at the Site. The proposed approach is to investigate the lower aquifer wells with respect to potential AFFF release areas based on the results of the desktop study. As mentioned in Section 2.0, areas where firefighting foam may have been previously used at the Site were identified, including:

- 1. Fire Training Areas
- 2. Fires
- 3. Storage/Loading Areas and Fire Stations

The sampling plan includes lower aquifer sampling locations proximate to each of these areas, but with the recognition that Evergreen is including proposed sampling locations even in areas with a low potential for release of AFFF to the environment. The proposed sampling locations are shown in Figure 1 and are summarized on Table 1.

The lower aquifer groundwater samples will be collected in accordance with the PFAS-specific SOP included in Attachment C. PFAS sampling requires special considerations to avoid potential PFAS-cross contamination from the sampling equipment and a higher level of QA/QC samples to

C. David Brown, P.G. June 30, 2021 Page 4

check for sample contamination. In general, Teflon-containing materials will be avoided, and samples will be collected in containers that do not absorb PFAS.

Analytical Approach

Only three PFAS are currently regulated by PADEP under Act 2 (PFOS, PFOA, and PFBS). Evergreen proposes to report the results for these three analytes during the lower aquifer groundwater sampling event. The analyte list could be expanded; however, to include all six of the PFAS compounds that were previously analyzed the Site.

3.0 CLOSING

We would like to have a meeting with the PADEP to review the desktop study, proposed sampling locations and analyte list on July 12, 2021. We have scheduled the groundwater sampling described in the sampling plan for the end of July 2021.

Regards,

Evergreen Resources Management Operations

a.J

Tiffani L. Doerr, P.G.

Cc: Scott Cullinan, PE, Evergreen Resources Management Operations Kevin Bilash, EPA Colleen Costello, PG, Sanborn Head & Associates, Inc. TABLE

TABLE 1 Proposed Lower Aquifer Sampling Locations Former Philadelphia Refinery Philadelphia, PA

	Proposed Investigation	
Description	Detail	Monitoring Well
North Yard Training Area	Firefighting foam was reportedly applied to this area for annual training each May from 2012 to the end of operations in 2019.	N-149D
Girard Point Training Area - Annual Training	Reported multiple applications of firefighting foam for training.	S-284D
Fire Boat Loading Area - Training Area	Reportedly not consistently used as a training area	C-129D
7 Still Refining Unit Fires	Reported frequent incidental fires requiring the application of firefighting foam	C-144D
2019 Explosion	2019 explosion and fire	C-134D
1975 Gulf Refinery Platt Bridge Fire	Large multi-alarm fire with reported application of firefighting foam	B-48D
1977 Tank 291 Arco Fire	Explosion resulting in 250 Firefighters on scene - reported application of firefighting foam	S-302D
1975 Belmont Terminal 9-Alarm Fire	Terminal line and Tank 27 Fire - reported application of firefighting foam.	S-80D
Engine #7 Storage	Firefighting foam equipped fire tanker was reportedly stored at this location	S-391D
Point Breeze Visitor's Entrance Fire Engine Garage	Firefighting foam equipped fire tanker was reportedly stored at this location	PGW-MW-8D
Belmont Terminal 25,000 Foam Tanker and firefighting Storage	Firefighting foam equipped fire tanker and additional firefighting concentrate totes were reportedly stored at this location	S-80D
Girard Point Warehouse firefighting Loading and Storage	Firefighting foam concentrate was reportedly stored in totes at this location	S-69D
Girard Point Fire Equipment Storage Shed	Reported firefighting foam concentrate drum storage area	B-134D
		N-38D
		N-69
		N-163
Upgradient Background Locations	Ille and diset I continue to confuste he also and	N-9
Opgraulent Background Locations	Upgradient Locations to evaluate background	W-27
		S-110DSRTF
		S-115DSRTF
		S-294D
		S-393D
		S-143SRTF
		A-21D
		A-19D
Downgradient Boundary Locations	Downgradient Boundary Locations	S-38D
- •		S-39D
		S-264D
		S-388D
		S-389D

FIGURE

Proposed Sampling Locations in the Lower Aquifer

Former Philadelphia Refinery

Philadelphia, PA

Drawn By: M. Fuerte / H. Pothier Designed By: P. Troy Reviewed By: P. Troy Project No: 4796.01 Date: June 23, 2021

Figure Narrative

Notes

1. Aerial imagery provided by Google Earth. (2018). Philadelphia, PA, USA. 39°54'27.86"N, 75°12'00.94"W. Eye alt 24246 ft.

2. Fire Department locations identified from historical certified Sanborn Maps.

3. Onsite foam assets are approximate locations determined from Site visit on 6/2/2021.

4. Lower aquifer contours sourced from 2020 First Half Semi-Annual Remediation Status Report Figure 5.

ege	nd
	AOI Boundary Lines
	PGW Boundary
	Lower Aquifer Contours
\blacklozenge	Lower Aquifer Monitoring Wells
+	Proposed Lower Aquifer Downgradient Boundary Well Sampling Location
\	Proposed Lower Aquifer Upgradient/Background Well Sampling Location
\$	Proposed Lower Aquifer Well Sampling Location in Storage/Loading Area
•	Proposed Lower Aquifer Well Sampling based on Reported Fire or Training Area
\bigcirc	Historical Fire Incident
	Fire Department
\bigstar	Firefighting Asset - No Reported Firefighting Foam Storage
\bigstar	Reported Firefighting foam Storage and Loading Area
*	Reported Fire Training Area with Application of Firefighting Foan
	Feet 750 375 0 750 1,500
SA	NBORN

ATTACHMENT A

SUMMARY OF PUBLIC INFORMATION AND MEDIA ARTICLES REVIEWED

<u>Attachment A</u>
Summary of Public Information and Media Articles Reviewed

Date	Description		Citations	
9/9/1960	Girard Point - Gulf Refinery Fire: "Well into the second half of the 20th century, what is now the PES complex was split between several refineries. One of them was the 600-acre Girard Point Refinery, owned by the former Gulf Oil Corp. In 1960, a blaze erupted in a six-story building and		Marin, Max. "South Philly Refinery's Long History of Fires, Explosions, Deaths and Injuries." Billy Penn, 21 June 2019, 1:15 PM.	
5/23/1966	Girard Point - Gulf Refinery Fire - "The Philadelphia Inquirer front-page story on May 24,1966, would sound familiar to current observers: "5-Alarmer At Refinery Shoots Flames 400 Feet In the Air." This particular blaze snarled traffic and closed bridges. No one was killed or injured this time either, according to archived news reports. But such fires had become a frightening routine for emergency responders, the papers noted."	Marin, Max. "South Philly Refinery's Long History of Fires, Explosions, Deaths and Injuries." Billy Penn, 21 June 2019, 1:15 PM.	Ingraham, Bill. "A Spectacular Multi-Alarm Fire Hit the Gulf Oil Refinery on May 24, 1966." Billy Penn, Philadelphia, 21 June 2019.	
5/11/1970	Point Breeze - Explosion of 13-story Catalytic Unit at the ARCO Refinery.	Doyle, Jack. "Burning Philadelphia: Refinery Inferno, 1975." The Pop History Dig, 15 Feb. 2015.	Marin, Max. "South Philly Refinery's Long History of Fires, Explosions, Deaths and Injuries." Billy Penn, 21 June 2019, 1:15 PM.	
1966-1975	Girard Point - Gulf Refinery Fires - Generic mention that 8 fires that occurred at the Gulf Refinery during this time period	Doyle, Jack. "Burning Philadelphia: Refinery Inferno, 1975." The Pop History Dig, 15 Feb. 2015.		
10/12/1975	Point Breeze - Belmont Terminal Line and Tank 27 Fire - Coordinated Foam Attack Ordered, dirt dike built around the loading racks to contain the product and fill with foam. "Engine 33, responding on the fourth alarm, brought a foam unit from the Allied Chemical Company. On the fifth alarm, Engine 125 drove the Rohm & Haas Company foam unit into the refinery. Gulf sent its newly acquired foam pumper to assist, as did the Johnsville Naval Air Station. A nearby foam manufacturer dispatched two new units destined for shipment to China to stand by."	Burns, Robert. "9-Alarm Fire Starts In Trench for Piping at Philadelphia Refinery." Fire Engineering, 3 Sept. 2019.	Bartosz, Robert C. Fire Engineering, Philadelphia, 17 Aug. 1975.	
10/20/1975	Girard Point - Gulf Refinery Fire -This fire was centered in a 125-foothigh distillation tower. Pumps had been bringing in crude oil from a Gulf storage facility at Darby Creek. At the peak of the fire, it covered an area with a 250-foot radius around the base of the tower, but the fire was confined to the lower section. "Following the sixth alarm, Rizzo issued a special call for Engine 33 to and Allied Chemical's foam unit."	Burns, Robert. "9-Alarm Fire Starts In Trench for Piping at Philadelphia Refinery." Fire Engineering, 3 Sept. 2019.		
10/30/1975	Girard Point - Gulf Refinery - 1 Alarm Fire - Contained on site, exact location unknown	Burns, Robert. "9-Alarm Fire Starts In Trench for Piping at Philadelphia Refinery." Fire Engineering, 3 Sept. 2019.		
8/17/1975 - 8/26/1975	Girard Point - Gulf Refinery - 6 Alarm Fire - Caused by overfilling of Tank 231 - "The fire had already expanded eastward in the refinery, taking with it two fire department engines – No. 160 and No.133 – and also a refinery foam pumper."	Doyle, Jack. "Burning Philadelphia: Refinery Inferno, 1975." The Pop History Dig, 15 Feb. 2015.	Philadelphia Evening Bulletin. Hidden City Philadelphia, Philadelphia, 10 Dec. 2013.	Philadelphia Inquirer, et al. The Pop History Dig, Philadelphia, 15 Feb. 2015.
1/24/1977	Point Breeze - Arco Refinery Tank 291 - "Four were injured in another Arco explosion that blasted the windows out of buildings blocks away. The fire lasted for hours, even with 250 firefighters on the scene."	Rush, Mariah. "In Philly, a History of Oil Refinery Fires Going Back Decades." The Philadelphia Inquirer, The Philadelphia Inquirer, LLC, 21 June 2019.	Cramer, Richard Ben. "4 Hurt in ARCO Blast, Fire." The Philadelphia Inquirer , 25 Jan. 1977, pp. 1C–9A.	
4/9/1977	Girard Point - Gulf Refinery - "an aerial photo of another blaze in 1977 in which a barge sunk, releasing oil which caught fire in the river "	Dougherty, Christopher R. "A Petaled Rose Of Hell: Refineries, Fire Risk, And The New Geography Of Oil In Philadelphia's Tidewater." Hidden City Philadelphia, 10 Dec. 2013.	D'Angelo, Ed. "Entrance to Gulf Oil Refinery Frames Fire." Temple University Libraries, Philadelphia Evening Bulletin, 9 Apr. 1977.	Philadelphia Evening Bulletin. Hidden City Philadelphia, Philadelphia, 10 Dec. 2013.
Early 1980s	Schuylkill River Tank Farm - At SR58 Tank a notable fire occurred resulting in the application of AFFF	Former employee accuonts		
8/1/1982	Girard Point - Gulf Refinery - "a Gulf worker was seriously burned after a 125-foot heating tower exploded into flames in the middle of the night, leaving yet another trail of thick black smoke on the South Philly horizon."	Marin, Max. "South Philly Refinery's Long History of Fires, Explosions, Deaths and Injuries." Billy Penn, 21 June 2019, 1:15 PM.		
1/11/1988	Point Breeze - "In 1988, Cherry Hill and Bucks County residents were ripped awake by another explosion at the South Philly plant, newspapers reported. A steel-welded lid blew off one of the oil tanks and flew about 150 feet in the blast. A spokesperson for the oil company acknowledged that it was a stroke of luck the lid didn't crash with one of the other tanks."	of Fires, Explosions, Deaths and Injuries." Billy	Rush, Mariah. "In Philly, a History of Oil Refinery Fires Going Back Decades." The Philadelphia Inquirer, The Philadelphia Inquirer, LLC, 21 June 2019.	
8/24/2011	Girard Point - "A small fire at Girard Point was declared under control an hour later. According to a Sunoco spokesperson, the fire began at a pump."	Rush, Mariah. "In Philly, a History of Oil Refinery Fires Going Back Decades." The Philadelphia Inquirer, The Philadelphia Inquirer, LLC, 21 June 2019.		
5/22/2015	Girard Point - "The fire broke out shortly before 6 p.m. at Philadelphia Energy Solutions on the 3100 block of Pennrose Ave. No injuries have been reported. By 6:30 p.m., the bulk of the fire appeared to have been knocked down."	Breaking News Desk, PHILLY.COM. "Fire at South Phila. Refinery Appears under Control." The Philadelphia Inquirer, The Philadelphia Inquirer, LLC, 22 May 2015.		

12/10/2016	around 10:50 p.m. Saturday. Police also closed streets in the area. Crews were eventually able to bring the flames under control at 11:49 nm. No injuries were	Chang, David. "Crews Battle Fire at Philadelphia Energy Solutions Refinery." NBC10 Philadelphia, NBC Universal Media, LLC, 11 Dec. 2016.
6/21/2019	Girard Point - Large Explosion and Fire	Rush, Mariah. "In Philly, a History of Oil Refinery Gambardello, Joseph A., et al. "Explosions Rip through Fires Going Back Decades." The Philadelphia South Philadelphia Refinery, Triggering Major Fire and Inquirer, The Philadelphia Inquirer, LLC, 21 June Injuring 5." The Philadelphia Inquirer, LLC, 22 June 2019, 5:14 PM.

ATTACHMENT B

SITE PHOTOS

ATTACHMENT B Project Photographs

Photo 1: Drum in Fire Shed

Photo 2: Drum Label

Photo 3: Foam Tote Label

Photo 4: Empty Foam Totes

Photo 5: Fire Hose

Photo 6: Fire Shed with Foam Drums

Photo 7: Fire Trailer

Photo 8: Foam Loading Area-1200 Tanks

Photo 9: Foam Loading Inspection Tag

Photo 10: Foam Nozzle

 $\label{eq:conserv1} shdata 4700s 4796.00 \\ Source Files \\ PFAS \\ Desktop Study and Sampling Plan - June 2021 \\ Attachment E - Select Site \\ Photographs \\ Photo Log.docx \\ Name and Sampling Plan - June 2021 \\ Attachment E - Select Site \\ Photographs \\ Photo Log.docx \\ Name and \\ Name$

ATTACHMENT C

PFAS SAMPLING STANDARD OPERATING PROCEDURES (SOPs)

SOP: PFAS Revision No.: 00 Date: January 25, 2021 Page No.: 1 of 6

SOP PFAS FIELD QA/QC, AND SAMPLING PROTOCOL

TABLE OF CONTENTS

1.0	SCOPE AND APPLICABILITY	3
2.0	Laboratory Requirements	3
3.0	Field QA/QC	3
4.0	Sampling Precautions 4.1 Groundwater Sampling	5 5
5.0	EQUIPMENT/SUPPLIES	6

SOP: PFAS **Revision No.:** 00 **Date:** January 25, 2021 **Page No.:** 3 of 6

1.0 SCOPE AND APPLICABILITY

This Standard Operating Procedure (SOP) provides groundwater sampling protocols for perand polyfluoroalkyl substances (PFAS).

2.0 LABORATORY REQUIREMENTS

The samples will be analyzed for both linear and branched PFAS isomers using a modified U.S. Environmental Protection Agency (USEPA) Method 537.1 with isotope dilution for the USEPA Unregulated Contaminant Monitoring Rule 3 list (listed below) by a laboratory accredited in accordance with Act 90 of 2002 (27 Pa. C.S. §§ 4101-4113) and 25 Pa. Code Chapter 252. Undiluted reporting limits should be 5 nanograms per liter (ng/L) or lower.

Analytical Parameter	CAS No.	Molecular Formula
Perfluoroheptanoic acid - PFHpA	375-85-9	C7HF1302
Perfluorooctanoic acid - PFOA	335-67-1	C8HF15O2
Perfluorononanoic acid - PFNA	375-95-1	C9HF17O2
Perfluorobutanesulfonic acid - PFBS	375-73-5	C4HF9O3S
Perfluorohexanesulfonic acid - PFHxS	355-46-4	C6HF13SO3
Perfluorooctanesulfonic acid - PFOS	1763-23-1	C8HF17SO3

3.0 FIELD QA/QC

The following table provides a summary of QA/QC samples that will be collected in the field and analyzed by the laboratory. PFAS-free water will be supplied by the analytical laboratory for collection of the field blank.

QA/QC Sample Types	Frequency	Description	Nomenclature
Field Blank	1 per sample event.	Collected by pouring an aliquot of laboratory-provided PFAS-free water into a laboratory-supplied sample container.	FB-1
Blind Field Duplicate	1 per sample event	Collected by filling a second set of laboratory-provided containers at a monitoring location and comparing to parent sample.	Dup-1

The following table provides a summary of items that are likely to contain PFAS (i.e., prohibited items) and the allowable alternatives.

SOP: PFAS Revision No.: 00 Date: January 25, 2021 Page No.: 4 of 6

Item Category	Allowable Items	Prohibited Items
Pumps and Tubing	 High-density polyethylene (HDPE), low-density polyethylene (LDPE), polyvinyl chloride (PVC), silicon, buna-nitrile, or stainless steel (SS) materials. All Polyethylene (PE), PVC, or SS Bailer and nylon rope; Peristaltic pump (with appropriate tubing); Waterra® inertial foot valve (Acetal thermoplastic or SS); PFAS-Free Geotech Snap Sampler®; PFAS-Free Geotech Portable Bladder Pump; and Proactive® SS Monsoon submersible pumps with PVC wire lead. 	 Teflon[®], polytetrafluoroethylene (PTFE), ethylene tetrafluoroethylene (ETFE), Viton[®], perfluoroalkoxy (PFA) coating, and other fluoropolymer containing materials. Grundfos Redi-Flo Submersible Pump; QED Well Wizard[®] bladder pump; QED Sample Pro[®] bladder pump¹; Standard Geotech Snap Sampler^{®2}; Standard Geotech Portable Bladder Pump; and Geotech SS Geosub Pump submersible pump with PVC wire lead.
Decontamination	Alconox [®] and/or Liquinox [®] , deionized rinse, and a final PFAS-free water rinse.	Decon 90.
Sample Storage and Preservation	Laboratory-provided sample container (HDPE or polypropylene bottles), regular ice in re-sealable plastic bags. After sampling, containers will be stored individually in re-sealable plastic bags.	LDPE or glass bottles, PTFE- or Teflon®- lined caps, chemical ice packs. Samples cannot be field filtered due to potential PFAS adsorption onto the filter.
Field Documentation	Plain paper, metal clipboard, Sharpies®, pens.	Waterproof/treated paper or field books, plastic clipboards, non-Sharpies [®] markers, Post-It [®] , and other adhesive paper products.
Field Clothing	Well-laundered (more than six times washed after purchase) clothing made of synthetic or cotton material, no fabric softener.	Clothing (including boots) made of Gore- Tex [™] or other synthetic water resistant and/or stain resistant material, coated Tyvek [®] material.
	Polyurethane and wax coated materials.	Fabric softener.
	Boots made with polyurethane and PVC, well-worn or untreated leather boots.	
	PFAS-free Tyvek [®] material.	

¹ Laboratory data were provided by QED indicating the Sample Pro pump body, housing and check balls, LDPE bladder, Viton[®] O-rings, polyethylene tubing, Teflon[®]-lined tubing, and all Teflon[®] tubing did not result in PFAS greater than the 5-10 ng/l method reporting limits in water that these materials were soaked in.

² Laboratory data were provided by Geotech indicating the Snap Sampler[®] (including the PFA coated spring, the molded PFA "Snap Cap" and the Viton[®] o-ring) did not result in PFAS greater than the 1.2 ng/l method reporting limits in PFAS-free water sampled by Snap Samplers[®].

Item Category	Allowable Items	Prohibited Items
Personal Care	Sunscreens - Alba Organics Natural	Cosmetics, moisturizers, hand cream, and
Products (for the	Sunscreen, Yes To Cucumbers, Aubrey	other related products.
day of sampling)	Organics, Jason Natural Sun Block, Kiss	
	My Face, Baby sunscreens that are "free"	
	or "natural".	
	Insect Repellents – Jason Natural Quit	
	Bugging Me, Repel Lemon Eucalyptus	
	Insect repellant, Herbal Armor,	
	California Baby Natural Bug Spray,	
	BabyGanics.	
	Sunscreen and insect repellant - Avon	
	Skin So Soft Bug Guard – SPF 30 Lotion.	
Food and	Bottled water and hydration drinks.	Pre-packaged food, fast food wrappers and
Beverage		containers.
Shelter	The use of a canopy/gazebo/tent, which	can be erected over the sample location to
	provide shelter, may be considered. Not	e that the canopy is likely to have a PFAS-
	treated surface and must be handled with	n care. Gloves must be worn when setting up
	and moving the tent and then changed in	nmediately afterwards. Further contact with
	the tent must be avoided until all PFAS	samples have been collected and properly
	stored.	

Notes:

If an item is expected to come in direct contact with field samples, it may be necessary to have the products analyzed for PFAS to confirm that a specific batch or lot number does not contain PFAS. If an item is not expected to come into direct contact with field samples, then the product Safety Data Sheet and/or manufacturing specifications may be reviewed to determine if the item is PFAS-containing by checking for any chemicals with "fluoro" in the name or the acronyms PTFE, TPE, FEP, ETFE, or PFA.

4.0 SAMPLING PRECAUTIONS

Particular care will be taken for sampling personnel to don a new pair of nitrile gloves for each new sampling location. Nitrile gloves should be replaced immediately before handling sample bottles, immediately before handling sampling equipment, and immediately before collecting the PFAS samples. Gloves need to be replaced more frequently than typical to limit cross-contamination potential. Additionally, if feasible (and PFAS concentration data are available), locations should generally be sampled in order of least anticipated PFAS concentrations to greatest anticipated PFAS concentrations.

PFAS samples should be collected first, prior to collecting samples for any other parameters into any other containers. The sample bottle caps should not be placed on any surface during sampling and, after samples are collected, the bottles should be capped, labeled, and sealed in individual re-sealable plastic (e.g., Ziploc[®]) bags.

4.1 Groundwater Sampling

An allowable sampling device (as outlined above – Teflon®/PFAS-free) will be used for field sampling. When feasible, peristaltic pumps with disposable PE tubing and silicone tubing are a preferred sampling method at locations with a depth to groundwater of less than approximately 25 feet because less agitation of the water column is likely compared to an inertial pumping method. Turbidity and suspended solids in samples may interfere with laboratory methods, potentially elevating reporting limits, and may also cause variation in

SOP: PFAS **Revision No.:** 00 **Date:** January 25, 2021 **Page No.:** 6 of 6

analytical data. Dedicated PE tubing with SS or acetal thermoplastic Waterra[®] inertial pumps are preferred sampling methods at locations with greater depths to groundwater and/or greater sampling depths. Dedicated or disposable all PE, PVC or SS bailers are also acceptable alternatives. As necessary, PFAS-free plastic sheeting will be used to prevent contact with potentially contaminated soil and other surfaces during storage and deployment of downhole sampling equipment.

The Waterra® hand pump may be used and will consist of ½-inch HDPE tubing and a Delrin acetal thermoplastic standard foot valve. The standard foot valve typically comes in two sizes, a Model D-25 (3-inches in length and 1-inch outside diameter) and Model D-16 (1-inch in length and 0.625-inch outside diameter). Model D-25 foot valves are anticipated for use at the site. A new foot valve will be used at each monitoring location.

5.0 EQUIPMENT/SUPPLIES

- Laboratory-supplied sample containers and PFAS-free DI water
- Field Sampling Forms
- Peristaltic pump
- Inertial pump (i.e., Waterra[®]-type D-16 or D-25 check valve or equivalent)
- Dedicated polyethylene bailer with new nylon rope
- Polyethylene tubing (½-inch HDPE or similar)
- Glass jar (quart or liter capacity) for field parameters
- 5-gallon bucket (with graduations)
- Silicon tubing
- Multi-parameter sonde (Hydrolab Quanta [with turbidity probe])
- Slope Indicator or QED (or equivalent) electronic water level meter
- Stainless steel spade(s), scoop(s), mixing bowl(s)
- Decontamination buckets and brushes, paper towels, non-phosphatic detergent, potable water, distilled/de-ionized water, and PFAS-free water for equipment decontamination between sampling locations
- Field documentation materials
- Personal protective equipment (PPE)

P:\4700s\4796.00\Work\PFAS SOP\PFAS SOP.docx

ATTACHMENT B

ANALYTICAL DATA PACKAGES

🔅 eurofins

Environment Testing America

ANALYTICAL REPORT

Eurofins Lancaster Laboratories Env, LLC 2425 New Holland Pike Lancaster, PA 17601 Tel: (717)656-2300

Laboratory Job ID: 410-48086-1

Client Project/Site: Evergreen Philadelphia PFAS

For:

Sanborn Head & Associates Inc 1015 Virginia Drive Suite 100 Fort Washington, Pennsylvania 19034

Attn: Patrick Troy

Miol Max

Authorized for release by: 7/27/2021 9:22:47 AM

Nicole Maljovec, Client Services Manager (717)556-7259 Nicole.Maljovec@eurofinset.com

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

LINKS **Review your project** results through Total Access Have a Question? Ask-The Expert Visit us at: www.eurofinsus.com/Env

Analytical test results meet all requirements of the associated regulatory program (e.g., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis. Data qualifiers are applied to note exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

• QC results that exceed the upper limits and are associated with non-detect samples are qualified but further narration is not required since the bias is high and does not change a non-detect result. Further narration is also not required with QC blank detection when the associated sample concentration is non-detect or more than ten times the level in the blank.

• Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD is performed, unless otherwise specified in the method.

Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Measurement uncertainty values, as applicable, are available upon request.

Test results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. Times are local to the area of activity. Parameters listed in the 40 CFR Part 136 Table II as "analyze immediately" and tested in the laboratory are not performed within 15 minutes of collection.

This report shall not be reproduced except in full, without the written approval of the laboratory.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. The foregoing express warranty is exclusive and is given in lieu of all other warranties, expressed or implied, except as otherwise agreed. We disclaim any other warranties, expressed or implied, including a warranty of fitness for particular purpose and warranty of merchantability. In no event shall Eurofins Lancaster Laboratories Environmental, LLC be liable for indirect, special, consequential, or incidental damages including, but not limited to, damages for loss of profit or goodwill regardless of (A) the negligence (either sole or concurrent) of Eurofins Lancaster Laboratories Environmental has been informed of the possibility of such damages. We accept no legal responsibility for the purposes for which the client uses the test results. Except as otherwise agreed, no purchase order or other order for work shall be accepted by Eurofins Lancaster Laboratories Environmental which includes any conditions that vary from the Standard Terms and Conditions, and Eurofins Lancaster Laboratories Environmental hereby objects to any conflicting terms contained in any acceptance or order submitted by client.

Mil Mat

Nicole Maljovec Client Services Manager 7/27/2021 9:22:47 AM

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Detection Summary	6
Client Sample Results	9
Isotope Dilution Summary	17
QC Sample Results	18
QC Association Summary	21
Lab Chronicle	23
Certification Summary	27
Method Summary	28
Sample Summary	29
Chain of Custody	30
Receipt Checklists	32

Qualifiers

Qualifiers		3
LCMS		
Qualifier	Qualifier Description	4
*5+	Isotope dilution analyte is outside acceptance limits, high biased.	3 4 5
I	Value is EMPC (estimated maximum possible concentration).	5

Glossary

Qualifier	Qualifier Description	4
*5+	Isotope dilution analyte is outside acceptance limits, high biased.	
I	Value is EMPC (estimated maximum possible concentration).	5
Glossary		6
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	. 7
%R	Percent Recovery	
1C	Result is from the primary column on a dual-column method.	0
2C	Result is from the confirmation column on a dual-column method.	0
CFL	Contains Free Liquid	
CFU	Colony Forming Unit	9
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	13
LOQ	Limit of Quantitation (DoD/DOE)	
MCL	EPA recommended "Maximum Contaminant Level"	
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
MPN	Most Probable Number	
MQL	Method Quantitation Limit	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
NEG	Negative / Absent	
POS	Positive / Present	
PQL	Practical Quantitation Limit	
PRES	Presumptive	
QC	Quality Control	
RER	Relative Error Ratio (Radiochemistry)	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEQ	Toxicity Equivalent Quotient (Dioxin)	
TNTC	Too Numerous To Count	

Job ID: 410-48086-1

Laboratory: Eurofins Lancaster Laboratories Env, LLC

Narrative

Job Narrative 410-48086-1

Receipt

The samples were received on 7/21/2021 4:35 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperatures of the 2 coolers at receipt time were 2.0°C and 5.2°C

PFAS

Method PFC_IDA: The sample injection standard peak areas in the following sample: N-38D_20210719 (410-48086-4) are outside of the QC limits for both the initial injection and the re-injection. The values here are from the initial injection of the sample. The recovery for the labeled isotope(s) in the following sample: N-38D_20210719 (410-48086-4) is outside the QC acceptance limits due to the matrix of the sample.

Method PFC_IDA: The sample injection standard peak areas in the following samples: S-69D_20210721 (410-48086-17) and S-284D_20210721 (410-48086-18) are outside of the QC limits for both the initial injection and the re-injection. The values here are from the initial injection of the sample.

Method PFC_IDA: Reporting limits were raised for the following samples: EB-01_20210719 (410-48086-5) and FB-01_20210719 (410-48086-6) due to limited sample volume.

Method PFC_IDA: The sample injection standard peak areas in the following samples: S-294D_20210720 (410-48086-7), PGW-MW-8D_20210720 (410-48086-8), S-302D_20210720 (410-48086-10), S-264D_20210720 (410-48086-11), S-388D_20210720 (410-48086-12) and S-389D_20210720 (410-48086-13) are outside of the QC limits for both the initial injection and the re-injection. The values here are from the initial injection of the sample.The recovery for the labeled isotope(s) in the following samples: S-294D_20210720 (410-48086-7), PGW-MW-8D_20210720 (410-48086-8), S-302D_20210720 (410-48086-10), S-264D_20210720 (410-48086-11), S-388D_20210720 (410-48086-12) and S-389D_20210720 (410-48086-13) were outside the QC acceptance limits. These failures were due to the matrix of the sample.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Detection Summary

RL

1.7

1.7

1.7

1.7

1.7

RL

1.6

1.6

1.6

1.6

1.6

RL

1.8

1.8

1.8

1.8

1.8

MDL Unit

ng/L

MDL Unit

MDL Unit

Result Qualifier

3.1

12

14

2.4

6.2

3.1

9.5

3.5

2.7

1.6

4.3

8.9

7.1

3.9

3.8

Result Qualifier

Result Qualifier

Client: Sanborn Head & Associates Inc Project/Site: Evergreen Philadelphia PFAS

Client Sample ID: N-163_20210719

Client Sample ID: N-9_20210719

Client Sample ID: N-69_20210719

Analyte

Analyte

Analyte

Perfluoroheptanoic acid

Perfluorooctanoic acid

Perfluorononanoic acid

Perfluoroheptanoic acid

Perfluorobutanesulfonic acid

Perfluorohexanesulfonic acid

Perfluorooctanesulfonic acid

Perfluoroheptanoic acid

Perfluorooctanoic acid

Perfluorononanoic acid

Perfluorobutanesulfonic acid

Perfluorooctanesulfonic acid

Perfluorooctanoic acid

Perfluorobutanesulfonic acid

Perfluorooctanesulfonic acid

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA Total/NA

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Lab Sample ID: 410-48086-1

Lab Sample ID: 410-48086-2

Lab Sample ID: 410-48086-3

Dil Fac D Method

537 IDA

537 IDA

537 IDA

537 IDA

537 IDA

Method

537 IDA

537 IDA

537 IDA

537 IDA

537 IDA

Method

537 IDA

537 IDA

537 IDA

537 IDA

1

1

1

1

1

Dil Fac D

1

1

1

1

1

Dil Fac D

1

1

1

1

	3

Lab Sample ID: 410-48086-4

Analyte	Result Qualifi	er RL	MDL Uni	t Dil Fac	D	Method	Prep Type
Perfluoroheptanoic acid	20	1.6	ng/	L 1	_	537 IDA	Total/NA
Perfluorooctanoic acid	5.0	1.6	ng/	∟ 1		537 IDA	Total/NA
Perfluorononanoic acid	3.9 I	1.6	ng/	∟ 1		537 IDA	Total/NA
Perfluorobutanesulfonic acid	2.5 I	1.6	ng/	L 1		537 IDA	Total/NA

Client Sample ID: EB-01_20210719

Client Sample ID: N-38D 20210719

No Detections.

Client Sample ID: FB-01_20210719

No Detections.

Client Sample ID: S-294D 20210720

Analyte	Result	Qualifier	RL	MDL U	Unit	Dil Fac	D	Method	Prep Type
Perfluoroheptanoic acid	38		1.6	r	ng/L	1	_	537 IDA	Total/NA
Perfluorooctanoic acid	37	I	1.6	r	ng/L	1		537 IDA	Total/NA
Perfluorononanoic acid	2.9		1.6	r	ng/L	1		537 IDA	Total/NA
Perfluorobutanesulfonic acid	4.3	1	1.6	r	ng/L	1		537 IDA	Total/NA
Perfluorohexanesulfonic acid	3.6		1.6	r	ng/L	1		537 IDA	Total/NA
Perfluorooctanesulfonic acid	6.4	I	1.6	r	ng/L	1		537 IDA	Total/NA

Client Sample ID: PGW-MW-8D 20210720

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac	Method	Prep Type
Perfluoroheptanoic acid	35	1.8	ng/L	1	537 IDA	Total/NA
Perfluorooctanoic acid	37	1.8	ng/L	1	537 IDA	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins Lancaster Laboratories Env, LLC

Lab Sample ID: 410-48086-6

Lab Sample ID: 410-48086-5

Lab Sample ID: 410-48086-7

Lab Sample ID: 410-48086-8

537 IDA Total/NA 1

Client Sample ID: PGW-MW-8D_20210720 (Continued)

Client Sample ID: S-391D_20210720

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluoroheptanoic acid	42		1.6		ng/L	1	_	537 IDA	Total/NA
Perfluorooctanoic acid	51		1.6		ng/L	1		537 IDA	Total/NA
Perfluorononanoic acid	11		1.6		ng/L	1		537 IDA	Total/NA
Perfluorohexanesulfonic acid	3.7		1.6		ng/L	1		537 IDA	Total/NA
Perfluorooctanesulfonic acid	6.6	L	1.6		ng/L	1		537 IDA	Total/NA

Client Sample ID: S-302D_20210720

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluoroheptanoic acid	8.5		1.7		ng/L	1	_	537 IDA	Total/NA
Perfluorooctanoic acid	14	I	1.7		ng/L	1		537 IDA	Total/NA

Client Sample ID: S-264D_20210720

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D) Method	Prep Type
Perfluorooctanoic acid	16	1.8	ng/L	1	537 IDA	Total/NA
Perfluorobutanesulfonic acid	7.7	1.8	ng/L	1	537 IDA	Total/NA
Perfluorohexanesulfonic acid	23	1.8	ng/L	1	537 IDA	Total/NA
Perfluorooctanesulfonic acid	41	1.8	ng/L	1	537 IDA	Total/NA

Client Sample ID: S-388D_20210720

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluoroheptanoic acid	1.8		1.6		ng/L	1	_	537 IDA	Total/NA
Perfluorooctanoic acid	10	I	1.6		ng/L	1		537 IDA	Total/NA
Perfluorobutanesulfonic acid	4.8	I	1.6		ng/L	1		537 IDA	Total/NA
Perfluorohexanesulfonic acid	13		1.6		ng/L	1		537 IDA	Total/NA
Perfluorooctanesulfonic acid	21		1.6		ng/L	1		537 IDA	Total/NA

Client Sample ID: S-389D_20210720

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
Perfluoroheptanoic acid	14		1.6		ng/L	1	537 IDA	Total/NA
Perfluorooctanoic acid	68	I	1.6		ng/L	1	537 IDA	Total/NA
Perfluorobutanesulfonic acid	18		1.6		ng/L	1	537 IDA	Total/NA
Perfluorohexanesulfonic acid	220		1.6		ng/L	1	537 IDA	Total/NA
Perfluorooctanesulfonic acid	280		1.6		ng/L	1	537 IDA	Total/NA

Client Sample ID: FB-02_20210720

No Detections.

Client Sample ID: S-80D_20210721

ſ	Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	I	Prep Type
	Perfluorooctanoic acid	53		1.6		ng/L	1	_	537 IDA		Total/NA
	Perfluorononanoic acid	5.4		1.6		ng/L	1		537 IDA		Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins Lancaster Laboratories Env, LLC

Lab Sample ID: 410-48086-8

Lab Sample ID: 410-48086-9

Lab Sample ID: 410-48086-10

Lab Sample ID: 410-48086-11

Lab Sample ID: 410-48086-12

Lab Sample ID: 410-48086-13

Lab Sample ID: 410-48086-14

Lab Sample ID: 410-48086-15

RL

1.6

1.6

1.6

16

RL

1.6

1.6

1.6

1.6

1.6

16

MDL Unit

MDL Unit

ng/L

Result Qualifier

2.9 1

3.8

3.6

270

Result

54

5.5

3.2

3.8

3.8

250

Qualifier

Analyte

Analyte

Perfluorobutanesulfonic acid

Perfluorohexanesulfonic acid

Perfluorooctanesulfonic acid

Perfluoroheptanoic acid - DL

Perfluorooctanoic acid

Perfluorononanoic acid

Perfluorobutanesulfonic acid

Perfluorohexanesulfonic acid

Perfluorooctanesulfonic acid

Perfluoroheptanoic acid - DL

Client Sample ID: S-80D_20210721 (Continued)

Client Sample ID: S-80D-DUP_20210721

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Lab Sample ID: 410-48086-15

Lab Sample ID: 410-48086-16

Lab Sample ID: 410-48086-18

Dil Fac D

1

1

1

10

Dil Fac D

1

1

1

1

1

10

Method

537 IDA

537 IDA

537 IDA

537 IDA

Method

537 IDA

537 IDA

537 IDA

537 IDA

537 IDA

537 IDA

5

Total/NA Total/NA Lab Sample ID: 410-48086-17

Client Sample ID: S-69D_20210721

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
Perfluoroheptanoic acid	12	1.6	ng/L	1	537 IDA	Total/NA
Perfluorooctanoic acid	36	1.6	ng/L	1	537 IDA	Total/NA
Perfluorononanoic acid	76	1.6	ng/L	1	537 IDA	Total/NA
Perfluorobutanesulfonic acid	2.5 I	1.6	ng/L	1	537 IDA	Total/NA
Perfluorohexanesulfonic acid	3.9	1.6	ng/L	1	537 IDA	Total/NA
Perfluorooctanesulfonic acid	6.9	1.6	ng/L	1	537 IDA	Total/NA

Client Sample ID: S-284D_20210721

Result Qualifier MDL Unit Dil Fac D Analyte RL Method Prep Type 25 1.7 537 IDA Total/NA Perfluoroheptanoic acid ng/L 1 28 1.7 537 IDA Total/NA Perfluorooctanoic acid ng/L 1 Perfluorononanoic acid 19 1.7 ng/L 1 537 IDA Total/NA Perfluorobutanesulfonic acid 2.3 1.7 ng/L 1 537 IDA Total/NA Perfluorohexanesulfonic acid 3.5 1.7 ng/L 1 537 IDA Total/NA Perfluorooctanesulfonic acid 12 1.7 ng/L 537 IDA Total/NA 1 Lab Sample ID: 410-48086-19

Client Sample ID: FB-03_20210721

No Detections.

Client Sample ID: N-163_20210719 Date Collected: 07/19/21 11:50 Date Received: 07/21/21 16:35

Method: 537 IDA - EPA 537 Isot	ope Dilution								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluoroheptanoic acid	3.1		1.7		ng/L		07/22/21 08:59	07/22/21 23:34	1
Perfluorooctanoic acid	12		1.7		ng/L		07/22/21 08:59	07/22/21 23:34	1
Perfluorononanoic acid	14		1.7		ng/L		07/22/21 08:59	07/22/21 23:34	1
Perfluorobutanesulfonic acid	2.4		1.7		ng/L		07/22/21 08:59	07/22/21 23:34	1
Perfluorohexanesulfonic acid	<1.7		1.7		ng/L		07/22/21 08:59	07/22/21 23:34	1
Perfluorooctanesulfonic acid	6.2		1.7		ng/L		07/22/21 08:59	07/22/21 23:34	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFHpA	94		30 - 144				07/22/21 08:59	07/22/21 23:34	1
13C8 PFOA	87		49 - 127				07/22/21 08:59	07/22/21 23:34	1
13C9 PFNA	101		47 - 136				07/22/21 08:59	07/22/21 23:34	1
13C3 PFBS	107		19 - 178				07/22/21 08:59	07/22/21 23:34	1
13C3 PFHxS	84		32 - 145				07/22/21 08:59	07/22/21 23:34	1
13C8 PFOS	98		49 - 126				07/22/21 08:59	07/22/21 23:34	1

Client Sample ID: N-9_20210719

Date Collected: 07/19/21 12:40

Date Received: 07/21/21 16:35

Annahuta	Desult	0	D 1		11		Duranana	A construction of	D11 E
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluoroheptanoic acid	3.1		1.6		ng/L		07/22/21 08:59	07/22/21 23:45	1
Perfluorooctanoic acid	9.5		1.6		ng/L		07/22/21 08:59	07/22/21 23:45	1
Perfluorononanoic acid	<1.6		1.6		ng/L		07/22/21 08:59	07/22/21 23:45	1
Perfluorobutanesulfonic acid	3.5	I	1.6		ng/L		07/22/21 08:59	07/22/21 23:45	1
Perfluorohexanesulfonic acid	2.7		1.6		ng/L		07/22/21 08:59	07/22/21 23:45	1
Perfluorooctanesulfonic acid	1.6		1.6		ng/L		07/22/21 08:59	07/22/21 23:45	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFHpA	88		30 - 144				07/22/21 08:59	07/22/21 23:45	1
13C8 PFOA	87		49 - 127				07/22/21 08:59	07/22/21 23:45	1
13C9 PFNA	101		47 - 136				07/22/21 08:59	07/22/21 23:45	1
13C3 PFBS	121		19 - 178				07/22/21 08:59	07/22/21 23:45	1
13C3 PFHxS	85		32 - 145				07/22/21 08:59	07/22/21 23:45	1
13C8 PFOS	97		49 - 126				07/22/21 08:59	07/22/21 23:45	1

Client Sample ID: N-69_20210719

Date Collected: 07/19/21 14:30 D

Date	Received:	07/21/21	16:35	

Amelute	Desult	Qualifian	ы	MDI	11		Duenened	A maily maid	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluoroheptanoic acid	4.3		1.8		ng/L		07/22/21 08:59	07/22/21 23:56	1
Perfluorooctanoic acid	8.9		1.8		ng/L		07/22/21 08:59	07/22/21 23:56	1
Perfluorononanoic acid	7.1		1.8		ng/L		07/22/21 08:59	07/22/21 23:56	1
Perfluorobutanesulfonic acid	3.9		1.8		ng/L		07/22/21 08:59	07/22/21 23:56	1
Perfluorohexanesulfonic acid	<1.8		1.8		ng/L		07/22/21 08:59	07/22/21 23:56	1
Perfluorooctanesulfonic acid	3.8		1.8		ng/L		07/22/21 08:59	07/22/21 23:56	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFHpA	94		30 - 144				07/22/21 08:59	07/22/21 23:56	1
13C8 PFOA	90		49 - 127				07/22/21 08:59	07/22/21 23:56	1
13C9 PFNA	107		47 - 136				07/22/21 08:59	07/22/21 23:56	1

Eurofins Lancaster Laboratories Env, LLC

Lab Sample ID: 410-48086-1 Matrix: Water

Lab Sample ID: 410-48086-2

Lab Sample ID: 410-48086-3

Matrix: Water

Matrix: Water

5

6

Client Sample ID: N-69_20210719 Date Collected: 07/19/21 14:30 Date Received: 07/21/21 16:35

Method: 537 IDA - EPA 537 Isotope Dilution (Continued)									
Isotope Dilution	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac				
13C3 PFBS	107	19 - 178	07/22/21 08:59	07/22/21 23:56	1				
13C3 PFHxS	83	32 - 145	07/22/21 08:59	07/22/21 23:56	1				
13C8 PFOS	96	49 - 126	07/22/21 08:59	07/22/21 23:56	1				

Client Sample ID: N-38D_20210719 Date Collected: 07/19/21 14:40 Date Received: 07/21/21 16:35

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluoroheptanoic acid	20		1.6		ng/L		07/22/21 08:59	07/23/21 00:07	1
Perfluorooctanoic acid	5.0		1.6		ng/L		07/22/21 08:59	07/23/21 00:07	1
Perfluorononanoic acid	3.9	1	1.6		ng/L		07/22/21 08:59	07/23/21 00:07	1
Perfluorobutanesulfonic acid	2.5	Ι	1.6		ng/L		07/22/21 08:59	07/23/21 00:07	1
Perfluorohexanesulfonic acid	<1.6		1.6		ng/L		07/22/21 08:59	07/23/21 00:07	1
Perfluorooctanesulfonic acid	<1.6		1.6		ng/L		07/22/21 08:59	07/23/21 00:07	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFHpA	70		30 - 144				07/22/21 08:59	07/23/21 00:07	1
13C8 PFOA	79		49 - 127				07/22/21 08:59	07/23/21 00:07	1
13C9 PFNA	91		47 - 136				07/22/21 08:59	07/23/21 00:07	1
13C3 PFBS	211	*5+	19 - 178				07/22/21 08:59	07/23/21 00:07	1
13C3 PFHxS	78		32 - 145				07/22/21 08:59	07/23/21 00:07	1
13C8 PFOS	85		49 - 126				07/22/21 08:59	07/23/21 00:07	1

Client Sample ID: EB-01_20210719

Date Collected: 07/19/21 11:30

Date Received: 07/21/21 16:35

Method: 537 IDA - EPA 537 Isotope Dilution

Analyte	Result Qualifi	ier RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Perfluoroheptanoic acid	<2.1	2.1	ng/L	07/22/21 08:59	07/23/21 00:18	1
Perfluorooctanoic acid	<2.1	2.1	ng/L	07/22/21 08:59	07/23/21 00:18	1
Perfluorononanoic acid	<2.1	2.1	ng/L	07/22/21 08:59	07/23/21 00:18	1
Perfluorobutanesulfonic acid	<2.1	2.1	ng/L	07/22/21 08:59	07/23/21 00:18	1
Perfluorohexanesulfonic acid	<2.1	2.1	ng/L	07/22/21 08:59	07/23/21 00:18	1
Perfluorooctanesulfonic acid	<2.1	2.1	ng/L	07/22/21 08:59	07/23/21 00:18	1
Isotope Dilution	%Recovery Qualifi	ïer Limits		Prepared	Analyzed	Dil Fac
13C4 PFHpA	110	30 - 144		07/22/21 08:59	07/23/21 00:18	1
13C8 PFOA	108	49 - 127		07/22/21 08:59	07/23/21 00:18	1
13C9 PFNA	106	47 - 136		07/22/21 08:59	07/23/21 00:18	1
13C3 PFBS	94	19 - 178		07/22/21 08:59	07/23/21 00:18	1
13C3 PFHxS	93	32 - 145		07/22/21 08:59	07/23/21 00:18	1
13C8 PFOS	102	49 - 126		07/22/21 08:59	07/23/21 00:18	

Lab Sample ID: 410-48086-3 Matrix: Water

Lab Sample ID: 410-48086-4

Matrix: Water

Lab Sample ID: 410-48086-5

Matrix: Water

Client Sample ID: FB-01_20210719 Date Collected: 07/19/21 11:50 Date Received: 07/21/21 16:35

	tope Dilution								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluoroheptanoic acid	<2.0		2.0		ng/L		07/22/21 08:59	07/23/21 00:29	1
Perfluorooctanoic acid	<2.0		2.0		ng/L		07/22/21 08:59	07/23/21 00:29	1
Perfluorononanoic acid	<2.0		2.0		ng/L		07/22/21 08:59	07/23/21 00:29	1
Perfluorobutanesulfonic acid	<2.0		2.0		ng/L		07/22/21 08:59	07/23/21 00:29	1
Perfluorohexanesulfonic acid	<2.0		2.0		ng/L		07/22/21 08:59	07/23/21 00:29	1
Perfluorooctanesulfonic acid	<2.0		2.0		ng/L		07/22/21 08:59	07/23/21 00:29	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFHpA	109		30 - 144				07/22/21 08:59	07/23/21 00:29	1
13C8 PFOA	102		49 - 127				07/22/21 08:59	07/23/21 00:29	1
13C9 PFNA	102		47 - 136				07/22/21 08:59	07/23/21 00:29	1
13C3 PFBS	102		19 - 178				07/22/21 08:59	07/23/21 00:29	1
13C3 PFHxS	94		32 - 145				07/22/21 08:59	07/23/21 00:29	1
13C8 PFOS	104		49 - 126				07/22/21 08:59	07/23/21 00:29	1

Client Sample ID: S-294D_20210720

Date Collected: 07/20/21 09:40

Date Received: 07/21/21 16:35

Method: 537 IDA - EPA 537 Isote	ope Dilution								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluoroheptanoic acid	38		1.6		ng/L		07/22/21 08:51	07/26/21 11:01	1
Perfluorooctanoic acid	37	1	1.6		ng/L		07/22/21 08:51	07/26/21 11:01	1
Perfluorononanoic acid	2.9		1.6		ng/L		07/22/21 08:51	07/26/21 11:01	1
Perfluorobutanesulfonic acid	4.3	I	1.6		ng/L		07/22/21 08:51	07/26/21 11:01	1
Perfluorohexanesulfonic acid	3.6		1.6		ng/L		07/22/21 08:51	07/26/21 11:01	1
Perfluorooctanesulfonic acid	6.4	I.	1.6		ng/L		07/22/21 08:51	07/26/21 11:01	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFHpA	85		30 - 144				07/22/21 08:51	07/26/21 11:01	1
13C8 PFOA	63		49 - 127				07/22/21 08:51	07/26/21 11:01	1
13C9 PFNA	79		47 - 136				07/22/21 08:51	07/26/21 11:01	1
13C3 PFBS	151		19 - 178				07/22/21 08:51	07/26/21 11:01	1
13C3 PFHxS	68		32 - 145				07/22/21 08:51	07/26/21 11:01	1
13C8 PFOS	71		49 - 126				07/22/21 08:51	07/26/21 11:01	1

Client Sample ID: PGW-MW-8D_20210720

Date Collected: 07/20/21 11:15

Date Received: 07/21/21 16:35

Method: 537 IDA - EPA 537 Isot	ope Dilution								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluoroheptanoic acid	35		1.8		ng/L		07/22/21 08:51	07/26/21 11:11	1
Perfluorooctanoic acid	37	1	1.8		ng/L		07/22/21 08:51	07/26/21 11:11	1
Perfluorononanoic acid	2.1		1.8		ng/L		07/22/21 08:51	07/26/21 11:11	1
Perfluorobutanesulfonic acid	2.8	I	1.8		ng/L		07/22/21 08:51	07/26/21 11:11	1
Perfluorohexanesulfonic acid	3.2		1.8		ng/L		07/22/21 08:51	07/26/21 11:11	1
Perfluorooctanesulfonic acid	6.3	1	1.8		ng/L		07/22/21 08:51	07/26/21 11:11	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFHpA	98		30 - 144				07/22/21 08:51	07/26/21 11:11	1
13C8 PFOA	79		49 _ 127				07/22/21 08:51	07/26/21 11:11	1
13C9 PFNA	117		47 - 136				07/22/21 08:51	07/26/21 11:11	1

Eurofins Lancaster Laboratories Env, LLC

Lab Sample ID: 410-48086-6 Matrix: Water

Lab Sample ID: 410-48086-7

Lab Sample ID: 410-48086-8

Matrix: Water

Matrix: Water

5

Client Sample ID: PGW-MW-8D_20210720 Date Collected: 07/20/21 11:15

Date Received: 07/21/21 16:35

Method: 537 IDA - EPA 537 Isotope Dilution (Continued)									
	Isotope Dilution	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac		
	13C3 PFBS	221	*5+	19 - 178	07/22/21 08:51	07/26/21 11:11	1		
	13C3 PFHxS	76		32 - 145	07/22/21 08:51	07/26/21 11:11	1		
	13C8 PFOS	99		49 - 126	07/22/21 08:51	07/26/21 11:11	1		

Client Sample ID: S-391D_20210720 Date Collected: 07/20/21 11:25 Date Received: 07/21/21 16:35

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluoroheptanoic acid	42		1.6		ng/L		07/22/21 08:51	07/26/21 11:22	1
Perfluorooctanoic acid	51		1.6		ng/L		07/22/21 08:51	07/26/21 11:22	1
Perfluorononanoic acid	11		1.6		ng/L		07/22/21 08:51	07/26/21 11:22	1
Perfluorobutanesulfonic acid	<1.6		1.6		ng/L		07/22/21 08:51	07/26/21 11:22	1
Perfluorohexanesulfonic acid	3.7		1.6		ng/L		07/22/21 08:51	07/26/21 11:22	1
Perfluorooctanesulfonic acid	6.6	I.	1.6		ng/L		07/22/21 08:51	07/26/21 11:22	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFHpA	93		30 - 144				07/22/21 08:51	07/26/21 11:22	1
13C8 PFOA	76		49 - 127				07/22/21 08:51	07/26/21 11:22	1
13C9 PFNA	101		47 - 136				07/22/21 08:51	07/26/21 11:22	1
13C3 PFBS	142		19 - 178				07/22/21 08:51	07/26/21 11:22	1
13C3 PFHxS	75		32 - 145				07/22/21 08:51	07/26/21 11:22	1
13C8 PFOS	86		49 - 126				07/22/21 08:51	07/26/21 11:22	

Client Sample ID: S-302D_20210720

Date Collected: 07/20/21 12:45

Date Received: 07/21/21 16:35

Method: 537 IDA - EPA 537 Isotope Dilution Analyte **Result Qualifier** RL MDL Unit D Dil Fac Prepared Analyzed Perfluoroheptanoic acid 8.5 1.7 ng/L 07/22/21 08:51 07/26/21 11:32 1 Perfluorooctanoic acid 14 1.7 ng/L 07/22/21 08:51 07/26/21 11:32 1 07/26/21 11:32 Perfluorononanoic acid <1.7 1.7 ng/L 07/22/21 08:51 1 Perfluorobutanesulfonic acid <1.7 1.7 ng/L 07/22/21 08:51 07/26/21 11:32 1 Perfluorohexanesulfonic acid ng/L 07/22/21 08:51 07/26/21 11:32 <1.7 1.7 1 Perfluorooctanesulfonic acid <1.7 1.7 ng/L 07/22/21 08:51 07/26/21 11:32 1 Isotope Dilution %Recovery Qualifier Limits Prepared Analyzed Dil Fac 13C4 PFHpA 80 30 - 144 07/22/21 08:51 07/26/21 11:32 1 07/22/21 08:51 13C8 PFOA 65 49 - 127 07/26/21 11:32 1 13C9 PFNA 88 47 - 136 07/22/21 08:51 07/26/21 11:32 1 13C3 PFBS 152 19 - 178 07/22/21 08:51 07/26/21 11:32 1 13C3 PFHxS 91 32 - 145 07/22/21 08:51 07/26/21 11:32 1 13C8 PFOS 199 *5+ 49 - 126 07/22/21 08:51 07/26/21 11:32 1

Job ID: 410-48086-1

Lab Sample ID: 410-48086-8 Matrix: Water

Lab Sample ID: 410-48086-9

Lab Sample ID: 410-48086-10

water

Matrix: Water

Matrix: Water

Client Sample ID: S-264D_20210720 Date Collected: 07/20/21 14:45 Date Received: 07/21/21 16:35

	ope Dilution								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluoroheptanoic acid	<1.8		1.8		ng/L		07/22/21 08:51	07/26/21 11:43	1
Perfluorooctanoic acid	16	1	1.8		ng/L		07/22/21 08:51	07/26/21 11:43	1
Perfluorononanoic acid	<1.8		1.8		ng/L		07/22/21 08:51	07/26/21 11:43	1
Perfluorobutanesulfonic acid	7.7	I	1.8		ng/L		07/22/21 08:51	07/26/21 11:43	1
Perfluorohexanesulfonic acid	23		1.8		ng/L		07/22/21 08:51	07/26/21 11:43	1
Perfluorooctanesulfonic acid	41		1.8		ng/L		07/22/21 08:51	07/26/21 11:43	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFHpA	218	*5+	30 - 144				07/22/21 08:51	07/26/21 11:43	1
13C8 PFOA	64		49 - 127				07/22/21 08:51	07/26/21 11:43	1
13C9 PFNA	83		47 - 136				07/22/21 08:51	07/26/21 11:43	1
13C3 PFBS	203	*5+	19 - 178				07/22/21 08:51	07/26/21 11:43	1
13C3 PFHxS	251	*5+	32 - 145				07/22/21 08:51	07/26/21 11:43	1
13C8 PFOS	82		49 - 126				07/22/21 08:51	07/26/21 11:43	1

Client Sample ID: S-388D_20210720

Date Collected: 07/20/21 14:55

Date Received: 07/21/21 16:35

Method: 537 IDA - EPA 537 Isot	ope Dilution								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluoroheptanoic acid	1.8		1.6		ng/L		07/22/21 08:51	07/26/21 11:53	1
Perfluorooctanoic acid	10	1	1.6		ng/L		07/22/21 08:51	07/26/21 11:53	1
Perfluorononanoic acid	<1.6		1.6		ng/L		07/22/21 08:51	07/26/21 11:53	1
Perfluorobutanesulfonic acid	4.8	I	1.6		ng/L		07/22/21 08:51	07/26/21 11:53	1
Perfluorohexanesulfonic acid	13		1.6		ng/L		07/22/21 08:51	07/26/21 11:53	1
Perfluorooctanesulfonic acid	21		1.6		ng/L		07/22/21 08:51	07/26/21 11:53	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFHpA	111		30 - 144				07/22/21 08:51	07/26/21 11:53	1
13C8 PFOA	64		49 - 127				07/22/21 08:51	07/26/21 11:53	1
13C9 PFNA	91		47 - 136				07/22/21 08:51	07/26/21 11:53	1
13C3 PFBS	168		19 - 178				07/22/21 08:51	07/26/21 11:53	1
13C3 PFHxS	118		32 - 145				07/22/21 08:51	07/26/21 11:53	1
13C8 PFOS	89		49 - 126				07/22/21 08:51	07/26/21 11:53	1

Client Sample ID: S-389D_20210720

Date Collected: 07/20/21 14:40 Dat

Method: 537 IDA - EPA 537 Isot	ope Dilution							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed
Perfluoroheptanoic acid	14		1.6		ng/L		07/22/21 08:51	07/26/21 12:1
Perfluorooctanoic acid	68	I	1.6		ng/L		07/22/21 08:51	07/26/21 12:1
Perfluorononanoic acid	<1.6		1.6		ng/L		07/22/21 08:51	07/26/21 12:1
Perfluorobutanesulfonic acid	18		1.6		ng/L		07/22/21 08:51	07/26/21 12:1
Perfluorohexanesulfonic acid	220		1.6		ng/L		07/22/21 08:51	07/26/21 12:1
Perfluorooctanesulfonic acid	280		1.6		ng/L		07/22/21 08:51	07/26/21 12:1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed
13C4 PFHpA	332	*5+	30 - 144				07/22/21 08:51	07/26/21 12:1
13C8 PFOA	62		49 - 127				07/22/21 08:51	07/26/21 12:1
13C9 PFNA	97		47 - 136				07/22/21 08:51	07/26/21 12:1

Lab Sample ID: 410-48086-11

Lab Sample ID: 410-48086-12

Lab Sample ID: 410-48086-13

Matrix: Water

Matrix: Water

Job ID: 410-48086-1

Env, LLC

Matrix: Water

Dil Fac

1

1

1

1

1

1 Dil Fac

1

1

1

Client Sample ID: S-389D_20210720 Date Collected: 07/20/21 14:40 Date Received: 07/21/21 16:35

Method: 537 IDA - EPA 537 Isotope Dilution (Continued)								
	Isotope Dilution	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac	
	13C3 PFBS	165		19 - 178	07/22/21 08:51	07/26/21 12:15	1	
	13C3 PFHxS	390	*5+	32 - 145	07/22/21 08:51	07/26/21 12:15	1	
	13C8 PFOS	93		49 - 126	07/22/21 08:51	07/26/21 12:15	1	

Client Sample ID: FB-02_20210720 Date Collected: 07/20/21 10:00 Date Received: 07/21/21 16:35

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluoroheptanoic acid	<1.8		1.8		ng/L		07/22/21 08:51	07/26/21 12:25	1
Perfluorooctanoic acid	<1.8		1.8		ng/L		07/22/21 08:51	07/26/21 12:25	1
Perfluorononanoic acid	<1.8		1.8		ng/L		07/22/21 08:51	07/26/21 12:25	1
Perfluorobutanesulfonic acid	<1.8		1.8		ng/L		07/22/21 08:51	07/26/21 12:25	1
Perfluorohexanesulfonic acid	<1.8		1.8		ng/L		07/22/21 08:51	07/26/21 12:25	1
Perfluorooctanesulfonic acid	<1.8		1.8		ng/L		07/22/21 08:51	07/26/21 12:25	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFHpA	100		30 - 144				07/22/21 08:51	07/26/21 12:25	1
13C8 PFOA	99		49 - 127				07/22/21 08:51	07/26/21 12:25	1
13C9 PFNA	103		47 _ 136				07/22/21 08:51	07/26/21 12:25	1
13C3 PFBS	92		19 - 178				07/22/21 08:51	07/26/21 12:25	1
13C3 PFHxS	96		32 - 145				07/22/21 08:51	07/26/21 12:25	1
13C8 PFOS	94		49 - 126				07/22/21 08:51	07/26/21 12:25	1

Client Sample ID: S-80D_20210721

Date Collected: 07/21/21 09:35

Date Received: 07/21/21 16:35

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorooctanoic acid	53		1.6		ng/L		07/22/21 08:59	07/23/21 00:40	1
Perfluorononanoic acid	5.4		1.6		ng/L		07/22/21 08:59	07/23/21 00:40	1
Perfluorobutanesulfonic acid	2.9	1	1.6		ng/L		07/22/21 08:59	07/23/21 00:40	1
Perfluorohexanesulfonic acid	3.8		1.6		ng/L		07/22/21 08:59	07/23/21 00:40	1
Perfluorooctanesulfonic acid	3.6		1.6		ng/L		07/22/21 08:59	07/23/21 00:40	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFHpA	91		30 - 144				07/22/21 08:59	07/23/21 00:40	1
13C8 PFOA	89		49 - 127				07/22/21 08:59	07/23/21 00:40	1
13C9 PFNA	106		47 - 136				07/22/21 08:59	07/23/21 00:40	1
13C3 PFBS	118		19_178				07/22/21 08:59	07/23/21 00:40	1
13C3 PFHxS	84		32 _ 145				07/22/21 08:59	07/23/21 00:40	1
13C8 PFOS	102		49 - 126				07/22/21 08:59	07/23/21 00:40	1
- Method: 537 IDA - EPA 537 Is	otope Dilution - D	L							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluoroheptanoic acid	270		16		ng/L		07/22/21 08:59	07/25/21 14:13	10
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFHpA	126		30 - 144				07/22/21 08:59	07/25/21 14:13	10

Eurofins Lancaster Laboratories Env, LLC

7/27/2021

Job ID: 410-48086-1

Matrix: Water

Matrix: Water

Lab Sample ID: 410-48086-13

Lab Sample ID: 410-48086-14

6 12 13

Lab Sample ID: 410-48086-15

Matrix: Water

Client Sample ID: S-80D-DUP_20210721 Date Collected: 07/21/21 09:35

Date Received: 07/21/21 16:35

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorooctanoic acid	54		1.6		ng/L		07/22/21 08:59	07/23/21 00:51	1
Perfluorononanoic acid	5.5		1.6		ng/L		07/22/21 08:59	07/23/21 00:51	1
Perfluorobutanesulfonic acid	3.2	1	1.6		ng/L		07/22/21 08:59	07/23/21 00:51	1
Perfluorohexanesulfonic acid	3.8		1.6		ng/L		07/22/21 08:59	07/23/21 00:51	1
Perfluorooctanesulfonic acid	3.8		1.6		ng/L		07/22/21 08:59	07/23/21 00:51	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFHpA	91		30 - 144				07/22/21 08:59	07/23/21 00:51	1
13C8 PFOA	87		49 - 127				07/22/21 08:59	07/23/21 00:51	1
13C9 PFNA	101		47 - 136				07/22/21 08:59	07/23/21 00:51	1
13C3 PFBS	110		19 - 178				07/22/21 08:59	07/23/21 00:51	1
10001100			32 - 145				07/22/21 08:59	07/23/21 00:51	1
13C3 PFHxS	89		52 - 145						

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac 250 16 07/22/21 08:59 07/25/21 14:25 Perfluoroheptanoic acid ng/L 10 Isotope Dilution %Recovery Qualifier Limits Prepared Analyzed Dil Fac 13C4 PFHpA 115 30 - 144 07/22/21 08:59

Client Sample ID: S-69D_20210721

___.

Date Collected: 07/21/21 11:55

Date Received: 07/21/21 16:35 ----

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluoroheptanoic acid	12		1.6		ng/L		07/22/21 08:59	07/23/21 01:14	1
Perfluorooctanoic acid	36		1.6		ng/L		07/22/21 08:59	07/23/21 01:14	1
Perfluorononanoic acid	76		1.6		ng/L		07/22/21 08:59	07/23/21 01:14	1
Perfluorobutanesulfonic acid	2.5	I	1.6		ng/L		07/22/21 08:59	07/23/21 01:14	1
Perfluorohexanesulfonic acid	3.9		1.6		ng/L		07/22/21 08:59	07/23/21 01:14	1
Perfluorooctanesulfonic acid	6.9		1.6		ng/L		07/22/21 08:59	07/23/21 01:14	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFHpA	85		30 - 144				07/22/21 08:59	07/23/21 01:14	1
13C8 PFOA	87		49 - 127				07/22/21 08:59	07/23/21 01:14	1
13C9 PFNA	91		47 _ 136				07/22/21 08:59	07/23/21 01:14	1
13C3 PFBS	127		19_178				07/22/21 08:59	07/23/21 01:14	1
13C3 PFHxS	98		32 - 145				07/22/21 08:59	07/23/21 01:14	1
13C8 PFOS	96		49 - 126				07/22/21 08:59	07/23/21 01:14	1

Client Sample ID: S-284D_20210721 Date Collected: 07/21/21 11:55

Date Received: 07/21/21 16:35

Analyte	Result Qualifier	RL	MDL Un	nit D	Prepared	Analyzed	Dil Fac
Perfluoroheptanoic acid	25	1.7	ng/	/L	07/22/21 08:59	07/23/21 01:25	1
Perfluorooctanoic acid	28	1.7	ng/	/L	07/22/21 08:59	07/23/21 01:25	1
Perfluorononanoic acid	19	1.7	ng/	/L	07/22/21 08:59	07/23/21 01:25	1
Perfluorobutanesulfonic acid	2.3 I	1.7	ng/	/L	07/22/21 08:59	07/23/21 01:25	1
Perfluorohexanesulfonic acid	3.5	1.7	ng/	/L	07/22/21 08:59	07/23/21 01:25	1

Eurofins Lancaster Laboratories Env, LLC

Lab Sample ID: 410-48086-16 Matrix: Water

07/25/21 14:25 10 5

6

Lab Sample ID: 410-48086-18 Matrix: Water

Client Sample ID: S-284D_20210721

Date Collected: 07/21/21 11:55 Date Received: 07/21/21 16:35

Method: 537 IDA - EPA 537 Isot Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorooctanesulfonic acid	12	quantor	1.7		ng/L		07/22/21 08:59	07/23/21 01:25	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFHpA	93		30 - 144				07/22/21 08:59	07/23/21 01:25	1
13C8 PFOA	91		49 - 127				07/22/21 08:59	07/23/21 01:25	1
13C9 PFNA	99		47 - 136				07/22/21 08:59	07/23/21 01:25	1
13C3 PFBS	131		19 - 178				07/22/21 08:59	07/23/21 01:25	1
13C3 PFHxS	104		32 - 145				07/22/21 08:59	07/23/21 01:25	1
13C8 PFOS	118		49 - 126				07/22/21 08:59	07/23/21 01:25	1

Client Sample ID: FB-03_20210721

Date Collected: 07/21/21 11:50

Date Received: 07/21/21 16:35

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluoroheptanoic acid	<1.7		1.7		ng/L		07/22/21 08:59	07/23/21 01:36	1
Perfluorooctanoic acid	<1.7		1.7		ng/L		07/22/21 08:59	07/23/21 01:36	1
Perfluorononanoic acid	<1.7		1.7		ng/L		07/22/21 08:59	07/23/21 01:36	1
Perfluorobutanesulfonic acid	<1.7		1.7		ng/L		07/22/21 08:59	07/23/21 01:36	1
Perfluorohexanesulfonic acid	<1.7		1.7		ng/L		07/22/21 08:59	07/23/21 01:36	1
Perfluorooctanesulfonic acid	<1.7		1.7		ng/L		07/22/21 08:59	07/23/21 01:36	1
sotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFHpA	104		30 - 144				07/22/21 08:59	07/23/21 01:36	1
I3C8 PFOA	95		49 - 127				07/22/21 08:59	07/23/21 01:36	1
13C9 PFNA	97		47 - 136				07/22/21 08:59	07/23/21 01:36	1
I3C3 PFBS	96		19 - 178				07/22/21 08:59	07/23/21 01:36	
3C3 PFHxS	88		32 - 145				07/22/21 08:59	07/23/21 01:36	
13C8 PFOS	99		49 - 126				07/22/21 08:59	07/23/21 01:36	

Job ID: 410-48086-1

Lab Sample ID: 410-48086-18

Lab Sample ID: 410-48086-19

Matrix: Water

Matrix: Water

13 14

Method: 537 IDA - EPA 537 Isotope Dilution Matrix: Water

Prep Type: Total/NA

			P	ercent Isotop	e Dilution Re	covery (Acc	eptance Limits)
		C4PFHA	C8PFOA	C9PFNA	C3PFBS	C3PFHS	C8PFOS
ab Sample ID	Client Sample ID	(30-144)	(49-127)	(47-136)	(19-178)	(32-145)	(49-126)
10-48086-1	N-163_20210719	94	87	101	107	84	98
10-48086-2	N-9_20210719	88	87	101	121	85	97
10-48086-3	N-69_20210719	94	90	107	107	83	96
10-48086-4	N-38D_20210719	70	79	91	211 *5+	78	85
10-48086-5	EB-01_20210719	110	108	106	94	93	102
10-48086-6	FB-01_20210719	109	102	102	102	94	104
10-48086-7	S-294D_20210720	85	63	79	151	68	71
10-48086-8	PGW-MW-8D_20210720	98	79	117	221 *5+	76	99
10-48086-9	S-391D_20210720	93	76	101	142	75	86
10-48086-10	S-302D_20210720	80	65	88	152	91	199 *5+
10-48086-11	S-264D_20210720	218 *5+	64	83	203 *5+	251 *5+	82
10-48086-12	S-388D_20210720	111	64	91	168	118	89
10-48086-13	S-389D_20210720	332 *5+	62	97	165	390 *5+	93
10-48086-14	FB-02_20210720	100	99	103	92	96	94
10-48086-15	S-80D_20210721	91	89	106	118	84	102
10-48086-15 - DL	S-80D_20210721	126					
10-48086-16	S-80D-DUP_20210721	91	87	101	110	89	93
10-48086-16 - DL	S-80D-DUP_20210721	115					
10-48086-17	S-69D_20210721	85	87	91	127	98	96
10-48086-18	S-284D_20210721	93	91	99	131	104	118
10-48086-19	FB-03_20210721	104	95	97	96	88	99
CS 410-151535/2-A	Lab Control Sample	81	73	85	80	72	80
CS 410-151547/2-A	Lab Control Sample	100	92	92	95	84	92
CSD 410-151535/3-A	Lab Control Sample Dup	103	101	115	97	93	100
CSD 410-151547/3-A	Lab Control Sample Dup	99	95	93	84	90	92
B 410-151535/1-A	Method Blank	97	92	103	87	86	92
IB 410-151547/1-A	Method Blank	101	93	93	91	89	92

Surrogate Legend

C4PFHA = 13C4 PFHpA C8PFOA = 13C8 PFOA C9PFNA = 13C9 PFNA C3PFBS = 13C3 PFBS C3PFHS = 13C3 PFHxS C8PFOS = 13C8 PFOS MB MB

<2.0

<2.0

<2.0

<2.0

<2.0

<2.0

97

92

103

87

86

92

-- ---

%Recovery

MB MB

Qualifier

Result Qualifier

Lab Sample ID: MB 410-151535/1-A

Lab Sample ID: LCS 410-151535/2-A

Matrix: Water

Analyte

Analysis Batch: 152591

Perfluoroheptanoic acid

Perfluorooctanoic acid

Perfluorononanoic acid

Isotope Dilution

13C4 PFHpA

13C8 PFOA

13C9 PFNA

13C3 PFBS

13C3 PFHxS

13C8 PFOS

Matrix: Water

Perfluorobutanesulfonic acid

Perfluorohexanesulfonic acid

Perfluorooctanesulfonic acid

Method: 537 IDA - EPA 537 Isotope Dilution

Client Sa	mple ID: Metho	d Blank
	Prep Type: 1	
	Prep Batch:	
repared	Analyzed	Dil Fac
2/21 08:51	07/26/21 09:46	1
2/21 08:51	07/26/21 09:46	1
2/21 08:51	07/26/21 09:46	1
2/21 08:51	07/26/21 09:46	1
2/21 08:51	07/26/21 09:46	1
2/21 08:51	07/26/21 09:46	1
repared	Analyzed	Dil Fac
2/21 08:51	07/26/21 09:46	1
2/21 08:51	07/26/21 09:46	1
2/21 08:51	07/26/21 09:46	1

Client Sample ID: Lab Control Sample Prep Type: Total/NA

07/26/21 09:46

07/26/21 09:46

07/26/21 09:46

1

1

Analysis Batch: 152591							Prep Batc	h: 151535
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Perfluoroheptanoic acid	25.6	25.7		ng/L		101	66 - 141	
Perfluorooctanoic acid	25.6	26.7		ng/L		104	65 - 136	
Perfluorononanoic acid	25.6	27.3		ng/L		107	65 - 140	
Perfluorobutanesulfonic acid	22.7	22.6		ng/L		100	65 - 132	
Perfluorohexanesulfonic acid	23.3	22.8		ng/L		97	60 - 128	
Perfluorooctanesulfonic acid	23.7	23.9		ng/L		101	51 ₋ 126	

	LCS	LCS	
Isotope Dilution	%Recovery	Qualifier	Limits
13C4 PFHpA	81		30 - 144
13C8 PFOA	73		49 - 127
13C9 PFNA	85		47 _ 136
13C3 PFBS	80		19_178
13C3 PFHxS	72		32 _ 145
13C8 PFOS	80		49 _ 126

Lab Sample ID: LCSD 410-151535/3-A Matrix: Water Analysis Batch: 152591

Analysis Batch: 152591									Prep I	Batch: 1	51535
			Spike	LCSD	LCSD				%Rec.		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Perfluoroheptanoic acid			25.6	26.3		ng/L		103	66 - 141	2	30
Perfluorooctanoic acid			25.6	26.1		ng/L		102	65 _ 136	2	30
Perfluorononanoic acid			25.6	26.5		ng/L		104	65 _ 140	3	30
Perfluorobutanesulfonic acid			22.7	24.5		ng/L		108	65 - 132	8	30
Perfluorohexanesulfonic acid			23.3	22.2		ng/L		95	60 _ 128	3	30
Perfluorooctanesulfonic acid			23.7	24.1		ng/L		102	51 - 126	1	30
	LCSD	LCSD									
Isotope Dilution	%Recovery	Qualifier	Limits								
13C4 PFHpA	103		30 _ 144								

Eurofins Lancaster Laboratories Env, LLC

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

RL

2.0

2.0

2.0

2.0

2.0

2.0

Limits

30 - 144

49 - 127

47 - 136

19 - 178

32 - 145

49 - 126

MDL Unit

ng/L

ng/L

ng/L

ng/L

ng/L

ng/L

D

Prepared

07/22/21 08:51

07/22/21 08:51 07/22/21 08:51

07/22/21 08:51

07/22/21 08:51

07/22/21 08:51

Prepared

07/22/21 08:51

07/22/21 08:51

07/22/21 08:51

07/22/21 08:51

07/22/21 08:51

07/22/21 08:51

13C8 PFOA

13C9 PFNA

13C3 PFBS

13C3 PFHxS

13C8 PFOS

									Prep Type:	
1000 100	_								Prep Batch:	15155
	lifier									
100		49 - 120								
/ 1-A								Client Sa	mple ID: Metho	d Blan
МВ	МВ									
Result	Qualifier	RL	r	NDL U	Jnit	I	D P	repared	Analyzed	Dil Fa
<2.0		2.0		r	ng/L		07/2	2/21 08:59	07/22/21 20:26	
<2.0		2.0		r	ng/L		07/2	2/21 08:59	07/22/21 20:26	
<2.0		2.0		r	ng/L		07/2	2/21 08:59	07/22/21 20:26	
<2.0		2.0		r	ng/L		07/2	2/21 08:59	07/22/21 20:26	
<2.0		2.0		r	ng/L		07/2	2/21 08:59	07/22/21 20:26	
<2.0		2.0		r	ng/L		07/2	2/21 08:59	07/22/21 20:26	
MB	МВ									
%Recovery	Qualifier	Limits					P	repared	Analyzed	Dil Fa
101		30 - 144					07/2	2/21 08:59	07/22/21 20:26	
93		49 - 127					07/2	2/21 08:59	07/22/21 20:26	
93		47 - 136					07/2	2/21 08:59	07/22/21 20:26	
91		19 - 178					07/2	2/21 08:59	07/22/21 20:26	
89		32 - 145					07/2	2/21 08:59	07/22/21 20:26	
92		49 - 126					07/2	2/21 08:59	07/22/21 20:26	
								_		_
7/2-A							Client	Sample		
										15154
		•					_	a/ D		
				Qualif			D			
						-				
	%Recovery Qua 101 115 97 93 100 97 93 100 //1-A MB Result <2.0	115 97 93 100 //1-A MB Qualifier <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 MB MB Qualifier 101 33 93 91 89 92	%Recovery Qualifier Limits 101 49 - 127 115 47 - 136 97 19 - 178 93 32 - 145 100 49 - 126 //1-A MB MB Result Qualifier RL <2.0	%Recovery Qualifier Limits 101 49 - 127 115 47 - 136 97 19 - 178 93 32 - 145 100 49 - 126 //1-A MB MB Result Qualifier RL 2.0 <2.0	$\frac{\label{eq:second}{\begin{tabular}{ c c c c } \hline & & & & & & & & & & & & & & & & & & $	%Recovery Qualifier Limits 101 49.127 115 47.136 97 19.178 93 32.145 100 49.126 //1-A MB MB Result Qualifier RL 2.0 2.0 <2.0	%Recovery Qualifier Limits 101 49.127 115 47.136 97 19.178 93 32.145 100 49.126 //1-A MB Result Qualifier RL Qualifier RL 2.0 100 <2.0	%Recovery Qualifier Limits 101 49.127 115 47.136 97 19.178 93 32.145 100 49.126 //1-A MB MB MB 2.0 2.0 <2.0		%Recovery 101 Qualifier 49 - 127 Limits 47 - 136 97 19 - 178 93 32 - 145 100 49 - 126 //1-A Client Sample ID: Methor Prep Type: Prep Batch: MB MB Client Sample ID: Methor Prep Type: Prep Batch: MB MB Client Sample ID: Methor Prep Type: Prep Batch: MB MB Client Sample ID: Methor Prep Type: Prep Batch: 2.0 101 0 Prepared 07/22/21 08:59 Analyzed 07/22/21 02:6 <2.0

Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	
Perfluoroheptanoic acid			25.6	23.8		ng/L		93	66 - 141	
Perfluorooctanoic acid			25.6	26.5		ng/L		103	65 _ 136	
Perfluorononanoic acid			25.6	27.6		ng/L		108	65 - 140	
Perfluorobutanesulfonic acid			22.7	23.6		ng/L		104	65 _ 132	
Perfluorohexanesulfonic acid			23.3	24.4		ng/L		105	60 _ 128	
Perfluorooctanesulfonic acid			23.7	24.6		ng/L		104	51 - 126	
	LCS	LCS								
Isotope Dilution	%Recovery	Qualifier	Limits							
13C4 PFHpA	100		30 - 144							

49 _ 127

47 - 136

19_178

32 - 145

49 - 126

92

92

95

84

92

5

Method: 537 IDA - EPA 537 Isotope Dilution (Continued)

Lab Sample ID: LCSD 410-151	1547/3-A					Clie	ent Sam	ple ID:	Lab Contro	ol Sampl	e Dup
Matrix: Water									Prep 1	Type: To	tal/NA
Analysis Batch: 151710									Prep I	Batch: 1	51547
			Spike	LCSD	LCSD				%Rec.		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Perfluoroheptanoic acid			25.6	25.2		ng/L		99	66 - 141	6	30
Perfluorooctanoic acid			25.6	26.3		ng/L		103	65 _ 136	1	30
Perfluorononanoic acid			25.6	26.9		ng/L		105	65 _ 140	3	30
Perfluorobutanesulfonic acid			22.7	23.4		ng/L		103	65 _ 132	1	30
Perfluorohexanesulfonic acid			23.3	23.9		ng/L		102	60 - 128	2	30
Perfluorooctanesulfonic acid			23.7	23.9		ng/L		101	51 - 126	3	30
	LCSD	LCSD									
Isotope Dilution	%Recovery	Qualifier	Limits								
13C4 PFHpA	99		30 - 144								
13C8 PFOA	95		49 _ 127								
13C9 PFNA	93		47 _ 136								
13C3 PFBS	84		19_178								
13C3 PFHxS	90		32 _ 145								
13C8 PFOS	92		49 - 126								

LCMS

Prep Batch: 151535

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
410-48086-7 - RA	S-294D_20210720	Total/NA	Water	537 IDA	
410-48086-7	S-294D_20210720	Total/NA	Water	537 IDA	
410-48086-8	PGW-MW-8D_20210720	Total/NA	Water	537 IDA	
410-48086-8 - RA	PGW-MW-8D_20210720	Total/NA	Water	537 IDA	
410-48086-9	S-391D_20210720	Total/NA	Water	537 IDA	
410-48086-10 - RA	S-302D_20210720	Total/NA	Water	537 IDA	
410-48086-10	S-302D_20210720	Total/NA	Water	537 IDA	
410-48086-11 - RA	S-264D_20210720	Total/NA	Water	537 IDA	
410-48086-11	S-264D_20210720	Total/NA	Water	537 IDA	
410-48086-12	S-388D_20210720	Total/NA	Water	537 IDA	
410-48086-12 - RA	S-388D_20210720	Total/NA	Water	537 IDA	
410-48086-13 - RA	S-389D_20210720	Total/NA	Water	537 IDA	
410-48086-13	S-389D_20210720	Total/NA	Water	537 IDA	
410-48086-14	FB-02_20210720	Total/NA	Water	537 IDA	
MB 410-151535/1-A	Method Blank	Total/NA	Water	537 IDA	
LCS 410-151535/2-A	Lab Control Sample	Total/NA	Water	537 IDA	
LCSD 410-151535/3-A	Lab Control Sample Dup	Total/NA	Water	537 IDA	

Prep Batch: 151547

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
410-48086-1	N-163_20210719	Total/NA	Water	537 IDA	
410-48086-2	N-9_20210719	Total/NA	Water	537 IDA	
410-48086-3	N-69_20210719	Total/NA	Water	537 IDA	
410-48086-4 - RA	N-38D_20210719	Total/NA	Water	537 IDA	
410-48086-4	N-38D_20210719	Total/NA	Water	537 IDA	
410-48086-5	EB-01_20210719	Total/NA	Water	537 IDA	
410-48086-6	FB-01_20210719	Total/NA	Water	537 IDA	
410-48086-15 - DL	S-80D_20210721	Total/NA	Water	537 IDA	
10-48086-15	S-80D_20210721	Total/NA	Water	537 IDA	
410-48086-16 - DL	S-80D-DUP_20210721	Total/NA	Water	537 IDA	
410-48086-16	S-80D-DUP_20210721	Total/NA	Water	537 IDA	
410-48086-17 - RA	S-69D_20210721	Total/NA	Water	537 IDA	
410-48086-17	S-69D_20210721	Total/NA	Water	537 IDA	
410-48086-18 - RA	S-284D_20210721	Total/NA	Water	537 IDA	
410-48086-18	S-284D_20210721	Total/NA	Water	537 IDA	
410-48086-19	FB-03_20210721	Total/NA	Water	537 IDA	
MB 410-151547/1-A	Method Blank	Total/NA	Water	537 IDA	
LCS 410-151547/2-A	Lab Control Sample	Total/NA	Water	537 IDA	
LCSD 410-151547/3-A	Lab Control Sample Dup	Total/NA	Water	537 IDA	

Analysis Batch: 151710

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
410-48086-1	N-163_20210719	Total/NA	Water	537 IDA	151547
410-48086-2	N-9_20210719	Total/NA	Water	537 IDA	151547
410-48086-3	N-69_20210719	Total/NA	Water	537 IDA	151547
410-48086-4	N-38D_20210719	Total/NA	Water	537 IDA	151547
410-48086-5	EB-01_20210719	Total/NA	Water	537 IDA	151547
410-48086-6	FB-01_20210719	Total/NA	Water	537 IDA	151547
410-48086-15	S-80D_20210721	Total/NA	Water	537 IDA	151547
410-48086-16	S-80D-DUP_20210721	Total/NA	Water	537 IDA	151547
410-48086-17	S-69D_20210721	Total/NA	Water	537 IDA	151547

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Prep Type

Total/NA

Total/NA

Total/NA

Matrix

Water

Water

Water

Water

Water

Matrix

Water

Water

Water

Client Sample ID

S-284D_20210721

FB-03_20210721

Lab Control Sample

Client Sample ID

N-38D_20210719

S-69D_20210721

S-284D_20210721

Lab Control Sample Dup

Method Blank

Analysis Batch: 151710 (Continued)

LCMS (Continued)

Lab Sample ID

410-48086-18

410-48086-19

Lab Sample ID

410-48086-4 - RA

410-48086-17 - RA

410-48086-18 - RA

MB 410-151547/1-A

LCS 410-151547/2-A

LCSD 410-151547/3-A

Analysis Batch: 151966

Prep Batch

151547

151547

151547

151547

151547

Prep Batch

151547

151547

151547

Method

537 IDA

537 IDA

537 IDA

537 IDA

537 IDA

Method

537 IDA

537 IDA

537 IDA

7 8 9 10

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
410-48086-15 - DL	S-80D_20210721	Total/NA	Water	537 IDA	151547
410-48086-16 - DL	S-80D-DUP_20210721	Total/NA	Water	537 IDA	151547

Analysis Batch: 152591

Analysis Batch: 152457

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
410-48086-7	S-294D_20210720	Total/NA	Water	537 IDA	151535
410-48086-7 - RA	S-294D_20210720	Total/NA	Water	537 IDA	151535
410-48086-8	PGW-MW-8D_20210720	Total/NA	Water	537 IDA	151535
410-48086-8 - RA	PGW-MW-8D_20210720	Total/NA	Water	537 IDA	151535
410-48086-9	S-391D_20210720	Total/NA	Water	537 IDA	151535
410-48086-10	S-302D_20210720	Total/NA	Water	537 IDA	151535
410-48086-10 - RA	S-302D_20210720	Total/NA	Water	537 IDA	151535
410-48086-11	S-264D_20210720	Total/NA	Water	537 IDA	151535
410-48086-11 - RA	S-264D_20210720	Total/NA	Water	537 IDA	151535
410-48086-12	S-388D_20210720	Total/NA	Water	537 IDA	151535
410-48086-12 - RA	S-388D_20210720	Total/NA	Water	537 IDA	151535
410-48086-13	S-389D_20210720	Total/NA	Water	537 IDA	151535
410-48086-13 - RA	S-389D_20210720	Total/NA	Water	537 IDA	151535
410-48086-14	FB-02_20210720	Total/NA	Water	537 IDA	151535
MB 410-151535/1-A	Method Blank	Total/NA	Water	537 IDA	151535
LCS 410-151535/2-A	Lab Control Sample	Total/NA	Water	537 IDA	151535
LCSD 410-151535/3-A	Lab Control Sample Dup	Total/NA	Water	537 IDA	151535

Client Sample ID: N-163_20210719

Batch

Туре

Prep

Batch

Method

537 IDA

Date Collected: 07/19/21 11:50

Date Received: 07/21/21 16:35

Prep Type

Total/NA

Matrix: Water

Matrix: Water

Lab Sample ID: 410-48086-1

Lab Sample ID: 410-48086-2

Lab Sample ID: 410-48086-4

Lab Sample ID: 410-48086-5

Lab Sample ID: 410-48086-6

10

Lab Sample ID: 410-48086-3

Total/NA Analysis 537 IDA Client Sample ID: N-9_20210719 Date Collected: 07/19/21 12:40 Date Received: 07/21/21 16:35

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	537 IDA			151547	07/22/21 08:59	X4HV	ELLE
Total/NA	Analysis	537 IDA		1	151710	07/22/21 23:45	QD9Y	ELLE

Dilution

Factor

1

Run

Batch

Number

151547

Prepared

or Analyzed

07/22/21 08:59

151710 07/22/21 23:34

Analyst

X4HV

QD9Y

Lab

ELLE

ELLE

Client Sample ID: N-69_20210719

Matrix: Water

Matrix: Water

Matrix: Water

Matrix: Water

Date Collected: 07/19/21 14:30 Date Received: 07/21/21 16:35

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	537 IDA			151547	07/22/21 08:59	X4HV	ELLE
Total/NA	Analysis	537 IDA		1	151710	07/22/21 23:56	QD9Y	ELLE

Client Sample ID: N-38D_20210719

Date Collected: 07/19/21 14:40

Date Received: 07/21/21 16:35

	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	537 IDA			151547	07/22/21 08:59	X4HV	ELLE
Total/NA	Analysis	537 IDA		1	151710	07/23/21 00:07	QD9Y	ELLE
Total/NA	Prep	537 IDA	RA		151547	07/22/21 08:59	X4HV	ELLE
Total/NA	Analysis	537 IDA	RA	1	151966	07/23/21 16:27	QD9Y	ELLE

Client Sample ID: EB-01_20210719

Date Collected: 07/19/21 11:30

Date Received: 07/21/21 16:35

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	537 IDA			151547	07/22/21 08:59	X4HV	ELLE
Total/NA	Analysis	537 IDA		1	151710	07/23/21 00:18	QD9Y	ELLE

Client Sample ID: FB-01_20210719 Date Collected: 07/19/21 11:50 Date Received: 07/21/21 16:35

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	537 IDA			151547	07/22/21 08:59	X4HV	ELLE
Total/NA	Analysis	537 IDA		1	151710	07/23/21 00:29	QD9Y	ELLE

Dilution

Factor

1

1

Run

RA

RA

Batch

Number

151535

152591

151535

152591

Prepared

or Analyzed

07/22/21 08:51

07/26/21 11:01

07/22/21 08:51

07/26/21 20:42

Analyst

X4HV

MT26

X4HV

MT26

Lab

ELLE

ELLE

ELLE

ELLE

Client Sample ID: S-294D_20210720

Batch

Туре

Analysis

Batch

Method

537 IDA

Lab Sample ID: 410-48086-7

Lab Sample ID: 410-48086-8

Lab Sample ID: 410-48086-9

Lab Sample ID: 410-48086-10

Lab Sample ID: 410-48086-11

Matrix: Water

Matrix: Water

Matrix: Water

Matrix: Water

Matrix: Water

 Total/NA
 Prep
 537 IDA

 Total/NA
 Analysis
 537 IDA

 Total/NA
 Prep
 537 IDA

Date Collected: 07/20/21 09:40

Date Received: 07/21/21 16:35

Prep Type

Total/NA

Client Sample ID: PGW-MW-8D_20210720 Date Collected: 07/20/21 11:15 Date Received: 07/21/21 16:35

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	537 IDA			151535	07/22/21 08:51	X4HV	ELLE
Total/NA	Analysis	537 IDA		1	152591	07/26/21 11:11	MT26	ELLE
Total/NA	Prep	537 IDA	RA		151535	07/22/21 08:51	X4HV	ELLE
Total/NA	Analysis	537 IDA	RA	1	152591	07/26/21 20:53	MT26	ELLE

Client Sample ID: S-391D_20210720 Date Collected: 07/20/21 11:25

Date Received: 07/21/21 16:35

Γ	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	537 IDA			151535	07/22/21 08:51	X4HV	ELLE
Total/NA	Analysis	537 IDA		1	152591	07/26/21 11:22	MT26	ELLE

Client Sample ID: S-302D_20210720

Date Collected: 07/20/21 12:45 Date Received: 07/21/21 16:35

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	537 IDA			151535	07/22/21 08:51	X4HV	ELLE
Total/NA	Analysis	537 IDA		1	152591	07/26/21 11:32	MT26	ELLE
Total/NA	Prep	537 IDA	RA		151535	07/22/21 08:51	X4HV	ELLE
Total/NA	Analysis	537 IDA	RA	1	152591	07/26/21 21:03	MT26	ELLE

Client Sample ID: S-264D_20210720

Date Collected: 07/20/21 14:45 Date Received: 07/21/21 16:35

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	537 IDA			151535	07/22/21 08:51	X4HV	ELLE
Total/NA	Analysis	537 IDA		1	152591	07/26/21 11:43	MT26	ELLE
Total/NA	Prep	537 IDA	RA		151535	07/22/21 08:51	X4HV	ELLE
Total/NA	Analysis	537 IDA	RA	1	152591	07/26/21 21:14	MT26	ELLE

Dilution

Factor

1

1

Dilution

Factor

Run

RA

RA

Run

Batch

Number

151535

152591

151535

152591

Batch

Number

151535

Prepared

or Analyzed

07/22/21 08:51

07/26/21 11:53

07/22/21 08:51

07/26/21 21:25

Prepared

or Analyzed

07/22/21 08:51

Analyst

X4HV

MT26

X4HV

MT26

Analyst

X4HV

Lab

ELLE

ELLE

ELLE

ELLE

Lab

ELLE

Client Sample ID: S-388D_20210720

Batch

Туре

Prep

Prep

Client Sample ID: S-389D 20210720

Batch

Туре

Prep

Prep

Analysis

Analysis

Batch

Туре

Prep

Analysis

Batch

Туре

Prep

Prep

Analysis

Analysis

Analysis

Analysis

Batch

Method

537 IDA

537 IDA

537 IDA

537 IDA

Batch

Method

537 IDA

Date Collected: 07/20/21 14:55

Date Received: 07/21/21 16:35

Date Collected: 07/20/21 14:40

Date Received: 07/21/21 16:35

Date Collected: 07/20/21 10:00

Date Received: 07/21/21 16:35

Date Collected: 07/21/21 09:35

Date Received: 07/21/21 16:35

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Ргер Туре

Total/NA

Total/NA

Total/NA

Total/NA

Ргер Туре

Total/NA

Total/NA

Ргер Туре

Total/NA

Total/NA

Total/NA

Total/NA

Lab Sample ID: 410-48086-12

Lab Sample ID: 410-48086-13

Matrix: Water

Matrix: Water

537 IDA 152591 07/26/21 12:15 MT26 ELLE 1 537 IDA RA 151535 07/22/21 08:51 X4HV ELLE RA ELLE 537 IDA 152591 07/26/21 21:35 MT26 1 Client Sample ID: FB-02 20210720 Lab Sample ID: 410-48086-14 Batch Dilution Batch Prepared Method Run Factor Number or Analyzed Analyst Lab 537 IDA 151535 07/22/21 08:51 X4HV ELLE 537 IDA 152591 07/26/21 12:25 MT26 ELLE 1 Client Sample ID: S-80D 20210721 Batch Dilution Batch Prepared Method Run Factor Number or Analyzed Analyst Lab ELLE 537 IDA 151547 07/22/21 08:59 X4HV 537 IDA 151710 07/23/21 00.40 OD9Y ELLE 1 537 IDA DL 151547 07/22/21 08:59 X4HV ELLE 537 IDA DL 10 152457 07/25/21 14:13 PY4D ELLE

Client Sample ID: S-80D-DUP 20210721 Date Collected: 07/21/21 09:35 Date Received: 07/21/21 16:35

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	537 IDA			151547	07/22/21 08:59	X4HV	ELLE
Total/NA	Analysis	537 IDA		1	151710	07/23/21 00:51	QD9Y	ELLE
Total/NA	Prep	537 IDA	DL		151547	07/22/21 08:59	X4HV	ELLE
Total/NA	Analysis	537 IDA	DL	10	152457	07/25/21 14:25	PY4D	ELLE

Lab Sample ID: 410-48086-15

Lab Sample ID: 410-48086-16

Matrix: Water

Matrix: Water

Matrix: Water

Lab Sample ID: 410-48086-17 Matrix: Water

Lab Sample ID: 410-48086-18

Lab Sample ID: 410-48086-19

Client Sample ID: S-69D_20210721 Date Collected: 07/21/21 11:55 Date Received: 07/21/21 16:35

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	537 IDA			151547	07/22/21 08:59	X4HV	ELLE
Total/NA	Analysis	537 IDA		1	151710	07/23/21 01:14	QD9Y	ELLE
Total/NA	Prep	537 IDA	RA		151547	07/22/21 08:59	X4HV	ELLE
Total/NA	Analysis	537 IDA	RA	1	151966	07/23/21 16:38	QD9Y	ELLE

Client Sample ID: S-284D_20210721 Date Collected: 07/21/21 11:55 Date Received: 07/21/21 16:35

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	537 IDA			151547	07/22/21 08:59	X4HV	ELLE
Total/NA	Analysis	537 IDA		1	151710	07/23/21 01:25	QD9Y	ELLE
Total/NA	Prep	537 IDA	RA		151547	07/22/21 08:59	X4HV	ELLE
Total/NA	Analysis	537 IDA	RA	1	151966	07/23/21 16:49	QD9Y	ELLE

Client Sample ID: FB-03_20210721 Date Collected: 07/21/21 11:50 Date Received: 07/21/21 16:35

Γ	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	537 IDA			151547	07/22/21 08:59	X4HV	ELLE
Total/NA	Analysis	537 IDA		1	151710	07/23/21 01:36	QD9Y	ELLE

Laboratory References:

ELLE = Eurofins Lancaster Laboratories Env, LLC, 2425 New Holland Pike, Lancaster, PA 17601, TEL (717)656-2300

Matrix: Water

Matrix: Water

Laboratory: Eurofins Lancaster Laboratories Env, LLC

The accreditations/certifications listed below are applicable to this report.

	Authority	Program	Identification Number	Expiration Date
Ĺ	Pennsylvania	NELAP	36-00037	01-31-22

Client: Sanborn Head & Associates Inc Project/Site: Evergreen Philadelphia PFAS

Method	Method Description	Protocol	Laboratory
537 IDA	EPA 537 Isotope Dilution	EPA	ELLE
537 IDA	EPA 537 Isotope Dilution	EPA	ELLE

Protocol References:

EPA = US Environmental Protection Agency

Laboratory References:

ELLE = Eurofins Lancaster Laboratories Env, LLC, 2425 New Holland Pike, Lancaster, PA 17601, TEL (717)656-2300

7/27/2021

Sample Summary

Client: Sanborn Head & Associates Inc Project/Site: Evergreen Philadelphia PFAS

Job ID: 410-48086	-1
-------------------	----

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	
410-48086-1	N-163_20210719	Water	07/19/21 11:50	07/21/21 16:35	
10-48086-2	N-9_20210719	Water	07/19/21 12:40	07/21/21 16:35	
10-48086-3	N-69_20210719	Water	07/19/21 14:30	07/21/21 16:35	
10-48086-4	N-38D_20210719	Water	07/19/21 14:40	07/21/21 16:35	
10-48086-5	EB-01_20210719	Water	07/19/21 11:30	07/21/21 16:35	
10-48086-6	FB-01_20210719	Water	07/19/21 11:50	07/21/21 16:35	
10-48086-7	S-294D_20210720	Water	07/20/21 09:40	07/21/21 16:35	
10-48086-8	PGW-MW-8D_20210720	Water	07/20/21 11:15	07/21/21 16:35	
10-48086-9	S-391D_20210720	Water	07/20/21 11:25	07/21/21 16:35	
10-48086-10	S-302D_20210720	Water	07/20/21 12:45	07/21/21 16:35	
10-48086-11	S-264D_20210720	Water	07/20/21 14:45	07/21/21 16:35	
10-48086-12	S-388D_20210720	Water	07/20/21 14:55	07/21/21 16:35	
10-48086-13	S-389D_20210720	Water	07/20/21 14:40	07/21/21 16:35	
10-48086-14	FB-02_20210720	Water	07/20/21 10:00	07/21/21 16:35	
10-48086-15	S-80D_20210721	Water	07/21/21 09:35	07/21/21 16:35	
10-48086-16	S-80D-DUP_20210721	Water	07/21/21 09:35	07/21/21 16:35	
10-48086-17	S-69D_20210721	Water	07/21/21 11:55	07/21/21 16:35	
10-48086-18	S-284D_20210721	Water	07/21/21 11:55	07/21/21 16:35	
10-48086-19	FB-03_20210721	Water	07/21/21 11:50	07/21/21 16:35	

Chain of Custody Sampler Michael Furste Maljovec, Nicole Carrier Tracking No(s)							
Phone: D LOC 0759 E-Mai		it:		State of Origin: PA		Page: Page 2 of 4 / of 2	
	D		Analysis f	Requested		Job #:	
Due Date Requested:						Preservation Codes:	
TAT Requested (days):						B - NaOH N - None	
- 5		ugent				D - Nitric Acid P - Na2O4S	
		conti				E - NaHSO4 Q - Na2SO3 F - MeOH R - Na2S2O3	- 1
PO #: 4796.01		CR5				G - Amchlor S - H2SO4 H - Ascorbic Acid T - TSP Dodecahydrate	ahydrate
W0 #:						I - Ice U - Acetone J - DI Water V - MCAA	
Project #:	AS AS		K - EDTA W - pH 4-5 L - EDA Z - other (specify)	ly)			
41006783 SSOW#		8 PF				Other:	
	Matrix	CMR3					
	mple (w-water,						
Sample (C=	Comp, BT=Tissue,						
						Special Instructions/No	te:
							ΔI
			┼╾┼╼┼╼┼				filled
10 100			┼─┼─┼─┽			mue to leave	
7/17 1930 6	2W		- - -				
7/19 1990 0	o W						
7/19 1130 G	W_{\perp}					Kauboisesano	ornhea
7/19 1150 0	W	X					
7120 940 0	5 101	X					
		Y					N
						Correspondence	
I I A ALAUT			╆╾┼╾┼╾┼			27	
			┟╼╾┟╼╼╁			622 283	
7/20 1995 6						ined longes than 1 month)	
	logical		Client	Disposal By Lab		chive For Months	
Dete				Method of Sin	lipmant	· · · · · · · · · · · · · · · · · · ·	
Date/Time	Company	Received by	1	D	ate/Time:	Company	
Date/Time/	Company	Received by	202			Company	-
Date/Type	5 Company	Received by			atertime 11) / //o.) Company	
	Due Date Requested: TAT Requested (days): 5 Compilance Project: Δ Yes Δ No PO # 4796.01 WO # Project # 41006783 Sample Sample Date Sample Time G= 7/19 1/50 C 7/19 1/50 C 7 7/20 1/150 C 7 7/20 1/25 C 7 7/20 1/25 C C 7/20 1/25 C C 7/20 1/45 C C 7/20 1/25 C C 7/20 1/25 C C 7/20 1/45 C C 7/20 1/25 C C 7/20 1/2	PWSID: Due Date Requested: TAT Requested (days): 5 Compilance Project: Δ Yes PO #: Project #: 41006783 SSOW# Sample Sample Date Sample Date T/19 1/50 7/19 1/50 7/19 1/30 7/19 1/30 7/19 1/30 7/19 1/30 7/19 1/30 7/19 1/30 7/19 1/30 5 7/19 1/30 7/10 1/30 7/10 1/30 7/10 1/30 7/30 7/30 7/30 7/30 7/30 7/30 7/30 7/30 7	PWSID Due Date Requested: TAT Requested (days): S Compliance Project: A Yes A No Po# Ano Po# Arg6.01 Matrix Project # 41006783 Sample Matrix Project # Sample Date Sample Matrix Project # A1006783 Sample Matrix Project # T/19 JISO Matrix Matrix T/20 JUSO Matrix<	PWSID Analysis F Due Date Requested: TAT Requested (days):	PWSID: Analysis Requested Due Date Requested:: TAT Requested (days):	Properties Analysis Requested TAT Requested (days):	PVSID Analysis Requested Job # Due Date Requested: Analysis Requested Analysis Requested Preservation Codes: TAT Requested (days): Semple ne Project: A Yes A No Preservation Codes: Analysis Requested Preservation Codes: Compliance Project: A Yes A No Preservation Codes: Analysis Requested Preservation Codes: Project # Analysis Requested Preservation Codes: Preservation Codes: Preservation Codes: W0 # Preservation Codes: Preservation Codes: Preservation Codes: Preservation Codes: W0 # Preservation Codes: Preservation Codes: Preservation Codes: Preservation Codes: W0 # Preservation Codes: Preservation Codes: Preservation Codes: Preservation Codes: Softward Preservation Codes: Preservation Codes: Preservation Codes: Preservation Codes: Sample Date Sample Code Preservation Codes: Preservation Codes: Preservation Codes: 7/19 I/SO Code X Preservation Codes: Precode: Preservation Codes: <t< td=""></t<>

2425 New Holland Pike _ancaster, PA 17601 Phone (717) 656-2300	(Chain o	of Custo	ody F	Record						्रैः eurofir	Environment Testing
Client Information	Sampler, Mch	ael F	werte	Lab Ma	PM: jovec, Nicole			Carri	er Tracking	No(s)	COC No 410-29329-90	098.3
Client Contact:	Phone 262-49	1-97E	9	E-M	ail				of Origin:		Page:	2 0 0
Michael Fuerte	262-11	0110	PWSID:	Nic	ole Maljovec@	Deurofins	et.com	PA			Page 3 of 4	2 of 2
Company Sanborn Head & Associates Inc			PVV3ID:				Analysis	Reques	sted		JOD *	
Address:	Due Date Reques	ted:						T			Preservation	Codes:
1015 Virginia Drive Suite 100	TAT Requested ((aug)									A - HCL	M - Hexane N - None
City: Fort Washington	5	aaysį.			ent and						B - NaOH C - Zn Acetate	O - AsNaO2
State, Zip:	Compliance Proje	A Vac	A No.		contingent						D - Nitric Acid E - NaHSO4	P - Na2O4S Q - Na2SO3
PA, 19034	PO #:	ct: A fes	A NO								F - MeOH	R - Na2S2O3
603-415-6136(Tel)	4796.01				No) MCR!						G - Amchlor H - Ascorbic Ad	S - H2SO4 tid T - TSP Dodecahydrate
Email:	WO #:				or N h UN			4-14			I - Ice J - DI Water	U - Acetone V - MCAA
MFuerte@sanbornhead.com Project Name	Project #			_	Yes 5 with						K - EDTA	W - pH 4-5
Evergreen Philadelphia PFAS	41006783				Sample (Yes Barpte (Yes R3 6 PFAS wit						L - EDA	Z - other (specify)
Site	SSOW#.				am)						Other:	
				Matrix								
				(W-water, S-solid,	litter A - U			_				
		Sample	1,100	waste/oil, 3T=Tissue,	Field Filtered							
Sample Identification	Sample Date	Time	G=grab)	A-Alr)	PF PF						Specia	I Instructions/Note:
		\geq	Preservation	Code:							X	
5-3880-20210720	7/20	1455	G	W	K							
5-389D-20210720	7120	1440	G	61	X						Nere	ecc
	7/20	1 1.1									pilao	
EB-02_20210720	120	1000	G	5	K							
5-800-20210721	7/21	935	G	\mathcal{W}							Kdube	is esanborn
5-800-Dup-20210721	7/21	935	6	W	X							head, com
2 600 20072	7/1	1.000	C_{1}			_					0.10	
5-690-20210721	Id	//55	(<u>5</u> /								ona	<u>U corresponden</u>
5-2840-20210721	7121	1155	6	W	K						2.89 2.97	
F73-03-20210721	7121	1150	G	6	K							
1000-2020		1 min		-								
								+		+++		
			_	_				+				
											<u>188</u>	
Possible Hazard Identification							I (A fee may	y be asses	sed if sa	mples are re	tained longer tha	
	Poison B 🛄 Unkr	nown	Radiological			etum To	Client	Dispo	sal By La	b L	Archive For	Months
Deliverable Requested: I, II, III, IV, Other (specify)					Special	Instructio	ns/QC Requi	rements:				
Empty Kit Relinquished by:		Date:			Time:		\frown	-	Method of	Shipment:		
	Date/Time:	121 1	335 CO	SHA	Rece	ived by:	X			Date/Time:	1/21 13:	35 Company 16
Relinquished by	Date/Time.	21 1		<u>SHA</u> mpany		ived by				Date/Time	1 104	Company
Interinduising DA	The The	16	05		I NOUE	T	111	1				
Relinquished by	DaterTime	/0	Co	mpany	Rece	wedpy	11 11	5	$\overline{}$	Date/Time:	21 110:55	5 Company
					1/	INC	11/1/1			INGI	01110.2	s Mr

5-

Client: Sanborn Head & Associates Inc

Login Number: 48086 List Number: 1

Creator: Jeremiah, Cory T

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable (=6C, not frozen).</td <td>True</td> <td></td>	True	
Cooler Temperature is recorded.	True	
WV: Container Temperature is acceptable (=6C, not frozen).</td <td>N/A</td> <td></td>	N/A	
WV: Container Temperature is recorded.	N/A	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
There is sufficient vol. for all requested analyses.	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	N/A	
Is the Field Sampler's name present on COC?	True	
Sample Preservation Verified.	N/A	
Residual Chlorine Checked.	N/A	
Sample custody seals are intact.	N/A	

Job Number: 410-48086-1

List Source: Eurofins Lancaster Laboratories Env, LLC

🔅 eurofins

Environment Testing America

ANALYTICAL REPORT

Eurofins Lancaster Laboratories Env, LLC 2425 New Holland Pike Lancaster, PA 17601 Tel: (717)656-2300

Laboratory Job ID: 410-48541-1

Client Project/Site: Evergreen Philadelphia PFAS

For:

Sanborn Head & Associates Inc 1015 Virginia Drive Suite 100 Fort Washington, Pennsylvania 19034

Attn: Patrick Troy

Miol Mat

Authorized for release by: 7/30/2021 11:00:25 AM Nicole Maljovec, Client Services Manager (717)556-7259

Nicole.Maljovec@eurofinset.com

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

LINKS

Review your project results through

Total Access

Have a Question?

Ask-

The

Analytical test results meet all requirements of the associated regulatory program (e.g., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis. Data qualifiers are applied to note exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

• QC results that exceed the upper limits and are associated with non-detect samples are qualified but further narration is not required since the bias is high and does not change a non-detect result. Further narration is also not required with QC blank detection when the associated sample concentration is non-detect or more than ten times the level in the blank.

• Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD is performed, unless otherwise specified in the method.

Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Measurement uncertainty values, as applicable, are available upon request.

Test results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. Times are local to the area of activity. Parameters listed in the 40 CFR Part 136 Table II as "analyze immediately" and tested in the laboratory are not performed within 15 minutes of collection.

This report shall not be reproduced except in full, without the written approval of the laboratory.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. The foregoing express warranty is exclusive and is given in lieu of all other warranties, expressed or implied, except as otherwise agreed. We disclaim any other warranties, expressed or implied, including a warranty of fitness for particular purpose and warranty of merchantability. In no event shall Eurofins Lancaster Laboratories Environmental, LLC be liable for indirect, special, consequential, or incidental damages including, but not limited to, damages for loss of profit or goodwill regardless of (A) the negligence (either sole or concurrent) of Eurofins Lancaster Laboratories Environmental has been informed of the possibility of such damages. We accept no legal responsibility for the purposes for which the client uses the test results. Except as otherwise agreed, no purchase order or other order for work shall be accepted by Eurofins Lancaster Laboratories Environmental which includes any conditions that vary from the Standard Terms and Conditions, and Eurofins Lancaster Laboratories Environmental hereby objects to any conflicting terms contained in any acceptance or order submitted by client.

Mil Mat

Nicole Maljovec Client Services Manager 7/30/2021 11:00:25 AM

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Detection Summary	6
Client Sample Results	9
Isotope Dilution Summary	17
QC Sample Results	18
QC Association Summary	22
Lab Chronicle	24
Certification Summary	28
Method Summary	29
Sample Summary	30
Chain of Custody	31
Receipt Checklists	33

3

Qualifiers

LCMS	
Qualifier	Qualifier Description
*5+	Isotope dilution analyte is outside acceptance limits, high biased.
I	Value is EMPC (estimated maximum possible concentration).

Glossary

*5+	Isotope dilution analyte is outside acceptance limits, high biased.	
I	Value is EMPC (estimated maximum possible concentration).	5
Glossary		6
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
1C	Result is from the primary column on a dual-column method.	0
2C	Result is from the confirmation column on a dual-column method.	0
CFL	Contains Free Liquid	
CFU	Colony Forming Unit	9
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	13
LOQ	Limit of Quantitation (DoD/DOE)	
MCL	EPA recommended "Maximum Contaminant Level"	
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
MPN	Most Probable Number	
MQL	Method Quantitation Limit	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
NEG	Negative / Absent	
POS	Positive / Present	
PQL	Practical Quantitation Limit	
PRES	Presumptive	
QC	Quality Control	
RER	Relative Error Ratio (Radiochemistry)	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEQ	Toxicity Equivalent Quotient (Dioxin)	
TNTC	Too Numerous To Count	

Job ID: 410-48541-1

Laboratory: Eurofins Lancaster Laboratories Env, LLC

Narrative

Job Narrative 410-48541-1

Receipt

The samples were received on 7/23/2021 4:05 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperatures of the 2 coolers at receipt time were 0.3°C and 5.3°C

PFAS

Method PFC_IDA: The labeled isotope recovery is outside of the QC acceptance limits in the method blank and laboratory control spike(s) associated with the following samples: N-149D_20210721 (410-48541-1), S-393D_20210721 (410-48541-2), S-39D_20210721 (410-48541-3), C-129D_20210721 (410-48541-4), C-144D_20210722 (410-48541-8) and A-21D_20210722 (410-48541-9). Since the recovery is biased high, the associated target analytes are not detected in the method blank, and the associated target analytes are within the QC limits in the laboratory control spike(s), the data is reported.

Method PFC_IDA: The labeled isotope recovery is outside of the QC acceptance limits in the following samples: N-149D_20210721 (410-48541-1) and S-39D_20210721 (410-48541-3). Since the recovery is biased high and the associated target analytes are not detected in the samples, the data is reported.Reporting limits were raised for the following samples: N-149D_20210721 (410-48541-1) and S-39D_20210721 (410-48541-3) due to interference from the sample matrix.

Method PFC_IDA: The sample injection standard peak areas in the following samples:C-129D_20210721 (410-48541-4), C-144D_20210722 (410-48541-8) and A-21D_20210722 (410-48541-9) are outside of the QC limits for both the initial injection and re-injection. The values here are from the initial injection of the sample.

Method PFC_IDA: The labeled isotope recovery is outside of the QC acceptance limits in the following samples due to interference from sample matrix: C-144D_20210722 (410-48541-8) and A-21D_20210722 (410-48541-9).

Method PFC_IDA: The recovery for the labeled isotope(s) in the following sample: S-110DSRTF_20210723 (410-48541-12) is outside the QC acceptance limits due to the matrix of the sample.

Method PFC_IDA: The recovery for the labeled isotope(s) in the following sample: S-115DSRTF_20210723 (410-48541-13) is outside the QC acceptance limits due to the matrix of the sample. The sample injection standard peak areas in the following sample: S-115DSRTF_20210723 (410-48541-13) are outside of the QC limits for both the initial injection and the re-injection. The values here are from the initial injection of the sample.

Method PFC_IDA: The recovery for the labeled isotope(s) in the following sample: S-38D_20210722 (410-48541-6) is outside the QC acceptance limits. Since the recovery is high and the native analyte is not detected in the sample, the data is reported.

Method PFC_IDA: The sample injection standard peak areas in the following samples: B-134D_20210722 (410-48541-7) and C-134D_20210722 (410-48541-10) are outside of the QC limits for both the initial injection and the re-injection. The values here are from the initial injection of the sample. The recovery for the labeled isotope(s) in the following sample(s): B-134D_20210722 (410-48541-7) and C-134D_20210722 (410-48541-10) is outside the QC acceptance limits due to the matrix of the sample.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Client Sample ID: N-149D_20210721

No Detections.

Client Sample ID: S-393D_20210721

Analyte	Result Qualifier	RL	MDL U	Jnit	Dil Fac	D	Method	Prep Type
Perfluoroheptanoic acid	5.9	1.6	n	ng/L	1	_	537 IDA	Total/NA
Perfluorooctanoic acid	11	1.6	n	ng/L	1		537 IDA	Total/NA
Perfluorononanoic acid	1.9	1.6	n	ng/L	1		537 IDA	Total/NA
Perfluorobutanesulfonic acid	1.7 I	1.6	n	ng/L	1		537 IDA	Total/NA
Perfluorohexanesulfonic acid	2.6	1.6	n	ng/L	1		537 IDA	Total/NA
Perfluorooctanesulfonic acid	4.1	1.6	n	ng/L	1		537 IDA	Total/NA

Client Sample ID: S-39D_20210721

Analyte		ualifier RL	MDL	Unit	Dil Fac D	Method	Prep Type
Perfluorooctanoic acid	20	20		ng/L	1	537 IDA	Total/NA

Client Sample ID: C-129D_20210721

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
Perfluoroheptanoic acid	1.9	1.6	ng/L	1	537 IDA	Total/NA
Perfluorooctanoic acid	8.8	1.6	ng/L	1	537 IDA	Total/NA
Perfluorononanoic acid	8.5	1.6	ng/L	1	537 IDA	Total/NA
Perfluorobutanesulfonic acid	1.6 I	1.6	ng/L	1	537 IDA	Total/NA
Perfluorohexanesulfonic acid	2.0	1.6	ng/L	1	537 IDA	Total/NA
Perfluorooctanesulfonic acid	3.5	1.6	ng/L	1	537 IDA	Total/NA

Client Sample ID: A-19D_20210722

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluoroheptanoic acid	39		20		ng/L	1	_	537 IDA	Total/NA
Perfluorooctanoic acid	99	I	20		ng/L	1		537 IDA	Total/NA
Perfluorononanoic acid	370		20		ng/L	1		537 IDA	Total/NA
Perfluorooctanesulfonic acid	33		20		ng/L	1		537 IDA	Total/NA

Client Sample ID: S-38D_20210722

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorooctanesulfonic acid	2.1		1.6		ng/L	1	_	537 IDA	Total/NA

Client Sample ID: B-134D_20210722

Analyte	Result Quali	fier RL	MDL Ur	nit	Dil Fac	DM	ethod	Prep Type
Perfluoroheptanoic acid	89	1.6	ng	g/L	1	53	37 IDA	Total/NA
Perfluorooctanoic acid	97	1.6	ng	g/L	1	53	37 IDA	Total/NA
Perfluorononanoic acid	60	1.6	ng	g/L	1	53	37 IDA	Total/NA
Perfluorobutanesulfonic acid	3.4 I	1.6	ng	g/L	1	53	37 IDA	Total/NA
Perfluorohexanesulfonic acid	18	1.6	ng	g/L	1	53	37 IDA	Total/NA
Perfluorooctanesulfonic acid	73	1.6	ng	g/L	1	53	87 IDA	Total/NA

Client Sample ID: C-144D_20210722

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac	Method	Prep Type
Perfluoroheptanoic acid	12	1.6	ng/L	1	537 IDA	Total/NA
Perfluorooctanoic acid	19	1.6	ng/L	1	537 IDA	Total/NA
Perfluorononanoic acid	5.7	1.6	ng/L	1	537 IDA	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins Lancaster Laboratories Env, LLC

Lab Sample ID: 410-48541-4

Job ID: 410-48541-1

Lab Sample ID: 410-48541-1

Lab Sample ID: 410-48541-2

Lab Sample ID: 410-48541-5

Lab Sample ID: 410-48541-6

Lab Sample ID: 410-48541-7

Lab Sample ID: 410-48541-8

Client Sample ID: A-21D_20210722

Analyte	Result Q	ualifier	RL	MDL	Unit	Dil Fac	Method	Prep Type
Perfluoroheptanoic acid	32		1.6		ng/L	1	537 IDA	Total/NA
Perfluorooctanoic acid	38		1.6		ng/L	1	537 IDA	Total/NA
Perfluorononanoic acid	24		1.6		ng/L	1	537 IDA	Total/NA
Perfluorobutanesulfonic acid	2.6		1.6		ng/L	1	537 IDA	Total/NA
Perfluorohexanesulfonic acid	24		1.6		ng/L	1	537 IDA	Total/NA
Perfluorooctanesulfonic acid	36		1.6		ng/L	1	537 IDA	Total/NA

Client Sample ID: C-134D_20210722

Analyte	Result Qualifi	ier RL	MDL	Unit	Dil Fac D	Method	Prep Type
Perfluoroheptanoic acid	32	1.7		ng/L	1	537 IDA	Total/NA
Perfluorooctanoic acid	41	1.7		ng/L	1	537 IDA	Total/NA
Perfluorononanoic acid	23	1.7		ng/L	1	537 IDA	Total/NA
Perfluorobutanesulfonic acid	3.6	1.7		ng/L	1	537 IDA	Total/NA
Perfluorohexanesulfonic acid	2.4	1.7		ng/L	1	537 IDA	Total/NA
Perfluorooctanesulfonic acid	7.7	1.7		ng/L	1	537 IDA	Total/NA

Client Sample ID: B-48D_20210722

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	Method	Prep Type
Perfluoroheptanoic acid	3.7		1.7		ng/L	1	537 IDA	Total/NA
Perfluorooctanoic acid	23		1.7		ng/L	1	537 IDA	Total/NA
Perfluorononanoic acid	43		1.7		ng/L	1	537 IDA	Total/NA
Perfluorohexanesulfonic acid	3.6		1.7		ng/L	1	537 IDA	Total/NA
Perfluorooctanesulfonic acid	8.2		1.7		ng/L	1	537 IDA	Total/NA

Client Sample ID: S-110DSRTF_20210723

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac	Method	Prep Type
Perfluoroheptanoic acid	40	1.7	ng/L	1	537 IDA	Total/NA
Perfluorononanoic acid	86	1.7	ng/L	1	537 IDA	Total/NA
Perfluorobutanesulfonic acid	9.8 I	1.7	ng/L	1	537 IDA	Total/NA
Perfluorohexanesulfonic acid	11	1.7	ng/L	1	537 IDA	Total/NA
Perfluorooctanesulfonic acid	26	1.7	ng/L	1	537 IDA	Total/NA
Perfluorooctanoic acid - DL2	580	17	ng/L	10	537 IDA	Total/NA

Client Sample ID: S-115DSRTF_20210723

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac	Method	Prep Type
Perfluoroheptanoic acid	56	1.6	ng/L	1	537 IDA	Total/NA
Perfluorononanoic acid	87	1.6	ng/L	1	537 IDA	Total/NA
Perfluorobutanesulfonic acid	3.3	1.6	ng/L	1	537 IDA	Total/NA
Perfluorohexanesulfonic acid	11	1.6	ng/L	1	537 IDA	Total/NA
Perfluorooctanesulfonic acid	37	1.6	ng/L	1	537 IDA	Total/NA
Perfluorooctanoic acid - DL	550	16	ng/L	10	537 IDA	Total/NA

Client Sample ID: S-143SRTF_20210723

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac	Method	Prep Type
Perfluoroheptanoic acid		1.7	ng/L	1	537 IDA	Total/NA
Perfluorooctanoic acid	200	1.7	ng/L	1	537 IDA	Total/NA
Perfluorononanoic acid	13	1.7	ng/L	1	537 IDA	Total/NA
Perfluorobutanesulfonic acid	4.8 I	1.7	ng/L	1	537 IDA	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins Lancaster Laboratories Env, LLC

7/30/2021

Job ID: 410-48541-1

Lab Sample ID: 410-48541-9

5

Lab Sample ID: 410-48541-11

Lab Sample ID: 410-48541-10

Lab Sample ID: 410-48541-12

Lab Sample ID: 410-48541-13

Lab Sample ID: 410-48541-14

RL

1.7

1.7

RL

1.6

1.6

1.6

1.6

1.6

1.6

MDL Unit

MDL Unit

ng/L

ng/L

ng/L

ng/L

ng/L

ng/L

ng/L

ng/L

Client Sample ID: W-27_20210723

Client Sample ID: S-143SRTF_20210723 (Continued)

Result Qualifier

Result Qualifier

8.2

14

49

53

27

7.8

8.6

53

Prep Type

Total/NA

Total/NA

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Lab Sample ID: 410-48541-14

Lab Sample ID: 410-48541-15

Dil Fac D Method

1

1

Dil Fac D

1

1

1

1

1

1

537 IDA

537 IDA

Method

537 IDA

537 IDA

537 IDA

537 IDA

537 IDA

537 IDA

2 3 4 5 6 7 8 9 10 11

Lab Sample ID: 410-48541-16

Lab Sample ID: 410-48541-17

Lab Sample ID: 410-48541-18

No Detections.

Analyte

Analyte

Perfluorohexanesulfonic acid

Perfluorooctanesulfonic acid

Perfluoroheptanoic acid

Perfluorooctanoic acid

Perfluorononanoic acid

Perfluorobutanesulfonic acid

Perfluorohexanesulfonic acid

Perfluorooctanesulfonic acid

Client Sample ID: EB-02_20210723

Client Sample ID: FB-04_20210723

No Detections.

Client Sample ID: S-143SRTF-Dup_20210723

_						
Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
Perfluoroheptanoic acid	11	1.8	ng/L	1	537 IDA	Total/NA
Perfluorooctanoic acid	200	1.8	ng/L	1	537 IDA	Total/NA
Perfluorononanoic acid	13	1.8	ng/L	1	537 IDA	Total/NA
Perfluorobutanesulfonic acid	4.9 l	1.8	ng/L	1	537 IDA	Total/NA
Perfluorohexanesulfonic acid	8.0	1.8	ng/L	1	537 IDA	Total/NA
Perfluorooctanesulfonic acid	14	1.8	ng/L	1	537 IDA	Total/NA

Client Sample ID: N-149D_20210721 Date Collected: 07/21/21 12:15 Date Received: 07/23/21 16:05

Method: 537 IDA - EPA 537 Isot	ope Dilution								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluoroheptanoic acid	<20		20		ng/L		07/26/21 07:58	07/27/21 02:25	1
Perfluorooctanoic acid	<20		20		ng/L		07/26/21 07:58	07/27/21 02:25	1
Perfluorononanoic acid	<20		20		ng/L		07/26/21 07:58	07/27/21 02:25	1
Perfluorobutanesulfonic acid	<20		20		ng/L		07/26/21 07:58	07/27/21 02:25	1
Perfluorohexanesulfonic acid	<20		20		ng/L		07/26/21 07:58	07/27/21 02:25	1
Perfluorooctanesulfonic acid	<20		20		ng/L		07/26/21 07:58	07/27/21 02:25	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFHpA	145	*5+	30 - 144				07/26/21 07:58	07/27/21 02:25	1
13C8 PFOA	128	*5+	49 - 127				07/26/21 07:58	07/27/21 02:25	1
13C9 PFNA	147	*5+	47 - 136				07/26/21 07:58	07/27/21 02:25	1
13C3 PFBS	146		19 - 178				07/26/21 07:58	07/27/21 02:25	1
13C3 PFHxS	132		32 - 145				07/26/21 07:58	07/27/21 02:25	1
13C8 PFOS	137	*5+	49 - 126				07/26/21 07:58	07/27/21 02:25	1

Client Sample ID: S-393D_20210721

Date Collected: 07/21/21 09:50

Date Received: 07/23/21 16:05

Method: 537 IDA - EPA 537 Isot	ope Dilution								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluoroheptanoic acid	5.9		1.6		ng/L		07/26/21 07:58	07/27/21 02:36	1
Perfluorooctanoic acid	11		1.6		ng/L		07/26/21 07:58	07/27/21 02:36	1
Perfluorononanoic acid	1.9		1.6		ng/L		07/26/21 07:58	07/27/21 02:36	1
Perfluorobutanesulfonic acid	1.7	1	1.6		ng/L		07/26/21 07:58	07/27/21 02:36	1
Perfluorohexanesulfonic acid	2.6		1.6		ng/L		07/26/21 07:58	07/27/21 02:36	1
Perfluorooctanesulfonic acid	4.1		1.6		ng/L		07/26/21 07:58	07/27/21 02:36	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFHpA	128		30 - 144				07/26/21 07:58	07/27/21 02:36	1
13C8 PFOA	120		49 - 127				07/26/21 07:58	07/27/21 02:36	1
13C9 PFNA	134		47 - 136				07/26/21 07:58	07/27/21 02:36	1
13C3 PFBS	156		19 - 178				07/26/21 07:58	07/27/21 02:36	1
13C3 PFHxS	119		32 - 145				07/26/21 07:58	07/27/21 02:36	1
13C8 PFOS	122		49 - 126				07/26/21 07:58	07/27/21 02:36	1

Client Sample ID: S-39D_20210721

Date Collected: 07/21/21 14:30

Date Received: 07/23/21 16:05

Method: 537 IDA - EPA 537 Isc	otope Dilution								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluoroheptanoic acid	<20		20		ng/L		07/26/21 07:58	07/27/21 02:47	1
Perfluorooctanoic acid	20		20		ng/L		07/26/21 07:58	07/27/21 02:47	1
Perfluorononanoic acid	<20		20		ng/L		07/26/21 07:58	07/27/21 02:47	1
Perfluorobutanesulfonic acid	<20		20		ng/L		07/26/21 07:58	07/27/21 02:47	1
Perfluorohexanesulfonic acid	<20		20		ng/L		07/26/21 07:58	07/27/21 02:47	1
Perfluorooctanesulfonic acid	<20		20		ng/L		07/26/21 07:58	07/27/21 02:47	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFHpA	138		30 - 144				07/26/21 07:58	07/27/21 02:47	1
13C8 PFOA	127		49 - 127				07/26/21 07:58	07/27/21 02:47	1
13C9 PFNA	143	*5+	47 - 136				07/26/21 07:58	07/27/21 02:47	1

Eurofins Lancaster Laboratories Env, LLC

Lab Sample ID: 410-48541-1 Matrix: Water

Lab Sample ID: 410-48541-2

Lab Sample ID: 410-48541-3

Matrix: Water

Matrix: Water

trix: water

5

Client Sample ID: S-39D_20210721 Date Collected: 07/21/21 14:30

Date Received: 07/23/21 16:05

Method: 537 IDA - EPA 537 Isoto	pe Dilution (Continued)				
Isotope Dilution	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C3 PFBS	142	19 - 178	07/26/21 07:58	07/27/21 02:47	1
13C3 PFHxS	128	32 - 145	07/26/21 07:58	07/27/21 02:47	1
13C8 PFOS	137 *5+	49 - 126	07/26/21 07:58	07/27/21 02:47	1

Client Sample ID: C-129D_20210721 Date Collected: 07/21/21 14:10 Date Received: 07/23/21 16:05

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluoroheptanoic acid	1.9		1.6		ng/L		07/26/21 07:58	07/27/21 02:58	1
Perfluorooctanoic acid	8.8		1.6		ng/L		07/26/21 07:58	07/27/21 02:58	1
Perfluorononanoic acid	8.5		1.6		ng/L		07/26/21 07:58	07/27/21 02:58	1
Perfluorobutanesulfonic acid	1.6	Ι	1.6		ng/L		07/26/21 07:58	07/27/21 02:58	1
Perfluorohexanesulfonic acid	2.0		1.6		ng/L		07/26/21 07:58	07/27/21 02:58	1
Perfluorooctanesulfonic acid	3.5		1.6		ng/L		07/26/21 07:58	07/27/21 02:58	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFHpA	105		30 - 144				07/26/21 07:58	07/27/21 02:58	1
13C8 PFOA	107		49 - 127				07/26/21 07:58	07/27/21 02:58	1
13C9 PFNA	132		47 - 136				07/26/21 07:58	07/27/21 02:58	1
13C3 PFBS	172		19 - 178				07/26/21 07:58	07/27/21 02:58	1
13C3 PFHxS	106		32 - 145				07/26/21 07:58	07/27/21 02:58	1
13C8 PFOS	125		49 - 126				07/26/21 07:58	07/27/21 02:58	

Client Sample ID: A-19D_20210722

Date Collected: 07/22/21 12:25

Date Received: 07/23/21 16:05

Method: 537 IDA - EPA 537 Isot	ope Dilution								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluoroheptanoic acid	39		20		ng/L		07/28/21 15:31	07/29/21 20:08	1
Perfluorooctanoic acid	99	1	20		ng/L		07/28/21 15:31	07/29/21 20:08	1
Perfluorononanoic acid	370		20		ng/L		07/28/21 15:31	07/29/21 20:08	1
Perfluorobutanesulfonic acid	<20		20		ng/L		07/28/21 15:31	07/29/21 20:08	1
Perfluorohexanesulfonic acid	<20		20		ng/L		07/28/21 15:31	07/29/21 20:08	1
Perfluorooctanesulfonic acid	33		20		ng/L		07/28/21 15:31	07/29/21 20:08	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFHpA	122		30 - 144				07/28/21 15:31	07/29/21 20:08	1
13C8 PFOA	100		49 - 127				07/28/21 15:31	07/29/21 20:08	1
13C9 PFNA	127		47 _ 136				07/28/21 15:31	07/29/21 20:08	1
13C3 PFBS	137		19 _ 178				07/28/21 15:31	07/29/21 20:08	1
13C3 PFHxS	101		32 _ 145				07/28/21 15:31	07/29/21 20:08	1
13C8 PFOS	116		49 - 126				07/28/21 15:31	07/29/21 20:08	1

Lab Sample ID: 410-48541-3

Lab Sample ID: 410-48541-4

Lab Sample ID: 410-48541-5

Matrix: Water

Matrix: Water

Matrix: Water

5

Client Sample ID: S-38D_20210722 Date Collected: 07/22/21 14:35 Date Received: 07/23/21 16:05

	ope Dilution								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluoroheptanoic acid	<1.6		1.6		ng/L		07/28/21 15:31	07/29/21 20:19	1
Perfluorooctanoic acid	<1.6		1.6		ng/L		07/28/21 15:31	07/29/21 20:19	1
Perfluorononanoic acid	<1.6		1.6		ng/L		07/28/21 15:31	07/29/21 20:19	1
Perfluorobutanesulfonic acid	<1.6		1.6		ng/L		07/28/21 15:31	07/29/21 20:19	1
Perfluorohexanesulfonic acid	<1.6		1.6		ng/L		07/28/21 15:31	07/29/21 20:19	1
Perfluorooctanesulfonic acid	2.1		1.6		ng/L		07/28/21 15:31	07/29/21 20:19	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFHpA	114		30 - 144				07/28/21 15:31	07/29/21 20:19	1
13C8 PFOA	105		49 - 127				07/28/21 15:31	07/29/21 20:19	1
13C9 PFNA	140	*5+	47 - 136				07/28/21 15:31	07/29/21 20:19	1
13C3 PFBS	136		19 - 178				07/28/21 15:31	07/29/21 20:19	1
13C3 PFHxS	100		32 - 145				07/28/21 15:31	07/29/21 20:19	1
13C8 PFOS	118		49 - 126				07/28/21 15:31	07/29/21 20:19	1

Client Sample ID: B-134D_20210722

Date Collected: 07/22/21 12:10

Date Received: 07/23/21 16:05

Method: 537 IDA - EPA 537 Isot	ope Dilution								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluoroheptanoic acid	89		1.6		ng/L		07/28/21 15:31	07/29/21 20:29	1
Perfluorooctanoic acid	97		1.6		ng/L		07/28/21 15:31	07/29/21 20:29	1
Perfluorononanoic acid	60		1.6		ng/L		07/28/21 15:31	07/29/21 20:29	1
Perfluorobutanesulfonic acid	3.4	I	1.6		ng/L		07/28/21 15:31	07/29/21 20:29	1
Perfluorohexanesulfonic acid	18		1.6		ng/L		07/28/21 15:31	07/29/21 20:29	1
Perfluorooctanesulfonic acid	73		1.6		ng/L		07/28/21 15:31	07/29/21 20:29	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFHpA	91		30 - 144				07/28/21 15:31	07/29/21 20:29	1
13C8 PFOA	79		49 - 127				07/28/21 15:31	07/29/21 20:29	1
13C9 PFNA	104		47 - 136				07/28/21 15:31	07/29/21 20:29	1
13C3 PFBS	237	*5+	19 - 178				07/28/21 15:31	07/29/21 20:29	1
13C3 PFHxS	85		32 - 145				07/28/21 15:31	07/29/21 20:29	1
13C8 PFOS	88		49 - 126				07/28/21 15:31	07/29/21 20:29	1

Client Sample ID: C-144D_20210722

Date Collected: 07/22/21 10:00 Date Received: 07/23/21 16:05

Method: 537 IDA - EPA 537 Isotope Dilution

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluoroheptanoic acid	12		1.6		ng/L		07/26/21 07:58	07/27/21 03:42	1
Perfluorooctanoic acid	19		1.6		ng/L		07/26/21 07:58	07/27/21 03:42	1
Perfluorononanoic acid	5.7		1.6		ng/L		07/26/21 07:58	07/27/21 03:42	1
Perfluorobutanesulfonic acid	<1.6		1.6		ng/L		07/26/21 07:58	07/27/21 03:42	1
Perfluorohexanesulfonic acid	<1.6		1.6		ng/L		07/26/21 07:58	07/27/21 03:42	1
Perfluorooctanesulfonic acid	<1.6		1.6		ng/L		07/26/21 07:58	07/27/21 03:42	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFHpA	121		30 _ 144				07/26/21 07:58	07/27/21 03:42	1
13C8 PFOA	126		49 _ 127				07/26/21 07:58	07/27/21 03:42	1
13C9 PFNA	152	*5+	47 - 136				07/26/21 07:58	07/27/21 03:42	1

Eurofins Lancaster Laboratories Env, LLC

Job ID: 410-48541-1

Lab Sample ID: 410-48541-6 Matrix: Water

Lab Sample ID: 410-48541-7 Matrix: Water

Lab Sample ID: 410-48541-8

Client Sample ID: C-144D_20210722 Date Collected: 07/22/21 10:00

Date Received: 07/23/21 16:05

Method: 537 IDA - EPA 537 Isotope	Dilution (Co	ontinued)			
Isotope Dilution	%Recovery	Qualifier	Limits	Prepared Analyzed	Dil Fac
13C3 PFBS	232	*5+	19 - 178	07/26/21 07:58 07/27/21 03:42	1
13C3 PFHxS	109		32 _ 145	07/26/21 07:58 07/27/21 03:42	1
13C8 PFOS	126		49 - 126	07/26/21 07:58 07/27/21 03:42	1

Client Sample ID: A-21D_20210722 Date Collected: 07/22/21 14:55 Date Received: 07/23/21 16:05

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluoroheptanoic acid	32		1.6		ng/L		07/26/21 07:58	07/27/21 04:04	1
Perfluorooctanoic acid	38		1.6		ng/L		07/26/21 07:58	07/27/21 04:04	1
Perfluorononanoic acid	24		1.6		ng/L		07/26/21 07:58	07/27/21 04:04	1
Perfluorobutanesulfonic acid	2.6		1.6		ng/L		07/26/21 07:58	07/27/21 04:04	1
Perfluorohexanesulfonic acid	24		1.6		ng/L		07/26/21 07:58	07/27/21 04:04	1
Perfluorooctanesulfonic acid	36		1.6		ng/L		07/26/21 07:58	07/27/21 04:04	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFHpA	108		30 - 144				07/26/21 07:58	07/27/21 04:04	1
13C8 PFOA	109		49 - 127				07/26/21 07:58	07/27/21 04:04	1
13C9 PFNA	122		47 - 136				07/26/21 07:58	07/27/21 04:04	1
13C3 PFBS	198	*5+	19 - 178				07/26/21 07:58	07/27/21 04:04	1
13C3 PFHxS	100		32 - 145				07/26/21 07:58	07/27/21 04:04	1
13C8 PFOS	105		49 - 126				07/26/21 07:58	07/27/21 04:04	1

Client Sample ID: C-134D_20210722

Date Collected: 07/22/21 09:35

Date Received: 07/23/21 16:05

Method: 537 IDA - EPA 537 Isotope Dilution

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluoroheptanoic acid	32		1.7		ng/L		07/28/21 15:31	07/29/21 20:40	1
Perfluorooctanoic acid	41		1.7		ng/L		07/28/21 15:31	07/29/21 20:40	1
Perfluorononanoic acid	23		1.7		ng/L		07/28/21 15:31	07/29/21 20:40	1
Perfluorobutanesulfonic acid	3.6		1.7		ng/L		07/28/21 15:31	07/29/21 20:40	1
Perfluorohexanesulfonic acid	2.4		1.7		ng/L		07/28/21 15:31	07/29/21 20:40	1
Perfluorooctanesulfonic acid	7.7		1.7		ng/L		07/28/21 15:31	07/29/21 20:40	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFHpA	96		30 - 144				07/28/21 15:31	07/29/21 20:40	1
13C8 PFOA	85		49 - 127				07/28/21 15:31	07/29/21 20:40	1
13C9 PFNA	124		47 - 136				07/28/21 15:31	07/29/21 20:40	1
13C3 PFBS	223	*5+	19 - 178				07/28/21 15:31	07/29/21 20:40	1
	88		32 - 145				07/28/21 15:31	07/29/21 20:40	1
13C3 PFHxS	00		02 - 7 70						

Lab Sample ID: 410-48541-8 Matrix: Water

Lab Sample ID: 410-48541-9

Matrix: Water

Lab Sample ID: 410-48541-10

Client Sample ID: B-48D_20210722 Date Collected: 07/22/21 12:05 Date Received: 07/23/21 16:05

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluoroheptanoic acid	3.7		1.7		ng/L		07/26/21 07:58	07/28/21 06:31	1
Perfluorooctanoic acid	23		1.7		ng/L		07/26/21 07:58	07/28/21 06:31	1
Perfluorononanoic acid	43		1.7		ng/L		07/26/21 07:58	07/28/21 06:31	1
Perfluorobutanesulfonic acid	<1.7		1.7		ng/L		07/26/21 07:58	07/28/21 06:31	1
Perfluorohexanesulfonic acid	3.6		1.7		ng/L		07/26/21 07:58	07/28/21 06:31	1
Perfluorooctanesulfonic acid	8.2		1.7		ng/L		07/26/21 07:58	07/28/21 06:31	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFHpA	99		30 - 144				07/26/21 07:58	07/28/21 06:31	1
13C8 PFOA	100		49 - 127				07/26/21 07:58	07/28/21 06:31	1
13C9 PFNA	115		47 _ 136				07/26/21 07:58	07/28/21 06:31	1
13C3 PFBS	174		19 - 178				07/26/21 07:58	07/28/21 06:31	1
13C3 PFHxS	97		32 - 145				07/26/21 07:58	07/28/21 06:31	1
13C8 PFOS	99		49 - 126				07/26/21 07:58	07/28/21 06:31	

Client Sample ID: S-110DSRTF_20210723 Date Collected: 07/23/21 10:05

Date Received: 07/23/21 16:05

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluoroheptanoic acid	40		1.7		ng/L		07/26/21 15:42	07/28/21 15:23	1
Perfluorononanoic acid	86		1.7		ng/L		07/26/21 15:42	07/28/21 15:23	1
Perfluorobutanesulfonic acid	9.8	1	1.7		ng/L		07/26/21 15:42	07/28/21 15:23	1
Perfluorohexanesulfonic acid	11		1.7		ng/L		07/26/21 15:42	07/28/21 15:23	1
Perfluorooctanesulfonic acid	26		1.7		ng/L		07/26/21 15:42	07/28/21 15:23	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFHpA	87		30 - 144				07/26/21 15:42	07/28/21 15:23	1
13C8 PFOA	84		49 - 127				07/26/21 15:42	07/28/21 15:23	1
13C9 PFNA	98		47 - 136				07/26/21 15:42	07/28/21 15:23	1
13C3 PFBS	206	*5+	19 - 178				07/26/21 15:42	07/28/21 15:23	1
13C3 PFHxS	97		32 - 145				07/26/21 15:42	07/28/21 15:23	1
13C8 PFOS	96		49 - 126				07/26/21 15:42	07/28/21 15:23	1
Method: 537 IDA - EPA 537 Isot	ope Dilution - Di	L 2							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorooctanoic acid	580		17		ng/L		07/26/21 15:42	07/28/21 15:34	10
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C8 PFOA	96		49 - 127				07/26/21 15:42	07/28/21 15:34	10

Date Collected: 07/23/21 09:40

Date Received: 07/23/21 16:05

Г

Method: 537 IDA - EPA 537 Isotop	e Dilution								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluoroheptanoic acid	56		1.6		ng/L		07/26/21 15:42	07/28/21 04:06	1
Perfluorononanoic acid	87		1.6		ng/L		07/26/21 15:42	07/28/21 04:06	1
Perfluorobutanesulfonic acid	3.3		1.6		ng/L		07/26/21 15:42	07/28/21 04:06	1
Perfluorohexanesulfonic acid	11		1.6		ng/L		07/26/21 15:42	07/28/21 04:06	1
Perfluorooctanesulfonic acid	37		1.6		ng/L		07/26/21 15:42	07/28/21 04:06	1

Lab Sample ID: 410-48541-12

Matrix: Water

13

5

6

Job ID: 410-48541-1

Matrix: Water

Lab Sample ID: 410-48541-11

Eurofins Lancaster Laboratories Env, LLC

Client Sample ID: S-115D Date Collected: 07/23/21 09:40 Date Received: 07/23/21 16:05) —	3					Lab Samp	le ID: 410-48 Matrix	541-13 k: Wate
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFHpA	85		30 - 144				07/26/21 15:42	07/28/21 04:06	1
13C8 PFOA	86		49 - 127				07/26/21 15:42	07/28/21 04:06	1
13C9 PFNA	106		47 - 136				07/26/21 15:42	07/28/21 04:06	1
13C3 PFBS	253	*5+	19 - 178				07/26/21 15:42	07/28/21 04:06	
13C3 PFHxS	99		32 - 145				07/26/21 15:42	07/28/21 04:06	1
13C8 PFOS	95		49 - 126				07/26/21 15:42	07/28/21 04:06	1
Method: 537 IDA - EPA 537 Is	sotope Dilution - D	L							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorooctanoic acid	550		16		ng/L		07/26/21 15:42	07/28/21 15:57	10
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C8 PFOA	99		49 - 127				07/26/21 15:42	07/28/21 15:57	10
lient Sample ID: S-143S	RTF 20210723						Lab Samp	le ID: 410-48	541-14
Date Collected: 07/23/21 09:50 Date Received: 07/23/21 16:05) —								k: Wate
Method: 537 IDA - EPA 537 Is Analyte		Qualifier	RL	MDI	Unit	D	Prepared	Analyzed	Dil Fac
· · ·	Kesuit	Quaimer		MDL			07/26/21 15:42	07/28/21 04:17	
Perfluoroheptanoic acid Perfluorooctanoic acid	11 200		1.7		ng/L ng/L		07/26/21 15:42	07/28/21 04:17	1
Perfluorooctanoic acid	200		1.7		ng/L		07/26/21 15:42	07/28/21 04:17	1
			1.7				07/26/21 15:42	07/28/21 04:17	
Perfluorobutanesulfonic acid	4.8	1	1.7		ng/L		07/26/21 15:42	07/28/21 04:17	1
Perfluorohexanesulfonic acid	8.2		1.7		ng/L		07/20/21 15:42	07/28/21 04:17	1

				<u>9</u> , _	en zorzi renz	01/20/21 01111	•
Perfluorooctanesulfonic acid	14		1.7	ng/L	07/26/21 15:42	07/28/21 04:17	1
Isotope Dilution	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
13C4 PFHpA	91		30 - 144		07/26/21 15:42	07/28/21 04:17	1
13C8 PFOA	94		49 _ 127		07/26/21 15:42	07/28/21 04:17	1
13C9 PFNA	112		47 _ 136		07/26/21 15:42	07/28/21 04:17	1
13C3 PFBS	168		19 - 178		07/26/21 15:42	07/28/21 04:17	1
13C3 PFHxS	94		32 - 145		07/26/21 15:42	07/28/21 04:17	1
13C8 PFOS	100		49 _ 126		07/26/21 15:42	07/28/21 04:17	1

Client Sample ID: W-27_20210723

Date Collected: 07/23/21 12:20 Date Received: 07/23/21 16:05

Method: 537 IDA - EPA 537 Isot	ope Dilution								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluoroheptanoic acid	49		1.6		ng/L		07/26/21 15:42	07/28/21 04:40	1
Perfluorooctanoic acid	53		1.6		ng/L		07/26/21 15:42	07/28/21 04:40	1
Perfluorononanoic acid	27		1.6		ng/L		07/26/21 15:42	07/28/21 04:40	1
Perfluorobutanesulfonic acid	7.8		1.6		ng/L		07/26/21 15:42	07/28/21 04:40	1
Perfluorohexanesulfonic acid	8.6		1.6		ng/L		07/26/21 15:42	07/28/21 04:40	1
Perfluorooctanesulfonic acid	53		1.6		ng/L		07/26/21 15:42	07/28/21 04:40	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFHpA	93		30 - 144				07/26/21 15:42	07/28/21 04:40	1
13C8 PFOA	96		49 - 127				07/26/21 15:42	07/28/21 04:40	1
13C9 PFNA	109		47 _ 136				07/26/21 15:42	07/28/21 04:40	1
13C3 PFBS	163		19 - 178				07/26/21 15:42	07/28/21 04:40	1
13C3 PFHxS	95		32 _ 145				07/26/21 15:42	07/28/21 04:40	1

Eurofins Lancaster Laboratories Env, LLC

Lab Sample ID: 410-48541-15

Client Sample ID: W-27_20210723 Date Collected: 07/23/21 12:20

Date Received: 07/23/21 16:05

Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C8 PFOS	103		49 - 126				07/26/21 15:42	07/28/21 04:40	1
Client Sample ID: FB-04_2	0210723						Lab Samp	le ID: 410-48	541-16
Date Collected: 07/23/21 10:00								Matrix	k: Water
Date Received: 07/23/21 16:05									
Method: 537 IDA - EPA 537 Iso	otope Dilution								
Analyte	· ·	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluoroheptanoic acid	<1.7		1.7		ng/L		07/26/21 15:42	07/28/21 04:51	1
Perfluorooctanoic acid	<1.7		1.7		ng/L		07/26/21 15:42	07/28/21 04:51	1
Perfluorononanoic acid	<1.7		1.7		ng/L		07/26/21 15:42	07/28/21 04:51	1
Perfluorobutanesulfonic acid	<1.7		1.7		ng/L		07/26/21 15:42	07/28/21 04:51	1
Perfluorohexanesulfonic acid	<1.7		1.7		ng/L		07/26/21 15:42	07/28/21 04:51	1
Perfluorooctanesulfonic acid	<1.7		1.7		ng/L		07/26/21 15:42	07/28/21 04:51	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFHpA	101		30 - 144				07/26/21 15:42	07/28/21 04:51	1
13C8 PFOA	103		49 - 127				07/26/21 15:42	07/28/21 04:51	1
13C9 PFNA	104		47 - 136				07/26/21 15:42	07/28/21 04:51	1
13C3 PFBS	112		19 - 178				07/26/21 15:42	07/28/21 04:51	1
13C3 PFHxS	103		32 - 145				07/26/21 15:42	07/28/21 04:51	1
13C8 PFOS	102		49 - 126				07/26/21 15:42	07/28/21 04:51	1

Client Sample ID: EB-02_20210723

Date Collected: 07/23/21 11:45

Date Received: 07/23/21 16:05

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluoroheptanoic acid	<1.9		1.9		ng/L		07/26/21 15:42	07/28/21 05:02	1
Perfluorooctanoic acid	<1.9		1.9		ng/L		07/26/21 15:42	07/28/21 05:02	1
Perfluorononanoic acid	<1.9		1.9		ng/L		07/26/21 15:42	07/28/21 05:02	1
Perfluorobutanesulfonic acid	<1.9		1.9		ng/L		07/26/21 15:42	07/28/21 05:02	1
Perfluorohexanesulfonic acid	<1.9		1.9		ng/L		07/26/21 15:42	07/28/21 05:02	1
Perfluorooctanesulfonic acid	<1.9		1.9		ng/L		07/26/21 15:42	07/28/21 05:02	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFHpA	102		30 - 144				07/26/21 15:42	07/28/21 05:02	1
13C8 PFOA	105		49 - 127				07/26/21 15:42	07/28/21 05:02	1
13C9 PFNA	106		47 - 136				07/26/21 15:42	07/28/21 05:02	1
13C3 PFBS	119		19 - 178				07/26/21 15:42	07/28/21 05:02	1
13C3 PFHxS	102		32 - 145				07/26/21 15:42	07/28/21 05:02	1
13C8 PFOS	102		49 - 126				07/26/21 15:42	07/28/21 05:02	1

Client Sample ID: S-143SRTF-Dup_20210723 Date Collected: 07/23/21 09:50

Date Received: 07/23/21 16:05

Method: 537 IDA - EPA 537 Isotope Dilution										
	Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac		
	Perfluoroheptanoic acid	11	1.8	ng/L		07/26/21 15:42	07/28/21 05:13	1		
	Perfluorooctanoic acid	200	1.8	ng/L		07/26/21 15:42	07/28/21 05:13	1		

Lab Sample ID: 410-48541-18 Matrix: Water

Eurofins Lancaster Laboratories Env, LLC

5 6

Lab Sample ID: 410-48541-17

Job ID: 410-48541-1

Lab Sample ID: 410-48541-15

Matrix: Water

Client Sample ID: S-143SRTF-Dup_20210723 Date Collected: 07/23/21 09:50

Date Received: 07/23/21 16:05

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorononanoic acid	13		1.8		ng/L		07/26/21 15:42	07/28/21 05:13	1
Perfluorobutanesulfonic acid	4.9	I	1.8		ng/L		07/26/21 15:42	07/28/21 05:13	1
Perfluorohexanesulfonic acid	8.0		1.8		ng/L		07/26/21 15:42	07/28/21 05:13	1
Perfluorooctanesulfonic acid	14		1.8		ng/L		07/26/21 15:42	07/28/21 05:13	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFHpA	91		30 - 144				07/26/21 15:42	07/28/21 05:13	1
13C8 PFOA	94		49 - 127				07/26/21 15:42	07/28/21 05:13	1
13C9 PFNA	105		47 - 136				07/26/21 15:42	07/28/21 05:13	1
13C3 PFBS	159		19 - 178				07/26/21 15:42	07/28/21 05:13	1
13C3 PFHxS	95		32 - 145				07/26/21 15:42	07/28/21 05:13	1
13C8 PFOS	100		49 - 126				07/26/21 15:42	07/28/21 05:13	1

Job ID: 410-48541-1

Lab Sample ID: 410-48541-18 Matrix: Water

Matrix: Water

5

6

Eurofins Lancaster Laboratories Env, LLC

Method: 537 IDA - EPA 537 Isotope Dilution Matrix: Water

Prep Type: Total/NA

						covery (Acce	eptance Limits)	
		C4PFHA	C8PFOA	C9PFNA	C3PFBS	C3PFHS	C8PFOS	
Lab Sample ID	Client Sample ID	(30-144)	(49-127)	(47-136)	(19-178)	(32-145)	(49-126)	
410-48541-1	N-149D_20210721	145 *5+	128 *5+	147 *5+	146	132	137 *5+	
410-48541-2	S-393D_20210721	128	120	134	156	119	122	
410-48541-3	S-39D_20210721	138	127	143 *5+	142	128	137 *5+	
410-48541-4	C-129D_20210721	105	107	132	172	106	125	
410-48541-5	A-19D_20210722	122	100	127	137	101	116	
410-48541-6	S-38D_20210722	114	105	140 *5+	136	100	118	
410-48541-7	B-134D_20210722	91	79	104	237 *5+	85	88	
410-48541-8	C-144D_20210722	121	126	152 *5+	232 *5+	109	126	
410-48541-9	A-21D_20210722	108	109	122	198 *5+	100	105	
410-48541-10	C-134D_20210722	96	85	124	223 *5+	88	107	
410-48541-11	B-48D_20210722	99	100	115	174	97	99	
410-48541-12	S-110DSRTF_20210723	87	84	98	206 *5+	97	96	
410-48541-12 - DL2	S-110DSRTF_20210723		96					
410-48541-13	S-115DSRTF_20210723	85	86	106	253 *5+	99	95	
410-48541-13 - DL	S-115DSRTF_20210723		99					
410-48541-14	S-143SRTF_20210723	91	94	112	168	94	100	
410-48541-15	W-27_20210723	93	96	109	163	95	103	
410-48541-16	FB-04_20210723	101	103	104	112	103	102	
410-48541-17	EB-02_20210723	102	105	106	119	102	102	
410-48541-18	S-143SRTF-Dup_20210723	91	94	105	159	95	100	
LCS 410-152579/2-A	Lab Control Sample	148 *5+	144 *5+	147 *5+	145	141	143 *5+	
LCS 410-152792/2-A	Lab Control Sample	93	94	92	102	93	91	
LCS 410-153868/2-A	Lab Control Sample	117	115	117	123	108	113	
LCSD 410-152579/3-A	Lab Control Sample Dup	146 *5+	138 *5+	146 *5+	130	136	141 *5+	
LCSD 410-152792/3-A	Lab Control Sample Dup	100	98	99	107	99	98	
LCSD 410-153868/3-A	Lab Control Sample Dup	121	119	117	110	113	109	
MB 410-152579/1-A	Method Blank	157 *5+	145 *5+	146 *5+	143	143	141 *5+	
MB 410-152792/1-A	Method Blank	81	85	85	93	81	84	
MB 410-153868/1-A	Method Blank	117	111	119	117	102	113	

Surrogate Legend

C4PFHA = 13C4 PFHpA C8PFOA = 13C8 PFOA C9PFNA = 13C9 PFNA C3PFBS = 13C3 PFBS C3PFHS = 13C3 PFHxS C8PFOS = 13C8 PFOS

Eurofins Lancaster Laboratories Env, LLC

Method: 537 IDA - EPA 537 Isotope Dilution

Lab Sample ID: MB 410-152579/1-A

Matrix: Water

Analysis Batch: 152856								Prep Batch:	152579
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluoroheptanoic acid	<2.0		2.0		ng/L		07/26/21 07:58	07/27/21 01:29	1
Perfluorooctanoic acid	<2.0		2.0		ng/L		07/26/21 07:58	07/27/21 01:29	1
Perfluorononanoic acid	<2.0		2.0		ng/L		07/26/21 07:58	07/27/21 01:29	1
Perfluorobutanesulfonic acid	<2.0		2.0		ng/L		07/26/21 07:58	07/27/21 01:29	1
Perfluorohexanesulfonic acid	<2.0		2.0		ng/L		07/26/21 07:58	07/27/21 01:29	1
Perfluorooctanesulfonic acid	<2.0		2.0		ng/L		07/26/21 07:58	07/27/21 01:29	1
	MB	MB							
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFHpA	157	*5+	30 - 144				07/26/21 07:58	07/27/21 01:29	1
13C8 PFOA	145	*5+	49 _ 127				07/26/21 07:58	07/27/21 01:29	1

13C9 PFNA	146 *5+	47 _ 136
13C3 PFBS	143	19 - 178
13C3 PFHxS	143	32 - 145
13C8 PFOS	141 *5+	49 - 126
_		

Lab Sample ID: LCS 410-152579/2-A Matrix: Water Analysis Batch: 152856

							i i op Batt	
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Perfluoroheptanoic acid	25.6	20.8		ng/L		81	66 - 141	
Perfluorooctanoic acid	25.6	21.8		ng/L		85	65 - 136	
Perfluorononanoic acid	25.6	23.3		ng/L		91	65 ₋ 140	
Perfluorobutanesulfonic acid	22.7	19.3		ng/L		85	65 ₋ 132	
Perfluorohexanesulfonic acid	23.3	18.8		ng/L		81	60 ₋ 128	
Perfluorooctanesulfonic acid	23.7	20.1		ng/L		85	51 - 126	

	LCS	LCS	
Isotope Dilution	%Recovery	Qualifier	Limits
13C4 PFHpA	148	*5+	30 - 144
13C8 PFOA	144	*5+	49 - 127
13C9 PFNA	147	*5+	47 _ 136
13C3 PFBS	145		19 - 178
13C3 PFHxS	141		32 - 145
13C8 PFOS	143	*5+	49 - 126

Lab Sample ID: LCSD 410-152579/3-A Matrix: Water Analysis Batch: 152856

Analysis Batch: 152856										Batch: 1	
Analysis Baton. 102000			Spike	LCSD	LCSD				%Rec.		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Perfluoroheptanoic acid			25.6	20.6		ng/L		81	66 - 141	1	30
Perfluorooctanoic acid			25.6	23.4		ng/L		92	65 - 136	7	30
Perfluorononanoic acid			25.6	22.6		ng/L		88	65 _ 140	3	30
Perfluorobutanesulfonic acid			22.7	19.5		ng/L		86	65 - 132	1	30
Perfluorohexanesulfonic acid			23.3	19.3		ng/L		83	60 _ 128	3	30
Perfluorooctanesulfonic acid			23.7	20.4		ng/L		86	51 - 126	1	30
	LCSD	LCSD									
Isotope Dilution	%Recovery	Qualifier	Limits								
13C4 PFHpA	146	*5+	30 _ 144								

Prep Type: Total/NA

5

8

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample Prep Type: Total/NA

07/26/21 07:58 07/27/21 01:29

07/26/21 07:58 07/27/21 01:29

07/26/21 07:58 07/27/21 01:29

07/26/21 07:58 07/27/21 01:29

Prep Batch: 152579

1

1

1

Eurofins Lancaster Laboratories Env, LLC

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Lab Sample ID: LCSD 410-1	52579/3-A					С	lient	Sam	ple ID: L	ab Control Sam	ple Dup
Matrix: Water										Prep Type: ⁻	Total/NA
Analysis Batch: 152856										Prep Batch	152579
-	LCSD LCS	D									
Isotope Dilution	%Recovery Qua	lifier	Limits								
13C8 PFOA	138 *5+		49 _ 127								
13C9 PFNA	146 *5+		47 _ 136								
13C3 PFBS	130		19_178								
13C3 PFHxS	136		32 - 145								
13C8 PFOS	141 *5+		49 - 126								
Lab Sample ID: MB 410-152	792/1-A								Client Sa	mple ID: Metho	d Blan
Matrix: Water										Prep Type:	Total/N/
Analysis Batch: 153242										Prep Batch	15279
Analyte		MB Qualifier	RL		/IDL Uni	ł	D	Р	repared	Analyzed	Dil Fa
Perfluoroheptanoic acid	<2.0	quamor	2.0		ng/l				6/21 15:42	07/28/21 02:38	
Perfluorooctanoic acid	<2.0		2.0		ng/l				6/21 15:42	07/28/21 02:38	
Perfluorononanoic acid	<2.0		2.0		ng/l				6/21 15:42	07/28/21 02:38	
Perfluorobutanesulfonic acid	<2.0		2.0		ng/l				6/21 15:42	07/28/21 02:38	
Perfluorohexanesulfonic acid	<2.0		2.0		ng/l				6/21 15:42	07/28/21 02:38	
Perfluorooctanesulfonic acid	<2.0		2.0		ng/l				6/21 15:42	07/28/21 02:38	
		МВ				-		•••=			
Isotope Dilution	%Recovery		Limits					Р	repared	Analyzed	Dil Fa
13C4 PFHpA	81		30 - 144						6/21 15:42	07/28/21 02:38	
13C8 PFOA	85		49 - 127					07/2	6/21 15:42	07/28/21 02:38	
13C9 PFNA	85		47 - 136					07/2	6/21 15:42	07/28/21 02:38	
13C3 PFBS	93		19 - 178					07/2	6/21 15:42	07/28/21 02:38	
13C3 PFHxS	81		32 - 145					07/2	6/21 15:42	07/28/21 02:38	
13C8 PFOS	84		49 - 126					07/2	6/21 15:42	07/28/21 02:38	
Lab Sample ID: LCS 410-15	2792/2-A						c	lient	Sample	ID: Lab Control	Sampl
Matrix: Water									•	Prep Type:	
Analysis Batch: 153242										Prep Batch	
			Spike	LCS	LCS					%Rec.	
Analyte			Added	Result	Qualifier	Unit		D	%Rec	Limits	
Perfluoroheptanoic acid			25.6	28.0		ng/L			109	66 - 141	
Perfluorooctanoic acid			25.6	25.9		ng/L			101	65 - 136	
Perfluorononanoic acid			25.6	27.3		ng/L			106	65 - 140	
Perfluorobutanesulfonic acid			22.7	21.6		ng/L			95	65 ₋ 132	
									100	00 100	

Perfluorooctanesulfonic acid			23.7
	LCS	LCS	
Isotope Dilution	%Recovery	Qualifier	Limits
13C4 PFHpA	93		30 - 144
13C8 PFOA	94		49 - 127
13C9 PFNA	92		47 - 136
13C3 PFBS	102		19 - 178
13C3 PFHxS	93		32 - 145
13C8 PFOS	91		49 - 126

Perfluorohexanesulfonic acid

60 - 128

51 - 126

103

105

23.3

24.1

24.8

ng/L

ng/L

Isotope Dilution

13C4 PFHpA

5

8 9

Method: 537 IDA - EPA 537 Isotope Dilution (Continued)

Matrix: Water									Prep Type	: Tota	al/NA
Analysis Batch: 153242									Prep Batc	h: 15	52792
			Spike	LCSD	LCSD				%Rec.		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits R	PD	Limit
Perfluoroheptanoic acid			25.6	28.1		ng/L		110	66 - 141	1	30
Perfluorooctanoic acid			25.6	28.0		ng/L		110	65 - 136	8	30
Perfluorononanoic acid			25.6	28.8		ng/L		113	65 - 140	6	30
Perfluorobutanesulfonic acid			22.7	22.1		ng/L		98	65 _ 132	2	30
Perfluorohexanesulfonic acid			23.3	25.4		ng/L		109	60 _ 128	5	30
Perfluorooctanesulfonic acid			23.7	26.0		ng/L		110	51 - 126	5	30
	LCSD L	.CSD									
Isotope Dilution	%Recovery G	Qualifier	Limits								
13C4 PFHpA	100		30 - 144								
13C8 PFOA	98		49 _ 127								
13C9 PFNA	99		47 _ 136								
13C3 PFBS	107		19 - 178								
13C3 PFHxS	99		32 - 145								
13C8 PFOS	98		49 - 126								
Lab Sample ID: MB 410-1538	368/1-A							Client S	ample ID: Metl	nod E	Blank
Matrix: Water									Prep Type	: Tota	al/NA
Analysis Batch: 154548									Prep Batc	h: 15	53868
	N	MB MB									
Analyte	Res	ult Qualifier	RL		MDL Uni	t	D	Prepared	Analyzed		Dil Fac
Perfluoroheptanoic acid	<	2.0	2.0		ng/	-	07/	28/21 15:31	07/29/21 19:36		1
Perfluorooctanoic acid	<2	2.0	2.0		ng/	_	07/	28/21 15:31	07/29/21 19:36		1
Perfluorononanoic acid	<	2.0	2.0		ng/	_	07/	28/21 15:31	07/29/21 19:36		1
Perfluorobutanesulfonic acid	<	2.0	2.0		ng/	-	07/	28/21 15:31	07/29/21 19:36		1
Perfluorohexanesulfonic acid	<	2.0	2.0		ng/	-	07/	28/21 15:31	07/29/21 19:36		1
Perfluorooctanesulfonic acid	<	2.0	2.0		ng/	-	07/	28/21 15:31	07/29/21 19:36		1
	Ι	MB MB									
Isotope Dilution	%Recove	ery Qualifier	Limits					Prepared	Analyzed		Dil Fac
13C4 PFHpA	1	17	30 - 144				07/	28/21 15:31	07/29/21 19:36	6	1
13C8 PFOA	1	111	49 - 127				07/	28/21 15:31	07/29/21 19:36	5	1
13C9 PFNA	1	19	47 - 136				07/	28/21 15:31	07/29/21 19:36	6	1
13C3 PFBS	1	17	19 - 178				07/	28/21 15:31	07/29/21 19:36	5	1
13C3 PFHxS	1	02	32 - 145				07/	28/21 15:31	07/29/21 19:36	6	1
13C8 PFOS	1	13	49 - 126				07/	28/21 15:31	07/29/21 19:36	6	1
Lab Sample ID: LCS 410-153	868/2-A						Clien	t Sample	ID: Lab Contro		
Matrix: Water									Prep Type		
Analysis Batch: 154548									Prep Batc	h: 15	53868
			Spike		LCS				%Rec.		
Analyte			Added		Qualifier	Unit	D	%Rec	Limits		
Perfluoroheptanoic acid			25.6	26.5		ng/L		103	66 - 141		
Perfluorooctanoic acid			25.6	27.1		ng/L		106	65 - 136		
Perfluorononanoic acid			25.6	26.8		ng/L		105	65 - 140		
Perfluorobutanesulfonic acid			22.7	22.8		ng/L		101	65 - 132		
Perfluorohexanesulfonic acid			23.3 23.7	23.9 23.8		ng/L ng/L		102 100	60 - 128		

Eurofins Lancaster Laboratories Env, LLC

Limits

30 - 144

%Recovery Qualifier

Method: 537 IDA - EPA 537 Isotope Dilution (Continued)

Lab Sample ID: LCS 410-15 Matrix: Water Analysis Batch: 154548	3868/2-A						Client	t Sample		ontrol S Type: To Batch: 1	tal/NA
	LCS	LCS									
Isotope Dilution	%Recovery	Qualifier	Limits								
13C8 PFOA			49 _ 127								
13C9 PFNA	117		47 _ 136								
13C3 PFBS	123		19 _ 178								
13C3 PFHxS	108		32 - 145								
13C8 PFOS	113		49 - 126								
Lab Sample ID: LCSD 410-1 Matrix: Water Analysis Batch: 154548	53868/3-A					Cli	ent San	nple ID:		l Sampl ype: To Batch: 1	tal/NA
Analysis Datch. 134340			Spike	LCSD	LCSD				%Rec.	Saten. I	RPD
Analyte			Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Perfluoroheptanoic acid			25.6	26.0		ng/L		101	66 - 141	2	30
Perfluorooctanoic acid			25.6	27.8		ng/L		109	65 - 136	3	30
Perfluorononanoic acid			25.6	25.8		ng/L		101	65 - 140	4	30
Perfluorobutanesulfonic acid			22.7	23.4		ng/L		103	65 _ 132	3	30
Perfluorohexanesulfonic acid			23.3	23.3		ng/L		100	60 - 128	2	30
Perfluorooctanesulfonic acid			23.7	24.6		ng/L		104	51 ₋ 126	3	30
	LCSD	LCSD									
Isotope Dilution	%Recovery	Qualifier	Limits								
13C4 PFHpA	121		30 - 144								
13C8 PFOA	119		49 - 127								
13C9 PFNA	117		47 _ 136								
13C3 PFBS	110		19 - 178								
13C3 PFHxS	113		32 - 145								
13C8 PFOS	109		49 - 126								

LCMS

Prep Batch: 152579

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
410-48541-1	N-149D_20210721	Total/NA	Water	537 IDA	
410-48541-2	S-393D_20210721	Total/NA	Water	537 IDA	
410-48541-3	S-39D_20210721	Total/NA	Water	537 IDA	
410-48541-4 - RA	C-129D_20210721	Total/NA	Water	537 IDA	
410-48541-4	C-129D_20210721	Total/NA	Water	537 IDA	
410-48541-8	C-144D_20210722	Total/NA	Water	537 IDA	
410-48541-8 - RA	C-144D_20210722	Total/NA	Water	537 IDA	
410-48541-9	A-21D_20210722	Total/NA	Water	537 IDA	
410-48541-9 - RA	A-21D_20210722	Total/NA	Water	537 IDA	
410-48541-11	B-48D_20210722	Total/NA	Water	537 IDA	
MB 410-152579/1-A	Method Blank	Total/NA	Water	537 IDA	
LCS 410-152579/2-A	Lab Control Sample	Total/NA	Water	537 IDA	
LCSD 410-152579/3-A	Lab Control Sample Dup	Total/NA	Water	537 IDA	

Prep Batch: 152792

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
410-48541-12 - DL2	S-110DSRTF_20210723	Total/NA	Water	537 IDA		
410-48541-12	S-110DSRTF_20210723	Total/NA	Water	537 IDA		
410-48541-13 - DL	S-115DSRTF_20210723	Total/NA	Water	537 IDA		
410-48541-13	S-115DSRTF_20210723	Total/NA	Water	537 IDA		
410-48541-13 - RA	S-115DSRTF_20210723	Total/NA	Water	537 IDA		
410-48541-14	S-143SRTF_20210723	Total/NA	Water	537 IDA		
410-48541-15	W-27_20210723	Total/NA	Water	537 IDA		
410-48541-16	FB-04_20210723	Total/NA	Water	537 IDA		
410-48541-17	EB-02_20210723	Total/NA	Water	537 IDA		
410-48541-18	S-143SRTF-Dup_20210723	Total/NA	Water	537 IDA		
MB 410-152792/1-A	Method Blank	Total/NA	Water	537 IDA		
LCS 410-152792/2-A	Lab Control Sample	Total/NA	Water	537 IDA		
LCSD 410-152792/3-A	Lab Control Sample Dup	Total/NA	Water	537 IDA		

Analysis Batch: 152856

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
410-48541-1	N-149D_20210721	Total/NA	Water	537 IDA	152579
410-48541-2	S-393D_20210721	Total/NA	Water	537 IDA	152579
410-48541-3	S-39D_20210721	Total/NA	Water	537 IDA	152579
410-48541-4	C-129D_20210721	Total/NA	Water	537 IDA	152579
410-48541-8	C-144D_20210722	Total/NA	Water	537 IDA	152579
410-48541-9	A-21D_20210722	Total/NA	Water	537 IDA	152579
MB 410-152579/1-A	Method Blank	Total/NA	Water	537 IDA	152579
LCS 410-152579/2-A	Lab Control Sample	Total/NA	Water	537 IDA	152579
LCSD 410-152579/3-A	Lab Control Sample Dup	Total/NA	Water	537 IDA	152579

Analysis Batch: 153027

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
410-48541-4 - RA	C-129D_20210721	Total/NA	Water	537 IDA	152579
410-48541-8 - RA	C-144D_20210722	Total/NA	Water	537 IDA	152579
410-48541-9 - RA	A-21D_20210722	Total/NA	Water	537 IDA	152579
410-48541-11	B-48D_20210722	Total/NA	Water	537 IDA	152579

Lab Control Sample Dup

5 6 7 8 9

LCMS
Analysis Batch: 153242

LCSD 410-153868/3-A

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Bate
410-48541-13	S-115DSRTF_20210723	Total/NA	Water	537 IDA	15279
10-48541-14	S-143SRTF_20210723	Total/NA	Water	537 IDA	15279
10-48541-15	W-27_20210723	Total/NA	Water	537 IDA	15279
10-48541-16	FB-04_20210723	Total/NA	Water	537 IDA	15279
10-48541-17	EB-02_20210723	Total/NA	Water	537 IDA	15279
10-48541-18	S-143SRTF-Dup_20210723	Total/NA	Water	537 IDA	15279
/IB 410-152792/1-A	Method Blank	Total/NA	Water	537 IDA	1527
.CS 410-152792/2-A	Lab Control Sample	Total/NA	Water	537 IDA	1527
-CSD 410-152792/3-A	Lab Control Sample Dup	Total/NA	Water	537 IDA	1527
nalysis Batch: 153507	7				
ab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Bate
10-48541-12	S-110DSRTF_20210723	Total/NA	Water	537 IDA	1527
10-48541-12 - DL2	S-110DSRTF_20210723	Total/NA	Water	537 IDA	1527
10-48541-13 - RA	S-115DSRTF_20210723	Total/NA	Water	537 IDA	1527
10-48541-13 - DL	S-115DSRTF_20210723	Total/NA	Water	537 IDA	1527
ep Batch: 153868					
ab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Bat
10-48541-5	A-19D_20210722	Total/NA	Water	537 IDA	
10-48541-6	S-38D_20210722	Total/NA	Water	537 IDA	
10-48541-7	B-134D_20210722	Total/NA	Water	537 IDA	
10-48541-7 - RA	B-134D_20210722	Total/NA	Water	537 IDA	
10-48541-10 - RA	C-134D_20210722	Total/NA	Water	537 IDA	
10-48541-10	C-134D_20210722	Total/NA	Water	537 IDA	
/IB 410-153868/1-A	Method Blank	Total/NA	Water	537 IDA	
-CS 410-153868/2-A	Lab Control Sample	Total/NA	Water	537 IDA	
CSD 410-153868/3-A	Lab Control Sample Dup	Total/NA	Water	537 IDA	
nalysis Batch: 154548	В				
ab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Bat
10-48541-5	A-19D_20210722	Total/NA	Water	537 IDA	1538
10-48541-6	S-38D_20210722	Total/NA	Water	537 IDA	1538
10-48541-7	B-134D_20210722	Total/NA	Water	537 IDA	1538
10-48541-7 - RA	B-134D_20210722	Total/NA	Water	537 IDA	1538
10-48541-10	C-134D_20210722	Total/NA	Water	537 IDA	1538
10-48541-10 - RA	C-134D_20210722	Total/NA	Water	537 IDA	1538
/IB 410-153868/1-A	Method Blank	Total/NA	Water	537 IDA	1538
CS 410-153868/2-A	Lab Control Sample	Total/NA	Water	537 IDA	1538

537 IDA

Total/NA

Water

Dilution

Factor

Dilution

Factor

1

1

Run

Run

Batch

Number

152579

152856

Batch

Number

152579

152856

Prepared

or Analyzed

07/26/21 07:58

07/27/21 02:25

Prepared

or Analyzed

07/26/21 07:58

07/27/21 02:36

Analyst

W5MU

QD9Y

Analyst

W5MU

QD9Y

Lab

ELLE

ELLE

Client Sample ID: N-149D_20210721

Batch

Туре

Prep

Client Sample ID: S-393D_20210721

Batch

Туре

Prep

Analysis

Analysis

Batch

Method

537 IDA

537 IDA

Batch

Method

537 IDA

537 IDA

Date Collected: 07/21/21 12:15

Date Received: 07/23/21 16:05

Date Collected: 07/21/21 09:50

Date Received: 07/23/21 16:05

Prep Type

Total/NA

Total/NA

Ргер Туре

Total/NA

Total/NA

Matrix: Water

Matrix: Water

Lab Sample ID: 410-48541-1

Lab Sample ID: 410-48541-2

2 3 4 5 6 7 8 9 10

Lab ELLE ELLE

Lab Sample ID: 410-48541-4

Lab Sample ID: 410-48541-5

Lab Sample ID: 410-48541-6

Client Sample ID: S-39D_20210721

Lab Sample ID: 410-48541-3 Matrix: Water

Matrix: Water

Matrix: Water

Matrix: Water

Date Collected: 07/21/21 14:30 Date Received: 07/23/21 16:05

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	537 IDA			152579	07/26/21 07:58	W5MU	ELLE
Total/NA	Analysis	537 IDA		1	152856	07/27/21 02:47	QD9Y	ELLE

Client Sample ID: C-129D_20210721

Date Collected: 07/21/21 14:10 Date Received: 07/23/21 16:05

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	537 IDA			152579	07/26/21 07:58	W5MU	ELLE
Total/NA	Analysis	537 IDA		1	152856	07/27/21 02:58	QD9Y	ELLE
Total/NA	Prep	537 IDA	RA		152579	07/26/21 07:58	W5MU	ELLE
Total/NA	Analysis	537 IDA	RA	1	153027	07/28/21 05:46	QD9Y	ELLE

Client Sample ID: A-19D_20210722

Date Collected: 07/22/21 12:25

Date Received: 07/23/21 16:05

	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	537 IDA			153868	07/28/21 15:31	QLP7	ELLE
Total/NA	Analysis	537 IDA		1	154548	07/29/21 20:08	MT26	ELLE

Client Sample ID: S-38D_20210722 Date Collected: 07/22/21 14:35

Date Received: 07/23/21 16:05

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	537 IDA			153868	07/28/21 15:31	QLP7	ELLE
Total/NA	Analysis	537 IDA		1	154548	07/29/21 20:19	MT26	ELLE

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	537 IDA			153868	07/28/21 15:31	QLP7	ELLE
Total/NA	Analysis	537 IDA		1	154548	07/29/21 20:29	MT26	ELLE
Total/NA	Prep	537 IDA	RA		153868	07/28/21 15:31	QLP7	ELLE
Total/NA	Analysis	537 IDA	RA	1	154548	07/30/21 10:51	MT26	ELLE

Client Sample ID: C-144D_20210722 Date Collected: 07/22/21 10:00 Date Received: 07/23/21 16:05

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	537 IDA			152579	07/26/21 07:58	W5MU	ELLE
Total/NA	Analysis	537 IDA		1	152856	07/27/21 03:42	QD9Y	ELLE
Total/NA	Prep	537 IDA	RA		152579	07/26/21 07:58	W5MU	ELLE
Total/NA	Analysis	537 IDA	RA	1	153027	07/28/21 05:58	QD9Y	ELLE

Client Sample ID: A-21D_20210722 Date Collected: 07/22/21 14:55 Date Received: 07/23/21 16:05

		<u> </u>						
	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	537 IDA			152579	07/26/21 07:58	W5MU	ELLE
Total/NA	Analysis	537 IDA		1	152856	07/27/21 04:04	QD9Y	ELLE
Total/NA	Prep	537 IDA	RA		152579	07/26/21 07:58	W5MU	ELLE
Total/NA	Analysis	537 IDA	RA	1	153027	07/28/21 06:20	QD9Y	ELLE

Client Sample ID: C-134D_20210722 Date Collected: 07/22/21 09:35 Date Received: 07/23/21 16:05

	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	537 IDA			153868	07/28/21 15:31	QLP7	ELLE
Total/NA	Analysis	537 IDA		1	154548	07/29/21 20:40	MT26	ELLE
Total/NA	Prep	537 IDA	RA		153868	07/28/21 15:31	QLP7	ELLE
Total/NA	Analysis	537 IDA	RA	1	154548	07/30/21 11:02	MT26	ELLE

Client Sample ID: B-48D_20210722

Date	Collected:	07/22/21	12:05
Date	Received:	07/23/21	16:05

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	537 IDA			152579	07/26/21 07:58	W5MU	ELLE
Total/NA	Analysis	537 IDA		1	153027	07/28/21 06:31	QD9Y	ELLE

Lab Sample ID: 410-48541-7

Lab Sample ID: 410-48541-8

Matrix: Water

Matrix: Water

Lab Sample ID: 410-48541-9 Matrix: Water

: Water

Lab Sample ID: 410-48541-10

Lab Sample ID: 410-48541-11

Matrix: Water

Matrix: Water

Eurofins Lancaster Laboratories Env, LLC

Client Sample ID: S-110DSRTF_20210723 Date Collected: 07/23/21 10:05 Date Received: 07/23/21 16:05

Job ID: 410-48541-1

Lab Sample ID: 410-48541-12 Matrix: Water

Lab Sample ID: 410-48541-13

Matrix: Water

Lab Sample ID: 410-48541-14 Matrix: Water

Lab Sample ID: 410-48541-15

Lab Sample ID: 410-48541-16

Matrix: Water

Matrix: Water

er

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	537 IDA			152792	07/26/21 15:42	QLP7	ELLE
Total/NA	Analysis	537 IDA		1	153507	07/28/21 15:23	ZG8V	ELLE
Total/NA	Prep	537 IDA	DL2		152792	07/26/21 15:42	QLP7	ELLE
Total/NA	Analysis	537 IDA	DL2	10	153507	07/28/21 15:34	ZG8V	ELLE

Client Sample ID: S-115DSRTF_20210723 Date Collected: 07/23/21 09:40 Date Received: 07/23/21 16:05

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	537 IDA			152792	07/26/21 15:42	QLP7	ELLE
Total/NA	Analysis	537 IDA		1	153242	07/28/21 04:06	PY4D	ELLE
Total/NA	Prep	537 IDA	RA		152792	07/26/21 15:42	QLP7	ELLE
Total/NA	Analysis	537 IDA	RA	1	153507	07/28/21 15:45	ZG8V	ELLE
Total/NA	Prep	537 IDA	DL		152792	07/26/21 15:42	QLP7	ELLE
Total/NA	Analysis	537 IDA	DL	10	153507	07/28/21 15:57	ZG8V	ELLE

Client Sample ID: S-143SRTF_20210723 Date Collected: 07/23/21 09:50 Date Received: 07/23/21 16:05

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	537 IDA			152792	07/26/21 15:42	QLP7	ELLE
Total/NA	Analysis	537 IDA		1	153242	07/28/21 04:17	PY4D	ELLE

Client Sample ID: W-27_20210723 Date Collected: 07/23/21 12:20 Date Received: 07/23/21 16:05

Batch Batch Dilution Batch Prepared Prep Type Туре Method Run Factor Number or Analyzed Analyst Lab Total/NA Prep 537 IDA 152792 07/26/21 15:42 QLP7 ELLE Total/NA Analysis 537 IDA 153242 07/28/21 04:40 PY4D ELLE 1

Client Sample ID: FB-04_20210723 Date Collected: 07/23/21 10:00

Date	Received	: 07/23/21	16:05

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	537 IDA			152792	07/26/21 15:42	QLP7	ELLE
Total/NA	Analysis	537 IDA		1	153242	07/28/21 04:51	PY4D	ELLE

Matrix: Water

Lab Sample ID: 410-48541-18

Lab Sample ID: 410-48541-17

Matrix: Water

Client Sample ID: EB-02_20210723 Date Collected: 07/23/21 11:45 Date Received: 07/23/21 16:05

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	537 IDA			152792	07/26/21 15:42	QLP7	ELLE
Total/NA	Analysis	537 IDA		1	153242	07/28/21 05:02	PY4D	ELLE

Client Sample ID: S-143SRTF-Dup_20210723 Date Collected: 07/23/21 09:50 Date Received: 07/23/21 16:05

	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	537 IDA			152792	07/26/21 15:42	QLP7	ELLE
Total/NA	Analysis	537 IDA		1	153242	07/28/21 05:13	PY4D	ELLE

Laboratory References:

ELLE = Eurofins Lancaster Laboratories Env, LLC, 2425 New Holland Pike, Lancaster, PA 17601, TEL (717)656-2300

Eurofins Lancaster Laboratories Env, LLC

Laboratory: Eurofins Lancaster Laboratories Env, LLC

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Pennsylvania	NELAP	36-00037	01-31-22

Eurofins Lancaster Laboratories Env, LLC

Client: Sanborn Head & Associates Inc Project/Site: Evergreen Philadelphia PFAS

Method	Method Description	Protocol	Laboratory
537 IDA	EPA 537 Isotope Dilution	EPA	ELLE
537 IDA	EPA 537 Isotope Dilution	EPA	ELLE

Protocol References:

EPA = US Environmental Protection Agency

Laboratory References:

ELLE = Eurofins Lancaster Laboratories Env, LLC, 2425 New Holland Pike, Lancaster, PA 17601, TEL (717)656-2300

Sample Summary

Client: Sanborn Head & Associates Inc Project/Site: Evergreen Philadelphia PFAS

ab Sample ID	Client Sample ID	Matrix	Collected	Received	
410-48541-1	N-149D_20210721	Water	07/21/21 12:15	07/23/21 16:05	
410-48541-2	S-393D_20210721	Water	07/21/21 09:50	07/23/21 16:05	
110-48541-3	S-39D_20210721	Water	07/21/21 14:30	07/23/21 16:05	
410-48541-4	C-129D_20210721	Water	07/21/21 14:10	07/23/21 16:05	
10-48541-5	A-19D_20210722	Water	07/22/21 12:25	07/23/21 16:05	
10-48541-6	S-38D_20210722	Water	07/22/21 14:35	07/23/21 16:05	
410-48541-7	B-134D_20210722	Water	07/22/21 12:10	07/23/21 16:05	
10-48541-8	C-144D_20210722	Water	07/22/21 10:00	07/23/21 16:05	
10-48541-9	A-21D_20210722	Water	07/22/21 14:55	07/23/21 16:05	
110-48541-10	C-134D_20210722	Water	07/22/21 09:35	07/23/21 16:05	
10-48541-11	B-48D_20210722	Water	07/22/21 12:05	07/23/21 16:05	÷
10-48541-12	S-110DSRTF_20210723	Water	07/23/21 10:05	07/23/21 16:05	
10-48541-13	S-115DSRTF_20210723	Water	07/23/21 09:40	07/23/21 16:05	1
110-48541-14	S-143SRTF_20210723	Water	07/23/21 09:50	07/23/21 16:05	
10-48541-15	W-27_20210723	Water	07/23/21 12:20	07/23/21 16:05	
10-48541-16	FB-04_20210723	Water	07/23/21 10:00	07/23/21 16:05	
410-48541-17	EB-02_20210723	Water	07/23/21 11:45	07/23/21 16:05	
10-48541-18	S-143SRTF-Dup_20210723	Water	07/23/21 09:50	07/23/21 16:05	
					÷
					i

	2425 New Holland Pike Chain of Custody Lancaster, PA 17601 Phone (717) 656-2300									🐺 eurofin	Environment Testing America
	Sampler .	1	-ka/	Lai					D(S)	COC No:	
Client Information	Sampler - Michae	d fue	rte	Mi 4	0-48541 C	hain of Cu	stody		,(3)	410-29329-90	98.1
Michael Fuerte	Phone 2-49	6-975	59	E-N	Maljovec@					Page: Page 1-ef-4	of 2
Company: Sanborn Head & Associates Inc			PWSID:	T						Job #	J. a
Address	Due Date Reques	ted:			1		nalysis Re	quested		Preservation C	odes:
1015 Virginia Drive Suite 100 City	TAT Requested (favel-	_							A - HCL	M - Hexane
Fort Washington	- 5	aysj.			ent					B - NaOH C - Zn Acetate	N - None O - AsNaO2
State, Zip: PA, 19034	Compliance Proje	ect: A Yes	Δ No	i	uting					D - Nitric Acid E - NaHSO4	P - Na2O4S Q - Na2SO3
Phone:	PO #.			-	with UMCR5 contingent					F - MeOH G - Amchlor	R - Na2S2O3 S - H2SO4
603-415-6136(Tel) Email	4796.01 WO#				IMCF					H - Ascorbic Acid	T - TSP Dodecahydrate
MFuerte@sanbornhead.com			_		Į Į					J - DI Water	U - Acetone V - MCAA
Project Name Evergreen Philadelphia PFAS	Project # 41006783				6 PFAS v					L - EDA	W - pH 4-5 Z - other (specify)
Site Former Philadelphia Rethery (PA)				i	3 6 Pi					Other:	
I UT WE I MINE YOU WOULD UT		1		Mateix	UCMR3					erot	
			Sample Type	Matrix (www.stor,	A - U					dmb	
		Sample	(C=comp,	S=solid, O=waste/oli,	PFC_IDA -					alk	
Sample Identification	Sample Date	Time	G=grab)	BT=TIssue, A=Air)	11 H		t 10 - 10 - 10		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Special	nstructions/Note:
11-1491220210721	7/21/21	1715		1 / 1							
NTITLEORIUTAL		120	G				_ _ _			_	
S-393D-20210721	7/21/21	950	G	WA						. 🖾	
5-390-20210721	7/21/2	1430	G	N N	X					Please	cc
C - 1290 - 20210721	7/2/12.	1410	G	WM						Keluto	isa,
A-19D-20210722	7/22/21	1225	G	WN	X						nlead.com
5-380-20210722	7/22/21	1435	G	WN					1-1-1-		11
13-1340-20210722	7/22/21	1210	G							ona	
	1	1000		2 M				- -		corre	Spontence
C-1440-20210722	7/22/21	1000	6	WN	X						/
<u>1+-2111-202/0722</u>	7/22/2	1455	G	NN	X						
<u>C-1340_20210722</u>	7/22/21	935	G	NM	X						
13-480-20210722	7/22/21	1205	G	n/A	X						
Possible Hazard Identification			-		Sample Di	isposal (A	fee may be a	ssessed if sa	imples are re	tained longer than 1	month)
Non-Hazard Flammable Skin Irritant Pois	on B Unkno	wn Ra	diological		Retu	ım To Client		isposal By La	ib 🗆	Archive For	Months
Deliverable Requested: I, II, III, IV, Other (specify)					Special Ins	structions/Q0	C Requiremen	its:			
Empty Kif Relinquished by:		Date:		Т	me:	2		Method o	f Shipment:		
Relinquished by	Date/Time 7/23/21	125	0	Company	Receive	anne anne			Date/Time	by 12.50	Company
Relinguished by	Date/Tipne:		21	Company	Baceive	10112			Date/Vime:	1 - 5 to 20	Company
Relinquished by	2/2-2/2 Date/Time:	15		Company	Page		=A-				
	Dato Hine.			Company	Receive	$M I \Lambda$	In	\sim	Date/Time,	2/16:05	Company 0110
Custody Seals Intact: Custody Seal No.:					Qooler T	mperaturate	C and Other R	emarks:	0 2 1	52	- Color
			_			1			V.) 7		Ver: 01/16/2019

2425 New Holland Pike Lancaster, PA 17601 Phone (717) 656-2300	(Chain (of Cus	tody F	Reco	ord							🔆 eurofins	Environment Testing America
Client Information	Sampler:	hael	Frent	Lab I Mali	PM ovec, N	licole			Ca	rrier Trackir	ng No(s)		COC No: , 410-29329-9098	2
Client Contact: Michael Fuerte	Phone 262-4	196-9	159	E-Ma	ail		eurofinse	t com	Sta PA	te of Origin	E		Page 2 of 4-2	
Company: Sanborn Head & Associates Inc			PWSID					Analysis	Reque	ested			Job #:	
Address:	Due Date Reques	ited:											Preservation Co	les:
1015 Virginia Drive Suite 100 City:	TAT Requested (davel					11					1.20	A - HCL	M - Hexane
Fort Washington	5					ent							B - NaOH C - Zn Acetate	N - None O - AsNaO2
State, Zip: PA, 19034	Compliance Proje	ect: <u>A</u> Yes	ΔNo			nting							D - Nitric Acid E - NaHSO4	P - Na2O4S Q - Na2SO3
Phone:	PO #:					6 PFAS with UMCR5 contingent							F - MeOH G - Amchlor	R - Na2S2O3 S - H2SO4
603-415-6136(Tel)	4796.01 WO #:				ON J	I NO							H - Ascorbic Acid	T - TSP Dodecahydrate U - Acetone
MFuerte@sanbornhead.com					080	ŧ						ers.	J - DI Water K - EDTA	V - MCAA W - pH 4-5
Project Name Evergreen Philadelphia PFAS	Project #: 41006783				<u>()</u>	FAS						Itain	L - EDA	Z - other (specify)
Site:	SSOW#:				due	36P						fcor	Other:	
		1		Matrix	S Da	PFC_IDA - UCMR3						DBLO		
			Sample Type	(Wewster, Sesolid,	litter	N-A		-	-	-		(may		
		Sample	(C=comp,	O=wasta/oil, BT=Tissue,	eld Fifter	 2'						otal h		
Sample Identification	Sample Date	Time	G=grab)	A-Air)		H N						E N	Special In	structions/Note:
S-110DSRTF_20210723	7/23/21	IDOE	G			X								
S-11000KIT- Dalota		1000		W	<u>N</u>		-	_		++-			01	
S-115DSRTF-20210723 5-143SRTF-20210723		10	G		M	X			+				Please	<u> </u>
5-1435R1F_20210723	7/23/20	950	G	W	N	X							Kdubri	<u>e</u>
1-27-20210723	7123/21	1220	G	w	N	X							sarbo	mlead.
FB-04-20210723	7123121	1000	G	W	W	X							Com	
FTS-09-20210723 EB-02-20210723 S-1435RTF-Dyp-20210723	7/23/21	The second second	G	n	1	X						1	on al	
ED DE - 20210 TA	7/23/2		~	, ,		X			+ $+$	+				
J-19 DR IT-Lyp-dudu Idu	1120104	10	6	ω	M							100	comme	encations
												1		
												1		
Possible Hazard Identification	·				Sa	mple	Disposal	(A fee may	be asse	ssed if s	amples a	re retain	ed longer than 1	month)
Non-Hazard Flammable Skin Irritant Po			Radiological				eturn To C		Disp	osal By L	.ab	Arch	ive For	Months
Deliverable Requested: I, II, III, IV, Other (specify)	e I				Sp	ecial Ir	nstruction	s/QC Requi	rements:					
Empty-Kit-Relinquished-by:		Date:			Time:		0			Method	of Shipmen			
Relinguished by Reall	Date/Time 7/23/	21 1	250	Company SIL/	1	Receiv	Men	No			Date/Tim	1234	1 12:5	Company Company
Relinguished by	Date/Time. 7/23/2		15 2	Company	*	Receiv	ved by	C			Date/Tr	18:	14.0.5	Company
Relinguished by:	Brate/Time.		13	Company		Receiv	ved by	1 00	_		Date/Tim	18. 6		Company
	1				<u> </u>	Receiv	XV/	XXX	~		122	3/11	110:05	Company
Custody Seals Intact: Custody Seal No.:					2	Coole	emperat	are(s)C and C	Other Rema		5-5.	2		

5

Client: Sanborn Head & Associates Inc

Login Number: 48541 List Number: 1

Creator: Jeremiah, Cory T

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal is intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable (=6C, not frozen).</td <td>True</td> <td></td>	True	
Cooler Temperature is recorded.	True	
WV: Container Temperature is acceptable (=6C, not frozen).</td <td>N/A</td> <td></td>	N/A	
WV: Container Temperature is recorded.	N/A	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
There is sufficient vol. for all requested analyses.	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	N/A	
Is the Field Sampler's name present on COC?	True	
Sample Preservation Verified.	N/A	
Residual Chlorine Checked.	N/A	
Sample custody seals are intact.	N/A	

Job Number: 410-48541-1

List Source: Eurofins Lancaster Laboratories Env, LLC